WO2007011017A1 - 反応液からの(メタ)アクリル酸エステル系重合体の取得方法 - Google Patents

反応液からの(メタ)アクリル酸エステル系重合体の取得方法 Download PDF

Info

Publication number
WO2007011017A1
WO2007011017A1 PCT/JP2006/314460 JP2006314460W WO2007011017A1 WO 2007011017 A1 WO2007011017 A1 WO 2007011017A1 JP 2006314460 W JP2006314460 W JP 2006314460W WO 2007011017 A1 WO2007011017 A1 WO 2007011017A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acid ester
acrylic acid
organic solvent
polymer
Prior art date
Application number
PCT/JP2006/314460
Other languages
English (en)
French (fr)
Inventor
Kenichi Hamada
Susumu Matsunaga
Kazunori Watanabe
Masaji Kato
Jun Nagai
Tatsufumi Watanabe
Tatsuo Morotomi
Hiroshi Oshima
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US11/996,426 priority Critical patent/US8119749B2/en
Priority to EP06768338A priority patent/EP1916262B1/en
Priority to JP2006529392A priority patent/JP5225583B2/ja
Priority to CN2006800267548A priority patent/CN101238155B/zh
Publication of WO2007011017A1 publication Critical patent/WO2007011017A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/12Separation of polymers from solutions

Definitions

  • the present invention relates to a method for obtaining a (meth) acrylic acid ester polymer from a reaction solution containing a (meth) acrylic acid ester polymer, and a (meth) acrylic acid ester polymer obtained thereby. . More specifically, the present invention relates to (meth) acrylic acid ester obtained by polymerizing a monomer mainly composed of (meth) acrylic acid ester in the presence of an organic alkali metal compound, an organic aluminum compound, or other metal compound. (Meth) acrylic acid ester-based polymer that has extremely low residual amount of metal components, high purity, excellent transparency and other properties, can be obtained smoothly and easily by simple operations. The present invention relates to a method for obtaining efficiently, and a high-purity (meth) acrylic acid ester polymer obtained thereby, which is excellent in transparency and other properties. Background art
  • (meth) acrylic acid esters are polymerized in an organic solvent using a polymerization initiator such as an organic alkali metal compound to produce a (meth) acrylic acid ester-based polymer. ing.
  • a polymerization initiator such as an organic alkali metal compound
  • the polymerization system is polymerized for the purpose of increasing the polymerization rate, improving the polymerization initiation efficiency, improving the rubability during polymerization, narrowing the molecular weight distribution, reducing the polymerization conditions, and controlling the stereoregularity.
  • An organoaluminum compound is present together with the initiator (see, for example, Patent Documents 1 to 4).
  • a metal derived from a polymerization initiator or an organic aluminum compound in a (meth) acrylic acid ester polymer obtained by polymerizing a (meth) acrylic acid ester in the presence of a polymerization initiator and an organic aluminum compound If the component is included as an impurity, the weather resistance, mechanical properties, transparency, adhesive strength and adhesive strength [when (meth) acrylic ester polymers are used for adhesives and adhesives], thermal stability, etc. will decrease. In addition, coloring, poor appearance, odor and the like are likely to occur.
  • the transparency is affected by impurities such as alkali metal components and aluminum components remaining in the (meth) acrylic acid ester polymer, and in order to obtain a product with high transparency immediately, the content of these impurities is reduced. It is necessary to manage it strictly and reduce it as much as possible. From this point, depending on the intended use of the (meth) acrylic acid ester polymer, removal of metal components such as (meth) acrylic acid ester polymer force aluminum component and alkali metal has been carried out.
  • the metal component can be removed by using a metal adsorbent such as ion exchange resin for the reaction solution containing the (meth) acrylic acid ester polymer; hydrochloric acid aqueous solution, sulfuric acid aqueous solution, nitric acid
  • a metal adsorbent such as ion exchange resin for the reaction solution containing the (meth) acrylic acid ester polymer
  • hydrochloric acid aqueous solution sulfuric acid aqueous solution, nitric acid
  • a method of washing using an acidic aqueous solution such as an aqueous solution, an acetic acid aqueous solution, a citrate aqueous solution, or a propionic acid aqueous solution is known (see Patent Documents 3 and 4).
  • the method using ion-exchanged resin increases the cost because it uses an ion-exchanged resin that has a slow removal rate of metal components (refining treatment speed) and is inefficient and expensive. It is not a practically advantageous method and is not practical.
  • the method of removing the metal component by washing with an acidic aqueous solution is simpler and less expensive than the method of using ion exchange resin.
  • the removal of metal components with an acidic aqueous solution is usually carried out by washing the (meth) acrylic acid ester polymer recovered from the reaction solution with an acidic aqueous solution at room temperature to about 80 ° C.
  • Alkaline metal components in (meth) acrylic acid ester polymers can be removed quite efficiently, but the aluminum component is difficult to remove. It is difficult to sufficiently remove the aluminum component in the polymer.
  • Patent Document 1 Japanese Patent Publication No. 7-57766
  • Patent Document 2 Japanese Patent Laid-Open No. 7-330819
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-131216
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-158805
  • Non-Patent Document 1 “Chemical Engineering Handbook”, Maruzen Co., Ltd., 1999, p. 429
  • Non-Patent Document 2 “Latest Agitation 'Mixing' Dispersion Technology Collection”, Realize, 1991, p. 216 Disclosure of Invention
  • An object of the present invention is to (meth) acrylic acid obtained by polymerizing (meth) acrylic acid ester in the presence of a metal compound (in the presence of an organic alkali metal compound, an organic aluminum compound, or another metal compound).
  • the metal component contained in the reaction solution is highly removed from the reaction solution containing the ester polymer by a simpler method than before, resulting in high purity, excellent transparency, and heat resistance. It is to provide a method for efficiently and smoothly obtaining a (meth) acrylic acid ester polymer having excellent properties and mechanical properties.
  • the object of the present invention is a (meth) acrylic acid ester-based polymer which is obtained by the acquisition method and has high purity, excellent transparency, strength and other properties such as heat resistance and mechanical properties. To provide coalescence.
  • the present inventors have conducted research to achieve the above-mentioned object. Then, the (meth) acrylic acid ester polymer recovered from the reaction solution is washed with an acidic aqueous solution to remove metal components such as aluminum components and alkali metal components contained in the polymer. Contains a (meth) acrylate polymer obtained by polymerization instead of the conventional method described above, in which an acidic aqueous solution is added directly to a reaction solution containing an acrylate polymer to remove the metal component.
  • reaction solution add acid (in the form of an aqueous solution, acid) to contact the metal component such as aluminum component or alkali metal component contained in the reaction solution with acid, and then 90 ° C or more
  • acid in the form of an aqueous solution, acid
  • metal components such as aluminum components and alkali metal components contained in the reaction solution were extracted efficiently and smoothly into hot hot water at 1S. Being water Moving to, it'll go-between by dissolving the (meth) acrylic acid ester polymer!
  • the content of the metal component in the organic solvent layer is greatly reduced, and the metal component such as aluminum component and alkali metal component in the (meth) acrylate polymer obtained from the organic solvent layer is reduced. Very little residual And found high purity.
  • the present inventors have found that when the hot water washing at a temperature of 90 ° C or higher is repeated twice or more, the residual amount of the metal component in the (meth) acrylic acid ester-based polymer. It was found that a (meth) acrylic acid ester polymer having a very high purity can be obtained.
  • the present inventors added a carboxylic acid containing little or no water as the acid added to the reaction solution containing the (meth) acrylic acid ester polymer. If used, the aluminum component, alkali metal component, and other metal components contained in the reaction solution will be more smoothly extracted and transferred to hot hot water. After washing, the mixture of the reaction solution and water clearly separates into two layers, an aqueous solution layer and an organic solvent solution layer, and no cloudy intermediate layer is formed between the two layers! Therefore, the present inventors have found that a residual amount of aluminum component, alkali metal component and other metal components is extremely small! /, And that a highly pure (meth) acrylate polymer can be obtained efficiently.
  • the present inventors have described that the above-described method is a polymethacrylic acid ester or methacrylic acid ester polymer block acrylic synthesized in the presence of a polymerization initiator composed of an organic alkali metal compound and an organic aluminum compound.
  • the present invention provides:
  • step (b) a step of washing the reaction solution by mixing water at a temperature of 90 ° C or higher with the reaction solution to which the acid has been added in step (a);
  • step (c) a step of separating the mixture of the reaction solution and water produced in step (b) into an organic solvent solution layer and an aqueous solution layer;
  • a feature is a method for obtaining a (meth) acrylic acid ester polymer from a reaction solution.
  • the present invention also provides:
  • step (b) a step of washing the reaction solution by mixing water at a temperature of 90 ° C or higher with the reaction solution to which the acid has been added in step (a);
  • step (c) a step of separating the mixture of the reaction solution and water produced in step (b) into an organic solvent solution layer and an aqueous solution layer;
  • (e) Washing the organic solvent solution by mixing water with the separated organic solvent solution at a temperature of 90 ° C or higher, and (e-2) A series of steps consisting of separating a mixture of water into an organic solvent solution layer and an aqueous solution layer, and separating each of the separated organic solvent solution and aqueous solution with (e-3) layers;
  • the (meth) acrylic acid ester-based polymer from the reaction solution is characterized in that the (meth) acrylic acid ester-based polymer is obtained also by the organic solvent solution strength fractionated in the final stage. It is an acquisition method.
  • the present invention provides:
  • step (a) the metal component derived from the metal compound contained in the reaction solution is brought into contact with an acid.
  • the (meth) acrylic acid ester polymer according to any one of (1) to (3) above. Acquisition method;
  • step (a) Acquisition of any of the (meth) acrylic acid ester polymers according to (1) to (4) above, wherein the acid added in step (a) is a carboxylic acid having a water content of 20% by mass or less.
  • Steps (b) and (e-1) of step (e) are carried out at a temperature of 90 to 180 ° C. (1) to (6)!
  • the organoaluminum compound is represented by the following general formula (I);
  • R 2 and R 3 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. which may have Ararukiru group which may have a substituent an alkoxyl group, optionally Ariruokishi group or N which may have a substituent, N- two substituted amino group force or R 1 is wherein, Any group and R 2 and R 3 together have a substituent! /, Forming a temoaryrangeoxy group.
  • (10) (Meth) acrylic acid ester polymer power Polymethacrylic acid ester, methacrylic acid ester polymer block Diblock copolymer consisting of acrylic acid ester polymer block or methacrylic acid ester polymer block Acquiring any of the (meth) acrylic acid ester polymers of (1) to (9) above, which is a triblock copolymer consisting of an acrylic acid ester polymer block-methacrylic acid ester polymer block Law; and
  • a metal contained in the reaction solution is obtained from a reaction solution containing a (meth) acrylic acid ester polymer in which a (meth) acrylic acid ester is polymerized in the presence of a metal compound.
  • the (meth) acrylic acid ester-based polymer is highly efficient and smooth by removing components in a simpler way than before, and having high purity, transparency, heat resistance, and mechanical properties. Can get to.
  • a polymerization initiator particularly a polymerization initiator composed of an organic alkali metal compound, and an organoaluminum compound.
  • the alkali metal component and the aluminum component contained in the reaction solution can be removed to a high degree from the reaction solution containing the polymer with a simpler method than before.
  • the (meth) acrylic acid ester-based polymer of the present invention having high transparency and excellent heat resistance and mechanical properties can be obtained efficiently and smoothly.
  • the method of the present invention is a reaction solution containing a (meth) acrylate polymer obtained by polymerizing a monomer mainly composed of (meth) acrylate in a water-insoluble organic solvent in the presence of a metal compound. As long as it is, it can be applied to any reaction solution.
  • a metal compound to be present in the polymerization system when a monomer mainly composed of (meth) acrylic acid ester is polymerized in a water-insoluble organic solvent an organic alkali metal compound, copper halide, halogen
  • examples thereof include polymerization initiators such as iron halides and metal halides such as nickel halides, and organoaluminum compounds.
  • the method of the present invention polymerizes a monomer mainly composed of (meth) acrylic acid ester in a water-insoluble organic solvent in the presence of a polymerization initiator composed of an organic alkali metal compound and an organoaluminum compound. Suitable as a method for obtaining (meth) acrylate polymer from reaction liquid containing (meth) acrylate polymer! / Speak.
  • the organic aluminum compound to be present in the polymerization system during the polymerization of a monomer mainly composed of a methacrylic acid ester has some purpose during the polymerization of the monomer mainly composed of a (meth) acrylic acid ester (for example, improvement of polymerization initiation efficiency, improvement of living property during polymerization, improvement of polymerization rate, wide range of usable polymerization initiators, milder polymerization conditions, improvement of polymer yield, block co-polymerization For the purpose of hydrogenating carbon-carbon double bonds in organoaluminum compounds and (meth) acrylate polymers used in the purpose of increasing the rate of coal formation and controlling stereoregularity)
  • the organic aluminum compound used as a catalyst component are not particularly limited.
  • organoaluminum compound that is present during the polymerization of a monomer mainly composed of (meth) acrylic acid ester, the following general formula (I);
  • the organoaluminum compound represented by these can be mentioned.
  • the alkyl group represented by R 2 and R 3 includes methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, isobutyl group, s butyl Group, t-butyl group, 2-methylbutyl group, 3-methylbutyl group, n-octyl group, 2-ethylhexyl group and the like.
  • Examples of the cycloalkyl group represented by R 2 and R 3 include a cyclopentyl group and a cyclohexyl group.
  • the aforementioned alkyl group and cycloalkyl group may optionally be substituted with, for example, an alkoxyl group such as a methoxy group, an ethoxy group, an isopropyl group, or a t-butoxy group; a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom. One or more of these may be present.
  • an alkoxyl group such as a methoxy group, an ethoxy group, an isopropyl group, or a t-butoxy group
  • a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom.
  • Examples of the aryl group or aralkyl group represented by R 2 and R 3 include aralkyl groups such as phenyl group and naphthyl group, and aralkyl groups such as benzyl group and 1-phenylethyl group.
  • the aforementioned aryl group and aralkyl group may optionally be substituted as, for example, a methyl group, an ethyl group, an n propyl group, an isopropyl group, an n butyl group, an isobutyl group, an s butyl group, a t butyl group, a 2-methyl butyl group, 3 Alkyl groups such as methylbutyl group, n-octyl group and 2-ethylhexyl group; alkoxyl groups such as methoxy group, ethoxy group, isopropoxy group and t-butoxy group; halogen atoms such as chlorine atom, bromine atom and iodine atom Have one kind or two kinds or more! /, You may! /, Etc.
  • the alkoxyl group, aryloxy group or N, N-disubstituted amino group represented by R 2 and R 3 includes alkoxyl groups such as methoxy group, ethoxy group, isopropoxy group, and t-butoxy group, and phenoxy group.
  • N N-disubstituted amino groups such as aryloxy group, methylamino group, jetylamino group, diisopropylamino group and bis (trimethylsilyl) amino group.
  • alkoxyl group, aryloxy group and N, N disubstituted amino group may optionally be substituted as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sbutyl Group, alkyl group such as t-butyl group, 2-methylbutyl group, 3-methylbutyl group, n-octyl group, 2-ethylhexyl group; alkoxyl group such as methoxy group, ethoxy group, isopropoxy group, t-butoxy group;
  • halogen atoms such as chlorine atom, bromine atom and iodine atom may be contained.
  • R 2 and R 3 together form an arylene dioxy group include 2, 2, 1 biphenol, 2, 2, 1 methylene bisphenol, 2, 2, 1 methylene bis (4-methyl-6-t-butylphenol), (R) — (+) — 1, 1, —
  • Examples include bivalent naphthols that also induce forces, such as B 2 naphthol, (S) — (—) — 1, 1, 1 and 1 2-naphthol.
  • These groups optionally, as a substituent, such as methyl group, Echiru group, n- propyl group, an isopropyl group, n - butyl group, isobutyl group, s-butyl group, t-butyl group, 2-main Chirubuchiru group, 3 Alkyl groups such as methylbutyl group, n-octyl group and 2-ethylhexyl group; Alkoxy groups such as methoxy group, ethoxy group, isopropoxy group and t-butoxy group; Halogen atoms such as chlorine atom, bromine atom and iodine atom 1 type or 2 types or more may be included.
  • a substituent such as methyl group, Echiru group, n- propyl group, an isopropyl group, n - butyl group, isobutyl group, s-butyl group, t-butyl group, 2-main Chirubuchiru group, 3 Al
  • the organoaluminum compound is represented by the above general formula (I).
  • One or more of R 2 and R 3 , Two of R 2 and R 3 may have a substituent.
  • An organoaluminum compound which is a V aryloxy group is preferable from the viewpoint of enhancing the living property during the polymerization reaction of (meth) acrylate. Used.
  • the present invention mainly comprises a (meth) acrylate polymer in the presence of a polymerization initiator and one or more of the above-described organoaluminum compounds, or other organoaluminum compounds. Even when the reaction solution obtained by polymerizing the monomer is displaced, it can be applied to obtain a (meth) acrylate polymer from the reaction solution.
  • the type of the polymerization initiator used in the polymerization of the (meth) acrylic acid ester is not particularly limited, and is conventionally used in the polymerization of monomers mainly composed of (meth) acrylic acid esters. Any of the agents may be used. Polymerization of (meth) acrylic acid esters has been conventionally performed by, for example, key-on polymerization initiators such as organolithium compounds, organosodium compounds, organopotassium compounds, and organomagnesium compounds, copper halides, iron halides, halogenated nickels.
  • key-on polymerization initiators such as organolithium compounds, organosodium compounds, organopotassium compounds, and organomagnesium compounds, copper halides, iron halides, halogenated nickels.
  • reaction is carried out using a living polymerization initiator such as, and the present invention is a reaction solution containing a (meth) acrylic acid ester polymer polymerized in the presence of the metal-containing polymerization initiator described above.
  • (meth) acrylic acid ester polymer from Can be adopted.
  • the present invention relates to a (meth) acrylic acid ester polymer from a reaction solution containing a (meth) acrylic acid ester polymer polymerized in the presence of an ion polymerization initiator and an organoaluminum compound. Effective as an acquisition method.
  • Organolithium compounds used as a monomer polymerization initiator mainly composed of (meth) acrylic acid esters include methyllithium, ethyllithium, n-propyllithium, isopropylinlithium, and n-butylene.
  • Alkyllithium and alkyldilithium such as norrethium, s butynolethium, isobutynolethium, t-butyllithium, n-pentyllithium, n-hexyllithium, tetramethylenedilithium, pentamethylenedilithium, hexamethylenedilithium ;
  • Aryl lithium and aryl dilithium such as ferrous lithium, m-tolyl lithium, p tolyl lithium, xylyl lithium, lithium naphthalene; benzyl lithium, diphenylmethyl lithium, trityl lithium, 1,1-diphenyl —Methylpe
  • Aralkyllithium and aralkyldilithium such as dilithium produced by the reaction of n-thyllithium, a-methylstyryllithium, diisopropylbenzene and butyllithium; lithium such as lithium dimethylamide, lithium
  • Organic sodium compounds used as a monomer polymerization initiator mainly composed of (meth) acrylic acid ester include methyl sodium, ethyl sodium, n-propyl sodium, isopropyl sodium, n- Alkyl sodium and alkyl such as butinole sodium, s butinole sodium, isobutyl sodium, t-butyl sodium, n-pentyl sodium, n-hexyl sodium, tetramethylene disodium, pentamethylene disodium, hexamethylene disodium Disodium; ferryl sodium, m-tolyl sodium, P-tolyl sodium, xylyl sodium, sodium naphthalene, etc.
