WO2007013282A1 - 倒立二輪走行型ロボット及びその制御方法 - Google Patents
倒立二輪走行型ロボット及びその制御方法 Download PDFInfo
- Publication number
- WO2007013282A1 WO2007013282A1 PCT/JP2006/313579 JP2006313579W WO2007013282A1 WO 2007013282 A1 WO2007013282 A1 WO 2007013282A1 JP 2006313579 W JP2006313579 W JP 2006313579W WO 2007013282 A1 WO2007013282 A1 WO 2007013282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle body
- control
- equation
- inverted
- traveling
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 48
- 238000001514 detection method Methods 0.000 claims abstract description 36
- 230000000452 restraining effect Effects 0.000 claims description 8
- 230000005484 gravity Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000026058 directional locomotion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D61/00—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D37/00—Stabilising vehicle bodies without controlling suspension arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D51/00—Motor vehicles characterised by the driver not being seated
- B62D51/02—Motor vehicles characterised by the driver not being seated the driver standing in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K11/00—Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
- B62K11/007—Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K17/00—Cycles not otherwise provided for
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0891—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/16—Single-axle vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/46—Wheel motors, i.e. motor connected to only one wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
- B60L2240/20—Acceleration angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/26—Vehicle weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/34—Stabilising upright position of vehicles, e.g. of single axle vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/42—Control modes by adaptive correction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to an inverted two-wheeled traveling robot using a coaxial two-wheeled robot among baggage carrying robots and a control method thereof, and more specifically, an inverted two-wheeled traveling robot when a robot posture is restrained, and It relates to the control method.
- Robots that carry luggage are generally kept in contact with each other at three or more points, such as a three-wheel type or a four-wheel type, to maintain stability.
- a three-wheel type or a four-wheel type have been studied for coaxial two-wheeled robots that operate based on the inverted pendulum model because they have a large area and are difficult to turn.
- FIG. 13 shows a conventional coaxial two-wheeled mobile robot described in Patent Document 1.
- a coaxial two-wheeled mobile robot described in Patent Document 1 is mounted on a vehicle body 104 and a vehicle body 104 rotatably supported on an axle 101 having a pair of wheels 102 and 103 at both ends.
- a wheel drive motor 105, a control computer 106 that sends an operation command to the wheel drive motor 105, and an angle detection means 107 that detects the inclination of the vehicle body 104 are provided. Then, the inclination angle of the vehicle body 104 detected by the angle detection means 107 is sampled at short time intervals, and the inclination angle of the vehicle body 104 is preliminarily stored in the control computer 106 using the state variable input value and the feedback gain K as a coefficient.
- FIG. 14 shows a person-seat type coaxial two-wheeled mobile robot described in Patent Document 2.
- a passenger-seat coaxial two-wheeled mobile robot described in Patent Document 2 controls and drives left and right drive wheels 202 arranged coaxially on a platform 201 in accordance with the output of an attitude detection sensor. Posture control and travel control for maintaining the balance in the front-rear direction are performed. Then, an auxiliary wheel 203 that contacts the front side or the rear side of the drive wheel 202 and an auxiliary wheel drive unit 204 that causes the auxiliary wheel 203 to appear and retract are provided.
- the auxiliary wheel 203 comes out and the stability is improved, so the risk of falling can be reduced.
- Patent Document 1 Japanese Patent No. 2530652
- Patent Document 2 JP 2004-74814
- Patent Document 2 The technique disclosed in Patent Document 2 described above has a mechanism for driving the auxiliary wheel drive unit 204 to cause the auxiliary wheel 203 to appear and retract when the obstacle detection sensor 205 detects an obstacle. Therefore, when the auxiliary wheel 203 appears and disappears, the left and right drive wheels 202 and the auxiliary wheel 203 are grounded at three points, and the risk of falling can be reduced. [0013] However, in the present technology, only the obstacle is recognized and the auxiliary wheel 203 is released, and the speed and posture depend on the maneuvering of the person.
- An object of the present invention is to solve the above-described conventional problem, and when a part of a vehicle body of a coaxial two-wheeled vehicle that moves while performing an inverted control comes into contact with the ground or a wall and receives a restraining force, A safe inverted two-wheeled traveling robot that can maintain posture control and a traveling state and does not place a burden on a user, and a control method thereof. Means for solving the problem
- the present invention is configured as follows.
- a vehicle body According to a first aspect of the present invention, a vehicle body
- a first state detecting means for detecting at least one of the tilt angle and the tilt angular velocity of the vehicle body
- a second state detecting means for detecting at least one of the rotational angle and rotational angular velocity of the wheel
- Vehicle body restraint recognition means for detecting whether or not rotation of the vehicle body in the tilt direction is restrained by using the information detected by the first state detection means or the second state detection means as an input;
- Control means for determining a command value to the drive device, switching a plurality of travel control methods according to the determined command value, and driving the drive device to perform travel control of the vehicle body,
- the control means Based on the detection result of the vehicle body restraint recognition means, the control means performs the plurality of travels. Inverted two-wheel travel, in which a command value to the drive device for switching the row control method is determined, and the drive device is driven by the determined command value to perform travel control of the vehicle body and maintain the travel state Provide type robot.
- At least one of the tilt angle and the tilt angular velocity of the vehicle body is detected as the first state detection information
- the control means switches between a plurality of driving control methods to determine command values for the drive devices that respectively drive two wheels arranged coaxially with the vehicle body, and a plurality of values are determined based on the determined command values.
- An inverted two-wheeled traveling robot control method is provided in which the traveling control method is switched and the driving device is driven to perform traveling control of the vehicle body and maintain the traveling state.
- the partial force of the vehicle body is restricted when the rotation is restricted by contact with the ground or a wall.
- the constraint in the rotational direction of the vehicle body is recognized by the recognition means or the vehicle body constraint recognition operation. Then, depending on the recognized restraint state, for example, by changing the ratio of the torque that contributes to vehicle body rotation, avoiding the problem that excessive torque is applied to the wheels and the attitude control cannot be maintained and the traveling speed increases rapidly. Can do.
- FIG. 1A is a side view of the inverted two-wheeled robot according to the first embodiment of the present invention in an inclined state
- FIG. 1B is a block diagram showing the control unit of the inverted two-wheeled robot according to the first embodiment of the present invention.
- FIG. 2 is a front view of the inverted two-wheeled robot according to the first embodiment of the present invention in a tilted state.
- FIG. 3 is an explanatory diagram of a moving configuration of the inverted two-wheeled traveling robot according to the first embodiment of the present invention
- FIG. 4 is a mechanism parameter diagram of the inverted two-wheeled robot according to the first embodiment of the present invention.
- FIG. 5 is a control block diagram of the inverted two-wheeled traveling robot in the first embodiment of the present invention.
- FIG. 6 is a schematic diagram of turning control of the inverted two-wheeled robot in the first embodiment of the present invention.
- FIG. 7 is an overall view of travel control in the first embodiment of the present invention.
- FIG. 8 is a flowchart of an inverted two-wheeled robot according to the second embodiment of the present invention.
- FIG. 9 is a contact state diagram of the inverted two-wheeled traveling robot in the first embodiment of the present invention.
- FIG. 10 is a flow chart of the inverted two-wheeled robot according to the second embodiment of the present invention.
- FIG. 11 is an explanatory diagram of the case where the vehicle body of the inverted two-wheeled robot according to the third embodiment of the present invention inclines and always contacts the ground.
- FIG. 12 is a flow chart of the inverted two-wheeled robot in the first embodiment of the present invention.
- FIG. 13 is a diagram of a conventional coaxial two-wheeled mobile robot described in Patent Document 1.
- FIG. 14 is a diagram of a conventional passenger-type coaxial two-wheeled mobile robot described in Patent Document 2.
- FIG. 14 is a diagram of a conventional passenger-type coaxial two-wheeled mobile robot described in Patent Document 2.
- a vehicle body According to a first aspect of the present invention, a vehicle body
- a first state detecting means for detecting at least one of the tilt angle and the tilt angular velocity of the vehicle body
- a second state detecting means for detecting at least one of the rotational angle and rotational angular velocity of the wheel
- Vehicle body restraint recognition means for detecting whether or not rotation of the vehicle body in the tilt direction is restrained by using the information detected by the first state detection means or the second state detection means as an input;
- Control means for determining a command value to the drive device, switching a plurality of travel control methods according to the determined command value, and driving the drive device to perform travel control of the vehicle body,
- the control means determines a command value to the drive device for switching the plurality of travel control methods, and the drive device is driven by the determined command value.
- an inverted two-wheeled traveling robot is provided in which the traveling control of the vehicle body is performed to maintain the traveling state.
- the vehicle body has at least one contact sensor for detecting a contact force with respect to the vehicle body, and the vehicle body restraint recognition means includes the contact information detected by the contact sensor.
- the inverted two-wheeled robot according to the first aspect for recognizing a vehicle restraint state is provided.
- the torque for rotationally driving the wheel is set.
- An inverted two-wheeled traveling robot according to the first or second aspect is provided that switches to a control method that adds the torque generated by the restraining force to the vehicle body.
- the inverted two-wheeled traveling robot according to the first or second aspect, wherein the control is switched to stop the feedback with respect to the tilt angle and tilt angle speed of the vehicle body when restrained. To do.
- the feedback to the tilt angle and the tilt angle speed of the vehicle body is stopped, and the fourth mode is switched to the control for continuing only the travel of the vehicle body.
- An inverted two-wheeled traveling robot described above is provided.
- the inverted two-wheeled traveling robot according to the first or second aspect, wherein the integrated value of the error of the rotational angular velocity of the wheel is reset when the vehicle body is restrained.
- the inverted two-wheeled traveling robot according to the third aspect, wherein the integrated value of the error of the rotational angular velocity of the wheel is reset when the vehicle body is restrained.
- the inverted two-wheeled traveling robot according to the fourth aspect, wherein the integrated value of the error of the rotational angular velocity of the wheel is reset when the vehicle body is restrained.
- the inverted two-wheeled traveling robot according to the fifth aspect, wherein the integrated value of the error of the rotational angular velocity of the wheel is reset when the vehicle body is restrained.
- At least one of the lean angle and the lean angular velocity of the vehicle body is detected as the first state detection information
- the control means switches between a plurality of driving control methods to determine command values for the drive devices that respectively drive two wheels arranged coaxially with the vehicle body, and a plurality of values are determined based on the determined command values.
- An inverted two-wheeled traveling robot control method is provided in which the traveling control method is switched and the driving device is driven to perform traveling control of the vehicle body and maintain the traveling state.
- FIG. 1A shows a side view of the inverted two-wheeled robot according to the first embodiment of the present invention in a tilted state
- FIG. 2 shows a front view in the tilted state.
- Two wheels 2a and 2b are generally arranged on the same axis with respect to the vehicle body 1 of the robot.
- the left wheel 2a and the right wheel 2b are in the traveling direction indicated by the arrow A in the figure of the vehicle body 1.
- FIG. 2 is a front view of the vehicle body 1 as viewed from the traveling direction.
- Actuators 3a and 3b that function as an example of a driving device that independently generates a driving force between the wheels 2a and 2b and the vehicle body 1 are mounted in the vicinity of the wheels 2a and 2b of the vehicle body 1, and each wheel 2a, Connected to 2b.
