WO2007013601A1 - 生体分子用標識色素及び標識キット並びに生体分子の検出方法 - Google Patents

生体分子用標識色素及び標識キット並びに生体分子の検出方法 Download PDF

Info

Publication number
WO2007013601A1
WO2007013601A1 PCT/JP2006/315008 JP2006315008W WO2007013601A1 WO 2007013601 A1 WO2007013601 A1 WO 2007013601A1 JP 2006315008 W JP2006315008 W JP 2006315008W WO 2007013601 A1 WO2007013601 A1 WO 2007013601A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dye
biomolecule
labeling
binding
Prior art date
Application number
PCT/JP2006/315008
Other languages
English (en)
French (fr)
Inventor
Shinichiro Isobe
Original Assignee
Shinichiro Isobe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37683488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007013601(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shinichiro Isobe filed Critical Shinichiro Isobe
Priority to KR1020087004688A priority Critical patent/KR101427354B1/ko
Priority to CN200680035218.4A priority patent/CN101273096B/zh
Priority to JP2007526917A priority patent/JP5638734B2/ja
Priority to EP06781918A priority patent/EP1932888A4/en
Priority to US11/989,410 priority patent/US8304259B2/en
Publication of WO2007013601A1 publication Critical patent/WO2007013601A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0821Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • C09K11/07Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials having chemically interreactive components, e.g. reactive chemiluminescent compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Definitions