  • Examples of the organic potassium compound used as a monomer polymerization initiator mainly composed of (meth) acrylic acid ester include methyl potassium, ethyl potassium, n-propyl potassium, isopropyl potassium, n-butyl potassium, s Alkyl potassium and alkyl dipotassium such as butyl potassium, isobutyl potassium, t-butyl potassium, n-pentyl potassium, n-hexyl potassium, tetramethylene dicalium, pentamethylene dipotassium, hexamethylene dipotassium; —Allyl potassium, p-tolyl potassium, xylyl potassium, potassium naphthalene and other aryl potassium and allyl dipotassium; benzyl potassium, diphenylmethyl potassium, trityl potassium, 1, 1-diphenyl-methyl 3-methylpentyl potassium Aralkyl potassium and aralkyl dipotassium such as dipotassium produced by the reaction of potassium
  • Organomagnesium compounds used as a monomer polymerization initiator mainly composed of (meth) acrylic acid esters include dimethylmagnesium, jetylmagnesium tilmagnesium chloride, ethylmagnesium bromide, phenyl. Examples thereof include magnesium chloride, phenylmagnesium bromide, t-butylmagnesium chloride, and t-butylmagnesium bromide.
  • Polymerization of a monomer mainly composed of (meth) acrylic acid ester in the presence of an organoaluminum compound can be carried out using one or more of the polymerization initiators mentioned above.
  • organolithium compounds such as n-butyllithium, s-butyllithium, t-butyllithium, diphenylmethyllithium, 1,1-diphenyl-lithium 3-methylpentyllithium and a-methylstyryllithium are particularly preferred as polymerization initiators.
  • the polymerization initiation efficiency is high and the polymerization reaction proceeds smoothly.
  • the amount of the polymerization initiator used is not particularly limited, and depends on the type of (meth) acrylic acid ester used, the type of (meth) acrylic acid ester polymer to be produced, the polymerization conditions such as the polymerization temperature, and the like.
  • the concentration of the polymerization initiator per liter of the polymerization solution is preferably in the range of 0.1 to LOOmmol, particularly 1 to 10mmol, such as smooth progress of the polymerization.
  • the amount of the organoaluminum compound used is in the range of 0.1 to 30 mol times, particularly in the range of 0.5 to 20 mol times with respect to the polymerization initiator used. Preference for improving the living property during polymerization.
  • a monomer mainly composed of (meth) acrylic acid ester generally based on the total mass of the (meth) acrylic acid ester.
  • the proportion of tellurium is 60% by mass or more, further 75% by mass or more, and particularly 85-: LOO% by mass.
  • a monomer derived from a (meth) acrylate polymer can be developed. Preferably used.
  • (meth) acrylic acid ester which is a raw material for producing a (meth) acrylic acid ester polymer
  • examples of (meth) acrylic acid ester include methyl methacrylate, ethyl acetate, propyl methacrylate, isopropyl methacrylate, allylic methacrylate, N-butyl methacrylate, t-butyl methacrylate , Cyclohexyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, glycidyl methacrylate, trimethoxysilylpropyl methacrylate, methoxyethyl methacrylate, 2- (2-ethoxyethoxy) ethyl methacrylate, Methacrylic acid esters such as N, N dimethylaminoethyl methacrylate, N, N dimethylaminoethyl methacrylate; methyl acrylate,
  • a small amount of (meth) acrylic acid ester-based polymer having two or more carbon-carbon double bonds generally, the total amount of Can be used in an amount of 10 mol% or less of the body.
  • Examples of other monomers that can optionally be used with (meth) acrylic acid esters as minor components include olefin compounds such as ethylene, propylene, isobutylene; conjugation compounds such as butadiene, isoprene; Aromatic vinyl compounds such as styrene and a-methylstyrene; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; salt vinyl; butyl acetate and the like. Use one or more of these. I can do it.
  • Monomer mainly composed of (meth) acrylic acid ester (hereinafter sometimes referred to as "(meth) acrylic acid ester monomer”] is polymerized in a water-insoluble organic solvent.
  • the reaction component containing the (meth) acrylic acid ester polymer contains an aluminum component derived from the organoaluminum compound and a metal component derived from the polymerization initiator.
  • a highly purified (meth) acrylic acid ester polymer is obtained from the organic solvent layer.
  • the reaction solution produced by the washing treatment After washing the reaction solution by mixing water at a temperature of 90 ° C or higher with the reaction solution containing the (meth) acrylic acid ester polymer produced by polymerization, the reaction solution produced by the washing treatment When the water mixture is separated into the organic solvent solution layer and the aqueous solution layer, the organic solvent solution layer and the aqueous solution layer are not clearly separated into two layers, and a cloudy intermediate layer is formed between the two layers. As a result, the removal of the aluminum component and other metal components derived from the polymerization initiator and the acquisition of the (meth) acrylic acid ester polymer from the organic solvent solution are not performed smoothly, and the strength is also increased by (meth) acrylic acid. The yield (acquisition rate) of the ester polymer decreases.
  • water-insoluble organic solvents used for the polymerization of (meth) acrylate monomers include aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene; pentane, n-xane, octane, and the like. Alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc., and these hydrocarbons may be used alone. Two or more kinds may be mixed and used.
  • (meth) acrylic acid ester polymer produced by toluene, ethylbenzene, cyclohexane, or a mixed liquid polymerization of these has high solubility, and is highly separated from water and highly purified (meth) acrylic acid.
  • the ester polymer is preferably used from the viewpoint that it can be obtained in a high yield and that the recovered solvent can be easily purified, and in particular, toluene is more preferably used.
  • the water-insoluble organic solvent used for the polymerization should be degassed and dehydrated in advance, so that the polymerization reaction proceeds smoothly, and the aluminum component from the reaction solution containing the synthesized (meth) acrylate polymer. And other metal components are desired to be removed smoothly (hereinafter, the water-insoluble organic solvent used in the present invention may be simply referred to as “organic solvent” t).
  • an additive for maintaining high repellency and allowing the polymerization to proceed rapidly can be added to the polymerization reaction system as necessary.
  • the Such additives include, for example, ether compounds such as dimethyl ether, dimethoxyethane, jetoxetane, 12 crown 1-4; triethylamine, N, N, ⁇ ', ⁇ , -tetramethylethylenediamine, ⁇ , ⁇ , ⁇ ', ⁇ ", ⁇ "
  • Organic nitrogen-containing compounds such as pentamethyljetyltriamine, 1, 1, 4, 7, 10, 10 hexamethyltriethylenetriamine, pyridine, 2, 2, -dipyridyl
  • Organic phosphorus compounds such as triethylphosphine, triphenylphosphine and 1,2-bis (diphenylphosphino) ethane
  • inorganic salts such as lithium chloride, sodium chloride and potassium chloride; lithium (2-me
  • ether compounds and organic nitrogen-containing compounds can be polymerized more quickly while maintaining high rebirability with a small amount of use, smooth separation of organic solvent layer and aqueous layer, organic solvent layer
  • Organic nitrogen-containing compounds are more preferred in terms of the yield of (meth) acrylic acid ester polymer from When the above-mentioned additive is present in the polymerization reaction system, it is preferably in the range of 0.1 to 200 mmol, particularly in the range of 1 to 20 mmol per liter of the polymerization solution.
  • the polymerization temperature at the time of polymerizing the (meth) acrylic acid ester monomer is the kind of the (meth) acrylic acid ester monomer, the concentration of the monomer in the organic solvent, the organoaluminum compound
  • the polymerization temperature can be appropriately determined according to the type of polymerization initiator and the like, and is not particularly limited.
  • (meth) acrylic acid can be obtained at a polymerization temperature of 80 to 100 ° C, particularly -40 to 80 ° C. It is preferably employed for the control of the structure of the ester polymer and the stability of the end of polymerization growth.
  • the type and combination of (meth) acrylate monomers used for polymerization, the method of supplying monomers to the polymerization reaction apparatus and the supply sequence are not particularly limited, and (meth) acrylate esters Homopolymer consisting of one monomer of (meth) acrylic acid ester, depending on the type, combination, supply sequence, etc.
  • a reaction solution containing a random copolymer or a tapered copolymer is generated.
  • a living polymer block A is produced by polymerizing a specific (meth) acrylic acid ester and then another (meth) acrylic acid ester is supplied to form the polymer block B, A reaction solution containing an A-B type diblock copolymer in which the polymer block A and the polymer block B are combined is formed.
  • a specific (meth) acrylate ester is polymerized to produce living polymer block A, then another type of (meth) acrylate ester is fed to form polymer block B, and then first By supplying the same (meth) acrylic acid ester that was supplied to form polymer block A, polymer block A, polymer block B, and polymer block A were combined in the A—B—A type. A reaction solution containing a triblock copolymer is produced.
  • the acquisition method of the present invention includes the above-described various (meth) acrylic acid ester polymers (such as a homopolymer, a random copolymer, a tapered copolymer, a block copolymer, and a graft polymer). It can be effectively applied to any reaction solution containing one or more kinds, and from the reaction solution, the remaining amount of aluminum component and other metal components is extremely small, and each (meth) of high purity An acrylic ester polymer is obtained.
  • various (meth) acrylic acid ester polymers such as a homopolymer, a random copolymer, a tapered copolymer, a block copolymer, and a graft polymer.
  • the acquisition method of the present invention is a methacrylic acid ester polymer block acrylic obtained by block copolymerization of a (meth) acrylic acid ester monomer in the presence of a polymerization initiator and an organoaluminum compound.
  • Reaction block containing a diblock copolymer for example, polymethyl methacrylate-poly (n-butyl acrylate) diblock copolymer], methacrylate ester polymer block
  • a reaction solution containing a triblock copolymer for example, polymethyl methacrylate-poly (acrylic acid n-butyl) -polymethyl methacrylate triblock copolymer] comprising a polymer block and a methacrylate ester polymer block; or One of the methacrylates When applied to a reaction solution containing a polymethacrylic acid ester obtained by homopolymerization in the presence of a polymerization initiator and an organoaluminum compound (for example, polymethyl methacrylate, etc.), Low purity of aluminum components derived from compounds and metal components derived from polymerization initiators such as organic alkali metal compounds, excellent transparency, weather resistance, heat resistance, mechanical properties, appearance, etc.
  • a reaction solution containing a (meth) acrylic acid ester polymer is used as it is for a hydrogenation reaction of a carbon-carbon double bond contained in the polymer.
  • a hydrogenation reaction a reaction solution containing a (meth) acrylic acid ester polymer
  • the (meth) acrylic acid ester-based polymer that is preferably subjected to a hydrogenation reaction has a carbon-carbon double bond in its structure.
  • a conjugated diene compound such as butadiene or isoprene.
  • a copolymer such as a polymer may be mentioned.
  • conjugated diene compounds that are ion-polymerizable monomers as well as (meth) acrylate monomers are those that compensate for the nonpolarity of (meth) acrylate polymers. It is useful as a polymerization monomer, and its weather resistance is improved by a hydrogenation reaction.
  • a Ziegler catalyst that is, an organic nickel compound or an organic titanium compound, and the following general formula (II):
  • R 4 , R 5 and R 6 are each independently an alkyl group which may have a substituent, a substituent, or a cycloalkyl group or a substituent. And may have a aryl group or a substituent and may represent an aryloxy group.
  • organic aluminum compound (II) a combination of the organic aluminum compound [hereinafter simply referred to as “organoaluminum compound (II)”].
  • An alkyl group which may have a substituent represented by R 5 and R 6, may have a substituent, may have a cycloalkyl group, have a substituent! /, May have an aryl group or Replace
  • Examples of the aryloxy group which may have a group include the same groups as those represented by R 2 and R 3 in formula (I), and specific examples thereof are the same as those described above.
  • organoaluminum compound (II) preferably used include trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tris-butylaluminum, trit-butylaluminum, triisobutylaluminum, trioctyl.
  • organoaluminum compound (II) preferably used include trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tris-butylaluminum, trit-butylaluminum, triisobutylaluminum, trioctyl.
  • examples include aluminum and tricyclohexylaluminum.
  • the acquisition method of the present invention works together with the organoaluminum compound used in the polymerization reaction.
  • the organoaluminum compound (II) can be efficiently removed.
  • the molecular weight and physical properties of the (meth) acrylic acid ester-based polymer obtained by the method of the present invention are not particularly limited, and can be made suitable for each application and intended use.
  • a metal compound such as a polymerization initiator or an organic aluminum compound in a water-insoluble organic solvent.
  • An acid is added to the reaction solution containing the coalescence.
  • the addition of the acid to the reaction solution containing the (meth) acrylate polymer is preferably performed when the terminal of the (meth) acrylate polymer in the reaction solution is in a living state.
  • the polymerization reaction is stopped by the addition, and a conjugate of a metal component and an acid contained in the reaction solution, such as an aluminum component derived from an organoaluminum compound or a metal component derived from a polymerization initiator.
  • a conjugate with an acid is formed. If an organic aluminum compound is included when an acid is added to the reaction liquid containing a (meth) acrylic acid ester polymer after adding a water or methanol alcohol to stop the polymerization reaction, it is derived from the organic aluminum compound.
  • Water-insoluble reaction product for example, gel-like aluminum hydroxide, aluminum, etc.
  • water and alcohol such as methanol
  • the acid to be added to the reaction solution containing the (meth) acrylic acid ester polymer it is preferable to use a carboxylic acid that does not substantially contain water or has a low water content.
  • the water content of the carboxylic acid is preferably 20% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less. 1% by mass or less In particular, it is more preferably 0.5% by mass or less.
  • Specific examples of strong carboxylic acids include acetic acid (glacial acetic acid), propionic acid, butyric acid, valeric acid, and capronic acid. Among them, acetic acid (glacial acetic acid) is easily available and easy to handle. From the point of view, it is more preferably used.
  • the amount of acid added in step (a) is such that when the reaction mixture contains an organoaluminum compound, the aluminum component derived from the organoaluminum compound comes into contact with the acid to form some acid conjugate. Is preferable in order to sufficiently remove the aluminum component from the reaction solution.
  • the reaction liquid containing the (meth) acrylic acid ester polymer contains an aluminum component derived from the organoaluminum compound and a metal component derived from the polymerization initiator V
  • the metal component derived from the polymerization initiator is also added to the acid-acid conjugate added in step (a).
  • the amount of acid added in step (a) is the total basic component (aluminum component, metal component derived from the polymerization initiator, etc.) contained in the reaction solution containing the (meth) acrylic acid ester polymer. It is preferable to increase the removal rate of the total basic components from the reaction solution in such an amount that the total of the basic components, etc.) forms a conjugate with the acid.
  • the temperature of the reaction solution is 80 to 60 ° C, and the temperature is 25 to 60 ° C. It is preferable because a complex of an aluminum component and other basic components contained therein and an acid is formed smoothly.
  • the concentration of the (meth) acrylic acid ester-based polymer in the reaction solution is adjusted as necessary. You may adjust it.
  • the method of the present invention is more effective in obtaining a (meth) acrylic ester polymer from a reaction solution containing a high concentration of a (meth) acrylic ester polymer.
  • concentration of the (meth) acrylic acid ester polymer in the reaction solution at the time of being subjected to step (b) or step (e-1) (washing step) is 10 to 50% by mass,
  • the power of 15 to 35% by mass is also preferable in terms of productivity, efficiency of removing impurities, and the like.
  • the concentration of the (meth) acrylic acid ester polymer in the reaction solution can be adjusted by diluting with the same force used in the polymerization, or by adding a water-insoluble organic solvent closely related to the reaction solution.
  • the liquid can be concentrated by heating distillation or the like.
  • the reaction solution is washed by mixing water (hot water) with the reaction solution containing the (meth) acrylic acid ester polymer to which the acid has been added in the step (a).
  • a combination of an acid component such as an aluminum component and other basic components generated in the reaction solution by acid addition, is sufficiently extracted and transferred into the aqueous layer, and the reaction solution (organic solvent Layer).
  • step (c) In order to smoothly and sufficiently extract and transfer the aluminum component and other basic component-acid conjugate formed in the reaction solution to the aqueous layer, the organic solvent solution layer in the following step (c) In order to facilitate the separation of the aqueous solution layer into two layers, in step (b), it is necessary to mix water with the reaction solution at a temperature of 90 ° C or higher.
  • step (b) When the water washing treatment in step (b) is performed at a temperature of less than 90 ° C, aluminum contained in the reaction solution Extraction of components into the water layer * Transfer is not sufficiently performed, and the final amount of residual aluminum component in the (meth) acrylic acid ester polymer increases, resulting in high purity (meth) An acrylic ester polymer cannot be obtained. However, even if the number of washings with water is increased, the aluminum component removal rate does not improve so much.
  • the mixed solution of the reaction solution and water generated in this step (b) is separated into an organic solvent solution layer and an aqueous solution layer in the next step (c)
  • the organic solvent solution layer and the aqueous solution layer 2 are separated.
  • step (b) On the other hand, if the temperature in step (b) is too high, the (meth) acrylic acid ester polymer contained in the reaction solution is likely to be decomposed or deteriorated. Thermal decomposition temperature is generally 250 to 300 ° C]. Furthermore, if the temperature of step (b) is too high, it will be disadvantageous in terms of thermal efficiency and equipment as it requires an extremely high pressure and an apparatus that can withstand such a high pressure in order to keep the reaction solution and water in a liquid state. Furthermore, the solubility of water in the organic solvent solution layer is increased. However, even if the temperature in step (b) exceeds 180 ° C, the effect of reducing the residual amount of the aluminum component in the obtained (meth) acrylic acid ester polymer does not change much.
  • the temperature of the mixed solution obtained by mixing water with the reaction solution is within the range of 90 to 180 ° C. More preferably, it is carried out so that the temperature is within the range. It is further preferred that the temperature is within the range of 120 to 160 ° C.
  • the temperature of 90 ° C or higher (mixing temperature, washing temperature) employed in step (b) is generally higher than the azeotropic point of water-insoluble organic solvent (for example, toluene) and water forming the reaction solution. Temperature (for example, the azeotropic point of water and toluene is 85.0 ° C), and when step (b) is carried out under normal pressure, both the organic or organic solvent and water are vaporized. In order to carry out the washing process in step (b) smoothly, it is necessary to mix both the reaction liquid (organic solvent) and water without vaporizing them while maintaining the liquid state.
  • the amount of water mixed in step (b) is the amount and type of (meth) acrylic acid ester polymer contained in the reaction solution, the aluminum component derived from the organoaluminum compound, and the metal component derived from the polymerization initiator.
  • the force that can vary depending on the type and amount of organic solvent, the type of organic solvent, the temperature in step (b), etc.
  • a reaction solution containing a (meth) acrylate polymer Mixing water at a ratio of 0.02 to LO volume, preferably 0.1 to 5 volumes, particularly 0.2 to 2
  • step (c) layer separation into an organic solvent solution layer and an aqueous solution layer is facilitated because the extraction and transfer of a mixture of humic components and other basic components and an acid into an aqueous layer is performed well. What is done is that the amount of heat required to raise the temperature of the water used can be suppressed, how to obtain the present invention In force such that it can suppress the amount of waste water discharged is also preferred.
  • step (b) mixing water with the reaction solution containing the (meth) acrylic acid ester polymer with stirring makes it possible to mix the water of the aluminum component or other basic component with the acid. Extraction to layer is preferred because of the good migration.
  • a stirring device at that time it is preferable to use a stirring device that can sufficiently mix the whole mixture of the reaction solution and water.