- the actuators 3a and 3b are motors as an example.
- the motors 3a and 3b may be provided with speed reducers 4a and 4b to constitute an example of the driving device.
- the motors 3a and 3b include encoders 5a and 5b that function as an example of second state detection means for detecting at least one of the rotation angle and the rotational angular velocity of the wheels 2a and 2b as second state detection information.
- two sensors which are examples of the attitude sensor 6 that detects the attitude of the vehicle body 1 in the vertical plane normal to the axle direction, that is, at least 1 of the inclination angle and the inclination angular velocity of the vehicle body 1 are detected.
- a one-axis gyro 6a and a two-axis acceleration sensor 6b functioning as an example of first state detecting means for detecting one as first state detection information are attached to the upper portion of the vehicle body 1.
- the single-axis gyro 6a is attached to the vehicle body 1 so that the inclination angular velocity in the axle direction can be detected as the first state detection information on a vertical plane with the axle direction as the normal line, and the axle direction of the vehicle body 1 is set as the normal line Inclination angular velocity in the vertical plane (illustrated by arc 6al) can be detected.
- the biaxial acceleration sensor 6b is mounted so that it can detect acceleration in two predetermined directions (6bl, 6b2) on the vertical plane with the axle direction as the normal, and can detect the direction of gravity (6b3). It is said.
- the attitude angle (tilt angle) of the vehicle body 1 as the first state detection information is obtained by calculating the integral value of the 1-axis gyro 6a and the value from the 2-axis acceleration sensor 6b, respectively.
- a high-pass filter and a low-pass filter are applied in part 9 and synthesized by a control computer part 9 to obtain.
- contact sensors 10a and 10b are provided at the front and rear lower parts of the vehicle body 1, and contact forces from other objects to the vehicle body 1 front and rear lower parts of the vehicle 1 are used as contact information. Can be determined.
- the control computer unit 9 includes an AZD transformation, a DZ A transformation 9b, an encoder counter unit 9c, and an arithmetic unit 9d, and the values of the encoders 5a and 5b are transmitted through the encoder counter unit 9c. Is input.
- the values of the 1-axis gyro 6a, the 2-axis acceleration sensor 6b, and the contact sensors 10a and 10b are input to the calculation unit 9d through the AZD conversion 9a.
- the calculation unit 9d can detect whether the rotation of the vehicle body 1 in the tilt direction is constrained based on the input values from the contact sensors 10a, 10b, and create vehicle body constraint recognition information. it can.
- the generated vehicle body restraint recognition information is determined by, for example, information on restraint force on the vehicle body 1 determined by the input of the contact sensors 10a and 10b (see the first embodiment) and input of the contact sensors 10a and 10b. Information on presence / absence of contact (see the second embodiment), inclination angle information of the vehicle body 1 (see the third embodiment), and the like, which can be used when switching the control method as described later.
- the calculation unit 9d of the control computer unit 9 calculates the required torque for posture control and travel control from the values input to the calculation unit 9d, and commands the torque command values to the motor drivers 7a and 7b from the DZA change. Motor drivers 7a and 7b drive motors 3a and 3b based on the command value. The calculation method from the input value to the output value will be described later.
- Figure 3 shows the robot as seen from above.
- translation control 11 posture control + back-and-forth movement control
- BB 'plane posture in the vertical plane
- turn control 12 for directional motion.
- the former is a translational direction
- the posture control and the traveling control are performed so that the traveling state is maintained.
- the latter is the turning direction
- the traveling state can be maintained by performing movement control (traveling control).
- the translation control 11 will be described with reference to FIG. 4 showing mechanism parameters. Since it is an operation in a vertical plane with the axle direction as the normal, it is treated as a two-dimensional model. As shown in Figure 4, set the parameters as follows. Wheels 2a, 2b, motors 3a, 3b, speed reducers 4a, 4b, and encoders 5a, 5b are regarded as one, respectively, and wheel 2, motor 3, speed reducer 4, and encoder 5 are assumed.
- the center of gravity of the vehicle body 1 is the vehicle body center of gravity 13
- the axle of the wheel 2 is the axle 14
- the center of gravity of the wheel 2 is the wheel center of gravity 15.
- T Kinetic energy
- U Potential energy
- D Friction loss
- z Height of center of gravity of vehicle body
- z Height of center of gravity of wheel
- s Translation position of center of gravity of vehicle body
- X is a state vector.
- the above modeling is an approximate model in which each value of the state vector is 0. Therefore, in order to consider the followability related to the forward / backward position (speed command), this model is stepped.
- a model control system that follows the target input is constructed. It is assumed that the target input is a constant speed target value.
- This is a feedback vector for stabilizing the closed-loop system of K (lx3) and G (lxl).
- Equation 40 It can be regarded as a regulator with the state feedback of w in (Equation 39) and (Equation 40). Therefore, the feedback gain H of this error system is determined by the optimal regret method, the pole placement method, Derived by various other design methods. Using this gain,
- each wheel 2 (2a, 2b) If 0.5 times is output to each wheel 2 (2a, 2b), the attitude control and speed control in the translation direction can be performed. At that time, each wheel 2a, 2b
- FIG. 6 is a turning control schematic diagram.
- the torque 2 in the turning direction can be regarded as a torque difference generated between the left and right wheels 2a and 2b.
- the left and right wheels 2a and 2b can be controlled by adding and subtracting 0.5 times the torque in the turning direction to both wheels 2a and 2b, respectively, which can calculate the target torque in the turning direction. realizable.
- Fig. 7 shows an integrated control block diagram of the translation control 11 and the turn control 12.
- the robot can make a turn and a straight run while maintaining an inverted posture.
- the vehicle body 1 is tilted and the lower part of the vehicle body is in contact with the ground 800.
- the frictional force between body 1 and ground 800 is 0
- the contact sensor 10b (the contact sensor 10a is also the same as the contact sensor 10b) is a sensor that can measure the contact force of other objects against the vehicle body 1, the ground 800, and the wall.
- the torque command value of the motor 3 based on (Equation 42) is the direction in which the wheel 2 is rotated forward (the direction in which the vehicle body 1 of the robot moves to the right in FIG. 8 and the vehicle body 1 rotates to the left around the axle 14). ) As positive,
- the vehicle body 1 is rotated to the right around the axle 14 because of the torque that causes the vehicle body 1 to rotate clockwise, so that the contact is eliminated and the vehicle can return to the inverted state.
- contact information is detected from the contact force sensor 10b, and the detected contact force direction and [Equation 103]
- step S1 the vehicle body 1 of the robot is tilted and stopped.
- step S3 Control (step S3) and get up. After the inversion stop control (step S3) is stabilized (for example, about 5 seconds) (step S4), it is determined whether or not the vehicle body 1 is in contact with the ground 800 (step S5).
- step S5 If there is no contact in step S5,
- step S8 After the setting is made (step S8), the inverted running control (step S9) shown in (Equation 49) is performed to maintain the running state, and then the process returns to step S5.
- step S5 If there is contact in step S5,
- step S6 After the speed (V ⁇ ) is set (step S6), the inverted traveling control (step S7) shown in (Equation 52 or 53) is performed to maintain the traveling state, and the process returns to step S5.
- steps S6 and S8 both when grounded and when not grounded Since the differential torque is corrected, the same traveling can be performed in either case.
- step S5 detection of the presence or absence of contact by the contact sensors 10a and 10b is started.
- step S5 If there is no contact (V, in other words, vehicle restraint) in step S5, the inverted stop control force also shifts to inverted traveling control (Equation (49), steps S8 to S9), and after maintaining the traveling state, contact sensor 10a , 10b is detected again (step S5). If contact (in other words, restraint of the vehicle body) is detected in step S5, the inversion stop control force is switched to the inverted traveling control (Equation (52) or Equation (53), steps S6 to S7) and the traveling state is maintained. After that, the presence or absence of contact by the contact sensors 10a and 10b is detected again (step S5).
- step S3 contact with the vehicle body 1 is generated by traveling two wheels in an inverted manner while appropriately switching between the inverted stop control (step S3), the inverted traveling control (step S9), and the inverted traveling control (step S7).
- step S9 inverted traveling control
- step S7 inverted traveling control
- FIG. 8 A second embodiment of the present invention will be described with reference to FIG. 8, which is the same as the first embodiment.
- a contact sensor is provided to detect the contact force.
- the contact sensor 10b may be a sensor that cannot detect a force only by detecting the presence or absence of contact. Even if the sensor can measure force, only the presence or absence of contact is used, and the control method is described.
- step S11 the vehicle body 1 of the robot is tilted and stopped.
- step S13 Get up with control (step S13). After the inversion stop control (step S13) is stabilized (for example, about 5 seconds) (step S14), the presence or absence of contact is determined (step S15). If contact (step S15),
- step S21 The amount of displacement when the vehicle body 1 is out of balance with the current position of the vehicle body 1). Then, during the inverted traveling control (step S21), it is determined whether or not there is contact (step S22).
- step S27 After (step S27) (after resetting the integral term and leaving history information indicating that the integral term has been reset), the process returns to step S20.
- the integral term is reset before touching! /
- step S25 If 1) is within the stabilization time (for example, 1 second) (step S25), the process returns to step S20 and continues the inverted running (step S21).
- step S21 when a stable time (for example, 1 second) elapses, the inverted traveling (step S21) force also shifts to the speed control (steps S30 to S32).
- step S15 When the vehicle body 1 is in contact with the ground 800 or the like in step S15, or when the stabilization time has elapsed in step S25,
- Step S32 After traveling with the speed control (Step S32) shown in (Equation 54), return to Step S14 to stabilize the speed control (Step S32) (for example, 5 seconds) It is determined whether or not the force has passed (Step S14).
- step S15 detection of the presence or absence of contact by the contact sensors 10a and 10b is started (step S15). If there is no contact (in other words, body restraint) in step S15, the inversion stop control force is shifted to the inversion travel control (Equation (49), steps S20 to S21) and the travel state is maintained.
- step S15 If contact (in other words, body restraint) is detected in step S15, the inverted stop control force also moves to speed control (steps S30 to S32).
- step S14 the speed is stably controlled (step S14), and then the presence / absence of contact is detected again by the contact sensors 10a and 10b (step S15), and the contact is detected in step S15.
- step S15 If not (if the rising is successful), the control proceeds to the inverted traveling control (Equation (49), steps S20 to S21) and the traveling state is maintained. If there is contact at step S15 (if the rising is unsuccessful), speed control (steps S30 to S32) continues.
- step S30 to S32 When speed control (steps S30 to S32) is performed, if the speed and angular velocity are 0, it is determined that the vehicle 1 cannot rise, such as when the vehicle 1 is in contact with an object or the ground 800. Then, the vehicle body 1 gets up and stops driving to be in the grounding state.
- step S22 If there is a contact during the inverted traveling control (Equation (49), steps S20 to S21) (step S22), the misalignment amount until the contact is reset to 0, Since the motion control is performed only by the displacement amount of the force at the time of contact, the runaway phenomenon of the vehicle body 1 can be prevented. In addition, if the contact displacement continues even after the stable time has elapsed after resetting the misalignment amount until contact during the inverted traveling control to 0, it is determined that the inverted state of the vehicle body 1 has collapsed. Thus, the operation control can be performed so as to return to the inverted state by switching to the inverted traveling control force speed control.