  • the present invention relates to a labeling kit and labeling kit for biomolecules, which are composed of fluorescent dyes and used for detection of biomolecules such as nucleic acids, proteins, peptides, and saccharides, and a method for detecting biomolecules.
  • Fluorescent dyes are widely used for labels, have high fluorescence intensity, and are in a dry state
  • Cy3 and Cy5 are used as fluorescent dyes (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 Science 283,1, January, 1999,83-87
  • the conventional labeling dye has a problem that the labeling rate is low. For example, about 200-fold mol of a fluorescent dye is used for DNA having a single reactive site, but even under this condition, the labeling rate is about 50-60%. For this reason, it is necessary to use a large amount of labeling dye, so that the detection cost becomes high, and a processing step for removing unreacted labeling dye is necessary, which requires a long time for detection.
  • the present inventors have made intensive efforts.
  • the coloring part composed of organic EL dyes the binding part that binds the biomolecule, and the coupling part that connects the coloring part and the binding part.
  • the present invention has been completed by finding that the labeling rate for DNA can be significantly improved by using a labeling dye having a spacer portion.
  • the labeling dye for a biomolecule of the present invention is a labeling dye used for detection of a biomolecule by fluorescence measurement, and includes a coloring part having an organic EL coloring power, a binding part that binds the biomolecule, and a binding part to the coloring part. And a part of a spacer that connects the two parts.
  • the organic EL dye a condensed polycyclic compound composed of a 5-membered ring compound containing one or more hetero atoms, selenium atoms, or boron atoms and a 6-membered ring compound having a conjugated system is used. It is possible to be.
  • an azole derivative represented by any one of the following general formulas (1), (2), and (3) can be used.
  • R, R, R, and R each independently represent a hydrogen atom, a halogen atom, or an alkyl. Substitution of alkyl groups, alkyl groups, alkyl groups, alkoxy groups, hydroxyl groups, cyano groups, sulfol groups, aromatic hydrocarbon groups, heterocyclic groups, aromatic groups containing heteroatoms in the ring, etc.
  • An aromatic hydrocarbon group that may have a group, a hydrocarbon group, a heterocyclic group, or an aromatic group that includes a hetero atom in the ring
  • X may have a substituent, and a nitrogen atom Or a sulfur atom, an oxygen atom, a selenium atom, or a boron atom
  • R ′ may contain an aromatic ring V, an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group, or an aromatic hydrocarbon group
  • R and R may include thiophene derivatives, furan derivatives, pyrrole derivatives, and imidazo.
  • One selected from the group strengths selected from the group derivatives, oxazole derivatives, thiazole derivatives, pyrazole derivatives and pyridine derivatives.
  • a phenyl group having a sulfole group can be used for R and R described above.
  • an imidazole derivative represented by the following general formula (4), (5), (6), (7) or (8) can also be used for the condensed polycyclic compound.
  • 1 2 3 4 5 independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkyl group, an alkoxy group, a hydroxyl group, a cyano group, a sulfonyl group, an aromatic hydrocarbon group, or a heterocyclic ring.
  • An aromatic group containing a terror atom in the ring, R, R, R, R, R may be the same or different
  • R ' is an aliphatic or aromatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring, a halogen ion such as Br ⁇ , Cl-, Br-, ⁇ , CF SO-, BF-, PF- are shown.
  • R and R may be thiophene derivative, furan derivative, pyrrole derivative, imidazo.
  • One selected from the group strengths selected from the group derivatives, oxazole derivatives, thiazole derivatives, pyrazole derivatives and pyridine derivatives.
  • a phenol group having a sulfo group can be used for R and R described above.
  • the labeling dye of the present invention has a carboxylic acid group, an isocyanate group, an isocyanato group, an epoxy group, a halogenated alkyl group, a triazine group, a carpositimide group, and a carbonyl group carboxylated in an active ester group at the binding portion.
  • One of the selected reactive groups can be used.
  • the labeling dye of the present invention includes, in part of the spacer, -CH-, -NHCOO-, -CONH-, -C.
  • an amino acid can be used as a part of the spacer, and a natural amino acid or a synthetic amino acid can be used as the amino acid.
  • amino acids include cysteic acid, 2-amino-3-sulfosulfarpropanoic acid, 2-amino-3-sulfoxypropanoic acid, tyrosine, threonine, 4-amino-2-hydroxybutanoic acid, One selected for the group power that is also moserin and serine can be used.
  • a peptide linker is used for a part of the spacer, and the peptide linker has at least one selected group power consisting of a sulfol group, a hydroxyl group, a quaternary amine group, and a carboxyl group. Those having a charged group of can also be used.
  • peptide linkers include cysteic acid, 2-amino-3-sulfosulfarpropanoic acid, 2-amino-3-sulfoxypropanoic acid, tyrosine, threonine, 4-amino-2-hydroxybutanoic acid. It is also possible to use homoserine and serine that contain at least one selected amino acid.
  • the first biomolecule labeling kit of the present invention is a biomolecule labeling kit used for detection of biomolecules by fluorescence measurement, and binds the biomolecule to a color-developing portion composed of an organic EL dye. It includes a labeling dye having a binding part and a spacer part that connects the coloring part and the binding part.
  • the second biomolecule labeling kit of the present invention is a biomolecule labeling kit used for detection of a biomolecule by fluorescence measurement, and includes at least a color-developing portion composed of an organic EL dye, and the color-developing portion.
  • 2 2 2 2 ⁇ ⁇ is an integer from 1 to 10), containing at least one functional group selected from the group consisting of —CH ⁇ CH—, —C ⁇ C—, —Ar— and —CO—Ar—NR— It includes a part of a spacer.
  • the second labeling kit for biomolecules includes a carboxylic acid group, an isocyanate group, an isothiocyanate group, an epoxy group, a halogenated alkyl group, a triazine group, a carpositimide group, and a carbonyl group card containing an active ester group.
  • the first biomolecule detection method of the present invention includes a coloring portion that also has organic EL dye strength, a binding portion that binds biomolecules, and a spacer that connects the coloring portion and the binding portion.
  • a labeling dye having a moiety is reacted with a biomolecule sample, and fluorescence of the biomolecule sample labeled with the labeling dye is measured.
  • the biomolecule sample any one selected from nucleic acid, protein, peptides, and group power selected as saccharide power can be used.
  • the protein includes an antibody.
  • the second method for detecting a biomolecule of the present invention includes a coloring part having organic EL coloring power, a binding part that binds the biomolecule, and a spacer that connects the coloring part and the binding part.
  • a probe labeled with a labeling dye having a moiety and a biomolecule sample are reacted, and fluorescence of the biomolecule sample is measured.
  • the biomolecule sample can be used as a nucleic acid, and the probe can be an oligonucleotide or PNA complementary to the base sequence of the nucleic acid.
  • the nucleic acid can be amplified to measure fluorescence.
  • the primer can be labeled with an organic EL dye.
  • a molecular beacon can be used for the oligonucleotide or PNA.
  • the third biomolecule detection method of the present invention is a method for detecting an analyte composed of a biomolecule or an analyte modified with a modifying substance, wherein the binding substance specifically binds to the analyte.
  • one of the binding substances that specifically bind to the modifying substance is a label having a coloring part that also has an organic EL coloring power, a binding part that binds a biomolecule, and a spacer part that connects the coloring part and the binding part. It is characterized in that it is labeled with a dye and the fluorescence of the labeled binding substance force is measured.
  • the combination of the analyte or the modifying substance and the binding substance includes antigen antibody, hapten anti-hapten antibody, and piotin.
  • antigen antibody hapten anti-hapten antibody
  • piotin hapten anti-hapten antibody
  • Avidin, Tag anti-Tag antibody, lectin-glycoprotein or hormone-receptor can be used.
  • the fourth method for detecting a biomolecule of the present invention includes a step of size-separating a biomolecule sample by electrophoresis, and the biomolecule sample is obtained before or after the electrophoresis. Further, it is characterized by labeling with a labeling dye having a coloring part having an organic EL coloring power, a binding part for binding a biomolecule, and a spacer part for connecting the coloring part and the binding part.
  • a labeling dye having a coloring part having an organic EL coloring power, a binding part for binding a biomolecule, and a spacer part for connecting the coloring part and the binding part.
  • nucleic acid can be used for the biomolecule sample, and the base sequence of the nucleic acid can be determined based on the electrophoresis image.
  • protein can be used for the biomolecule sample, and the protein taken out can be subjected to mass spectrometry based on the electrophoresis image.
  • the tissue or cell staining method of the present invention comprises a biomolecule in a tissue or cell sample, a coloring portion having an organic EL dye strength, a binding portion for binding the biomolecule, a coloring portion and a binding portion. It is characterized by labeling with a labeling dye having a part of a spacer connecting the two.
  • a nucleic acid or protein can be used for the biomolecule.
  • the staining dye of the present invention is a staining dye used for dyeing yarns and weaves or cell samples, and includes a coloring part having an organic EL coloring power and a binding part that binds to a biomolecule in a tissue or a cell. It is characterized by comprising a labeling dye having a spacer part for connecting the coloring part and the binding part.
  • the labeling dye for biomolecules of the present invention uses an organic EL dye for the color developing part and a part of the spacer is provided between the binding part and the color developing part, so that it has a labeling rate of almost 100%.
  • the labeling dye of the present invention it is possible to obtain a high labeling rate that is influenced by the depth of the labeling site of the biomolecule by controlling the length of a part of the spacer. . As a result, the amount of labeling dye used can be greatly reduced, so that the cost of detecting target molecules can be significantly reduced.
  • organic EL dyes have a high quantum yield in the solid state (including solid and semi-solid), they give high fluorescence intensity even when dried on a substrate such as a microarray or on beads.
  • organic EL dyes are less expensive than Cy3 and Cy5, biomolecules can be detected at a lower cost.
  • the excitation wavelength and emission wavelength can be changed by changing the substituent of the organic EL dye, the degree of freedom in selecting the fluorescence wavelength is increased, and many fluorescence wavelengths such as orange, yellow, green, and blue are used. Can be used .
  • FIG. 1 is a schematic diagram showing a light emission mechanism when a molecular beacon is used as a probe in the detection method of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a method for preparing a Fab ′ fragment of an IgG antibody in the detection method of the present invention.
  • FIG. 3 is a schematic diagram showing an example of a method for introducing an organic EL dye into an Fab ′ fragment of an IgG antibody in the detection method of the present invention.
  • FIG. 4A is an example of an HPLC vector of 17-mer DNA labeled with EL-OSu in Example 1 of the present invention.
  • FIG. 4B is an example of an HPLC spectrum of 17-mer DNA labeled with EL-OSu-Sp in Example 1 of the present invention.
  • FIG. 5A is an example of an HPLC vector of 20mer DNA labeled with EL-OSu in Example 1 of the present invention.
  • FIG. 5B is an example of an HPLC spectrum of 20mer DNA labeled with EL-OSu-Sp in Example 1 of the present invention.
  • FIG. 5C is an example of an HPLC vector of 20mer DNA labeled with Alexa594 in Example 1 of the present invention.
  • FIG. 6A is an example of an HPLC vector of 40mer DNA labeled with EL-OSu in Example 1 of the present invention.
  • FIG. 6B is an example of an HPLC spectrum of 40mer DNA labeled with EL-OSu-Sp in Example 1 of the present invention.
  • FIG. 7 is an example of a graph showing the relationship between the amount of EL-OSu-Sp added and the labeling rate in Example 1 of the present invention.
  • FIG. 8A is an example of an HPLC spectrum of BSA labeled with EL-OSu in Example 2 of the present invention.
  • FIG. 8B is an example of an HPLC spectrum of BSA labeled with EL-OSu-Sp in Example 2 of the present invention.
  • FIG. 9A is an example of TOF MS spectrum of BSA after labeling with EL-OSu in Example 2 of the present invention.
  • FIG. 9B is an example of the TOF MS spectrum of BSA before labeling in Example 2 of the present invention.
  • the labeling dye for biomolecules of the present invention has a coloring part composed of an organic EL dye, a binding part that binds the biomolecule, and a spacer part that connects the coloring part and the binding part. To do.
  • the organic EL dye used for the labeling dye of the present invention is sandwiched in a solid state between a pair of an anode and a cathode, and the holes injected from the anode and the electrons injected from the cathode are separated.
  • the dye is not particularly limited as long as it is a dye capable of emitting light by energy at the time of recombination. For example, Tetrahue
  • -Polycyclic aromatic compounds such as butadiene and perylene, cyclopentagen derivatives, distyrylvirazine derivatives, attaridone derivatives, quinacdrine derivatives, stilbene derivatives, phenothiazine derivatives, birazinopyridine derivatives, azole derivatives, imidazole derivatives, force rubazole derivatives and Tetraphenylthiophene derivatives and the like can be used.
  • a dye having a carboxylic acid group in the molecule or capable of introducing a carboxylic acid group is preferable. This is because, as described below, a reactive group for binding to a biomolecule can be easily introduced.
  • the binding moiety used in the labeling dye of the present invention has a reactive group that binds to a biomolecule sample (hereinafter referred to as a target molecule), and the reactive group includes a biomolecule.
  • a target molecule a biomolecule sample
  • Substituents that form covalent bonds or ionic bonds, or nucleophiles or electrophiles can be used.
  • the reactive group is an amino group of the target molecule
  • a functional group capable of reacting with a mino group, a thiol group or a hydroxyl group is preferred.
  • the covalent bond between the organic EL dye and the target molecule it is preferable to form an amide bond, an imide bond, a urethane bond, an ester bond, or a guanidine bond.
  • the functional group includes, for example, isothiocyanate group, isocyanate group, epoxy group, halogenated sulfol group, chloride acyl group, halogenated alkyl group, darioxal group, aldehyde group, triazine group, force rubodiimide group and An activated ester group such as a carbonyl group can be used.
  • an isothiocyanate group, an isocyanate group, an epoxy group, a halogenated alkyl group, a triazine group, a carpositimide group, and a carboxylic group group having an active ester group is used. preferable.
  • At least one selected from an isocyanate group, an epoxy group, a halogenated alkyl group, a triazine group, a carpositimide group, and an activated ester group is preferable to use at least one selected from an isocyanate group, an epoxy group, a halogenated alkyl group, a triazine group, a carpositimide group, and an activated ester group.
  • an amide bond can be formed with the amino group of the target molecule, and it can be directly bonded to the imino group in the target molecule. More preferably, they are a triazine group, a carpositimide group, or a carbonyl group having an active ester group.
  • organic EL dyes when these organic EL dyes have a carboxylic acid group, it is possible to directly modify the amino group and imino group present in the target molecule in the presence of a carpositimide derivative or triazine derivative. Furthermore, organic EL dyes that have a triazine group that may have a substituent and a carposimide group that may have a substituent react directly with the imino group of guanine and thymine in the DNA base. Mismatch detection (detection of bases that do not form double strands) is possible without the need to introduce dyes by PCR, and it can be used as a reagent for SNP (single nucleotide polymorphism) analysis It is.
  • SNP single nucleotide polymorphism
  • a eron group such as a sulfol group or a carboxyl group
  • ionic groups are ionically bonded to a cationic group of a biomolecule, such as an amino group.
  • both a reactive group that forms a covalent bond and a reactive group that forms an ionic bond can be used. Thereby, a stronger bond can be formed between the target molecules.
  • the combination of the reactive group that forms a covalent bond and the reactive group that forms an ionic bond is not particularly limited, and examples include combinations of the above functional groups and the above-described sulfone groups or carboxyl groups such as carboxyl groups. be able to.
  • the target molecule is DNA
  • an amino residue modified at the oligo DNA end in the case of a protein
  • an amino residue, in the case of peptides an amino group of a polypeptide
  • a reactive group can be bonded to an amino residue of a polylysine derivative, and in the case of a saccharide, an amino group in a polysaccharide derivative skeleton.
  • a part of the spacer used in the labeling dye of the present invention is a constituent part that connects the coloring part and the reactive group, and is a part containing a covalent bond or an atomic chain, -CH 2-, -NHCOO -, -CON
  • -CH CH-, -C ⁇ C-, -Ar- and -C ⁇ -Ar-NR-
  • Powerful group force One containing at least one selected functional group can be used.
  • a part of the spacer may be composed of only one kind of functional group selected from the above group power, or may be composed of two or more kinds of functional groups. Further, it may be configured to include two or more selected functional groups.
  • ⁇ ⁇ - etc. are preferred.
  • the following mode should be adopted.
  • -NH-, -O-, -S-, -NR-, -CH CH-, -C ⁇ C-, -Ar- and -CO-Ar-NR-
  • Various functional groups can be used, preferably —COO—, —CO NH—, —0—, —CH ⁇ CH—, —C ⁇ C— or —Ar—, more preferably —COO—, —CONH -,-0- or -Ar- can be used.
  • R1 and R2 may each independently contain a hydrogen atom or an aromatic ring, an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group, or an aromatic hydrocarbon group, and if necessary, a sulfonyl group , Hydroxyl group, quaternary amine group and carboxyl group power group force selected by any one selected charged group The converted one can be used.
  • Ar is an aryl group, preferably a phenylene group or a naphthylene group, and if necessary, those substituted with a sulfol group can be used.
  • p and q are each independently an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and p + q ⁇ l.
  • this spacer are:-(CH2) p- CONH- (CH2) q-,-(CH2) p- COO-(CH2) q-,-(CH2) p- CH (- Rl- S03H)-(CH2) q-,-(CH2) p- CH (-Rl- N + H3)-(CH2) q-, — (CH2) p— CH (— Rl— COOH) — (CH2) q ⁇ , ⁇ (CH2) p ⁇ CH ( ⁇ Rl ⁇ OH) ⁇ (CH2) q ⁇ , ⁇ (CH2) p ⁇ (O- CH-) n- (CH2) q-,-(CH2) p- CONH (-Rl- S03H)-(CH2) q-,-(CH2) p- CONH (-Rl-S03H)-(CH2) q-,-(CH2) p- CONH (-Rl- N + H3)-( (CH2) q-,-(CH2) p- CONH (
  • Y and Z are independently -NHCOO-, -CONH-, -COO-, -SO NH-,-
  • Ar- and -CO-Ar-NR- A group of forces that is also selected, is a functional group, preferably -C ONH- and -COO-, -COO- and -COO-, -COO- and- Combination of NR- etc.
  • R 3 is a hydrogen atom, an aliphatic hydrocarbon group such as an alkyl group or a alkenyl group which may contain an aromatic ring, or an aromatic hydrocarbon group. If necessary, a sulfonyl group, a hydroxyl group, 4 A group power consisting of a class amine group and a carboxyl group. Any selected force can be substituted with one kind of charged group.
  • Ar is a reel group, Preferably, a phenylene group or a naphthylene group, which is optionally substituted with a sulfonate group, can be used.
  • r is an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5. Specific examples of this spacer are:-CONH- (C H2) r- COO-,-CONH- CH (-R3- OH)-COO-,-CONH- CH (-R3- COOH)- COO—, —CONH—CH (R3—S03H) —COO—, —COO— (CH2) r—COO— and the like.
  • an amino acid or a peptide linker having an amino acid strength of 2 to 20 can be used for a part of the spacer.
  • Natural or synthetic amino acids can be used as amino acids.
  • natural amino acids include glycine, alanine, norine, leucine, isoleucine, 4-amino-2-hydroxybutanoic acid, homoserine, serine, threonine, aspartic acid, glutamic acid, asparagine, gnoretamine, lysine, hydroxy Lysine, anoleginine, cysteine, cysteic acid, 2-amino-3-sulfosulfarpropanoic acid, 2-amino-3-sulfoxypropanoic acid, cystine, methionine, phenylalanine, tyrosine, tryptophan, histidine, proline and 4 -Hydroxyproline and the like are included.
  • Synthetic amino acids include D-forms of the above natural amino acids and modified amino acids having at least an amino group and a carboxyl group in the molecule.
  • the modified amino acid can be represented by the general formula: H-N (R1)-(R2-CO) -OH.
  • R1 and R2 are each independently a sulfol group, a hydroxyl group, a quaternary amine group, and a carboxyl group, with or without an ester, ether, thioester, thioether, amide, force rubamide or thiocarbamide. Selected from the group consisting of groups! This represents a hydrocarbon group, an aromatic group or a heterocyclic group substituted by one kind of charged group. Further, the hydrocarbon group, aromatic group or heterocyclic group may be substituted with at least one of a halogen atom, an alkyl group, an alkyl group, an alkyl group or an alkoxy group, respectively.
  • More preferred amino acids used in a part of the spacer of the present invention are amino acids having a sulfo group, cysteic acid, 2-amino-3-sulfosulfar propanoic acid, 2-amino-3. -Sulfoxypropanoic acid, and tyrosine, threonine, 4-amino-2-hydroxybutanoic acid, homoserine, and serine group having a hydroxyl group are any one selected. This is because the water solubility of the labeling dye can be improved. More preferred is cysteic acid or serine.
  • Peptide linkers include -C (-Rl) -CONH-C (-R2)-, -C (-Rl) -CONH-C (-R2) -CONH-C (-R3)-, respectively.
  • Rl, R2, R3, and R4 are a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alcohol group, an indol group, a hydroxyphenol group, a benzyl group, a guanidine group, a thioether group, an alkyl group.
  • peptides may be homo or heteropeptides.
  • Ala-Ser Glu-Ala, Glu-Ala-Leu, Gly-Pro, Gly-Pro-Asn, lie-Val, lie-Va-Met, etc. can be used.
  • a part of the peptide linker having at least one kind of charged group selected from a group force consisting of a sulfol group, a hydroxyl group, a quaternary amine group and a carboxyl group is used.
  • a peptide linker containing one or more amino acids having any one of these charged groups can be used. Thereby, the water solubility of the labeling dye can be improved.
  • cysteic acid having a sulfonyl group 2-amino-3-sulfosulfarpropanoic acid, 2-amino-3-sulfoxypropanoic acid, tyrosine having a hydroxyl group, threonine, 4-amino-2-hydroxybutane Group power containing acid, homoserine, serine
  • a peptide linker containing at least one selected amino acid can be used.
  • the distance between the coloring part and the labeling part of the biomolecule is changed to suppress steric hindrance between the biomolecule and the labeling dye.
  • the structure of the labeling dye can be designed so as to suppress steric hindrance in accordance with the three-dimensional structure of biomolecules such as proteins, peptides, and DNA that have a complex structure, so that the labeling rate can be improved. It becomes possible.
  • a labeling site for example, a labeling site in the deep part.
  • only the labeling site with less steric hindrance, for example, only the shallow portion is selectively labeled, while the deep labeling site is labeled with another labeling dye with less steric hindrance to distinguish the deep and shallow labeling sites. It is also possible to do.
  • reaction formula (I) shows an example in which a reactive carboxyl group is used as a reactive group and -coo- is used as a functional group of a part of a spacer bonded to the reactive group.
  • N-hydroxy-succinimide ester and maleimide ester can be used for the carboxylic ester group.
  • N-hydroxy-succinimide and DCC as the condensing agent, the organic EL dye and the target molecule are bound by an amide bond via the N-hydroxy-succinimide ester.
  • reaction formula (II) shows an example in which a triazine derivative is used for the activated ester-substituted carbo group, and -COO- is used for a part of the spacer functional group bonded to the reactive group.
  • reaction formula (III) shows an example in which a carpositimide group is used as a reactive group and -COO- is used as a functional group of a part of a spacer bonded to the reactive group.
  • a carbodiimide group a carbodiimide reagent such as ⁇ , ⁇ ′-dicyclohexylcarbodiimide (DCC) or 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide can be used.
  • DCC ⁇ , ⁇ ′-dicyclohexylcarbodiimide
  • 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide 2-morpholinoethyl
  • reaction formula (IV) is an example in which a carposimide group or triazine group is previously introduced into a part of the spacer, that is, the functional group of the part of the spacer bonded to the reactive group is a reactive group.
  • An example is also shown.
  • the labeling dye can be directly bonded to the amino group or imino group in the target molecule without separately introducing a reactive group into the labeling dye.
  • a preferred organic EL dye used for the labeling dye of the present invention is a compound containing a 5-membered ring compound having a conjugated system, and the 5-membered ring compound is one or more heteroatoms, selenium atoms or boron.
  • the thing containing an atom can be mentioned. More specifically, a monocyclic compound composed of a 5-membered ring compound having a conjugated system and a condensed polycyclic compound composed of a 6-membered ring compound having a conjugated system with the 5-membered ring compound can be exemplified. Even in the solid state, it has a strong quantum yield and strong fluorescence.
  • the 5-membered ring compound is preferably an azole derivative or an imidazole derivative. Further, the azole derivative or imidazole derivative preferably has one or more quaternary ammonium groups. This is because water solubility can be improved.
  • R, R, R, R, and R are independently hydrogen atom, halogen atom, alkyl
  • alkyl group alkyl group, alkyl group, alkoxy group, hydroxyl group, cyano group, sulfol group, aromatic hydrocarbon group, heterocyclic group which may have a substituent such as a heterocyclic group Or a hydrocarbon group or a heterocyclic group, and R, R, R, R are the same or different.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the alkenyl group is preferably a buyl group, a allyl group, a crotyl group, a tiglyl group or a prenyl group.
  • the alkynyl group is preferably an ethynyl group or a propargyl group.
  • the alkoxy group is preferably a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentoxy group or a phenoxy group.
  • the aromatic hydrocarbon group includes a monocyclic ring or a polycyclic ring, and is preferably a phenyl group, a tolyl group, a xylyl group, or a naphthyl group, and more preferably a phenyl group.
  • the heterocyclic group is preferably a pyrrole group, furan group, thiophene group, imidazole group, oxazole group, thiazole group, pyrazole group, pyridine group or quinolyl group. More preferably a furan group, an imidazole group or a thiophene group.
  • the hydrocarbon group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • R ′ represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring.
  • alkyl group and the alkenyl group aromatic hydrocarbon group the same groups as described above can be used.
  • halide ions such as Cl-, Br-, I-, CFSO-, BF-, PF-.
  • R and R each independently represent a hydrogen atom, a halogen atom, an alkyl group,
  • Aromatic hydrocarbon group which may have a substituent such as alkenyl group, alkyl group, alkoxy group, hydroxyl group, cyano group, sulfol group, aromatic hydrocarbon group and heterocyclic group Or a hydrocarbon group or a heterocyclic group, and R and R may be the same or different.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the alkenyl group is preferably a vinyl group, an aryl group, a crotyl group, a tiglyl group, or a prenyl group.
  • the alkyl group is preferably an ethur group or a propargyl group.
  • the alkoxy group is preferably a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentoxy group or a phenoxy group.
  • the aromatic hydrocarbon group includes a monocyclic ring or a polycyclic ring, preferably a phenyl group, a tolyl group, a xylyl group, or a naphthyl group, and more preferably a phenol group.
  • the heterocyclic group is preferably a pyrrole group, a furan group, a thiophene group, an imidazole group, an oxazole group, a thiazole group, a pyrazole group, a pyridine group or a quinoline group, more preferably a furan group, an imidazole group or Thiophene group.
  • the hydrocarbon group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • N is an integer of 1 or more, preferably 1 to 5, and the same applies to the following general formulas.
  • Aromatic hydrocarbons which may have substituents such as alkyl group, alkyl group, alkyl group, alkoxy group, hydroxyl group, cyano group, sulfonyl group, aromatic hydrocarbon group and heterocyclic group Group, hydrocarbon group or heterocyclic group, R, R, R, R, R are the same or different.
  • R and R are an aromatic hydrocarbon group which may have a substituent, preferably phenol.
  • the substituent may be an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a bromine atom. Furthermore, it is preferable to use a methyl group for the alkyl group and a methoxy group for the alkoxy group.
  • X is a nitrogen atom, sulfur atom, oxygen atom, selenium atom or boron atom which may have a substituent, and the same applies to the following general formulas unless otherwise specified.
  • R 1 and R 2 are independently a hydrogen atom, a halogen atom, an alkyl group,
  • Aromatic hydrocarbon group which may have a substituent such as alkenyl group, alkyl group, alkoxy group, hydroxyl group, cyano group, sulfol group, aromatic hydrocarbon group and heterocyclic group Or a hydrocarbon group or a heterocyclic group, and R 1 and R 2 may be the same or different.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the alkenyl group is preferably a vinyl group, an aryl group, a crotyl group, a tiglyl group, or a prenyl group.
  • the alkyl group is preferably an ethur group or a propargyl group.
  • the alkoxy group is preferably a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentoxy group or a phenoxy group.
  • the aromatic hydrocarbon group includes a monocyclic ring or a polycyclic ring, preferably a phenyl group, a tolyl group, a xylyl group, or a naphthyl group, and more preferably a phenol group.
  • the heterocyclic group is preferably a pyrrole group, a furan group, a thiophene group, an imidazole group, an oxazole group, a thiazole group, a pyrazole group, a pyridine group or a quinoline group, more preferably a furan group, an imidazole group or Thiophene group.
  • the hydrocarbon group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • R is an olefin group or a paraffin group which may have a substituent, n is an integer of 1 to 3,
  • thiophene derivative it is a non-condensed compound, and a 2,3,4,5-tetraphenylthiophene derivative represented by the following general formula can also be used.
  • R 1, R 2 and R 3 are each independently a hydrogen atom, a straight chain, a branched chain or a ring.
  • Y and Y are hydrogen atoms, halogen atoms, or linear, branched or cyclic carbons.
  • An aryl group preferably a phenyl group, a tolyl group, a xylyl group or a naphthyl group, or a substituted or unsubstituted aralkyl group, preferably a benzyl group or phenethyl group, or a substituted or unsubstituted amino group.
  • Ar to Ar are each independently a substituted or unsubstituted aryl group, preferably
  • Ar 1 2 3 r and Ar tAr may form a nitrogen-containing heterocycle together with the nitrogen atom to which they are attached
  • imidazole is represented by the following general formula using imidazole as a 5-membered ring compound.
  • the body can also be used.