  • Rotary stirring blades, pumps, other dynamic stirring devices, static stirring It is possible to use the difference between the equipment (static mixer) and the stirring type extraction tower.
  • step (b) if the agitation is too strong, a so-called “water stagnation” occurs in which water is finely mixed in the reaction solution (organic solvent solution). Impurities contained in the submerged water cannot be removed. Furthermore, when water stagnation is severe, an intermediate layer is formed between the organic solvent solution layer and the aqueous solution layer, resulting in poor removal of impurities such as metal components. On the other hand, if the stirring is weak, renewal of the interface composed of the organic solvent solution layer Z aqueous solution layer becomes insufficient, and removal of impurities such as metal components becomes poor, or removal of impurities takes a very long time.
  • the strength of stirring varies depending on the temperature at which step (b) is carried out, but when using a dynamic stirring device such as a rotary stirring blade or a pump, 30 to: LOOOwZm 3 , especially 80 to 500 wZm It is preferable to use 3 stirring power (Sa).
  • the range of stirring power (Sa) during dynamic stirring becomes wider as the temperature at the time of carrying out step (b) is higher.
  • step (b) when step (b) is carried out at 90-120 ° C with dynamic stirring, use a stirring power (Sa) of 30-500 w / m 3 , especially 30-200 wZm 3.
  • (B) Is carried out at 120 to 180 ° C. under dynamic stirring, it is preferable to employ a stirring power (Sa) of 50: LOOOw / m 3 , especially 80-5 OOwZm 3 .
  • stirring power (Sa) at the time of dynamic stirring is obtained from the following formula (i).
  • Stirring power during dynamic stirring (Sa) (w / m 3 ) P / V (i)
  • P is a power required for stirring (w; watt) possessed by each dynamic stirring device, and is, for example, a method based on general chemical engineering as described in Non-Patent Document 1. Calculated. V is the internal volume (m 3 ) of the apparatus (mixing apparatus) in which mixing is performed. ]
  • step (b) When step (b) is performed under static stirring using a static stirring device (static mixer), etc., stirring power (Sb) of 30-: LOOOwZm 3 , especially 80-500 wZm 3 is adopted. It is preferable to do so.
  • the range of the stirring power (Sb) during static stirring becomes wider as the temperature at the time of carrying out step (b) is higher.
  • step (b) when step (b) is carried out at 90 to 120 ° C. under dynamic stirring, it is preferable to use a stirring power (Sb) of 30 to 500 wZm 3 , especially 30 to 200 wZm 3.
  • step (b) When step (b) is carried out at 120 to 180 ° C. with dynamic stirring, it is preferable to employ a stirring power (Sb) of 50 to: L000wZm 3 , particularly 80 to 500 wZm 3 .
  • stirring power (Sb) at the time of static stirring is calculated
  • Stirring power during static stirring (Sb) (w / m 3 ) 2f p U 3 / D (ii) [where f is the Fanning friction coefficient, p is the density (kgZm 3 ), U is the average flow velocity ( mZsec), D is the diameter (m) of the apparatus, and is calculated by a method based on general chemical engineering as described in Non-Patent Document 2, for example. ]
  • the pressure loss applied to the system may be regarded as being converted to the mixed energy, and may be calculated using the following formula (iii).
  • the mixing time in step (b) is the mixing method, the liquid temperature of the liquid mixture, the viscosity of the reaction liquid, the aluminum components contained in the reaction liquid, It may vary depending on the amount of the basic component and acid conjugate, the amount of water mixed in the reaction solution, etc. It is preferred that the time is 10 seconds to 300 minutes, especially 1 to 180 minutes when performed under static stirring, and 10 seconds to 300 minutes, especially 1 to 180 minutes, when performed under static stirring. Is preferred.
  • the mixed solution of the reaction solution containing the (meth) acrylic acid ester polymer and the water produced in the above step (b) is mixed with the organic solvent solution layer (upper layer) and the aqueous solution layer (lower layer) in this step (c). Separated into two layers.
  • This step (c) is generally carried out by allowing the reaction solution containing the (meth) acrylic acid ester polymer produced in the step (b) and a mixed solution of water to stand.
  • step (a) V oxalic acid that is substantially free of water or low in water content is added to the reaction solution containing the (meth) acrylic acid ester polymer, and then
  • step (b) the washing with water is performed at a high temperature of 90 ° C or higher, preferably 120 ° C to 160 ° C, so that the formation of gels and the like that hinder layer separation is prevented.
  • step (c) the mixture of the reaction solution and water produced in step (b) is an organic solvent solution layer that forms a cloudy intermediate layer in about several minutes to 120 minutes after standing. And the aqueous solution layer are separated into two layers.
  • the temperature of the mixture of the reaction solution and water when performing step (c) is preferably the same as the temperature when performing step (b).
  • step (c) stationary-layer separation
  • step (e) water washing, one layer separation, separation step of the organic solvent solution
  • step (c) stationary-layer separation
  • the organic solvent solution is poured into a poor solvent such as methanol to precipitate a (meth) acrylic acid ester polymer.
  • the step (c) is preferably performed while maintaining the liquid temperature at 90 ° C or higher.
  • the mixed solution of the reaction solution containing water and the (meth) acrylate polymer is an upper layer made of an organic solvent solution containing the (meth) acrylate polymer, aluminum
  • an organic solvent solution containing a (meth) acrylic acid ester polymer, an aluminum component and other components are separated. Separate out the aqueous solutions containing the metal components of each (sorting).
  • each of the organic solvent solution and the aqueous solution is not particularly limited, and a deviation from the conventional method may be employed to separate each of the liquids separated into two layers.
  • the aqueous solution is taken out from the bottom or lower part of the container, and the organic solvent solution is taken out from the upper part of the container.
  • the step (c) is performed using a container that is partitioned in half by a partition wall having a predetermined height, and a mixed liquid of an organic solvent solution and water is placed in one chamber of the container.
  • the aqueous solution that separates the layer in the lower layer is stored in the lower chamber at a depth equal to or lower than the height of the partition wall, and the organic solvent solution that separates the layer in the upper layer is added to the other layer from the top of the partition wall. It is also possible to separate the aqueous solution from the bottom or the lower side of the one chamber and to separate the organic solvent solution from the other chamber.
  • the organic solvent solution containing the (meth) acrylic acid ester polymer separated in the step (d) is directly adjusted according to the use or purpose of use of the (meth) acrylic acid ester polymer.
  • the step of obtaining the (meth) acrylic acid ester-based polymer, or the step (e) described below (the step of separating the water-washed one-layer organic solvent solution) once or It may be performed twice or more to further reduce the remaining amount of aluminum components and other metal components in the (meth) acrylic acid ester polymer.
  • An organic solvent solution containing the (meth) acrylic acid ester polymer fractionated in step (d) When directly obtaining the kathara (meth) acrylic acid ester polymer, from the organic solvent solution
  • a conventionally known method may be employed.
  • an organic solvent solution containing a (meth) acrylic acid ester polymer is dissolved in an organic solvent (a (meth) acrylic acid ester polymer such as methanol).
  • a (meth) acrylic acid ester polymer such as methanol
  • the method to do can be adopted.
  • the method of distilling off the organic solvent from the organic solvent solution is not particularly limited.
  • the method of distilling the organic solvent by heating or depressurizing in a stirring tank to concentrate and drying, or removing the organic solvent with an extruder, etc.
  • Methods, steam stripping methods, spray drying methods, and the like are examples of the method of distilling the organic solvent by heating or depressurizing in a stirring tank to concentrate and drying, or removing the organic solvent with an extruder, etc.
  • the (meth) acrylic acid ester polymer obtained from the organic solvent solution can be used as it is or after being washed with water or dried as necessary.
  • aqueous solution containing the aluminum component or other metal components separated in step (d) may be used as necessary according to the type or amount of the metal component contained in the aqueous solution. It can be removed and reused in the acquisition method of the present invention, reused for other purposes, or discarded.
  • step (e) is further performed once or twice or more after step (d) [preparation step of organic solvent solution containing (meth) acrylic acid ester polymer].
  • the (meth) acrylic acid ester polymer can be obtained by obtaining the (meth) acrylic acid ester polymer from the solution of the organic solvent separated in the final stage.
  • step (e) the organic solvent solution collected is mixed with water at a temperature of 90 ° C or higher to wash the organic solvent solution, and (e-2) the organic solvent produced by the washing is washed. Mixing solvent solution and water The solution is separated into an organic solvent solution layer and an aqueous solution layer, and the next step (e-3) separates the separated organic solvent solution and aqueous solution.
  • step (e) The number of times step (e) is performed can be selected as appropriate depending on the required purity of the (meth) acrylic acid ester-based polymer. In terms of purity required for ester polymers, acquisition cost of (meth) acrylic acid ester polymers, scale of acquisition equipment, amount of wastewater, etc., about 1 to 5 times, more preferably about 1 to 4 times, especially It may be about 1 to 3 times.
  • step (e) When step (e) is performed twice after step (d), a high-purity (meth) acrylic acid ester-based polymer with an aluminum component removal rate of generally 85% or more can be obtained.
  • step (e) when the operation is carried out at a temperature of 110 ° C. or higher, step (e) is performed twice, so that a high-purity (meth) acrylic acid ester polymer generally having a removal rate of aluminum component of 90% or more is obtained. Obtainable.
  • the first step (e) The organic solvent solution containing the (meth) acrylic acid ester-based polymer separated by performing [When step (e) is repeated twice], the second step (e) is performed to separate (meth) An organic solvent solution containing an acrylate polymer [when step (e) is repeated three times], or containing a (meth) acrylic acid ester polymer separated in the third step (e) Similar to the above step (b), such as an organic solvent solution [when step (e) is repeated four times], a temperature of 90 ° C. or higher [preferably 90 to 180. C, more preferably 95-160. C, more preferably 110-150. C temperature], water is mixed, and the aluminum component, alkali metal component, other metal component, and acid still remaining in the organic solvent solution containing the (meth) acrylate polymer Extract and transfer the conjugates to the water layer.
  • both the organic solvent solution containing the (meth) acrylic acid ester polymer and water are preheated to a temperature of 90 ° C. or higher before mixing.
  • V I prefer to mix the two.
  • step (e-1) of step (e) both the organic solvent solution containing the (meth) acrylic acid ester polymer and water remain liquid. It is better to carry out at a temperature of 90 ° C or higher while pressurizing.
  • the amount of water mixed in the step (e) of the step (e) can be changed according to each situation. Generally, however, the organic content of the (meth) acrylic acid ester polymer is not included.
  • 0.1 to 1 part by volume of the solvent solution 0.1 part by volume of L0, preferably 1 to 5 parts by volume, particularly 1 to 2 parts by volume, the remaining aluminum component in the organic solvent solution, other Extraction of basic components and their acid and acid conjugates into the aqueous layer * Proper transfer, smooth layer separation into organic solvent solution layer and aqueous solution layer in the next step (e-2)
  • the power is also preferred, such as the ability to reduce the amount of wastewater and the amount of heat required to raise the temperature of the water used.
  • step (b) the mixing of water into the organic solvent solution containing the (meth) acrylic acid ester-based polymer in the step (e-l) can be carried out with stirring. Extraction of components and other basic components and acid conjugates into the aqueous layer * Preferable because of good migration.
  • the stirring device any of a rotary stirring blade and other dynamic stirring devices, a static stirring device (static mixer), and a stirring type extraction tower can be used.
  • step (e-l) if the stirring is too strong, emulsion soot is generated, and so-called "water stagnation" in which water is finely mixed in the reaction solution (organic solvent solution) is produced. Impurities contained in the water cannot be removed. Furthermore, if water stagnation is severe, an intermediate layer is formed between the organic solvent solution layer and the aqueous solution layer, resulting in poor removal of impurities such as metal components.
  • the strength of stirring varies depending on the temperature at the time of carrying out the step (e-1), but when using a dynamic stirring device such as a rotary stirring blade or a pump, 30 to: LOOOw / m 3 , In particular, it is preferable to use 80 to 500 w Zm 3 of stirring power (Sa).
  • the range of the stirring power (Sa) during the dynamic stirring becomes wider as the temperature at the time of carrying out the step (e-l) is higher.
  • (e- 1) When carrying out the process in dynamic stirring at 90 to 120 ° C is of 30 ⁇ 500w / m 3, in particular 30 ⁇ 200w / m 3 of stirring power (Sa)
  • stirring power (Sa) When the step (e-1) is carried out under dynamic stirring at 120 to 180 ° C, stirring power (Sa) of 50 to: LOOOwZm 3 , especially 80 to 500 wZm 3 is used. It is preferable to adopt.
  • the stirring power (Sa) at the time of dynamic stirring is obtained from the above-described formula (i).
  • the range of the stirring power (Sb) during static stirring becomes wider as the temperature at the time of carrying out the step (e-l) is higher.
  • a stirring power (Sb) of 30 to 500 wZm 3 particularly 30 to 200 wZ m 3 is employed.
  • a stirring power (Sb) of 50: LOOOwZm 3 especially 80-500 wZm 3 Preferred.
  • stirring power (Sb) at the time of dynamic stirring is obtained from the above formula (ii) or (m.
  • Mixing time for each time in the process (e-1) [When the process (e-1) is performed only once, the mixing time, and when the process (e) is performed twice or more, each (e -The mixing time in step 1)] includes the mixing method, the liquid temperature of the mixed solution, the viscosity of the organic solvent solution containing the (meth) acrylate polymer, and the (meth) acrylate polymer. Depending on the amount of aluminum and other basic components and acid conjugates contained in the organic solvent solution, the amount of water mixed in the organic solvent solution containing the (meth) acrylic acid ester polymer, etc. Forces that can be varied When carried out under dynamic stirring, it is preferably 10 seconds to 300 minutes, in particular 1 to 180 minutes.
  • the aluminum component and other basic component-acid conjugates contained in the organic solvent solution containing the (meth) acrylic acid ester-based polymer are sufficiently extracted into the aqueous layer. 'It can be transferred and can be simplified without too much mixing equipment capacity.
  • the organic solvent solution containing the (meth) acrylic acid ester polymer produced in the step (e-1) and the mixed solution of water are then mixed in the step (e-2). Separate into two layers: solvent solution layer (upper layer) and aqueous solution layer (lower layer).
  • solvent solution layer upper layer
  • aqueous solution layer lower layer
  • the mixture of the organic solvent solution containing the (meth) acrylic acid ester polymer produced in the step (e-1) and water is generally allowed to stand. Done.
  • the mixture layer of the organic solvent produced in the step (e-1) and water is allowed to stand for a short time of about several minutes to 30 minutes, and the cloudy intermediate layer is formed.
  • the organic solvent solution layer and the aqueous solution layer into two layers without forming them.
  • the temperature of the mixture of the reaction solution and water when performing the step (e-2) of step (e) is the same as the temperature when performing step (b) and step (c). Preferred to be.
  • the organic solvent solution is fractionated in the next step (e-3), and the organic solvent is distilled off from the organic solvent solution to obtain a (meth) acrylic acid ester system.
  • the step (c) (stationary step) is carried out while maintaining the liquid temperature at 90 ° C. or higher, so that the (meth) acrylic acid ester polymer is obtained. This is advantageous in terms of thermal efficiency.
  • the step (e-3) is performed to fractionate an organic solvent solution containing a (meth) acrylic ester polymer, and the fractionated organic Even when this step (e) is further repeated for the solvent solution, considering the thermal efficiency during the water washing treatment in the further repeated step (e), etc., while maintaining the liquid temperature at 90 ° C or higher, It is advantageous to carry out the step (e-3).
  • the organic solvent solution collected in the step (e-3) of the step (e) is poured into a poor solvent such as methanol to precipitate and precipitate the (meth) acrylate polymer.
  • the step (e3) is preferably performed while maintaining the liquid temperature at 90 ° C. or higher.
  • step (e-2) the organic solvent solution containing the (meth) acrylate polymer is mixed with the organic solvent solution containing the (meth) acrylate polymer and water. Since it is separated into two layers, an upper layer made of a solvent solution and a lower layer made of an aqueous solution containing an aluminum component or other metal component, (meth) acrylic acid is used in step (e-3) of step (e). Separate the organic solvent solution containing the ester polymer and the aqueous solution containing the aluminum component and other metal components separately (sorting).
  • the sorting method of the organic solvent solution and the aqueous solution is not particularly limited, and can be performed by a method similar to that conventionally employed for sorting the liquid separated into two layers.
  • the method for obtaining the (meth) acrylate polymer from the organic solvent solution containing the (meth) acrylate polymer collected in the step (e-3) of the step (e) is as follows: There is no particular limitation. For example, an organic solvent solution containing a (meth) acrylic acid ester polymer is mixed with an organic solvent (poor solvent) that does not dissolve a (meth) acrylic acid ester polymer such as methanol. Then, a method of precipitating and precipitating a (meth) acrylic acid ester polymer, and distilling off the organic solvent from the organic solvent solution containing the (meth) acrylic acid ester polymer It can be performed by a method or the like.
  • the (meth) acrylic acid ester polymer obtained from the organic solvent solution can be used as it is or after being washed with water or dried as necessary.
  • an aqueous solution containing the aluminum component and other metal components separated in step (e-3) of step (e) is necessary depending on the type and amount of the metal component contained in the aqueous solution.
  • purification treatment for removing these components can be performed and reused in the acquisition method of the present invention, reused for other purposes, or discarded.
  • steps (a) to (d) or the steps (a) to (e) described above may be performed by a batch method or a continuous method.
  • steps (a) to (c), steps (a) and (b), steps (b) and (c), or steps (a) to (e) are the same container ( The same tank) can also be used.
  • step (a) may be performed using the first device (container)
  • step (b) may be performed using the second device (mixing device)
  • step (c) may be performed using the third device (container).
  • step (a) the first device (container), step (b) in the second device (mixing device), step (c) in the third device (container), step (e) ( Step e-1) may be performed using the fourth device (mixing device) and step (e) (e-2) using the fifth device (container).
  • the continuous method is more preferable.
  • the apparatus in the case of the continuous method is not particularly limited, the liquid obtained in the step (a) is continuously used by using a tank-type container with a stirring blade as the apparatus of the step (b). Then, a “mixer / settler” system using a decanter, a counter-current type extraction tank with or without stirring power, or an extraction tower or the like can be used as the device in step (c).
  • a tank type vessel with a V ⁇ stirring blade having a wide operating condition range.
  • the method for obtaining a (meth) acrylic acid ester polymer of the present invention metal impurities derived from a metal compound such as an aluminum compound or an organic alkali metal compound can be removed at a high level.
  • the resulting (meth) acrylic acid ester polymer is excellent in thermal stability, excellent transparency, etc., and has high quality.
  • the transparency of the (meth) acrylic acid ester polymer is greatly influenced by impurities such as the remaining metal component, but the (meth) acrylic acid obtained by the method for obtaining the (meth) acrylic acid ester polymer of the present invention is used.
  • Acid Este The polymer has a very high transparency with a small impurity content.
  • the content of metal impurities derived from aluminum compounds, alkali metal compounds, and other metal compounds is not limited, but is high.
  • the content of the aluminum component derived from the aluminum compound is preferably 400 ppm or less in terms of the amount of aluminum element based on the mass of the (meth) acrylate polymer.
  • the lower limit is more preferably 10 ppm or less, and even more preferably 50 ppm or less. According to the method of the present invention, a (meth) acrylic acid ester polymer having an aluminum component content derived from an aluminum compound of 50 ppm or less can be obtained smoothly.