- step S13 contact with the vehicle body 1 is generated by traveling two wheels in an inverted manner while appropriately switching between the inverted stop control (step S13), the inverted traveling control (step S21), and the speed control (step S32).
- step S13 the inverted stop control
- step S21 the inverted traveling control
- step S32 the speed control
- the presence or absence of contact is detected by the input of the actual contact sensors 10a and 10b, and the control method is switched.
- the ground force 800 on which the vehicle travels is flat.
- the control method is switched by the tilt angle of the vehicle body 1 without a contact sensor, and the switch control is performed when the tilt angle of the vehicle body 1 is tilted more than a predetermined angle. Is. That is, as shown in FIG. 11, the inclination angle of the vehicle body 1 when the vehicle body 1 is always in contact with the ground 800 is
- posture control and traveling state can be maintained even when the rotation is restricted by contact with the ground or a wall, and a burden is placed on the user.
- Inverted two-wheeled robot that can move safely and its control method can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Power Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Motorcycle And Bicycle Frame (AREA)
Abstract
車体と、車体に同軸に配置された2つの車輪と、車輪を各々駆動する駆動装置と、車体の傾斜角度及び傾斜角速度の少なくとも1つを検出する第1状態検出手段と、車輪の回転角度及び回転角速度の少なくとも1つを検出する第2状態検出手段と、車体の回転が拘束されているかどうかを検出する車体拘束認識手段と、駆動装置への指令値を決定する制御手段を備え、車体拘束認識手段の検出結果に基づいて、制御手段が車体回転に寄与するトルクの割合を変化させた指令値にする。
Description
明 細 書
倒立二輪走行型ロボット及びその制御方法
技術分野
[0001] 本発明は、荷物運搬作業を行うロボットのうち、同軸二輪車を用いた倒立二輪走行 型ロボット及びその制御方法に関するものであり、詳しくは、ロボット姿勢拘束時の倒 立二輪走行型ロボット及びその制御方法に関するものである。
背景技術
[0002] 荷物運搬作業を行うロボットしては、三輪型や四輪型など 3点以上で必ず接触して 安定を保つものが一般的である。し力しながら、三輪型、四輪型などは、面積を有す ること、小回りが難しいことから倒立振子モデルに基づいて動作する同軸二輪車型の ロボットが研究されてきて 、る。
[0003] 同軸二輪車型の移動ロボットとしては、例えば特許文献 1、特許文献 2に記載のも のが知られている。
[0004] 図 13は、上記特許文献 1に記載された従来の同軸二輪車型の移動ロボットを示す ものである。
[0005] 特許文献 1に記載された同軸二輪車型移動ロボットは、両端に一対の車輪 102, 1 03を備えた車軸 101上の回動可能に支持された車体 104と、車体 104に装着され た車輪駆動用モータ 105と、車輪駆動用モータ 105に作動指令を送る制御コンピュ ータ 106と、車体 104の傾きを検出する角度検出手段 107を備えている。そして、角 度検出手段 107により検出される車体 104の傾斜角度を短時間間隔にてサンプリン グし、車体 104の傾斜角度を状態変数入力値、フィードバックゲイン Kを係数として、 制御コンピュータ 106内に予め入力設定された制御入力算出式に基づき、車輪駆動 用モータ 105の制御トルクを算出する状態フィードバック制御である。この算出された 制御トルク相当の作動を制御コンピュータ 106から、車輪駆動用モータ 105に指令 することにより、倒立の姿勢制御が維持される。
[0006] 図 14は、上記特許文献 2に記載された人乗り型の同軸二輪車型移動ロボットを示 すものである。
[0007] 特許文献 2に記載された人乗り型の同軸二輪車型移動ロボットは、プラットホーム 2 01上に同軸に配された左右の駆動輪 202を姿勢感知センサーの出力に応じて制御 駆動することで前後方向のバランスの保持のための姿勢制御と走行制御とを行う。そ して、駆動輪 202の前方側又は及び後方側で接地する補助輪 203と、補助輪 203を 出没させる補助輪駆動部 204とを備えている。そして、障害物検知センサー 205と走 行速度及び姿勢の制御の状態に応じて補助輪駆動部 204を駆動して補助輪 203を 出没させる制御回路を備えているため、転倒を招く原因となりやすい障害物があった 時、補助輪 203が出て安定性を高められるために、転倒の危険性を少なくすることが できる。
[0008] 特許文献 1 :特許 2530652号
特許文献 2:特開 2004 - 74814
発明の開示
発明が解決しょうとする課題
[0009] 上述の特許文献 1に示された技術にぉ 、ては、状態フィードバック制御を常に行つ ている。
[0010] そして、同軸二輪車の車体 104と車輪 102, 103が共に拘束無く相対的に回転で きる場合には、車輪駆動用モータ 105で発生したトルクは、車輪 102, 103の回転に 寄与すると同時に、反作用のトルクが車体 104に働いて、全体として倒立姿勢制御を 維持できる。
[0011] し力しながら、車体 104の一部が壁や地面に接触し、それ以上回転できなくなるよう な拘束力を外部から受けると車体 104が回転しないだけでなぐ拘束力によるトルク が車輪 102, 103に伝達される。よって、拘束力がない場合に比べて、車輪 102, 10 3に対して過大なトルクがかかり、車輪回転が増し、走行速度が急上昇するという課 題を有していた。
[0012] 上述の特許文献 2に示された技術においては、障害物検知センサー 205で障害物 を検知した場合、補助輪駆動部 204を駆動して補助輪 203を出没させる機構を有し ているため、補助輪 203が出没した場合には、左右の駆動輪 202と補助輪 203の 3 点接地になり、転倒の危険性を少なくできる。
[0013] しかし、本技術では障害物を認識して補助輪 203を出すだけで、速度や姿勢は人 の操縦に依存している構成となっている。本構成においても、人がバランスを崩して プラットホーム 201を含めた本体部が地面に接触した場合や、プラットホーム 201を 含めた本体部が壁等に接触して回転できなくなるような拘束力を受けた場合、特許 文献 1の場合と同様に駆動輪 202に過大なトルクがかかり、走行速度が急上昇すると いう課題を有していた。この場合は、人の操縦により停止指令を送るなどの、危険を 回避することになる力 操作が人に依存するという点でユーザに負担をかけるという 課題を有していた。
[0014] 本発明の目的は、上記従来の課題を解決するもので、倒立制御を行いながら移動 する同軸二輪車の車体の一部が地面や壁などに接触して拘束力を受けた場合に、 姿勢制御や走行状態を維持可能でかつユーザに負担をかけない安全な倒立二輪 走行型ロボット及びその制御方法を提供する。 課題を解決するための手段
[0015] 上記目的を達成するために、本発明は以下のように構成する。
[0016] 本発明の第 1態様によれば、車体と、
上記車体に同軸に配置された 2つの車輪と、
上記車輪を各々駆動する駆動装置と、
上記車体の傾斜角度及び傾斜角速度の少なくとも 1つを検出する第 1状態検出手 段と、
上記車輪の回転角度及び回転角速度の少なくとも 1つを検出する第 2状態検出手 段と、
上記第 1状態検出手段又は上記第 2状態検出手段で検出された情報を入力として 、上記車体の傾斜方向への回転が拘束されているかどうかを検出する車体拘束認識 手段と、
上記駆動装置への指令値を決定し、決定した指令値により複数の走行制御方法を 切り替えて上記駆動装置が駆動され上記車体の走行制御が行われる制御手段とを 備え、
上記車体拘束認識手段の検出結果に基づいて、上記制御手段が、上記複数の走
行制御方法を切替える上記駆動装置への指令値を決定し、決定された上記指令値 により上記駆動装置が駆動されて、上記車体の走行制御が行われて走行状態を維 持する、倒立二輪走行型ロボットを提供する。
[0017] 本発明の第 10態様によれば、車体の傾斜角度及び傾斜角速度の少なくとも 1つを 第 1状態検出情報として検出し、
上記車輪の回転角度及び回転角速度の少なくとも 1つを第 2状態検出情報として 検出し、
上記第 1状態検出情報又は上記第 2状態検出情報を入力として、上記車体の傾斜 方向への回転が拘束されているかどうかを車体拘束認識情報として検出し、 上記検出された車体拘束認識情報に基づ!、て、制御手段が複数の走行制御方法 を切替えて、上記車体に同軸に配置された 2つの車輪を各々駆動する駆動装置へ の指令値を決定し、決定された上記指令値により複数の走行制御方法を切り替えて 上記駆動装置が駆動されて、上記車体の走行制御が行われて走行状態を維持する 、倒立二輪走行型ロボットの制御方法を提供する。
発明の効果
[0018] 本発明の構成によれば、倒立して姿勢制御を行いながら走行する倒立二輪走行型 ロボットの車体の一部力 地面や壁などに接触して回転を拘束された場合に、車体 拘束認識手段又は車体拘束認識動作によって車体の回転方向の拘束が認識される 。そして、認識された拘束状態に応じて、例えば車体回転に寄与するトルクの割合を 変化させることで過大なトルクが車輪に力かって姿勢制御を維持できず走行速度が 急上昇するという課題を回避することができる。
[0019] よって、本発明の構成によれば、倒立制御を行いながら移動する同軸二輪車型の 倒立二輪走行型ロボットにおいて、車体の一部が地面や壁などに接触して回転を拘 束された場合でも、姿勢制御や走行状態を維持でき、ユーザに負担をかけずに、安 全に移動することができる。
図面の簡単な説明
[0020] 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形 態に関連した次の記述から明らかになる。この図面においては、
圆 1A]図 1Aは、本発明の第 1実施形態における倒立二輪走行型ロボットの傾いた状 態での側面図であり、
圆 1B]図 1Bは、本発明の第 1実施形態における倒立二輪走行型ロボットの制御部な どのブロック図であり、
[図 2]図 2は、本発明の第 1実施形態における倒立二輪走行型ロボットの傾いた状態 での正面図であり、
[図 3]図 3は、本発明の第 1実施形態における倒立二輪走行型ロボットの移動構成の 説明図であり、
[図 4]図 4は、本発明の第 1実施形態における倒立二輪走行型ロボットの機構パラメ ータ図であり、
[図 5]図 5は、本発明の第 1実施形態における倒立二輪走行型ロボットの制御ブロック 図であり、
[図 6]図 6は、本発明の第 1実施形態における倒立二輪走行型ロボットの旋回制御模 式図であり、
[図 7]図 7は、本発明の第 1実施形態における走行制御全体図であり、
[図 8]図 8は、本発明の第 2実施形態における倒立二輪走行型ロボットのフローチヤ ートであり、
[図 9]図 9は、本発明の第 1実施形態における倒立二輪走行型ロボットの接触状態図 であり、
[図 10]図 10は、本発明の第 2実施形態における倒立二輪走行型ロボットのフローチ ヤートであり、
[図 11]図 11は、本発明の第 3実施形態における倒立二輪走行型ロボットの車体が傾 いて地面に必ず接触する場合の説明図であり、
[図 12]図 12は、本発明の第 1実施形態における倒立二輪走行型ロボットのフローチ ヤートであり、
