WO2007013625A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2007013625A1
WO2007013625A1 PCT/JP2006/315052 JP2006315052W WO2007013625A1 WO 2007013625 A1 WO2007013625 A1 WO 2007013625A1 JP 2006315052 W JP2006315052 W JP 2006315052W WO 2007013625 A1 WO2007013625 A1 WO 2007013625A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
connection conductor
cell module
cell element
bus bar
Prior art date
Application number
PCT/JP2006/315052
Other languages
English (en)
French (fr)
Inventor
Hiroshi Morita
Masaru Nagata
Tatsuya Yashiki
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US11/996,584 priority Critical patent/US20100043860A1/en
Priority to JP2007526927A priority patent/JP5008563B2/ja
Priority to EP06781962A priority patent/EP1909333A4/en
Publication of WO2007013625A1 publication Critical patent/WO2007013625A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • a solar cell module connects a plurality of solar cell elements having electrodes formed on both main surfaces of a PN-junction single crystal silicon substrate or a polycrystalline silicon substrate to each other using connection conductors.
  • the solar cell elements connected to each other were encapsulated between the translucent substrate and the backsheet in a state where the solar cell elements were covered with a filler mainly composed of ethylene butyl acetate copolymer (EVA).
  • EVA ethylene butyl acetate copolymer
  • the solar cell elements are electrically connected by soldering the light receiving surface side electrode and the back surface side electrode of the solar cell element using a strip-shaped connecting conductor.
  • FIG. 9 is a diagram showing an example of the appearance on the light receiving surface side of a conventional solar cell module.
  • 1 is a translucent substrate
  • 2 is a solar cell element
  • 3 is a connection conductor
  • 4 is a module frame.
  • the solar cell module is electrically connected through the connecting conductor 3 between the translucent substrate 1 and the back sheet (not shown), and these solar cell elements 2 are sealed with a filler.
  • the module frame 4 is attached to the outer periphery.
  • Such a solar cell module is one in which the connection conductor 3 is connected to the electrode of the solar cell element 2 by soldering or the like (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-281797
  • connection conductor expands or contracts, and the solar cell element connected to the connection conductor expands the connection conductor.
  • the semiconductor substrate could be cracked.
  • thermal expansion amount (thermal contraction amount) of the connection conductor is increased at the end of the connection conductor. Cracks are likely to occur in positive battery elements.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a solar cell module in which cracks generated in the solar cell element are suppressed.
  • a solar cell module includes a solar cell element on which an electrode is formed, and a strip-shaped connection conductor connected to the electrode via solder.
  • the connection conductor includes a plurality of corner portions having an obtuse angle in a planar shape of at least one end portion.
  • a solar cell module includes a solar cell element on which an electrode is formed, and a strip-shaped connection conductor connected to the electrode via solder.
  • the planar shape of at least one end of the connection conductor includes a peripheral edge formed by a curve that bulges outward.
  • the curve may be an arc.
  • a solar cell module includes a solar cell element on which an electrode is formed, and a solar cell module including a strip-shaped connection conductor connected to the electrode via solder.
  • the connection conductor includes a through hole at least at one end.
  • the end portion can be configured to be thinner than other portions of the connection conductor.
  • the end portion is formed to be thin by pressing.
  • FIG. 1 shows an example of the appearance of a solar cell element used in a solar cell module according to the present invention.
  • FIG. 2 shows an example of the appearance of a connection conductor according to the present invention.
  • FIG. 3 is an enlarged view of an end portion of a connection conductor according to the present invention.
  • FIG. 4 shows a state after the connection conductor according to the present invention is soldered to the bus bar electrode of the solar cell element.
  • FIG. 5 is an enlarged view of an end portion of another embodiment of the connection conductor according to the present invention.
  • FIG. 6 is an enlarged view of an end portion of another embodiment of the connection conductor according to the present invention.
  • FIG. 7 is an enlarged view of an end portion of still another embodiment of the connection conductor according to the present invention.
  • FIG. 8 is a diagram showing an example of the structure of a solar cell module according to the present invention.
  • FIG. 9 is a diagram showing an example of the appearance on the light receiving surface side of a conventional solar cell module.
  • FIG. 10 An example of a state in which two solar cell elements are connected in series using a conventional connection conductor.
  • FIG. 11 shows an example of an apparatus for connecting a connection conductor to a solar cell element.
  • FIG. 12 shows a state where a conventional connection conductor is soldered onto a bus bar electrode of a solar cell element.
  • FIG. 13 shows an example of the appearance of another embodiment of the connection conductor according to the present invention.
  • FIG. 14 is an enlarged view of an end portion of another embodiment of the connection conductor according to the present invention.
  • FIG. 15 is an enlarged view of an end portion of another embodiment of the connection conductor according to the present invention.
  • FIG. 16 is an enlarged view of an end portion of another embodiment of the connection conductor according to the present invention.
  • FIG. 17 shows an example of a solar cell module manufacturing apparatus according to the present invention for soldering a connection conductor to a solar cell element.
  • FIG. 18 shows another example of the solar cell module manufacturing apparatus according to the present invention for soldering the connection conductor to the solar cell element.
  • FIG. 19 shows another example of a solar cell module manufacturing apparatus according to the present invention for soldering a connection conductor to a solar cell element.
  • FIG. 20 shows another example of the solar cell module manufacturing apparatus according to the present invention in which the connection conductor is soldered to the solar cell element.
  • the end portion of the connection conductor means a region extending to the front end portion of the region force having a maximum in the region of 1Z2 or less in the longitudinal direction.
  • FIG. 1 shows an appearance of a solar cell element used in a solar cell module according to the present invention. An example is given.
  • 20 indicates a solar cell element
  • 21 indicates a bus bar electrode of the solar cell element
  • 22 indicates a finger electrode.
  • the solar cell element 20 also has a single crystal silicon substrate or a polycrystalline silicon substrate force having a thickness of about 0.3 to 0.4 mm and a size of about 150 mm square.
  • a PN junction (not shown) is formed on the silicon substrate of the solar cell element 20 where a P layer containing a large amount of P-type impurities such as boron and an N layer containing a large amount of N-type impurities such as phosphorus are in contact.
  • a bus bar electrode 21 and finger electrodes 22 are formed on the surface of the solar cell element 20.
  • the bus bar electrode 21 and the finger electrode 22 may be formed by printing and baking silver paste or the like, and the surface of the bus bar electrode 21 may be solder coated over almost the entire surface.
  • a plurality of finger electrodes 22 having a width of about 0.1 to 0.2 mm are formed in order to collect photogenerating carriers in parallel with a predetermined side of the solar cell element. Further, the bus bar electrodes 21 are formed to collect the collected carriers and have a width of about 2 mm for attaching the connecting conductors, and about 2 to 3 are formed so as to intersect the finger electrodes 22 vertically.
  • Such bus bar electrodes 21 and finger electrodes 22 are similarly formed on the back surface (non-light-receiving surface) side of the solar cell element 20.
  • FIG. 2 shows an example of the appearance of the connection conductor according to the present invention
  • FIG. 3 is an enlarged view of an end portion thereof.
  • connection conductor 25 according to the present invention connected to the electrode of the solar cell element has a thickness of 0.1 to 1.
  • the width is about the same as or less than the width of the bus bar electrode 21 so that the connection conductor 25 of the solar cell element 20 itself does not shadow the light receiving surface of the solar cell element 20. Further, the length of the connection conductor 23 overlaps almost all of the bus bar electrodes 21, and further overlaps and connects to a predetermined space between the solar cell elements and a back side bus bar electrode (not shown) of the adjacent solar cell elements.
  • the connecting conductor 25 When using a general solar cell element having a 150 mm square polycrystalline silicon substrate, the connecting conductor 25 has a width of about 1 to 3 mm and a length of about 200 to 300 mm. The reason why the connecting conductor 25 overlaps almost all of the light receiving surface side bus bar electrode 21 is to reduce the electrical resistance component.
  • the material of the connecting conductor 25 is a highly conductive metal such as silver, copper, aluminum, or iron.
  • a copper foil material is suitable in consideration of the conductivity of the material and the conductivity of the solder coat.
  • the connecting conductor material is solder coated on the entire surface so that the bus bar electrode 21 of the solar cell element 20 can be easily soldered. This is done by coating a solder of about 20 to 70 microns on one side rather than dipping copper foil or the like into a solder bath.
  • connection conductor 25 is configured to include a peripheral edge 26 having at least one end portion formed by a curve bulging outward, as in the example of the present invention shown in FIGS.