  • the resulting (meth) acrylate polymer in order for the resulting (meth) acrylate polymer to have high thermal stability, it is derived from an alkali metal compound such as a lithium compound or a potassium compound remaining in the (meth) acrylate polymer.
  • the content of the alkali metal component to be used is preferably 30 ppm or less in terms of the amount of the alkali metal element based on the mass of the (meth) acrylate polymer, more preferably 10 ppm or less. More preferably, it is 5 ppm or less, and further preferably 2 ppm or less.
  • a (meth) acrylic acid ester polymer having a content of alkali metal component derived from an alkali metal compound of 2 ppm or less can be obtained smoothly.
  • the (meth) acrylic acid ester-based polymer obtained in the present invention has an excellent content of metal components (metal impurities) derived from metal compounds such as aluminum compounds and alkali metal compounds. It has transparency.
  • the transparency of the (meth) acrylic acid ester-based polymer can be set according to the use, etc., but in the case of the present invention, the haze value when formed into a 3 mm-thick molded product is 5% or less, A high-purity (meth) acrylic acid ester polymer of 3% or less can be obtained smoothly.
  • haze value in the present specification is a haze value in a molded product having a thickness of 3 mm in accordance with JIS K7136, and the detailed measurement method is as described in the section of the following examples.
  • Diblock or triblock obtained by reaction with organoaluminum compound (Meth) acrylic acid ester block copolymers having a polymer structure, in particular, methacrylic acid ester polymer blocks, diblock copolymers composed of acrylic acid ester polymer blocks, and methacrylic acid ester polymer blocks.
  • Metal organoaluminum compound
  • the haze value of a molded product having a thickness of 3 mm is generally 10% or more, and such a conventional (meth) acrylate ester is used.
  • (Meth) acrylic acid ester block copolymer strength which is much higher and more transparent than a block copolymer is provided by the present invention.
  • the content of the aluminum component and alkali metal component (lithium component) in the obtained (meth) acrylic acid ester polymer (triblock copolymer or diblock copolymer) was measured. The measurement was performed as follows.
  • the number average molecular weight of the (meth) acrylic acid ester-based polymer (triblock copolymer or diblock copolymer) produced in the following Examples and Comparative Examples is a gel using tetrahydrofuran as a solvent. It is a value measured by permeation chromatography (GPC) as a standard polystyrene equivalent value.
  • methyl methacrylate (MMA) 19.9 ml was gradually added while polymerization was started, and after completion of addition, polymerization was carried out for 2 hours while maintaining at 0 ° C. Subsequently, the temperature in the polymerization tank was cooled to ⁇ 30 ° C., and 134 ml of n-butyl acrylate (nBA) was added thereto over 30 minutes. After the addition, the mixture was stirred at 30 ° C for 10 minutes, then heated to 0 ° C, 19.9 ml of methyl methacrylate (MMA) was added thereto, and this solution was stirred at 0 ° C for about 10 minutes.
  • nBA n-butyl acrylate
  • the temperature was raised to 25 ° C and the polymerization was carried out for 5 hours while maintaining the same temperature, and then acetic acid (water content 0.1 mass% or less) 7.2 ml (organic aluminum compound used in the polymerization reaction and organic
  • acetic acid water content 0.1 mass% or less
  • 7.2 ml organic aluminum compound used in the polymerization reaction and organic
  • the amount required for the neutralization of the lithium compound was added to stop the polymerization reaction and to form a combination of the aluminum component, lithium component and acetic acid contained in the reaction solution (this).
  • the amount of the reaction solution produced by 650 ml).
  • the content of the aluminum component in the obtained triblock copolymer (about lOOmg) was measured by the method described above, and it was 1019 ppm.
  • Example 1 the reaction liquid contained in the heating and pressurizing type container
  • the preheating temperature, water temperature, and the temperature of the mixture during mixing in the container are 100 ° C (Example 2), 110 ° C (Example 3), 130 ° C (Example 4), 140 °
  • the same operations as in (1) and (3) to (6) of Example 1 were performed except that the temperature was changed to C (Example 5) and 150 ° C. (Example 6).
  • Example 1 (3) and (4) the preheating temperature of the reaction liquid contained in the heating and pressurizing type container, the temperature of water, and the temperature of the mixed liquid at the time of mixing in the container are set to 60 ° C.
  • the same operation as (1) and (3) to (6) of Example 1 was carried out except that the temperature was changed to (Comparative Example 1) or 80 ° C. (Comparative Example 2).
  • Comparative Example 1 and 2 when the reaction mixture was mixed with water and washed, the mixture was allowed to stand and the layers were separated, and the organic solvent solution was maintained even if the stirring was stopped and left for 1 hour. The layer and the aqueous solution layer were completely separated.
  • a white turbid intermediate layer was formed between the upper layer made of the organic solvent solution and the lower layer made of the aqueous solution.
  • Shikadon is also sorted
  • the removal rate of the aluminum component was lower than in Examples 1 to 6, and Example 1
  • the purity is lower than that of the PMMA-PnBA-PMMA triblock copolymer obtained in -6.
  • methyl metatalate Polymerization was started while 244 ml of (MMA) was gradually added, and after completion of the addition, polymerization was carried out for 2 hours while maintaining the temperature at 0 ° C. Subsequently, the temperature in the polymerization tank was cooled to ⁇ 30 ° C., and 1734 ml of n-butyl acrylate (nBA) was added thereto.
  • nBA n-butyl acrylate
  • the mixture was stirred at 30 ° C for 10 minutes, the temperature of the reaction solution was returned to room temperature, and acetic acid (moisture content 0.1 mass% or less) 14 4 ml (of the organoaluminum compound and organolithium compound used in the polymerization reaction) 9 mol times the amount necessary for neutralization) was added to stop the polymerization reaction and to form an aluminum / lithium component / acetic acid conjugate contained in the reaction solution.
  • acetic acid moisture content 0.1 mass% or less
  • the content of the aluminum component in the obtained diblock copolymer was measured by the method described above, and it was 1146 ppm.
  • the reaction solution in container B is heated to 100 ° C via a heating device (heat exchanger) and statically mixed.
  • (Super static mixer) Ma (“S. SM” manufactured by Shinyu Giken Co., Ltd.) is supplied at a supply volume of 5 LZ, and at the same time distilled water is heated to 90 ° C via a heating device (heat exchanger).
  • Supply to the static mixer Ma at a supply amount of 5 LZ, and mix the reaction liquid and water in the static mixer Ma (the temperature of the liquid mixture in the static mixer Ma is 90 ° C, the residence time is 0 5 seconds), and then the liquid mixture discharged from the static mixer Ma is introduced into a heat-pressurized container C, and the container is introduced.
  • the solution was allowed to stand under heat and pressure (temperature 90 ° C, pressure 0.4 MPa).
  • Example 8 (2), (3), (5) and (6) The temperature of the reaction solution, organic solvent solution, distilled water and mixed solution contained in the heating and pressurizing vessel A in Example 8 (2), (3), (5) and (6) is 80.
  • the temperature was the same as that of Example 8 (1) to (7) except that the standing temperature in Example 8 (4) and (7) was changed to 75 ° C.
  • the liquid was separated into an organic solvent solution layer and an aqueous solution layer after two water washing steps.
  • Comparative Example 3 when the reaction solution was mixed with water and the first washing treatment was performed, the mixture of the reaction solution and water was allowed to stand to separate the layers, and stirring was stopped for 1 hour. Even when allowed to stand, the organic solvent solution layer and the aqueous solution layer were not completely separated into layers, and a cloudy intermediate layer was formed between the upper layer made of the organic solvent solution and the lower layer made of the aqueous solution.
  • Comparative Example 3 when the supernatant liquid of the organic solvent solution layer was collected and mixed with distilled water at 80 ° C. and the second washing treatment was performed, the resulting mixed liquid was allowed to stand. In addition, the layers were not completely separated [an operation corresponding to (7) in Example 8], and an intermediate layer having a smaller thickness than the above was formed between the upper layer made of the organic solvent solution and the lower layer made of the aqueous solution. Been formed.
  • the aluminum component and lithium component in the triblock copolymer (about lOOmg) obtained in the above (1) were measured by the above method, the aluminum component (aluminum element amount) was It is 1030ppm, and the lithium component (lithium element amount) is 1 lOppm.
  • Acetic acid (water content of 0.1% by mass or less) was added to the reaction solution obtained in (1) in an amount of 0.9% by mass.
  • the amount of acetic acid added is the amount necessary to neutralize the aluminum component, lithium component, and N, N, ⁇ ', N ", ⁇ , and one pentamethino retylene triamine contained in the reaction solution. It was 5 mole times.
  • Propeller-type stirrer is used for 300 ml of the reaction solution after addition of acetic acid containing the triblock copolymer (PMMA—PnBA—PMMA triblock copolymer) obtained in (3) above.