[図 13]図 13は、従来の特許文献 1に記載の同軸二輪車型の移動ロボットの図であり
[図 14]図 14は、従来の特許文献 2に記載の人乗り型の同軸二輪車型移動ロボットの
図である。
発明を実施するための最良の形態
[0021] 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号 を付している。
[0022] 以下に、本発明にかかる実施の形態を説明する前に、本発明の種々の態様につい て説明する。
[0023] 本発明の第 1態様によれば、車体と、
上記車体に同軸に配置された 2つの車輪と、
上記車輪を各々駆動する駆動装置と、
上記車体の傾斜角度及び傾斜角速度の少なくとも 1つを検出する第 1状態検出手 段と、
上記車輪の回転角度及び回転角速度の少なくとも 1つを検出する第 2状態検出手 段と、
上記第 1状態検出手段又は上記第 2状態検出手段で検出された情報を入力として 、上記車体の傾斜方向への回転が拘束されているかどうかを検出する車体拘束認識 手段と、
上記駆動装置への指令値を決定し、決定した指令値により複数の走行制御方法を 切り替えて上記駆動装置が駆動され上記車体の走行制御が行われる制御手段とを 備え、
上記車体拘束認識手段の検出結果に基づいて、上記制御手段が、上記複数の走 行制御方法を切替える上記駆動装置への指令値を決定し、決定された上記指令値 により上記駆動装置が駆動されて、上記車体の走行制御が行われて走行状態を維 持する、倒立二輪走行型ロボットを提供する。
[0024] 本発明の第 2態様によれば、上記車体に対する接触力を検出する少なくとも一つの 接触センサを上記車体に有するとともに、上記車体拘束認識手段は、上記接触セン サで検出された接触情報を入力として、車体拘束状態を認識する第 1の態様に記載 の倒立二輪走行型ロボットを提供する。
[0025] 本発明の第 3態様によれば、車体拘束時には、上記車輪を回転駆動させるトルクに
、上記車体への拘束力による発生するトルク分を加算する制御方法に切り替える第 1 又は 2の態様に記載の倒立二輪走行型ロボットを提供する。
[0026] 本発明の第 4態様によれば、車体拘束時には上記車体の傾斜角度及び傾斜角速 度に対するフィードバックを停止させる制御に切り替える第 1又は 2の態様に記載の 倒立二輪走行型ロボットを提供する。
[0027] 本発明の第 5態様によれば、車体拘束時には上記車体の傾斜角度及び傾斜角速 度に対するフィードバックを停止させ、かつ、上記車体の走行のみを継続する制御に 切り替える第 4の態様に記載の倒立二輪走行型ロボットを提供する。
[0028] 本発明の第 6態様によれば、車体拘束時には上記車輪の回転角速度の誤差の積 分値をリセットする第 1又は 2の態様に記載の倒立二輪走行型ロボットを提供する。
[0029] 本発明の第 7態様によれば、車体拘束時には上記車輪の回転角速度の誤差の積 分値をリセットする第 3の態様に記載の倒立二輪走行型ロボットを提供する。
[0030] 本発明の第 8態様によれば、車体拘束時には上記車輪の回転角速度の誤差の積 分値をリセットする第 4の態様に記載の倒立二輪走行型ロボットを提供する。
[0031] 本発明の第 9態様によれば、車体拘束時には上記車輪の回転角速度の誤差の積 分値をリセットする第 5の態様に記載の倒立二輪走行型ロボットを提供する。
[0032] 本発明の第 10態様によれば、車体の傾斜角度及び傾斜角速度の少なくとも 1つを 第 1状態検出情報として検出し、
上記車輪の回転角度及び回転角速度の少なくとも 1つを第 2状態検出情報として 検出し、
上記第 1状態検出情報又は上記第 2状態検出情報を入力として、上記車体の傾斜 方向への回転が拘束されているかどうかを車体拘束認識情報として検出し、 上記検出された車体拘束認識情報に基づ!、て、制御手段が複数の走行制御方法 を切替えて、上記車体に同軸に配置された 2つの車輪を各々駆動する駆動装置へ の指令値を決定し、決定された上記指令値により複数の走行制御方法を切り替えて 上記駆動装置が駆動されて、上記車体の走行制御が行われて走行状態を維持する 、倒立二輪走行型ロボットの制御方法を提供する。
[0033] 以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。
[0034] (第 1実施形態)
以下、本発明の第 1実施形態における倒立二輪走行型ロボット及びその制御方法 について、図面を参照しながら説明する。
[0035] 本発明の第 1実施形態における倒立二輪走行型ロボットの傾いた状態での側面図 を図 1A、傾いた状態での正面図を図 2に示す。ロボットの車体 1に対し、概して同一 軸上に 2つの車輪 2a, 2bが配置される。ここで、車体 1の図中矢印 Aで示した進行方 向に対して左車輪 2a、右車輪 2bとする。なお、車体 1の進行方向から見た正面図が 図 2である。車輪 2a, 2bと車体 1との間に独立してそれぞれ駆動力を発生させる駆動 装置の一例として機能するァクチユエータ 3a, 3bは車体 1の車輪 2a, 2bの近傍に取 付けられ、各車輪 2a, 2bに連結されている。なお、説明のためァクチユエータ 3a, 3b は一例としてモータであるとする。なお、モータ 3a, 3bには、減速機 4a, 4bが取り付 けられて、上記駆動装置の一例を構成するようにしてもよい。また、モータ 3a, 3bに は、上記車輪 2a, 2bの回転角度及び回転角速度の少なくとも 1つを第 2状態検出情 報として検出する第 2状態検出手段の一例として機能するエンコーダ 5a, 5bが取り 付けられており、車体 1と車輪 2a, 2bの回転角度を計測できる。回転角度を一定サン プリング時間(例えば、 1msecおき)に計測し、その差分をサンプリング時間で除算す ることで、回転角速度が求まり、これを第 2状態検出情報として扱うことができる。
[0036] また、車体 1の車軸方向を法線とする鉛直平面内における姿勢を検出する姿勢セ ンサ 6の一例である 2つのセンサ、すなわち、車体 1の傾斜角度及び傾斜角速度の少 なくとも 1つを第 1状態検出情報として検出する第 1状態検出手段の一例として機能 する 1軸ジャイロ 6aと 2軸加速度センサ 6bが車体 1の上部に取り付けられている。 1軸 ジャイロ 6aは、車軸方向を法線とする鉛直平面に、車軸方向の傾斜角速度を第 1状 態検出情報として検出できるように車体 1に取り付けられ、車体 1の車軸方向を法線と する鉛直平面内における傾斜角速度(円弧 6alで図示)を検出することができる。ま た、 2軸加速度センサ 6bは、車軸方向を法線とする鉛直平面の所定の 2方向(6bl, 6b2)に対する加速度を検出できるように取り付けられ、重力方向(6b3)を検出する ことを可能としている。第 1状態検出情報としての車体 1の姿勢角度 (傾斜角度)は、 1 軸ジャイロ 6aの積分値と 2軸加速度センサ 6bからの値をそれぞれ、制御コンピュータ
部 9でハイパスフィルター、ローパスフィルターにかけ、それらを制御コンピュータ部 9 で合成して求める。
[0037] また、車体 1の前後の下部には接触センサ 10a, 10bが設けられ、車体 1の当該車 体 1の前後の下部に対する他の物体などからの接触力を、接触情報としてそれぞれ 柳』定することができる。
[0038] 車体 1の内部には、モータ 3a, 3bを駆動するためのモータドライバ 7a, 7b及びバッ テリ 8、制御手段及び車体拘束認識手段の一例して機能する制御コンピュータ部 9が 搭載されている。図 1Bに示すように、制御コンピュータ部 9は、 AZD変 と DZ A変翻 9bとエンコーダカウンタ部 9cと演算部 9dと力も構成され、エンコーダ 5a, 5b の値はエンコーダカウンタ部 9cを通じて演算部 9dに入力される。また、 1軸ジャイロ 6 aと 2軸加速度センサ 6b、接触センサ 10a, 10bの値は AZD変翻 9aを通じて演算 部 9dに入力される。演算部 9dでは、入力された接触センサ 10a, 10bからの値に基 づき、上記車体 1の傾斜方向への回転が拘束されているかどうかを検出して、車体拘 束認識情報を作成することができる。この作成された車体拘束認識情報は、例えば、 接触センサ 10a, 10bの入力により判断される車体 1に対する拘束力の情報 (第 1実 施形態参照)、接触センサ 10a, 10bの入力により判断される接触の有無の情報 (第 2実施形態参照)、車体 1の傾斜角度情報 (第 3実施形態参照)などであって、後述 するように、制御方法を切替えるときに使用することができる。制御コンピュータ部 9の 演算部 9dは、演算部 9dに入力された値より、姿勢制御及び走行制御の必要トルクを 計算し、 DZA変 より、トルク指令値をモータドライバ 7a, 7bに指令する。モー タドライバ 7a, 7bは、指令値に基づいてモータ 3a, 3bを駆動する。なお、入力値から 出力値への計算方法は、後述する。
[0039] 次に、本構成での倒立二輪走行型ロボットの制御方法について図 3で説明する。
図 3はロボットを鉛直上方から見た図である。本機構においては、車軸方向を法線と する鉛直平面 (B— B '面)内での姿勢及びその鉛直平面内の水平方向速度に関す る並進制御 11 (姿勢制御 +前後移動制御)と旋回方向の動作に関する旋回制御 12 の 2つの制御に分けて考える。前者は、並進方向の
[数 1]
速度 V
に追従するように、姿勢制御と走行制御を行って走行状態を維持するものである。後 者は、旋回方向の
[数 2]
角速度
に追従するように制御するものである。後述するように、この 2つの制御を合わせるこ とで、移動制御(走行制御)を行って走行状態を維持することができる。
[0040] 次に、この移動制御について、順に、説明を行う。
[0041] まず、並進制御 11について、機構パラメータを示す図 4を用いて説明する。なお、 車軸方向を法線とする鉛直平面内での動作であるので、 2次元モデルとして扱う。図 4のように、パラメータを以下のように設定する。車輪 2a, 2b、モータ 3a, 3b、減速機 4a, 4b、エンコーダ 5a, 5b、はそれぞれ 1つとみなして、車輪 2、モータ 3、減速機 4、 エンコーダ 5とする。また、車体 1の重心を車体重心 13、車輪 2の車軸を車軸 14、車 輪 2の重心を車輪重心 15とする。
[0042] M :ロボットの車体 1の質量 [kg]
b
M :車輪 2の質量(2つの車輪の合計) [kg]、
w
I:ロボットの車体 1の車体重心 13周りの慣性モーメント [kgm2]
b
I :車輪 2の車輪重心 15周りの慣性モーメント(2つの車輪の合計) [kgm2] w
I :モータ 3の慣性モーメント [kgm2]
r:車輪 2の半径 [m]
L:車軸 14からロボットの車体重心 13までの距離 [m]
g
[0043] [数 3]
:モータ 3と減速機 4と車軸 2との間の粘性摩擦係数 [NmZ (radZs) ]
画
:車輪 2と地面 800との間の粘性摩擦係数 [NmZ (rad/s) ]
[数 5] て t
:モータ 3のトルク定数 [NmZ A]
[数 6]
:減速機 4のギア部減速比
g :重力加速度
[数 7]
Φ
:ロボットの車体 1の傾き [rad]
[数 8]
Θ
:車輪 2の地面 800に対する回転角 [rad]
u:モータ 3に入力する電流 [A]
また、記号を次のように定義する。
T:運動エネルギー、 U:位置エネルギー, D:摩擦損失
z:車体重心高さ, z:車輪重心高さ, s:車体重心並進位置,
1 2 1
S:車軸並進位置,
2
ここで、倒立 2輪走行型ロボットの運動方程式を、ラグランジェ法を用いて導出する。 ラグランジ の運動方程式は
[数 9]
[数 10] ά ( ΤΛ
(式 2 )
各値とその微分値は次のように表される。
[数 11]
= r0 + Lg sin φ (式 3 ) [数 12]
s2 = τθ (式 4)
[数 13]
(式 5 )
[数 14]
(式 6 )
[数 15]
∑ = r + Lg cos^ (式 7 ) [数 16]
(式 8 )
[数 17]
[数 18]
ζ2 =0 (式 1 0) 各エネルギーは
[数 19]
[数 20]
U - Mwgr +Mbgir + 1οο&φ) (式 1 2)
[数 21]
簡単なモデルとして、車体 1にかかる外力が 0とした場合、
[数 22]
Q , = - η τ t u (式 1 4 )
[数 23]
Q 2 = η τ t u (式 1 5) よって、運動エネルギー τは
[数 24]
(式 1 6 ) となる。
[0045] ロボットの車体 1の傾き φについて、ラグランジェ法により運動方程式を導出する。
[数 25]
= (MbL2 g +Ih +Im^2) + (MbrLg cos^ - 1 j1 )0-Mbgl sin φ - μβ + μ3φ = -ητ,η
(式 1 7 )
[0046] 車輪 2の地面 800に対する回転角 Θについて、ラグランジェ法により運動方程式を 導出する。
[数 26]
= (MbrLg cos - I )φ + {{Mb +M r2 +IW+ Im"2 )<9 - MrLJ>2 sin φ + μ