  • the imidazole group constituting the imidazole derivative preferably has a quaternary ammonium group. It is because water solubility can be improved. Further, when a pyridino group is included, the pyridino group may also have a quaternary ammonium group in order to further improve water solubility.
  • R ′′ may contain an aromatic ring V, an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group, or an aromatic hydrocarbon group.
  • the imidazole skeleton is plural at any position of the central benzene ring R 1, R 2, R 3, R 4.
  • R is an olefin group which may have a substituent or
  • a paraffin group, and n is an integer of 1 to 3, preferably 1.
  • a 5-membered ring compound having a conjugated system and a monocyclic compound containing one or more hetero atoms, selenium atoms, or boron atoms can also be used.
  • an azole derivative represented by the following general formula can be used.
  • R, R, and R each independently represent a hydrogen atom, a halogen atom, or an alkyl.
  • alkyl group alkyl group, alkyl group, alkoxy group, hydroxyl group, cyano group, sulfol group, aromatic hydrocarbon group, heterocyclic group which may have a substituent such as a heterocyclic group Or a hydrocarbon group or a heterocyclic group, and R, R and R may be the same or different.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the alkenyl group is preferably a vinyl group, an aryl group, a crotyl group, a tiglyl group, or a prenyl group.
  • the above alkyl group is preferably an ethur group or a propargyl group.
  • the alkoxy group is preferably a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentoxy group or a phenoxy group.
  • the aromatic hydrocarbon group includes a monocyclic or polycyclic ring, preferably a biphenyl group, a phenyl group, a tolyl group, a xylyl group, or a naphthyl group, and more preferably a biphenyl group or a phenyl group. It is.
  • the heterocyclic group is preferably a pyrrole group, a furan group, a thiophene group, an imidazole group, an oxazole group, a thiazole group, a pyrazole group, a pyridine group or a quinoline group, more preferably a furan group or an imidazole group. Or a thiophene group.
  • the hydrocarbon group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the organic EL dye used in the labeling dye of the present invention is not particularly limited as long as it is a condensed polycyclic compound and a monocyclic compound as described above, but a diazole derivative represented by the following general formula or Imidazole derivatives can be preferably used.
  • diazoguchi pyridine derivatives or imidazolopyridine derivatives can be suitably used.
  • Particularly preferred labeling dyes of the present invention are those containing the above-mentioned diazo-mouth pyridine derivative or imidazolopyridine derivative in the coloring part, and can be represented by the following general formula.
  • a green fluorescent dye corresponding to Cy3 can be obtained.
  • the aromatic hydrocarbon group is a phenyl group, a tolyl group, a xylyl group or a naphthyl group, more preferably a phenyl group or a tolyl group.
  • a sulfo group is preferable as the substituent. It is a force that can improve water solubility.
  • Labeling dyes can be synthesized by various methods by combining a reactive group and a part of a spacer. For example, when using a carboxylic group having an active ester group as a reactive group, an active ester form of a diazo-mouth pyridine derivative or an imidazolopyridine derivative is synthesized in advance, and the spacer compound is added to the active ester form. (For example, glycine, lanine, 4-aminobutanoic acid, cysteic acid, serine, etc.) is reacted to obtain a carboxylic acid form, and this carboxylic acid form is reacted with N-hydroxysuccinimide to form An active ester into which sir is introduced can be obtained. For example, when glycine is used as the spacer compound, a part of the spacer having -CONH- and-(CH)-can be obtained.
  • an active ester form of a diazo-mouth pyridine derivative or an imidazolopyridine derivative is synthesized
  • a spacer part having 3 can be obtained.
  • serine a part of the spacer having —C0NH— and —0H can be obtained.
  • cysteic acid and serine a sulfone group and a hydroxyl group can be introduced into a part of the spacer, respectively, and the water solubility of the labeling dye can be improved.
  • the labeling dye of the present invention can be used in any biomolecule detection method as long as it is a detection method that measures the fluorescence of a labeled solid or semi-solid biomolecule.
  • an organic EL dye in place of a conventional fluorescent dye, it is possible to provide a detection method with high sensitivity, chemical stability, excellent operability, and low cost.
  • the biomolecule sample may be directly reacted with the organic EL dye, and the biomolecule sample may be labeled with the organic EL dye, or the biomolecule sample and the probe labeled with the organic EL dye It is also possible to use a method in which a biomolecule sample is labeled with an organic EL dye.
  • the detection method of the biomolecule using a specific bond can also be used.
  • an organic EL dye is reacted with the target nucleic acid to be detected and labeled with the organic EL dye, while a single-stranded probe nucleic acid having a base sequence complementary to the target nucleic acid is prepared.
  • the target nucleic acid transformed into a strand and the probe nucleic acid are hybridized on the substrate, and the fluorescence of the target nucleic acid is measured.
  • the probe nucleic acid to be immobilized on the substrate should be prepared by amplifying the cDNA, etc. by PCR using a cDNA library, genomic library or whole genome as a template when examining gene expression. be able to.
  • those obtained by synthesizing various oligonucleotides corresponding to mutations and the like based on known standard sequences can be used.
  • an appropriate method can be selected according to the type of nucleic acid and the type of substrate. For example, using the charge of DNA, cations such as polylysine A method of electrostatic coupling to a surface-treated substrate can also be used.
  • a target nucleic acid labeled with an organic EL dye is prepared by mixing and reacting a target nucleic acid denatured into a single strand and an organic EL dye.
  • the reaction temperature is preferably room temperature to 60 ° C, and the reaction time is preferably 2 to 48 hours.
  • the labeled target nucleic acid is spotted on the substrate, and hybridization is performed.
  • Hybridization is preferably carried out at room temperature to 70 ° C for 2 to 48 hours.
  • the target nucleic acid having a base sequence complementary to the probe nucleic acid is selectively bound to the probe nucleic acid by the hybridization.
  • the substrate is washed and dried at room temperature.
  • the fluorescence intensity of the surface of the dried substrate is measured by the fluorescence laser scanner method. The level of gene expression can be monitored by fluorescence intensity.
  • PCR method using nucleic acids as detection targets and using primers and terminators can be performed by the following procedure.
  • a probe complementary to the base sequence of the target nucleic acid to be detected is labeled with an organic EL pixel, and the target nucleic acid and the probe are reacted before or after amplification of the target nucleic acid. And the fluorescence of the target nucleic acid is measured.
  • the target nucleic acid elongation reaction is performed by an enzyme (DNA polymerase or RNA polymerase). At this time, the enzyme recognizes a double-stranded nucleic acid sequence formed by the target nucleic acid and an oligonucleotide primer, and the enzyme An extension reaction is performed from the recognized position, and only the target gene region is amplified.
  • nucleotides dNTP, NTP
  • a nucleotide having a dye is mixed at an arbitrary ratio, for example, as shown in FIG. 27, with normal nucleotides (dNTP, NTP)
  • dNTP, NTP normal nucleotides
  • nucleic acid having the dye introduced at that ratio can be synthesized.
  • nucleotide When an enzyme synthesizes, a nucleotide is used as a starting material, but when the nucleotide 3 'OH at this time is changed to H, no further nucleic acid elongation reaction is performed. At that point, the reaction is complete.
  • ddNTP dideoxynucleotide triphospate
  • a terminator is mixed with normal nucleotides and a nucleic acid synthesis reaction is performed, the terminator is introduced with a certain probability, and the reaction is completed, so nucleic acids of various lengths are synthesized. When this is subjected to size separation by gel electrophoresis, DNA will be arranged in order of length.
  • the organic EL labeled with the terminator is observed.
  • the base sequence information of the target nucleic acid can be obtained.
  • the terminator it can be hybridized with the target nucleic acid using a primer previously labeled with an organic EL dye.
  • PNA peptide nucleic acid
  • PNA can also be used as a probe.
  • PNA replaces the pentose monophosphate skeleton, which is the basic skeleton structure of nucleic acids, with a polyamide skeleton based on glycine. It has a three-dimensional structure similar to that of nucleic acids and has a complementary base sequence. Very specific and strong binding to nucleic acids with Therefore, it is effective as a probe for detecting a specific nucleic acid. Therefore, it can be used not only for existing DNA analysis methods such as in-situ hybridization, but also as a reagent for telomere research by applying it to telomere PNA probes. Is also possible.
  • double-stranded DNA is hybridized by bringing it into contact with PNA having a base sequence complementary to all or part of the DNA base sequence and labeled with an organic EL dye. This mixture is heated to produce single-stranded DNA, and the mixture is slowly cooled to room temperature to prepare a PNA-DNA complex, and the fluorescence is measured.
  • the force described for the method of amplifying the target nucleic acid by PCR and measuring the fluorescence of the product In this method, the size of the product is confirmed by electrophoresis, and then It is necessary to examine the amount of amplification product by measuring the fluorescence intensity.
  • the amount of the product can be measured in real time using a probe designed to generate fluorescence by hybridizing to the PCR product using the energy transfer of the fluorescent dye.
  • DNA labeled with a donor and an acceptor can be used.
  • Specific detection methods include a molecular beacon method for confirming the presence of a nucleic acid having a specific sequence, a TaqMan-PCR method, a cycling probe method, and the like.
  • the light emission mechanism of the molecular beacon method will be described with reference to Fig. 1 and an example in which a molecular beacon is fixed on a substrate and hybridization with a target gene is performed.
  • Quenchia Q is fixed on the base, and before the target gene is introduced, Quenchia Q is close to the organic EL dye F, and the fluorescent dye is quenched.
  • a target gene having a sequence complementary to the labeled DNA is introduced here, the labeled DNA and the target gene are hybridized, which increases the distance between the organic EL dye F and the Taentiar Q.
  • the fluorescence of organic EL dye F can be observed. This makes it possible to observe DNA hybridization and measure the amount of hybridization.
  • a staining dye is used to detect the protein after electrophoresis.
  • a method is used in which a dye is dyed, for example, Coomassie Primitive Blue (CBB), is allowed to permeate into the gel after electrophoresis, and the protein is stained and irradiated with UV to emit light.
  • CBB Coomassie Primitive Blue
  • the conventional method using dyes is simple, but the sensitivity Is as low as lOOng and not suitable for detection of trace amounts of protein.
  • the dye since the dye is permeated through the gel, there is a problem that it takes a long time for dyeing.
  • the protein is labeled by binding an organic EL dye to the separated protein.
  • the organic EL dye of the present invention has a reactive group, reacts quickly and quantitatively with a protein, has higher sensitivity, and is suitable for detection of a trace amount of protein.
  • the size separated protein can be identified by mass spectrometry.
  • proteins include albumin, globulin, glutelin, histone, protamine, and simple proteins such as collagen, nucleoprotein, glycoprotein, riboprotein, lin protein, metalloprotein and other complex proteins! /, Deviation can also be detected.
  • phosphoproteins, glycoproteins, and total proteins are stained using two types of organic EL dyes corresponding to the staining dyes of phosphoproteins, glycoproteins, and total proteins. can do.
  • the protein can be identified by mass spectrometry such as TOF-Mass, it can be applied to diagnosis and treatment of diseases such as cancer and virus infections that produce special proteins.
  • Collagen is a protein that forms the connective tissue of animals and has a unique fibrous structure.
  • Collagen is generally a protein with very low immunogenicity, and is widely used in the fields of food, cosmetics, pharmaceuticals and the like.
  • a fluorescent dye is introduced into the collagen peptide chain, the stability of the conventional fluorescent dye is not sufficient, and a more stable fluorescent dye is required. Therefore, stable and highly sensitive detection can be performed by using an organic EL dye as a fluorescent dye for labeling collagen.
  • an aptamer can be used for the probe.
  • the aptamer also has oligonucleic acid power and can take various characteristic three-dimensional structures depending on the base sequence, and can bind to all biomolecules including proteins via the three-dimensional structure.
  • Abuta labeled with an organic EL dye is bound to a specific protein, and the analyte is also indirectly inspected for fluorescence change due to the structural change of the protein due to binding to the analyte.
  • a biosensor for detecting cocaine using an energy transfer using an abutama labeled with a fluorescent dye has been proposed (J. Am. Chem. Soc. 2001, 123, 4928-4931). Instead, it is possible to provide a biosensor that can be handled with high sensitivity by using an organic EL dye.
  • the labeling dye of the present invention can also be used in a method for detecting a biomolecule using specific binding. That is, when detecting an analyte composed of a biomolecule or an analyte modified with a modifying substance, one of a binding substance that specifically binds to the analyte or a binding substance that specifically binds to the modifying substance is replaced with a color-developing portion having an organic EL dye strength. And a labeling dye having a binding part that binds a biomolecule and a spacer part that connects the coloring part and the binding part, and fluorescence from the labeled binding substance can be measured.
  • an antigen antibody for the combination of the analyte or the modifying substance and the binding substance, an antigen antibody, a hapten anti-hapten antibody, piotin avidin, a tag anti-tag antibody, a lectin-glycoprotein or a hormone-receptor can be used. .
  • a binding substance such as an antibody labeled with an organic EL dye is allowed to act on an antigen or hapten present on a substrate, in solution, on a bead, or on an antibody, and the antigen or hapten of the antibody is then reacted.
  • a specific antigen or hapten is detected using the hapten-specific binding ability.
  • Antigens include proteins, polysaccharides, nucleic acids, peptides and the like, and haptens include low molecular weight molecules such as FITC and dinitrophenol groups. Examples of the combination of an antigen or hapten and an antibody include GFP and an anti-GFP antibody, FITC and an anti-FITC antibody, and the like.
  • Detection is performed by binding an antibody modified with a hapten to a biomolecule (protein, polysaccharide, nucleic acid) existing in the substrate or solution, and then binding an antibody labeled with a fluorescent dye that specifically binds to the hapten. How to do.
  • a biomolecule protein, polysaccharide, nucleic acid
  • Tag histidine, etc.
  • biomolecules proteins, polysaccharides, nucleic acids
  • labeled products can be used in various measurement techniques such as immunostaining, ELISA, Western blotting, flow cytometry and the like.
  • a fragment called Fab ′ is obtained by reduction with the above.
  • Fab 'fragments have one or two thiol groups (-SH).
  • a maleimide group can act on this thiol group to perform a specific reaction. That is, as shown in FIG. 3, an antibody can be labeled with an organic EL dye by reacting an organic EL dye having a maleimide group with a thiol group of a fragment. In this case, the physiological activity (antigen capturing ability) of the antibody is not lost.
  • metal ions can be detected using the labeling dye of the present invention.
  • Metal ions are involved in all life phenomena that occur in the body, such as the stability of DNA and proteins in the body, maintenance of higher-order structures, functional expression, and activation of enzymes that control all chemical reactions in the body. is doing. For this reason, the importance of metal ion sensors that can observe the movement of metal ions in a living body in real time has been sought, particularly in the medical field.
  • metal ion sensors in which fluorescent dyes are introduced into biomolecules are known.
  • metal ion sensors using nucleic acids having sequences that take in K + ions and have a special structure have been proposed (J. AM. CHEM. SOC.
  • a fluorescent dye that causes energy transfer is introduced at both ends of the nucleic acid. Normally, energy transfer does not occur because there is a distance between dyes. However, in the presence of K + ions, as a result of the nucleic acid taking a special form, the fluorescence can be observed by approaching the distance at which the fluorescent dye causes energy transfer.
  • a zinc ion sensor in which a fluorescent dye is introduced into a peptide has also been proposed (J. Am. Chem. Soc. 1996, 118, 3053-3054).
  • Intracellular signal observation can also be performed using the labeling dye of the present invention.
  • the cellular response to internal signals and environmental information involves many molecules involved in ionic force enzymes. It is known that special protein kinases are activated in the signal transduction process and lead to various cellular responses by leading to special cellular protein phosphates. Nucleotide binding and hydrolysis play a critical role in these activities, and signal transduction behavior can be quickly observed using nucleotide derivatives. For example, protein kinase C (PKC) plays an important role in signal transduction in cell membranes.
  • PKC protein kinase C
  • This Ca 2+ -dependent serine Z threonine protein kinase is activated on membrane lipids such as diacylglycerol and phosphatidylserine, and phosphorylates serine threonine present in ion channels and cytoskeletal proteins.
  • membrane lipids such as diacylglycerol and phosphatidylserine
  • phosphorylates serine threonine present in ion channels and cytoskeletal proteins By changing the membrane surface energy, signal transmission is performed. By observing these cells in a living cell and observing them dynamically, cell signal transduction can be observed.
  • nucleotide derivatives are supplied as enzyme substrates and inhibitors, exploring the structure and dynamics of isolated proteins, reconstitution of membrane-bound protein enzymes, mitochondria-like organelles, and membrane-removed muscle fibers. It binds to and regulates the nucleotide binding protein part of such tissues. Recently, the existence of compounds that affect signal transduction, such as inhibitors and activators of G-proteins, has also been discovered.
  • a labeling dye having the organic EL dyeing power of the present invention into this nucleotide derivative, dynamic observation of these intracellular signal transductions can be handled with high sensitivity, and easily.
  • the labeled dye of the present invention can also be used for observation of gene expression status using RNA interference (RNAi).
  • RNAi is a phenomenon in which the expression of a gene with the same sequence is knocked down when RNA is introduced into a cell.
  • RNAi introduces double-stranded RNA (dsRNA) into cells, thereby degrading the mRNA of the target gene and suppressing its expression.
  • long dsRNA double stranded RNA
  • RISC RNA-induced silencing complex
  • RISC RNA-induced silencing complex
  • fluorescent dyes are used to observe gene expression status. By using an organic EL dye as the fluorescent dye to be labeled, stable and sensitive detection can be performed.
  • the labeling dye of the present invention can also be used as a staining dye for tissues or cells used for studying the expression level of a target nucleic acid or target protein in a tissue or cell sample.
  • Tissue or cell staining can be performed by binding an organic EL dye to a target protein or target protein via a reactive group as described above.
  • the staining dye of the present invention is superior to conventional dyes in terms of storage after labeling because, for example, when an organic EL dye is used for staining eukaryotic cells, it emits fluorescence even in a dry state. Performance. Further, it can be sufficiently used not only as a eukaryotic cell but also as a dye for cytoskeleton. In addition, it can be used for labeling mitochondria, Golgi apparatus, endoplasmic reticulum, lysosome, lipid bilayer membrane, and the like. These labeled cells are highly versatile because they can be observed under all wet and dry conditions. For observation, a fluorescent microscope or the like can be used.
  • the labeling kit of the present invention includes a labeling dye having a coloring part composed of an organic EL dye, a binding part that binds a biomolecule, and a spacer part that connects the coloring part and the binding part. If necessary, a reagent, an enzyme, a solvent, etc. for reacting the dye with the target biomolecule can be included.
  • the target biomolecule is a nucleic acid, protein, peptide, or saccharide.
  • another labeling kit of the present invention includes at least a coloring part composed of an organic EL dye and a part of the spacer which is bound to the coloring part and represented by the aforementioned general formula (I).
  • a dye precursor and, if necessary, a carboxylic acid group, an isocyanate group, an isothiocyanate group, an epoxy group, a halogenated alkyl group, a triazine group, a carpositimide group, and an activated ester group.
  • a reactive group introduction reagent for introducing the reactive group into the labeling dye.
  • a 1, 2, 5, -oxaziazo mouth- [3, 4-c] pyridine derivative was used as the organic EL dye.
  • the active ester without a spacer is abbreviated as EL-OSu
  • the active ester with a spacer introduced is abbreviated as EL-OSu-Sp.
  • the oxadiazoguchi pyridine active ester form (6) was reacted with alanine in DMF to synthesize a carboxylic acid form (7) into which a part of the spacer was introduced. Thereafter, the carboxylic acid form (7) was reacted with N-hydroxysuccinimide in dioxane to synthesize an oxadiazoguchi pyridine active ester form (8) into which a part of the spacer was introduced.
  • a reaction example is shown below.
  • the reaction was cooled in a water bath so that the reaction temperature did not exceed 30 ° C.
  • the reaction was terminated by stirring for 12 hours.
  • the reaction mixture was filtered to remove insolubles.
  • the acetonitrile was distilled off under reduced pressure to obtain a residue.
  • the residue was recrystallized with black mouthform, and 10.2 g (3) of oxadiazole-N-oxide (3) (Yield 60%).
  • An imidazolopyridine ethyl ester derivative was used as the organic EL dye.
  • the following are reaction examples (Schemes 4 and 5) of active ester forms of imidazolopyridine ethyl ester in which —COO— is introduced as a part of the spacer.
  • the organic EL dye use the oxadiazo-mouth pyridine derivative used in Synthesis Example 1, cysteine acid as part of the spacer, and reactive groups such as an active esterified carbonyl group and a sulfone group that is an auonic group. Both groups were introduced.
  • the oxadiazo oral pyridine active ester (6) was reacted with cysteic acid to synthesize a carboxylic acid (9) into which a part of the spacer was introduced. Thereafter, the carboxylic acid form (9) was reacted with N-hydroxysuccinimide in dioxane to synthesize an oxadiazo-mouth pyridine active ester form (10) into which a part of the spacer was introduced.
  • a reaction example is shown below.
  • the organic EL dye As the organic EL dye, the oxaziazo pyridine derivative used in Synthesis Example 1 was used, and serine was used as a part of the spacer.
  • the oxazazo mouth pyridine active ester (6) was reacted with serine to synthesize a carboxylic acid (11) into which a spacer was partially introduced. Thereafter, the carboxylic acid form (11) was reacted with N-hydroxysuccinimide in dioxane to synthesize an oxadiazolopyridine active ester form (12) into which a part of the spacer was introduced.
  • a reaction example is shown below.
  • the organic EL dye As the organic EL dye, the oxadiazo-mouth pyridine derivative used in Synthesis Example 1 was used, and alar-serine (Ala-Ser) was used as a peptide linker for a part of the spacer.
  • alar-serine Al-Ser
  • Oxaziazolopi The lysine active ester form (6) was reacted with alcohol serine to synthesize a carboxylic acid form (13) into which a part of the spacer was introduced. Thereafter, the carboxylic acid form (13) was reacted with N-hydroxysuccinimide in dioxane to synthesize an oxazizo-oral pyridine active ester form (14) into which a spacer was partially introduced.
  • a reaction example is shown below.
  • the organic EL dye As the organic EL dye, the oxadiazo-mouth pyridine derivative used in Synthesis Example 1 was used, and ethylene glycolic acid was used as a part of the spacer.
  • the reaction formula is shown below.
  • the oligo DNA used is as follows.
  • the active ester form 8 (EL-OSu-Sp) of oxazizo-mouth pyridine synthesized in Synthesis Example 1 was used.
  • An example in which 20mer DNA is used as the oligo DNA will be explained.
  • DMSO solution 801 containing 12 nmol (5.7 ⁇ g) (1.2 equivalents) of active ester (EL-OSu-Sp) in 20 ⁇ 1 of er (pH 8.5) was added and shaken at room temperature for 6 hours.
  • 0.1 M TEAA (triethylamine acetate) buffer (pH 7.0) was added to a total volume of 1 ml, and use NAP-10 column (GE heal thcare Sephadex G-25). Ingredients were collected. At that time, the NAP-10 column was equilibrated with 15 ml of 0.1M TEAA buffer in advance.
  • the sample which was made up to a total volume of 1 ml, was loaded onto the column, and after 1 ml of the solution was eluted, 1.5 ml of 0.1 M TEAA buffer was charged. Immediately after this, 1.5 ml of force eluate was collected. The resulting solution 1001 was analyzed by reverse phase HPLC.
  • oligo DNA was labeled using an active ester form (EL-OSu) of oxazizo-oral pyridine that does not contain any spacer.
  • EL-OSu active ester form
  • A1 exa594 manufactured by Molecular Probe was also used for partial comparison.
  • the labeling rate was calculated by comparing the peak areas of the HPLC spectrum.
  • the LC-2000plus series manufactured by JASCO Corporation was used as the HPLC apparatus.
  • Kahum uL Science Inertsii ODS—3 and olumn 5 m, 4. mm x 25
  • the labeling rate could be improved as compared with EL-OSu and Alexa594 without the part of the spacer.
  • the labeling rate is approximately 100% for EL-OSu and about 12% for Alexa trace (less than 1%) with a 1.2-fold molar amount of addition.
  • the labeled dye EL-OSu-Sp into which a part of the spacer is introduced can quantitatively label oligo DNA.
  • conventional labeling dyes such as Alexa
  • the label dye EL-OSu-Sp into which a part of the spacer is introduced can be used for an oligo DNA having a length of about 20 mer.
  • the dye was labeled on the 20mer DNA in the same manner as in Example 1 except that the active ester of imidazolopyridine 5 (im-EL-OSu-Sp) having a spacer part in the organic EL dye was used. It was.
  • Example 2 Same as Example 1 except that the active ester 10 of oxaziazo-mouth pyridine with a portion of the spacer synthesized in Synthesis Example 3 was used as the organic EL dye, and DMS0 was 10 ⁇ 1 to 10 vol% of the total sample solution.
  • the dye was labeled on 20mer DNA by the method described above.
  • Example 1 the power to make DMSO 80 vol% of the entire sample solution in order to dissolve the organic EL dye.
  • the organic EL dye was dissolved even at 10 vol% and showed excellent water solubility.
  • Example 4 Same as Example 1 except that the active ester 12 of oxadiazoguchi pyridine having a spacer part synthesized in Synthesis Example 4 was used as the organic EL dye, and DMSO was 10 ⁇ 1 to make 10 vol% of the total sample solution.
  • the dye was labeled on 20mer DNA by the method described above.
  • the molar ratio is about 1.2.
  • the labeling rate was almost 100%.
  • excellent water solubility was exhibited.
  • Example 5 Same as Example 1 except that the active ester 14 of oxaziazo-mouth pyridine with a portion of the spacer synthesized in Synthesis Example 5 was used as the organic EL dye, and DMSO was 10 ⁇ 1 to 10 vol% of the total sample solution.
  • the dye was labeled on 20mer DNA by the method described above.
  • Example 1 the power to make DMSO 80 vol% of the entire sample solution in order to dissolve the organic EL dye.
  • the organic EL dye was dissolved even at 10 vol% and showed excellent water solubility.
  • An amide bond is formed by reacting the amino ester of the lysine residue of BSA (Bovine Serium Albumin) and the active ester form 8 of oxadiazo-mouth pyridine containing a spacer (EL-OSu-Sp)), BSA was labeled with dye. Specifically, a carbonate buffer (pH9.0) 100 ⁇ 1 containing 1.0 mg (15.05 nmol) of BSA and DMSO solution 400 1 containing 35.82 ⁇ g (75.25 nmol) of the active ester compound were added and shaken at room temperature for 24 hours. did.
  • BSA Bovine Serium Albumin
  • 0.1 M TEAA buffer pH 7.0
  • 1.5 ml of components derived from BSA were collected using a NAP-10 column (GE healthcare Sephadex G-25).
  • the resulting solution 1001 was analyzed by reverse phase HPLC.
  • BSA labeled with EL-OSu was identified by MALDI TOF MS.
  • the labeled BSA (Fig. 9A) had a molecular weight increase of about 2200 compared to the raw material (Fig. 9B), and it was remarkable that about 5 molecules of organic EL dye were bound.
  • the LC-2000plus series manufactured by JASCO Corporation was used as the HPLC apparatus.
  • Kahum (JL Science Inertsil ODS—3 Column 5 m, 4. mm x 250 mm DNA gradient conditions
  • Figures 8A and 8B show the HPLC results of BSA labeled using EL-OSu without the spacer and EL-OSu-Sp with the spacer, respectively.
  • the labeling rate is shown in Table 4.
  • Example 5 Same as Example 5 except that the active ester 10 of oxaziazo-mouth pyridine with a portion of the spacer synthesized in Synthesis Example 3 was used as the organic EL dye, and DMSO was 10 ⁇ 1 to 10 vol% of the total sample solution.
  • the dye was labeled on BSA by the method described above.
  • Example 5 The labeling rate was the same as in Example 5.
  • Example 5 the power to make DMSO 80 vol% of the entire sample solution in order to dissolve the organic EL dye.
  • the organic EL dye was dissolved even at 10 vol%, indicating excellent water solubility.
  • Example 5 Same as Example 5 except that the active ester 12 of oxaziazo-mouth pyridine with a portion of the spacer synthesized in Synthesis Example 4 was used as the organic EL dye, and DMSO was 10 ⁇ 1 to 10 vol% of the total sample solution.
  • the dye was labeled on BSA by the method described above.
  • Example 5 A labeling rate similar to that in Example 5 was obtained. Further, as in Example 5, excellent water solubility was exhibited.
  • Example 5 Same as Example 5 except that the active ester 14 of oxaziazo-mouth pyridine with a portion of the spacer synthesized in Synthesis Example 5 was used as the organic EL dye, and DMSO was 10 ⁇ 1 to 10 vol% of the total sample solution.
  • the dye was labeled on BSA by the method described above.
  • Example 5 A labeling rate similar to that in Example 5 was obtained.
  • the organic L dye was dissolved even at 10 vol%, indicating excellent water solubility.
  • Example 5 Same as Example 5 except that the active ester 17 of oxaziazo-mouth pyridine with a portion of the spacer synthesized in Synthesis Example 6 was used as the organic EL dye, and DMSO was 10 ⁇ 1 to 10 vol% of the total sample solution.
  • the dye was labeled on BSA by the method described above.
  • a labeling rate similar to that in Example 5 was obtained.
  • This example also showed excellent water solubility.
  • the labeling dye of the present invention it is possible not only to have high fluorescence intensity even in the solid state, but also to greatly reduce the amount of dye used for the target molecule.
  • the force which was about 200 times mole, to about 1/200.
  • the amount of the labeling dye used can be greatly reduced, so that the cost for detecting the target molecule can be greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Zoology (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 本発明の生体分子用標識色素は、有機EL色素から成る発色部と、生体分子を結合する結合部と、発色部と結合部とを連結するスペーサー部とを有する。生体分子に対する高い標識率と固体状態での高い蛍光強度を得ることができる。

