WO2007014868A1 - Verfahren zur herstellung von kornorientiertem elektroband - Google Patents

Verfahren zur herstellung von kornorientiertem elektroband Download PDF

Info

Publication number
WO2007014868A1
WO2007014868A1 PCT/EP2006/064480 EP2006064480W WO2007014868A1 WO 2007014868 A1 WO2007014868 A1 WO 2007014868A1 EP 2006064480 W EP2006064480 W EP 2006064480W WO 2007014868 A1 WO2007014868 A1 WO 2007014868A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
hot
cold
annealing
melt
Prior art date
Application number
PCT/EP2006/064480
Other languages
English (en)
French (fr)
Inventor
Klaus Günther
Ludger Lahn
Andreas Ploch
Eberhard Sowka
Original Assignee
Thyssenkrupp Steel Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35520090&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007014868(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thyssenkrupp Steel Ag filed Critical Thyssenkrupp Steel Ag
Priority to US11/997,670 priority Critical patent/US8088229B2/en
Priority to KR1020087005312A priority patent/KR101365653B1/ko
Priority to MX2008001475A priority patent/MX2008001475A/es
Priority to BRPI0614379-2A priority patent/BRPI0614379B1/pt
Priority to CA2615586A priority patent/CA2615586C/en
Priority to JP2008524481A priority patent/JP2009503265A/ja
Priority to AU2006274901A priority patent/AU2006274901B2/en
Priority to CN2006800288008A priority patent/CN101238227B/zh
Publication of WO2007014868A1 publication Critical patent/WO2007014868A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Definitions

  • the invention relates to a method for the production of high-quality grain-oriented electrical steel, in particular for the production of so-called HGO material (Highly Grain O ⁇ ented - material) based on thin slab continuous casting.
  • HGO material Highly Grain O ⁇ ented - material
  • JP 2002212639 A describes a process for the production of grain-oriented electrical steel in which a melt which contains (in% by mass) in addition to 2.5-4.0% Si and 0.02-0.20% Mn significant inhibitor components 0.0010 - 0.0050% C, 0.002 - 0.010% Al and levels of S and Se and other optional alloying constituents, such as Cu, Sn, Sb, P, Cr, Ni, Mo and Cd, balance iron and unavoidable impurities, comprises, thin slabs having a thickness of 30 mm to 140 mm are produced.
  • the thin slabs are annealed prior to hot rolling at a temperature of 1000 0 C to 1250 0 C, in order to achieve optimum magnetic properties of the finished electrical steel.
  • the known method provides that the hot rolled 1.0 mm to 4.5 mm thick strip is annealed after hot rolling at temperatures of 950 0 C to 1150 0 C for 30 sec to 600 sec before it at degrees of deformation of 50% to 85% is rolled to cold strip.
  • CGO material Conventional Grain Oriented - material
  • JP 56-158816 A Another method for the production of grain-oriented electrical steel, which, however, relates only to the production of standard grades, so-called CGO material (Conventional Grain Oriented - material), is known from JP 56-158816 A.
  • the hot rolling of these thin slabs is started before their temperature drops below 700 0 C. In the course of the hot rolling, the thin slabs are rolled to a hot strip with a thickness of 1.5 - 3 mm.
  • the thin slabs are rolled to hot strip with a thickness of 1.5 - 3.5 mm.
  • This hot strip thickness has the disadvantage here that the commercial for grain-oriented electrical sheet standard end thicknesses below 0.35 mm only by Kaltwalzgrade above 76% in single-stage cold rolling or conventional multi-stage cold rolling can be produced with intermediate annealing, which is disadvantageous in this operation that the high degree of cold work is not matched to the relatively weak inhibition by MnS and MnSe. This leads to unstable and unsatisfactory magnetic properties of the finished product.
  • a complex and expensive multi-stage cold rolling process with intermediate annealing must be accepted.
  • the hot rolling parameters must be selected such that the material always remains enough ductile remains.
  • ductility for bulk material for grain-oriented electrical sheet the ductility is greatest when the strand is cooled after solidification to about 800 0 C, then only a relatively short time to compensation temperature, eg. B. 1150 0 C, dwells while being thoroughly heated through.
  • An optimal hot rollability of such a material is therefore given when the first forming pass at temperatures below 1150 0 C and with a degree of deformation of at least 20% and the rolling stock from an intermediate thickness of 40 mm to 8 mm by means of high-pressure inter-frame cooling devices within of not more than two successive Umststichen is brought to rolling temperatures of below 1000 0 C. This avoids that the rolling stock in the critical temperature range for ductility around 1000 0 C is formed.
  • the hot strip thus obtained is then cold rolled one or more stages with recrystallizing intermediate annealing to a final thickness in the range of 0.15 to 0.50 mm.
  • This cold strip is finally recrystallized and decarburizing annealed, provided with a predominantly MgO containing Glühseparator and then final annealing to the expression of a Gosstextur.
  • the tape is coated with electrical insulation and annealed stress-free.
  • the ladle furnace In this unit, the molten steel for the thin slab caster is provided and set by heating the desired dispensing temperature for potting. In addition, in the ladle furnace, the final adjustment of the chemical composition of the steel in question can be made by adding alloying elements. In addition, the slag is usually conditioned in the ladle furnace. In the processing of aluminum-killed steels, additional small amounts of Ca are added to the molten steel in the ladle furnace in order to ensure the castability of these steels.
  • the preparation of grain oriented electrical steel also requires a high accuracy adjustment of the chemical target analysis, i. the setting of the contents of the individual elements must be very closely matched, so that depending on the selected absolute content, the boundaries of some elements are very narrow.
  • the treatment in the ladle furnace reaches its limits.
  • the invention therefore an object of the invention to provide a method that allows the economical production of high-quality grain-oriented electrical steel sheet (especially HGO) using thin slab continuous casting plants.
  • m) optionally: coating the final annealed cold-rolled strip with electrical insulation and then stress-relieving the coated cold-rolled strip.
  • the predetermined by the invention sequence of operations is tuned so that, using conventional aggregates, an electrical sheet can be produced which has optimized electro-magnetic properties.
  • a molten steel is melted with known composition in the first step.
  • This melt is then treated by secondary metallurgy.
  • This treatment is preferably first carried out in a vacuum plant to adjust the chemical composition of the steel to the required narrow analytical margins and to achieve low hydrogen contents of at most 10 ppm in order to minimize the risk of strand breakage during casting of molten steel.
  • the use of a ladle furnace for slag conditioning would also first be followed by treatment in a vacuum system for adjusting the chemical composition of the molten steel within narrow analytical limits.
  • this combination has the disadvantage that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast.
  • this has the disadvantage that the analysis accuracy is not as good as in the treatment in a vacuum system and also high hydrogen contents in the casting melt can occur with the risk of strand breakthroughs.
  • the invention further, only use the vacuum system. On the one hand, however, this involves the risk that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast. On the other hand, there is a risk that the immersion spouts clog in the sequence and thus the sequence must be canceled.
  • both systems are thus used in combination with the availability of ladle furnace and vacuum system depending on the respective melting metallurgical and casting requirements.
  • a strand is then poured, which preferably has a thickness of 25 mm to 150 mm.
  • the molten steel is poured in a continuous casting mold, which is equipped with an electromagnetic brake, such errors can be largely avoided.
  • a brake causes a calming and homogenization of the flow in the mold, in particular in Badador Kunststoff by generating a magnetic field, which, in interaction with the casting molds entering the mold reduces their speed due to the effect of the so-called "Lorenzkraft".
  • the formation of a microstructure of the cast steel strand which is favorable with regard to the electromagnetic properties can also be assisted by casting at a low superheating temperature.
  • the latter are preferably at most 25 K above the liquidus temperature of the cast melt. If this advantageous variant of the invention is taken into account, a freezing of the molten steel cast at low superheat at the bath level and hence casting disturbances up to the casting break can likewise be avoided by using an electromagnetic brake on the casting mold.
  • the force exerted by the electromagnetic brake directs the hot melt to the bath level and there causes a temperature increase sufficient to ensure a smooth casting process.
  • the homogeneous and fine-grained solidification structure of the cast strand achieved in this way has a favorable effect on the magnetic properties of the grain-oriented electrical steel produced according to the invention.
  • the aim is to avoid the formation of nitridic precipitates prior to hot rolling and during hot rolling as much as possible in order to make extensive use of the possibility of a controlled production of such precipitates during the cooling of the hot strip.