  • the peripheral edge 26 constituted by such a curve can be formed by a punching process using a die having a predetermined shape when the connecting conductor 25 is cut into the above-mentioned appropriate length.
  • connection conductor 25 is soldered to the bus bar electrode 21 on the back surface side of the other solar cell element connected to the bus bar electrode 21 on the light receiving surface side of the solar cell element 20, the end of the connection conductor 25 Such a peripheral edge 26 is preferably provided on both sides thereof. However, if one of the light-receiving surface side or backside busbar electrode has a strong bonding strength with the silicon substrate due to a difference in the manufacturing method of the solar cell element, the other has a weak bonding strength, etc. It is also possible to provide a curved peripheral edge 26 only on the end side of the connecting conductor 25 to be soldered.
  • connection conductor 25 is arranged on the bus bar electrode 21 of the solar cell element 20, and, for example, as shown in FIG. Connect the connecting conductor 25 to the solder wire.
  • FIG. 4 shows a state where the connection conductor 25 according to the present invention is soldered to the bus bar electrode 21 of the solar cell element 20.
  • connection conductor 25 can be used even when the solar cell module is installed outdoors or when temperature changes occur in the solar cell element and the connection conductor in the manufacturing process of the solar cell module. Since the planar shape of at least one end includes a peripheral edge formed by a curve that bulges outward, the stress caused by the difference in the thermal expansion coefficient between the connecting conductor 25 and the semiconductor substrate is reduced. Can be dispersed at the periphery.
  • connection conductor 25 After the connection conductor 25 is soldered, the stress due to shrinkage concentrates, and the solar cell element is concentrated. It is possible to suppress the occurrence of cracks in the child or the bus bar electrode 21 from peeling the silicon substrate force after the connection conductor 25 is soldered.
  • the curve in which the peripheral edge of the end portion bulges outward is an arc.
  • the planar shape of at least one end of the connection conductor 28 can be provided with a plurality of corners that are obtuse.
  • an obtuse angle portion can be formed by cutting the member of the strip-shaped connection conductor 28 at a substantially right angle and then cutting off the substantially right angle portion of the connection conductor.
  • a plurality of inclined sides 29 are formed in the part.
  • connection conductor 25 can be used even when the solar cell module is installed outdoors or when temperature changes occur in the solar cell element and the connection conductor in the manufacturing process of the solar cell module. Since the planar shape of at least one end includes a plurality of obtuse corners, the stress caused by the difference in thermal expansion coefficient between the connection conductor 25 and the semiconductor substrate can be reduced at the periphery of the end. Can be dispersed.
  • connection conductor 25 After the connection conductor 25 is soldered, stress due to shrinkage concentrates, cracks occur in the solar cell element, or after the connection conductor 25 is soldered, the bus bar electrode 21 is connected to the silicon substrate. The force can also be prevented from peeling off.
  • connection conductor 34 may have a circular shape having a diameter larger than the width of the connection conductor 34.
  • connection conductor 34 can be formed by thinly stretching the end of the connection conductor 34 with a press or the like and then punching it into a predetermined shape, for example, a large circle.
  • the thickness of the end portion 35 of the connection conductor 34 can be made thinner than the other portions of the connection conductor 34.
  • the stress at the end portion 35 of the connection conductor 34 can be weakened to reduce the occurrence of cracks.
  • This end portion is characterized in that it is formed thin by pressing, and the end portion of the connection conductor is rolled and formed integrally, which is preferable from the electrical and mechanical viewpoint.
  • FIG. 13 and 14 show still another embodiment of the connection conductor according to the present invention.
  • FIG. 13 is an overall view and
  • FIG. 14 is an enlarged view of an end portion thereof.
  • connection conductor 50 As shown in FIG. 13, the connection conductor 50 according to the present invention has a through hole portion at at least one end portion.
  • the through hole 51 is manufactured by punching into a polygonal shape such as a circle, an ellipse, a quadrangle, a hexagon, or an octagon.
  • a polygonal shape such as a circle, an ellipse, a quadrangle, a hexagon, or an octagon.
  • the diameter is about 1Z3 to 2Z3 of the width of the connection conductor 50.
  • the distance 52 from the end face to the through hole 51 is formed at a position of about 1 to 5 mm at the center of the width of the through hole 51 and the connection conductor 50.
  • the end is formed into a polygonal shape having a plurality of obtuse corners, and the through hole portion is further provided.
  • a configuration having 51 can be adopted.
  • the end shape of the connection conductor 50 has a peripheral edge 26 formed by a curve that swells outward, and a through hole 51 may be further provided.
  • connection conductor 57 is extended by a press or the like, thinned, punched out into a substantially circular shape, and then provided with a through-hole portion 51.
  • Such a through hole 51 is configured to be provided in either one of the cases where there is a difference in the magnitude of stress generated between the light receiving surface side and the back surface side of the solar cell element to be soldered. It is possible.
  • connection conductor By providing the through-hole portion in at least one end portion of the connection conductor in this manner, the stress due to the thermal contraction of the connection conductor facing the inner side of the end portion can be reduced, and the solar cell The occurrence of cracks in the element can be reduced.
  • connection conductor thus produced, the solar cell elements are electrically connected to produce a solar cell module.
  • FIG. 8 is a diagram showing an example of the structure of the solar cell module according to the present invention.
  • 41 is a translucent substrate
  • 42 is a light receiving surface side filler
  • 43 is a solar cell element
  • 44 Is a back side filler
  • 45 is a back sheet
  • 46 is a connection conductor according to the present invention.
  • the translucent substrate 41 a substrate having strength such as glass or polycarbonate resin is used.
  • a substrate having strength such as glass or polycarbonate resin
  • glass plates white plate glass, tempered glass, double tempered glass, heat ray reflective glass, etc. are used, but in general, the thickness is 3mn! ⁇ 5mm white tempered glass is used.
  • a substrate made of a synthetic resin such as polycarbonate resin is used, a substrate with a thickness of about 5 mm is often used.
  • the light-receiving surface-side filler 42 and the back-surface-side filler 44 are made of an ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVA) or polybulutyllar (PVB), and have a thickness of 0 by a T die and an extruder. 4 ⁇ : What is molded into a sheet of about Lmm is used. These are heated and pressed under reduced pressure by a laminating apparatus, so that they are softened and fused to be integrated with other members.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polybulutyllar
  • EVA and PVB sometimes contain titanium oxide, pigments, and the like, and may be colored white.
  • the light-receiving surface side filler 42 in the method for manufacturing a solar cell module according to the present invention is colored. Doing so reduces the amount of light incident on the solar cell element 43 and reduces power generation efficiency, making it transparent.
  • EVA or PVB used for the back surface side filler 44 may be transparent, and is colored white or the like by containing titanium oxide or pigment according to the surrounding installation environment where the solar cell module is installed. It does n’t matter.
  • a weather-resistant fluorine-based resin sheet sandwiching aluminum foil so as not to transmit moisture a polyethylene terephthalate (PET) sheet deposited with alumina or silica, or the like is used.
  • PET polyethylene terephthalate
  • a light-receiving surface side filler 42, a solar cell module, a back surface side filler 44, and a back surface sheet 45 are sequentially laminated on the translucent substrate 41.
  • a module frame can be attached to the outer periphery of the solar cell module to obtain a solar cell module having a desired strength.
  • the solar cell element can be applied to a thin film solar cell that is not limited to a crystalline solar cell such as a single crystal or polycrystalline silicon.
  • the solder used for the soldering can also be a lead-free solder such as a tin-lead eutectic solder.
  • FIG. 17 shows an example of a solar cell module manufacturing apparatus according to the present invention for soldering a connection conductor to a solar cell element.
  • 111 denotes a solar cell element
  • 112 denotes a bus bar electrode
  • 113 denotes a connection conductor
  • 114 denotes a work stage
  • 115 denotes a work stage moving direction
  • 116 denotes a hot air blowing nozzle
  • 117 denotes a pressing pin.
  • the solar cell element 111 is made of single crystal silicon or polycrystalline silicon as described above, and the bus bar electrode 112 is formed on the light receiving surface side and the back surface side thereof.
  • connection conductor 113 is a force obtained by forming a highly conductive metal foil into a strip shape, solder-coating it, and then cutting it to an appropriate length. As described above, at least one end of the connection conductor
  • the planar shape may be configured to include a plurality of corner portions that are obtuse angles or include a peripheral edge formed of a curve that bulges outward, and a through-hole portion may be provided at least at one end. Desire! /.