Description

明 細 書
生体分子用標識色素及び標識キット並びに生体分子の検出方法 技術分野
[0001] 本発明は、蛍光色素から成り、核酸、タンパク質、ペプチド類、そして糖類等の生体 分子の検出に用いる生体分子用標識色素及び標識キット並びに生体分子の検出方 法に関する。
背景技術
[0002] 近年、ヒトゲノムの全容が明らかにされ、遺伝子治療、遺伝子診断などを目的とした ポストゲノム研究が盛んに行われている。例えば、 DNA解析は、 DNAマイクロアレイ基 盤上に固定されたプローブ DNAと、蛍光色素等で標識されたサンプル DNAとをハイ ブリダィズさせて二本鎖を形成させ、サンプル DNAの検出を行っている。これは蛍光 色素で標識した核酸を PCR伸長し、基盤上でハイブリダィゼーシヨンを行った後に測 定する手法である。最近では、より多くのアミノ基を有するプライマーを用いた手法、 DNAにアミノ基を導入する手法がとられて ヽる。
[0003] 標識には、蛍光色素が広く使用されており、高い蛍光強度を有すること、乾燥状態
(固体状態)でも発光すること、そして水溶性を有することなどが要求されている。蛍 光色素としては、例えば、 Cy3や Cy5が使用されている(例えば、非特許文献 1を参照 されたい)。
非特許文献 1: Science 283,1, January, 1999,83-87
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、従来の標識色素は標識率が低いという問題がある。例えば、一力所 の反応点を有する DNAに対して 200倍モル程度の蛍光色素を用いて 、るが、この条 件下においても標識率は 50— 60%程度であった。そのため、標識色素を大量に使 用する必要があるため検出費用が高コストになったり、未反応の標識色素を除去する ための処理工程が必要となり検出に長時間を要するという問題があった。
課題を解決するための手段 [0005] 上記の課題を解決するため、本発明者は鋭意努力した結果、有機 EL色素カゝら成る 発色部と、生体分子を結合する結合部と、発色部と結合部とを連結するスぺーサー 部とを有する標識色素を用いることにより、 DNAに対する標識率を大幅に向上させる ことが可能なことを見出して本発明を完成させたものである。すなわち、本発明の生 体分子用標識色素は、蛍光測定による生体分子の検出に用いる標識色素であって 、有機 EL色素力 成る発色部と、生体分子を結合する結合部と、発色部と結合部と を連結するスぺーサ一部とを有することを特徴とする。
[0006] ここで、上記有機 EL色素には、 1種以上のへテロ原子、セレン原子又はボロン原子 を含む 5員環化合物と共役系を有する 6員環化合物とから成る縮合多環化合物を用 いることがでさる。
[0007] また、上記縮合多環化合物には、以下の一般式(1)、(2)又は(3)のいずれか 1種 で示されるァゾール誘導体を用いることができる。
[0008] [化 1]
Figure imgf000004_0001
(1 ) (2)
Figure imgf000004_0002
[0009] ここで、式中、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキ ル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ -ル基、芳香族炭化水素基、複素環基、ヘテロ原子を環内に含む芳香族基などの 置換基を有してもよい芳香族炭化水素基又は炭化水素基又は複素環基又はへテロ 原子を環内に含む芳香族基を示し、 Xは置換基を有して ヽてもよ ヽ窒素原子又は硫 黄原子又は酸素原子又はセレン原子、ボロン原子を示し、 R'は芳香環を含んでも良 V、アルキル基又はアルケニル基等の脂肪族炭化水素基あるいは芳香族炭化水素基 、 An—は、 Cl—、 Br―、 I—等のハロゲン化物イオン、 CF SO―、 BF―、 PF—を示す。
3 3 4 6
[0010] また、上記の Rと Rに、チォフェン誘導体、フラン誘導体、ピロール誘導体、イミダゾ
2 3
ール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘導体及びピリ ジン誘導体力 なる群力 選択された 1種を用いることができる。
[0011] また、上記の Rと Rに、スルホ -ル基を有するフエ-ル基を用いることができる。
2 3
[0012] また、上記縮合多環化合物に、以下の一般式 (4)、 (5)、 (6)、 (7)又は(8)で示さ れるイミダゾール誘導体を用いることもできる。
[0013] [化 2]
Figure imgf000006_0001
(7) (8) ここで、式中、 R、 R、 R、 R、 R
1 2 3 4 5は、それぞれ独立に、水素原子、ハロゲン原子、ァ ルキル基、アルケニル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、ス ルホニル基、芳香族炭化水素基、複素環基、ヘテロ原子を環内に含む芳香族基な どの置換基を有しても良い芳香族炭化水素基又は炭化水素基又は複素環基又はへ テロ原子を環内に含む芳香族基を示し、 R、 R、 R、 R、 Rは同じでも異なっていても
1 2 3 4 5
良ぐ R'、 R"は芳香環を含んでも良いアルキル基又はアルケニル基等の脂肪族炭化 水素基あるいは芳香族炭化水素基、 ΑηΊま、 Cl—、 Br―、 Γ等のハロゲンィ匕物イオン、 CF SO―、 BF―、 PF—を示す。
3 3 4 6
[0015] また、上記の Rと Rに、チォフェン誘導体、フラン誘導体、ピロール誘導体、イミダゾ
2 3
ール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘導体及びピリ ジン誘導体力 なる群力 選択された 1種を用いることができる。
[0016] また、上記の Rと Rに、スルホ -ル基を有するフエ-ル基を用いることもできる。
2 3
[0017] また、本発明の標識色素は、結合部に、カルボン酸基、イソシァネート基、イソチォ シァネート基、エポキシ基、ハロゲン化アルキル基、トリアジン基、カルポジイミド基そ して活性エステルイ匕したカルボニル基カゝら選択されたいずれか 1種の反応性基を用 いることがでさる。
[0018] また、本発明の標識色素は、スぺーサ一部に、 - CH -、 - NHCOO-、 - CONH -、 - C
2
H NH―、― CH NR―、― COO—、—SO NH―、― HN— C(=NH)— NH―、― 0—、― S―、― NR— (Rは
2 2 2
アルキル基)、 - (CH - CH -0) - (nは 1から 10の整数)、 - CH=CH -、 - C≡C -、 - Ar-及
2 2 η
び- CO-Ar-NR-カゝらなる群カゝら選択される官能基を少なくとも 1種含むものを用いるこ とがでさる。
[0019] ここで、上記スぺーサ一部には、以下の一般式 (I)で表されるものを用いることができ る。
-(CHR')p-X-(CHR' q- (I)
式中、 Xは直接結合又は、 - NHCOO-、 - CONH -、 - COO-、 -SO NH -、 - HN- C(=N
2
H)- NH -、 - O-、 - S -、 - NR -、 - CH=CH -、 - C≡C -、 - Ar-及び- CO- Ar- NR-からなる群 力 選択され少なくとも 1種の官能基を表し、 R'と R"はそれぞれ独立に、水素原子、 あるいは芳香環を含んでも良 、アルキル基又はアルケニル基等の脂肪族炭化水素 基、あるいは芳香族炭化水素基であって、必要によりスルホニル基、ヒドロキシル基、 4級ァミン基及びカルボキシル基力 なる群力 選択されたいずれか 1種の荷電基に より置換されたものを表し、 Arはァリール基を表し、 pと qはそれぞれ独立に 0から 20の 整数を表し、 p+q≥lである。 [0020] また、スぺーサ一部に、アミノ酸又は 2〜20個のアミノ酸力 なるペプチドリンカ一を 用!/、ることができる。
[0021] また、スぺーサ一部にアミノ酸を用い、そのアミノ酸に天然アミノ酸又は合成アミノ酸 を用いることができる。
[0022] また、アミノ酸に、システィン酸、 2-ァミノ- 3-スルホサルファ-ルプロパン酸、 2-アミ ノ -3-スルホキシプロパン酸、チロシン、スレオニン、 4-ァミノ- 2-ヒドロキシブタン酸、ホ モセリン及びセリンカもなる群力も選択された 1種を用いることができる。
[0023] また、スぺーサ一部にペプチドリンカ一を用い、そのペプチドリンカ一に、スルホ- ル基、ヒドロキシル基、 4級ァミン基及びカルボキシル基力 なる群力 選択された少 なくとも 1種の荷電基を有するものを用いることもできる。
[0024] また、ペプチドリンカ一に、システィン酸、 2-ァミノ- 3-スルホサルファ-ルプロパン酸 、 2-ァミノ- 3-スルホキシプロパン酸、チロシン、スレオニン、 4-ァミノ- 2-ヒドロキシブタ ン酸、ホモセリン及びセリンカ なる群力も選択された少なくとも 1種のアミノ酸を含む ちのを用いることちでさる。
[0025] また、本発明の第 1の生体分子用標識キットは、蛍光測定による生体分子の検出に 用いる生体分子用標識キットであって、有機 EL色素から成る発色部と、生体分子を 結合する結合部と、発色部と結合部とを連結するスぺーサ一部とを有する標識色素 を含むことを特徴とする。
[0026] また、本発明の第 2の生体分子用標識キットは、蛍光測定による生体分子の検出に 用いる生体分子用標識キットであって、少なくとも、有機 EL色素から成る発色部と、該 発色部に結合し、 -CH -、 - NHCOO -、 - CONH -、 - CH NH -、 - CH NR -、 - COO-、 - S
2 2 2
0 NH -、 - HN- C(=NH)- NH -、 - 0-、 - S -、 - NR- (Rはアルキル基)、 - (CH - CH -0) - (
2 2 2 η ηは 1から 10の整数)、- CH=CH -、 - C≡C -、 - Ar-及び- CO- Ar- NR-からなる群から 選択される官能基を少なくとも 1種含むスぺーサ一部とを含むことを特徴とする。
[0027] さらに、第 2の生体分子用標識キットは、カルボン酸基、イソシァネート基、イソチォ シァネート基、エポキシ基、ハロゲン化アルキル基、トリアジン基、カルポジイミド基そ して活性エステルイ匕したカルボニル基カゝら選択されたいずれか 1種の反応性基を標 識色素に導入するための反応性基導入試薬を含むことができる。 [0028] また、本発明の第 1の生体分子の検出方法は、有機 EL色素力も成る発色部と、生 体分子を結合する結合部と、発色部と結合部とを連結するスぺーサ一部とを有する 標識色素を、生体分子試料と反応させ、該標識色素により標識された生体分子試料 の蛍光を測定することを特徴とする。ここで、上記生体分子試料には、核酸、タンパク 質、ペプチド類、そして糖類力 なる群力 選択されたいずれか 1種を用いることがで きる。なお、タンパク質は抗体を含む。
[0029] また、本発明の第 2の生体分子の検出方法は、有機 EL色素力も成る発色部と、生 体分子を結合する結合部と、発色部と結合部とを連結するスぺーサ一部とを有する 標識色素で標識されたプローブと、生体分子試料とを反応させ、該生体分子試料の 蛍光を測定することを特徴とする。ここで、上記生体分子試料には核酸に用い、上記 プローブには該核酸の塩基配列に相補的なオリゴヌクレオチド又は PNAを用いること ができる。さらに、上記オリゴヌクレオチドにプライマー又はターミネータを用い、上記 核酸を増幅させて蛍光を測定することができる。また、上記核酸の増幅に先立ってプ ライマーを有機 EL色素で標識することができる。また、上記オリゴヌクレオチド又は PN Aにモレキュラービーコンを用いることができる。
[0030] また、本発明の第 3の生体分子の検出方法は、生体分子から成る被検体又は修飾 物質により修飾された該被検体の検出方法であって、被検体に特異結合する結合物 質又は修飾物質に特異結合する結合物質の一方を、有機 EL色素力も成る発色部と 、生体分子を結合する結合部と、発色部と結合部とを連結するスぺーサ一部とを有 する標識色素で標識し、標識された結合物質力 の蛍光を測定することを特徴とする ここで、上記の被検体又は修飾物質と上記結合物質との組み合わせには、抗原 抗体、ハプテン 抗ハプテン抗体、ピオチン アビジン、 Tag 抗 Tag抗体、レクチン —糖タンパク質又はホルモン—受容体を用いることができる。
[0031] また、本発明の第 4の生体分子の検出方法は、生体分子試料を電気泳動によりサ ィズ分離する工程を含み、該電気泳動に先立ってあるいは該電気泳動後に生体分 子試料を、有機 EL色素力 成る発色部と、生体分子を結合する結合部と、発色部と 結合部とを連結するスぺーサ一部とを有する標識色素で標識することを特徴とする。 ここで、上記生体分子試料に核酸を用い、電気泳動画像に基づいて核酸の塩基配 列を決定することができる。また、上記生体分子試料にタンパク質を用い、電気泳動 画像に基づ 、て取り出したタンパク質を質量分析することもできる。
[0032] また、本発明の組織又は細胞の染色方法は、組織又は細胞試料中の生体分子を 、有機 EL色素力 成る発色部と、生体分子を結合する結合部と、発色部と結合部と を連結するスぺーサ一部とを有する標識色素で標識することを特徴とする。ここで、 上記生体分子に核酸又はタンパク質を用いることができる。
[0033] また、本発明の染色色素は、糸且織又は細胞試料の染色に用いる染色色素であって 、有機 EL色素力 成る発色部と、組織又は細胞中の生体分子と結合する結合部と、 発色部と結合部とを連結するスぺーサ一部とを有する標識色素から成ることを特徴と する。
発明の効果
[0034] 本発明の生体分子用標識色素は、発色部に有機 EL色素を用い、結合部と発色部 の間にスぺーサ一部を設けるようにしたので、おおむね 100%近い標識率を有し、か つ固体状態での高い蛍光強度を与える標識色素を提供することできる。
すなわち、スぺーサ一部を設けることにより、発色部と標識対象である生体分子との 間の立体障害が抑制され、結合部と生体分子の標識部位との結合が容易になる結 果、高い標識率が得られたと考えられる。これにより、本発明の標識色素によれば、ス ぺーサ一部の長さを制御することにより、生体分子の標識部位の深度に影響されるこ となぐ高い標識率を得ることが可能となる。これにより使用する標識色素の量を大幅 に低減できることから、標的分子の検出費用を大幅にコストダウンすることも可能とな る
さらに、有機 EL色素は固体状態(固体及び半固体を含む)で高い量子収率を有し ているので、マイクロアレイなどの基盤上、もしくはビーズ上の乾燥状態でも高い蛍光 強度を与える。また、有機 EL色素は Cy3や Cy5に比べ安価であるので、より低コストで 生体分子の検出を行うことができる。また、有機 EL色素の置換基を変えることにより励 起波長及び発光波長を変化させることができるので、蛍光波長の選択の自由度が増 加し、オレンジ、イェロー、グリーン、ブルーなど多くの蛍光波長を用いることができる 。これにより、スト一タスシフトの大きい (励起波長と蛍光波長の差が大きい) 2種以上 の蛍光色素を用いることが可能となり、一つの試料中に含まれる複数の標的核酸を 同時に検出することも可能となる。また、 Cy3や Cy5は冷凍保存する必要があるのに 対し、有機 EL色素は化学的に安定であり、常温での長期保存に耐えることができる ので、取り扱いが容易である。
図面の簡単な説明
[図 1]本発明の検出方法において、プローブにモレキュラービーコンを用いた場合の 発光機構を示す模式図である。
[図 2]本発明の検出方法において、 IgG抗体の Fab'フラグメントの調製方法の一例を 示す模式図である。
[図 3]本発明の検出方法において、 IgG抗体の Fab'フラグメントへの有機 EL色素の導 入方法の一例を示す模式図である。
[図 4A]本発明の実施例 1における、 EL-OSuにより標識された 17mer DNAの HPLCス ベクトルの一例である。
[図 4B]本発明の実施例 1における、 EL-OSu-Spにより標識された 17mer DNAの HPL Cスペクトルの一例である。
[図 5A]本発明の実施例 1における、 EL-OSuにより標識された 20mer DNAの HPLCス ベクトルの一例である。
[図 5B]本発明の実施例 1における、 EL-OSu-Spにより標識された 20mer DNAの HPL Cスペクトルの一例である。
[図 5C]本発明の実施例 1における、 Alexa594により標識された 20mer DNAの HPLCス ベクトルの一例である。
[図 6A]本発明の実施例 1における、 EL-OSuにより標識された 40mer DNAの HPLCス ベクトルの一例である。
[図 6B]本発明の実施例 1における、 EL-OSu-Spにより標識された 40mer DNAの HPL Cスペクトルの一例である。
[図 7]本発明の実施例 1における、 EL-OSu-Spの添加量と標識率の関係を示すグラフ の一例である。 [図 8A]本発明の実施例 2における、 EL-OSuにより標識された BSAの HPLCスペクトル の一例である。
[図 8B]本発明の実施例 2における、 EL-OSu-Spにより標識された BSAの HPLCスぺク トノレの一例である。
[図 9A]本発明の実施例 2における、 EL-OSuによる標識後の BSAの TOF MSスぺタト ルの一例である。
[図 9B]本発明の実施例 2における、標識前の BSAの TOF MSスペクトルの一例である 発明を実施するための最良の形態
[0036] 以下、本発明の実施の形態について詳細に説明する。
本発明の生体分子用標識色素は、有機 EL色素から成る発色部と、生体分子を結 合する結合部と、発色部と結合部とを連結するスぺーサ一部とを有することを特徴と するものである。
[0037] 本発明の標識色素に用いる有機 EL色素は、一対の陽極と陰極との間に固体状態 で挟持され、陽極カゝら注入された正孔と陰極カゝら注入された電子とが再結合する際 のエネルギーにより発光可能な色素であれば特に限定されない。例えば、テトラフエ
-ルブタジエンやペリレン等の多環芳香族化合物、シクロペンタジェン誘導体、ジス チリルビラジン誘導体、アタリドン誘導体、キナクドリン誘導体、スチルベン誘導体、フ エノチアジン誘導体、ビラジノピリジン誘導体、ァゾール誘導体、イミダゾール誘導体 、力ルバゾール誘導体そしてテトラフエ二ルチオフェン誘導体等を用いることができる 。さらに、分子内にカルボン酸基を有し、又はカルボン酸基を導入可能な色素である ことが好ましい。以下に述べるように、生体分子と結合するための反応性基の導入を 容易に行うことができるからである。
[0038] 本発明の標識色素に用いる結合部は、生体分子試料 (以下、標的分子という)を結 合する反応性基を有しており、その反応性基には、生体分子との間に共有結合又は イオン結合を形成する置換基あるいは求核試薬又は求電子試薬を用いることができ る。
[0039] 生体分子との間に共有結合を形成する場合、反応性基は、標的分子のアミノ基、ィ ミノ基、チオール基又はヒドロキシル基と反応可能な官能基が好ましい。有機 EL色素 と標的分子との間の共有結合としては、アミド結合、イミド結合、ウレタン結合、エステ ル結合、又はグァ-ジン結合を形成させることが好ましい。その官能基には、例えば 、イソチオシァネート基、イソシァネート基、エポキシ基、ハロゲン化スルホ-ル基、塩 化ァシル基、ハロゲンィ匕アルキル基、ダリオキザル基、アルデヒド基、トリアジン基、力 ルボジイミド基そして活性エステルイ匕したカルボ二ル基等を用いることができる。好ま しくは、イソチオシァネート基、イソシァネート基、エポキシ基、ハロゲンィ匕アルキル基 、トリアジン基、カルポジイミド基そして活性エステルイ匕したカルボ-ル基カゝら選択さ れたいずれか 1種を用いることが好ましい。より好ましくは、イソシァネート基、ェポキ シ基、ハロゲンィ匕アルキル基、トリアジン基、カルポジイミド基そして活性エステルイ匕し たカルボニル基力 選択された 、ずれか 1種を用いることが好ま 、。標的分子のァ ミノ基とアミド結合を形成することができ、また標的分子内のイミノ基に直接結合する 事ができるからである。さらに好ましくはトリアジン基、カルポジイミド基又は活性エス テルイ匕したカルボニル基である。また、これらの有機 EL色素がカルボン酸基を有する 場合、カルポジイミド誘導体、トリアジン誘導体の存在下で、標的分子中に存在する アミノ基およびイミノ基を直接修飾する事も可能である。さら〖こ、置換基を有しても良 いトリアジン基、置換基を有しても良いカルポジイミド基を有する有機 EL色素は、 DN A塩基中のグァニン、チミンのィミノ基と直接反応するため、 PCR法による色素の導入 を行う必要が無ぐミスマッチ検出(二本鎖を形成していない塩基の検出)が可能であ り、 SNP ( 1塩基多型)解析の試薬として用 、ることが可能である。
[0040] また、標的分子との間にイオン結合を形成する反応性基には、ァ-オン性基、例え ばスルホ -ル基やカルボキシル基を用いることができる。これらのァ-オン性基は、 生体分子のカチオン性基、例えばァミノ基とイオン結合する。
[0041] また、反応性基として、共有結合を形成する反応性基とイオン結合を形成する反応 性基の両方を用いることもできる。これにより、標的分子の間にさらに強い結合を形成 することができる。共有結合を形成する反応性基とイオン結合を形成する反応性基の 組合せは特に限定されず、上記の官能基と上記のスルホ二ル基ゃカルボキシル基 等のァ-オン性基の組合せを挙げることができる。 [0042] なお、標的分子が DNAの場合にはオリゴ DNA末端に修飾されたァミノ残基と、タン ノク質の場合にはァミノ残基と、ペプチド類の場合にはポリペプチドのァミノ基と、例 えばポリリシン誘導体のァミノ残基と、そして糖類の場合には多糖類誘導体骨格内の ァミノ基と反応性基を結合させることができる。
[0043] 本発明の標識色素に用いるスぺーサ一部は、発色部と反応性基とを連結する構成 部分であって、共有結合又は原子鎖を含む部分であり、 -CH -、 - NHCOO-、 -CON
2
H―、— C〇〇—、 -SO NH―、— HN— C(=NH)— NH―、—〇—、— S―、— NR— (Rはアルキル基)、—(
2
CH - CH -〇) -(nは 1から 10の整数)、- CH=CH -、 - C≡C -、 - Ar-及び- C〇- Ar- NR-
2 2 η
力 なる群力 選択される官能基を 1種以上含むものを用いることができる。
すなわち、スぺーサ一部は、上記の群力 選択された 1種の官能基のみで構成して も良ぐ 2種以上の官能基を含む構成とすることもできる。また、選択した一の官能基 を 2個以上含む構成とすることもできる。
[0044] 例えば、 1種の官能基のみで構成する場合、 - CONH -、 - COO-、 - CH - 0- R -、 - C
2
Η ΝΗ-等が好ましい。また、 2種以上の官能基で構成する場合、以下の態様とするこ
2
とがでさる。
(1) 2種の官能基で構成する場合
― CONH— COO—、 -CH― 0—、 -CH― NR—等が好ましい。
2 2
(2) 3種以上の官能基で構成する場合
( 以下の一般式 (I)で表されるものを用いることが好まし 、。
- (CHRl)p- X- (CHR2)q- (I)
式中、 Xは直接結合又は、 - NHCOO-、 -CONH -、 - COO-、 -SO NH -、 - HN- C(=N
2
H)- NH -、 - O-、 - S -、 - NR -、 - CH=CH -、 - C≡C -、 - Ar-及び- CO- Ar- NR-からなる群 力も選択された少なくとも 1種の官能基を用いることができ、好ましくは- COO-、 -CO NH―、― 0—、― CH=CH―、― C≡C—又は— Ar―、より好ましくは— COO—、—CONH―、― 0—又 は- Ar-を用いることができる。また、 R1と R2はそれぞれ独立に、水素原子、あるいは 芳香環を含んでも良 、アルキル基又はアルケニル基等の脂肪族炭化水素基、ある いは芳香族炭化水素基であって、必要によりスルホニル基、ヒドロキシル基、 4級アミ ン基及びカルボキシル基力 なる群力 選択されたいずれか 1種の荷電基により置 換されたものを用いることができる。また、 Arはァリール基、好ましくは、フエ二レン基 又はナフチレンで基あり、必要に応じてスルホ-ル基で置換されたものを用いること ができる。 pと qはそれぞれ独立に 0から 20の整数、好ましくは 0から 10の整数、より好 ましくは 0から 5の整数であり、 p+q≥lである。
このスぺーサ一部の具体例を挙げると、 - (CH2)p- CONH- (CH2)q -、 - (CH2)p- COO - (CH2)q -、 - (CH2)p- CH(- Rl- S03H)- (CH2)q -、 - (CH2)p- CH(- Rl- N+H3)- (CH2)q- 、— (CH2)p— CH(— Rl— COOH)— (CH2)q―、— (CH2)p— CH(— Rl— OH)— (CH2)q―、— (CH2)p— (O- CH- )n- (CH2)q -、 - (CH2)p- CONH(- Rl- S03H)- (CH2)q -、 - (CH2)p- CONH(- Rl - S03H)- (CH2)q -、 - (CH2)p- CONH(- Rl- N+H3)- (CH2)q -、 - (CH2)p- CONH(- Rl- O H)- (CH2)q -、 - (CH2)p- CONH(- Rl- COOH)- (CH2)q -、 - (CH2)p- COO- Rl(- S03H)- (CH2)q -、 - (CH2)p- COO- Rl(- OH)- (CH2)q -、 - (CH2)p- COO- Rl(- N+H3)- (CH2)q- 、 - (CH2)p- COO- Rl(- COOH)- (CH2)q -、 - (CH2)p- Ar- (CH2)q -、 - (CH2)p- (Ar- CO O)- (CH2)q -、 - (CH2)p- (Ar- S03H)- (CH2)q -、 - (CH2)p- (Ar- N+H3)- (CH2)q -、 - (CH2 )p- (Ar- OH)- (CH2)q -、 - (CH2)p- (Ar- COOH)- (CH2)q -、 - (CH2)p- C≡ C- (CH2)q -、 - (CH2)p- C=C- (CH2)q -、 - (CH2)p- NR- (CH2)q -、 - (CH2)p- O- (CH2)q -、 - (CH2)p- S - (CH2)q -、 -(CH2)p-HN-C(=NH)-NH- (CH2)q -、 - (CH2)p- CO- Ar- NR- (CH2)q-等 を挙げることができる。より好ましくは、 - (CH2)p- CONH- (CH2)q -、 - (CH2)p- COO- (C H2)q- である。