  • it is provided according to an advantageous embodiment of the invention to make an inline thickness reduction of cast from the melt, but still core liquid strand.
  • LCR Liquid Core Reduction
  • SR Soft Reduction
  • the reduction in the number of stitches and the rolling forces in the rolling mills of the hot strip mill can be reduced with the result that the work roll wear of the rolling mills and the slumpiness of the hot strip can be reduced and the strip run can be improved.
  • the thickness reduction achieved by LCR according to the invention is preferably in the range of 5 mm to 30 mm.
  • SR Under SR is meant the targeted reduction in thickness of the strand in the swamp tip near Enderstarrung.
  • the SR aims to reduce mitigation and core porosity. This method has hitherto been used predominantly in billet and slab continuous casting plants.
  • the invention now proposes to apply the SR also in the production of grain-oriented electrical steel on thin slab continuous casting or casting rolling.
  • the achievable in this way in particular the silicon Mitsenigerung in the subsequently hot-rolled precursors can be a homogenization of the chemical composition across the strip thickness reach, which is beneficial for the magnetic values.
  • Good SR results are obtained when the reduction in thickness achieved using SR is 0.5-5 mm.
  • the casting mold strand In thin slab continuous casting the usually emerging from the casting mold strand is bent at lower points and guided in a horizontal direction.
  • the casting cast from the melt strand at 700 0 C. Bending and directed at 1000 0 C temperature (preferably 850 to 950 0 C) can be avoided, cracks on the surface of the separated from the strand thin slabs can be avoided, which may otherwise occur, in particular, as a result of edge cracks of the strand.
  • the steel used according to the invention has a good ductility at the strand surface or in the edge region, so that it can follow well the deformations occurring during bending and straightening.
  • the cast strand thin slabs are divided in a conventional manner, which are then heated in an oven to the appropriate hot rolling start temperature and then fed to hot rolling.
  • the temperature at which the thin slab arriving in the furnace is preferably above 650 0 C.
  • the residence time in the oven should be below 60 minutes in order to avoid Klebzunder.
  • An aspect of the invention which is essential in view of the desired production of HGO material is that the hot rolling is carried out following the first forming pass in the two-phase region ( ⁇ / ⁇ ). Also, this measure has the goal of reducing the formation of nitridic precipitates in the course of hot rolling as far as possible in order to be able to control these precipitates specifically via the cooling conditions on the outlet roller table behind the last mill stand of the hot strip mill.
  • hot rolled at temperatures where mixed in the structure of the hot strip austenitic and ferritic shares are above about 800 ° C., in particular in the range from 850 ° C. to 1150 ° C.
  • the AIN In the ⁇ phase, the AIN is kept in solution at these temperatures.
  • Another positive aspect of hot rolling in the two-phase mixing area is the grain-separating effect.
  • austenite By converting the austenite into ferrite following the hot whale passes, a finer-grained and more homogeneous hot-band structure is achieved, which has a positive effect on the magnetic properties of the end product.
  • the prevention of nitridic precipitations during hot rolling is further supported by the fact that already in the first forming pass a degree of deformation of at least 40% is achieved in order to have only relatively small Stichab changes in the last frameworks for achieving the desired Endbanddicke necessary.
  • the use of high reduction rates (degrees of deformation) in the first two stands causes the required conversion of the coarse-grained solidification microstructure into a fine rolling structure, which is the prerequisite for good magnetic properties of the final product to be produced. Accordingly, the reduction in stitching in the last stand should be limited to a maximum of 30%, preferably less than 20%, and it is also favorable for an optimum in terms of the desired properties warm rolling result, if the reduction in the penultimate stand of the finishing mill is less than 25% , A pass plan tested in practice on a seven-stand finished hot rolling mill, which has led to optimum properties of the finished electrical sheet, provides that with a pre-strip thickness of 63 mm and a hot strip thickness of 2 mm, the degree of deformation achieved on the first stand is 62%, that on the second stand achieved 54%, the third scaffold 47%, the fourth scaffold 35%, the fifth scaffold 28%, the sixth scaffold 17% and the seventh scaffold 11%.
  • an early onset of cooling of the hot strip behind the last rolling stand of the finishing train is advantageous. According to a practical embodiment of the invention, it is therefore provided within a maximum of five seconds after leaving the last Rolling mill to start with the water cooling.
  • the aim is to have the shortest possible break times, for example, of one second and less.
  • the cooling of the hot strip can also be controlled so that it is cooled in two stages with water. For this purpose, first after the last rolling mill to a temperature close to the alpha / gamma transformation temperature can be cooled to then, preferably after to equalize the temperature over the tape thickness inserted cooling pause of one to five seconds, a further cooling by water until to perform the required reel temperature.
  • the first phase of the cooling can take place as a so-called "compact cooling", in which the hot strip is cooled rapidly over a short conveyor line with high intensity and cooling rate (at least 200 K / s) while discharging large amounts of water, while in the second phase of the Water cooling is cooled over a longer conveyor line with reduced intensity in order to achieve the most uniform possible cooling over the belt cross-section.
  • the reel temperature should preferably be in the temperature range of 500-780 0 C. Overlying temperatures would on the one hand lead to undesirably coarse precipitates and on the other hand worsen the treatability.
  • a so-called short distance reel is used, which is located directly after the compact cooling zone.
  • the inventive method in the production of the hot strip is preferably carried out so that the hot strip obtained sulfidic and / or nitridic precipitates having a mean particle diameter below 150 nm and an average density of at least 0.05 microns 2 is achieved .
  • This type of hot strip has optimal conditions for the effective control of grain growth during the subsequent process steps.
  • the hot strip thus produced can optionally be annealed after reeling or before cold rolling.
  • the strip obtained is annealed recrystallizing and decarburizing.
  • the cold rolled strip may be annealed during or after decarburization annealing in an NH 3 -containing atmosphere.
  • N-containing antacid additives such as manganese nitride or chromium nitride
  • a molten steel of composition 3, 15% Si, 0.047% C, 0.154% Mn, 0.006% S, 0.030% Al, 0.0080% N, 0.22% Cu and 0.06% Cr became after the secondary metallurgical treatment
  • a ladle furnace and a vacuum system continuously poured into a 63 mm thick strand Before entering the in-line equalization furnace, the strand was split into thin slabs. After a residence time of 20 minutes in the equalizing furnace at 1150 ° C., the thin slabs were then descaled and hot-rolled in various ways:
  • the first pass was made at 1090 0 C with a degree of deformation of 61% and the second pass at 1050 0 C with a degree of deformation of 50%.
  • the rolling temperatures in the Stitches 3 to 7 were 1010 ° C., 980 ° C., 950 ° C., 930 ° C. and 900 ° C.
  • the degrees of deformation were 17% and 11%, respectively.
  • the following austenite proportions were obtained in Stitches 1 to 7: 30% / 25% / 20% / 18% / 15% / 14% and 12%.
  • the cooling was identical for both hot rolling variants with the use of water spraying within 7 s after leaving the last mill stand and a coiler temperature of 650 0 C.
  • samples for metallographic examinations were also produced by hot rolling after the second pass was stopped by rapid cooling.
  • the strips were first annealed in a continuous furnace and then cold rolled in 1 step without intermediate annealing to a final thickness of 0.30 mm.
  • annealing 2 different variants were chosen:
  • the different magnetic results depending on the selected hot rolling conditions can be explained by the different microstructures.
  • the high austenite contents in the individual forming passes form a finer and, above all, significantly more homogeneous structure (FIG. 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von hochwertigem kornorientierten Elektroband, insbesondere zur Herstellung von so genanntem HGO-Material (Highly Grain Oriented - Material) auf Basis von Dünnbrammen-Strangguss. Ausgehend von einer Stahllegierung mit (in Masse-%) Si: 2,5-4,0 %, C: 0,02-0, 10 %, Al: 0,01-0,065 %, N: 0,003-0,015 % schlägt die Erfindung dazu eine Arbeitsfolge vor, deren einzelnen Arbeitsschritte (sekundärmetallurgisches Behandeln der Schmelze, kontinuierliches Abgießen der Schmelze zu einem Strang, Zerteilen des Strangs in Dünnbrammen, Aufheizen der Dünnbrammen, kontinuierliches Warmwalzen der Dünnbrammen zu einem Warmband, Abkühlen des Warmbands, Haspeln des Warmbands, Kaltwalzen des Warmbandes zu einem Kaltband, rekristallisierendes und entkohlendes Glühen des Kaltbands, Auftrag eines Glühseparators auf die Bandoberfläche, Schlussglühen des rekristallisierend und entkohlend geglühten Kaltbands zur Ausprägung einer Gosstextur) so aufeinander abgestimmt sind, dass unter Verwendung von konventionellen Aggregaten ein Elektroblech mit optimierte elektro-magnetische Eigenschaften erhalten wird.