  • the container was placed in a heated and pressurized container A (internal volume: 1 L) and heated to 115 ° C.
  • the upper layer (organic solvent solution layer) separated from the upper layer made of an organic solvent solution and the lower layer made of an aqueous solution without forming an intermediate layer is present.
  • the organic solvent solution was dried under reduced pressure [267 Pa (2 torr), 60 ° C., 24 hours] to obtain a PMMA-PnBA-PMMA triblock copolymer.
  • a sheet having a thickness of 3 mm was prepared by the method described above using the PMMA-PnBA-PMMA triblock copolymer obtained in (8) above, and the haze value was measured by the method described above. Met.
  • a sheet having a thickness of 3 mm was prepared by the above-described method using the PMMA-PnBA-PMMA triblock copolymer obtained in the above (8), and the haze value was measured by the above-described method. Met.
  • Acetic acid moisture content of 0.1% by mass or less
  • the amount of acetic acid added the aluminum component in the reaction solution and 4.0 times the total number of moles of lithium component
  • Mixer C1 heat-pressurized container equipped with a propeller-type stirrer with an internal volume of 1 L
  • stationary device D1 heat-pressurized container with an internal volume of 1 L
  • mixer C2 propeller-type A heating and pressurizing type container equipped with the above-mentioned stirring device and having an internal volume of 500 ml
  • stationary device D2 heatating and pressurizing type container having an internal volume of 1 L
  • Distilled water is heated to 140 ° C via a heating device (heat exchange) and supplied to mixer C2 at a supply rate of 600 mlZ hours, and the liquid temperature in mixer C2 is kept at 140 ° C and mixed.
  • the liquid in vessel C2 was supplied to stationary device D2 at a supply rate of 600 mlZ hours.
  • the liquid supplied from the upper layer of the stationary apparatus D1 (the reaction liquid after the single washing) and the distilled water heated to 140 ° C supplied in advance are mixed (mixer).
  • the liquid temperature in C2 is 140 ° C), and then the liquid mixture in the mixer C2 is kept constant, and the mixed liquid is introduced into the stationary device D2, and heated and pressurized (temperature) in the stationary device D2. 140 ° C., pressure 0.6 MPa).
  • the lower layer liquid separated into two layers by the incubator D2 (reused as the water for the first washing) is continuously supplied to the mixer C1 with a liquid feed amount of 600 mlZ time, and the incubator D2 While keeping the total amount of liquid in the tank constant (residence time approximately 40 minutes), cool the upper layer liquid (reaction liquid after washing twice) with a cooler (heat exchanger) at a feed rate of 6 OOmlZ hours. It was recovered.
  • -Um content is 8ppm [removal rate of aluminum component based on aluminum content in PMMA-PnBA-PMMA triblock copolymer obtained in (1) above 99.2%], lithium The content of the component was 0.2 ppm [the removal rate of the lithium component based on the content of the lithium component in the PMMA-PnBA-PMMA triblock copolymer measured in (1) above was 99.8%].
  • a sheet having a thickness of 3 mm was prepared by the above-described method using the PMMA-PnBA-PMMA triblock copolymer obtained in (10), and the haze value was measured by the method described above. %Met.
  • a (meth) acrylic acid ester polymer obtained by polymerizing a (meth) acrylic acid ester monomer in the presence of a metal compound (particularly, a polymerization initiator composed of an organic alkali metal compound and an organic aluminum compound).
  • a metal compound particularly, a polymerization initiator composed of an organic alkali metal compound and an organic aluminum compound.
  • a high-quality (meth) acrylic acid ester-based polymer that has a high level of purity, heat resistance, transparency, and other high-quality (meth) acrylic acid ester-based polymers with a low residual amount of impurities consisting of metal components can be easily In addition, it is industrially useful because it can be obtained efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】 金属成分(アルミニウム成分、アルカリ金属成分、その他の金属成分)の残存量の少ない、高純度で、耐熱性、透明性、    などの特性に優れる高品質の(メタ)アクリル酸エステル系重合体を簡単に且つ効率よく取得すること。 【解決手段】 (メタ)アクリル酸エステル系単量体を水不溶性の有機溶媒中で、金属含有重合開始剤、有機アルミニウム化合物などの金属化合物の存在下に重合した(メタ)アクリレート系重合体を含有する反応液に、酸を添加した後、90°C以上で水を混合して洗浄し、洗浄により生じた反応液と水の混合液を有機溶媒溶液層と水溶液層に層分離させ、層分離した有機溶媒溶液を分取して、該溶液から(メタ)アクリル酸エステル系重合体を取得する方法及びそれにより得られる高純度で透明性に優れる(メタ)アクリル酸エステル系重合体。

Description

明 細 書
反応液からの (メタ)アクリル酸エステル系重合体の取得方法
技術分野
[0001] 本発明は、(メタ)アクリル酸エステル系重合体を含む反応液から (メタ)アクリル酸ェ ステル系重合体を取得する方法およびそれにより得られる (メタ)アクリル酸エステル 系重合体に関する。より詳細には、本発明は、(メタ)アクリル酸エステルを主体とする 単量体を、有機アルカリ金属化合物、有機アルミニウム化合物、その他の金属化合 物の存在下で重合した (メタ)アクリル酸エステル系重合体を含む反応液から、金属 成分の残存量の極めて少ない、純度が高くて、透明性やその他の特性に優れる (メタ )アクリル酸エステル系重合体を、簡単な操作で、円滑に、効率よく取得する方法、お よびそれにより得られる高純度で透明性やその他の特性に優れる (メタ)アクリル酸ェ ステル系重合体に関する。 背景技術
[0002] (メタ)アクリル酸エステルを、有機アルカリ金属化合物などの重合開始剤を用いて 有機溶媒中で重合して、(メタ)アクリル酸エステル系重合体を製造することが従来か ら行なわれている。その際に、重合速度の増加、重合開始効率の向上、重合時のリ ビング性の向上、分子量分布の狭小化、重合条件の温和化、立体規則性の制御な どの目的で、重合系に重合開始剤と共に有機アルミニウム化合物を存在させることが 行われて 、る(例えば特許文献 1〜4を参照)。
[0003] 重合開始剤および有機アルミニウム化合物の存在下で (メタ)アクリル酸エステルを 重合して得られる (メタ)アクリル酸エステル系重合体中に、重合開始剤や有機アルミ ユウム化合物に由来する金属成分が不純物として含まれると、耐候性、力学的特性、 透明性、粘着力や接着力 [ (メタ)アクリル酸エステル系重合体を粘着剤や接着剤に 用いる場合]、熱安定性などが低下し、更に着色、外観不良、臭気などが生じ易い。 特に透明性は、(メタ)アクリル酸エステル系重合体中に残存するアルカリ金属成分 やアルミニウム成分などの不純物の影響を受けやすぐ透明度の高い製品を得るた めには、これら不純物の含有量を厳しく管理して、可能な限り低減する必要である。 かかる点から、(メタ)アクリル酸エステル系重合体の使用目的などに応じて、(メタ) アクリル酸エステル系重合体力 アルミニウム成分やアルカリ金属などの金属成分を 除去することが行なわれている。その場合の金属成分の除去方法としては、(メタ)ァ クリル酸エステル系重合体を含む反応液に対して、イオン交換榭脂などの金属吸着 剤を使用する方法;塩酸水溶液、硫酸水溶液、硝酸水溶液、酢酸水溶液、クェン酸 水溶液、プロピオン酸水溶液などの酸性水溶液を用いて洗浄する方法が知られて ヽ る(特許文献 3および 4を参照)。
[0004] しかしながら、イオン交換榭脂を使用する方法は、金属成分の除去速度 (精製処理 速度)が遅くて効率が悪ぐし力も高価なイオン交換榭脂を使用するためコスト高にな り、工業的に有利な方法とは言えず、実用的ではない。
一方、酸性水溶液で洗浄して金属成分を除去する方法は、イオン交換榭脂を使用 する方法に比べて簡便で、低コストである。酸性水溶液による金属成分の除去は、通 常、反応液から回収した (メタ)アクリル酸エステル系重合体を、常温〜 80°C程度の 酸性水溶液を用いる洗浄処理によって行われており、この方法によると (メタ)アクリル 酸エステル系重合体に含まれるアルカリ金属成分はかなり効率よく除去できるが、ァ ルミ-ゥム成分は除去されにくぐ 1回の酸性水溶液による洗浄では (メタ)アクリル酸 エステル系重合体中のアルミニウム成分を十分に除去することが困難である。そのた め、アルミニウム成分が十分に除去された高純度の (メタ)アクリル酸エステル系重合 体を得るためには、酸性水溶液による洗浄を例えば 5回以上というような多数回にわ たって繰り返し行なう必要があり、効率の良い方法であるとは言い難い。また、(メタ) アクリル酸エステル系重合体を反応液カゝら取り出さずに、酸性水溶液を (メタ)アタリ ル酸エステル系重合体を含有する反応液中に直接添加して洗净する場合は、反応 液中に含まれて 、るアルミニウム成分が水と反応して、分離しにく 、ゲル状の水酸化 アルミニウムが生成するため、アルミニウム成分の除去が充分に行われにくぐ高純 度の (メタ)アクリル酸エステル系重合体が得られにく 、。
[0005] 特許文献 1 :特公平 7— 57766号公報
特許文献 2:特開平 7— 330819号公報
特許文献 3:特開 2001— 131216号公報 特許文献 4 :特開 2001—158805号公報
非特許文献 1 :「化学工学便覧」、丸善株式会社、 1999年、 p. 429
非特許文献 2 :「最新 撹拌 '混合'分散技術集成」、リアライズ社、 1991年、 p. 216 発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、(メタ)アクリル酸エステルを、金属化合物の存在下 (有機アルカリ 金属化合物、有機アルミニウム化合物、その他の金属化合物の存在下に)に重合し た (メタ)アクリル酸エステル系重合体を含有する反応液から、該反応液中に含まれて いる金属成分を従来よりも簡単な方法で、高度に除去して、純度が高くて、透明性に 優れ、し力も耐熱性や力学的特性などにも優れる (メタ)アクリル酸エステル系重合体 を、効率良く且つ円滑に得る方法を提供することである。
さらに、本発明の目的は、当該取得方法により得られる、純度が高くて、透明性に 優れ、し力も耐熱性や力学的特性などのその他の特性にも優れる (メタ)アクリル酸ェ ステル系重合体を提供することである。
課題を解決するための手段
[0007] 本発明者らは、前記の目的を達成すべく研究を行なってきた。そして、反応液から 回収した (メタ)アクリル酸エステル系重合体を酸性水溶液で洗浄して重合体中に含 まれるアルミニウム成分やアルカリ金属成分などの金属成分を除去する方法や、(メ タ)アクリル酸エステル系重合体を含有する反応液に酸性水溶液を直接添加して金 属成分を除去する上記した従来の方法に代えて、重合により得られた (メタ)アクリル 酸エステル系重合体を含有する反応液に、酸 (水溶液状になって 、な 、酸)を添加し て反応液に含まれているアルミニウム成分やアルカリ金属成分などの金属成分を酸 と接触させ、その後に 90°C以上の高温で熱水を混合して反応液の洗浄を行ったとこ ろ、反応液中に含まれて 、たアルミニウム成分やアルカリ金属成分などの金属成分 1S 高温の熱水中に効率よく円滑に抽出されて水層に移行すること、それによつて (メ タ)アクリル酸エステル系重合体が溶解して!/ヽる有機溶媒層中の前記金属成分の含 有量が大幅に低減し、該有機溶媒層から取得した (メタ)アクリル酸エステル系重合 体中のアルミニウム成分、アルカリ金属成分などの金属成分の残存量が極めて少な くなり、高純度であることを見出した。
[0008] さらに、本発明者らは、前記した 90°C以上の温度での熱水洗浄を 2回以上繰り返し て行うと、(メタ)アクリル酸エステル系重合体における前記した金属成分の残存量が 一層低減して、純度の極めて高 、 (メタ)アクリル酸エステル系重合体が得られること を見出した。
また、本発明者らは、上記した方法において、(メタ)アクリル酸エステル系重合体を 含有する反応液に添加する酸としては、水分を殆ど含まな 、かまたは水分含量の少 ないカルボン酸を使用すると、反応液中に含まれているアルミニウム成分、アルカリ 金属成分、その他の金属成分の高温の熱水中への抽出移行がより円滑に進行する こと、し力ゝも熱水を混合して洗浄した後の反応液と水の混合液が、水溶液層と有機溶 媒溶液層の 2層にはっきりと層分離し、両層の間に白濁した中間層が形成されな!ヽこ と、それによつてアルミニウム成分、アルカリ金属成分、その他の金属成分の残存量 の極めて少な!/、高純度の (メタ)アクリル酸エステル系重合体が効率良く得られること を見出した。
[0009] さらに、本発明者らは、上記した方法は、有機アルカリ金属化合物よりなる重合開 始剤および有機アルミニウム化合物の存在下に合成したポリメタクリル酸エステル、メ タクリル酸エステル系重合体ブロック アクリル酸エステル系重合体ブロックよりなる ジブロック共重合体、またはメタクリル酸エステル系重合体ブロック アクリル酸エス テル系重合体ブロックーメタクリル酸エステル系重合体ブロックよりなるトリブロック共 重合体を含む反応液からのポリメタクリル酸エステルや前記ブロック共重合体の取得 方法として特に有効であり、アルミニウム成分およびアルカリ金属成分の残存量の少 ない、高純度の前記したポリメタクリル酸エステル、ジブロック共重合体またはトリプロ ック共重合体が得られること、そしてそれにより得られるポリメタクリル酸エステル、ジ ブロック共重合体またはトリブロック共重合体は、熱安定性が向上することで、着色、 外観不良、臭気などが低減していて、し力も極めて高い透明性を有することを見出し 、それらの種々の知見に基づいて本発明を完成した。
[0010] すなわち、本発明は、
( 1) (メタ)アクリル酸エステル系重合体を含有する反応液から (メタ)アクリル酸エス テル系重合体を取得する方法であって、
(a) (メタ)アクリル酸エステルを主体とする単量体を水不溶性の有機溶媒中で金属化 合物の存在下に重合した (メタ)アクリル酸エステル系重合体を含有する反応液に、 酸を添加する工程;
(b)工程 (a)で酸を添加した反応液に、 90°C以上の温度で、水を混合して反応液を 洗浄する工程;
(c)工程 (b)で生じた反応液と水の混合液を、有機溶媒溶液層と水溶液層に層分離 させる工程;および、
(d)層分離した有機溶媒溶液および水溶液のそれぞれを分取する工程; を有し、工程 (d)で分取した有機溶媒溶液から、(メタ)アクリル酸エステル系重合体 を取得することを特徴とする、反応液からの (メタ)アクリル酸エステル系重合体の取 得方法である。
また、本発明は、
(2) (メタ)アクリル酸エステル系重合体を含有する反応液から (メタ)アクリル酸エス テル系重合体を取得する方法であって、
(a) (メタ)アクリル酸エステルを主体とする単量体を水不溶性の有機溶媒中で金属化 合物の存在下に重合した (メタ)アクリル酸エステル系重合体を含有する反応液に、 酸を添加する工程;
(b)工程 (a)で酸を添加した反応液に、 90°C以上の温度で、水を混合して反応液を 洗浄する工程;
(c)工程 (b)で生じた反応液と水の混合液を、有機溶媒溶液層と水溶液層に層分離 させる工程;および、
(d)層分離した有機溶媒溶液および水溶液のそれぞれを分取する工程; を有し、前記の工程 (d)の後に、
(e) (e— 1)分取した有機溶媒溶液に、 90°C以上の温度で、水を混合して有機溶媒 溶液を洗浄し、(e— 2)前記洗浄により生じた有機溶媒溶液と水の混合液を有機溶 媒溶液層と水溶液層に層分離させ、次!ヽで (e— 3)層分離した有機溶媒溶液および 水溶液のそれぞれを分取することからなる一連の工程; を更に 1回以上行い、最終段階で分取した有機溶媒溶液力も (メタ)アクリル酸エステ ル系重合体を取得することを特徴とする、反応液からの (メタ)アクリル酸エステル系 重合体の取得方法である。
[0012] さらに、本発明は、
(3) 金属化合物が、有機アルカリ金属化合物からなる重合開始剤および有機アルミ ニゥム化合物である前記(1)または(2)の (メタ)アクリル酸エステル系重合体の取得 方法;
(4) 工程 (a)において、反応液中に含まれる金属化合物由来の金属成分を酸と接 触させる前記 (1)〜(3)の 、ずれかの(メタ)アクリル酸エステル系重合体の取得方法;
(5) 工程 (a)で添加する酸が、水分含量が 20質量%以下のカルボン酸である前記 した(1)〜(4)の 、ずれかの(メタ)アクリル酸エステル系重合体の取得方法;
(6) 水不溶性の有機溶媒が、炭化水素である前記(1)〜(5)のいずれかの (メタ)ァ クリル酸エステル系重合体の取得方法;
(7) 工程 (b)、および工程 (e)の(e— 1)の工程を、 90〜180°Cの温度で行う前記( 1)〜(6)の!、ずれかの(メタ)アクリル酸エステル系重合体の取得方法;および、
(8) 工程 (b)、および工程 (e)の (e— 1)の工程を、反応液または分取した有機溶媒 溶液 1容量部に対して、水を 0. 1〜10容量部の割合で混合して行う前記(1)〜(7) の!、ずれかの(メタ)アクリル酸エステル系重合体の取得方法;
である。
[0013] そして、本発明は、
(9) 有機アルミニウム化合物が、下記の一般式 (I) ;
AIR'R'R3 (I)
(式中、
Figure imgf000007_0001