GO以下の一般式 (Π)で表されるものを用いることが好ま 、。
-Y-(CHR3)r-Z- (II)
ここで、 Y及び Zは、それぞれ独立に、 - NHCOO-、 -CONH -、 - COO-、 -SO NH -、 -
2
HN— C(=NH)— NH―、 -CH NH―、― CH NR―、― 0—、― S―、― NR―、― CH=CH―、― C≡C―、 -
2 2
Ar-及び- CO-Ar-NR-力もなる群力も選択された 1種の官能基であり、好ましくは、 -C ONH-と- COO-、 - COO-と- COO-、 - COO-と- NR-等の組み合わせである。また、 R 3は、水素原子、あるいは芳香環を含んでも良いアルキル基又はァルケ-ル基等の 脂肪族炭化水素基、あるいは芳香族炭化水素基であって、必要によりスルホニル基 、ヒドロキシル基、 4級ァミン基及びカルボキシル基力 なる群力 選択されたいずれ 力 1種の荷電基により置換されたものを用いることができる。また、 Arはァリール基、 好ましくは、フエ-レン基又はナフチレンで基あり、必要に応じてスルホ-ル基で置換 されたものを用いることができる。 rは 0から 20の整数、好ましくは 0から 10の整数、より 好ましくは 0から 5の整数である。このスぺーサ一部の具体例を挙げると、 - CONH-(C H2)r- COO -、 - CONH- CH(- R3- OH)- COO-、 - CONH- CH(- R3- COOH)- COO -、 - CONH— CH(R3— S03H)— COO—、— COO— (CH2)r— COO— 等を挙げることができる。
[0045] また、スぺーサ一部に、アミノ酸又は 2〜20のアミノ酸力 成るペプチドリンカ一を用 いることもできる。アミノ酸には天然又は合成のアミノ酸を用いることができる。ここで、 天然アミノ酸には、グリシン、ァラニン、ノ リン、ロイシン、イソロイシン、 4-ァミノ- 2-ヒド ロキシブタン酸、ホモセリン、セリン、トレオ-ン、ァスパラギン酸、グルタミン酸、ァスパ ラギン、グノレタミン、リシン、ヒドロキシリシン、ァノレギニン、システィン、システィン酸、 2 -ァミノ- 3-スルホサルファ-ルプロパン酸、 2-ァミノ- 3-スルホキシプロパン酸、シスチ ン、メチォニン、フエ二ルァラニン、チロシン、トリプトファン、ヒスチジン、プロリン及び 4 -ヒドロキシプロリン等が含まれる。
[0046] 合成アミノ酸には、上記天然アミノ酸の D体や、分子内に少なくともァミノ基とカルボ キシル基とを有する修飾アミノ酸が含まれる。
修飾アミノ酸は、一般式: H- N(R1)- (R2- CO)- OHで表すことができる。ここで、 R1と R 2は、それぞれ独立に、エステル、エーテル、チォエステル、チォエーテル、アミド、力 ルバミド又はチォカルバミドを介して又は介さずに、スルホ-ル基、ヒドロキシル基、 4 級ァミン基、及びカルボキシル基からなる群から選択された!ヽずれか 1種の荷電基に より置換された炭化水素基又は芳香族基又はへテロ環基を表す。さらに炭化水素基 又は芳香族基又はへテロ環基は、それぞれ、ハロゲン原子、アルキル基、ァルケ- ル基、アルキ-ル基又はアルコキシ基の少なくとも 1種で置換されていても良い。
[0047] 本発明のスぺーサ一部に用いるより好ましいアミノ酸は、スルホ -ル基を有するアミ ノ酸である、システィン酸、 2-ァミノ- 3-スルホサルファ-ルプロパン酸、 2-ァミノ- 3-ス ルホキシプロパン酸、そしてヒドロキシル基を有するチロシン、スレオニン、 4-ァミノ- 2- ヒドロキシブタン酸、ホモセリン、セリンカ なる群力 選択されたいずれか 1種である 。標識色素の水溶性を向上させることができるからである。さらに好ましくは、システィ ン酸又はセリンである。 [0048] ペプチドリンカ一としては、それぞれ、 - C(- Rl)- CONH- C(- R2)-、 - C(- Rl)- CONH- C(- R2)- CONH- C(- R3)-、 - C(-R1)- CONH- C(-R2)- CONH- C(-R3)- CONH- C(-R4) - で表されるジペプチド、トリペプチド、テトラペプチドを用いることが好ましい。ここで 、 Rl、 R2、 R3、 R4は、水素原子、炭素数 1から 6のアルキル基、アルコール基、インド ール基、ヒドロキシフエ-ル基、ベンジル基、グァ-ジン基、チォエーテル基、アルキ ルチオール基、イミダゾール基又はアルキルアミン基等の置換基を表す。これらぺプ チドは、ホモ又はへテロペプチドであって良い。具体例を挙げると、 Ala-Ser、 Glu-Ala 、 Glu- Ala- Leu、 Gly- Pro、 Gly- Pro- Asn、 lie- Val、 lie- Va卜 Met等を用いることができる
[0049] また、ペプチドリンカ一の一部を必要によりスルホ-ル基、ヒドロキシル基、 4級アミ ン基及びカルボキシル基力 なる群力 選択された少なくとも 1種の荷電基を有する ものを用いることができる。例えば、これらのいずれか 1個の荷電基を有するアミノ酸 を 1種以上含むペプチドリンカ一を用いることができる。これにより、標識色素の水溶 性を向上させることができる。例えば、スルホ二ル基を有するシスティン酸、 2-ァミノ- 3 -スルホサルファ-ルプロパン酸、 2-ァミノ- 3-スルホキシプロパン酸、ヒドロキシル基 を有するチロシン、スレオニン、 4-ァミノ- 2-ヒドロキシブタン酸、ホモセリン、セリンを含 む群力 選択された少なくとも 1種のアミノ酸を含むペプチドリンカ一を用いることがで きる。
[0050] スぺーサ一部の長さ及びその構造を変えることにより、発色部と生体分子の標識部 位との間の距離を変えて生体分子と標識色素との間の立体障害を抑制することが可 能である。すなわち、複雑な構造をとる、タンパク質、ペプチド、 DNA等の生体分子の 立体構造に合わせて、立体障害を抑制するように標識色素の構造設計をすることが できるので、標識率を向上させることが可能となる。あるいは、スぺーサ一部に、剛直 性を与える官能基、例えば、 - CH=CH -、 - C≡C -、 - Ar-及び- CO- Ar- NR-を導入す ることで、特定の標識部位、例えば深部にある標識部位に対する立体障害を大きく することもできる。これにより、立体障害の少ない標識部位、例えば浅部のみを選択 的に標識する一方、立体障害の少ない別の標識色素で深部の標識部位を標識する ことにより、深部と浅部の標識部位を識別することも可能となる。 [0051] 本発明の標識色素に反応性基を導入する場合、例えば、スキーム 1に示す反応を 用いることができる。反応式 (I)は、反応性基に活性エステル化したカルボ二ル基を 用い、反応性基と結合するスぺーサ一部の官能基に- coo-を用いた例を示して 、 る。活性エステル化したカルボ-ル基には、 N—ヒドロキシースクシンイミドエステルや マレイミドエステルを用いることができる。 N—ヒドロキシースクシンイミドを用い、縮合 剤として DCCを用いることにより N—ヒドロキシースクシンイミドエステル体を経由して アミド結合により有機 EL色素と標的分子が結合する。
[0052] また、反応式 (II)は、活性エステルイ匕したカルボ-ル基にトリァジン誘導体を用い、 反応性基と結合するスぺーサ一部の官能基に- COO-を用いた例を示して 、る。
[0053] また、反応式 (III)は、反応性基にカルポジイミド基を用い、反応性基と結合するス ぺーサ一部の官能基に- COO-を用いた例を示している。カルボジイミド基には、 Ν,Ν '-ジシクロへキシルカルボジイミド (DCC)や 1-シクロへキシル -3-(2-モルホリノェチル )カルポジイミド等のカルポジイミド試薬を用いることができる。カルポジイミド体を経由 してアミド結合により有機 EL色素と標的分子を結合させることができる。
[0054] また、反応式 (IV)は、スぺーサ一部に予めカルポジイミド基、トリアジン基を導入し た例、すなわち、反応性基と結合するスぺーサ一部の官能基が反応性基を兼ねる例 を示している。これにより、標識色素に別途、反応性基を導入しなくても、標的分子内 のァミノ基、イミノ基に対して標識色素を直接結合させる事ができる。
[0055] [化 3]
Figure imgf000019_0001
、 ノ Dyeノ 1 I」
R2、
N— e β、 \ Lj ι Dye スキーム 1.
[0056] 本発明の標識色素に用いる好ましい有機 EL色素は、共役系を有する 5員環化合物 を含む化合物であって、その 5員環化合物が 1種以上のへテロ原子、セレン原子又 はボロン原子を含むものを挙げることができる。さらに、詳しくは共役系を有する 5員 環化合物から成る単環化合物と、その 5員環化合物と共役系を有する 6員環化合物 力 成る縮合多環化合物を挙げることができる。固体状態であっても、量子収率が大 きぐ強い蛍光を示す力もである。 5員環化合物には、ァゾール誘導体あるいはイミダ ゾール誘導体が好ましい。さらに、ァゾール誘導体あるいはイミダゾール誘導体は 1 以上の 4級アンモ-ゥム基を有することが好まし 、。水溶性を向上させことができるか らである。
以下に、縮合多環化合物の具体例について説明する。
[0057] (モノアゾール誘導体 1)
[化 4]
Figure imgf000020_0001
Figure imgf000020_0002
ここで、 R、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル
1 2 3 4 5
基、ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ- ル基、芳香族炭化水素基、複素環基などの置換基を有しても良い芳香族炭化水素 基又は炭化水素基又は複素環基を示し、 R、 R、 R、 R、 Rは同じでも異なっていて
1 2 3 4 5
も良い。上記のアルキル基は、好ましくは炭素数 1から 6の直鎖状又は分岐状のアル キル基である。また、上記のアルケニル基は、好ましくはビュル基、ァリル基、クロチ ル基、チグリル基又はプレニル基である。また、上記のアルキニル基は、好ましくはェ チニル基又はプロパルギル基である。また、上記のアルコキシ基は、好ましくはメトキ シ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチ口キシ基又は フエノキシ基である。また、上記の芳香族炭化水素基は単環又は多環を含み、好まし くはフエニル基、トリル基、キシリル基又はナフチル基であり、より好ましくはフエニル 基である。また、上記の複素環基は、好ましくはピロール基、フラン基、チォフェン基、 イミダゾール基、ォキサゾール基、チアゾール基、ピラゾール基、ピリジン基又はキノリ ン基であり、より好ましくはフラン基、イミダゾール基又はチォフェン基である。また、上 記の炭化水素基は、好ましくは炭素数 1から 6の直鎖状又は分岐状のアルキル基で ある。
また、 R'は芳香環を含んでも良いアルキル基又はアルケニル基等の脂肪族炭化水 素基あるいは芳香族炭化水素基を示す。ここで、アルキル基、アルケニル基芳香族 炭化水素基には、上記と同様のものを用いることができる。
また、 An—は、 Cl—、 Br―、 I—等のハロゲン化物イオン、 CF SO―、 BF―、 PF—を示す。な
3 3 4 6
お、以下の一般式においても、特に断らない限り同様である。
(モノアゾール誘導体 2)
[化 5]
Figure imgf000021_0001
Figure imgf000021_0002
ここで、式中、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、
8 9
ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ-ル 基、芳香族炭化水素基、複素環基などの置換基を有しても良い芳香族炭化水素基 又は炭化水素基又は複素環基を示し、 R、 Rは同じでも異なっていても良い。上記
8 9
のアルキル基は、好ましくは炭素数 1から 6の直鎖状又は分岐状のアルキル基である 。また、上記のアルケニル基は、好ましくはビニル基、ァリル基、クロチル基、チグリル 基又はプレニル基である。また、上記のアルキ-ル基は、好ましくはェチュル基又は プロパルギル基である。また、上記のアルコキシ基は、好ましくはメトキシ基、エトキシ 基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチ口キシ基又はフエノキシ基で ある。また、上記の芳香族炭化水素基は単環又は多環を含み、好ましくはフ ニル基 、トリル基、キシリル基又はナフチル基であり、より好ましくはフエ-ル基である。また、 上記の複素環基は、好ましくはピロール基、フラン基、チォフェン基、イミダゾール基 、ォキサゾール基、チアゾール基、ピラゾール基、ピリジン基又はキノリン基であり、よ り好ましくはフラン基、イミダゾール基又はチォフェン基である。また、上記の炭化水 素基は、好ましくは炭素数 1から 6の直鎖状又は分岐状のアルキル基である。
なお、以下の一般式においても、特に断らない限り同様である。また、 nは 1以上の 整数、好ましくは 1〜5であり、以下の一般式中でも同様である。
(ジァゾール誘導体 1)
[化 6]
Figure imgf000023_0001
(ジァゾール誘導体 2)
[化 7]
Figure imgf000024_0001
ル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ ニル基、芳香族炭化水素基、複素環基などの置換基を有しても良い芳香族炭化水 素基又は炭化水素基又は複素環基を示し、 R、 R、 R、 R、 R、 Rは同じでも異なつ
1 2 3 4 6 7
ていてもよい。 R、 Rは、置換基を有しても良い芳香族炭化水素基、好ましくはフエ-
2 3
ル基を用いることができ、その置換基には炭素数 1から 4のアルキル基やアルコキシ 基、又は臭素原子を用いることが好ましい。さらに、アルキル基にはメチル基、アルコ キシ基にはメトキシ基を用いることが好ましい。また、 Xは、置換基を有しても良い窒素 原子、硫黄原子、酸素原子、セレン原子又はボロン原子であり、特に断らない限り以 下の一般式中でも同様である。
(ジァゾール誘導体 4)
[化 9]
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000026_0001
(ジァゾール誘導体 7)
[化 12]
Figure imgf000027_0001
(ジァゾール誘導体 8) [化 13— 1]
Figure imgf000027_0002
[化 13- 2]
Figure imgf000028_0001
ここで、式中、 R 、 R は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、
10 11
ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ-ル 基、芳香族炭化水素基、複素環基などの置換基を有しても良い芳香族炭化水素基 又は炭化水素基又は複素環基を示し、 R 、 R は同じでも異なっていてもよい。上記
10 11
のアルキル基は、好ましくは炭素数 1から 6の直鎖状又は分岐状のアルキル基である
。また、上記のアルケニル基は、好ましくはビニル基、ァリル基、クロチル基、チグリル 基又はプレニル基である。また、上記のアルキ-ル基は、好ましくはェチュル基又は プロパルギル基である。また、上記のアルコキシ基は、好ましくはメトキシ基、エトキシ 基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチ口キシ基又はフエノキシ基で ある。また、上記の芳香族炭化水素基は単環又は多環を含み、好ましくはフ ニル基 、トリル基、キシリル基又はナフチル基であり、より好ましくはフエ-ル基である。また、 上記の複素環基は、好ましくはピロール基、フラン基、チォフェン基、イミダゾール基 、ォキサゾール基、チアゾール基、ピラゾール基、ピリジン基又はキノリン基であり、よ り好ましくはフラン基、イミダゾール基又はチォフェン基である。また、上記の炭化水 素基は、好ましくは炭素数 1から 6の直鎖状又は分岐状のアルキル基である。また、 R は、置換基を有してもよいォレフィン基又はパラフィン基であり、 nは 1から 3の整数、
12
好ましくは 1である。なお、以下の一般式においても、特に断らない限り同様である。 (ジァゾール誘導体 9)
[化 14-1]
Figure imgf000030_0001
[0073] [化 14-2]
Figure imgf000031_0001
[化 15]
Figure imgf000032_0001
Figure imgf000032_0002
(トリアゾール誘導体 2)
[化 16]
Figure imgf000033_0001
5員環化合物として、チォフェン基を含む以下の誘導体を用いることもできる。 (チオフ ン誘導体 1)
[化 17]
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000035_0001
Figure imgf000035_0002
[0078] (チオフ ン誘導体 3)
また、チォフェン誘導体の場合、非縮合系の化合物であり、以下の一般式で示され る 2,3,4,5-テトラフエ-ルチオフェン誘導体を用いることもできる。
[0079] [化 19]
Figure imgf000035_0003
[0080] ここで、式中、 R ,R ,R は、それぞれ独立に、水素原子あるいは直鎖、分岐又は環 状の炭素数 1から 6のアルキル基、置換又は未置換のァリール基、好ましくはフエ- ル基、トリル基、キシリル基又はナフチル基を表し、あるいは置換又は未置換のァラ ルキル基、好ましくはベンジル基又はフエネチル基を表し、 Arおよび Arは置換又は
1 2
未置換のァリール基、好ましくはフエ-ル基、トリル基、キシリル基又はナフチル基を 表し、さらに、 Ar tArは結合している窒素原子と共に含窒素複素環を形成してもよ
1 2
い。また、 Yおよび Yは水素原子、ハロゲン原子、あるいは直鎖、分岐又は環状の炭
1 2
素数 1から 6のアルキル基、あるいは直鎖、分岐又は環状のアルコキシ基、好ましくは メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチ口キシ基 又はフエノキシ基、あるいは置換又は未置換のァリール基、好ましくはフエ-ル基、ト リル基、キシリル基又はナフチル基、あるいは置換又は未置換のァラルキル基、好ま しくはベンジル基又はフエネチル基、あるいは置換又は未置換のアミノ基を表す。
[0081] (チオフ ン誘導体 4)
また、以下の一般式で示される 2,3,4,5-テトラフエ-ルチオフェン誘導体を用いるこ とちでさる。
[0082] [化 20]
Figure imgf000036_0001
[0083] ここで、式中、 Ar〜Arはそれぞれ独立に、置換または未置換のァリール基、好まし
1 6
くはフエニル基、トリル基、キシリル基又はナフチル基を表し、さらに、 Arと 、 Arと A
1 2 3 rおよび Ar tArは結合している窒素原子と共に含窒素複素環を形成していても良い
4 5 6
[0084] また、 5員環化合物にイミダゾールを用い、以下の一般式で示すイミダゾール誘導 体を用いることもできる。ここで、イミダゾール誘導体を構成するイミダゾール基は 4級 アンモ-ゥム基を有することが好まし 、。水溶性を向上させることができるからである。 さらに、ピリジノ基を含む場合、より水溶性を向上させるために、ピリジノ基も 4級アン モ-ゥム基を有していても良い。なお、以下の一般式中、 R"は芳香環を含んでも良 V、アルキル基又はアルケニル基等の脂肪族炭化水素基あるいは芳香族炭化水素基 を示す。
[0085] (イミダゾール誘導体 1)
[化 21]
Figure imgf000037_0001
[0086] (イミダゾール誘導体 1)
[化 22]
Figure imgf000038_0001
(イミダゾール誘導体 2) [化 23]
Figure imgf000039_0001
Figure imgf000039_0002
(イミダゾール誘導体 3)
[化 24]
Figure imgf000040_0001
[0089] [化 25]
Figure imgf000041_0001
R7 R3 An An R3 R
Figure imgf000041_0002
[0090] ここで、イミダゾール骨格は中央のベンゼン環 R , R , R , R の任意の位置に複数
8 9 10 11
ユニットが結合していても良い。また、 R は、置換基を有してもよいォレフィン基又は
12
パラフィン基であり、 nは 1から 3の整数、好ましくは 1である。
[0091] (力ルバゾール誘導体)
また、以下の一般式で示される力ルバゾール誘導体を用いることもできる。
[化 26]
Figure imgf000042_0001
[0092] また、共役系を有する 5員環化合物であって、 1種以上のへテロ原子、セレン原子 又はボロン原子を含む単環化合物を用いることもできる。特に限定されないが、例え ば、以下の一般式で表されるァゾール誘導体を用いることができる。
[0093] [化 27]
Figure imgf000042_0002
[0094] ここで、式中、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル
1 4 5
基、ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ- ル基、芳香族炭化水素基、複素環基などの置換基を有しても良い芳香族炭化水素 基又は炭化水素基又は複素環基を示し、 R、 R、 Rは同じでも異なっていてもよい。
1 4 5
上記のアルキル基は、好ましくは炭素数 1から 6の直鎖状又は分岐状のアルキル基 である。また、上記のアルケニル基は、好ましくはビニル基、ァリル基、クロチル基、チ グリル基又はプレニル基である。また、上記のアルキ-ル基は、好ましくはェチュル 基又はプロパルギル基である。また、上記のアルコキシ基は、好ましくはメトキシ基、 エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチ口キシ基又はフエノ キシ基である。また、上記の芳香族炭化水素基は単環又は多環を含み、好ましくはビ フエニル基、フエ-ル基、トリル基、キシリル基又はナフチル基であり、より好ましくは ビフエ-ル基、フエニル基である。また、上記の複素環基は、好ましくはピロール基、 フラン基、チオフ ン基、イミダゾール基、ォキサゾール基、チアゾール基、ピラゾー ル基、ピリジン基又はキノリン基であり、より好ましくはフラン基、イミダゾール基又はチ オフ ン基である。また、上記の炭化水素基は、好ましくは炭素数 1から 6の直鎖状又 は分岐状のアルキル基である。 [0095] 本発明の標識色素に用いる有機 EL色素には、以上、説明した縮合多環化合物及 び単環化合物であれば特に限定されな 、が、以下の一般式で表されるジァゾール 誘導体又はイミダゾール誘導体を好適に用いることができる。
[0096] [化 28]
Figure imgf000043_0001
Figure imgf000043_0002
[0097] [化 29]
Figure imgf000044_0001
Figure imgf000044_0002
(7) (8)
[0098] さらに、上記のジァゾール誘導体及びイミダゾール誘導体の中で、ジァゾ口ピリジン 誘導体又はイミダゾロピリジン誘導体を好適に用いることができる。
[0099] 本発明の特に好ましい標識色素は、上記のジァゾ口ピリジン誘導体又はイミダゾロ ピリジン誘導体を発色部に含むものであり、以下の一般式で表すことができる。
[0100] [化 30] p-X-(CHR,f)q-Z
Figure imgf000044_0003
[0101] [化 31]
Figure imgf000045_0001
[0102] - (CHR')p-X-(CHR")q-は前述のスぺーサ一部を表す。また、 Zは前述の反応性基 を表す。
ここで、上記の Rと Rに、置換基を有しても良い芳香族炭化水素基又は炭化水素
2 3
基を用いることが好ましい。 Cy3に対応する緑色蛍光色素を得ることができる。芳香族 炭化水素基としてはフエ-ル基、トリル基、キシリル基又はナフチル基、より好ましくは フエニル基又はトリル基である。さらに、置換基としてはスルホ -ゥム基が好ましい。水 溶性を高めることができる力 である。
[0103] あるいは、上記の Rと Rに、置換基を有しても良いチォフェン基、フラン基、ピロ
2 3 一 ル基、イミダゾール基、ォキサゾール基、チアゾール基、ピラゾール基及びピリジン基 力 なる群力 選択された 1種、より好ましくはチォフェン基、イミダゾール基又はフラ ン基を用いることもできる。 Cy5に対応する赤色蛍光色素を得ることができる。
[0104] 標識色素は、反応性基とスぺーサ一部の組み合わせにより種々の方法により合成 することができる。例えば、反応性基に活性エステルイ匕したカルボ-ル基を用いる場 合、予めジァゾ口ピリジン誘導体又はイミダゾロピリジン誘導体の活性エステル体を合 成しておき、この活性エステル体にスぺーサー用化合物(例えば、グリシン、了ラニン 、 4 アミノブタン酸、システィン酸、セリン等のアミノ酸)を反応させてカルボン酸体を 得、このカルボン酸体を、 N—ヒドロキシースクシンイミドと反応させることにより、スぺ 一サーを導入した活性エステル体を得ることができる。例えば、スぺーサー用化合物 にグリシンを用いた場合、 - CONH-と- (CH )-を有するスぺーサ一部を得ることができ
2
る。また、 j8 -ァラニンを用いた場合、 - CONH-と- (CH ) -を有するスぺーサ一部を得
2 2
ることができる。また、 4-アミノブタン酸を用いた場合、 - CONH-と- (CH ) -を有するス ぺーサ一部を得ることができる。また、システィン酸を用いた場合、 -CONH-と- SO―
3 を有するスぺーサ一部を得ることができる。また、セリンを用いた場合、 -C0NH-と- 0 Hを有するスぺーサ一部を得ることができる。システィン酸とセリンを用いることにより、 スぺーサ一部にそれぞれ、スルホ -ゥム基と水酸基を導入することができ、標識色素 の水溶性を向上させることができる。
[0105] 本発明の標識色素は、標識された固体あるいは半固体状態の生体分子の蛍光を 測定する検出方法であれば、あらゆる生体分子の検出方法に用いることができる。従 来の蛍光色素に代えて有機 EL色素を用いることにより、高感度で、化学的に安定で 操作性に優れ、さらに低コストの検出方法を提供することができる。本発明において は、前述のように生体分子試料に有機 EL色素を直接反応させて、生体分子試料を 有機 EL色素で標識しても良ぐあるいは生体分子試料と、有機 EL色素で標識された プローブとを反応させて生体分子試料を有機 EL色素で標識する方法を用いることも できる。また、特異結合を利用した生体分子の検出方法を用いることもできる。さらに 、有機 EL色素で標識した生体分子試料を電気泳動によりサイズ分離する方法を用い ることちでさる。