- μ^> + νιβ = ηて tu
(式 1 8 )
(式 17)と (式 18)を足し合わせると、
[数 27]
(MbrLg ^ +Μ,ΐ] +Ib)^ + ((Mb +M r2 +Iw +MbrLg cos
-Mbgl sin φ-M L φ2 sin φ + u Θ - 0
(式 1 9 ) となる。
[0047] よって、 2つの式(式 17)と(式 19)を
[数 28] = 0 , = 0 の周りで近似して
[数 29] ί sin φ - , cos φ = \ , ~ = 0 ) [数 30]
- μβ + = -ητ,υ (式 2 0 ) (MbrLg +MbL2 g+Ib)^ + ((Mb +Mw)r2 +MbrLg + 1 w)0 + = 0 (式 2 1 ) となる。
[0048] ここで変数を
[数 31]
(式 22 ) + Ι
Δ α1α12 -α12α2λ (式 23 ) ( WbgLg (αη - 21 )MhgLg
[数 33]
[数 34]
1 0、 0〕
A = α3 B = X = Φ (式 2 7 )
、"2 4 、b
の状態方程式の形に帰着できる。なお、
[数 35]
(Φ、
X = は、状態ベクトルである。
[0049] 以上のモデル化は、状態ベクトルの各値が 0での近似モデルであるので、前後方 向の位置 (速度指令)に関する追従性を考慮するために、このモデルに対してステツ プ状の目標入力に追従するモデルの制御系を構成する。なお、目標入力を一定速 度目標値であるとする。
[数 36] 速度 y ( = Θ ) は、可観測であるとし、
[数 37] y = Θ = Cx = (0 , 0 ,1 )x と表せる。
[0050] [数 38] 速度 y (り
をステップ状の
[数 39] 目標角速度 =v/r に定常偏差なく追従させるために、積分器を用いた制御系とする。なお、そのときの 制御ブロックを図 5に示す。ここで、
[数 40]
K(lx3)、 G(lxl) の閉ループシステムを安定にするためのフィードバックベクトルである。
この構成において、
[数 41]
z = ί(θ d - Q)dt より
[数 42]
/ = ™ x + 0 ( ζ ώ S ) 制御入力は、
[数 43]
u = -Kx + Gz (式 2 9 ) と表せる。ここで、 Inは 3行 3列の単位行列、 Im=lとして
[数 44]
(式 3 0 )
(式 26)と(式 30)より
[数 45]
X 0 A B X 0
Θ (式 31 ) ΰ - κ 一 G C 0 u G
(式 3 3)
[数 48] y(∞) = [c o][x(∞)r u(∞)T] (式 34) なお、
[数 49] y(oo) = [C θ][χ(αο)Γ u(∞)r f =[C 0] (式 35)
C
となり、定常偏差がないことがわかる。
次に、定常値からの誤差システムを考える c
[数 50] = X - x(oo), ue =u - u(oo), e = θ - 9d として式変形を行うと
0
-K -G C 0
[数 52]
A B
H = [K (式 3 7)
C 0
[数 53] w = -H| (式 3 8 ) として、
[数 54]
となり、出力を eとして
[数 55]
(式 40) となる。 (式 39)、(式 40)に wの状態フィードバックをしたレギユレータとみなせる。よつ て、この誤差システムのフィードバックゲイン Hを、最適レギユレ一タ法ゃ極配置法、
その他の種々の設計法によって導出する。このゲインを用いれば、
[数 56] 偏差 ) の過渡応答誤差の少ない最適なサーボシステムが設計できる。なお、(式 37)より [数 57]
[K G] = H (式 4 1 )
となる。したがって、
[数 58] ゲイン [い 2, 3,ん 4】 を用いて、モータ 3へ出力される
[数 59] トルク指令値 Γι を、
ただし、
[数 61]
[数 62]
[数 63] k} < 0, k2 < 0, 3 < 0, k4 < 0 である。本構成では、車輪 2は 2つであるので、
[数 64] トルク指令値て ,
の 0. 5倍を各車輪 2 (2a, 2b)に出力すれば、並進方向の姿勢制御と速度制御を行 える。そのときの、各車輪 2a, 2bの
[数 65] トルク指令値を左車輪で1£右車輪 として、
[数 66]
て) = 0.5て】 (式 4 5 ) て 1R = 0.5て! (式 4 6 ) となる。
[0055] 次に、旋回制御 12について旋回制御模式図である図 6を用いて説明する。
[0056] ロボットの車体 1を上面から見て、ロボットの車体 1の車輪 2間の長さを
[数 67]
とし、水平面上でのロボットの車体 1の移動速度を
[数 68]
V
とし、左車輪 2aの回転速度を
[数 69]
とし、右車輪 2bの回転速度を
[数 70]
とし、旋回半径を R、旋回速度を
[数 71]
ω
とする。また、左車輪 2aの回転角速度を
[数 72]
、右車輪 2bの回転角速度を
[数 73]
とすると、
[数 74]
となる。
[数 75]
旋回速度目標値を iW d
として、
[数 76]
実際の旋回速度
との差に対してフィードバック (PD制御等)を行 、、
[数 77]
旋回方向の トルク Γ2 を決定する。
[0058] [数 78] 旋回方向の トルクて 2 は、左右の車輪 2a, 2bに発生するトルク差であるとみなせる。左右の車輪 2a, 2bに、 それぞれ、その旋回方向のトルクの 0. 5倍を、旋回方向の目標トルクを算出できる両 車輪 2a, 2bに、それぞれ加算、減算してやることで、旋回方向の制御が実現できる。
[0059] 並進制御 11、旋回制御 12の統合された制御ブロック図を図 7に示す。
[0060] そして、左輪 2a、右輪 2bに指令するトルク指令値を
[数 79] てい て R
とすると
[数 80] 、 2
1
[0061] 以上のように、トルクを決定することにより、上記ロボットは、倒立姿勢を維持しなが ら旋回及び直線走行をすることができる。
[0062] 図 1 Αのように、車体 1が地面 800から離れている場合には、これまで述べたような 制御則に基づけば、倒立姿勢を維持しながらの走行を行うことができる。
[0063] 次に、第 1実施形態では、図 8のように車体 1の一部が回転方向に拘束を受けた場 合の一例として、車体 1が傾いて車体下部が地面 800に接触した場合を示す。仮定 として、車体 1と地面 800との摩擦力は 0で
[数 81] 垂直抗力 ^
だけが、車軸 14カゝら水平移動した
[数 82]
距離 の接触点において拘束力として発生するとする。接触センサ 10b (接触センサ 10aも 同様であるため、代表的に接触センサ 10bで説明する。)は、車体 1に対する他の物 体や地面 800や壁など力もの接触力を計測できるセンサとし、接触力センサ 10bによ つて
[数 83]
垂直方向の拘束力 が検出され、幾何学的な条件より
[数 84] 距離 も既知である。このとき、車体 1には拘束力による
[数 85]
卜ノレクて. = F r が発生する。また、位置ずれ量が
[数 86]
53 > 0 の状態のときに、図 8のような
[数 87]
(傾斜角を < 0 )
接触が発生した場合を考える。このとき、(式 42)に基づくモータ 3のトルク指令値は、 車輪 2を正転させる方向(ロボットの車体 1が図 8において右方向に移動し、車体 1が 車軸 14周りに左回転する方向)を正として、
[数 88]
τι = ητ, [- Λ[ -k2 ,-k, ,-k4 Jxj = -ητ! {k^ + Η2φ + k^0 + k4zl ) (式 4 9 j
となる,
[0064] [数 89] 垂直効力 > 0 であるので、傾斜方向の回転が拘束され、
[数 90] φ = Φα、 二 0
となる。
このとき
[数 91]
τχ =- t{k^a +ki0 + kAz^) (式 50) となる。
[0065] [数 92] 車体 1 にかかる トルク て 6
は、モータ 3からのトルクの
[数 93] 反作用力 (_ ) と、
[数 94] 接触による トルク rfl の和になるため、
[数 95]
[数 96] rb は、 、
の値によっては、
[数 97] r„ > 、 Tb < 0
のいずれにもなりうる。
[0066] (式 51)において
[数 98]
である場合には、車体 1には、右回転させるようにするトルクが働くため、車軸 14周り に右回転し、接触は解消され倒立状態に戻る事ができる。しかしながら、
[数 99] b < である場合には、車体 1には、左回転のトルクがかかり、車輪 2には、反力として右へ 移動する回転トルクが発生する。この時、車体 1が
[数 100] 外力 で拘束されているので、車輪 2には、
[数 101] 外力 F によって発生した
[数 102] 卜ノレク 。 = f\r、 も、車輪 2への回転トルクとして伝達される。そのため、車輪 2に余分のトルクがかかり 、車輪 2の過度の回転現象を生じ、暴走現象に陥ってしまう。
[0067] そこで、本発明の上記第 1実施形態に力かるロボットの制御方法では、接触力セン サ 10bより接触情報を検知し、検知した接触力方向と
[数 103]
トルク τλ とを比較し、その回転方向が反対の場合には、モータ 3への
[数 104] トルク指令値 η を、接触力により発生する
[数 105] トルク分て a = Fxr を加算した
[数 106]
τ = -ητ{、k + + k4z, ) + (式 5 2 ) とする。
[0068] したがって、本発明による上記第 1実施形態に力かるロボットの制御方法によれば、
(式 52)に基づきモータ 3のトルクを算出することにより、地面 800からの接触力による 影響を除去でき、ユーザに負担をかけずに、安全な倒立二輪走行型ロボットを実現 できる。
[0069] また、本構成において車体 1と地面 800との間に
[数 107] 摩擦力 F2 が発生する場合、図 9のように、その
[数 108]
合力 F3 によって発生する回転の反対方向のトルクを補償して走行することとすれば同様の効 果を得られる
[数 109]
r, - -ητ, (k^a + k 0 + k4z, ) + F3r3 (式 5 3 ) また、外乱オブザーバを用いて、接触センサ無しに外乱力を推定してその推定され た接触力を用いて (式 52)、(式 53)と同様の制御を行ってもよい。
[0070] ここで、上記した第 1実施形態での切替制御を用いた走行動作フローチャートを図 12で説明する。
[0071] 初期状態 (ステップ S1)では、ロボットの車体 1は傾斜して停止している。初期設定 として、
[数 110]
(z, V ω) = (0,0,0)
(=ステップ S2)とする。次に、(式 50)で示す倒立停止
[数 111]
{ θά = v / r = 0 ) 制御 (ステップ S3)を行って起き上がる。倒立停止制御 (ステップ S3)の安定時間(例 えば 5秒程度)後 (ステップ S4)、車体 1の地面 800などに対する接触の有無を判別 する(ステップ S 5)。
[0072] ステップ S5で接触が無い場合には、
[数 112]
速度 (V ω )
設定を行った (ステップ S8)後、(式 49)で示す倒立走行制御 (ステップ S9)を行って 走行状態を維持した後、ステップ S5に戻る。
[0073] ステップ S5で接触がある場合には、
[数 113] 速度 (V ω) 設定を行った (ステップ S6)後、(式 52又は式 53)で示す倒立走行制御 (ステップ S7 )を行って走行状態を維持した後、ステップ S5に戻る。
[0074] なお、ステップ S6とステップ S8において、接地しているときも、接地していないときも
、その差分トルクを補正するので、どちらの場合も、同様の走行が行える。
[0075] 以上のように、上記第 1実施形態によれば、制御コンピュータ部 9の制御の下で、以 下のような動作制御を行うことができる。
[0076] すなわち、初期の車体 1が移動停止して地面 800に接地している状態から、まず、 倒立停止制御(式 (49)、ステップ S2〜S3)を行うことにより、車体 1を倒立位置まで 起き上がらせて、倒立状態 (ただし、走行は停止している状態。)を維持する。次いで 、所定時間 (安定時間)経過して倒立状態が安定した (ステップ S4)のち、接触センサ 10a, 10bによる接触の有無の検出を開始する(ステップ S5)。ステップ S5で接触(言 V、換えれば、車体拘束)が無ければ、倒立停止制御力も倒立走行制御 (式 (49)、ス テツプ S8〜S9)に移って走行状態を維持したのち、接触センサ 10a, 10bによる接 触の有無の検出を再度行う(ステップ S5)。ステップ S5で接触 (言い換えれば、車体 拘束)が検出された場合には、倒立停止制御力 倒立走行制御 (式 (52)又は式 (53 )、ステップ S6〜S7)に移って走行状態を維持したのち、接触センサ 10a, 10bによ る接触の有無の検出を再度行う (ステップ S5)。