R2および R3はそれぞれ独立して置換基を有していてもよいアルキル基 、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいァリール基 、置換基を有していてもよいァラルキル基、置換基を有していてもよいアルコキシル 基、置換基を有していてもよいァリールォキシ基または N, N—二置換アミノ基である 力 或いは R1が前記 、ずれかの基で且つ R2と R3が一緒になつて置換基を有して!/、て もよぃァリーレンジォキシ基を形成している。 ) で表される有機アルミニウム化合物である前記(3)〜(8)の 、ずれかの (メタ)アクリル 酸エステル系重合体の取得方法;
(10) (メタ)アクリル酸エステル系重合体力 ポリメタクリル酸エステル、メタクリル酸 エステル系重合体ブロック アクリル酸エステル系重合体ブロックよりなるジブロック 共重合体であるか、またはメタクリル酸エステル系重合体ブロック アクリル酸エステ ル系重合体ブロックーメタクリル酸エステル系重合体ブロックよりなるトリブロック共重 合体である前記(1)〜(9)の 、ずれかの (メタ)アクリル酸エステル系重合体の取得方 法;および、
(11) (メタ)アクリル酸エステル系重合体を含有する反応液から (メタ)アクリル酸ェ ステル系重合体を取得する前記一連の工程を連続プロセスで行う、前記(1)〜(10) の!、ずれかの(メタ)アクリル酸エステル系重合体の取得方法;
である。
さらに、本発明は、
(12) 前記(1)〜(11)のいずれかの取得方法により得られる、厚さ 3mmの成形体 にしたときのヘイズ値が 5%以下である、(メタ)アクリル酸エステル系重合体である。 発明の効果
本発明の方法による場合は、(メタ)アクリル酸エステルを金属化合物の存在下に重 合した (メタ)アクリル酸エステル系重合体を含有する反応液から、該反応液中に含ま れている金属成分を従来よりも簡単な方法で、高度に除去して、純度が高ぐ透明性 、耐熱性、力学的特性などの特性に優れる (メタ)アクリル酸エステル系重合体を、効 率良く且つ円滑に得ることができる。
特に、本発明の方法による場合は、(メタ)アクリル酸エステルを、重合開始剤、特に 有機アルカリ金属化合物からなる重合開始剤、および有機アルミニウム化合物の存 在下に重合した (メタ)アクリル酸エステル系重合体を含有する反応液から、該反応 液中に含まれて 、るアルカリ金属成分およびアルミニウム成分を従来よりも簡単な方 法で、確実に高度に除去することができ、それによつて高純度で、高い透明度を有し 、しかも耐熱性や力学的特性などにも優れる本発明の (メタ)アクリル酸エステル系重 合体を効率良く且つ円滑に得ることができる。 発明を実施するための最良の形態
[0015] 以下に本発明につ 、て詳細に説明する。
本発明の方法は、(メタ)アクリル酸エステルを主体とする単量体を金属化合物の存 在下に水不溶性の有機溶媒中で重合した (メタ)アクリル酸エステル系重合体を含有 する反応液である限りは、いずれの反応液に対しても適用することができる。
その場合に、(メタ)アクリル酸エステルを主体とする単量体を水不溶性の有機溶媒 中で重合する際に重合系に存在させる金属化合物としては、有機アルカリ金属化合 物、ハロゲン化銅、ハロゲン化鉄、ハロゲン化ニッケルなどの金属ハロゲン化物など の重合開始剤、有機アルミニウム化合物を挙げることができる。
そのうちでも、本発明の方法は、(メタ)アクリル酸エステルを主体とする単量体を有 機アルカリ金属化合物よりなる重合開始剤および有機アルミニウム化合物の存在下 に水不溶性の有機溶媒中で重合した (メタ)アクリル酸エステル系重合体を含有する 反応液からの (メタ)アクリル酸エステル系重合体の取得方法として適して!/ヽる。
[0016] メタクリル酸エステルを主体とする単量体の重合時に重合系に存在させる有機アル ミニゥム化合物としては、(メタ)アクリル酸エステルを主体とする単量体の重合時に何 らかの目的(例えば、重合開始効率の向上、重合時のリビング性の向上、重合速度 の向上、使用可能な重合開始剤の種類の広範囲化、重合条件の温和化、重合体の 収率の向上、ブロック共重合体の生成割合の増カロ、立体規則性の制御などの目的) で用いられる有機アルミニウム化合物、(メタ)アクリル酸エステル系重合体に含まれ る炭素 炭素二重結合を水素化する反応を行うときに触媒成分として用いられる有 機アルミニウム化合物などが挙げられ、特に制限されない。
[0017] 限定されるものではないが、(メタ)アクリル酸エステルを主体とする単量体の重合時 に存在させる有機アルミニウム化合物の代表例としては、下記の一般式 (I);
AIR'R'R3 (I)
(式中、
Figure imgf000009_0001
R2および R3は前記定義のとおりである。 )
で表される有機アルミニウム化合物を挙げることができる。
[0018] 上記の一般式 (I)にお 、て、 R2および R3が表すアルキル基としては、メチル基、 ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 s ブチル 基、 t ブチル基、 2 メチルブチル基、 3 メチルブチル基、 n—ォクチル基、 2 ェ チルへキシル基などが挙げられる。 R2および R3が表すシクロアルキル基としては 、シクロペンチル基、シクロへキシル基などが挙げられる。前記したアルキル基および シクロアルキル基は、場合により、置換基として、例えばメトキシ基、エトキシ基、イソプ 口ポキシ基、 t ブトキシ基などのアルコキシル基;塩素原子、臭素原子、ヨウ素原子 などのハロゲン原子などの 1種または 2種以上を有していてもよい。
[0019] R2および R3が表すァリール基またはァラルキル基としては、フエニル基、ナフチ ル基などのァリール基、ベンジル基、 1 フエニルェチル基などのァラルキル基が挙 げられる。前記したァリール基およびァラルキル基は、場合により、置換基として、例 えばメチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル 基、 s ブチル基、 t ブチル基、 2 メチルブチル基、 3 メチルブチル基、 n オタ チル基、 2—ェチルへキシル基などのアルキル基;メトキシ基、エトキシ基、イソプロボ キシ基、 t ブトキシ基などのアルコキシル基;塩素原子、臭素原子、ヨウ素原子など のハロゲン原子などの 1種または 2種以上を有して!/、てもよ!/、。
[0020] R2および R3が表すアルコキシル基、ァリールォキシ基または N, N—二置換アミ ノ基としては、メトキシ基、エトキシ基、イソプロポキシ基、 t—ブトキシ基などのアルコ キシル基、フエノキシ基、 2 メチルフエノキシ基、 4 メチルフエノキシ基、 2, 6 ジメ チルフエノキシ基、 2, 4 ジー t ブチルフエノキシ基、 2, 6 ジ tーブチルフエノ キシ基、 2, 6 ジ tーブチルー 4 メチルフエノキシ基、 7—メトキシー2 ナフトキ シ基などのァリールォキシ基、メチルァミノ基、ジェチルァミノ基、ジイソプロピルアミノ 基、ビス(トリメチルシリル)アミノ基などの N, N—二置換アミノ基が挙げられる。前記 したアルコキシル基、ァリールォキシ基および N, N 二置換アミノ基は、場合により 、置換基として、例えばメチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブ チル基、イソブチル基、 s ブチル基、 t ブチル基、 2 メチルブチル基、 3 メチル ブチル基、 n—ォクチル基、 2—ェチルへキシル基などのアルキル基;メトキシ基、エト キシ基、イソプロポキシ基、 t ブトキシ基などのアルコキシル基;塩素原子、臭素原 子、ヨウ素原子などのハロゲン原子などの 1種または 2種以上を有していてもよい。
[0021] R2と R3が一緒になつてァリーレンジォキシ基を形成している場合の具体例としては 、 2, 2,一ビフエノール、 2, 2,一メチレンビスフエノール、 2, 2,一メチレンビス(4—メ チル— 6— t—ブチルフエノール)、(R)— ( + )— 1, 1,—ビー 2 ナフトール、(S)— (― )— 1, 1,一ビ一 2—ナフトールなど力も誘導される二価の基を挙げることができる 。これらの基は、場合により、置換基として、例えばメチル基、ェチル基、 n—プロピル 基、イソプロピル基、 n—ブチル基、イソブチル基、 s ブチル基、 t ブチル基、 2—メ チルブチル基、 3 メチルブチル基、 n—ォクチル基、 2 ェチルへキシル基などの アルキル基;メトキシ基、エトキシ基、イソプロポキシ基、 t ブトキシ基などのアルコキ シル基;塩素原子、臭素原子、ヨウ素原子などのハロゲン原子などの 1種または 2種 以上を有していてもよい。
[0022] 本発明では、有機アルミニウム化合物として、上記の一般式 (I)にお
Figure imgf000011_0001
R2およ び R3のうちの 1つ以上、
Figure imgf000011_0002
R2および R3のうちの 2つ力 置換基を有していてもよ Vヽァリールォキシ基である有機アルミニウム化合物が、(メタ)アクリル酸エステルの重 合反応時のリビング性を高める観点から好ましく用いられる。
また、 R2および R3が一緒になつて上記で例示したようなァリーレンジォキシ基を形 成して ヽる場合も、(メタ)アクリル酸エステルの重合反応時のリビング性を高めること ができる。
[0023] (メタ)アクリル酸エステルの重合反応時のリビング性を高める点から、好ましく用い られる有機アルミニウム化合物の具体例としては、ジェチル(2, 6 ジー t ブチル —4—メチルフエノキシ)アルミニウム、ジェチル(2, 6 ジ一 t—ブチルフエノキシ)ァ ルミ二ゥム、ジイソブチル(2, 6 ジ— t ブチル—4—メチルフエノキシ)アルミニウム 、ジイソブチル(2, 6 ジ tーブチルフエノキシ)アルミニウム、ジ n—ォクチル(2, 6 ージ—tーブチルー 4ーメチルフエノキシ)アルミニウム、ジ n—ォクチル(2, 6 ジ—t —ブチルフエノキシ)アルミニウム、エチレンビス(2, 6 ジ一 t—ブチル 4—メチル フエノキシ)アルミニウム、エチレンビス(2, 6 ジ一 t—ブチルフエノキシ)アルミニウム 、ェチル [2, 2,一メチレンビス(4—メチル 6— t—ブチルフエノキシ)]アルミニウム 、イソブチルビス(2, 6 ジ—tーブチルー 4ーメチルフエノキシ)アルミニウム、イソブ チルビス(2, 6 ジ tーブチルフエノキシ)アルミニウム、イソブチル [2, 2'—メチレ ンビス(4ーメチルー 6 t—ブチルフエノキシ)]アルミニウム、 n—ォクチルビス(2, 6 ージ tーブチルー 4ーメチルフエノキシ)アルミニウム、 n—ォクチルビス(2, 6 ジ —tーブチルフエノキシ)アルミニウム、 n—ォクチル [2, 2'ーメチレンビス(4 メチル — 6— t ブチルフエノキシ)]アルミニウム、メトキシビス(2, 6 ジ— t—ブチル—4— メチルフエノキシ)アルミニウム、メトキシビス(2, 6 ジ tーブチルフエノキシ)アルミ ユウム、メトキシ [2, 2'—メチレンビス(4—メチル 6— t—ブチルフエノキシ)]アルミ ユウム、エトキシビス(2, 6 ジ一 t—ブチルフエノキシ)アルミニウム、エトキシ [2, 2, —メチレンビス(4—メチル 6—t—ブチルフエノキシ) ]アルミニウム、イソプロポキシ ビス(2, 6 ジ— t ブチル—4—メチルフエノキシ)アルミニウム、イソプロポキシビス (2, 6 ジ一 t—ブチルフエノキシ)アルミニウム、イソプロポキシビス [2, 2'—メチレン ビス(4—メチル 6— t—ブチルフエノキシ)]アルミニウム、 t—ブトキシビス(2, 6 ジ —t ブチル—4—メチルフエノキシ)アルミニウム、 t—ブトキシビス(2, 6 ジ— t— ブチルフエノキシ)アルミニウム、 t—ブトキシ [2, 2,一メチレンビス(4—メチル 6— t ブチルフエノキシ)]アルミニウム、トリス(2, 6 ジ tーブチルー 4 メチルフエノキ シ)アルミニウム、トリス(2, 6 ジ tーブチルフエノキシ)アルミニウムなどが挙げられ る。これらの有機アルミニウム化合物は 1種、または 2種以上を混合して用いることが できる。
[0024] 本発明は、重合開始剤および上記した有機アルミニウム化合物の 1種または 2種以 上、或 、はそれ以外の有機アルミニウム化合物の存在下に (メタ)アクリル酸エステル 系重合体を主体とする単量体を重合した反応液の 、ずれに対しても、該反応液から の (メタ)アクリル酸エステル系重合体の取得のために適用することができる。
[0025] (メタ)アクリル酸エステルの重合時に使用する重合開始剤の種類は特に制限され ず、(メタ)アクリル酸エステルを主体とする単量体の重合で従来力 用いられて 、る 重合開始剤のいずれであってもよい。(メタ)アクリル酸エステルの重合は、従来から、 例えば有機リチウム化合物、有機ナトリウム化合物、有機カリウム化合物、有機マグネ シゥム化合物などのァ-オン重合開始剤、ハロゲン化銅、ハロゲン化鉄、ハロゲンィ匕 ニッケルなどのリビング重合開始剤などを用いて行うことが広く知られており、本発明 は、前記した金属含有重合開始剤の存在下に重合した (メタ)アクリル酸エステル系 重合体を含有する反応液からの (メタ)アクリル酸エステル系重合体の取得方法とし て採用できる。
そのうちでも、本発明は、ァ-オン重合開始剤および有機アルミニウム化合物の存 在下に重合した (メタ)アクリル酸エステル系重合体を含有する反応液からの (メタ)ァ クリル酸エステル系重合体の取得方法として有効である。
[0026] (メタ)アクリル酸エステルを主体とする単量体のァ-オン重合開始剤として用いら れる有機リチウム化合物としては、メチルリチウム、ェチルリチウム、 n プロピルリチウ ム、イソプロピノレリチウム、 n—ブチノレリチウム、 s ブチノレリチウム、イソブチノレリチウム 、 tーブチルリチウム、 n—ペンチルリチウム、 n—へキシルリチウム、テトラメチレンジリ チウム、ペンタメチレンジリチウム、へキサメチレンジリチウムなどのアルキルリチウム およびアルキルジリチウム;フエ-ルリチウム、 m—トリルリチウム、 p トリルリチウム、 キシリルリチウム、リチウムナフタレンなどのァリールリチウムおよびァリールジリチウム ;ベンジルリチウム、ジフエ-ルメチルリチウム、トリチルリチウム、 1 , 1ージフエ-ルー 3—メチルペンチルリチウム、 aーメチルスチリルリチウム、ジイソプロぺ-ルベンゼン とブチルリチウムの反応により生成するジリチウムなどのァラルキルリチウムおよびァラ ルキルジリチウム;リチウムジメチルアミド、リチウムジェチルアミド、リチウムジイソプロ ピルアミドなどのリチウムアミド;リチウムメトキシド、リチウムエトキシド、リチウム n—プロ ポキシド、リチウムイソプロポキシド、リチウム n—ブトキシド、リチウム s ブトキシド、リ チウム tーブトキシド、リチウムペンチルォキシド、リチウムへキシルォキシド、リチウム へプチルォキシド、リチウムォクチルォキシドなどのリチウムアルコキシド;リチウムフ ノキシド、リチウム 4 メチルフエノキシド、リチウムベンジルォキシド、リチウム 4ーメチ ルベンジルォキシドなどを挙げることができる。
[0027] (メタ)アクリル酸エステルを主体とする単量体のァ-オン重合開始剤として用いら れる有機ナトリウム化合物としては、メチルナトリウム、ェチルナトリウム、 n—プロピル ナトリウム、イソプロピルナトリウム、 n—ブチノレナトリウム、 s ブチノレナトリウム、イソブ チルナトリウム、 t—ブチルナトリウム、 n—ペンチルナトリウム、 n—へキシルナトリウム 、テトラメチレンジナトリウム、ペンタメチレンジナトリウム、へキサメチレンジナトリウムな どのアルキルナトリウムおよびアルキルジナトリウム;フエ-ルナトリウム、 m トリルナト リウム、 P トリルナトリウム、キシリルナトリウム、ナトリウムナフタレンなどのァリールナト リウムおよびァリールジナトリウム;ベンジルナトリウム、ジフ -ルメチルナトリウム、トリ チルナトリウム、 1, 1ージフエ-ルー 3 メチルペンチルナトリウム、 α—メチルスチリ ルナトリウム、ジイソプロべ-ルベンゼンとブチルナトリウムの反応により生成するジナ ミド、ナトリウムジェチルアミド、ナトリウムジイソプロピルアミドなどのナトリウムアミド;ナ トリウムメトキシド、ナトリウムエトキシド、ナトリウム η—プロポキシド、ナトリウムイソプロ ポキシド、ナトリウム η—ブトキシド、ナトリウム s ブトキシド、ナトリウム tーブトキシド、 ナトリウムペンチルォキシド、ナトリウムへキシルォキシド、ナトリウムへプチルォキシド 、ナトリウムォクチルォキシドなどのナトリウムアルコキシド;ナトリウムフエノキシド、ナト リウム 4—メチルフエノキシド、ナトリウムベンジルォキシド、ナトリウム 4—メチルベンジ ルォキシドなどを挙げることができる。
(メタ)アクリル酸エステルを主体とする単量体のァ-オン重合開始剤として用いら れる有機カリウム化合物としては、メチルカリウム、ェチルカリウム、 n—プロピル力リウ ム、イソプロピルカリウム、 n—ブチルカリウム、 s ブチルカリウム、イソブチルカリウム 、 t—ブチルカリウム、 n—ペンチルカリウム、 n—へキシルカリウム、テトラメチレンジカ リウム、ペンタメチレンジカリウム、へキサメチレンジカリウムなどのアルキルカリウムお よびアルキルジカリウム;フエ-ルカリウム、 m—トリルカリウム、 p トリルカリウム、キシ リルカリウム、カリウムナフタレンなどのァリールカリウムおよびァリールジカリウム;ベン ジルカリウム、ジフエ-ルメチルカリウム、トリチルカリウム、 1, 1—ジフエ-ルー 3—メ チルペンチルカリウム、 aーメチルスチリルカリウム、ジイソプロぺ-ルベンゼンとブチ ルカリウムの反応により生成するジカリウムなどのァラルキルカリウムおよびァラルキル ジカリウム;カリウムジメチルアミド、カリウムジェチルアミド、カリウムジイソプロピルアミ ドなどのカリウムアミド;カリウムメトキシド、カリウムエトキシド、カリウム n—プロボキシド 、カリウムイソプロポキシド、カリウム n—ブトキシド、カリウム s ブトキシド、カリウム t ブトキシド、カリウムペンチルォキシド、カリウムへキシルォキシド、カリウムへプチルォ キシド、カリウムォクチルォキシドなどのカリウムアルコキシド;カリウムフエノキシド、力 リウム 4 メチルフエノキシド、カリウムベンジルォキシド、カリウム 4 メチルベンジル ォキシドなどを挙げることができる。 [0029] (メタ)アクリル酸エステルを主体とする単量体のァ-オン重合開始剤として用いら れる有機マグネシウム化合物としては、ジメチルマグネシウム、ジェチルマグネシウム チルマグネシウムクロリド、ェチルマグネシウムブロミド、フエニルマグネシウムクロリド 、フエ-ルマグネシウムブロミド、 t ブチルマグネシウムクロリド、 t ブチルマグネシ ゥムブロミドなどを挙げることができる。
[0030] 有機アルミニウム化合物の存在下での (メタ)アクリル酸エステルを主体とする単量 体の重合は、上記で挙げた重合開始剤の 1種または 2種以上を用いて行うことができ る。中でも、重合開始剤として有機リチウム化合物、特に n—ブチルリチウム、 s プチ ルリチウム、 t—ブチルリチウム、ジフエ-ルメチルリチウム、 1, 1ージフエ-ルー 3—メ チルペンチルリチウムおよび aーメチルスチリルリチウムの 1種または 2種以上を用い ると、重合開始効率が高ぐしかも重合反応が円滑に進行する。
[0031] 重合開始剤の使用量は特に制限されず、使用する (メタ)アクリル酸エステルの種 類、製造する (メタ)アクリル酸エステル系重合体の種類、重合温度など重合条件など に応じて調節できる力 一般的には重合溶液 1リットル当たり、重合開始剤の濃度が 0 . 1〜: LOOmmol、特に l〜10mmolの範囲であることが重合の円滑な進行などの点 力 好ましい。
また、有機アルミニウム化合物の使用量は、使用する重合開始剤に対して 0. 1〜3 0モル倍の範囲、特に 0. 5〜20モル倍の範囲であること力 重合開始剤効率の向上 、重合時のリビング性の向上などの点力 好まし 、。
[0032] (メタ)アクリル酸エステル系重合体の製造に当たっては、(メタ)アクリル酸エステル を主体とする単量体、一般的には単量体の全質量に基づいて (メタ)アクリル酸エス テルの割合が 60質量%以上、更には 75質量%以上、特に 85〜: LOO質量%である 単量体が、(メタ)アクリル酸エステル系重合体由来の特性を発現させることができる 点から好ましく用いられる。
[0033] (メタ)アクリル酸エステル系重合体の製造原料である (メタ)アクリル酸エステルの具 体例としては、メタクリル酸メチル、メタクリル酸ェチル、メタクリル酸プロピル、メタタリ ル酸イソプロピル、メタクリル酸ァリル、メタクリル酸 n—ブチル、メタクリル酸 t ブチル 、メタクリル酸シクロへキシル、メタクリル酸ベンジル、メタクリル酸 2—ェチルへキシル 、メタクリル酸ラウリル、メタクリル酸グリシジル、メタクリル酸トリメトキシシリルプロピル、 メタクリル酸メトキシェチル、メタクリル酸 2—(2—エトキシエトキシ)ェチル、メタクリル 酸 N, N ジメチルアミノエチル、メタクリル酸 N, N ジェチルアミノエチルなどのメタ クリル酸エステル;アクリル酸メチル、アクリル酸ェチル、アクリル酸プロピル、アクリル 酸イソプロピル、アクリル酸ァリル、アクリル酸 n—ブチル、アクリル酸 tーブチル、アタリ ル酸シクロへキシル、アクリル酸ベンジル、アクリル酸 2—ェチルへキシル、アクリル酸 ラウリル、アクリル酸グリシジル、アクリル酸トリメトキシシリルプロピル、アクリル酸メトキ シェチル、アクリル酸ェチル 2— (2—エトキシエトキシ)ェチル、アクリル酸お N ジ メチルアミノエチル、アクリル酸お N ジェチルアミノエチルなどのアクリル酸エステ ルなどを挙げることができる。
(メタ)アクリル酸エステル系重合体の製造に当たっては、上記した (メタ)アクリル酸 エステルの 1種または 2種以上を用いることができる。
[0034] また、必要に応じて、上記した一官能性 (メタ)アクリル酸エステルと共に、炭素 炭 素二重結合を 2個以上有する (メタ)アクリル酸エステル系重合体を少量 (一般に全単 量体の 10モル%以下の量)で用いることもできる。
[0035] 場合により、少量成分として (メタ)アクリル酸エステルと共に使用することのできる他 の単量体の例としては、エチレン、プロピレン、イソブチレンなどのォレフィン化合物; ブタジエン、イソプレンなどの共役ジェン化合物;スチレン、 aーメチルスチレンなど の芳香族ビニル化合物;アクリル酸、メタクリル酸などの不飽和カルボン酸;塩ィ匕ビ- ル;酢酸ビュルなどを挙げることができ、これらの 1種または 2種以上を用いることがで きる。
[0036] (メタ)アクリル酸エステルを主体とする単量体 [以下これを「(メタ)アクリル酸エステ ル系単量体」ということがある]の重合は水不溶性の有機溶媒中で行う。