Description

Verfahren zur Herstellung von kornorientiertem Elektroband
Die Erfindung betrifft ein Verfahren zur Herstellung von hochwertigem kornorientierten Elektroband, insbesondere zur Herstellung von so genanntem HGO- Material (Highly Grain Oπented - Material) auf Basis von Dünnbrammen-Strangguss.
Grundsätzlich ist es bekannt, dass sich Dünnbrammen-Stranggießanlagen aufgrund der durch die Inline-Verarbeitung von Dünnbrammen ermöglichten günstigen Temperaturführung in besonderer Weise für die Erzeugung von Elektroblechen eignen. So ist in der JP 2002212639 A ein Verfahren zur Herstellung von kornorientiertem Elektroblech beschrieben, bei dem aus einer Schmelze, die (in Masse-%) neben 2,5 - 4,0 % Si und 0,02 - 0,20 % Mn als wesentliche Inhibitor-Komponenten 0,0010 - 0,0050 % C, 0,002 - 0,010 % AI und Gehalte an S und Se sowie weitere optionale Legierungsbestandteile, wie Cu, Sn, Sb, P, Cr, Ni, Mo und Cd, Rest Eisen und unvermeidbare Verunreinigungen, aufweist, Dünnbrammen mit einer Dicke von 30 mm bis 140 mm erzeugt werden. Gemäß einer als vorteilhaft erläuterten Ausgestaltung dieses bekannten Verfahrens werden die Dünnbrammen vor dem Warmwalzen bei einer Temperatur von 1000 0C bis 1250 0C geglüht, um optimale magnetische Eigenschaften am fertigen Elektroblech zu erzielen. Weiter sieht das bekannte Verfahren vor, dass das 1,0 mm bis 4,5 mm dicke Warmband nach dem Warmwalzen bei Temperaturen von 950 0C bis 1150 0C für 30 sec bis 600 sec geglüht wird, bevor es bei Umformgraden von 50 % bis 85 % zu Kaltband gewalzt wird. Als Vorteil der Verwendung von Dünnbrammen als Ausgangsprodukt für die Erzeugung von Elektroblechen wird dabei in der JP 2002212639 A herausgestellt, dass aufgrund der geringen Dicke der Dünnbrammen eine gleichmäßige Temperaturverteilung und eine ebenso gleichförmige Gefügeausbildung über den gesamten Brammenquerschnitt gewährleistet werden kann, so dass auch das erhaltene Band eine entsprechend gleichmäßige Eigenschaftsverteilung über seine Dicke besitzt.
Ein anderes Verfahren zur Herstellung von kornorientiertem Elektroblech, das allerdings nur die Herstellung von Standardgüten, so genanntem CGO-Material (Conventional Grain Oriented - Material), betrifft, ist aus der JP 56-158816 A bekannt. Gemäß diesem Verfahren wird eine (in Masse-%) 0,02 - 0, 15 % Mn als wesentliche Inhibitor-Komponente, mehr als 0,08 % C, mehr als 4,5 % Si, und in Summe 0,005 - 0,1 % S und Se, Rest Eisen und unvermeidbare Verunreinigungen, enthaltende Schmelze zu Dünnbrammen vergossen, die eine Dicke von 3 mm bis 80 mm aufweisen. Mit dem Warmwalzen dieser Dünnbrammen wird begonnen, bevor ihre Temperatur unter 700 0C sinkt. Im Zuge des Warmwalzens werden die Dünnbrammen zu einem Warmband mit einer Dicke von 1,5 - 3 mm gewalzt. Im Zuge des Warmwalzens werden die Dünnbrammen zu Warmband mit einer Dicke von 1,5 - 3,5 mm gewalzt. Diese Warmbanddicke hat hier den Nachteil, dass die für kornorientiertes Elektroblech handelsüblichen Standard-Enddicken unterhalb von 0,35 mm nur durch Kaltwalzgrade oberhalb 76 % bei einstufigem Kaltwalzen oder durch konventionelles mehrstufiges Kaltwalzen mit Zwischenglühen herstellbar sind, wobei an dieser Arbeitsweise unvorteilhaft ist, dass der hohe Kaltumformgrad nicht auf die relativ schwache Inhibition durch MnS und MnSe abgestimmt ist. Das führt zu instabilen und unbefriedigenden magnetischen Eigenschaften des Fertigproduktes. Alternativ muss ein aufwendiger und teurer mehrstufiger Kaltwalzprozess mit Zwischenglühungen in Kauf genommen werden.
Weitere Möglichkeiten der Erzeugung von kornorientiertem Elektroblech mittels einer Dünnbrammen-Stranggussanlage sind in der DE 197 45 445 Cl umfangreich dokumentiert. Gemäß dem aus der DE 197 45 445 Cl vor dem Hintergrund des seinerzeit bekannten Standes der Technik entwickelten Verfahren wird eine Siliziumstahlschmelze erzeugt, die kontinuierlich zu einem Strang in einer Dicke von 25 mm bis 100 mm vergossen wird. Der Strang wird im Zuge des Erstarrens auf eine Temperatur oberhalb von 700 0C abgekühlt und in Dünnbrammen zerteilt. Die Dünnbrammen durchlaufen dann einen in Linie stehenden Ausgleichsofen und werden dabei auf eine Temperatur <= 1170 0C erwärmt. Die derart erwärmten Dünnbrammen werden anschließend in einer mehrge rüstigen Warmwalzstraße kontinuierlich zu Warmband mit einer Dicke <= 3,0 mm gewalzt, wobei der erste Umformstich des Warmwalzens bei einer Temperatur im Walzgut von bis zu 1150 0C mit einer Dickenverminderung von mindestens 20 % durchgeführt wird.
Um die sich aus der Verwendung von Dünnbrammen als Vorprodukt ergebenden Vorteile des Gieß-Walz-Prozesses für die Erzeugung von kornorientiertem Elektroblech nutzen zu können, müssen gemäß den in der DE 197 45 445 Cl gegebenen Erläuterungen die Warmwalzparameter so gewählt werden, dass das Material stets genügend duktil bleibt. Diesbezüglich wird in der DE 197 45 445 Cl festgestellt, dass bei Vormaterial für kornorientiertes Elektroblech die Duktilität dann am größten ist, wenn der Strang nach der Erstarrung bis auf ca. 800 0C gekühlt wird, anschließend nur relativ kurz auf Ausgleichstemperatur, z. B. 1150 0C, verweilt und dabei homogen durcherwärmt wird. Eine optimale Warmwalzbarkeit eines solchen Materials ist demnach dann gegeben, wenn der erste Umformstich bei Temperaturen unterhalb von 1150 0C und mit einem Umformgrad von mindestens 20 % erfolgt und das Walzgut ab einer Zwischendicke von 40 mm bis 8 mm mittels Hochdruck-Zwischengerüst-Kühleinrichtungen innerhalb von höchstens zwei aufeinander folgenden Umformstichen auf Walztemperaturen von unterhalb 1000 0C gebracht wird. Dadurch wird vermieden, dass das Walzgut im für die Duktilität kritischen Temperaturbereich um 1000 0C umgeformt wird.
Gemäß der DE 197 45 445 Cl wird das so erhaltene Warmband dann ein- oder mehrstufig mit rekristallisierender Zwischenglühung auf eine Enddicke im Bereich von 0,15 bis 0,50 mm kaltgewalzt. Dieses Kaltband wird schließlich rekristallisierend und entkohlend geglüht, mit einem überwiegend MgO enthaltenden Glühseparator versehen und danach zur Ausprägung einer Gosstextur schlußgeglüht. Abschließend wird das Band mit einer elektrischen Isolierung beschichtet und spannungsfrei geglüht.
Trotz der im Stand der Technik dokumentierten umfangreichen Vorschläge für eine praktische Nutzung ist der Einsatz von Gießanlagen, bei denen typischerweise ein Strang mit einer Dicke von in der Regel 40 mm bis 100 mm gegossen und anschließend zu Dünnbrammen zerteilt wird, für die Herstellung von kornorientiertem Elektroblech aufgrund der besonderen Anforderungen, die sich bei der Erzeugung von Elektroblechen an die Schmelzenzusammensetzung und die Prozessführung ergeben, die Ausnahme geblieben.
Praktische Untersuchungen zeigen, dass eine zentrale Bedeutung beim Einsatz von Dünnbrammen-Stranggussanlagen dem Pfannenofen zukommt. In diesem Aggregat wird die Stahlschmelze für die Dünnbrammen-Stranggießanlage bereitgestellt und durch Beheizen die gewünschte Abgabetemperatur für das Vergießen eingestellt. Zudem kann im Pfannenofen die Endeinstellung der chemischen Zusammensetzung des betreffenden Stahls durch Zugabe von Legierungselementen vorgenommen werden. Darüber hinaus wird im Pfannenofen üblicherweise die Schlacke konditioniert. Bei der Verarbeitung von aluminiumberuhigten Stählen wird im Pfannenofen zusätzlich Ca in geringen Mengen in die Stahlschmelze gegeben, um die Vergießbarkeit dieser Stähle sicherzustellen.
Bei den für kornorientiertes Elektroblech benötigten Silizium-Aluminium-beruhigten Stählen ist zur Sicherstellung der Vergießbarkeit zwar keine Ca-Zugabe erforderlich. Allerdings muss eine Reduktion der Sauerstoffaktivität in der Pfannenschlacke vorgenommen werden.
Die Herstellung von kornorientiertem Elektroblech erfordert zudem eine hochgenaue Einstellung der chemischen Soll-Analyse, d.h. die Einstellung der Gehalte der einzelnen Elemente muss sehr genau aufeinander abgestimmt werden, so dass je nach dem gewählten absoluten Gehalt, die Grenzen einiger Elemente sehr eng werden. Hier stößt die Behandlung im Pfannenofen an ihre Grenzen.
Wesentlich bessere Bedingungen lassen sich diesbezüglich durch Einsatz einer Vakuumanlage erreichen. Im Gegensatz zu einer Pfannenstandentgasung ist eine RH- oder DH-Vakuumanlage jedoch für die Schlackenkonditionierung nicht geeignet. Diese ist notwendig, um die Vergießbarkeit von für die Erzeugung von kornorientiertem Elektroblech eingesetzten Stahlschmelzen zu gewährleisten. Ausgehend von dem voranstehend erläuterten Stand der Technik lag der Erfindung daher die Aufgabe zu Grunde, ein Verfahren zu schaffen, das die wirtschaftliche Herstellung von hochwertigem kornorientierten Elektroblech (insbesondere HGO) unter Einsatz von Dünnbrammen-Stranggussanlagen ermöglicht.
Diese Aufgabe ist durch ein Verfahren zur Erzeugung von kornorientiertem Elektroband gelöst worden, das erfindungsgemäß folgende Arbeitsschritte umfasst:
a) Erschmelzen eines Stahls, der neben Eisen und unvermeidbaren
Verunreinigungen (in Masse-%)
Si: 2,5 - 4,0 %,
0: 0,02 - 0, 10 %,
AI: 0,01 - 0,065 %
N: 0,003 - 0,015 % wahlweise
bis zu 0 ,30 % M n, bis zu 0,05 % Ti, bis zu 0,3 % P, eines oder mehrere Elemente aus der Gruppe S, Se in Gehalten, deren Summe höchstens 0,04 % beträgt, eines oder mehrere Elemente aus der Gruppe As, Sn, Sb, Te, Bi mit Gehalten von jeweils bis zu 0,2 %, eines oder mehrere Elemente aus der Gruppe Cu, Ni, Cr, Co, Mo mit Gehalten von jeweils bis zu 0, 5 %, eines oder mehrere Elemente aus der Gruppe B, V, Nb mit Gehalten von jeweils bis zu 0,012 %, enthält,
b) sekundärmetallurgisches Behandeln der Schmelze in einem Pfannenofen und / oder einer Vakuumanlage, c) kontinuierliches Abgießen der Schmelze zu einem Strang,
d) Zerteilen des Strangs in Dünnbrammen,
e) Aufheizen der Dünnbrammen in einem in Linie stehenden Ofen auf eine Temperatur zwischen 1050 0 C und 1300 ° C , wobei die Verweilzeit im Ofen höchstens 60 min beträgt,