  • the work stage 114 is made of stainless steel having a thickness of about 5 to 10 mm, and has a pin for positioning the solar cell element 111 and a penetration for vacuum adsorption so that the solar cell element does not move after positioning. It is desirable to provide holes.
  • This work stage 114 is a mechanism that moves linearly in the direction of arrow 115 at a constant speed by a servo motor or the like.
  • the hot air blowing nozzle 116 is made of a metal pipe such as stainless steel having a diameter of about 2 to 5 mm, one end thereof being directed toward the bus bar electrode, and the other end being connected to a hot air generator (not shown). ing.
  • an electromagnetic valve is provided in the middle of the pipe, and means for controlling the hot air blowing time and its timing by opening and closing the electromagnetic valve by a force signal such as a sequencer.
  • a temperature sensor such as a thermocouple is provided near the tip of the hot air blowing nozzle 116, and the temperature of the hot air is automatically controlled by the temperature controller. It is controlled to reach the preset temperature.
  • the pressing pin 117 is formed by attaching a cylindrical pressing portion to a metal shaft such as stainless steel having a length of about 50 to about LOOmm and a diameter of about 1 to 3mm.
  • the cylindrical holding part has a diameter of about 2 to 5 mm and a height of about 4 to 6 mm, and its material is preferably made of carbon tool steel with nickel plating.
  • the pressing pin 117 is driven in the vertical direction by a driving system and presses the connection conductor 113 against the bus bar electrode 112 with a constant pressure by a spring or the like.
  • the pressing pin 117 is a mechanism that moves in the same manner in synchronization with the operation stage 114 moving at a constant speed as described above.
  • connection conductor 113 is attached to the bus bar electrode 112 on the solar cell element 111 in the solar cell module manufacturing apparatus according to the present invention as follows.
  • connection conductor 113 is provided on the bus bar electrode 112 of the solar cell element 111 to be attached. Thereafter, the pressing pin 117 is lowered, and the connecting conductor 113 is pressed against the bus bar electrode 112. After that, hot air of about 400 to 500 ° C is blown from the hot air blowing nozzle 116 onto the one end of the bus bar electrode 112 with the connecting conductor 113 placed thereon, and the solder on the bus bar electrode 112 of the solar cell element 111 and The solder of the connecting conductor 113 is melted. Further, while blowing this hot air, the work stage 114 is moved to the other end of the bus bar electrode 112 in the direction of the arrow 115 to gradually move the melting position of the solder. Then stop blowing hot air and raise the pressing pin 117 when the solder is solidified.
  • connection conductor 113 for electrically connecting the solar cell element 111 to the bus bar electrode 112 of the solar cell element 111 by soldering as described above
  • a hot air blowing nozzle 116 for soldering is fixed above one end of the bus bar electrode 112 of the solar cell element 111, and the connection conductor 113 is mounted on the bus bar electrode 112 of the solar cell element 111.
  • the soldered part is continuously moved from one end of the bus bar electrode 112 of the solar cell element to the other end, and heating by hot air during soldering is performed.
  • the difference in thermal shrinkage due to the difference in thermal expansion coefficient between the solar cell element 111 and the connection conductor 113 in FIG. 3 can be absorbed, and the connection conductor 113 is attached.
  • the solar cell element 111 after that the electrode of the solar cell element 111 that does not warp is peeled off from the solar cell element substrate, or in the subsequent solar cell module process, the solar cell element 111 is cracked. No cracks occur.
  • the speed at which the work stage 114 is moved in the direction of the arrow 115 is preferably 15 mm or less per second in the tests repeatedly conducted by the inventors.
  • FIG. 18 shows an example of the solar cell module manufacturing apparatus according to the present invention in which the connection conductor is soldered to another solar cell element according to the present invention.
  • the push pin 120 has a length of 50 to: a solar plate element 111 side of a metal plate such as stainless steel having a length of about LOOmm and a width of about 1 to 3 mm, and a metal roller 121 is interposed between them. It is rotatably attached by a shaft.
  • a metal plate such as stainless steel having a length of about LOOmm and a width of about 1 to 3 mm
  • a metal roller 121 is interposed between them. It is rotatably attached by a shaft.
  • As the material of the roller stainless steel or carbon steel with nickel plating is preferably used.
  • the roller 121 has a convex shape in which both end portions protrude in the width direction by about 0.5 to 1. Omm as compared to the central portion because the connecting conductor 113 can be prevented from meandering.
  • the pressing pin 120 is driven in the vertical direction by the drive system, and presses the connection conductor 113 against the bus bar electrode 112 with a constant pressure by a spring or the like.
  • the working stage 114 is moved in the direction of arrow 115 to the end force of the bus bar electrode 112 to the other end, and the melting position of the solder is gradually increased.
  • the pressing pin 120 has a structure that does not need to be moved in synchronization with the work stage 114 because the roller 121 rotates. It becomes possible to make it simple.
  • FIG. 19 shows an example of the solar cell module manufacturing apparatus according to the present invention in which the connection conductor is soldered to another solar cell element according to the present invention.
  • the work stage 114 is fixed, and the hot air blowing nozzle 116 moves at a constant speed while blowing the hot air to the other end of the bus bar electrode 112 of the solar cell element 111 by a servo motor or the like.
  • the mechanism moves linearly in the direction of arrow 120.
  • connection conductor 113 for electrically connecting the solar cell element 111 to the bus bar electrode 112 of the solar cell element 111
  • the hot air blowing nozzle 116 for soldering is disposed above one end of the bus bar electrode 112 of the solar cell element 111.
  • the hot air blowing nozzle 116 is moved from one end of the bus bar electrode 112 of the solar cell element 111 to the other end while blowing hot air from the end, so that the connection conductor 113 on the electrode is spread over the entire area as before.
  • the soldering part is continuously connected with a device having a simpler structure, from one end of the bus bar electrode 112 to the other end of the solar cell element 111.
  • the difference in thermal shrinkage due to the difference in thermal expansion coefficient between the solar cell element 111 and the connection conductor 113 material due to heating with hot air during soldering is absorbed in the part that is not soldered.
  • the electrode of the solar cell element 111 where the warp does not occur is peeled off from the substrate of the solar cell element 111 or the solar cell module thereafter. In the process, the solar cell element 111 is not broken or cracked.
  • FIG. 20 shows an example of a solar cell module manufacturing apparatus according to the present invention for soldering a connection conductor to another solar cell element according to the present invention.
  • connection conductor 113 is placed on the bus bar electrode 112 of the solar cell element 111, and the connection conductor 113 on both ends of the bus bar electrode 112 is pressed and fixed with the pins 117a and 117b. Further, two hot air blowing nozzles 116a and 116b are arranged at the upper part of the center of the bus bar electrode, and move toward the end of the bus bar electrode 112 in opposite directions.
  • connection conductor 113 for electrically connecting the solar cell element 111 to the bus bar electrode 112 of the solar cell element 111 by soldering
  • the connecting conductor 113 is placed on the bus bar electrode 112 of the solar cell element 111, and a plurality of hot air outlets for soldering are arranged above the substantially central portion of the bus bar electrode 112 of the solar cell element 111, respectively.
  • a plurality of hot air outlets of the solar cell element 111 are moved toward both ends of the bus bar electrode 112 of the solar cell element 111 while hot air is blown, so that no warpage occurs and the connection conductor 113 It is possible to shorten the soldering time.
  • the solar cell module since the planar shape of at least one end of the connection conductor includes a plurality of corners having an obtuse angle, the solar cell module has a structure on the electrode of the solar cell element. Even when the connecting conductor is thermally contracted during soldering, it is possible to reduce or eliminate the occurrence of cracks in the solar cell element where stress due to the thermal contraction is not concentrated at the corners of the end portions.
  • the solar cell module has a configuration in which the planar shape of at least one end portion of the connection conductor includes a peripheral edge formed by a curve that bulges outward. Even if thermal contraction of the connection conductor occurs when soldering on the electrode of the battery element, the effect can be ensured because the stress can be evenly distributed.