水不溶性の有機溶媒を用いることによって、(メタ)アクリル酸エステル系重合体を 含有する反応液に含まれる有機アルミニウム化合物に由来するアルミニウム成分お よび重合開始剤に由来する金属成分が反応液力 良好に且つ効率よく除去されて、 有機溶媒層からは純度の高 ヽ (メタ)アクリル酸エステル系重合体が取得される。 (メタ)アクリル酸エステル系単量体の重合を水溶性の有機溶媒や親水性の有機溶 媒中で行うと、重合反応によって生成した反応液力 のアルミニウム成分およびその 他の金属成分の除去が行われにくくなり、高純度の (メタ)アクリル酸エステル系重合 体が得られにくくなる。し力も、重合によって生成した (メタ)アクリル酸エステル系重合 体を含有する反応液に 90°C以上の温度で水を混合して反応液を洗浄した後に、該 洗浄処理によって生じた反応液と水の混合液を有機溶媒溶液層と水溶液層に層分 離させる際に、有機溶媒溶液層と水溶液層の 2層にはっきりと層分離せず、該 2つの 層の間に白濁した中間層が生じて、アルミニウム成分および重合開始剤に由来する 他の金属成分の除去や、有機溶媒溶液からの (メタ)アクリル酸エステル系重合体の 取得が円滑に行われなくなり、し力も (メタ)アクリル酸エステル系重合体の収率 (取得 率)が低下する。
[0037] (メタ)アクリル酸エステル系単量体の重合に用いる水不溶性の有機溶媒の具体例 としては、ベンゼン、トルエン、ェチルベンゼン、キシレンなどの芳香族炭化水素;ぺ ンタン、 n キサン、オクタンなどの脂肪族炭化水素;シクロペンタン、メチルシクロ ペンタン、シクロへキサン、メチルシクロへキサン、ェチルシクロへキサンなどの脂環 式炭化水素などを挙げることができ、これらの炭化水素は単独で使用してもよいし、 2 種以上を混合して使用してもよい。そのうちでも、トルエン、ェチルベンゼン、シクロへ キサンまたはこれらの混合液力 重合により生成する (メタ)アクリル酸エステル系重合 体の溶解度が高いこと、水とはっきり層分離して高純度の (メタ)アクリル酸エステル系 重合体を高収率で取得できること、回収した溶媒の精製が容易であることなどの点か ら好ましく用いられ、特にトルエンがより好ましく用いられる。
重合に用いる水不溶性の有機溶媒は、予め脱気および脱水処理しておくことが、 重合反応の円滑な進行、合成した (メタ)アクリル酸エステル系重合体を含有する反 応液からのアルミニウム成分や他の金属成分の除去が円滑に行われるなどの点から 望ま 、 (以下、本発明で用いる水不溶性の有機溶媒を単に「有機溶媒」 t 、うことが ある)。
[0038] (メタ)アクリル酸エステル系単量体の重合に当たっては、重合反応系に、高リピン グ性を保って重合を速く進行させるための添加剤を必要に応じて添加することができ る。そのような添加剤としては、例えば、ジメチルエーテル、ジメトキシェタン、ジェトキ シェタン、 12 クラウン一 4などのエーテル化合物;トリェチルァミン、 N, N, Ν' , Ν, ーテトラメチルエチレンジァミン、 Ν, Ν, Ν' , Ν" , Ν" ペンタメチルジェチルトリア ミン、 1, 1, 4, 7, 10, 10 へキサメチルトリエチレントリァミン、ピリジン、 2, 2,—ジピ リジルなどの有機含窒素化合物;トリェチルホスフィン、トリフエ-ルホスフィン、 1, 2- ビス (ジフエ-ルホスフイノ)ェタンなどの有機リンィ匕合物;塩化リチウム、塩化ナトリウ ム、塩ィ匕カリウムなどの無機塩;リチウム(2—メトキシエトキシ)エトキシド、カリウム t— ブトキシドなどのアルカリ金属アルコキシド;テトラエチルアンモ -ゥムクロリド、テトラエ チルアンモ-ゥムブロミド、テトラエチルホスホ-ゥムクロリド、テトラエチルホスホ-ゥ ムブロミドなどの四級アンモ-ゥム塩ゃ四級ホスホ-ゥム塩などを挙げることができる
。そのうちでも、エーテルィ匕合物および有機含窒素化合物が少量の使用で高いリビ ング性を保ちながら重合をより速く進行させることができ、有機溶媒層と水層との円滑 な層分離、有機溶媒層からの (メタ)アクリル酸エステル系重合体の収率などの点で 有機含窒素化合物がより好適である。前記した添加剤を重合反応系に存在させる場 合は、重合溶液 1リットル当たり 0. l〜200mmolの範囲、特に l〜20mmolの範囲 にするのが好ましい。
[0039] (メタ)アクリル酸エステル系単量体を重合する際の重合温度は、(メタ)アクリル酸ェ ステル系単量体の種類、有機溶媒中での単量体の濃度、有機アルミニウム化合物や 重合開始剤の種類などに応じて適宜決めることができ、特に制限されないが、一般 的には、 80〜100°C、特に— 40〜80°Cの重合温度力 得られる(メタ)アクリル酸 エステル系重合体の構造の制御や重合成長末端の安定性の点力 好ましく採用さ れる。
[0040] 重合に使用する (メタ)アクリル酸エステル系単量体の種類や組み合わせ、重合反 応装置への単量体の供給方法や供給順序などは特に制限されず、(メタ)アクリル酸 エステル系単量体の種類、組み合わせ、供給順序などに応じて、(メタ)アクリル酸ェ ステルのうちの 1種類の単量体からなる単独重合体;(メタ)アクリル酸エステルのうち の 2種以上の単量体からなるランダム共重合体、テーパード共重合体、ブロック共重 合体、グラフト重合体;(メタ)アクリル酸エステルのうちの 1種または 2種以上と他の共 重合性単量体の 1種または 2種以上からなるランダム共重合体、テーパード共重合体 、ブロック共重合体、グラフト重合体などの種々の (メタ)アクリル酸エステル系重合体 を製造することができる。例えば、重合反応器に (メタ)アクリル酸エステルのうちの 1 種類のみを供給して重合を行った場合は単独重合体を含有する反応液が生成し、 ( メタ)アクリル酸エステルのうちの 2種類以上を含む単量体混合物を予め調製してそ れを重合反応装置に供給して重合を行った場合はランダム共重合体やテーパード 共重合体を含有する反応液が生成する。また、例えば、特定の (メタ)アクリル酸エス テルを重合してリビング重合体ブロック Aを製造し、次いで別の (メタ)アクリル酸エス テルを供給して重合体ブロック Bを形成させると、重合体ブロック Aと重合体ブロック B が結合した A— B型のジブロック共重合体を含有する反応液が生成する。さらに、特 定の (メタ)アクリル酸エステルを重合してリビング重合体ブロック Aを製造し、次いで 別の種類の (メタ)アクリル酸エステルを供給して重合体ブロック Bを形成させ、その後 最初に供給したのと同じ (メタ)アクリル酸エステルを供給して重合体ブロック Aを形成 させることによって、重合体ブロック A、重合体ブロック Bおよび重合体ブロック Aが結 合した A— B— A型のトリブロック共重合体を含有する反応液が生成する。
[0041] 本発明の取得方法は、上記した種々の (メタ)アクリル酸エステル系重合体 (単独重 合体、ランダム共重合体、テーパード共重合体、ブロック共重合体、グラフト重合体な ど)の 1種または 2種以上を含有する反応液のいずれに対しても有効に適用でき、該 反応液から、アルミニウム成分およびその他の金属成分の残存量の極めて少な 、、 高純度のそれぞれの (メタ)アクリル酸エステル系重合体が取得される。
[0042] 特に、本発明の取得方法を、重合開始剤および有機アルミニウム化合物の存在下 に (メタ)アクリル酸エステル系単量体をブロック共重合して得られるメタクリル酸エス テル系重合体ブロック アクリル酸エステル系重合体ブロックよりなるジブロック共重 合体 [例えばポリメタクリル酸メチルーポリ(アクリル酸 n—プチル)ジブロック共重合体 ]を含有する反応液、メタクリル酸エステル系重合体ブロック アクリル酸エステル系 重合体ブロックーメタクリル酸エステル系重合体ブロックよりなるトリブロック共重合体 [ 例えばポリメタクリル酸メチル一ポリ(アクリル酸 n—プチル)一ポリメタクリル酸メチルト リブロック共重合体]を含有する反応液、またはメタクリル酸エステルのうちの 1種類を 重合開始剤および有機アルミニウム化合物の存在下に単独重合して得られるポリメタ クリル酸エステル (例えばポリメタクリル酸メチルなど)を含有する反応液に適用した場 合には、それぞれの反応液から、有機アルミニウム化合物に由来するアルミニウム成 分および有機アルカリ金属化合物などの重合開始剤に由来する金属成分の残存量 の少ない、透明性、耐候性、耐熱性、力学的特性、外観などに優れる、高純度の前 記したジブロック共重合体、トリブロック共重合体またはポリメタクリル酸エステルを効 率よく、円滑に得ることができる。
[0043] また、本発明の方法にぉ 、て、必要に応じて (メタ)アクリル酸エステル系重合体を 含む反応液を、そのまま該重合体中に含まれる炭素 炭素二重結合の水素化反応 に付すことができる(以下、水添反応と呼ぶことがある)。特に、水素化反応を行うの が好ましい (メタ)アクリル酸エステル系重合体としては、その構造中に炭素 炭素二 重結合を有しているもので、例えばブタジエン、イソプレンなどの共役ジェンィ匕合物、 メタクリル酸ァリル、アクリル酸ァリル、メタクリル酸プロべ-ル、アクリル酸プロべ-ル などの炭素 炭素二重結合を有するエステルィヒ合物などとのランダム共重合体、交 互共重合体、ブロック共重合体などの共重合体が挙げられる。
中でも、(メタ)アクリル酸エステル系単量体と同様にァ-オン重合性の単量体であ る共役ジェンィ匕合物は、(メタ)アクリル酸エステル系重合体の非極性度を補う共重合 単量体として有用であり、水素化反応により、その耐候性が改良される。
[0044] 水素化反応の際に用いる水素化触媒の一つとして、チーグラー系触媒、すなわち 有機ニッケルィ匕合物または有機チタンィ匕合物と、下記の一般式 (II);
A1R4R5R6 (II)
(式中、 R4、 R5および R6はそれぞれ独立して置換基を有していてもよいアルキル基 、置換基を有して 、てもよ ヽシクロアルキル基または置換基を有して 、てもよ ヽァリー ル基または置換基を有して 、てもよ 、ァリールォキシ基を表す。 )
で表される有機アルミニウム化合物 [以下、単に「有機アルミニウム化合物(II)」と 、う ]の組み合わせが挙げられる。
上記式中、
Figure imgf000020_0001
R5および R6が表す置換基を有していてもよいアルキル基、置換基を 有して 、てもよ 、シクロアルキル基、置換基を有して!/、てもよ 、ァリール基または置換 基を有していてもよいァリールォキシ基としては、一般式 (I)における 、 R2および R3 が表すものと同様のものが挙げられ、その具体例は前記したものと同様である。
好ましく用いられる有機アルミニウム化合物(II)の具体例としては、トリメチルアルミ ユウム、トリェチルアルミニウム、トリ n—ブチルアルミニウム、トリ s—ブチルアルミ-ゥ ム、トリ t—ブチルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム、 トリシクロへキシルアルミニウムなどが挙げられる。
必要に応じて行う上記の水素化反応で用いた有機アルミニウム化合物(II)を含む 反応液を用いる場合も、本発明の取得方法により、重合反応に用いた有機アルミ- ゥム化合物と共に、力かる有機アルミニウム化合物 (II)を効率よく除去することができ る。
[0045] 本発明の方法によって取得される (メタ)アクリル酸エステル系重合体の分子量や物 性などは特に制限されず、それぞれの用途や使用目的に適したものにすることがで きる。
[0046] 次に、本発明の取得方法における各工程について説明する。
《工程 )》
本発明では、(メタ)アクリル酸エステル系単量体を水不溶性の有機溶媒中で重合 開始剤や有機アルミニウム化合物などの金属化合物の存在下に重合して合成した( メタ)アクリル酸エステル系重合体を含有する反応液に、酸を添加する。
(メタ)アクリル酸エステル系重合体を含有する反応液への酸の添加は、反応液中 の (メタ)アクリル酸エステル系重合体の末端がリビング状態にあるときに行うのがよく 、酸の添加によって重合反応が停止されると共に、反応液中に含まれる金属成分と 酸との結合体、具体例としては、有機アルミニウム化合物に由来するアルミニウム成 分や重合開始剤に由来する金属成分などと酸との結合物が生成する。(メタ)アクリル 酸エステル系重合体を含む反応液に、水やメタノールなどのアルコールを添加して 重合反応を停止した後に酸を添加すると、有機アルミニウム化合物が含まれる場合 は、有機アルミニウム化合物に由来するアルミニウム成分と水またはメタノールなどの アルコールとの水不溶性の反応物(例えばゲル状の水酸ィ匕アルミニウムなど)が生成 してしまい、酸を添加しても、もはやアルミニウム成分と充分に結合しなくなり、反応液 力 アルミニウム成分を充分に除去できなくなる。
[0047] (メタ)アクリル酸エステル系重合体を含有する反応液に添加する酸としては、水分 を実質的に含まな 、か又は水分含量の少な 、カルボン酸を用いることが好ま 、。 その際に、カルボン酸の水分含量は、 20質量%以下であることが好ましぐ 3質量% 以下であることがより好ましぐ 2質量%以下であることが更に好ましぐ 1質量%以下 、特に 0. 5質量%以下であることが一層好ましい。力かるカルボン酸の具体例として は、酢酸 (氷酢酸)、プロピオン酸、酪酸、吉草酸、カブロン酸などが挙げられ、そのう ちでも、酢酸 (氷酢酸)が入手の容易性、取り扱い性などの点からより好ましく用いら れる。
[0048] 工程 (a)における酸の添加量は、反応液中に有機アルミニウム化合物が含まれる 場合は有機アルミニウム化合物に由来するアルミニウム成分が酸と接触して何らかの 酸結合体を形成する量にすることが、反応液からアルミニウム成分を充分に除去する ために好ましい。
(メタ)アクリル酸エステル系重合体を含有する反応液中に、有機アルミニウム化合 物に由来するアルミニウム成分と共に、重合開始剤に由来する金属成分が含まれて V、る場合、重合反応を促進するための塩基性の添加剤などが含まれて!/ヽる場合は、 重合開始剤に由来する金属成分ゃ該塩基性の添加剤なども工程 (a)で添加された 酸と酸結合体を形成する。そのため、工程 (a)で添加する酸の量は、(メタ)アクリル酸 エステル系重合体を含有する反応液中に含まれる全塩基性成分 (アルミニウム成分 、重合開始剤に由来する金属成分、他の塩基性成分などの合計)が酸との結合体を 形成するような量にすることが、反応液からの該全塩基性成分の除去率を高める点 力 好ましい。
一般的には、反応液中に含まれる全塩基性成分の合計量に対して、 1. 3〜4モル 倍、特に 1. 7〜3モル倍の酸を添加することが好ましい。
[0049] (メタ)アクリル酸エステル系重合体を含有する反応液に酸を添加する際の反応液 の温度は、 80〜60°C、特〖こ 25〜60°Cであること力 反応液中に含まれるアルミ- ゥム成分やその他の塩基性成分と酸の結合体の形成が円滑に行われることから好ま しい。 また、酸の添加に当たっては、反応液に酸を添加した後に液を撹拌する力 または 反応液を撹拌しながら酸を添加することが好ましい。本発明では、工程 (a)の前、ま たは工程 (a)の後で且つ工程 (b)の前に、必要に応じて反応液中の (メタ)アクリル酸 エステル系重合体の濃度を調節しても良い。本発明の方法は、(メタ)アクリル酸エス テル系重合体を高濃度で含有する反応液からの (メタ)アクリル酸エステル系重合体 の取得に際してより効果が顕著である。一般的には、工程 (b)または工程 (e— 1) (洗 浄工程)に供される時点での反応液中の (メタ)アクリル酸エステル系重合体の濃度 は 10〜50質量%、特に 15〜35質量%であること力 生産性、不純物の除去効率、 などの点力も好ましい。
反応液中の (メタ)アクリル酸エステル系重合体の濃度の調節は、重合に用いたのと 同じ力または近縁の水不溶性の有機溶媒の反応液への添カ卩による希釈、逆に反応 液の加熱蒸留などによる濃縮などによって行うことができる。
[0050] 《工程 (b)》
前記の工程 (a)で酸を添加した、(メタ)アクリル酸エステル系重合体を含有する反 応液に、水 (熱水)を混合して反応液を洗浄する。この工程 (b)では、酸添カ卩によって 反応液中で生成したアルミニウム成分やその他の塩基性成分などと酸の結合体を、 水層中に充分に抽出 ·移行させて反応液 (有機溶媒層)から除去する。
反応液中で生成したアルミニウム成分やその他の塩基性成分と酸の結合体を円滑 に且つ充分に水層に抽出'移行させるために、更に以下の工程 (c)での有機溶媒溶 液層と水溶液層の 2層への層分離を円滑にするために、工程 (b)では、 90°C以上の 温度で、反応液に水を混合することが必要である。
(メタ)アクリル酸エステル系重合体を含有する反応液に水を混合する際に、水の温 度が 90°C以上の温度であっても、反応液の温度が低いと、反応液に水を混合した時 に液 (混合液)の温度が 90°Cよりも低くなつて、反応液中に含まれるアルミニウム成分 および他の塩基性成分と酸の結合体の水層への抽出'移行が充分に行われなくなり 、し力も工程 (c)での層分離が不良になるので、反応液および水の両方を混合前に 9 0°C以上の温度に予め加熱しておいて、両方の液を混合するのがよい。
[0051] 工程 (b)の水洗浄処理を 90°C未満の温度で行うと、反応液に含まれるアルミニウム 成分の水層への抽出 *移行が充分に行われなくなって、最終的に得られる (メタ)ァク リル酸エステル系重合体中のアルミニウム成分の残存量が多くなり、高純度の (メタ) アクリル酸エステル系重合体が得られなくなる。し力も、水による洗浄回数を多くして も、アルミニウム成分の除去率はそれほど向上しない。その上、この工程 (b)で生じた 反応液と水の混合液を、次の工程 (c)で有機溶媒溶液層と水溶液層に層分離させる 際に、有機溶媒溶液層と水溶液層の 2層にはっきりと層分離せずに、両層の間に白 濁した中間層(有機溶媒溶液層および水溶液層の両層に不溶な成分、水を抱え込 んだ高粘度重合体などを含有する層)が形成されて、工程 (d)以降の処理操作が行 いにくくなり、更には (メタ)アクリル酸エステル系重合体の収率および純度が低下す る。
[0052] 一方、工程 (b)の温度が高すぎると、反応液中に含まれる (メタ)アクリル酸エステル 系重合体の分解や劣化が生じ易くなる [ (メタ)アクリル酸エステル系重合体の熱分解 温度は一般に 250〜300°C]。さらに、工程 (b)の温度が高すぎると、反応液および 水を液状に保っために極めて高い圧力とそのような高圧に耐え得る装置が必要にな つて熱効率および装置面で不利になる。更に有機溶媒溶液層中への水の溶解度が 高くなる。し力も、工程 (b)での温度が 180°Cを超えても、取得される (メタ)アクリル酸 エステル系重合体でのアルミニウム成分の残存量の低減効果はあまり変わらない。 かかる点から、工程 (b)は、反応液に水を混合した混合液の温度が、 90〜180°C の範囲内の温度になるようにして行うことが好ましぐ 100〜170°Cの範囲内になるよ うにして行うことがより好ましぐ 120〜160°Cの範囲内の温度になるようにして行うこ とが更に好ましい。
[0053] 工程 (b)で採用する 90°C以上の温度 (混合温度、洗浄温度)は、反応液を形成す る水不溶性の有機溶媒 (例えばトルエン)と水との共沸点よりも一般に高い温度であり (例えば水とトルエンの共沸点は 85. 0°C)、常圧下で工程 (b)を行った場合には、有 機溶媒または有機溶媒と水の両方が気化する。工程 (b)の洗浄処理を円滑に行うた めには、反応液 (有機溶媒)と水の両方を気化させずに液状を保ちながら混合するこ とが必要であり、かかる点から、工程 (b)は、反応液、水および両者の混合液が液状 を保ち得る圧力下に加圧しながら、 90°C以上の温度で行うのがよい。 [0054] 工程 (b)における水の混合量は、反応液中に含まれる (メタ)アクリル酸エステル系 重合体の量や種類、有機アルミニウム化合物由来のアルミニウム成分や重合開始剤 に由来する金属成分の種類や量、有機溶媒の種類、工程 (b)における温度などに応 じて異なり得る力 一般的には (メタ)アクリル酸エステル系重合体を含有する反応液 の 1容量部に対して、水を 0. 02〜: LO容量部、好ましくは 0. 1〜5容量部、特に 0. 2 〜2容量部の割合で混合して洗浄処理を行うことが、反応液中に含まれるアルミ-ゥ ム成分や他の塩基性成分と酸の結合体の水層への抽出'移行が良好に行われる点 、以下の工程 (c)で有機溶媒溶液層と水溶液層への層分離が円滑に行われる点、 使用する水の温度を上昇させるために必要な熱量を抑えられる点、本発明の取得方 法で排出される廃水量を抑制できる点など力も好ましい。
[0055] 工程 (b)では、撹拌下に、(メタ)アクリル酸エステル系重合体を含有する反応液に 水を混合することが、アルミニウム成分や他の塩基性成分と酸の結合体の水層への 抽出 '移行が良好に行われることから好ましい。その際の撹拌装置としては、反応液 と水との混合液の全体を充分に混合できるような撹拌装置を用いるのがよぐ回転撹 拌羽、ポンプ、その他の動的撹拌装置、静的撹拌装置 (スタティックミキサー)、攪拌 式段型抽出塔の ヽずれを使用してもょ ヽ。
[0056] 工程 (b)にお 、て、攪拌が強過ぎると、ヱマルジヨンィ匕が起き、反応液 (有機溶媒溶 液)中に水が微粒状で混入するいわゆる"水嚙み"が生じ、嚙み込んだ水中に含まれ る不純物が除去できなくなる。さらに、水嚙みが激しい場合は、有機溶媒溶液層と水 溶液層の間に中間層を形成し、金属成分などの不純物の除去が不良となる。逆に撹 拌が弱いと、有機溶媒溶液層 Z水溶液層からなる界面更新が不十分となり、金属成 分などの不純物の除去が不良となるか、不純物の除去に非常に長時間を要する。
[0057] 撹拌の強さは、工程 (b)を実施する際の温度によって異なるが、回転撹拌羽、ボン プなどの動的撹拌装置を用いる場合は、 30〜: LOOOwZm3、特に 80〜500wZm3 の撹拌動力(Sa)を採用して行うことが好ま 、。動的撹拌時の撹拌動力(Sa)の範 囲は、工程 (b)を実施する際の温度が高いほど選択可能な幅は広くなる。
一般的には、工程 (b)を 90〜120°Cで動的撹拌下に実施する場合は、 30-500 w/m3の、特に 30〜200wZm3の撹拌動力(Sa)を採用することが好ましぐ工程 (b )を 120〜180°Cで動的撹拌下に実施する場合は、 50〜: LOOOw/m3、特に 80〜5 OOwZm3の撹拌動力(Sa)を採用することが好ましい。
ここで、動的撹拌時の撹拌動力(Sa)は、以下の数式 (i)から求められる。 動的撹拌時の撹拌動力(Sa) (w/m3) =P/V (i)
[式中、 Pは、各動的撹拌装置が有している撹拌所要動力 (w;ワット)であり、例えば 非特許文献 1に記載されているように、一般的な化学工学に基づく方法で算出される 。また、 Vは混合が実施される装置 (混合装置)の内容積 (m3)である。 ]