f ) kontinuierliches Warmwalzen der Dünnbrammen in einer in Linie stehenden mehrgerüstigen Warmwalzstraße zu einem Warmband mit einer Dicke von 0,5 - 4,0 mm, wobei während dieses Warmwalzens der erste Umformstich bei einer Temperatur von 900 - 1200 0 C mit einem Umformgrad von mehr als 40 % durchgeführt wird, wobei zumindest die anschließenden 2 Umformstiche des Warmwalzens im Zweiphasenmischgebiet (α-γ) gewalzt werden - wobei die Stichabnahme im letzten Umformstich des Warmwalzens höchstens 30 % beträgt,
g) Abkühlen des Warmbands,
h) Haspeln des Warmbands zu einem Coil,
i) wahlweise: Glühen des Warmbands nach dem Haspeln bzw. vor dem Kaltwalzen
j) Kaltwalzen des Warmbandes zu einem Kaltband mit einer Enddicke von 0, 15 mm bis 0,50 mm
k) rekristallisierendes und entkohlendes Glühen des Kaltbands, optional auch mit einem Nitrieren während oder nach der Entkohlung, I) Schlussglühen des rekristallisierend und entkohlend geglühten Kaltbands zur Ausprägung einer Gosstextur,
m) wahlweise: Beschichten des schlussgeglühten Kaltbands mit einer elektrischen Isolierung und anschließendes Spannungsfreiglühen des beschichteten Kaltbands.
Die durch die Erfindung vorgegebene Arbeitsfolge ist so abgestimmt, dass unter Verwendung von konventionellen Aggregaten ein Elektroblech erzeugt werden kann, das optimierte elektro-magnetische Eigenschaften besitzt.
Hierzu wird im ersten Schritt eine Stahlschmelze mit an sich bekannter Zusammensetzung erschmolzen. Diese Schmelze wird dann sekundärmetallurgisch behandelt. Diese Behandlung findet zunächst bevorzugt in einer Vakuumanlage statt, um die chemische Zusammensetzung des Stahls in den gefordert engen Analysenspannen einzustellen und niedrige Wasserstoffgehalte von maximal 10 ppm zu erreichen, um das Risiko des Auftretens von Strangdurchbrüchen beim Vergießen der Stahlschmelze auf ein Minimum zu reduzieren.
Im Anschluss an die Behandlung in der Vakuumanlage ist ein Einsatz in einem Pfannenofen zweckmäßig, um im Fall von Angießverzögerungen die für das Gießen erforderliche Temperatur sicherstellen zu können und um durch dortige Schlacken-Konditionierung das Zusetzen der Tauchrohrausgüsse in der Kokille beim Dünnbrammen-Stranggießen und damit einen Gießabbruch zu vermeiden.
Erfindungsgemäß wäre auch zunächst der Einsatz eines Pfannenofens zur Schlackenkonditionierung, gefolgt von der Behandlung in einer Vakuumanlage zur Einstellung der chemischen Zusammensetzung der Stahlschmelze in engen Analysengrenzen. Diese Kombination ist allerdings mit dem Nachteil verbunden, dass im Fall von Angießverzögerungen die Temperatur der Schmelze so weit absinkt, dass die Stahlschmelze nicht mehr vergossen werden kann. Es ist auch erfindungsgemäß, nur den Pfannenofen einzusetzen. Dies ist allerdings mit dem Nachteil verbunden, dass die Analysentreffsicherheit nicht so gut ist wie bei der Behandlung in einer Vakuumanlage und zudem hohe Wasserstoffgehalte in der Gießschmelze auftreten können mit der Gefahr von Strangdurchbrüchen.
Erfindungsgemäß ist weiterhin, nur die Vakuumanlage einzusetzen. Dies beinhaltet jedoch zum einen die Gefahr, dass im Fall von Angießverzögerungen die Temperatur der Schmelze so weit absinkt, dass die Stahlschmelze nicht mehr vergossen werden kann. Zum anderen besteht die Gefahr, dass sich die Tauchausgüsse im Sequenzverlauf zusetzen und damit die Sequenz abgebrochen werden muss.
Gemäß der Erfindung werden somit bei Verfügbarkeit von Pfannenofen und Vakuumanlage abhängig von den jeweiligen schmelzmetallurgischen und gießtechnischen Anforderungen beide Anlagen in Kombination eingesetzt.
Aus der so behandelten Schmelze wird anschließend ein Strang gegossen, der bevorzugt eine Dicke von 25 mm bis 150 mm aufweist.
Beim Gießen des Strangs in der engvolumigen Kokille von Dünnbrammen- Stranggießanlagen treten hohe Strömungsgeschwindigkeiten, Strömungsturbulenzen und ungleichmäßige Strömungsverteilung über die Strangbreite im Badspiegelbereich auf. Dies führt einerseits dazu, dass die Erstarrung ungleichmäßig wird, so dass am gegossenen Strang Oberflächen-Längsrisse auftreten können. Andererseits wird durch die unruhig strömende Schmelze Gießschlacke bzw. Gießpulver in den Strang eingespült. Diese Einschlüsse verschlechtern die Oberflächenbeschaffenheit und den inneren Reinheitsgrad der vom gegossenen Strang nach dessen Erstarrung abgeteilten Dünnbrammen.
Indem gemäß einer vorteilhaften Ausgestaltung der Erfindung die Stahlschmelze in einer Stranggusskokille, die mit einer elektromagnetischen Bremse ausgerüstet ist, vergossen wird, können derartige Fehler weitgehend vermieden werden. Bei erfindungsgemäßem Einsatz bewirkt eine solche Bremse eine Beruhigung und Vergleichmäßigung der Strömung in der Kokille, insbesondere im Badspiegelbereich, indem sie ein Magnetfeld erzeugt, das in Wechselwirkung mit den in die Kokille eintretenden Gießstrahlen deren Geschwindigkeit aufgrund der Wirkung der so genannten " Lorenzkraft" reduziert.
Die Entstehung eines im Hinblick auf die elektromagnetischen Eigenschaften günstigen Gefüges des gegossenen Stahlstrangs kann auch dadurch unterstützt werden, dass mit niedriger Überhitzungstemperatur gegossen wird. Letztere liegen vorzugsweise maximal 25 K über der Liquidustemperatur der vergossenen Schmelze. Wird diese vorteilhafte Variante der Erfindung berücksichtigt, so können ein Einfrieren der mit niedriger Überhitzung vergossenen Stahlschmelze am Badspiegel und damit Gießstörungen bis hin zum Gießabbruch ebenfalls durch den Einsatz einer elektromagnetischen Bremse an der Gießkokille vermieden werden. Die von der elektromagnetischen Bremse ausgeübte Kraft leitet die heiße Schmelze zum Badspiegel und bewirkt dort eine Temperaturerhöhung, die ausreicht, um einen störungsfreien Gießverlauf zu gewährleisten.
Das auf diese Weise erzielte homogene und feinkörnige Erstarrungsgefüge des gegossenen Strangs wirkt sich günstig auf die magnetischen Eigenschaften des erfindungsgemäß hergestellten kornorientierten Elektroblechs aus.
Erfindungsgemäß wird angestrebt, die Bildung von nitridischen Ausscheidungen vor dem Warmwalzen und während des Warmwalzens möglichst zu vermeiden, um die Möglichkeit einer kontrollierten Erzeugung solcher Ausscheidungen bei der Abkühlung des Warmbandes in großem Umfang nutzen zu können. Um dies zu unterstützen, ist es gemäß einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, eine Inline-Dickenreduzierung des aus der Schmelze gegossenen, jedoch noch kernflüssigen Strangs vorzunehmen.
Als an sich bekannte Verfahren zur Dickenreduzierung bieten sich die so genannte " Liquid Core Reduction" - nachfolgend " LCR" - und die so genannte "Soft Reduction" - nachfolgend "SR" - an. Diese Möglichkeiten der Dickenreduktion eines gegossenen Strangs können alleine oder in Kombination eingesetzt werden. Bei der LCR wird die Strangdicke bei kernflüssigem Inneren des Strangs dicht unter der Kokille reduziert. LCR wird beim Stand der Technik in Dünnbrammen- Stranggießanlagen in erster Linie eingesetzt, um geringere Warmband-Enddicken insbesondere bei höherfesten Stählen zu erreichen. Daneben können durch LCR die Stichabnahmen bzw. die Walzkräfte in den Walzgerüsten der Warmbandstraße mit dem Erfolg gemindert werden, dass der Arbeitswalzenverschleiß der Walzgerüste und die Zunderporigkeit des Warmbands vermindert und der Bandlauf verbessert werden kann. Die durch LCR erzielte Dickenreduktion liegt erfindungsgemäß bevorzugt im Bereich von 5 mm bis 30 mm.
Unter SR wird die gezielte Dickenreduktion des Stranges in der Sumpfspitze nahe der Enderstarrung verstanden. Die SR hat zum Ziel, Mittenseigerungen und Kernporosität zu verringern. Dieses Verfahren wird bislang vorwiegend in Vorblock- und Brammen-Stranggießanlagen eingesetzt.
Die Erfindung schlägt nun vor, die SR auch bei der Erzeugung von kornorientiertem Elektroblech über Dünnbrammen-Stranggießanlagen bzw. Gießwalzanlagen anzuwenden. Durch die auf diese Weise erzielbare Verringerung insbesondere der Silizium-Mittenseigerung in den anschließend warmgewalzten Vorprodukten lässt sich eine Vergleichmäßigung der chemischen Zusammensetzung über die Banddicke erreichen, was für die magnetischen Werte von Vorteil ist. Gute Ergebnisse der SR werden erhalten, wenn die bei der Anwendung von SR erzielte Dickenabnahme 0,5 - 5 mm beträgt. Als Anhalt für den Zeitpunkt, zu dem die SR im Zusammenhang mit dem erfindungsgemäß durchgeführten Stranggießen angewendet wird, kann folgende Vorgabe dienen:
- Beginn der SR-Zone bei einem Erstarrungsgrad fs von 0,2,
- Ende der SR-Zone bei fs = 0,7 - 0,8.
Bei Dünnbrammen-Stranggießanlagen wird der aus der Gießkokille üblicherweise vertikal austretende Strang an tiefer gelegenen Stellen gebogen und in eine horizontale Richtung geführt. Indem gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung der aus der Schmelze gegossene Strang bei einer 700 0C bis 1000 0C betragenden Temperatur (vorzugsweise bei 850 bis 950 0C) gebogen und gerichtet wird, können Risse an der Oberfläche der von dem Strang abgetrennten Dünnbrammen vermieden werden, zu denen es andernfalls insbesondere in Folge von Kantenrissen des Strangs kommen kann. Im genannten Temperaturbereich weist der erfindungsgemäß verwendete Stahl eine gute Duktilität an der Strangoberfläche bzw. im Kantenbereich auf, so dass er den beim Biegen und Richten auftretenden Verformungen gut folgen kann.
Von dem gegossenen Strang werden in an sich bekannter Weise Dünnbrammen abgeteilt, die anschließend in einem Ofen auf die geeignete Warmwalzanfangstemperatur erwärmt werden und dann dem Warmwalzen zugeführt werden. Die Temperatur, mit der die Dünnbrammen in den Ofen einlaufen, liegt bevorzugt oberhalb von 650 0C. Die Verweilzeit im Ofen sollte unter 60 min betragen, um Klebzunder zu vermeiden.