  • connection conductor when a through-hole portion is provided in at least one end of the connection conductor, soldering is performed on the electrode of the solar cell element. Even if thermal contraction of the connection tab occurs, the stress can be dispersed in the through hole where the stress does not concentrate at the corners of the end, thereby reducing the occurrence of cracks in the solar cell element. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 接続導体をハンダ付けすることにより太陽電池素子同士を接続した後のクラックの発生を無くすことにより、その歩留りが良好で、信頼性の高い接続導体及び太陽電池モジュールを提供するものであって、この太陽電池モジュールは、電極が形成された太陽電池素子と、電極と半田を介して接続された帯状の接続導体とを備えた太陽電池モジュールであって、接続導体は、少なくとも一つの端部の平面形状が、鈍角である複数の角部を備えることを特徴とする。

Description

明 細 書
太陽電池モジュール
技術分野
[0001] 本発明は太陽電池モジュールに関するものである。
背景技術
[0002] 太陽電池モジュールは、一般的に PN接合した単結晶シリコン基板や多結晶シリコ ン基板の両主面に電極を形成した複数の太陽電池素子を、接続導体を用いて互 、 に接続するとともに、互いに接続された太陽電池素子をエチレンビュルアセテート共 重合体 (EVA)などを主成分とする充填材で被覆した状態で、透光性基板とバックシ ートとの間で封入していた。太陽電池素子を電気的に接続するには、帯状の接続導 体を用いて太陽電池素子の受光面側電極、裏面側電極にハンダ付けすることにより 行われている。
[0003] 図 9は従来の太陽電池モジュールの受光面側の外観の一例を示した図である。図 中、 1は透光性基板、 2は太陽電池素子、 3は接続導体、 4はモジュール枠を示す。
[0004] 太陽電池モジュールは、上述のように透光性基板 1と裏面シート (不図示)の間に接 続導体 3より電気的に接続され、これらの太陽電池素子 2を充填材で封入され、この 外周部にモジュール枠 4が取り付けられる。
[0005] このような太陽電池モジュールは、接続導体 3を半田付けなどにより、太陽電池素 子 2の電極に接続されるものである(例えば特許文献 1参照)。
特許文献 1:特開 2004— 281797号公報
発明の開示
発明が解決しょうとする課題
[0006] 上記のような太陽電池モジュールでは、日々の温度サイクルなどにより、温度変化 が生じた場合、接続導体が膨張或いは収縮し、接続導体に接続された太陽電池素 子が接続導体の膨張等によって生じる応力を吸収できず、結果として、半導体基板 にクラックを引き起こすおそれがあった。特に、接続導体と電極との接続領域のうち、 接続導体端部において、接続導体の熱膨張量 (熱収縮量)が大きくなることから、太 陽電池素子にクラック発生が生じやす 、。
[0007] 本発明は上述した問題点に鑑みてなされたものであり、その目的は太陽電池素子 に生じるクラックを抑制した太陽電池モジュールを提供することにある。
課題を解決するための手段
[0008] 上記目的を達成するために、本発明の 1実施形態に係る太陽電池モジュールは、 電極が形成された太陽電池素子と、前記電極と半田を介して接続された帯状の接続 導体とを備えた太陽電池モジュールであって、前記接続導体は、少なくとも一つの端 部の平面形状が、鈍角である複数の角部を備えることを特徴とする。
[0009] また、本発明の他の実施形態に係る太陽電池モジュールは、電極が形成された太 陽電池素子と、前記電極と半田を介して接続された帯状の接続導体とを備えた太陽 電池モジュールであって、前記接続導体は、少なくとも一つの端部の平面形状が、 外側に膨らむ曲線で構成された周縁を含むことを特徴とする。
[0010] ここで、前記曲線は、円弧とすることができる。
[0011] また、本発明のさらに他の実施形態に係る太陽電池モジュールは、電極が形成さ れた太陽電池素子と、前記電極と半田を介して接続された帯状の接続導体とを備え た太陽電池モジュールであって、前記接続導体は、少なくとも一つの端部に貫通穴 部を備えることを特徴とする。
[0012] ここで、前記端部は、前記接続導体の他の部分よりも厚みを薄く構成することができ る。
[0013] ここで、前記端部は、押圧により薄く形成されて成ることを特徴とする。
図面の簡単な説明
[0014] [図 1]本発明に係る太陽電池モジュールに使用される太陽電池素子の外観の一例を 示すものである。
[図 2]本発明に係る接続導体の外観の一例を示すものである。
[図 3]本発明に係る接続導体の端部の拡大図である。
[図 4]本発明に係る接続導体を太陽電池素子のバスバー電極にハンダ付けした後の 状態を示すものである。
[図 5]本発明に係る接続導体の他の実施例の端部の拡大図である。 [図 6]本発明に係る接続導体の他の実施例の端部の拡大図である。
[図 7]本発明に係る接続導体の更なる他の実施例の端部の拡大図である。
[図 8]本発明に係る太陽電池モジュールの構造の一例を示す図である。
[図 9]従来の太陽電池モジュールの受光面側の外観の一例を示した図である。
[図 10]従来の接続導体を用いて、二つの太陽電池素子を直列に接続した状態を示 したものの一例である。
[図 11]太陽電池素子に接続導体を接続する装置の一例を示したものである。
[図 12]従来の接続導体を太陽電池素子のバスバー電極上にハンダ付けした状態を 示したものである。
[図 13]本発明に係る接続導体の他の実施例の外観の一例を示すものである。
[図 14]本発明に係る接続導体の他の実施例の端部の拡大図である。
[図 15]本発明に係る接続導体の他の実施例の端部の拡大図である。
[図 16]本発明に係る接続導体の他の実施例の端部の拡大図である。
[図 17]太陽電池素子に接続導体をハンダ付けする本発明に係る太陽電池モジユー ル製造装置の一例を示したものである。
[図 18]太陽電池素子に接続導体をハンダ付けする本発明に係る太陽電池モジユー ル製造装置のまた別の一例を示したものである。
[図 19]太陽電池素子に接続導体をハンダ付けする本発明に係る太陽電池モジユー ル製造装置のまた別の一例を示したものである。
[図 20]太陽電池素子に接続導体をハンダ付けする本発明に係る太陽電池モジユー ル製造装置のまた別の一例を示したものである。
発明を実施するための最良の形態
[0015] 以下、本発明の実施形態を添付図面を用いて詳細に説明する。
[0016] 本発明において、接続導体の端部とは、長手方向の 1Z2以下の領域であって最 大幅を有する部位力 先端部位までに至る領域を意味するものとする。なお、最大幅 を有する部位が所定長さ連続する場合には、その先端部位に最も近接する部位から 先端部位までの領域が前記端部となる。
[0017] 図 1は本発明に係る太陽電池モジュールに使用される太陽電池素子の外観の一 例を示すものである。
[0018] 図 1において、 20は太陽電池素子、 21は太陽電池素子のバスバー電極、 22はフィ ンガー電極を示す。
[0019] 太陽電池素子 20は、例えば厚み 0. 3〜0. 4mm程度、大きさ 150mm角程度の単 結晶シリコン基板や多結晶シリコン基板力もなる。また、太陽電池素子 20のシリコン 基板にはボロンなどの P型不純物を多く含んだ P層とリンなどの N型不純物を多く含 んだ N層が接している PN接合 (不図示)が形成されている。また太陽電池素子 20の 表面にはバスバー電極 21とフィンガー電極 22が形成されている。
[0020] このバスバー電極 21とフィンガー電極 22は、銀ペーストなどを印刷'焼き付けによ つて形成され、またバスバー電極 21の表面は、そのほぼ全面にわたりハンダコートし ても良い。またフィンガー電極 22は幅 0. 1〜0. 2mm程度で、太陽電池素子の所定 の一辺に平行に、光生成キヤリヤーを収集するため多数本形成される。さらにバスバ 一電極 21は収集されたキヤリヤーを集電し、接続導体を取り付けるために幅 2mm程 度で、フィンガー電極 22と垂直に交わるように 2〜3本程度形成される。このようなバ スバー電極 21とフィンガー電極 22は、太陽電池素子 20の裏面(非受光面)側にも同 様に形成されている。
[0021] 図 2は、本発明に係る接続導体の外観の一例を示すものであり、図 3はその端部の 拡大図である。
[0022] 太陽電池素子の電極に接続される本発明に係る接続導体 25は、厚みが 0. 1〜1.