[0106] 例えば、核酸を検出対象とする DNAマイクロアレイ法では、以下の手順で行うことが できる。
(DNAマイクロアレイ法)
本検出方法は、検出すべき標的核酸に有機 EL色素を反応させて有機 EL色素で標 識する一方、標的核酸に対して相補的な塩基配列を有する一本鎖のプローブ核酸 を用意し、一本鎖に変成させた標的核酸とプローブ核酸とを基盤上でハイブリダィズ させ、標的核酸の蛍光を測定する。本検出方法では、基盤に固定するプローブ核酸 には、遺伝子の発現を調べる場合、 cDNA等を cDNAのライブラリー、ゲノムのライブラ リー又は全ゲノムをテンプレートとして PCR法により増幅して調製したものを用いること ができる。また、遺伝子の変異等を調べる場合、標準となる既知の配列をもとにして、 変異等に対応する種々のオリゴヌクレオチドを合成したものを用いることができる。
[0107] プローブ核酸の基盤上への固定は、核酸の種類や基盤の種類に応じて適当な方 法を選択することができる。例えば、 DNAの荷電を利用し、ポリリシン等の陽イオンで 表面処理した基盤に静電結合させる方法を用いることもできる。一方、一本鎖に変性 させた標的核酸と有機 EL色素とを混合して反応させることにより、有機 EL色素により 標識された標的核酸を調製する。反応温度は室温〜 60°C、反応時間は 2〜48時間 で行うことが好ましい。
[0108] 次 、で、標識された標的核酸を基盤上にスポットし、ハイブリダィゼーシヨンを行う。
ハイブリダィゼーシヨンは、室温〜 70°C、そして 2〜48時間の範囲で行うことが好まし い。ノ、イブリダィゼーシヨンにより、プローブ核酸と相補的な塩基配列を有する標的核 酸が選択的にプローブ核酸と結合する。その後、基盤を洗浄して、室温で乾燥する。 次 ヽで、乾燥した基盤の表面の蛍光強度を蛍光レーザスキャナ法により測定する。 蛍光強度により、遺伝子発現のレベルをモニタリングすることができる。なお、上記の ハイブリダィゼーシヨンは、プローブ核酸を基盤に固定する方法について説明したが 、予め有機 EL色素で標識した標的核酸を基盤に固定し、プローブ核酸を基盤上に スポットする方法を用いることもできる。
[0109] また、同様に核酸を検出対象とし、プライマーやターミネータを用いる PCR法では、 以下の手順で行うことができる。
(PCR法)
(PCR法)
本検出方法は、検出すべき標的核酸の塩基配列に相補的なプローブを有機 EL色 素で標識し、標的核酸の増幅に先立って、あるいは増幅させた後、標的核酸とプロ 一ブとを反応させ、標的核酸の蛍光を測定する。具体的には、標的核酸の伸長反応 は酵素(DNAポリメラーゼ、 RNAポリメラーゼ)によって行われ、このとき標的核酸とオリ ゴヌクレオチドからなるプライマーとが形成した 2本鎖核酸配列を酵素が認識し、その 認識した位置から伸長反応が行われ、目的とする遺伝子領域だけを増幅させる。酵 素が合成を行う際ヌクレオチド (dNTP、 NTP)を原料として合成反応が行われる。このと き通常のヌクレオチド (dNTP、 NTP)に、例えば、図 27に示すような、色素を有するヌク レオチドを任意の割合で混合すると、その割合の色素が導入された核酸を合成する ことができる。または、 PCRにより、任意の割合でアミノ基を有するヌクレオチドを導入 した後に有機 EL色素を結合させ、有機 EL色素が導入された核酸を合成することも可 能である。
[0110] [化 32]
Figure imgf000048_0001
[0111] 酵素が合成を行う際ヌクレオチドを原料に合成反応が行われるが、このときのヌクレ ォチドの 3'の OHを Hに変えたものを使用した場合、それ以上核酸の伸長反応が行わ れず、その時点で反応が終了する。このヌクレオチド、 dideoxynucleotide triphospate (ddNTP)はターミネータと呼ばれる。通常のヌクレオチドにターミネータを混ぜて核酸 の合成反応を行うと、一定確率でターミネータが導入され、反応が終了するため様々 な長さの核酸が合成される。これをゲル電気泳動によりサイズ分離を行うと長さの順 番ごとに DNAが並ぶことになる。ここで、ターミネータの各塩基の種類ごとに異なる有 機 EL色素で標識しておくと、合成反応の終点 (3'端)には各塩基に依存した傾向が 観察され、ターミネータに標識した有機 EL色素を基点に蛍光情報を読み取つていく ことで、その標的核酸の塩基配列情報を得ることが出来る。また、ターミネータに代え て、予め有機 EL色素で標識したプライマーを用いて標的核酸とハイブリダィズするこ とちでさる。
[0112] また、プローブとして PNA (ペプチド核酸)を用いることもできる。 PNAは、核酸の基 本骨格構造である五単糖'リン酸骨格を、グリシンを単位とするポリアミド骨格に置換 したもので、核酸によく似た三次元構造を有し、相補的な塩基配列を持つ核酸に対 し、非常に特異的かつ強力に結合する。そのため、特定核酸検出のためのプローブ として有効である。そのため、 in-situ hybridization法など既存の DNA解析手法のみ ならず、テロメァ PNAプローブに応用することで、テロメァ研究の試薬として用いること も可能である。
[0113] 検出には、例えば、二本鎖 DNAを、 DNAの塩基配列の全部又は一部に相補的な 塩基配列を有し、有機 EL色素で標識された PNAと接触させてハイブリダィズさせ、そ の混合物を加熱して一本鎖 DNAを生成させ、混合物をゆっくりと室温まで冷却させて PNA-DNA複合体を調製し、その蛍光を測定することにより行うことができる。
[0114] 上記の例では、標的核酸を PCR法により増幅させて、生成物の蛍光を測定する方 法について説明した力 この方法では、電気泳動で生成物のサイズを確認して、そ の後蛍光強度を測定することにより増幅生成物の量を調べる必要がある。これに対し 、蛍光色素のエネルギートランスファーを利用して、 PCR法の生成物にハイブリダィズ させることで蛍光が生じるように工夫されたプローブを用い、リアルタイムで生成物の 量を測定することもできる。これには、例えば、ドナーとァクセプターを標識した DNA を用いることができる。具体的な検出方法としては、特定配列の核酸の存在を確認す るモレキュラービーコン法や TaqMan-PCR法やサイクリングプローブ法等を挙げること ができる。
[0115] 例えば、モレキュラービーコン法の発光機構について図 1を用い、基盤上にモレキ ユラ一ビーコンを固定し、 目的遺伝子とのハイブリダィゼーシヨンを行う例について説 明する。特定の DNA配列を有する DNA (プローブ)の一端に有機 EL色素 F、他端にク ェンチヤ一 Qを標識する。クェンチヤ一 Qは基盤に固定されており、 目的遺伝子導入 前では、クェンチヤ一 Qと有機 EL色素 Fとが近接しており蛍光色素は消光される。ここ に、標識した DNAと相補的な配列を有する目的遺伝子を導入すると、標識した DNA と目的遺伝子とはハイブリダィゼーシヨンを行うが、これにより有機 EL色素 Fとタエンチ ヤー Qの距離が離れ、有機 EL色素 Fの蛍光を観察することができる。これにより、 DNA のハイブリダィゼーシヨンの観察ならびにハイブリダィゼーシヨンの量を測定すること が可能となる。
[0116] また、タンパク質を検出対象とする場合、電気泳動後のタンパク質の検出には染色 色素が用いられている。通常、泳動後のゲル中に、染色色素、例えばクーマシープリ リアントブルー (CBB)を浸透させてタンパク質を染色し、 UVを照射して発光させる方 法が用いられる。し力しながら、従来の染色色素を用いる方法は簡便であるが、感度 が lOOng程度と低く微量のタンパク質の検出には適さない。また、ゲルを介して染色 色素を浸透させるため、染色に長時間を要するという問題もある。
[0117] これに対し、本発明では、タンパク質を電気泳動によりサイズ分離した後、分離した タンパク質に有機 EL色素を結合させることによりタンパク質を標識する。本発明の有 機 EL色素は反応性基を有しており、タンパク質と速やかに定量的に反応し、さらに高 感度であり、微量タンパク質の検出には好適である。さらに、サイズ分離したタンパク 質を質量分析して同定することもできる。
[0118] ここで、タンパク質には、アルブミン、グロブリン、グルテリン、ヒストン、プロタミン、そ してコラーゲン等の単純タンパク質、核タンパク質、糖タンパク質、リボタンパク質、リ ンタンパク質、金属タンパク質等の複合タンパク質の!/、ずれも検出対象とすることが できる。例えば、リンタンパク質、糖タンパク質、総タンパク質の染色色素に対応させ て 3種の有機 EL色素を用い、二次元電気泳動で分離したタンパク質試料にぉ 、て、 リンタンパク質、糖タンパク質及び総タンパク質を染色することができる。また、 TOF- Mass等の質量分析を行うことにより、タンパク質を同定できるので、特殊なタンパク質 を生成させる、ガンやウィルスによる感染症などの疾病の診断や治療に応用すること が可能である。また、コラーゲンは、動物の結合組織を構成するタンパク質であり、独 特の繊維状構造をとる。すなわち、 3本のポリペプチド鎖からなり、そのペプチド鎖が 寄り集まって三重鎖を形成する。コラーゲンは、一般に極めて免疫原性が低いタンパ ク質であり、食品、化粧品、医薬品等の分野で広く利用されている。しかし、コラーゲ ンのペプチド鎖に蛍光色素を導入しても、従来の蛍光色素ではその安定性が十分と は言えず、より安定な蛍光色素が必要とされている。そこで、コラーゲンを標識する蛍 光色素に有機 EL色素を用いることにより、安定かつ高感度な検出を行うことが可能と なる。
[0119] また、プローブにァプタマ一を用いることもできる。ァプタマ一はオリゴ核酸力もなり 、塩基配列に依存して種々の特徴ある立体構造をとることができるので、その立体構 造を介してタンパク質を含むあらゆる生体分子に結合することができる。この性質を 利用し、有機 EL色素で標識したアブタマ一を特定のタンパク質に結合させ、被検体 との結合によるそのタンパク質の構造変化に伴う蛍光変化力も間接的に被検体を検 出することができる。例えば、蛍光色素で標識したアブタマ一を用い、エネルギートラ ンスファーを利用したコカイン検出用バイオセンサが提案されている(J. Am. Chem. S oc. 2001, 123, 4928-4931) oこの蛍光色素に代えて、有機 EL色素を用いることにより 、高感度で取り扱 、の容易なバイオセンサを提供することが可能となる。
[0120] また、本発明の標識色素を、特異結合を利用した生体分子の検出方法にも用いる ことができる。すなわち、生体分子から成る被検体又は修飾物質により修飾された該 被検体の検出に際し、被検体に特異結合する結合物質又は修飾物質に特異結合 する結合物質の一方を、有機 EL色素力 成る発色部と、生体分子を結合する結合部 と、発色部と結合部とを連結するスぺーサ一部とを有する標識色素で標識し、標識さ れた結合物質からの蛍光を測定することができる。
ここで、上記の被検体又は修飾物質と上記結合物質との組み合わせには、抗原 抗体、ハプテン 抗ハプテン抗体、ピオチン アビジン、 Tag 抗 Tag抗体、レクチン —糖タンパク質又はホルモン—受容体を用いることができる。
[0121] 具体的には、基盤上、溶液中、ビーズ上、抗体上に存在する、抗原又はハプテン に対し、有機 EL色素で標識した抗体等の結合物質を作用させ、その抗体の抗原又 はハプテン特異的結合能を利用して、特定の抗原又はハプテンを検出する。抗原と しては、タンパク質、多糖類、核酸、ペプチドなどが挙げられ、ハプテンとしては FITC ゃジニトロフエ-ル基などの低分子量分子を挙げることができる。抗原又はハプテン と抗体の組み合わせとしては、 GFPと抗 GFP抗体、 FITCと抗 FITC抗体などを挙げる ことができる。
具体例として、以下の方法を用いることができる。
(1)基盤や溶液中に存在する生体分子 (抗原:タンパク質、多糖類、核酸、ぺプチ ド)に蛍光標識した抗体を結合させ検出を行う方法。
(2)基盤や溶液中にハプテンを修飾した生体分子 (タンパク質、多糖類、核酸、ぺ プチド)に、蛍光標識した抗ノ、プテン抗体を結合させ検出を行う方法。
(3)基盤や溶液中にピオチンを修飾した生体分子 (タンパク質、多糖類、核酸、ぺ プチド)に、蛍光標識したアビジンを結合させ検出を行う方法。
(4)基盤や溶液中に存在する生体分子 (タンパク質、多糖類、核酸、ペプチド)に抗 体を結合させ、さらにその抗体と特異的に結合する蛍光色素を標識した抗体を結合 させ検出を行う方法。
(5)基盤や溶液中に存在する生体分子 (タンパク質、多糖類、核酸)にハプテンを 修飾した抗体を結合させ、さらにそのハプテンと特異的に結合する蛍光色素を標識 した抗体を結合させ検出を行う方法。
(6)基盤や溶液中に存在する生体分子 (タンパク質、多糖類、核酸)にピオチンを 修飾した抗体を結合させ、さらにそのピオチンと特異的に結合する蛍光色素を標識 したアビジンを結合させ検出を行う方法。
(7)基盤や溶液中に存在する生体分子 (タンパク質、多糖類、核酸)に Tag (ヒスチ ジンなど)を導入し、蛍光色素で標識した抗 Tag抗体で検出を行う方法。
これらの標識物は、免疫染色、 ELISA、ウェスタンブロッテイング、フローサイトメトリ 一等の各種の測定手法に使用することができる。
さらに、具体例を説明すると、例えば、図 2に示すように、 IgG抗体をペプシンで処理 すると F(ab')と呼ばれるフラグメントが得られる。このフラグメントをジチオスレィトール
2
等で還元すると Fab'と呼ばれるフラグメントが得られる。 Fab'フラグメントは 1つもしくは 2つのチオール基 (-SH)を有している。このチオール基に対してマレイミド基を作用さ せて特異的な反応を行うことができる。すなわち、図 3に示すように、マレイミド基を導 入した有機 EL色素をフラグメントのチオール基と反応させることにより、有機 EL色素 で抗体を標識することができる。この場合、抗体の生理活性 (抗原捕捉能)を失うこと がない。
また、本発明の標識色素を用いて、金属イオンの検出を行うこともできる。体内の D NAやタンパク質などの安定性や高次構造の維持、機能発現、そして生体内のすべ ての化学反応を司る酵素の活性化など、生体内で起こるあらゆる生命現象に金属ィ オンは関与している。そのため、生体内での金属イオンの動きをリアルタイムで観察 できる金属イオンセンサは医療分野を初めとしてその重要性が叫ばれている。従来、 生体分子に蛍光色素を導入した金属イオンセンサが知られている。例えば、 K+イオン 存在化にお!ヽて、 K+イオン取り込んで特殊な構造をとる配列を有する核酸を利用す る金属イオンセンサが提案されている(J. AM. CHEM. SOC. 2002, 124, 14286-1428 7)。エネルギートランスファーを起こす蛍光色素を核酸の両端に導入する。通常は色 素間距離があるためエネルギートランスファ一は起きない。しかし、 K+イオン存在下で は核酸が特殊な形をとる結果、蛍光色素がエネルギートランスファーを起こす距離に 近接することで、蛍光を観察することができる。また、ペプチドに蛍光色素を導入した 亜鉛イオンセンサも提案されている(J. Am. Chem. Soc. 1996, 118, 3053-3054)。こ れらの従来の蛍光色素に代えて本発明の有機 EL色素力 成る標識色素を用いるこ とにより、従来に比べ高感度で取り扱いが容易な金属イオンセンサを提供することが 可能となる。なお、生体内に存在する金属イオンであれば、すべての金属イオンを検 出することが可能である。
[0123] また、本発明の標識色素を用いて、細胞内のシグナル観察を行うこともできる。内部 シグナルや環境情報に対する細胞の応答には、イオン力 酵素へと多大な分子が関 与している。シグナル伝達過程では特殊なプロテインキナーゼが活性ィ匕し、特殊な 細胞タンパク質のリン酸ィ匕を導くことで様々な細胞応答の初期応答を担っていること が知られて 、る。ヌクレオチドの結合と加水分解はこれらの活性に重大な役割を果た しており、ヌクレオチド誘導体を用いることで、シグナル伝達挙動を素早く観察するこ とが出来る。例えば、プロテインキナーゼ C (PKC)は細胞膜におけるシグナル伝達に ぉ 、て重要な役割を果たして 、る。この Ca2+依存セリン Zスレオニンプロテインキナー ゼはジァシルグリセロールやフォスファテイジルセリンの様な膜構成脂質上で活性ィ匕 され、イオンチャネルや細胞骨格タンパク質に存在するセリンゃスレオニンをリン酸化 することで膜表面電ィ匕を変えシグナル伝達を行って 、る。これらを生細胞にぉ 、て動 的に観察することで細胞のシグナル伝達の観察を行うことができる。
[0124] ここで、ヌクレオチド誘導体は酵素の基質や阻害剤として供給され、孤立性タンパク 質の構造と力学の探査、膜結合タンパク酵素の再構成、ミトコンドリアのようなオルガ ネラ、除膜筋線維のような組織のヌクレオチド結合タンパク質部分に、結合してその 調節を行っている。また、最近では G-タンパク質の阻害剤や活性体のようなシグナル 伝達に影響を与える化合物の存在も解ってきて 、る。このヌクレオチド誘導体に本発 明の有機 EL色素力もなる標識色素を導入することで、これらの細胞内シグナル伝達 の動的観察を高感度で、かつ取り扱 、容易に行うことが可能となる。 [0125] また、本発明の標識色素を RNA干渉作用(RNAi)を利用した遺伝子発現状況の観 察に用いることもできる。 RNAiは、 RNAを細胞に導入した時、それと同じ配列を持つ た遺伝子の発現がノックダウンされる現象である。 RNAiは二本鎖 RNA (dsRNA)を細 胞に導入することにより、標的遺伝子の mRNAを分解し、発現を抑制する。このプロ セスでは、はじめに長鎖の dsRNA(double stranded RNA)がリボヌクレアーゼ活性を有 する Dicerによって 21〜23 merの短い siRNAに切断される。生成した siRNAは、中間複 合体(RNA-induced silencing complex (RISC))によって取り込まれ、この複合体が取 り込んだ siRNAのアンチセンス鎖と相補的な配列を持つ mRNAの切断を行うことが知 られて 、る。この分野でも遺伝子発現状況などを観察するために蛍光色素が用いら れている。標識する蛍光色素に有機 EL色素を用いることにより、安定かつ高感度な 検出を行うことが可能となる。
[0126] 本発明の標識色素は、組織又は細胞試料中の標的核酸や標的タンパク質の発現 レベルの検討に用いる組織又は細胞の染色色素としても用いることができる。組織又 は細胞の染色は、前述のように反応性基を介して標的核酸ある ヽは標的タンパク質 に有機 EL色素を結合させることにより行うことができる。
[0127] すなわち、本発明の染色色素は、例えば、有機 EL色素を真核細胞の染色に用いる と、乾燥状態でも蛍光を発することから標識後の保存などの点で従来の色素よりも優 れた性能を示す。また、真核細胞のみならず、細胞骨格用色素としても十分に用いる ことが可能である。この他、ミトコンドリア、ゴルジ体、小胞体、リソゾーム、脂質二重膜 などの標識に用いることが可能である。これら、標識された細胞等は、湿潤及び乾燥 のあらゆる条件下で観測が可能であるため、汎用性が大きい。観測に際しては、蛍 光顕微鏡などを用いることができる。
[0128] また、臨床段階で人体より採取された組織は、ミクロトームなどの機器を用いて薄膜 にスライスした後、染色されている。ここでは、 Cy色素及び Alexa色素が用いられてい る。し力しながら、既存の色素は安定性が非常に悪ぐ再診断の際には、再びサンプ ルを作製する必要がある。また、作製されたサンプルは標本として保存することが不 可能である。しかし、上記の従来の色素に比べ有機 EL色素は、非常に安定な色素で あるので、染色した組織を標本として保存することが可能である。 [0129] 本発明の標識キットは、有機 EL色素から成る発色部と、生体分子を結合する結合 部と、発色部と結合部とを連結するスぺーサ一部とを有する標識色素を含むが、必 要により色素を対象とする生体分子と反応させるための、試薬、酵素、溶媒等を含む ことができる。対象とする生体分子は、核酸、タンパク質、ペプチド類、又は糖類であ る。
[0130] また、本発明の別の標識キットは、少なくとも、有機 EL色素から成る発色部と該発色 部に結合し前述の一般式 (I)で表されるスぺーサ一部とを有する標識色素前駆体を 含み、必要により、カルボン酸基、イソシァネート基、イソチオシァネート基、エポキシ 基、ハロゲン化アルキル基、トリアジン基、カルポジイミド基そして活性エステルイ匕した カルボニル基力 選択されたいずれ力 1種の反応性基を標識色素に導入するための 反応性基導入試薬を含むものである。
実施例
[0131] 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明の範囲は以下の 実施例により限定されるものではない。
合成例 1.
有機 EL色素として、 1, 2, 5,-ォキサジァゾ口- [3, 4-c]ピリジン誘導体を用いた。 以下に、スぺーサ一部として- COO-を導入したォキサジァゾ口- [3, 4-c]ピリジンの 活性エステル体の反応例 (スキーム 2と 3)を示す。なお、スぺーサ一部を有しない活 性エステル体を EL-OSu、スぺーサ一部を導入した活性エステル体を EL-OSu-Spと 略す。
[0132] [化 33]
Figure imgf000056_0001
スキーム 2.
[0133] 次いで、ォキサジァゾ口ピリジン活性エステル体 (6)を DMF中、ァラニンと反応させ、 スぺーサ一部を導入したカルボン酸体 (7)を合成した。その後、カルボン酸体 (7)をジ ォキサン中、 N—ヒドロキシスクシンイミドと反応させ、スぺーサ一部を導入したォキサ ジァゾ口ピリジン活性エステル体 (8)を合成した。以下に反応例を示す。
[0134] [化 34]
Figure imgf000057_0001
8 Y. 89% スキーム 3.
[0135] 各ステップとも反応は穏やかに進行し、カルボン酸体 (7)を経由して目的とする活性 エステル体 (8)を高収率で得た。
(合成手順)
(1)ジケトン誘導体 (2)の合成
500mL三口フラスコに 4-メトキシァセトフエノン (1)37.5 g (0.25 mol)、亜硝酸ナトリウム 0.15 gを酢酸 100 mLに溶解した。水浴中、 HNO 100 mLを酢酸 100 mLに溶解したも
3
のを 2時間かけて滴下した。その後、室温で 2日間撹拌した。反応混合物を 500mLの 水にゆっくりと入れ、沈殿を生成させた。沈殿物は濾過し、クロ口ホルムに溶解した。 クロ口ホルム相を飽和重曹水で洗浄し、 10% NaCl水溶液で 2回洗浄した。 MgSOで
4 脱水した後、減圧下、クロ口ホルムを留去し、ォキサジァゾール -N-オキサイド (2)を 34. 5 g (収率 78%)で得た。
[0136] (2)ジケトン誘導体 (3)の合成
500mL三口フラスコにォキサジァゾール- N-オキサイド (2)17.7 g (0.05 mol)をァセト 二トリル 400 mLに溶解した。それに Zn 12.0 g、 AcOH 7 mL、 Ac O 20mLを添カ卩した。
2
水浴中で反応温度が 30°Cを超えな 、ように冷却した。 12時間撹拌して反応終点とし た。反応混合物を濾過し、不溶分を除去した。ァセトニトリルを減圧下留去して残渣を 得た。残渣をクロ口ホルムで再結晶し、ォキサジァゾール -N-オキサイド (3)を 10.2 g ( 収率 60%)で得た。
[0137] (3)ォキサジァゾ口ピリジンェチルエステル (4)の合成
500mL三口フラスコでォキサジァゾール- N-オキサイド (3)15.6 g (0.046 mol)をブタノ ール 300 mLに溶解した。そこへグリシンェチルエステル塩酸塩 32.0 g (0.23 mol)を 添加した。 24時間加熱還流を行った。ブタノールを減圧下留去し、残渣を得た。残渣 を 200mLのクロ口ホルムに溶解し、 10% HC1、飽和 NaHCO、 10%NaClで洗浄した。 Mg
3
soで乾燥し、溶媒を留去した。得られた残渣をクロ口ホルムで再結晶し、ォキサジァ
4
ゾロピリジンェチルエステル (4)を 13.0 g (収率 70%)で得た。
[0138] (4)ォキサジァゾ口ピリジンェチルエステル (4)の加水分解
500mL三口フラスコでォキサジァゾ口ピリジンェチルエステル (4)3.0 g (0.007 mol)を 200 mLのエタノールに溶解した。そこへ KOH 0.62 g (0.01 mol)を添カ卩した。 5時間加 熱環流を行った後、反応混合物を 200 mLの水へ添加した。この水溶液に濃塩酸を 滴下して pH 1に調整したところ沈殿が生じた。沈殿物を濾過し、クロ口ホルムに溶解 した。クロ口ホルム相を 10% NaHCO水溶液、水で洗浄した。クロ口ホルムを留去して
3
残渣を得た。残渣を水-エタノール(1:1)で再結晶し、 2.1 g (収率 81%)のォキサジァゾ 口ピリジン力ノレボン酸 (5)を得た。
[0139] (5)活性エステル体 (6)の合成
50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸 (5)1.0 g (0.0026 mol)と N- ヒドロキシスクシンイミド 0.30 g (0.0026 mol)を DMF 20mLに溶解した。これに N, Ν'-ジ シクロへキシルカルボジイミド 0.54 g (0.0026 mol)を 30分かけて滴下した。滴下後、室 温で 30時間撹拌した。減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマトダラ フィー(クロ口ホルム)で単離精製し、ォキサジァゾ口ピリジン活性エステル体 (6)を 0.76 g (収率 62%)得た。
[0140] (6)カルボン酸体 (7)の合成
50 mL三口フラスコでォキサジァゾ口ピリジン活性エステル体(6) 100 mg (0.21 mm ol)とァラニン 18.8 mg (0.21 mmol)を DMF 20mLに溶解した。その後、室温で 12時間撹 拌した。反応終了後、減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマトダラ フィー(クロ口ホルム メタノール =7 : 3)で単離精製し、カルボン酸体 (7)を 83 mg (収 率 88%)得た。
[0141] (7)活性エステル体 (8)の合成
次いで、 50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸体 (7)70 mg (0.16 mmol)と N-ヒドロキシスクシンイミド 18.0 mg (0.16 mmol)を DMF 20mLに溶解した。これ に DMF 5 mLに溶解した N, Ν'-ジシクロへキシルカルボジイミド 32.2 mg (0.16 mmol) を 30分かけて滴下した。滴下後、室温で 30時間撹拌した。減圧下、 DMFを留去した。 残渣をシリカゲルカラムクロマトグラフィー(クロ口ホルム)で単離精製し、活性エステル 体 (8)を 75.8 mg (収率 89%)得た。