Ein im Hinblick auf die angestrebte Erzeugung von HGO-Material wesentlicher Aspekt der Erfindung ist, dass das Warmwalzen im Anschluss an den ersten Umformstich im Zweiphasengebiet (α/γ) durchgeführt wird. Auch diese Maßnahme hat zum Ziel, die Entstehung von nitridischen Ausscheidungen im Zuge des Warmwalzens weitestgehend zu reduzieren, um diese Ausscheidungen gezielt über die Kühlbedingungen auf dem Auslaufrollgang hinter dem letzten Walzgerüst der Warmbandstraße steuern zu können. Um dies sicherzustellen, wird erfindungsgemäß bei Temperaturen warmgewalzt, bei denen im Gefüge des Warmbands austenitische und ferritische Anteile gemischt vorliegen. Typische Temperaturen, bei denen dies für die erfindungsgemäß verwendeten Stahllegierungen gegeben ist, liegen über rund 800 0C, insbesondere im Bereich von 850 0C bis 1150 0C. In der γ-Phase wird bei diesen Temperaturen das AIN in Lösung gehalten. Als weiterer positiver Aspekt des Warmwalzens im Zweiphasenmischgebiet ist der Kornfei nungseffekt zu nennen. Durch die Umwandlung des Austenits in Ferrit im Anschluss an die Warmwalstiche, wird ein feinkörnigeres und homogeneres Warmbandgefüge erzielt, welches sich positiv auf die magnetischen Eigenschaften des Endproduktes auswirkt. Weiter unterstützt wird die Vermeidung von nitridischen Ausscheidungen während des Warmwalzens erfindungsgemäß dadurch, dass schon im ersten Umformstich ein Umformgrad von mindestens 40 % erreicht wird, um nur relativ geringe Stichabnahmen in den letzten Gerüsten für die Erzielung der gewünschten Endbanddicke nötig zu haben. In dieser Hinsicht bevorzugt liegt daher der über die ersten beiden Umformstiche in der Fertigstraße erzielte Gesamtumformgrad über 60 %, wobei in weiterer vorteilhafter Ausgestaltung der Erfindung im ersten Gerüst der Fertigstraße ein Umformgrad von mehr als 40 % erzielt wird und im zweiten Gerüst der Fertigstraße die Stichabnahme mehr als 30 % beträgt.
Die Anwendung hoher Stichabnahmen (Umformgrade) in den ersten beiden Gerüsten bewirkt die erforderliche Umwandlung des grobkörnigen Erstarrungsgefüges in ein feines Walzgefüge, was die Voraussetzung für gute magnetische Eigenschaften des herzustellenden Endprodukts ist. Dementsprechend sollte die Stichabnahme im letzten Gerüst auf maximal 30 %, vorzugsweise weniger als 20 %, beschränkt werden, wobei es für ein im Hinblick auf die angestrebten Eigenschaften optimales Warmwalzergebnis zudem günstig ist, wenn die Stichabnahme im vorletzten Gerüst der Fertigstraße weniger als 25 % beträgt. Ein in der Praxis auf einer siebengerüstigen Fertigwarmwalzstraße erprobter Stichplan, der zu optimalen Eigenschaften des fertigen Elektroblechs geführt hat, sieht vor, dass bei einer Vorbanddicke von 63 mm und einer Warmbandenddicke von 2 mm der am ersten Gerüst erzielte Umformgrad 62 %, der am zweiten Gerüst erzielte 54 %, der am dritten Gerüst erzielte 47 %, der am vierten Gerüst erzielte 35 %, der am fünften Gerüst erzielte 28 %, der am sechsten Gerüst erzielte 17 % und der am siebten Gerüst erzielte Umformgrad 11 % beträgt.
Zur Vermeidung eines groben ungleichmäßigen Gefüges bzw. grober Ausscheidungen am Warmband, die sich ungünstig auf die magnetischen Eigenschaften des Endprodukts auswirken würden, ist eine früh einsetzende Abkühlung des Warmbands hinter dem letzten Walzgerüst der Fertigstraße vorteilhaft. Gemäß einer praxisgerechten Ausgestaltung der Erfindung ist es daher vorgesehen, innerhalb von maximal fünf Sekunden nach Verlassen des letzten Walzgerüstes mit der Wasserkühlung zu beginnen. Angestrebt werden dabei möglichst kurze Pausenzeiten, beispielsweise von einer Sekunde und weniger.
Die Abkühlung des Warmbands kann auch so gesteuert werden, dass zweistufig mit Wasser gekühlt wird. Dazu kann zunächst im Anschluss an das letzte Walzgerüst auf eine Temperatur dicht unterhalb der Alpha-/Gamma-Umwandlungstemperatur abgekühlt werden, um dann, bevorzugt nach zur Vergleichmäßigung der Temperatur über die Banddicke eingelegten Kühlpause von ein bis fünf Sekunden, eine weitere Abkühlung mittels Wasser bis auf die erforderliche Haspeltemperatur durchzuführen. Die erste Phase der Kühlung kann dabei als so genannte " Kompaktkühlung" erfolgen, bei der das Warmband über eine kurze Förderstrecke mit hoher Intensität und Abkühlrate (mindestens 200 K/s) unter Aufgabe großer Wassermengen schnell abgekühlt wird, während es in der zweiten Phase der Wasserkühlung über eine längere Förderstrecke mit verminderter Intensität gekühlt wird, um ein möglichst gleichmäßiges Kühlergebnis über den Bandquerschnitt zu erreichen.
Die Haspel-Temperatur sollte bevorzugt im Temperaturbereich von 500 - 780 0C liegen. Darüberliegende Temperaturen würden einerseits zu unerwünscht groben Ausscheidungen führen und andererseits die Beizbarkeit verschlechtern. Für die Einstellung höherer Haspeltemperaturen (> 700 0C) wird ein so genannter Kurzdistanzhaspel eingesetzt, der direkt im Anschluss an die Kompaktkühlzone angeordnet ist.
Innerhalb der durch die Erfindung vorgegebenen Grenzen wird das erfindungsgemäße Verfahren bei der Herstellung des Warmbandes bevorzugt so durchgeführt, dass das erhaltene Warmband sulfidische und / oder nitridische Ausscheidungen mit einem mittleren Teilchendurchmesser unter 150 nm und einer mittleren Dichte von mindestens 0,05 μm 2 erreicht wird. Derart beschaffenes Warmband weist optimale Voraussetzungen für die effektive Steuerung des Kornwachstums während der nachfolgenden Prozessschritte auf. Zur weiteren Optimierung des Gefüges kann das so erzeugte Warmband optional noch nach dem Haspeln bzw. vor dem Kaltwalzen geglüht werden.
Nach dem Kaltwalzen wird das erhaltene Band rekristallisierend und entkohlend geglüht. Zur Bildung weiterer Nitrid-Ausscheidungen, die zur Steuerung des Kornwachstums verwendet werden, kann das kaltgewalzte Band während oder nach dem Entkohlungsglühen in einer NH3-haltigen Atmosphäre aufstickend geglüht werden.
Eine weitere Möglichkeit zur Bildung der Nitridausscheidungen ist die Aufbringung von N-haltigen Klebschutzzusätzen wie beispielsweise Mangannitrid oder Chromnitrid auf das Kaltband im Anschluss an die Entkohlungsglühung mit der Eindiffusion des Stickstoffs in das Band während der Aufheizphase der Schlussglühung bis zur Sekundärrekristallisation.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert.
Beispiel 1:
Eine Stahlschmelze der Zusammensetzung 3, 15 % Si, 0,047 % C, 0, 154 % Mn, 0,006 % S, 0,030 % AI, 0,0080 % N, 0,22 % Cu und 0,06 % Cr wurde nach der sekundärmetallurgischen Behandlung in einem Pfannenofen und einer Vakuumanlage kontinuierlich zu einem 63 mm dicken Strang abgegossen. Vor dem Einlauf in den in Linie stehenden Ausgleichsofen wurde der Strang in Dünnbrammen zerteilt. Nach einer Verweilzeit von 20 min im Ausgleichsofen bei 1150 0C wurden die Dünnbrammen dann entzundert und auf verschiedene Weisen warmgewalzt:
- Variante "WWl " : Bei dieser erfindungsgemäßen Variante erfolgte der erste Stich bei 1090 0 C mit einem Umformgrad von 61 % und der zweite Stich bei 1050 0C mit einem Umformgrad von 50 %. Die Walztemperaturen in den Stichen 3 bis 7 betrugen 1010 0C, 980 0 C, 950 0 C, 930 0 C und 900 0 C. Bei den beiden letzten Stichen betrugen die Umformgrade 17 % bzw. 11 %. Mit dieser Warmwalzvariante wurden in den Stichen 1 bis 7 folgende Austenitanteile erreicht: 30 % / 25 % / 20 % / 18 % / 15 % / 14 % und 12 %.
- Variante "WW2 " : Diese nicht erfindungsgemäße Variante zeichnete sich durch eine Stichabnahme von 28 % im ersten Stich und 28 % im zweiten Stich aus, wobei die beiden letzten Stiche einen Umformgrad von 28 % bzw. 20 % aufwiesen. Die Walztemperatur im ersten Stich betrug 1090 0C und im 2. Stich 1000 0C. Die Stiche 3 bis 7 erfolgten bei 950 0 C / 920 0 C / 890 0 C / 860 0C bzw. 830 0 C. Dadurch lagen bei dieser Warmwalzvariante in den Stichen 1 bis 7 folgende Austenitanteile vor: 30 % / 20 % / 15 % / 12 % / 10 % / 8 % und 7 %.
Die Abkühlung war für beide Warmwalzvarianten mit einem Einsatz der Wasserabspritzung innerhalb von 7 s nach dem Verlassen des letzten Walzgerüstes und einer Haspeltemperatur von 650 0 C identisch. Neben dem so hergestellten Warmband der Dicke 2,0 mm, wurden auch noch Proben für metallographische Untersuchungen erzeugt, indem das Warmwalzen nach dem 2. Stich mittels Schnellabkühlung abgebrochen wurde.
Im nachfolgenden Elektrobandprozessing wurden die Bänder zunächst im Durchlaufofen geglüht und anschließend 1-stufig ohne Zwischenglühung auf 0,30 mm Enddicke kaltgewalzt. Für die darauf folgende Glühung wurden 2 unterschiedliche Varianten gewählt:
- Variante " El " : Es erfolgte lediglich die Standardentkohlungsglühung bei 860 0C, bei der die Bänder rekristallisiert und entkohlt wurden.
- Variante " E2 " : Hier wurden die Bänder im Anschluss an die Standardentkohlungsglühung inline für 30 s bei 860 0 C in einer NH3-haltigen Atmosphäre aufgestickt. Danach wurden alle Bänder zur Ausprägung der Gosstextur schlussgeglüht, mit einer elektrischen Isolierung beschichtet und spannungsfreigeglüht.
Die folgende Tabelle stellt die magnetischen Ergebnisse der einzelnen Bänder in Abhängigkeit von ihren unterschiedlichen Prozessbedingungen dar (72/73/76/77: Austenitanteile in den jeweiligen Warmwalzstichen):
Figure imgf000018_0002
Die unterschiedlichen magnetischen Ergebnisse in Abhängigkeit von den gewählten Warmwalzbedingungen lassen sich anhand der unterschiedlichen Gefügeausbildungen erklären. Im Falle der erfindungsgemäßen Variante "WWl " bildet sich durch die hohen Austenitgehalte in den einzelnen Umformstichen ein feineres und vor allen Dingen deutlich homogeneres Gefüge (Bild 1) aus.
Figure imgf000018_0001
BHdJj. Gefügeausbildung der Warmwalzvariante "WWl " nach dem 2. Stich
Demgegenüber führt das Warmwalzen mit nicht erfindungsgemäßen Bedingungen (Variante "WW2 ") nach dem 2. Stich durch die deutlich niedrigeren Austenitgehalte zu einem deutlich inhomogeneren und auch gröberen Gefüge (Bild 2).
Figure imgf000019_0001
BMd_2i Gefügeausbildung der Warmwalzvariante "WW2 " nach dem 2. Stich