Omm程度で、またその幅は太陽電池素子 20の接続導体 25自身により太陽電池素 子 20の受光面に影を作らないように、バスバー電極 21の幅と同じかそれ以下にする 。さらに接続導体 23の長さは、バスバー電極 21のほぼ全てに重なり、さらに所定の 太陽電池素子間の間隔と隣り合う太陽電池素子の裏面側バスバー電極 (不図示)に 重なり接続している。一般的な 150mm角の多結晶シリコン基板を有する太陽電池素 子を使用する場合、接続導体 25の幅は l〜3mm程度、その長さは 200〜300mm 程度である。接続導体 25が受光面側バスバー電極 21のほぼ全てに重なるようにす るのは、その電気抵抗成分を少なくするためである。
[0023] また、この接続導体 25の材質は、銀、銅、アルミニウム、鉄などの良導電性の金属 材料からなり、その導電性ゃノヽンダコートのしゃすさなどを考慮して、銅箔材が好適 である。また接続導体材は、太陽電池素子 20のバスバ—電極 21へハンダ付けし易 いようにその全面にハンダコートされる。これは銅箔などをノヽンダ槽にディビングする ことゃメツキすること〖こより、片面 20〜70ミクロン程度のハンダを被覆することにより行 われる。
(接続導体の端部形状 1)
さらに本発明に係る接続導体 25は、図 2、図 3に示す本発明の一例のように、少な くとも一端部が外側に膨らむ曲線で構成された周縁 26を含む構成となっている。この ような曲線で構成された周縁 26は、接続導体 25を上述の適当な長さに切断するとき に、所定形状の型を使用した打ち抜き加工処理により形成できる。
[0024] また接続導体 25は、太陽電池素子 20の受光面側のバスバー電極 21と接続される 他の太陽電池素子の裏面側のバスバー電極 21にハンダ付けされるので、接続導体 25の端部のこのような周縁 26はその両側に設けられるのが望ましい。しかし、太陽電 池素子の製法の違いにより受光面側あるいは裏面側バスバー電極のどちらか一方が シリコン基板との接合強度が強ぐ他方は弱い場合などでは、接続導体の接合強度 の弱いバスバー電極側にハンダ付けされる接続導体 25の端部側のみを曲線形状の 周縁 26とすることも可能である。
[0025] この様な接続導体 25を太陽電池素子 20のバスバー電極 21上に配置し、例えば図 11に示すように、押しつけピン 11で押さえながら、熱風をノズルから吹き出すことによ りバスバー電極 21に接続導体 25とをノヽンダ付けする。
[0026] 図 4は本発明に係る接続導体 25を太陽電池素子 20のバスバー電極 21にハンダ 付けした状態を示すものである。
[0027] 太陽電池モジュールを屋外に設置した場合や、太陽電池モジュールの製造工程に おいて、太陽電池素子及び接続導体に温度変化が生じた場合であっても、本発明 に係る接続導体 25は、少なくとも一つの端部の平面形状が、外側に膨らむ曲線で構 成された周縁を含むため、接続導体 25と半導体基板との熱膨張係数の差異に起因 して生じる応力を、この端部の周縁で分散することができる。
[0028] これにより接続導体 25を半田付けした後、収縮による応力が集中して、太陽電池素 子にクラックが発生したり、接続導体 25を半田付けした後で、バスバー電極 21がシリ コン基板力も剥離したりすることを抑制できる。
[0029] さらに、上述した端部の周縁が外側に膨らむ曲線は、円弧であることが好ましい。円 弧とすることで、接続導体の端部に加わる応力を均一に分散させ易くなる。
(接続導体の端部形状 2)
さらに図 5に示すように、接続導体 28の少なくとも一つの端部の平面形状を、鈍角 である複数の角部を備えることができる。この場合、帯状の接続導体 28の部材を略 直角に切断した後、この接続導体の略直角部分を切り落とすことで、鈍角部を形成 することができ、図 5に示すように接続導体 28の端部に複数の傾斜辺 29が形成され る。
[0030] 太陽電池モジュールを屋外に設置した場合や、太陽電池モジュールの製造工程に おいて、太陽電池素子及び接続導体に温度変化が生じた場合であっても、本発明 に係る接続導体 25は、少なくとも一つの端部の平面形状が、鈍角である複数の角部 を備えることで、接続導体 25と半導体基板との熱膨張係数の差異に起因して生じる 応力を、この端部の周縁で分散することができる。
[0031] これにより接続導体 25を半田付けした後、収縮による応力が集中して、太陽電池素 子にクラックが発生したり、接続導体 25を半田付けした後で、バスバー電極 21がシリ コン基板力も剥離したりすることを抑制できる。
[0032] さらにこの端部の平面形状を鈍角である複数の角部を備えるように形成することに より、現状の接続導体の直角部を切り落とすだけなので、打ち抜くための型などを設 計、準備することなく本発明を簡便かつ安価に実施することが可能となる。
[0033] さらに、図 7に示すように接続導体 34の端部 35に、接続導体 34の幅よりも大きい直 径を有する円形状としてもよい。この場合、接続導体 34の端部をプレスなどで薄く伸 ばしたのち、所定形状、たとえば大きな円形に打ち抜くことにより形成することができ る。
[0034] このとき、図 6に示すように、接続導体 34の端部 35の厚みは、接続導体 34の他の 部分よりも薄く構成することができる。このような構成とすることにより、接続導体 34の 端部 35における応力を弱めて、クラック発生を減少させることができる。 [0035] この端部は、押圧により薄く形成されて成ることを特徴とし、接続導体の端部が圧延 されて一体的に成形されるため、電気的 ·機械的な観点からも好ましい。
(接続導体の端部形状 3)
図 13、図 14は、本発明に係る接続導体のまた別の実施例を示すものであり、図 13 は全体図で図 14はその端部の拡大図である。
[0036] 図 13に示すように本発明に係る接続導体 50は、少なくとも一つの端部に貫通穴部
51が設けられている。
[0037] この貫通穴部 51は、円形や楕円形又は四角形、六角形、八角形などの多角形状 に打ち抜きなどにより作製される。その大きさは例えば円形ならば、直径が接続導体 50の幅の 1Z3〜2Z3程度である。また貫通穴部 51、接続導体 50の幅のほぼ中央 で、その端面から貫通穴部 51までの距離 52が l〜5mm程度の位置に作製される。
[0038] また、図 15に示すように、接続導体 54の端部に斜辺 29を設けることにより、端部の 形状を鈍角である複数の角部を備える多角形状に構成し、さらに貫通穴部 51を有す る構成とすることができる。また、図 14に示すように、接続導体 50の端部形状は、外 側に膨らむ曲線で構成された周縁 26を有しており、さらに貫通穴部 51が設けられて いてもよい。
[0039] さらに図 16に示すように、接続導体 57の端部 58をプレスなどで伸ばし、薄くした後 、略円形状に打ち抜いた後、貫通穴部 51を設けた構成とすることができる。
[0040] このような貫通穴部 51は、ハンダ付けする太陽電池素子の受光面側と裏面側で発 生する応力の大きさに差がある場合などでは、どちらか一方に設けるように構成する ことが可能である。
[0041] このように接続導体の少なくとも一つの端部に貫通穴部を設けたことにより、端部の 内側に向力う上記の接続導体の熱収縮による応力を低減することができ、太陽電池 素子にクラックが発生することを少なくすることができる。
[0042] この様にして作製した接続導体を用いて、太陽電池素子同士を電気的に接続して 、太陽電池モジュールを作製する。
[0043] 図 8は本発明に係る太陽電池モジュールの構造の一例を示す図である。
[0044] 図 8において、 41は透光性基板、 42は受光面側充填材、 43は太陽電池素子、 44 は裏面側充填材、 45は裏面シート、 46は本発明に係る接続導体である。
[0045] 以下、各部材について説明する。
[0046] 透光性基板 41としては、ガラスやポリカーボネート榭脂など力もなる基板が用いら れる。ガラス板ついては、白板ガラス、強化ガラス、倍強化ガラス、熱線反射ガラスな どが用いられるが、一般的には厚さ 3mn!〜 5mm程度の白板強化ガラスが使用され る。他方、ポリカーボネート榭脂などの合成樹脂からなる基板を用いた場合には、厚 みが 5mm程度のものが多く使用される。
[0047] 受光面側充填材 42及び裏面側充填材 44は、エチレン 酢酸ビニル共重合体 (以 下 EVAと略す)やポリビュルプチラール (PVB)から成り、 Tダイと押し出し機により厚 さ 0. 4〜: Lmm程度のシート状に成形されたものが用いられる。これらはラミネート装 置により減圧下にて加熱加圧を行うことで、軟化、融着して他の部材と一体化する。
[0048] EVAや PVBは、酸化チタンや顔料等を含有させ白色等に着色させることがあるが 、本発明に係る太陽電池モジュールの製造方法における受光面側充填材 42にお ヽ ては、着色させると太陽電池素子 43に入射する光量が減少し、発電効率が低下する ため透明とする。
[0049] また、裏面側充填材 44に用いる EVAや PVBは透明でも構わな 、し、太陽電池モ ジュールの設置される周囲の設置環境に合わせ酸化チタンや顔料等を含有させ白 色等に着色させても構わない。
[0050] 裏面シート 45は水分を透過しな ヽようにアルミ箔を挟持した耐候性を有するフッ素 系榭脂シートやアルミナまたはシリカを蒸着したポリエチレンテレフタレート (PET)シ ートなどが用いられる。
[0051] 次に太陽電池モジュールの作製方法につ!、て述べる。
[0052] 太陽電池モジュールに所望の強度を持たせるために、透光性基板 41上に受光面 側充填材 42太陽電池モジュール、裏面側充填材 44、裏面シート 45を順次積層する 。このような状態で、ラミネーターにセットし、減圧下にて加圧しながら 100〜200°Cで 例えば 15分〜 1時間加熱することにより、これらを一体ィ匕することができる。その後、 この太陽電池モジュール外周部にモジュール枠体を取り付けて、所望の強度を有す る太陽電池モジュールとすることができる。 [0053] なお、本発明は上記実施形態に限定されるものではなぐ本発明の範囲内で多く の修正及び変更を加えることができる。例えば太陽電池素子は単結晶や多結晶シリ コンなどの結晶系太陽電池に限定されるものではなぐ薄膜系太陽電池などでも適 用可能である。
[0054] またノヽンダ付けに使用するハンダは、錫 鉛の共晶ハンダ等の他鉛フリーハンダ でも実施可能である。