[0077] このように、倒立停止制御 (ステップ S3)、倒立走行制御 (ステップ S9)、倒立走行 制御 (ステップ S7)とを適宜切替ながら、倒立二輪走行することによって、車体 1に接 触が発生しても、接触状態 (すなわち車体拘束状態)に応じて、車体回転に寄与する トルクの割合を変化させることで、過大なトルクが車輪 2にかかって姿勢制御を維持で きず走行速度が急上昇すると 、つた暴走を防止することができ、ユーザに負担をか けずに、安全に走行を継続することができる。
[0078] (第 2実施形態)
本発明の第 2実施形態を第 1実施形態と同じ、図 8で説明する。第 1実施形態にお いては、接触センサを設けて接触カを検知していたが、第 2実施形態では、接触セン サ 10bが、接触の有無を検知のみで力測定ができないセンサの場合や、力計測でき るセンサであっても接触の有無のみを利用する場合とし、その制御方法を述べる。
[0079] 車体 1の一部が地面 800などに接触している場合、車体 1は回転できず、車体 1は 2つの車輪 2a, 2bと、少なくとも 1点との 3点以上で地面 800に接していることとなる。 従来力もあるような独立二輪駆動で、補助輪等で接地している台車の移動制御にお
いては、車輪 2の回転速度に対して、 PID制御等によって走行制御がなされて走行 状態を維持している。そのため、この第 2実施形態においても、接地時には同様の構 成とみなすことができるので、接地した場合には、
[数 114] η ^ k5 (e - 9d ) + k6j(0 - 0d )dt = k5 -- ed ) + k6zl (式 5 4 ) に示すような、回転速度に対する略 PI制御の速度制御の構成とする。したがって、接 触がある場合には、(式 54)、接触がない場合には (式 50)の制御を切り替えて制御 を行う。
[0080] 第 2実施形態での切替制御を用いた走行動作フローチャートを図 10で説明する。
[0081] 初期状態 (ステップ S 11)では、ロボットの車体 1は傾斜して停止している。初期設定 として、
[数 115] fz, V ίϋ) = (0,0,0)
(=ステップ SI 2)とする。次に、(式 50)で示す倒立停止
[数 116]
制御 (ステップ S 13)を行って起き上がる。倒立停止制御 (ステップ S 13)の安定時間( 例えば 5秒程度)後 (ステップ S14)、接触の有無を判別する (ステップ S15)。もし接 触 (ステップ S 15)のな 、場合は、
[数 117] 速度 (V ω) 設定を行った (ステップ S 20)後、(式 49)で示す倒立走行制御 (ステップ S21)を行つ て走行状態を維持している。(式 49)に基づく倒立走行制御 (ステップ S21)から、接 触時の(式 54)に基づく速度制御 (ステップ S 18)へと制御方法が移る条件として、積 分項リセット履歴ビット btlを設ける。積分項とは、速度差の
[数 118]
積分
(車体 1の現在位置に対して車体 1のバランスが崩れたりなどして位置ずれが生じると きの位置ずれ量)である。そして、倒立走行制御 (ステップ S21)中に、接触の有無を 判断する (ステップ S22)。
[0082] ステップ S22で車体 1が地面 800などに接触していない場合には、積分項リセット 履歴ビット btlをリセット (btl =0)した (ステップ S26)後(すなわち、積分項のリセット は行わずに)、ステップ S 20に戻る。
[0083] ステップ S22で車体 1が地面 800などに接触している場合には、積分項リセット履歴 が ONか否カゝ、すなわち、積分項リセット履歴ビット btl = 1か否かを判断する(ステツ プ S23)。積分項リセット履歴ビット btl = 0のとき (接触後に積分項のリセットを行って いなかったとき)のみ、
[数 119] 積分項 を
[数 120]
リセッ 卜 = 0
した (ステップ S27)後(積分項をリセットし、かつ、積分項をリセットしたことを示す履 歴情報を残した後)、ステップ S20に戻る。積分項をリセットするのは、接触する前に 発生して!/、る位置ずれ (速度差の
[数 121]
積分
)を、一度、 0にして、接触時からの PI制御にするためである。このように、積分項をリ セットすること〖こよって、接触前の位置ずれ量を削除できて、接触後の車体 1の位置 ずれ量のみにより、動作制御が行われるため、車体 1の暴走現象を防止することがで きる。
ステップ S23で積分項リセット履歴ビット btl = 1であるとき、接触の有無を判別する
(ステップ S 24)。
[0084] ステップ S24で車体 1が地面 800などに接触して ヽな 、場合は、積分項リセット履 歴ビット btlをリセット (btl =0)した (ステップ S28)後(すなわち、積分項のリセットは 行わずに)、ステップ S20に戻る。
[0085] ステップ S24で、そのまま、車体 1が地面 800などに接触が続いている場合 (btl =
1)は、安定時間(例えば 1秒)(ステップ S25)以内であれば、ステップ S20に戻り、倒 立走行 (ステップ S21)を継続する。
[0086] 一方、安定時間(例えば 1秒)が経過して 、れば、倒立走行 (ステップ S21)力も速 度制御 (ステップ S30〜S32)に移る。
[0087] ステップ S15で車体 1が地面 800などに接触している場合又はステップ S25で安定 時間経過時には、
[数 122] 速度 (V ω) 設定を行った (ステップ S30)後、
[数 123]
(V ω \ = ("0?0) か否かを判断する (ステップ S31)。 YESの場合には、起き上がれないと判断して終 了する(ステップ S19)。ステップ S31で、 NO、すなわち、
[数 124]
(V ω)≠(0,0) の場合には、(式 54)で示す速度制御 (ステップ S32)で走行したのち、ステップ S14 に戻り、速度制御 (ステップ S32)の安定時間(例えば 5秒程度)が経過した力否かを 判断する (ステップ S 14)。
[0088] 以上のように、上記第 2実施形態によれば、制御コンピュータ部 9の制御の下で、以 下のような動作制御を行うことができる。
[0089] すなわち、初期の車体 1が移動停止して地面 800に接地している状態から、まず、 倒立停止制御(式 (49)、ステップ S12〜S13)を行うことにより、車体 1を倒立位置ま
で起き上がらせて、倒立状態 (ただし、走行は停止している状態。)を維持する。次い で、所定時間 (安定時間)経過して倒立状態が安定した (ステップ S14)のち、接触セ ンサ 10a, 10bによる接触の有無の検出を開始する(ステップ S15)。ステップ S15で 接触 (言い換えれば、車体拘束)が無ければ、倒立停止制御力 倒立走行制御 (式( 49)、ステップ S20〜S21)に移って走行状態を維持する。ステップ S15で接触(言い 換えれば、車体拘束)が検出された場合には、倒立停止制御力も速度制御 (ステップ S30〜S32)に移る。次いで、所定時間(安定時間)経過して安定して速度制御が行 われた (ステップ S14)のち、接触センサ 10a, 10bによる接触の有無の検出を再度 行い (ステップ S15)、ステップ S15で接触がなければ (起き上がりが成功したならば) 、倒立走行制御(式 (49)、ステップ S20〜S21)に移って走行状態を維持する。ステ ップ S15で接触があれば (起き上がりが不成功ならば)、そのまま、速度制御 (ステツ プ S30〜S32)を継続する。速度制御 (ステップ S30〜S32)を行うとき、速度及び角 速度が 0の場合には、車体 1が物体又は地面 800などに接触している場合など、車 体 1が起き上がれない場合であると判断して、車体 1の起き上がり駆動を停止し、接 地状態とする。
[0090] また、倒立走行制御(式 (49)、ステップ S20〜S21)中に接触があった場合 (ステツ プ S22)には、接触時までの位置ずれ量をリセットして 0にしたのち、接触時力もの位 置ずれ量のみにより、動作制御が行われるため、車体 1の暴走現象を防止することが できる。さらに、倒立走行制御時に、接触時までの位置ずれ量をリセットして 0にした のち、接触が安定時間経過しても続いている場合には、車体 1の倒立状態が崩れて いると判断して、倒立走行制御力 速度制御に切り替えて、倒立状態に復帰させるよ うに動作制御することができる。
[0091] このように、倒立停止制御 (ステップ S13)、倒立走行制御 (ステップ S21)、速度制 御 (ステップ S32)とを適宜切替ながら、倒立二輪走行することによって、車体 1に接 触が発生しても、接触状態 (すなわち車体拘束状態)に応じて、車体回転に寄与する トルクの割合を変化させることで、過大なトルクが車輪 2にかかって姿勢制御を維持で きず走行速度が急上昇すると 、つた暴走を防止することができ、ユーザに負担をか けずに、安全に走行を継続することができる。
[0092] (第 3実施形態)
第 2実施形態においては、実際の接触センサ 10a, 10bの入力によって接触の有 無を検知して制御方法を切り替えたが、本発明の第 3実施形態では、走行する地面 800力 平坦な面であるということがわ力つている場合として、接触センサ無しで、車 体 1の傾斜角度により制御方法の切替を行うものであって、車体 1の傾斜角度が所定 角度以上傾いたときには切替制御を行うものである。すなわち、図 11のように、車体 1が傾 、て地面 800に必ず接触する場合の車体 1の傾斜角が、
[数 125]
φ>φΙ} > 0 φ<φ <ο
として、車体 1が傾いて地面 800に接触しないとき、すなわち、
[数 126]
( ύ≥φ≥ ΰ) のときには、(式 49)で示す倒立走行制御を行って走行状態を維持する一方、車体 1 が傾いて地面 800に接触するとき、すなわち、
[数 127]
( > 又は^ < ) の時には、(式 54)に基づく制御を行う。
[0093] ここで、一例として、図 11のように、倒立停止又は走行状態(一点鎖線で示す I)に 対して、傾斜位置(点線で示す II又は III)のように 10° 傾斜すると、車体 1が地面 80 0に接触していると仮定するときには、 0.5° の許容値を考慮して、 9.5° 以上傾くと 、車体 1が地面 800に接触していると判断するようにすればよい。すなわち、
[数 128] φ>φ,=9.5'>0 又は、
[数 129] ώ<ώ =- .5° <0
のときは、車体 1が地面 800に接触していると判断するようにすればよい。よって、車 体 1が傾いて地面 800に接触しないとき、すなわち、
[数 130]
( = 9.5°≥φ≥φ = -9.5Ί のときには、(式 49)で示す倒立走行制御を行って走行状態を維持する一方、車体 1 が傾いて地面 800に接触するとき、すなわち、
[数 131]
( φ > φι, = 9.5°又は(*< =— 9.5° ) の時には、(式 54)に基づく速度制御を行う。
[0094] 以上のように、車体 1の傾斜角度に応じて制御方法を切り替えながら走行すること によって、平坦な面において接触が発生しても、暴走することなく安全にかつユーザ に負担をかけずに走行を継続できる。
[0095] なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより
、それぞれの有する効果を奏するようにすることができる。
産業上の利用可能性
[0096] 本発明に力かる倒立二輪走行型ロボット及びその制御方法では、地面や壁などに 接触して回転を拘束された場合でも、姿勢制御や走行状態を維持でき、かつユーザ に負担をかけずに、安全に移動することができる倒立二輪走行型ロボット及びその制 御方法を提供できる。
[0097] 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載され ているが、この技術の熟練した人々にとつては種々の変形や修正は明白である。そ のような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限り において、その中に含まれると理解されるべきである。
Claims
[1] 車体と、
上記車体に同軸に配置された 2つの車輪と、
上記車輪を各々駆動する駆動装置と、
上記車体の傾斜角度及び傾斜角速度の少なくとも 1つを検出する第 1状態検出手 段と、
上記車輪の回転角度及び回転角速度の少なくとも 1つを検出する第 2状態検出手 段と、
上記第 1状態検出手段又は上記第 2状態検出手段で検出された情報を入力として 、上記車体の傾斜方向への回転が拘束されているかどうかを検出する車体拘束認識 手段と、
上記駆動装置への指令値を決定し、決定した指令値により複数の走行制御方法を 切り替えて上記駆動装置が駆動され上記車体の走行制御が行われる制御手段とを 備え、
上記車体拘束認識手段の検出結果に基づいて、上記制御手段が、上記複数の走 行制御方法を切替える上記駆動装置への指令値を決定し、決定された上記指令値 により上記駆動装置が駆動されて、上記車体の走行制御が行われて走行状態を維 持する、倒立二輪走行型ロボット。