[0142] 合成例 2.
有機 EL色素としてイミダゾロピリジンェチルエステル誘導体を用いた。以下に、スぺ ーサ一部として- COO-を導入したイミダゾロピリジンェチルエステルの活性エステル 体の反応例 (スキーム 4と 5)を示す。
[0143] [化 35]
Figure imgf000059_0001
スキーム 4.
[0144] 次 、で、合成例 1の場合と同様に、イミダゾロピリジン活性エステル体 (3)をァラニン と反応させ、スぺーサ一部を導入したカルボン酸体 (4)を合成し、そのカルボン酸体 (4 )をジォキサン中、 N—ヒドロキシスクシンイミドと反応させ、スぺーサ一部を導入したィ ミダゾ口ピリジン活性エステル体 (5)を合成した。以下に反応例を示す。
[0145] [化 36]
Figure imgf000060_0001
S Y. 92% スキーム 5.
[0146] (1)イミダゾロピリジンェチルエステル (1)の加水分解
500mL三口フラスコでエステル体 (1)0.5 g (1.5 mmol)を 50 mLのエタノールに溶解し た。そこへ KOH 0.12 g (2.1 mol)を添加した。 5時間加熱環流を行った後、反応混合 物を 50 mLの水へ添カ卩した。この水溶液に濃塩酸を滴下して pH 1に調整したところ沈 殿が生じた。沈殿物を濾過し、クロ口ホルムに溶解した。クロ口ホルム相を 10% NaHCO 水溶液、水で洗浄した。クロ口ホルムを留去して残渣を得た。残渣を水で再結晶し、
3
0.3 g (収率 63%)のカルボン酸体 (2)を得た。
[0147] (2)活性エステル体 (3)の合成
50 mL三口フラスコでカルボン酸誘導体 (2)0.2 g (0.6 mmol)と N-ヒドロキシスクシン イミド 0.07 g (0.6 mmol)を DMF 10mLに溶解した。これに N, Ν'-ジシクロへキシルカル ボジイミド 0.12 g (0.6 mmol)を 30分かけて滴下した。滴下後、室温で 30時間撹拌した 。減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマトグラフィー(クロ口ホルム) で単離精製し、活性エステル体 (3)を 0.14 g (収率 55%)得た。
[0148] (3)カルボン酸体 (4)の合成
50 mL三口フラスコでイミダゾロピリジン活性エステル体(3) 80 mg (0.19 mmol)とァ ラニン 17.3 mg (0.19 mmol)を DMF 20mLに溶解した。その後、室温で 10時間撹拌し た。反応終了後、減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマトグラフィ 一(クロ口ホルム メタノール =7 : 3)で単離精製し、カルボン酸体 (4)を 58 mg (収率 7 8%)得た。
[0149] (4)活性エステル体 (5)の合成
次いで、 50 mL三口フラスコでイミダゾロピリジンカルボン酸体 (4)54 mg (0.14 mmol) と N-ヒドロキシスクシンイミド 16.1 mg (0.14 mmol)を DMF 20mLに溶解した。これに DM F 5 mLに溶解した N, Ν'-ジシクロへキシルカルボジイミド 28.8 mg (0.14 mmol)を 30分 かけて滴下した。滴下後、室温で 30時間撹拌した。減圧下、 DMFを留去した。残渣を シリカゲルカラムクロマトグラフィー(クロ口ホルム)で単離精製し、活性エステル体 (5) を 62.2 mg (収率 92%)得た。
[0150] 合成例 3.
有機 EL色素として合成例 1で用いたォキサジァゾ口ピリジン誘導体を用い、スぺー サ一部にシスティン酸を用い、反応性基には活性エステル化したカルボニル基とァ ユオン性基であるスルホ -ゥム基の両方を導入した。ォキサジァゾ口ピリジン活性エス テル体 (6)をシスティン酸と反応させ、スぺーサ一部を導入したカルボン酸体 (9)を合 成した。その後、カルボン酸体 (9)をジォキサン中、 N-ヒドロキシスクシンイミドと反応さ せ、スぺーサ一部を導入したォキサジァゾ口ピリジン活性エステル体 (10)を合成した。 以下に反応例を示す。
[0151] [化 37]
Figure imgf000061_0001
スキーム 6.
[0152] 以下に、合成例 1と異なる部分のみの合成手順を示す。
(1)カルボン酸体 (9)の合成
50 mL三口フラスコでォキサジァゾ口ピリジン活性エステル体(6) 100 mg (0.21 mm ol)とシスティン酸 39 mg (0.23 mmol)を DMF 20mLに溶解した。その後、室温で 12時 間撹拌した。反応終了後、減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマト グラフィー(クロ口ホルム メタノール =7 : 3)で単離精製し、カルボン酸体 (9)を 98 mg ( 収率 88%)得た。
[0153] (2)活性エステル体 (10)の合成
次いで、 50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸体 (9) 80 mg (0.15 mmol)と N-ヒドロキシスクシンイミド 19 mg (0.17 mmol)を DMF 20mLに溶解した。これ に DMF 5 mLに溶解した N, Ν'-ジシクロへキシルカルボジイミド 35 mg (0.17 mmol)を 30分かけて滴下した。滴下後、室温で 30時間撹拌した。減圧下、 DMFを留去した。 残渣をシリカゲルカラムクロマトグラフィー(クロ口ホルム:メタノール = 10: 1)で単離精 製し、活性エステル体 (10)を 73 mg (収率 78%)得た。
[0154] 合成例 4.
有機 EL色素として合成例 1で用いたォキサジァゾ口ピリジン誘導体を用い、スぺー サ一部にセリンを用いた。ォキサジァゾ口ピリジン活性エステル体 (6)をセリンと反応さ せ、スぺーサ一部を導入したカルボン酸体 (11)を合成した。その後、カルボン酸体 (11 )をジォキサン中、 N-ヒドロキシスクシンイミドと反応させ、スぺーサ一部を導入したォ キサジァゾロピリジン活性エステル体 (12)を合成した。以下に反応例を示す。
[0155] [化 38]
Figure imgf000063_0001
12
スキーム 7.
[0156] 以下に、合成例 1と異なる部分のみの合成手順を示す。
(1)カルボン酸体 (11)の合成
50 mL三口フラスコでォキサジァゾ口ピリジン活性エステル体(6) 100 mg (0.21 mm ol)とセリン 26 mg (0.25 mmol)を DMF 20mLに溶解した。その後、室温で 12時間撹拌し た。反応終了後、減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマトグラフィ 一(クロ口ホルム メタノール =7 : 3)で単離精製し、カルボン酸体 (12)を 79 mg (収率 81%)得た。
[0157] (2)活性エステル体 (12)の合成
次いで、 50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸体 (11) 70 mg (0.1 5mmol)と N-ヒドロキシスクシンイミド 19 mg (0.17 mmol)を DMF 20mLに溶解した。これ に DMF 5 mLに溶解した N, Ν'-ジシクロへキシルカルボジイミド 35 mg (0.17 mmol)を 30分かけて滴下した。滴下後、室温で 30時間撹拌した。減圧下、 DMFを留去した。 残渣をシリカゲルカラムクロマトグラフィー(クロ口ホルム:メタノール = 10: 1)で単離精 製し、活性エステル体 (12)を 61 mg (収率 72%)得た。
[0158] 合成例 5.
有機 EL色素として合成例 1で用いたォキサジァゾ口ピリジン誘導体を用い、スぺー サ一部にペプチドリンカ一としてァラ-ルセリン (Ala-Ser)を用いた。ォキサジァゾロピ リジン活性エステル体 (6)をァラ-ルセリンと反応させ、スぺーサ一部を導入したカル ボン酸体 (13)を合成した。その後、カルボン酸体 (13)をジォキサン中、 N-ヒドロキシス クシンイミドと反応させ、スぺーサ一部を導入したォキサジァゾ口ピリジン活性エステ ル体 (14)を合成した。以下に反応例を示す。
[0159] [化 39]
Figure imgf000064_0001
14
スキーム 8.
[0160] 以下に、合成例 1と異なる部分のみの合成手順を示す。
(1)カルボン酸体 (13)の合成
50 mL三口フラスコでォキサジァゾ口ピリジン活性エステル体(6) 100 mg (0.21 mm ol)とァラ-ルセリン 45 mg (0.25 mmol)を DMF 20mLに溶解した。その後、室温で 10時 間撹拌した。反応終了後、減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマト グラフィー(クロ口ホルム メタノール =6 :4)で単離精製し、カルボン酸体 (13)を 72 mg (収率 64%)得た。
[0161] (2)活性エステル体 (14)の合成
次いで、 50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸体 (13) 60 mg (0.1 1 mmol)と N—ヒドロキシスクシンイミド 14 mg (0.12 mmol)を DMF 15mLに溶解した。こ れに DMF 5 mLに溶解した N, Ν'-ジシクロへキシルカルボジイミド 25 mg (0.12 mmol) を 30分かけて滴下した。滴下後、室温で 15時間撹拌した。減圧下、 DMFを留去した。 残渣をシリカゲルカラムクロマトグラフィー(クロ口ホルム:メタノール =8 : 2)で単離精 製し、活性エステル体 (14)を 60 mg (収率 86%)得た。
[0162] 合成例 6.
有機 EL色素として合成例 1で用いたォキサジァゾ口ピリジン誘導体を用い、スぺー サ一部にはエチレングリコール酸を用いた。以下に反応式を示す。
[化 40]
Figure imgf000065_0001
スキーム 9.
[0163] (1)酸クロライド体 (15)の合成
50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸体 (5) 100 mg (0.27 mmol) を SOC1 20mLに混合し、 2時間加熱環流を行った。室温まで冷却し SOC1を留去し、
2 2 酸クロライド体 15を 94 mg (Y. 90%)で得た。
[0164] (2)カルボン酸体(16)の合成
100 mL三口フラスコでォキサジァゾ口ピリジン酸クロライド体 (15) 90 mg (0.22 mmol
)を THF 40mLに混合した。そこへ 5mLの THFに溶解したエチレングリコール酸 20 mg
(0.22 mmol)を投入し、 1時間攪拌した。その後、 THFを留去した。残渣をメタノールで 再結晶し、カルボン酸体 16を 61 mg (Y. 62%)で得た。
[0165] (3)活性エステル体(17)の合成 次いで、 50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸体 (16) 100 mg (0. 22 mmol)と N-ヒドロキシスクシンイミド 29 mg (0.24 mmol)を DMF 25mLに溶解した。こ れに DMF 10 mLに溶解した N, Ν'-ジシクロへキシルカルボジイミド 50 mg (0.24 mmol )を 30分かけて滴下した。滴下後、室温で 15時間撹拌した。減圧下、 DMFを留去した 。残渣をシリカゲルカラムクロマトグラフィー(クロ口ホルム:メタノール = 7: 3)で単離精 製し、活性エステル体 (17)を 107 mg (収率 89%)得た。
[0166] 合成例 7.
有機 EL色素として合成例 1で用いたォキサジァゾ口ピリジン誘導体を用い、スぺー サ一部にタウリンを用いて、合成例 3のォキサジァゾ口ピリジン活性エステル体(10)を 合成した。
[0167] ォキサジァゾ口ピリジン活性エステル体(6) 0.48 g [1.08 mmol]と DCC等の不純物 0.52 g、 Taurine (M.W.: 125.15) 0.43 g [3.44 mmol]を 100 mLのナス型フラスコに入 れ、さらに無水 DMF 50mLを添カ卩した。次にトリェチルァミン (TEA、 M.W. : 101.19、 1 L = 0.73 kg) 715 μ 1 [514 mmol]加え、 4時間攪拌した。このとき、 TLC [CHC1: MeOH
3
= 6 :4、原料 Rf=0.89、 目的物 Rf=0.69]、 TLC [CHC1: MeOH = 7 : 3、原料 Rf=0.89
3
、 目的物 Rf= 0.49]にて確認したところ、反応は 2時間でほぼ終了した。
DMFを減圧留去した後、シリカゲルカラムクロマトグラフィー (CHC1: MeOH=3:l)で
3
精製し目的物を分取したところ、分取した溶液に結晶が生じたのでそれを濾過した。 得られた結晶を HPLC(Figure 3)、 TLCにて確認したところ目的物であった。収量は 28 3 mg (収率 58%)であった。
[0168] 実施例 1.
〈オリゴ DNAの色素標識及び検出(1)〉
(オリゴ DNA)
用いたオリゴ DNAは以下の通りである。
17mer DNA H N— (C6) - 5し ACT CCA GTG GTA ATC TA—3'
2
20mer DNA H N-(C6) - 5し ACT CCA GTG GTA ATC TAC TG— 3'
2
40mer DNA H N-(C6) - 5し ACT CCA GTG GTA ATC TAC TGG GAC GGA A
2
CA GCT TTG AGG T— 3' [0169] (標識手順)
標識色素には、合成例 1で合成したォキサジァゾ口ピリジンの活性エステル体 8 (EL - OSu-Sp)を用いた。オリゴ DNAに 20mer DNAを用いた例について説明する。
H N— (C6) - 5'— ACT CCA GTG GTA ATC TAC TG— 3' (10 nmol)を含むホウ酸 buff
2
er (pH 8.5) 20 μ 1に、活性エステル体(EL- OSu- Sp) 12 nmol (5.7 μ g)(1.2当量)を含 む DMSO溶液 80 1をカ卩えて室温で 6時間振とうした。振とう後、全量が 1 mlになるよう に 0.1 M TEAA (triethylamine acetate) buffer (pH7.0)をカ卩え、 NAP— 10カラム (GE heal thcare Sephadex G-25)を用いてオリゴヌクレオチドに由来する成分を分取した。その 際、 NAP-10カラムはあらかじめ 0.1M TEAA buffer 15 mlで平衡化させた後使用した。 全量が 1 mlになるようにメスアップした試料をカラムに充填し、 1 mlの溶液が溶出した 後、 0.1 M TEAA bufferを 1.5 mlチャージした。この直後力 の溶出液 1.5 mlを分取し た。得られた溶液 100 1を逆相 HPLCにより分析した。
なお、比較のため、スぺーサ一部を含まないォキサジァゾ口ピリジンの活性エステ ル体(EL- OSu)を用いてオリゴ DNAの標識を行った。また、 Molecular Probe社製の A1 exa594の活性エステル体も一部比較に用いた。
なお、標識率は、 HPLCスペクトルのピーク面積を対比することによって算出した。
[0170] (HPLC測定条件)
HPLC装置には、 日本分光 (株)製の LC-2000plusシリーズを用いた。
カフム: uL Science Inertsii ODS— 3 し olumn 5 m、 4.り mm X 25
0 mm
DNAグラジェント条件
Eluting solvent A: 0.1M TEAA水溶液 (pH7.0)
Eluting solvent B: 90% CH CN/0.1M TEAA水溶液(pH7.0)
3
Gradient (B%) 0 min (10%)→30 min (45%)→40 min (100%)→50 min (100%)→60 min (10%)
流速 lml/min
温度 40°C
[0171] (結果) EL- OSu又は EL- OSu- Spを用いて標識したオリゴ DNAの HPLCの結果を、 17mer D NA、 20mer DNA、 40mer DNAについて、図 4A〜4B、図 5A〜5C、図 6A〜6Bに示 す。また、標識率の値を表 1から 3に示す。
[表 1]
Figure imgf000068_0001
[表 2]
Figure imgf000068_0002
[表 3]
Figure imgf000068_0003
[0173] 次に、 17mer DNAを用い、 EL-OSu-Spとの比率を以下の範囲で変化させた場合の 、標識率の変化を調べた。結果を図 7に示す
[0174] スぺーサ一部を導入した標識色素 EL-OSu-Spを用いることにより、スぺーサ一部を 有しない EL- OSuや Alexa594に比べ標識率を向上させることができた。特に、 20mer 程度の長さのオリゴ DNAであれば、 1.2倍モルの添カ卩量で、 EL-OSuの約 12%、 Alexa の trace量(1%以下)に対し、概ね 100%の標識率を得ることができた。また、 17merや 40mer DNAは、 Alexaでは標識が困難であった力 これらのオリゴ DNAについても飛 躍的に標識率を向上させることができた。モル比 1.2程度でも概ね 100%の標識率が 得られることから、スぺーサ一部を導入した標識色素 EL-OSu-Spは、オリゴ DNAに対 して定量的な標識が可能である。 Alexa等の従来の標識色素を用いる場合、 200倍モ ル程度添加しても 50%前後の標識率し力得られな 、ことを考えると、 20mer程度の長 さのオリゴ DNAであれば、スぺーサ一部を導入した標識色素 EL-OSu-Spは約 1/200 の添加量で 100%の標識率を得ることができるという顕著な効果を有する。
[0175] 実施例 2.
〈オリゴ DNAの色素標識及び検出(2) >
有機 EL色素にスぺーサ一部を有するイミダゾロピリジンの活性エステル体 5(im-EL- OSu-Sp)を用いた以外は、実施例 1と同様の方法により 20mer DNAへの色素標識を 行った。
[0176] (結果)
ォキサジァゾ口ピリジンの活性エステル体 (EL-OSu-Sp)を用いた場合と同様、モル 比 1.2程度でも概ね 100%の標識率が得られた。
[0177] 実施例 3.
〈オリゴ DNAの色素標識及び検出(3) >
有機 EL色素に合成例 3で合成したスぺーサ一部を有するォキサジァゾ口ピリジンの 活性エステル体 10を用い、 DMS0を 10 μ 1として試料液全体の 10vol%とした以外は、 実施例 1と同様の方法により 20mer DNAへの色素標識を行った。
[0178] (結果)
ォキサジァゾ口ピリジンの活性エステル体 8を用いた場合と同様、モル比 1.2程度で も概ね 100%の標識率が得られた。なお、実施例 1では、有機 EL色素を溶解させるた め DMSOを試料液全体の 80vol%とした力 本実施例では 10vol%でも有機 EL色素が溶 解し、優れた水溶性を示した。
[0179] 実施例 4.
〈オリゴ DNAの色素標識及び検出(4) >
有機 EL色素に合成例 4で合成したスぺーサ一部を有するォキサジァゾ口ピリジンの 活性エステル体 12を用い、 DMSOを 10 μ 1として試料液全体の 10vol%とした以外は、 実施例 1と同様の方法により 20mer DNAへの色素標識を行った。
[0180] (結果)
ォキサジァゾ口ピリジンの活性エステル体 8を用いた場合と同様、モル比 1.2程度で も概ね 100%の標識率が得られた。また、実施例 3の場合と同様、優れた水溶性を示 した。
[0181] 実施例 5.
〈オリゴ DNAの色素標識及び検出(5) >
有機 EL色素に合成例 5で合成したスぺーサ一部を有するォキサジァゾ口ピリジンの 活性エステル体 14を用い、 DMSOを 10 μ 1として試料液全体の 10vol%とした以外は、 実施例 1と同様の方法により 20mer DNAへの色素標識を行った。
[0182] (結果)
ォキサジァゾ口ピリジンの活性エステル体 8を用いた場合と同様、モル比 1.2程度で も概ね 100%の標識率が得られた。なお、実施例 1では、有機 EL色素を溶解させるた め DMSOを試料液全体の 80vol%とした力 本実施例では 10vol%でも有機 EL色素が溶 解し、優れた水溶性を示した。
[0183] 実施例 6.
〈タンパク質の色素標識及び検出( 1 )〉
(標識手順)
BSA (Bovine Serium Albumin)のリシン残基のァミノ基とスぺーサ一部を含むォキサ ジァゾ口ピリジンの活性エステル体 8 (EL-OSu-Sp))を反応させてアミド結合を形成さ せて、 BSAへの色素標識を行った。具体的には、 BSA 1.0 mg (15.05 nmol)を含む炭 酸 buffer(pH9.0) 100 μ 1に、活性エステル体 35.82 μ g(75.25 nmol)を含む DMSO溶液 400 1加えて室温で 24時間振盪した。その後全量が 1 mlになるように 0.1 M TEAA bu ffer(pH7.0)を加え、 NAP- 10カラム (GE healthcare Sephadex G- 25)を用いて BSAに由 来する成分を 1.5 ml分取した。得られた溶液 100 1を逆相 HPLCにより分析した。
[0184] なお、 MALDI TOF MSにより、 EL- OSuで標識した BSAの同定を行った。標識した B SA (図 9A)は原料(図 9B)に比べ、分子量が 2200程増加しており、有機 EL色素が約 5分子結合して 、ることがわ力つた。
[0185] (HPLC測定条件)
HPLC装置には、日本分光 (株)製の LC-2000plusシリーズを用いた。
カフム:(JL Science Inertsil ODS— 3 Column 5 m、 4.り mm X 250 mm DNAグラジェント条件
Eluting solvent A: 0.1M TFA水溶液 (pH7.0)
Eluting solvent B: 90% CH CN/0.1M TFA水溶液(pH7.0)
3
Gradient (B%) 0 min (5%)→20 min (50%)→60 min (70%)→70 min (100%)→80 min (l 00%)→90 min (5%)
流速 0 min→20 min, 60 min→90 min: 1 mL/min、 20 min→60 min : 0.5 mL/min 温度 40°C
[0186] (結果)
スぺーサ一部を有しな 、EL- OSuとスぺーサ一部を有する EL- OSu- Spを用いて標 識した BSAの HPLCの結果を、それぞれ図 8Aと 8Bに示す。標識率を表 4に示す。
[0187] [表 4]
Figure imgf000071_0001
[0188] BSAを対象とした場合も、スぺーサ一部を有する EL-OSu-Spを用いることにより、ス ぺーサ一部を有しない EL-OSuを用いた場合よりも飛躍的に標識率を向上させること ができた。反応性基である活性エステルと色素分子との間にスぺーサ一部を導入す ることにより、 BSAの標識部位と色素分子の立体障害がより小さくなつたため標識率が 向上したと考えられる。また、 TOF-MASSの測定結果より、 EL-OSuで標識した BSAに は 5分子の有機 EL色素が導入されていることを確認した。 EL-OSu-Spの場合、 5分子 を導入するため 5倍モル用いたところ、ほぼ定量的に標識することができた。
[0189] 実施例 7.
〈タンパク質の色素標識及び検出(2) >
有機 EL色素に合成例 3で合成したスぺーサ一部を有するォキサジァゾ口ピリジンの 活性エステル体 10を用い、 DMSOを 10 μ 1として試料液全体の 10vol%とした以外は、 実施例 5と同様の方法により BSAへの色素標識を行った。
[0190] (結果) 実施例 5の場合と同様の標識率で得られた。なお、実施例 5では、有機 EL色素を溶 解させるため DMSOを試料液全体の 80vol%とした力 本実施例では 10vol%でも有機 E L色素が溶解し、優れた水溶性を示した。
[0191] 実施例 8.
〈タンパク質の色素標識及び検出 (4) >
有機 EL色素に合成例 4で合成したスぺーサ一部を有するォキサジァゾ口ピリジンの 活性エステル体 12を用い、 DMSOを 10 μ 1として試料液全体の 10vol%とした以外は、 実施例 5と同様の方法により BSAへの色素標識を行った。
[0192] (結果)
実施例 5の場合と同様の標識率が得られた。また、実施例 5の場合と同様、優れた 水溶性を示した。
[0193] 実施例 9.
〈タンパク質の色素標識及び検出(5) >
有機 EL色素に合成例 5で合成したスぺーサ一部を有するォキサジァゾ口ピリジンの 活性エステル体 14を用い、 DMSOを 10 μ 1として試料液全体の 10vol%とした以外は、 実施例 5と同様の方法により BSAへの色素標識を行った。
[0194] (結果)
実施例 5の場合と同様の標識率が得られた。なお、実施例 5では、有機 EL色素を溶 解させるため DMSOを試料液全体の 80vol%とした力 本実施例では 10vol%でも有機 Ε L色素が溶解し、優れた水溶性を示した。
[0195] 実施例 10.
〈タンパク質の色素標識及び検出 (6) >
有機 EL色素に合成例 6で合成したスぺーサ一部を有するォキサジァゾ口ピリジンの 活性エステル体 17を用い、 DMSOを 10 μ 1として試料液全体の 10vol%とした以外は、 実施例 5と同様の方法により BSAへの色素標識を行った。
[0196] (結果)
実施例 5の場合と同様の標識率が得られた。なお、本実施例でも優れた水溶性を 示した。 以上、説明したように、本発明の標識色素によれば、固体状態でも高い蛍光強度を 有するのみならず、標的分子に対して用いる色素量を大幅に低減することが可能で ある。例えば、従来の標識色素の場合、 200倍モル程度が常識とされていた力 これ を 1/200程度まで低減することが可能となる。これにより使用する標識色素の量を大 幅に低減できることから、標的分子の検出費用を大幅にコストダウンすることも可能と なる。また、標識反応後、未反応の大量の色素を除去する工程が不要とすることも可 能となり、検出方法をより短時間で行うことができる。