[0055] さらに図 17は太陽電池素子に接続導体をハンダ付けする本発明に係る太陽電池 モジュール製造装置の一例を示したものである。図 17において 111は太陽電池素 子、 112はバスバー電極、 113は接続導体、 114は作業ステージ、 115は作業ステ ージ移動方向、 116は熱風吹き出しノズル、 117は押しつけピンを示す。
[0056] 太陽電池素子 111は、上述のように単結晶シリコンや多結晶シリコンで作られてお り、その受光面側と裏面側にバスバー電極 112が形成されている。
[0057] 接続導体 113は、良導電性金属箔を帯状に成形し、これにハンダコートした後、適 当な長さに切断したものである力 上述したように接続導体の少なくとも一つの端部 の平面形状を、鈍角である複数の角部を備える構成、または外側に膨らむ曲線で構 成された周縁を含む構成とし、さらに少なくとも一方の端部に貫通穴部が設けられて 、ることが望まし!/、。
[0058] 作業ステージ 114は、厚さ 5〜 10mm程度のステンレスなどで作製され、太陽電池 素子 111の位置決め用のピンや位置決めした後太陽電池素子が動かな 、ように真 空吸着するための貫通穴などを設けておくことが望ましい。またこの作業ステージ 11 4は、サーボモーターなどにより一定速度で矢印 115の方向へ直線的に動く機構に なっている。
[0059] 熱風吹き出しノズル 116は、直径 2〜 5mm程度のステンレス等の金属製のパイプ が用いられ、その一端はバスバー電極の方向に向けられ、他端は熱風発生器 (不図 示)に繋がっている。またこのパイプの途中には、電磁弁などが設けられ、シーケンサ 一など力 の信号により電磁弁を開閉することにより熱風の吹き出し時間とそのタイミ ングを制御する手段が設けられる。また熱風吹き出しノズル 116の先端部付近には、 熱電対などの温度センサーが設けられ、熱風の温度が温度コントローラ一により自動 的に設定温度になるように制御されて 、る。
[0060] また本発明に係る熱風吹き出しノズル 116は、バスバー電極 112の端部上方に 1〜 3本程度、その位置に固定した状態で設けられる。
[0061] 本発明に係る押しつけピン 117は、長さ 50〜: LOOmm程度、直径 l〜3mm程度の ステンレスなどの金属製シャフトに円柱形状の押さえ部を取り付けたものである。円柱 形状の押さえ部は、直径 2〜5mm程度、高さ 4〜6mm程度の大きさで、その材質は 炭素工具鋼にニッケルメツキを施したものなどが好適に用いられる。この押しつけピン 117は、駆動系により上下方向に駆動し、スプリングなどにより常に一定の圧力で、 接続導体 113をバスバー電極 112に押さえつけるようになって 、る。
[0062] また本発明に係る押しつけピン 117は、作業ステージ 114が上述のように一定速度 で動くのに同期して同様に動く機構になっている。
[0063] 本発明に係る太陽電池モジュール製造装置での接続導体 113の太陽電池素子 1 11上のバスバー電極 112への取り付けは、次の様に行う。
[0064] まず取り付ける太陽電池素子 111のバスバー電極 112の上へ接続導体 113を持つ てくる。その後押しつけピン 117を下ろし、接続導体 113をバスバー電極 112に押し つける。その後熱風吹き出しノズル 116から、 400から 500°C程度の熱風を接続導体 113を載置して!/、るバスバー電極 112の一端部に吹き付け、太陽電池素子 111のバ スバー電極 112上のハンダと接続導体 113のハンダを溶融する。さらにこの熱風を吹 きつけながら作業ステージ 114を矢印 115の方向にバスバー電極 112の他端部まで 移動させハンダの溶融位置を徐々に移動させる。その後熱風の吹き出しを止めて、 ハンダが固化したら押しつけピン 117を上げる。
[0065] 上述のように太陽電池素子 111を電気的に接続するための接続導体 113を太陽電 池素子 111のバスバー電極 112にハンダ付けにて取り付けるための太陽電池モジュ ール製造装置において、前記ハンダ付けのための熱風吹き出しノズル 116を太陽電 池素子 111のバスバー電極 112の一端部上方に固定すると共に、前記太陽電池素 子 111のバスバー電極 112に前記接続導体 113を載置したものを、前記熱風吹き出 しノズル 116から熱風を吹きつけながら前記太陽電池素子 111のバスバー電極 112 の一端部力 他端部に移動させることにより、今までのように電極上の接続導体 113 をその全域に亘りほぼ同時にハンダ付けするのに較べ、ハンダ付け部分を連続的に 太陽電池素子のバスバー電極 112の一端部から他端部に移動させることになり、ハ ンダ付け時の熱風による加熱での太陽電池素子 111と接続導体 113の材料との熱 膨張係数の差による熱収縮量の違 ヽをノ、ンダ付けされて 、な 、部分で吸収すること が可能となり、接続導体 113を取り付けた後の太陽電池素子 111において、反りが発 生することが無ぐ太陽電池素子 111の電極が太陽電池素子基板より剥離したり、ま たその後の太陽電池モジュール工程において、太陽電池素子 111が割れたり、クラ ックが発生することが無い。
[0066] またこの作業ステージ 114を矢印 115の方向に移動させる速度は、発明者らが繰り 返し行つたテストでは、毎秒 15mm以下であることが望まし 、。
[0067] すなわち、毎秒 15mmを超えるハンダ付け速度では、熱膨張係数の差による熱収 縮量の違 ヽをノ、ンダ付けされて 、な 、部分で吸収することが不十分となり、完全に太 陽電池素子の反りを防止できないためである。
[0068] 図 18は本発明に係るまた別の太陽電池素子に接続導体をノヽンダ付けする本発明 に係る太陽電池モジュール製造装置の一例を示したものである。図 18において、押 しっけピン 120は、長さ 50〜: LOOmm程度、幅 l〜3mm程度のステンレスなどの金 属製プレートの太陽電池素子 111側が 2つに別れ、その間に金属製のローラー 121 がシャフトにより回転自在に取り付けられている。このローラーの材質は、ステンレス や炭素鋼にニッケルメツキを施したものなどが好適に用いられる。さらにこのローラー 121は幅方向に両端部が中央部に較べ 0. 5〜1. Omm程度突出している凸形状に することが、接続導体 113が蛇行することを防止できるため望ましい。
[0069] この押しつけピン 120は、駆動系により上下方向に駆動し、スプリングなどにより常 に一定の圧力で、接続導体 113をバスバー電極 112に押さえつけるようになって 、る
[0070] このようにすることにより、熱風吹き出しノズル 116から熱風を吹きつけながら作業ス テージ 114を矢印 115の方向にバスバー電極 112の端部力も他端部まで移動させ、 ハンダの溶融位置を徐々に移動させる時に押しつけピン 120は、ローラー 121が回 転するために、作業ステージ 114に同期して移動させる必要が無ぐ装置の構造を 簡単なものにすることが可能となる。
[0071] 図 19は本発明に係るまた別の太陽電池素子に接続導体をノヽンダ付けする本発明 に係る太陽電池モジュール製造装置の一例を示したものである。
[0072] 図 19において、作業ステージ 114は固定され、熱風吹き出しノズル 116が、サーボ モーターなどにより太陽電池素子 111のバスバー電極 112の端部力も他の端部へ熱 風を吹きつけながら一定速度で矢印 120の方向へ直線的に動く機構になっている。
[0073] すなわち、太陽電池素子 111を電気的に接続するための接続導体 113をこの太陽 電池素子 111のバスバー電極 112にハンダ付けにて取り付けるための太陽電池モジ ユール製造装置にぉ 、て、前記太陽電池素子 111のバスバー電極 112に接続導体 113を載置すると共に、太陽電池素子 111のバスバー電極 112の一端部上方にハ ンダ付けのための熱風吹き出しノズル 116を配置し、前記熱風吹き出しノズル 116か ら熱風を吹きつけながら前記太陽電池素子 111のバスバー電極 112の一端部から 他端部に前記熱風吹き出しノズル 116を移動させることにより、今までのように電極上 の接続導体 113をその全域に亘りほぼ同時にハンダ付けするのに較べ、より簡単な 構造の装置でノ、ンダ付け部分を連続的に太陽電池素子 111のバスバー電極 112の 一端部から他端部に移動させることになり、ハンダ付け時の熱風による加熱での太陽 電池素子 111と接続導体 113材料との熱膨張係数の差による熱収縮量の違いをノ、 ンダ付けされていない部分で吸収することが可能となり、接続導体 113を取り付けた 後の太陽電池素子 111において、反りが発生することが無ぐ太陽電池素子 111の 電極が太陽電池素子 111基板より剥離したり、またその後の太陽電池モジュールェ 程において、太陽電池素子 111が割れたり、クラックが発生することが無い。
[0074] 図 20は、本発明に係るまた別の太陽電池素子に接続導体をハンダ付けする本発 明に係る太陽電池モジュール製造装置の一例を示したものである。
[0075] これにおいて、太陽電池素子 111のバスバー電極 112に接続導体 113を載置する と共に、バスバー電極 112の両端部の接続導体 113上を押しつけピン 117a、 117b で押さえ固定する。さらに 2本の熱風吹き出しノズル 116a、 116bがバスバー電極の ほぼ中央の上部に配置され、それぞれ反対方向にバスバー電極 112の端部に向け て移動するようになって ヽる。 [0076] すなわち、太陽電池素子 111を電気的に接続するための接続導体 113を前記太 陽電池素子 111のバスバー電極 112にハンダ付けにて取り付けるための太陽電池 モジュール製造装置にお 、て、前記太陽電池素子 111のバスバー電極 112に前記 接続導体 113を載置すると共に、前記太陽電池素子 111のバスバー電極 112の略 中央部上方に前記ハンダ付けのための複数の熱風吹き出し口を配置し、各々の複 数の熱風吹き出し口力 熱風を吹きつけながら前記太陽電池素子 111のバスバー 電極 112の両端部に向けて前記熱風吹き出し口を移動させることにより、反りが発生 することが無いと共に接続導体 113のハンダ付け時間を短くすることが可能となる。 産業上の利用可能性
[0077] 本発明の 1実施形態に係る太陽電池モジュールでは、接続導体の少なくとも一つ の端部の平面形状が鈍角である複数の角部を備える構造であることから、太陽電池 素子の電極上にハンダ付けする際に接続導体の熱収縮が起きても、端部の角部分 で熱収縮による応力が集中することがなぐ太陽電池素子にクラックが発生することを 少、なくすることができる。