Claims

PATENTANSPRÜCHE
1. Verfahren zur Herstellung von kornorientiertem Elektroband auf Basis von Dünnbrammen-Strangguss, umfassend folgende Arbeitsschritte:
a) Erschmelzen eines Stahls der neben Eisen und unvermeidbaren Verunreinigungen (in Masse-%)
Si: 2,5 - 4,0 %, C: 0,02 -0,10%, AI: 0,01 -0,065% N: 0,003 -0,015% wahlweise bis zu 0,30 % Mn, bis zu 0,05 % Ti, bis zu 0,3 % P, eines oder mehrere Elemente aus der Gruppe S, Se in Gehalten, deren Summe höchstens 0,04 % beträgt, eines oder mehrere Elemente aus der Gruppe As, Sn, Sb, Te, Bi mit Gehalten von jeweils bis zu 0,2 %, eines oder mehrere Elemente aus der Gruppe Cu, Ni, Cr, Co, Mo mit Gehalten von jeweils bis zu 0, 5 %, eines oder mehrere Elemente aus der Gruppe B, V, Nb mit
Gehalten von jeweils bis zu 0,012 %, enthält,
b) sekundärmetallurgisches Behandeln der Schmelze in einer Vakuumanlage und / oder einem Pfannenofen,
c) kontinuierliches Abgießen der Schmelze zu einem Strang, d) Zerteilen des Strangs in Dünnbrammen,
e) Aufheizen der Dünnbrammen in einem in Linie stehenden Ofen auf eine Temperatur zwischen 1050 0C und 1300 0C, wobei die Verweilzeit im Ofen höchstens 60 min beträgt,
f) kontinuierliches Warmwalzen der Dünnbrammen in einer in Linie stehenden mehrgerüstigen Warmwalzstraße zu einem Warmband mit einer Dicke von 0,5 - 4,0 mm, wobei während dieses Warmwalzens der erste Umformstich bei einer Temperatur von 900 - 1200 0C mit einem Umformgrad von mehr als 40 durchgeführt wird, wobei zumindest die anschließenden 2 Umformstiche des Warmwalzens im Zweiphasenmischgebiet (α-γ) gewalzt werden wobei die Stichabnahme im letzten Umformstich des Warmwalzens höchstens 30 % beträgt,
g) Abkühlen des Warmbands,
h) Haspeln des Warmbands zu einem Coil,
i) wahlweise: Glühen des Warmbands nach dem Haspeln bzw. vor dem Kaltwalzen,
j) Kaltwalzen des Warmbandes zu einem Kaltband mit einer Enddicke von 0, 15 mm bis 0,50 mm,
k) rekristallisierendes und entkohlendes Glühen des Kaltbands, I) Auftrag eines Glühseparators auf die Bandoberfläche,
m) Schlussglühen des rekristallisierend und entkohlend geglühten Kaltbands zur Ausprägung einer Gosstextur, n) wahlweise: Beschichten des schlussgeglühten Kaltbands mit einer elektrischen Isolierung und anschließendes Spannungsfreiglühen des beschichteten Kaltbands,
o) wahlweise: Domainenverfeinerung des beschichteten Kaltbandes
2. Verfahren nach Anspruch 1, dad u rch geken nzeich net, dass die Stahlschmelze im Zuge ihrer sekundärmetallurgischen Behandlung (Schritt b) zunächst in der Vakuumanlage und anschließend in dem Pfannenofen behandelt wird. Alternativ kann auch die Reihenfolge zunächst Pfannenofen und dann Vakuumanlage gewählt werden, sowie ausschließlich nur in der Vakuumanlage oder nur im Pfannenofen sekundärmetallurgisch behandelt werden.
3. Verfahren nach Anspruch 1, dad u rch geken nzeich net, dass die Schmelze im Zuge ihrer sekundärmetallurgischen Behandlung (Schritt b) abwechselnd in dem Pfannenofen und in der Vakuumanlage behandelt wird.
4. Verfahren nach einem der voranstehenden Ansprüche, dad u rch geken nzeichnet, dass die sekundärmetallurgische Behandlung (Schritt b) der Schmelze solange fortgesetzt wird, bis ihr Wasserstoffgehalt beim Vergießen (Schritt c) höchstens 10 ppm beträgt.
5. Verfahren nach einem der voranstehenden Ansprüche, dadu rch gekennzeich net, dass die Stahlschmelze in einer Stranggusskokille zu dem Strang vergossen wird (Schritt c), die mit einer elektromagnetischen Bremse ausgerüstet ist.
6. Verfahren nach einem der voranstehenden Ansprüche, da d u rch geken nzeichnet, dass im Zuge des Schritts c) eine Inline-Dickenreduzierung des aus der Schmelze gegossenen, jedoch noch kernflüssigen Strangs vorgenommen wird.
7. Verfahren nach einem der voranstehenden Ansprüche, d a d u rc h ge ke n n z e i c h n e t, d a ss der aus der Schmelze gegossene Strang im Zuge des Schritts c) bei einer 7000C bis 10000C (vorzugsweise 8500C bis 9500C) betragenden Temperatur gebogen und gerichtet wird.
8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Strang mit einer oberhalb von 6500C liegenden Temperatur in den Ausgleichsofen eintritt.
9. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die beschleunigte Abkühlung des Warmbands spätestens fünf Sekunden nach dem Verlassen des letzten Walzgerüstes einsetzt.
10. Verfahren nach einem der voranstehenden Ansprüche, dad u rch geke n nzeich net, dass das Kaltband während der Entkohlung oder nach der Entkohlung durch Glühen in einer ammoniakhaltigen Atmosphäre aufgestickt wird.
11. Verfahren nach einem der voranstehenden Ansprüche, d a d u rch ge ke n nze i ch n et, d ass dem Glühseparator eine oder mehrere chemische Verbindungen zugesetzt sind, die eine Aufstickung des Kaltbandes während der Aufheizphase der Schlussglühung bis zur Sekundärrekristallisation bewirken.
PCT/EP2006/064480 2005-08-03 2006-07-20 Verfahren zur herstellung von kornorientiertem elektroband WO2007014868A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/997,670 US8088229B2 (en) 2005-08-03 2006-07-20 Method for producing grain oriented magnetic steel strip
KR1020087005312A KR101365653B1 (ko) 2005-08-03 2006-07-20 방향성 전자 강 스트립 제조 방법
MX2008001475A MX2008001475A (es) 2005-08-03 2006-07-20 Metodo para producir una cinta de acero electrica de grano orientado.
BRPI0614379-2A BRPI0614379B1 (pt) 2005-08-03 2006-07-20 Método para produção de tira de aço magnética de grãos orientados
CA2615586A CA2615586C (en) 2005-08-03 2006-07-20 Method for producing grain oriented magnetic steel strip
JP2008524481A JP2009503265A (ja) 2005-08-03 2006-07-20 方向性電磁鋼ストリップの製造方法
AU2006274901A AU2006274901B2 (en) 2005-08-03 2006-07-20 Method for producing a grain-oriented electrical steel strip
CN2006800288008A CN101238227B (zh) 2005-08-03 2006-07-20 生产晶粒取向的电工带钢的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05016835.0A EP1752549B1 (de) 2005-08-03 2005-08-03 Verfahren zur Herstellung von kornorientiertem Elektroband
EP05016835.0 2005-08-03