[2] 上記車体に対する接触力を検出する少なくとも一つの接触センサを上記車体に有 するとともに、上記車体拘束認識手段は、上記接触センサで検出された接触情報を 入力として、車体拘束状態を認識する請求項 1に記載の倒立二輪走行型ロボット。
[3] 車体拘束時には、上記車輪を回転駆動させるトルクに、上記車体への拘束力によ る発生するトルク分を加算する制御方法に切り替える請求項 1又は 2に記載の倒立二 輪走行型ロボット。
[4] 車体拘束時には上記車体の傾斜角度及び傾斜角速度に対するフィードバックを停 止させる制御に切り替える請求項 1又は 2に記載の倒立二輪走行型ロボット。
[5] 車体拘束時には上記車体の傾斜角度及び傾斜角速度に対するフィードバックを停 止させ、かつ、上記車体の走行のみを継続する制御に切り替える請求項 4に記載の
倒立二輪走行型ロボット。
[6] 車体拘束時には上記車輪の回転角速度の誤差の積分値をリセットする請求項 1又 は 2に記載の倒立二輪走行型ロボット。
[7] 車体拘束時には上記車輪の回転角速度の誤差の積分値をリセットする請求項 3に 記載の倒立二輪走行型ロボット。
[8] 車体拘束時には上記車輪の回転角速度の誤差の積分値をリセットする請求項 4に 記載の倒立二輪走行型ロボット。
[9] 車体拘束時には上記車輪の回転角速度の誤差の積分値をリセットする請求項 5に 記載の倒立二輪走行型ロボット。
[10] 車体の傾斜角度及び傾斜角速度の少なくとも 1つを第 1状態検出情報として検出し 上記車輪の回転角度及び回転角速度の少なくとも 1つを第 2状態検出情報として 検出し、
上記第 1状態検出情報又は上記第 2状態検出情報を入力として、上記車体の傾斜 方向への回転が拘束されているかどうかを車体拘束認識情報として検出し、 上記検出された車体拘束認識情報に基づ!、て、制御手段が複数の走行制御方法 を切替えて、上記車体に同軸に配置された 2つの車輪を各々駆動する駆動装置へ の指令値を決定し、決定された上記指令値により複数の走行制御方法を切り替えて 上記駆動装置が駆動されて、上記車体の走行制御が行われて走行状態を維持する 、倒立二輪走行型ロボットの制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006526472A JP3993883B2 (ja) | 2005-07-26 | 2006-07-07 | 倒立二輪走行型ロボット及びその制御方法 |
US11/790,749 US7635041B2 (en) | 2005-07-26 | 2007-04-27 | Inverted two-wheeled robot |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-215789 | 2005-07-26 | ||
JP2005215789 | 2005-07-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/790,749 Continuation US7635041B2 (en) | 2005-07-26 | 2007-04-27 | Inverted two-wheeled robot |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007013282A1 true WO2007013282A1 (ja) | 2007-02-01 |
Family
ID=37683183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/313579 WO2007013282A1 (ja) | 2005-07-26 | 2006-07-07 | 倒立二輪走行型ロボット及びその制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7635041B2 (ja) |
JP (1) | JP3993883B2 (ja) |
CN (1) | CN100557539C (ja) |
WO (1) | WO2007013282A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008310050A (ja) * | 2007-06-14 | 2008-12-25 | Canon Inc | 画像読取装置と画像形成装置 |
JP2009073283A (ja) * | 2007-09-19 | 2009-04-09 | Equos Research Co Ltd | 車両 |
JP2009073261A (ja) * | 2007-09-19 | 2009-04-09 | Equos Research Co Ltd | 車両 |
JP2010247723A (ja) * | 2009-04-17 | 2010-11-04 | Toyota Motor Corp | 走行装置及びその制御方法 |
CN101791800B (zh) * | 2010-01-21 | 2011-05-25 | 西北工业大学 | 一种双轮差动式机器人运动控制方法 |
JP2012091789A (ja) * | 2012-01-10 | 2012-05-17 | Equos Research Co Ltd | 車両 |
JP2012121571A (ja) * | 2012-02-06 | 2012-06-28 | Equos Research Co Ltd | 車両 |
CN112644984A (zh) * | 2019-10-10 | 2021-04-13 | 松下知识产权经营株式会社 | 控制方法、控制系统、输送装置及部件安装系统 |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006136962A (ja) * | 2004-11-11 | 2006-06-01 | Hitachi Ltd | 移動ロボット |
JP4760162B2 (ja) * | 2005-06-29 | 2011-08-31 | トヨタ自動車株式会社 | 移動台車の制御方法及び移動台車 |
WO2007129505A1 (ja) * | 2006-05-09 | 2007-11-15 | Equos Research Co., Ltd. | 車両、特性量推定装置及び搭載物判定装置 |
JP4434186B2 (ja) * | 2006-09-04 | 2010-03-17 | トヨタ自動車株式会社 | 移動体及び移動体の制御方法 |
JPWO2008065853A1 (ja) * | 2006-11-30 | 2010-03-04 | 株式会社エクォス・リサーチ | 車両 |
JP4779982B2 (ja) * | 2007-02-02 | 2011-09-28 | トヨタ自動車株式会社 | 移動体及び移動体の制御方法 |
JP4363455B2 (ja) * | 2007-04-19 | 2009-11-11 | トヨタ自動車株式会社 | 走行装置 |
JP4867823B2 (ja) * | 2007-07-09 | 2012-02-01 | トヨタ自動車株式会社 | 倒立車輪型移動体、及びその制御方法 |
WO2009022584A1 (ja) * | 2007-08-10 | 2009-02-19 | Equos Research Co., Ltd. | 車両 |
CN101568465B (zh) * | 2007-08-28 | 2011-05-11 | 松下电器产业株式会社 | 倒立双轮式搬运车及其控制方法 |
KR101017924B1 (ko) * | 2008-08-01 | 2011-03-04 | 호야로봇 (주) | 지형극복을 위한 보조 바퀴가 내장된 소형 모바일로봇 |
US8041456B1 (en) * | 2008-10-22 | 2011-10-18 | Anybots, Inc. | Self-balancing robot including an ultracapacitor power source |
US8160747B1 (en) | 2008-10-24 | 2012-04-17 | Anybots, Inc. | Remotely controlled self-balancing robot including kinematic image stabilization |
US8442661B1 (en) * | 2008-11-25 | 2013-05-14 | Anybots 2.0, Inc. | Remotely controlled self-balancing robot including a stabilized laser pointer |
WO2010068704A2 (en) | 2008-12-09 | 2010-06-17 | Reconrobotics, Inc. | Two-wheeled robot with enhanced climbing features |
CH702282A1 (de) | 2009-11-27 | 2011-05-31 | Alstom Technology Ltd | Fahrzeug zur selbständigen Inspektion von schwer zugänglichen Innenräumen. |
US8788096B1 (en) | 2010-05-17 | 2014-07-22 | Anybots 2.0, Inc. | Self-balancing robot having a shaft-mounted head |
JP5560234B2 (ja) * | 2011-05-31 | 2014-07-23 | トヨタテクニカルディベロップメント株式会社 | 重心角推定方法及び同方法によって制御される倒立車輪型走行体 |
EP2906170B1 (en) * | 2013-09-13 | 2016-11-02 | Dynamic Controls | Method for producing or calibrating a control profile for a wheelchair |
US9829882B2 (en) | 2013-12-20 | 2017-11-28 | Sphero, Inc. | Self-propelled device with center of mass drive system |
CN103832384B (zh) * | 2014-03-19 | 2017-06-27 | 大连理工大学 | 防侧倾装置 |
WO2017073055A1 (ja) * | 2015-10-27 | 2017-05-04 | パナソニックIpマネジメント株式会社 | 搬送装置 |
CN105539658B (zh) * | 2015-12-24 | 2018-03-30 | 鲍炜 | 一种安全的两轮自平衡车 |
WO2017124120A1 (en) * | 2016-01-17 | 2017-07-20 | Chen, Shane | Self-balancing load bearing vehicle |
CN105799828B (zh) * | 2016-03-17 | 2019-02-22 | 杭州骑客智能科技有限公司 | 一种人机交互运动车的运动控制方法以及运动控制系统 |
US10772774B2 (en) * | 2016-08-10 | 2020-09-15 | Max Mobility, Llc | Self-balancing wheelchair |
JP2020503204A (ja) | 2016-10-18 | 2020-01-30 | ピアジオ ファスト フォワード インク | 非軸駆動および安定化システムを有する車両 |
US10293676B2 (en) | 2016-10-18 | 2019-05-21 | Piaggio Fast Forward, Inc. | Vehicle having non-axial drive |
US10173738B2 (en) | 2016-10-18 | 2019-01-08 | Piaggio Fast Forward, Inc. | Vehicle having stabilization system |
USD890024S1 (en) | 2016-12-06 | 2020-07-14 | Piaggio Fast Forward, Inc. | Vehicle |
IT201700114497A1 (it) | 2017-10-11 | 2019-04-11 | Piaggio Fast Forward Inc | Veicolo a due ruote con sistema di stabilizzazione lineare |
CN108536165A (zh) * | 2018-04-02 | 2018-09-14 | 深圳小趴智能科技有限公司 | 一种姿态感应遥控装置控制机器人运动方法 |