[0078] また、本発明の他の実施形態による太陽電池モジュールでは、接続導体の少なくと も一つの端部の平面形状が外側に膨らむ曲線で構成された周縁を含む構成とする ことにより、太陽電池素子の電極上にハンダ付けする際に接続導体の熱収縮が起き ても、応力を均一に分散することができるため、その効果を確実なものとすることがで きる。
[0079] さらに、本発明のさらに他の実施形態による太陽電池モジュールでは、接続導体の 少なくとも一つの端部に貫通穴部を備える構成とすることにより、太陽電池素子の電 極上にハンダ付けする際に接続タブの熱収縮が起きても、その端部の角部分に応力 が集中することがなぐ貫通穴部において応力を分散することができ、太陽電池素子 にクラックが発生することを少なくすることができる。

Claims

請求の範囲
[1] 電極が形成された太陽電池素子と、
前記電極と半田を介して接続された帯状の接続導体と、
を備えた太陽電池モジュールであって、
前記接続導体は、少なくとも一つの端部の平面形状が、鈍角である複数の角部を 備えることを特徴とする太陽電池モジュール。
[2] 電極が形成された太陽電池素子と、
前記電極と半田を介して接続された帯状の接続導体と、
を備えた太陽電池モジュールであって、
前記接続導体は、少なくとも一つの端部の平面形状が、外側に膨らむ曲線で構成 された周縁を含むことを特徴とする太陽電池モジュール。
[3] 前記曲線は、円弧であることを特徴とする請求項 2に記載の太陽電池モジュール。
[4] 電極が形成された太陽電池素子と、
前記電極と半田を介して接続された帯状の接続導体と、
を備えた太陽電池モジュールであって、
前記接続導体は、少なくとも一つの端部に貫通穴部を備えることを特徴とする太陽 電池モジュール。
[5] 前記端部は、前記接続導体の他の部分よりも厚みが薄いことを特徴とする請求項 1 力 請求項 4のいずれかに記載の太陽電池モジュール。
[6] 前記端部は、押圧により薄く形成されて成ることを特徴とする請求項 5に記載の太 陽電池モジュール。
PCT/JP2006/315052 2005-07-28 2006-07-28 太陽電池モジュール WO2007013625A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/996,584 US20100043860A1 (en) 2005-07-28 2006-07-28 Solar cell module
JP2007526927A JP5008563B2 (ja) 2005-07-28 2006-07-28 太陽電池モジュール
EP06781962A EP1909333A4 (en) 2005-07-28 2006-07-28 SOLAR CELL MODULE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005218536 2005-07-28
JP2005-218536 2005-07-28
JP2005313190 2005-10-27
JP2005-313190 2005-10-27
JP2005-347523 2005-12-01
JP2005347523 2005-12-01

Publications (1)

Publication Number Publication Date
WO2007013625A1 true WO2007013625A1 (ja) 2007-02-01

Family

ID=37683513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315052 WO2007013625A1 (ja) 2005-07-28 2006-07-28 太陽電池モジュール

Country Status (4)

Country Link
US (1) US20100043860A1 (ja)
EP (1) EP1909333A4 (ja)
JP (1) JP5008563B2 (ja)
WO (1) WO2007013625A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270043A (ja) * 2005-02-22 2006-10-05 Kyocera Corp 太陽電池モジュール
JP2008270848A (ja) * 2006-06-23 2008-11-06 Sharp Corp 光電変換素子およびインターコネクタ付き光電変換素子
JP2009064910A (ja) * 2007-09-05 2009-03-26 Sharp Corp インターコネクタ付き太陽電池および太陽電池モジュール
JP2009141264A (ja) * 2007-12-10 2009-06-25 Shin Etsu Chem Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2010027659A (ja) * 2008-07-15 2010-02-04 Shin-Etsu Chemical Co Ltd 太陽電池モジュール及びその製造方法
US20110197951A1 (en) * 2008-08-22 2011-08-18 Yoshiya Abiko Solar battery module and method of manufacturing the same
JP2011176010A (ja) * 2010-02-23 2011-09-08 Sharp Corp 裏面電極型太陽電池セル、配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール
WO2013137007A1 (ja) * 2012-03-12 2013-09-19 株式会社Neomaxマテリアル 太陽電池用インターコネクタ、太陽電池用インターコネクタの製造方法及び太陽電池モジュール
WO2014033884A1 (ja) * 2012-08-30 2014-03-06 三洋電機株式会社 太陽電池モジュールの配線材、太陽電池モジュール、及び太陽電池モジュールの製造方法
US8884153B2 (en) 2006-06-23 2014-11-11 Sharp Kabushiki Kaisha Photoelectric conversion element and interconnector-equipped photoelectric conversion element
WO2016068237A1 (ja) * 2014-10-29 2016-05-06 京セラ株式会社 太陽電池モジュール

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135303A (ja) * 2007-11-30 2009-06-18 Sharp Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
DE102008037403A1 (de) * 2008-09-30 2010-04-01 Jörg NIEMEIER Verfahren und Vorrichtung zum Verbinden einer Solarzelle mit einem Zellverbinder
SI2246906T1 (sl) * 2009-12-22 2011-08-31 Kioto Photovoltaics Gmbh Niz sončnih celic
US20120000516A1 (en) * 2010-07-01 2012-01-05 Egypt Nanotechnology Center Graphene Solar Cell
KR101173418B1 (ko) * 2011-07-29 2012-08-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
WO2014139099A1 (en) * 2013-03-13 2014-09-18 China Sunergy (Nanjing) Co., Ltd. Soldering system
CN105609584B (zh) * 2014-11-19 2023-10-24 苏州易益新能源科技有限公司 一种太阳能电池组件生产方法
US10424680B2 (en) * 2015-12-14 2019-09-24 Solarcity Corporation System for targeted annealing of PV cells
CN107192467B (zh) * 2016-03-15 2023-09-05 苏州沃特维自动化系统有限公司 一种电池片焊接的温度监测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502507A (en) * 1966-10-28 1970-03-24 Textron Inc Solar cells with extended wrap-around electrodes
US4203646A (en) * 1978-05-17 1980-05-20 Amp Incorporated Clip for electrically connecting planar elements, such as solar cells, and the like, in series
JPS56108282A (en) * 1980-01-31 1981-08-27 Agency Of Ind Science & Technol Solar cell module
US4617420A (en) * 1985-06-28 1986-10-14 The Standard Oil Company Flexible, interconnected array of amorphous semiconductor photovoltaic cells
JPS6216579A (ja) * 1985-07-15 1987-01-24 Sharp Corp 太陽電池インタ−コネクタ
DE3627641A1 (de) * 1986-08-14 1988-02-25 Telefunken Electronic Gmbh Solarzelle und verfahren zu ihrer herstellung
US5006179A (en) * 1989-05-24 1991-04-09 Solarex Corporation Interconnect for electrically connecting solar cells
JPH03204979A (ja) * 1989-10-02 1991-09-06 Kyocera Corp 太陽電池モジュール及びその製造方法