Publications (1)

Publication Number Publication Date
WO2007014868A1 true WO2007014868A1 (de) 2007-02-08

Family

ID=35520090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/064480 WO2007014868A1 (de) 2005-08-03 2006-07-20 Verfahren zur herstellung von kornorientiertem elektroband

Country Status (15)

Country Link
US (1) US8088229B2 (de)
EP (1) EP1752549B1 (de)
JP (1) JP2009503265A (de)
KR (1) KR101365653B1 (de)
CN (1) CN101238227B (de)
AU (1) AU2006274901B2 (de)
BR (1) BRPI0614379B1 (de)
CA (1) CA2615586C (de)
MX (1) MX2008001475A (de)
PL (1) PL1752549T3 (de)
RU (1) RU2407807C2 (de)
SI (1) SI1752549T1 (de)
TW (1) TWI402353B (de)
WO (1) WO2007014868A1 (de)
ZA (1) ZA200800663B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016756A1 (ru) * 2009-08-03 2011-02-10 Открытое Акционерное Общество "Hoвoлиneцкий Металлургический Кoмбинaт" Способ производства анизотропной электротехнической стали с высокими магнитными свойствами
US20120305212A1 (en) * 2008-10-17 2012-12-06 Gerald Eckerstorfer Process and device for producing hot-rolled strip from silicon steel
DE102011054004A1 (de) 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
CN104805353A (zh) * 2015-05-07 2015-07-29 马钢(集团)控股有限公司 一种纵向磁性能优异电工钢及其生产方法
CZ306161B6 (cs) * 2009-08-03 2016-08-31 Open Joint Stock Company Novolipetsk Steel Způsob výroby za studena válcované anizotropní elektrotechnické oceli s nízkou specifickou magnetickou ztrátou pro změnu magnetizace
EP3715480A1 (de) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Für mittelfrequenzanwendungen geeignetes eisen-silikon-material
EP3715479A1 (de) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Schlankes verfahren zur sekundären rekristallisation von kornorientiertem elektrostahl in einer kontinuierlichen verarbeitungslinie
EP4273280A1 (de) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines kornorientierten elektrostahlbandes und kornorientiertes elektrostahlband
EP4365319A1 (de) 2022-11-03 2024-05-08 Thyssenkrupp Electrical Steel Gmbh Kornorientiertes elektroband und verfahren zu dessen herstellung

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI1752548T1 (sl) * 2005-08-03 2016-09-30 Thyssenkrupp Steel Europe Ag Metoda za proizvodnjo magnetnega zrnato usmerjenega jeklenega traku
WO2011063934A1 (en) * 2009-11-25 2011-06-03 Tata Steel Ijmuiden B.V. Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
IT1402624B1 (it) * 2009-12-23 2013-09-13 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierini magnetici a grano orientato.
CN101963446B (zh) * 2010-11-04 2012-05-23 四川展祥特种合金科技有限公司 钒氮合金全自动立式中频感应加热炉
KR101286209B1 (ko) * 2010-12-24 2013-07-15 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
KR101286208B1 (ko) * 2010-12-24 2013-07-15 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
WO2012089696A1 (en) * 2011-01-01 2012-07-05 Tata Steel Nederland Technology Bv Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
RU2562182C2 (ru) * 2011-01-12 2015-09-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Лист из электротехнической стали с ориентированной зеренной структурой и способ его получения
DE102011119395A1 (de) 2011-06-06 2012-12-06 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrostahlflachprodukts
DE102011107304A1 (de) 2011-07-06 2013-01-10 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrostahlflachprodukts
KR101351956B1 (ko) * 2011-08-01 2014-01-16 주식회사 포스코 자성이 우수한 방향성 전기강판 및 그 제조방법
KR101351955B1 (ko) * 2011-08-01 2014-01-16 주식회사 포스코 자성이 우수한 방향성 전기강판 및 그 제조방법
ITRM20110528A1 (it) 2011-10-05 2013-04-06 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato con alto grado di riduzione a freddo.
EP2832865B1 (de) * 2012-03-29 2018-11-14 JFE Steel Corporation Verfahren zur herstellung eines kornorientierten elektrischen stahlblechs
CN102787276B (zh) * 2012-08-30 2014-04-30 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
JP5983777B2 (ja) 2012-12-28 2016-09-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN103071677B (zh) * 2012-12-29 2015-09-09 东北大学 一种异步轧制技术制备取向硅钢的方法
CN103525999A (zh) * 2013-09-13 2014-01-22 任振州 一种高磁感取向硅钢片的制备方法
CN103667602B (zh) * 2013-11-26 2015-04-08 山西太钢不锈钢股份有限公司 一种晶粒取向电工钢rh精炼钢水增氮方法
CN103668005B (zh) * 2013-12-12 2015-10-14 武汉钢铁(集团)公司 一种用中温板坯加热温度生产的HiB钢及其生产方法
CN104726670B (zh) * 2013-12-23 2017-07-21 鞍钢股份有限公司 一种短流程中薄板坯制备高磁感取向硅钢的方法
CN104726796A (zh) * 2013-12-23 2015-06-24 Posco公司 取向电工钢板及其制造方法
DE102014104106A1 (de) 2014-03-25 2015-10-01 Thyssenkrupp Electrical Steel Gmbh Verfahren zur Herstellung von hochpermeablem kornorientiertem Elektroband
WO2016035530A1 (ja) 2014-09-01 2016-03-10 新日鐵住金株式会社 方向性電磁鋼板
JP6260513B2 (ja) * 2014-10-30 2018-01-17 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6350398B2 (ja) * 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
DE102015114358B4 (de) * 2015-08-28 2017-04-13 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten Elektrobands und kornorientiertes Elektroband
KR101676630B1 (ko) * 2015-11-10 2016-11-16 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR102466499B1 (ko) * 2015-12-22 2022-11-10 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP6631724B2 (ja) * 2016-11-01 2020-01-15 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3536813B1 (de) * 2016-11-01 2020-12-23 JFE Steel Corporation Verfahren zur herstellung eines kornorientierten elektrostahlblechs
DE102017220721A1 (de) 2017-11-20 2019-05-23 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung III
DE102017220714B3 (de) 2017-11-20 2019-01-24 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung
DE102017220718A1 (de) 2017-11-20 2019-05-23 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung II
KR102012319B1 (ko) * 2017-12-26 2019-08-20 주식회사 포스코 방향성 전기강판 및 그 제조방법
CN108456829A (zh) * 2018-02-26 2018-08-28 合肥尚强电气科技有限公司 一种变压器硅钢片及其制备方法
CN110899644A (zh) * 2018-09-14 2020-03-24 宝山钢铁股份有限公司 一种超薄热轧带钢的生产方法
EP3856938B1 (de) 2018-09-26 2024-05-22 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband
KR102142511B1 (ko) * 2018-11-30 2020-08-07 주식회사 포스코 방향성 전기강판 및 그의 제조방법
CN111411265B (zh) * 2020-03-21 2021-11-26 交大材料科技(江苏)研究院有限公司 一种镍基合金超薄板材
DE102020209299A1 (de) * 2020-07-23 2022-01-27 Sms Group Gmbh Verfahren zum Herstellen von Stahlband
CN113042532B (zh) * 2021-03-12 2022-08-26 武汉钢铁有限公司 一种含Bi高磁感取向硅钢热轧带钢边部质量控制方法
CN113684387B (zh) * 2021-08-25 2022-11-01 中航上大高温合金材料股份有限公司 紧固件用gh6159合金锭及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158816A (en) * 1980-05-13 1981-12-07 Kawasaki Steel Corp Manufacture of anisotropic electrical steel strip
US4592789A (en) * 1981-12-11 1986-06-03 Nippon Steel Corporation Process for producing a grain-oriented electromagnetic steel sheet or strip
EP0484904A2 (de) * 1990-11-07 1992-05-13 Nippon Steel Corporation Verfahren zur Herstellung von kornorientiertem Elektrofeinblech mit verbesserten magnetischen Eigenschaften und verbesserter Oberflächenstruktur
JPH06136448A (ja) * 1992-10-26 1994-05-17 Nippon Steel Corp 方向性珪素鋼板の製造方法
WO1999019521A1 (de) * 1997-10-15 1999-04-22 Thyssen Krupp Stahl Ag Verfahren zur herstellung von kornorientiertem elektroblech mit geringem ummagnetisierungsverlust und hoher polarisation
WO2002050315A2 (en) * 2000-12-18 2002-06-27 Thyssenkrupp Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strips
JP2002212639A (ja) * 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法
EP1473371A2 (de) * 1996-01-25 2004-11-03 Usinor Verfahren zum Herstellen nicht kornorientierter Elektrobleche und nach diesem Verfahren hergestellte Bleche