Claims

請求の範囲
[1] 蛍光測定による生体分子の検出に用いる標識色素であって、有機 EL色素力も成る 発色部と、生体分子を結合する結合部と、発色部と結合部とを連結するスぺーサー 部とを有する生体分子用標識色素。
[2] 上記有機 EL色素が、 1種以上のへテロ原子、セレン原子又はボロン原子を含む 5 員環化合物と共役系を有する 6員環化合物とから成る縮合多環化合物である請求項
1記載の生体分子用標識色素。
[3] 上記縮合多環化合物が、以下の一般式(1)、(2)又は(3)のいずれか 1種で示され るァゾール誘導体である請求項 2記載の生体分子用標識色素。
Figure imgf000074_0001
Figure imgf000074_0002
(3)
(式中、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、
1 2 3 4
ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ-ル 基、芳香族炭化水素基、複素環基などの置換基を有してもよい芳香族炭化水素基 又は炭化水素基又は複素環基を示し、 Xは置換基を有して 、てもよ 、窒素原子又は 硫黄原子又は酸素原子又はセレン原子、ボロン原子を示し、 R'は芳香環を含んでも 良 、アルキル基又はアルケニル基等の脂肪族炭化水素基あるいは芳香族炭化水素 基、 An—は、 Cl—、 Br―、 I—等のハロゲン化物イオン、 CF SO―、 BF―、 PF—を示す。 )
3 3 4 6
[4] 上記の Rと R力 それぞれ独立に、チォフェン誘導体、フラン誘導体、ピロール誘
2 3
導体、イミダゾール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘 導体及びピリジン誘導体からなる群から選択された 1種である請求項 3記載の生体分 子用標識色素。
[5] 上記の Rと R 1S スルホ -ル基を有するァリール基である請求項 3記載の生体分子
2 3
用標識色素。
[6] 上記縮合多環化合物が、以下の一般式 (4)、 (5)、 (6)、 (7)又は (8)で示されるィ ミダゾール誘導体である請求項 2記載の生体分子用標識色素。
Figure imgf000076_0001
( 7 ) ( 8 )
(式中、 R、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル
1 2 3 4 5
基、ァルケ-ル基、アルキ-ル基、アルコキシ基、ヒドロキシル基、シァノ基、スルホ- ル基、芳香族炭化水素基、複素環基などの置換基を有しても良い芳香族炭化水素 基又は炭化水素基又は複素環基を示し、 R、 R、 R、 R、 Rは同じでも異なっていて
1 2 3 4 5
も良ぐ R'、 R"は芳香環を含んでも良いアルキル基又はアルケニル基等の脂肪族炭 化水素基あるいは芳香族炭化水素基、 An—は、 Cl—、 Br―、 Γ等のハロゲンィ匕物イオン、 CF SO―、 BF―、 PF—を示す。 )
3 3 4 6
[7] 上記の Rと R力 それぞれ独立に、チォフェン誘導体、フラン誘導体、ピロール誘
2 3
導体、イミダゾール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘 導体及びピリジン誘導体からなる群から選択された 1種である請求項 6記載の生体分 子用標識色素。
[8] 上記の Rと R 1S スルホ -ル基を有するァリール基である請求項 6記載の生体分子
2 3
用標識色素。
[9] 上記結合部が、カルボン酸基、イソシァネート基、イソチオシァネート基、エポキシ 基、ハロゲン化アルキル基、トリアジン基、カルポジイミド基そして活性エステルイ匕した
Figure imgf000077_0001
、ずれか 1種の反応性基を有する請求項 1から 8の 、 ずれか一つに記載の生体分子用標識色素。
[10] 上記スぺーサ一部が、 -CH―、― NHCOO—、― CONH―、― CH NH―、― CH NR―、—CO
2 2 2
0-、 -SO NH -、 - HN- C(=NH)- NH -、 - O-、 - S -、 - NR- (Rはアルキル基)、 - (CH - CH
2 2 2
-0) - (nは 1から 10の整数)、- CH=CH -、 - C≡C -、 - Ar-及び- CO- Ar- NR-からなる 群力 選択される官能基を少なくとも 1種含む請求項 1から 9のいずれか一つに記載 の生体分子用標識色素。
[11] 上記スぺーサ一部が、以下の一般式 (I)で表される請求項 10記載の生体分子用標 識色素。
-(CHR')p-X-(CHR' q- (I)
(式中、 Xは直接結合又は、 - NHCOO-、 - CONH -、 - COO-、 -SO NH -、 - HN- C(=NH
2
)- NH -、 - 0-、 - S -、 - NR -、 - CH=CH -、 - C≡C -、 - Ar-及び- CO- Ar- NR-からなる群 力も選択された少なくとも 1種の官能基を表し、 R'と R"はそれぞれ独立に、水素原子 、あるいは芳香環を含んでも良 、アルキル基又はアルケニル基等の脂肪族炭化水 素基、あるいは芳香族炭化水素基であって、必要によりスルホニル基、ヒドロキシル 基、 4級ァミン基及びカルボキシル基力 なる群力 選択された 、ずれか 1種の荷電 基により置換されたものを表し、 Arはァリール基を表し、 pと qはそれぞれ独立に 0から 20の整数を表し、 p+q≥lである。 )
[12] 上記スぺーサ一部が、アミノ酸又は 2〜20個のアミノ酸からなるペプチドリンカ一で ある請求項 10記載の生体分子用標識色素。
[13] 上記スぺーサ一部がアミノ酸であって、該アミノ酸が天然アミノ酸又は合成アミノ酸 である請求項 12記載の生体分子用標識色素。
[14] 上記アミノ酸力 システィン酸、 2-ァミノ- 3-スルホサルファ-ルプロパン酸、 2-ァミノ
-3-スルホキシプロパン酸、チロシン、スレオニン、 4-ァミノ- 2-ヒドロキシブタン酸、ホ モセリン及びセリンカもなる群力も選択された 1種である請求項 13記載の生体分子用 標識色素。
[15] 上記スぺーサ一部がペプチドリンカ一であって、該ペプチドリンカ一が、スルホ-ル 基、ヒドロキシル基、 4級ァミン基及びカルボキシル基力 なる群力 選択された少な くとも 1種の荷電基を有する請求項 12記載の生体分子用標識色素。
[16] 上記ペプチドリンカ一が、システィン酸、 2-ァミノ- 3-スルホサルファ-ルプロパン酸 、 2-ァミノ- 3-スルホキシプロパン酸、チロシン、スレオニン、 4-ァミノ- 2-ヒドロキシブタ ン酸、ホモセリン及びセリンカ なる群力も選択された少なくとも 1種のアミノ酸を含む 請求項 15記載の生体分子用標識色素。
[17] 蛍光測定による生体分子の検出に用いる生体分子用標識キットであって、有機 EL 色素から成る発色部と、生体分子を結合する結合部と、発色部と結合部とを連結する スぺーサ一部とを有する標識色素を含む生体分子用標識キット。
[18] 蛍光測定による生体分子の検出に用いる生体分子用標識キットであって、少なくと も、有機 EL色素力も成る発色部と、該発色部に結合するスぺーサ一部であって、 -C H一、一 NHCOO—、一 CONH―、一 CH NH―、一 CH NR―、一 COO -、一 SO NH―、一 HN— C(=N
2 2 2 2
H)- NH -、 - 0-、 - S -、 - NR- (Rはアルキル基)、 - (CH - CH -0) - (nは 1から 10の整数
2 2 η
;)、 - CH=CH -、 - C≡C -、 -Ar-及び- CO-Ar- NR-力 なる群力 選択される官能基を 少なくとも 1種含むスぺーサ一部とを有する標識色素前駆体、を含む生体分子用標 識キット。
[19] さらに、カルボン酸基、イソシァネート基、イソチオシァネート基、エポキシ基、ハロ ゲンィ匕アルキル基、トリアジン基、カルポジイミド基そして活性エステルイ匕したカルボ ニル基から選択されたいずれか 1種の反応性基を標識色素に導入するための反応 性基導入試薬を含む請求項 17又は 18に記載の生体分子用標識キット。
[20] 有機 EL色素から成る発色部と、生体分子を結合する結合部と、発色部と結合部と を連結するスぺーサ一部とを有する標識色素を、生体分子試料と反応させ、該標識 色素により標識された生体分子試料の蛍光を測定する生体分子の検出方法。
[21] 上記生体分子試料に、核酸、タンパク質、ペプチド類、そして糖類力もなる群から 選択された 、ずれ力 1種を用いる請求項 20記載の検出方法。
[22] 有機 EL色素から成る発色部と、生体分子を結合する結合部と、発色部と結合部と を連結するスぺーサ一部とを有する標識色素で標識されたプローブと、生体分子試 料とを反応させ、該生体分子試料の蛍光を測定する検出方法。
[23] 上記生体分子試料が核酸であり、上記プローブには該核酸の塩基配列に相補的 なオリゴヌクレオチド又は PNAを用いる請求項 22記載の検出方法。
[24] 上記オリゴヌクレオチドがプライマー又はターミネータであり、上記核酸を増幅させ て蛍光を測定する請求項 23記載の検出方法。
[25] 上記核酸の増幅に先立ってプライマーを有機 EL色素で標識する請求項 24記載の 検出方法。
[26] 上記オリゴヌクレオチド又は PNAがモレキュラービーコンである請求項 23記載の検 出方法。
[27] 生体分子から成る被検体又は修飾物質により修飾された該被検体の検出方法であ つて、被検体に特異結合する結合物質又は修飾物質に特異結合する結合物質の一 方を、有機 EL色素力も成る発色部と、生体分子を結合する結合部と、発色部と結合 部とを連結するスぺーサ一部とを有する標識色素で標識し、標識された結合物質か らの蛍光を測定する生体分子の検出方法。
[28] 上記の被検体又は修飾物質と上記結合物質との組み合わせが、抗原 抗体、ハ プテン一抗ノヽプテン抗体、ピオチン一アビジン、 Tag 抗 Tag抗体、レクチン一糖タン パク質又はホルモン—受容体である請求項 27記載の検出方法。
[29] 生体分子試料を電気泳動によりサイズ分離する工程を含み、該電気泳動に先立つ てあるいは該電気泳動後に生体分子試料を、有機 EL色素から成る発色部と、生体 分子を結合する結合部と、発色部と結合部とを連結するスぺーサ一部とを有する標 識色素で標識する生体分子の検出方法。
[30] 上記生体分子試料が核酸であり、電気泳動画像に基づいて該核酸の塩基配列を 決定する請求項 29記載の検出方法。
[31] 上記生体分子試料力タンパク質であり、電気泳動画像に基づ 、て取り出したタンパ ク質を質量分析する請求項 29記載の検出方法。
[32] 組織又は細胞試料中の生体分子を、有機 EL色素力 成る発色部と、生体分子を 結合する結合部と、発色部と結合部とを連結するスぺーサ一部とを有する標識色素 で標識する組織又は細胞の染色方法。
[33] 上記生体分子が核酸又はタンパク質である請求項 32記載の染色方法。
[34] 糸且織又は細胞試料の染色に用いる染色色素であって、有機 EL色素力も成る発色 部と、組織又は細胞中の生体分子と結合する結合部と、発色部と結合部とを連結す るスぺーサ一部とを有する標識色素から成る染色色素。
PCT/JP2006/315008 2005-07-28 2006-07-28 生体分子用標識色素及び標識キット並びに生体分子の検出方法 WO2007013601A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020087004688A KR101427354B1 (ko) 2005-07-28 2006-07-28 생체분자용 표지색소 및 표지키트와 생체분자의 검출방법
CN200680035218.4A CN101273096B (zh) 2005-07-28 2006-07-28 生物分子用标记色素、标记试剂盒以及生物分子的检测方法
JP2007526917A JP5638734B2 (ja) 2005-07-28 2006-07-28 生体分子用標識色素及び標識キット並びに生体分子の検出方法
EP06781918A EP1932888A4 (en) 2005-07-28 2006-07-28 BIOMOLECULE MARKING DYE, MARKING KIT AND METHOD FOR DETECTION OF BIOMOLECULE
US11/989,410 US8304259B2 (en) 2005-07-28 2006-07-28 Labeling dye for detecting biomolecule, labeling kit, and method for detecting biomolecule

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-219218 2005-07-28
JP2005219218 2005-07-28
JP2006-025658 2006-02-02
JP2006025658 2006-02-02

Publications (1)

Publication Number Publication Date
WO2007013601A1 true WO2007013601A1 (ja) 2007-02-01

Family

ID=37683488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315008 WO2007013601A1 (ja) 2005-07-28 2006-07-28 生体分子用標識色素及び標識キット並びに生体分子の検出方法

Country Status (6)

Country Link
US (1) US8304259B2 (ja)
EP (1) EP1932888A4 (ja)
JP (1) JP5638734B2 (ja)
KR (1) KR101427354B1 (ja)
CN (1) CN101273096B (ja)
WO (1) WO2007013601A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016718A1 (ja) * 2007-07-30 2009-02-05 Shinichiro Isobe 診断薬及びそれを用いた診断方法
JP2009168450A (ja) * 2007-12-29 2009-07-30 Shino Test Corp 試料中の金属の測定方法
JP2011514809A (ja) * 2008-03-13 2011-05-12 パーキンエルマー ラス インコーポレイテッド 多重検出システムのための酵素基質
JP2013253825A (ja) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> 生体分子検出分子、生体分子検出素子、および生体分子検出分子の製造方法
US10159136B2 (en) 2016-10-21 2018-12-18 AhuraTech LLC System and method for producing light in a liquid media
US10241111B2 (en) 2016-10-21 2019-03-26 AhuraTech LLC Electroluminescent binding assays
US11155851B2 (en) 2013-03-15 2021-10-26 University Of Washington Through Its Center For Commercialization Compounds and methods relating to lysosomal storage disorders
US11807851B1 (en) 2020-02-18 2023-11-07 Ultima Genomics, Inc. Modified polynucleotides and uses thereof
US11946097B2 (en) 2019-02-19 2024-04-02 Ultima Genomics, Inc. Linkers and methods for optical detection and sequencing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357469A1 (en) * 2008-12-02 2011-08-17 Japan Science and Technology Agency Novel clear native electrophoresis method utilizing aromatic sulfonic acid compound
CN102504572A (zh) * 2011-10-18 2012-06-20 江苏南通维立科化工有限公司 一种日落黄色素半抗原与人工抗原的合成方法
CN116419767A (zh) * 2020-08-18 2023-07-11 阿尔缇玛基因组学公司 用于标记生物分子的试剂
WO2023164003A2 (en) * 2022-02-23 2023-08-31 Ultima Genomics, Inc. Reagents for labeling biomolecules and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187563A (ja) * 2002-12-10 2004-07-08 Peptide Door Co Ltd IgGに結合性を有するペプチド又は該ペプチドを表面に呈示したファージを用いたIgGの検出方法
WO2005062046A1 (ja) * 2003-12-24 2005-07-07 Shinichiro Isobe 生体分子の検出方法及びそれに用いる標識色素並びに標識キット
WO2006030788A1 (ja) * 2004-09-14 2006-03-23 Shinichiro Isobe インターカレータ及びそれを用いた遺伝子検出方法
JP2006180835A (ja) * 2004-12-28 2006-07-13 Shinichiro Isobe 遺伝子検出方法
JP2006234772A (ja) * 2005-02-28 2006-09-07 Shinichiro Isobe タンパク質の検出方法及びそれに用いる蛍光色素

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2172248C (en) * 1993-09-22 2003-12-30 John Kenten Self-sustained sequence replication electrochemiluminescent nucleic acid assay
JP2001288197A (ja) 2000-04-10 2001-10-16 Fuji Photo Film Co Ltd 蛍光ヌクレオチド
FR2839364B1 (fr) * 2002-05-03 2004-12-24 Commissariat Energie Atomique Procede de detection d'une reconnaissance molecukaire par electrochimiluminescence
CA2551723C (en) 2003-12-24 2012-01-03 Shinichiro Isobe Single-layer organic electroluminescent device
JP3881667B2 (ja) * 2003-12-24 2007-02-14 信一郎 礒部 生体分子の検出方法及びそれに用いる標識色素並びに標識キット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187563A (ja) * 2002-12-10 2004-07-08 Peptide Door Co Ltd IgGに結合性を有するペプチド又は該ペプチドを表面に呈示したファージを用いたIgGの検出方法
WO2005062046A1 (ja) * 2003-12-24 2005-07-07 Shinichiro Isobe 生体分子の検出方法及びそれに用いる標識色素並びに標識キット
WO2006030788A1 (ja) * 2004-09-14 2006-03-23 Shinichiro Isobe インターカレータ及びそれを用いた遺伝子検出方法
JP2006180835A (ja) * 2004-12-28 2006-07-13 Shinichiro Isobe 遺伝子検出方法
JP2006234772A (ja) * 2005-02-28 2006-09-07 Shinichiro Isobe タンパク質の検出方法及びそれに用いる蛍光色素

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCIENCE, vol. 283, 1 January 1999 (1999-01-01), pages 83 - 87

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016718A1 (ja) * 2007-07-30 2009-02-05 Shinichiro Isobe 診断薬及びそれを用いた診断方法
JP5189096B2 (ja) * 2007-07-30 2013-04-24 株式会社アイエスティー 診断薬及びそれを用いた測定方法
JP2009168450A (ja) * 2007-12-29 2009-07-30 Shino Test Corp 試料中の金属の測定方法
JP2011514809A (ja) * 2008-03-13 2011-05-12 パーキンエルマー ラス インコーポレイテッド 多重検出システムのための酵素基質
US8791246B2 (en) 2008-03-13 2014-07-29 Perkinelmer Health Sciences, Inc. Enzymatic substrates for multiple detection systems
JP2013253825A (ja) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> 生体分子検出分子、生体分子検出素子、および生体分子検出分子の製造方法
US11155851B2 (en) 2013-03-15 2021-10-26 University Of Washington Through Its Center For Commercialization Compounds and methods relating to lysosomal storage disorders
US10159136B2 (en) 2016-10-21 2018-12-18 AhuraTech LLC System and method for producing light in a liquid media
US10241111B2 (en) 2016-10-21 2019-03-26 AhuraTech LLC Electroluminescent binding assays
US11946097B2 (en) 2019-02-19 2024-04-02 Ultima Genomics, Inc. Linkers and methods for optical detection and sequencing
US11807851B1 (en) 2020-02-18 2023-11-07 Ultima Genomics, Inc. Modified polynucleotides and uses thereof

Also Published As

Publication number Publication date
EP1932888A1 (en) 2008-06-18
CN101273096B (zh) 2014-08-13
JP5638734B2 (ja) 2014-12-10
KR101427354B1 (ko) 2014-08-07
US8304259B2 (en) 2012-11-06
CN101273096A (zh) 2008-09-24
JPWO2007013601A1 (ja) 2009-02-12
US20110195408A1 (en) 2011-08-11
KR20080038183A (ko) 2008-05-02
EP1932888A4 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP5638734B2 (ja) 生体分子用標識色素及び標識キット並びに生体分子の検出方法
JP4801445B2 (ja) 生体分子の検出方法及びそれに用いる標識色素並びに標識キット
US9618453B2 (en) Aggregation induced emission of fluorescent bioprobes and methods of using the same
Hüsken et al. “Four-potential” ferrocene labeling of PNA oligomers via click chemistry
JP3881667B2 (ja) 生体分子の検出方法及びそれに用いる標識色素並びに標識キット
KR20240031282A (ko) 시아닌계 화합물, 이를 포함하는 생체분자 표지용 염료, 키트 및 조영제 조성물
JP5539635B2 (ja) 蛍光色素
JP5881624B2 (ja) 蛍光色素
JP5503836B2 (ja) 蛍光色素及びその製造方法
JP4860352B2 (ja) 診断薬及びそれを用いた測定方法
WO2015107071A1 (en) Genetically encoded spin label
US20170313885A1 (en) Alkoxysilyl group-containing organic el dye and a method for producing the same
WO2006030788A1 (ja) インターカレータ及びそれを用いた遺伝子検出方法
US20120178086A1 (en) Reductive release probes containing a chemoselectively cleavable alpha-azidoether linker and methods of use thereof
JP2016196608A (ja) 蛍光色素
JP5539920B2 (ja) 診断薬及びそれを用いた測定方法
US8350038B2 (en) Fluorescence quencher molecules
JP2006180835A (ja) 遺伝子検出方法
JP2019031604A (ja) 蛍光色素
JP2019048908A (ja) 蛍光色素

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035218.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526917

Country of ref document: JP

Ref document number: 461/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087004688

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006781918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11989410

Country of ref document: US