JPH11186572A (ja) * 1997-12-22 1999-07-09 Canon Inc 光起電力素子モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849880A (en) * 1969-12-12 1974-11-26 Communications Satellite Corp Solar cell array
DE2919041A1 (de) * 1979-05-11 1980-11-13 Messerschmitt Boelkow Blohm Solarzellenanordnung
JPS61162070U (ja) * 1985-03-27 1986-10-07
JP4979154B2 (ja) * 2000-06-07 2012-07-18 ルネサスエレクトロニクス株式会社 半導体装置
JP4153785B2 (ja) * 2002-12-19 2008-09-24 京セラ株式会社 太陽電池モジュール
US20040200522A1 (en) * 2003-03-17 2004-10-14 Kyocera Corporation Solar cell element and solar cell module
JP2004281800A (ja) * 2003-03-17 2004-10-07 Kyocera Corp 太陽電池モジュール
US7390961B2 (en) * 2004-06-04 2008-06-24 Sunpower Corporation Interconnection of solar cells in a solar cell module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502507A (en) * 1966-10-28 1970-03-24 Textron Inc Solar cells with extended wrap-around electrodes
US4203646A (en) * 1978-05-17 1980-05-20 Amp Incorporated Clip for electrically connecting planar elements, such as solar cells, and the like, in series
JPS56108282A (en) * 1980-01-31 1981-08-27 Agency Of Ind Science & Technol Solar cell module
US4617420A (en) * 1985-06-28 1986-10-14 The Standard Oil Company Flexible, interconnected array of amorphous semiconductor photovoltaic cells
JPS6216579A (ja) * 1985-07-15 1987-01-24 Sharp Corp 太陽電池インタ−コネクタ
DE3627641A1 (de) * 1986-08-14 1988-02-25 Telefunken Electronic Gmbh Solarzelle und verfahren zu ihrer herstellung
US5006179A (en) * 1989-05-24 1991-04-09 Solarex Corporation Interconnect for electrically connecting solar cells
JPH03204979A (ja) * 1989-10-02 1991-09-06 Kyocera Corp 太陽電池モジュール及びその製造方法
JPH11186572A (ja) * 1997-12-22 1999-07-09 Canon Inc 光起電力素子モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1909333A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270043A (ja) * 2005-02-22 2006-10-05 Kyocera Corp 太陽電池モジュール
US8884153B2 (en) 2006-06-23 2014-11-11 Sharp Kabushiki Kaisha Photoelectric conversion element and interconnector-equipped photoelectric conversion element
JP2008270848A (ja) * 2006-06-23 2008-11-06 Sharp Corp 光電変換素子およびインターコネクタ付き光電変換素子
JP2009064910A (ja) * 2007-09-05 2009-03-26 Sharp Corp インターコネクタ付き太陽電池および太陽電池モジュール
JP2009141264A (ja) * 2007-12-10 2009-06-25 Shin Etsu Chem Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2010027659A (ja) * 2008-07-15 2010-02-04 Shin-Etsu Chemical Co Ltd 太陽電池モジュール及びその製造方法
US20110197951A1 (en) * 2008-08-22 2011-08-18 Yoshiya Abiko Solar battery module and method of manufacturing the same
JP2011176010A (ja) * 2010-02-23 2011-09-08 Sharp Corp 裏面電極型太陽電池セル、配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール
WO2013137007A1 (ja) * 2012-03-12 2013-09-19 株式会社Neomaxマテリアル 太陽電池用インターコネクタ、太陽電池用インターコネクタの製造方法及び太陽電池モジュール
WO2014033884A1 (ja) * 2012-08-30 2014-03-06 三洋電機株式会社 太陽電池モジュールの配線材、太陽電池モジュール、及び太陽電池モジュールの製造方法
JPWO2014033884A1 (ja) * 2012-08-30 2016-08-08 パナソニックIpマネジメント株式会社 太陽電池モジュールの配線材、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2016068237A1 (ja) * 2014-10-29 2016-05-06 京セラ株式会社 太陽電池モジュール
JPWO2016068237A1 (ja) * 2014-10-29 2017-08-03 京セラ株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
EP1909333A4 (en) 2012-02-15
JP5008563B2 (ja) 2012-08-22
US20100043860A1 (en) 2010-02-25
EP1909333A1 (en) 2008-04-09
JPWO2007013625A1 (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5008563B2 (ja) 太陽電池モジュール
EP2020688B1 (en) Solar cell interconnection using thermo-compression bonding and correspondingly fabricated module
US8829333B2 (en) Solar cell module and method for manufacturing same
EP2418688A1 (en) Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
KR102015591B1 (ko) 박형 실리콘 태양 전지용 활성 후면판
JP2009054981A (ja) 太陽電池モジュール及びその製造方法
US20230275172A1 (en) Manufacturing method and manufacturing apparatus for interconnection member
JP2000286436A (ja) 太陽電池出力領域の製造方法
EP2590227A1 (en) Method for manufacturing solar cell module, and solar cell module manufactured by the method
JP2007123792A (ja) 太陽電池モジュール
JP4738147B2 (ja) 太陽電池モジュール及びその製造方法
JP2005159173A (ja) 太陽電池素子接続用配線材および太陽電池モジュール
JP2005191125A (ja) 太陽電池素子接続用接続タブ及び太陽電池モジュール並びに太陽電池モジュールの製造方法
JP2004281797A (ja) 太陽電池モジュール
WO2014132282A1 (ja) 太陽電池モジュール
JP2009059738A (ja) 太陽電池モジュールの製造方法及び製造装置
JP2007123522A (ja) 太陽電池モジュール製造装置
JP4340132B2 (ja) 太陽電池モジュールの製造方法
JP5153361B2 (ja) 太陽電池モジュールの修復方法
JP4883891B2 (ja) 太陽電池モジュール
JP2009206231A (ja) 太陽電池モジュールおよびその製造方法
JP2005236217A (ja) 太陽電池モジュール用封止材及びこれを用いた太陽電池モジュールの製造方法
JP2010245399A (ja) 配線シート、配線シート付き太陽電池セル、太陽電池モジュール、配線シート付き太陽電池セルの製造方法および太陽電池モジュールの製造方法
US20190198695A1 (en) Bifacial solar cell module
JP5241113B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526927

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11996584

Country of ref document: US