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942208B1 (de) * 1971-05-20 1974-11-13
CA968588A (en) * 1971-05-20 1975-06-03 Masafumi Okamoto Silicon steel and method of continuously casting the same
JP2787776B2 (ja) * 1989-04-14 1998-08-20 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2784687B2 (ja) * 1990-10-12 1998-08-06 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH086139B2 (ja) * 1991-06-10 1996-01-24 新日本製鐵株式会社 磁気特性の優れた厚い板厚の一方向性電磁鋼板の製造方法
JPH05230534A (ja) * 1992-02-21 1993-09-07 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JP3061491B2 (ja) * 1992-12-08 2000-07-10 新日本製鐵株式会社 磁気特性の優れた厚い板厚のグラス被膜の少ない一方向性電磁鋼板の製造方法
US5472479A (en) * 1994-01-26 1995-12-05 Ltv Steel Company, Inc. Method of making ultra-low carbon and sulfur steel
JP2000301320A (ja) * 1999-04-19 2000-10-31 Sanyo Special Steel Co Ltd 取鍋精錬炉のポーラス詰まりの解消方法
JP4562244B2 (ja) * 2000-06-05 2010-10-13 山陽特殊製鋼株式会社 高清浄度鋼の製造方法
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP2003266152A (ja) * 2002-03-12 2003-09-24 Nippon Steel Corp 鋳型内電磁ブレーキ装置
SI1752548T1 (sl) * 2005-08-03 2016-09-30 Thyssenkrupp Steel Europe Ag Metoda za proizvodnjo magnetnega zrnato usmerjenega jeklenega traku

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158816A (en) * 1980-05-13 1981-12-07 Kawasaki Steel Corp Manufacture of anisotropic electrical steel strip
US4592789A (en) * 1981-12-11 1986-06-03 Nippon Steel Corporation Process for producing a grain-oriented electromagnetic steel sheet or strip
EP0484904A2 (de) * 1990-11-07 1992-05-13 Nippon Steel Corporation Verfahren zur Herstellung von kornorientiertem Elektrofeinblech mit verbesserten magnetischen Eigenschaften und verbesserter Oberflächenstruktur
JPH06136448A (ja) * 1992-10-26 1994-05-17 Nippon Steel Corp 方向性珪素鋼板の製造方法
EP1473371A2 (de) * 1996-01-25 2004-11-03 Usinor Verfahren zum Herstellen nicht kornorientierter Elektrobleche und nach diesem Verfahren hergestellte Bleche
WO1999019521A1 (de) * 1997-10-15 1999-04-22 Thyssen Krupp Stahl Ag Verfahren zur herstellung von kornorientiertem elektroblech mit geringem ummagnetisierungsverlust und hoher polarisation
WO2002050315A2 (en) * 2000-12-18 2002-06-27 Thyssenkrupp Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strips
JP2002212639A (ja) * 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 044 (C - 095) 19 March 1982 (1982-03-19) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 443 (C - 1239) 18 August 1994 (1994-08-18) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 11 6 November 2002 (2002-11-06) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120305212A1 (en) * 2008-10-17 2012-12-06 Gerald Eckerstorfer Process and device for producing hot-rolled strip from silicon steel
CZ306147B6 (cs) * 2009-08-03 2016-08-24 Open Joint Stock Company Novolipetsk Steel Způsob výroby za studena válcované anizotropní elektrotechnické oceli s vysokými magnetickými charakteristikami
CZ306161B6 (cs) * 2009-08-03 2016-08-31 Open Joint Stock Company Novolipetsk Steel Způsob výroby za studena válcované anizotropní elektrotechnické oceli s nízkou specifickou magnetickou ztrátou pro změnu magnetizace
WO2011016756A1 (ru) * 2009-08-03 2011-02-10 Открытое Акционерное Общество "Hoвoлиneцкий Металлургический Кoмбинaт" Способ производства анизотропной электротехнической стали с высокими магнитными свойствами
WO2013045339A1 (de) 2011-09-28 2013-04-04 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrobands oder -blechs
DE102011054004A1 (de) 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
CN104805353A (zh) * 2015-05-07 2015-07-29 马钢(集团)控股有限公司 一种纵向磁性能优异电工钢及其生产方法
EP3715480A1 (de) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Für mittelfrequenzanwendungen geeignetes eisen-silikon-material
EP3715479A1 (de) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Schlankes verfahren zur sekundären rekristallisation von kornorientiertem elektrostahl in einer kontinuierlichen verarbeitungslinie
WO2020193634A1 (en) 2019-03-26 2020-10-01 Thyssenkrupp Electrical Steel Gmbh Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line
WO2020193717A1 (en) 2019-03-26 2020-10-01 Thyssenkrupp Electrical Steel Gmbh Iron-silicon material suitable for medium frequency applications
EP4273280A1 (de) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines kornorientierten elektrostahlbandes und kornorientiertes elektrostahlband
EP4365319A1 (de) 2022-11-03 2024-05-08 Thyssenkrupp Electrical Steel Gmbh Kornorientiertes elektroband und verfahren zu dessen herstellung

Also Published As

Publication number Publication date
MX2008001475A (es) 2008-04-02
US20080216985A1 (en) 2008-09-11
TWI402353B (zh) 2013-07-21
KR101365653B1 (ko) 2014-02-19
BRPI0614379A2 (pt) 2011-03-22
CN101238227B (zh) 2011-11-16
RU2008107938A (ru) 2009-09-10
EP1752549A1 (de) 2007-02-14
RU2407807C2 (ru) 2010-12-27
CA2615586C (en) 2015-04-21
PL1752549T3 (pl) 2017-08-31
KR20080042859A (ko) 2008-05-15
ZA200800663B (en) 2009-04-29
BRPI0614379B1 (pt) 2014-04-29
TW200710226A (en) 2007-03-16
EP1752549B1 (de) 2016-01-20
US8088229B2 (en) 2012-01-03
JP2009503265A (ja) 2009-01-29
AU2006274901B2 (en) 2011-07-28
CN101238227A (zh) 2008-08-06
SI1752549T1 (sl) 2016-09-30
AU2006274901A1 (en) 2007-02-08
CA2615586A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
EP1752549B1 (de) Verfahren zur Herstellung von kornorientiertem Elektroband
EP1752548B1 (de) Verfahren zur Herstellung von kornorientiertem Elektroband
DE19745445C1 (de) Verfahren zur Herstellung von kornorientiertem Elektroblech mit geringem Ummagnetisierungsverlust und hoher Polarisation
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2761041B1 (de) Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrobands oder -blechs
EP1918402B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein Komplexphasen-Gefüge bildenden Stahl
EP1954842A1 (de) Verfahren zur herstellung von warmband mit mehrphasengefüge
EP2729588B1 (de) Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrostahlflachprodukts
WO2008052919A1 (de) Verfahren zum herstellen von stahl-flachprodukten aus einem mit bor mikrolegierten mehrphasenstahl
EP1341937B1 (de) Verfahren zum erzeugen eines warmbandes aus einem einen hohen mangan-gehalt aufweisenden stahl
DE60203733T2 (de) In-line-verfahren zum rekristallisieren von erstarrten grobbändern in unlegiertem stahl und niedrig legiertem stahl
EP1444372B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
DE10062919A1 (de) Verfahren zum Herstellen von Warmband oder -blech aus einem mikrolegierten Stahl
DE102005063058B3 (de) Verfahren zum Herstellen eines Kaltbands mit ferritischem Gefüge
DE19913498C1 (de) Verfahren zum Herstellen eines Warmbandes und Warmbandlinie zur Durchführung des Verfahrens
WO2008052920A1 (de) Verfahren zum herstellen von stahl-flachprodukten aus einem mit aluminium legierten mehrphasenstahl
EP1396549A1 (de) Verfahren zum Herstellen eines perlitfreien warmgewalzten Stahlbands und nach diesem Verfahren hergestelltes Warmband
WO2001029273A1 (de) Verfahren zum herstellen eines warmbandes
DE10060950C2 (de) Verfahren zum Erzeugen von kornorientiertem Elektroblech
WO2019096734A1 (de) Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
EP3714072A1 (de) Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
WO2019096735A1 (de) Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
WO2023016965A1 (de) Verfahren und vorrichtung zur herstellung eines hoch- und höchstfesten mehrphasenstahls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2615586

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/001475

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 445/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200680028800.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008524481

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006274901

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008107938

Country of ref document: RU

Ref document number: 1020087005312

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006274901

Country of ref document: AU

Date of ref document: 20060720

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006274901

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11997670

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06777874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0614379

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080206