EP3788452B1 (en) | 2018-05-01 | 2024-07-03 | Piaggio Fast Forward, Inc. | Method for determining self-driving vehicle behavior models, a self-driving vehicle, and a method of navigating a self-driving vehicle |
CN108582074B (zh) * | 2018-05-09 | 2021-11-30 | 算丰科技(北京)有限公司 | 机器人、机器人控制方法及装置 |
US11408498B2 (en) | 2018-10-22 | 2022-08-09 | Piaggio Fast Forward, Inc. | Shifting assembly and mobile carrier comprising same |
USD911405S1 (en) | 2018-10-22 | 2021-02-23 | Piaggio Fast Forward, Inc. | Mobile carrier |
CN111923061B (zh) * | 2020-08-11 | 2023-12-01 | 行星算力(深圳)科技有限公司 | 轮式运输机器人 |
CN111874125B (zh) * | 2020-08-11 | 2023-08-18 | 行星算力(深圳)科技有限公司 | 具有驻车功能的轮式机器人 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003330537A (ja) * | 2002-05-15 | 2003-11-21 | Matsushita Electric Ind Co Ltd | 自走式機器およびそのプログラム |
JP2005145293A (ja) * | 2003-11-17 | 2005-06-09 | Toyota Motor Corp | 前輪の接地と浮遊が切換え可能な走行体および走行状態切換え方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2530652B2 (ja) * | 1987-06-05 | 1996-09-04 | シ−ケ−ディ株式会社 | 同軸二輪車における姿勢制御方法 |
US5971091A (en) * | 1993-02-24 | 1999-10-26 | Deka Products Limited Partnership | Transportation vehicles and methods |
US6561294B1 (en) * | 1995-02-03 | 2003-05-13 | Deka Products Limited Partnership | Balancing vehicle with passive pivotable support |
IL127778A (en) * | 1996-07-17 | 2004-09-27 | Deka Products Lp | Anti-tipping mechanism |
WO2000054719A1 (en) * | 1999-03-15 | 2000-09-21 | Deka Products Limited Partnership | Control system and method for wheelchair |
US6799649B2 (en) * | 1999-03-15 | 2004-10-05 | Deka Products Limited Partnership | Control of a balancing personal vehicle |
US6302230B1 (en) * | 1999-06-04 | 2001-10-16 | Deka Products Limited Partnership | Personal mobility vehicles and methods |
US20050252700A1 (en) * | 2002-06-04 | 2005-11-17 | Chin Kitauchi | Powered manual propelling vehicle |
JP5099971B2 (ja) * | 2002-07-12 | 2012-12-19 | デカ・プロダクツ・リミテッド・パートナーシップ | 運搬装置のための運動制御 |
US7210544B2 (en) * | 2002-07-12 | 2007-05-01 | Deka Products Limited Partnership | Control of a transporter based on attitude |
JP2004074814A (ja) | 2002-08-09 | 2004-03-11 | Matsushita Electric Works Ltd | 人用移動機器 |
CN100361862C (zh) * | 2002-11-20 | 2008-01-16 | 中国科学技术大学 | 自平衡两轮电动车 |
JP2004215350A (ja) * | 2002-12-27 | 2004-07-29 | Sony Corp | 駆動制御装置およびその方法と2輪車 |
JP4138546B2 (ja) | 2003-03-26 | 2008-08-27 | トヨタ自動車株式会社 | 移動台車及び移動台車の制御方法 |
JP4411867B2 (ja) * | 2003-06-04 | 2010-02-10 | トヨタ自動車株式会社 | 重心移動により操舵可能な車両 |
WO2004110854A1 (ja) * | 2003-06-12 | 2004-12-23 | Sony Corporation | 同軸二輪車 |
JP2005094858A (ja) * | 2003-09-12 | 2005-04-07 | Sony Corp | 走行装置及びその制御方法 |
EP1529556B1 (en) * | 2003-11-04 | 2013-02-20 | Toyota Jidosha Kabushiki Kaisha | Travelling apparatus and method for controlling thereof |
JP4760162B2 (ja) * | 2005-06-29 | 2011-08-31 | トヨタ自動車株式会社 | 移動台車の制御方法及び移動台車 |
-
2006
- 2006-07-07 JP JP2006526472A patent/JP3993883B2/ja active Active
- 2006-07-07 WO PCT/JP2006/313579 patent/WO2007013282A1/ja active Application Filing
- 2006-07-07 CN CNB2006800011122A patent/CN100557539C/zh active Active
-
2007
- 2007-04-27 US US11/790,749 patent/US7635041B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003330537A (ja) * | 2002-05-15 | 2003-11-21 | Matsushita Electric Ind Co Ltd | 自走式機器およびそのプログラム |
JP2005145293A (ja) * | 2003-11-17 | 2005-06-09 | Toyota Motor Corp | 前輪の接地と浮遊が切換え可能な走行体および走行状態切換え方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008310050A (ja) * | 2007-06-14 | 2008-12-25 | Canon Inc | 画像読取装置と画像形成装置 |
US8712311B2 (en) | 2007-06-14 | 2014-04-29 | Canon Kabushiki Kaisha | Image reading apparatus and image forming apparatus |
JP2009073283A (ja) * | 2007-09-19 | 2009-04-09 | Equos Research Co Ltd | 車両 |
JP2009073261A (ja) * | 2007-09-19 | 2009-04-09 | Equos Research Co Ltd | 車両 |
JP2010247723A (ja) * | 2009-04-17 | 2010-11-04 | Toyota Motor Corp | 走行装置及びその制御方法 |
CN101791800B (zh) * | 2010-01-21 | 2011-05-25 | 西北工业大学 | 一种双轮差动式机器人运动控制方法 |
JP2012091789A (ja) * | 2012-01-10 | 2012-05-17 | Equos Research Co Ltd | 車両 |
JP2012121571A (ja) * | 2012-02-06 | 2012-06-28 | Equos Research Co Ltd | 車両 |
CN112644984A (zh) * | 2019-10-10 | 2021-04-13 | 松下知识产权经营株式会社 | 控制方法、控制系统、输送装置及部件安装系统 |
Also Published As
Publication number | Publication date |
---|---|
CN101052929A (zh) | 2007-10-10 |
US7635041B2 (en) | 2009-12-22 |
JPWO2007013282A1 (ja) | 2009-02-05 |
CN100557539C (zh) | 2009-11-04 |
JP3993883B2 (ja) | 2007-10-17 |
US20080173493A1 (en) | 2008-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007013282A1 (ja) | 倒立二輪走行型ロボット及びその制御方法 | |
JP4872276B2 (ja) | 走行体 | |
US8825254B2 (en) | Inverted pendulum type vehicle, and control method of inverted pendulum type vehicle | |
JP4240114B2 (ja) | 走行装置 | |
US9346502B2 (en) | Reconfigurable balancing robot and method for moving over large obstacles | |
JP4434186B2 (ja) | 移動体及び移動体の制御方法 | |
JP4605204B2 (ja) | 倒立振子型移動体、及びその制御方法 | |
US8068976B2 (en) | Coaxial two-wheel vehicle and method for controlling the same | |
US20180057050A1 (en) | Vehicle | |
KR101509884B1 (ko) | 도립진자형 차량 | |
WO2010013381A1 (ja) | 同軸二輪車及びその制御方法 | |
US9423795B2 (en) | Inverted pendulum type vehicle | |
US20210197918A1 (en) | Control device for mobile body | |
JP2009101898A (ja) | 倒立車輪型移動体、及びその制御方法 | |
JP2009101899A (ja) | 倒立車輪型移動体、及びその制御方法 | |
JP5360178B2 (ja) | 走行体 | |
JP2009101897A (ja) | 倒立車輪型移動体、及びその制御方法 | |
US20130299253A1 (en) | Inverted pendulum type vehicle | |
JP5927031B2 (ja) | 倒立振子型車両 | |
JP4888451B2 (ja) | 同軸二輪車及びその制御方法 | |
JP5959927B2 (ja) | 倒立振子型車両 | |
JP2010030440A (ja) | 同軸二輪車及びその制御方法 | |
JP2009101817A (ja) | 倒立車輪型移動体及びその制御方法 | |
JP5092683B2 (ja) | 倒立車輪型移動体及びその制御方法 | |
JP6119580B2 (ja) | 倒立型移動体の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2006526472 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680001112.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06767989 Country of ref document: EP Kind code of ref document: A1 |