[0058] 工程 (b)を、静的撹拌装置 (スタティックミキサー)などを使用して静的撹拌下に行う 場合は、 30〜: LOOOwZm3、特に 80〜500wZm3の撹拌動力(Sb)を採用して行う ことが好ましい。静的撹拌時の撹拌動力(Sb)の範囲は、工程 (b)を実施する際の温 度が高いほど選択可能な幅は広くなる。一般的には、工程 (b)を 90〜120°Cで動的 撹拌下に実施する場合は、 30〜500wZm3、特に 30〜200wZm3の撹拌動力(Sb )を採用することが好ましぐ工程 (b)を 120〜180°Cで動的撹拌下に実施する場合 は、 50〜: L000wZm3、特に 80〜500wZm3の撹拌動力(Sb)を採用することが好 ましい。
ここで、静的撹拌時の撹拌動力(Sb)は、以下の数式 (ii)から求められる。 静的撹拌時の撹拌動力(Sb) (w/m3) = 2f p U3/D (ii) [式中、 fは Fanningの摩擦係数、 pは密度 (kgZm3)、 Uは平均流速 (mZsec)、 D は装置の直径 (m)であり、例えば非特許文献 2に記載されているように、一般的な化 学工学に基づく方法で算出される。 ]
また、摩擦係数などの算出が困難な場合は、系にかかる圧力損失が混合エネルギ 一に変換されるとみなして、以下の数式 (iii)で算出してもよい。
静的撹拌時の撹拌動力(Sb) (w/m3) = Δ Ρ·Α·υ/ν (iii) [式中、 Δ Ρは装置の圧力損失 (Pa)、 Aは断面積 (m2)、 Uは平均流速 (mZsec)、 V は内容積 (m3)であり、一般的な化学工学に基づく手法により算出される。 ]
[0059] 工程 (b)における混合時間(反応液と水の混合液の撹拌混合時間)は、混合方式、 混合液の液温、反応液の粘度、反応液中に含まれるアルミニウム成分や他の塩基性 成分と酸の結合体の量、反応液に対する水の混合量などに応じて異なり得るが、動 的撹拌下に行う場合は、 10秒〜 300分、特に 1〜180分であることが好ましぐまた 静的撹拌下に行う場合も、 10秒〜 300分、特に 1〜180分であることが好ましい。前 記した混合時間を採用することによって、反応液中に含まれるアルミニウム成分や他 の塩基性成分と酸の結合体を充分に水層に抽出'移行させることができ、また混合装 置容量をあまり大きくせずに簡素化することができる。
[0060] 《工程 (c)》
上記の工程 (b)で生じた、(メタ)アクリル酸エステル系重合体を含有する反応液と 水の混合液を、この工程 (c)で有機溶媒溶液層(上層)と水溶液層(下層)の 2層に分 離する。
この工程 (c)は、工程 (b)で生じた (メタ)アクリル酸エステル系重合体を含有する反 応液と水の混合液を一般に静置することによって行われる。
本発明では、最初の工程 (a)で水分を実質的に含まないか又は水分含有量の少な Vヽ酸を (メタ)アクリル酸エステル系重合体を含有する反応液に添加し、次 、で工程 ( b)で水による洗浄処理を 90°C以上、好ましくは 120°C〜160°Cの高温で行うことによ つて、層分離の妨げとなるゲル状物などの形成が防止されるため、この工程 (c)では 、工程 (b)で生じた反応液と水の混合液は、静置後、数分〜 120分程度で、白濁し た中間層を形成することなぐ有機溶媒溶液層と水溶液層の 2層にはっきりと層分離 する。
[0061] 工程 (c)を行う際の反応液と水の混合液の温度は、工程 (b)を実施した際の温度と 同じ温度であるのが好まし 、。
例えば、この工程 (c)の次の工程 (d)で有機溶媒溶液を分取し、該有機溶媒溶液 力 有機溶媒を留去して (メタ)アクリル酸エステル系重合体を取得する場合には、液 温を 90°C以上に維持しながら工程 (c) (静置-層分離)を実施することが、次の工程 (d)で分取した有機溶媒溶液から (メタ)アクリル酸エステル系重合体を取得する際の 熱効率などの点カゝら有利である。また、この工程 (c)に続いて工程 (d)で有機溶媒溶 液を分取した後に、下記で説明する工程 (e) (水洗浄一層分離一有機溶媒溶液の分 取工程)を更に実施する場合も、工程 (e)における水洗浄処理時の熱効率などを考 慮して、液温を 90°C以上に維持しながら工程 (c) (静置-層分離)を実施するのが有 利である。また、この工程 (C)の次の工程 (d)で有機溶媒溶液を分取した後、該有機 溶媒溶液をメタノールなどの貧溶媒中に注 、で (メタ)アクリル酸エステル系重合体を 析出、沈殿させて取得する場合も、工程 (c)は液温を 90°C以上に維持しながら行う のが好ましい。
[0062] 《工程 (d)》
前記した工程 (c)で、(メタ)アクリル酸エステル系重合体を含有する反応液と水の 混合液は、(メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液よりなる上層 と、アルミニウム成分やその他の金属成分などを含有する水溶液よりなる下層の 2層 に分離するので、この工程 (d)において、(メタ)アクリル酸エステル系重合体を含有 する有機溶媒溶液と、アルミニウム成分やその他の金属成分などを含有する水溶液 を、それぞれ分けて取り出す (分取)。
有機溶媒溶液および水溶液のそれぞれの分取方法は特に制限されず、 2層に分 離した液のそれぞれを分取するのに従来力 採用されて 、る方法の 、ずれを採用し てもよい。
例えば、前記の工程 (c)を所定の容器内で行った場合には、容器の底部や下部か ら水溶液を取り出し、容器の上方カゝら有機溶媒溶液を取り出すことによって、それぞ れの液を分取することができる。また、例えば、前記の工程 (c)を、所定の高さの隔壁 によって途中の高さまで 2つに仕切られた容器を用いて行い、該容器の一方の室に 有機溶媒溶液と水の混合液を導入して静置して、下層に層分離する水溶液を該ー 方の室内に該隔壁の高さ以下の深さで溜め、上層に層分離する有機溶媒溶液を該 隔壁の上からもう一方の室に流入させて、前記一方の室の底部や下方から水溶液を 分取し、該もう一方の室力 有機溶媒溶液を分取することもできる。
[0063] 工程 (d)で分取された (メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液 は、(メタ)アクリル酸エステル系重合体の用途や使用目的などに応じて、そのまま直 接 (メタ)アクリル酸エステル系重合体の取得工程に付してもょ 、し、または下記で説 明する工程 (e) (水洗浄一層分離一有機溶媒溶液の分取工程)を 1回または 2回以上 行って、(メタ)アクリル酸エステル系重合体中のアルミニウム成分やその他の金属成 分などの残存量を一層低減させてもょ ヽ。 [0064] 工程 (d)で分取された (メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液 カゝら (メタ)アクリル酸エステル系重合体を直接取得する場合は、有機溶媒溶液から( メタ)アクリル酸エステル系重合体を取得するために従来力 知られて 、る 、ずれの 方法を採用してもよい。何ら限定されるものではないが、例えば、(メタ)アクリル酸ェ ステル系重合体を含有する有機溶媒溶液を、メタノールなどの (メタ)アクリル酸エス テル系重合体を溶解しな ヽ有機溶媒 (貧溶媒)と混合して、(メタ)アクリル酸エステル 系重合体を析出、沈殿させて取得する方法、(メタ)アクリル酸エステル系重合体を含 有する有機溶媒溶液カゝら有機溶媒を留去する方法などを採用することができる。有 機溶媒溶液から有機溶媒を留去する方法は特に限定されず、例えば、攪拌槽にて 加熱や減圧を行って有機溶媒を留去して濃縮乾燥する方法、押出し機などで有機 溶媒を除去する方法、スチームストリツビング法、スプレードライ法などを挙げることが できる。
有機溶媒溶液カゝら取得された (メタ)アクリル酸エステル系重合体は、そのままで、ま たは必要に応じて水洗、乾燥などを施して、使用することができる。
また、工程 (d)で分取されたアルミニウム成分やその他の金属成分などを含有する 水溶液は、水溶液中に含まれる金属成分などの種類や量などに応じて、必要に応じ てそれらの成分を除去する浄化処理を施して、本発明の取得方法に再利用したり、 他の用途に再利用したり、廃棄したりすることができる。
[0065] 《工程 (e)》
(メタ)アクリル酸エステル系重合体の用途や使用目的などに応じて、アルミニウム 成分やその他の金属成分などの残存量が一層低減した、より高純度の (メタ)アクリル 酸エステル系重合体を得る必要がある場合は、前記した工程 (d) [ (メタ)アクリル酸ェ ステル系重合体を含有する有機溶媒溶液の分取工程]の後に、この工程 (e)を更に 1回または 2回以上行った後、最終段階で分取した有機溶媒溶液力も (メタ)アクリル 酸エステル系重合体を取得することにより、より高純度の (メタ)アクリル酸エステル系 重合体を得ることができる。
この工程 (e)は、(e— 1)分取した有機溶媒溶液に、 90°C以上の温度で水を混合し て有機溶媒溶液を洗浄し、(e— 2)前記洗浄により生じた有機溶媒溶液と水の混合 液を有機溶媒溶液層と水溶液層に層分離させ、次!ヽで (e— 3)層分離した有機溶媒 溶液および水溶液のそれぞれを分取するという一連の工程力もなる。
工程 (e)を行う回数は、必要とする (メタ)アクリル酸エステル系重合体の純度などに 応じてその回数を適宜選ぶことができる力 一般的には、巿場において (メタ)アタリ ル酸エステル系重合体に要求される純度、(メタ)アクリル酸エステル系重合体の取 得コスト、取得設備の規模、排水量などの点から、 1〜5回程度、更には 1〜4回程度 、特に 1〜3回程度とすればよい。
工程 (d)の後に工程 (e)を 2回行うと、一般にアルミニウム成分の除去率が 85%以 上の高純度の (メタ)アクリル酸エステル系重合体を得ることができる。特に、 110°C以 上の温度で操作を行う場合、工程 (e)を 2回行うと、一般にアルミニウム成分の除去 率が 90%以上の、高純度の (メタ)アクリル酸エステル系重合体を得ることができる。 工程 (e)における前記 (e— 1)の工程では、上記した工程 (d)で分取した (メタ)ァク リル酸エステル系重合体を含有する有機溶媒溶液、 1回目の工程 (e)を行って分取 した (メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液 [工程 (e)を 2回繰り 返す場合]、 2回目の工程 (e)を行って分取した (メタ)アクリル酸エステル系重合体を 含有する有機溶媒溶液 [工程 (e)を 3回繰り返す場合]、または 3回目の工程 (e)を行 つて分取した (メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液 [工程 (e) を 4回繰り返す場合]などに、上記した工程 (b)と同様に、 90°C以上の温度 [好ましく は 90〜180。C、より好ましくは 95〜160。C、更に好ましくは 110〜150。Cの温度]で 、水を混合して、(メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液中に未 だ残存しているアルミニウム成分、アルカリ金属成分、その他の金属成分、それらと 酸との結合体などを水層に抽出 ·移行させる。
この場合も、前記した工程 (b)と同様に、(メタ)アクリル酸エステル系重合体を含有 する有機溶媒溶液および水の両方を、混合前に 90°C以上の温度に予め加熱してお V、てから両者を混合することが好ま 、。
さら〖こ、工程 (e)の(e— 1)の工程も、工程 (b)と同様に、(メタ)アクリル酸エステル 系重合体を含有する有機溶媒溶液および水の両方が液状を保つように加圧しながら 、 90°C以上の温度で行うのがよい。 [0067] 工程 (e)の(e—l)の工程における水の混合量は、各々の状況に応じて変え得るが 、一般的には、(メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液 1容量部 に対して 0. 1〜: L0容量部、好ましくは 1〜5容量部、特に 1〜2容量部であることが、 有機溶媒溶液中に残存しているアルミニウム成分、他の塩基性成分、それらと酸の 結合体などの水層への抽出 *移行が良好に行われる点、次の(e— 2)の工程で有機 溶媒溶液層と水溶液層への層分離が円滑に行われる点、廃水量の抑制、使用する 水の温度を上昇させるために必要な熱量を抑えられる点など力も好まし 、。
[0068] (e—l)の工程における (メタ)アクリル酸エステル系重合体を含有する有機溶媒溶 液への水の混合は、工程 (b)と同様に、撹拌下に行うことが、アルミニウム成分や他 の塩基性成分と酸の結合体の水層への抽出 *移行が良好に行われることから好まし い。撹拌装置としては、回転撹拌羽やその他の動的撹拌装置、および静的撹拌装置 (スタティックミキサー)、攪拌式段型抽出塔のいずれもが使用できる。
[0069] (e—l)の工程において、攪拌が強過ぎると、エマルシヨンィ匕が起き、反応液 (有機 溶媒溶液)中に水が微粒状で混入するいわゆる"水嚙み"が生じ、嚙み込んだ水中 に含まれる不純物が除去できなくなる。さらに、水嚙みが激しい場合は、有機溶媒溶 液層と水溶液層の間に中間層を形成し、金属成分などの不純物の除去が不良となる
。逆に撹拌が弱いと、有機溶媒溶液層 Z水溶液層からなる界面更新が不十分となり
、金属成分などの不純物の除去が不良となるか、不純物の除去に非常に長時間を 要する。
[0070] 撹拌の強さは、(e— l)の工程を実施する際の温度によって異なるが、回転撹拌羽 、ポンプなどの動的撹拌装置を用いる場合は、 30〜: LOOOw/m3、特に 80〜500w Zm3の撹拌動力(Sa)を採用して行うことが好ましい。動的撹拌時の撹拌動力(S a)の範囲は、(e—l)の工程を実施する際の温度が高 、ほど選択可能な幅は広くな る。一般的には、(e— 1)の工程を 90〜120°Cで動的撹拌下に実施する場合は、 30 〜500w/m3の、特に 30〜200w/m3の撹拌動力(Sa)を採用することが好ましぐ (e— 1)の工程を 120〜180°Cで動的撹拌下に実施する場合は、 50〜: LOOOwZm3 、特に 80〜500wZm3の撹拌動力(Sa)を採用することが好ましい。
ここで、動的撹拌時の撹拌動力(Sa)は、上記した数式 (i)から求められる。 [0071] (e- 1)の工程を、静的撹拌装置 (スタティックミキサー)などを使用して静的撹拌下 に行う場合は、 30〜: LOOOwZm3、特に 80〜500wZm3の撹拌動力(Sb)を採用し て行うことが好ましい。静的撹拌時の撹拌動力(Sb)の範囲は、(e—l)の工程を実施 する際の温度が高いほど選択可能な幅は広くなる。一般的には、(e—l)の工程を 9 0〜120°Cで動的撹拌下に実施する場合は、 30〜500wZm3、特に 30〜200wZ m3の撹拌動力(Sb)を採用することが好ましぐ (e- 1)の工程を 120〜180°Cで動 的撹拌下に実施する場合は、 50〜: LOOOwZm3、特に 80〜500wZm3の撹拌動力 (Sb)を採用することが好ま 、。
ここで、動的撹拌時の撹拌動力(Sb)は、上記の数式 (ii)または (mから求められる。
[0072] (e- 1)の工程における 1回ごとの混合時間 [ (e— 1)の工程を 1回だけ行う場合は その混合時間、工程 (e)を 2回以上行う場合は各 (e - 1)の工程における混合時間] は、混合方式、混合液の液温、(メタ)アクリル酸エステル系重合体を含有する有機溶 媒溶液の粘度、(メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液液中に 含まれるアルミニウム成分や他の塩基性成分と酸の結合体の量、(メタ)アクリル酸ェ ステル系重合体を含有する有機溶媒溶液に対する水の混合量などに応じて異なり得 る力 動的撹拌下に行う場合は、 10秒〜 300分、特に 1〜180分であることが好まし ぐまた静的撹拌下に行う場合も、 10秒〜 300分、特に 1〜180分であることが好まし い。前記した混合時間を採用することによって、(メタ)アクリル酸エステル系重合体を 含有する有機溶媒溶液中に含まれるアルミニウム成分や他の塩基性成分と酸の結 合体などを充分に水層に抽出'移行させることができ、また混合装置容量をあまり大 きくせずに簡素化することができる。
[0073] 前記した (e— 1)の工程で生じた、(メタ)アクリル酸エステル系重合体を含有する有 機溶媒溶液と水の混合液を、次に (e— 2)の工程で有機溶媒溶液層(上層)と水溶液 層(下層)の 2層に分離する。該 (e— 2)の工程は、前記 (e—l)の工程で生じた (メタ) アクリル酸エステル系重合体を含有する有機溶媒溶液と水の混合液を一般に静置 すること〖こよって行われる。(e— 2)の工程では、前記 (e—l)の工程で生じた有機溶 媒溶液と水の混合液を数分〜 30分程度の短い時間静置するだけで、白濁した中間 層を形成することなぐ有機溶媒溶液層と水溶液層の 2層にはっきりと層分離する。 [0074] 工程 (e)の(e— 2)の工程を行う際の反応液と水の混合液の温度は、工程 (b)およ び工程 (c)を実施した際の温度と同じ温度であることが好ま 、。例えば、(e— 2)の 工程の後に、次の (e— 3)の工程で有機溶媒溶液を分取し、該有機溶媒溶液から有 機溶媒を留去して (メタ)アクリル酸エステル系重合体を取得する場合には、液温を 9 0°C以上に維持しながら工程 (c) (静置工程)を実施することが、(メタ)アクリル酸エス テル系重合体の取得時の熱効率などの点から有利である。また、該 (e— 2)の工程に 続ヽて、 (e - 3)の工程を行って (メタ)アクリル酸エステル系重合体を含有する有機 溶媒溶液を分取し、該分取した有機溶媒溶液に対して、この工程 (e)を更に繰り返し て行う場合も、更に繰り返す工程 (e)における水洗浄処理時の熱効率などを考慮して 、液温を 90°C以上に維持しながら、(e— 3)の工程を実施するのが有利である。また 、工程 (e)の (e— 3)の工程で分取した有機溶媒溶液をメタノールなどの貧溶媒中に 注いで (メタ)アクリル酸エステル系重合体を析出、沈殿させて取得する場合も、該 (e 3)の工程は液温を 90°C以上に維持しながら行うのが好ましい。
[0075] 前記した (e— 2)の工程において、(メタ)アクリル酸エステル系重合体を含有する有 機溶媒溶液と水の混合液は、(メタ)アクリル酸エステル系重合体を含有する有機溶 媒溶液よりなる上層と、アルミニウム成分やその他の金属成分などを含有する水溶液 よりなる下層の 2層に分離するので、工程 (e)の(e— 3)の工程で、(メタ)アクリル酸ェ ステル系重合体を含有する有機溶媒溶液と、アルミニウム成分やその他の金属成分 などを含有する水溶液を、それぞれ分けて取り出す (分取)。
有機溶媒溶液および水溶液のそれぞれの分取方法は特に制限されず、 2層に分 離した液の分取に当たって従来力 採用されているのと同様の方法により行うことが できる。
[0076] 工程 (e)の(e— 3)の工程で分取された (メタ)アクリル酸エステル系重合体を含有 する有機溶媒溶液から (メタ)アクリル酸エステル系重合体を取得する方法は特に制 限されず、例えば、(メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液を、 メタノールなどの (メタ)アクリル酸エステル系重合体を溶解しな ヽ有機溶媒 (貧溶媒) と混合して、(メタ)アクリル酸エステル系重合体を析出、沈殿させて取得する方法、( メタ)アクリル酸エステル系重合体を含有する有機溶媒溶液から有機溶媒を留去する 方法などにより行うことができる。
有機溶媒溶液カゝら取得された (メタ)アクリル酸エステル系重合体は、そのままで、ま たは必要に応じて水洗、乾燥などを施して、使用することができる。
また、工程 )の(e— 3)の工程で分取されたアルミニウム成分やその他の金属成 分などを含有する水溶液は、水溶液中に含まれる金属成分などの種類や量などに 応じて、必要に応じてそれらの成分を除去する浄化処理を施して、本発明の取得方 法に再利用したり、他の用途に再利用したり、廃棄したりすることができる。
[0077] 本発明では、上記した工程 (a)〜工程 (d)、または工程 (a)〜工程 (e)は、バッチ方 式で行ってもよいし、または連続方式で行ってもよい。また、上記した工程 (a)〜工程 (c)、工程 (a)と工程 (b)、工程 (b)と工程 (c)、または工程 (a)〜工程 (e)は、同じ容 器 (同じ槽)を使用して行うこともできる。更に、例えば、工程 (a)を第 1の装置 (容器) 、工程 (b)を第 2の装置 (混合装置)および工程 (c)を第 3の装置 (容器)を使用して行 つてもよいし、工程 (a)を第 1の装置 (容器)、工程 (b)を第 2の装置 (混合装置)、ェ 程 (c)を第 3の装置 (容器)、工程 (e)の (e—1)の工程を第 4の装置 (混合装置)、ェ 程 (e)の (e— 2)の工程を第 5の装置 (容器)を使用して行ってもょ 、。
製造設備の費用'規模や操作の容易性から、連続方式がより好ましい。連続方式 の場合の装置にっ 、ては特に限定されな 、が、工程 (b)の装置としてスタティックミキ サーゃ撹拌翼付き槽型容器を用いて工程 (a)で得られた液を連続的に通し、次にェ 程 (c)の装置としてデカンターを用いる「ミキサー ·セトラー」方式や、撹拌動力付き又 は撹拌動力なしの向流型の抽出槽ゃ抽出塔などを用いることができる。本発明では 、工程 (b)で最適条件を選ぶことが重要であり、かかる点から、操作の条件範囲が広 Vヽ撹拌翼付き槽型容器を用いることが好ま ヽ。
[0078] 本発明の (メタ)アクリル酸エステル系重合体の取得方法による場合は、アルミ-ゥ ム化合物、有機アルカリ金属化合物などの金属化合物に由来する金属不純物を高 度に除去することでき、その結果、得られる (メタ)アクリル酸エステル系重合体は、熱 安定性、優透明性などに優れ、高い品位を有する。(メタ)アクリル酸エステル系重合 体の透明性は、残存する金属成分などの不純物の影響を大きく受けるが、本発明の (メタ)アクリル酸エステル系重合体の取得方法により得られる (メタ)アクリル酸エステ ル系重合体は、不純物の含有量が少なぐ極めて高い透明性を有する。
[0079] 本発明の方法により得られる (メタ)アクリル酸エステル系重合体では、アルミニウム 化合物、アルカリ金属化合物、その他の金属化合物に由来する金属不純物の含有 量は限定されるものではないが、高い透明性を有するためには、アルミニウム化合物 に由来するアルミニウム成分の含有量は、(メタ)アクリル酸エステル系重合体の質量 に基づいて、アルミニウム元素量で 400ppm以下であることが好ましぐ 200ppm以 下であることがより好ましぐ lOOppm以下であることが更に好ましぐ 50ppm以下で あることが一層好ましい。本発明の方法による場合は、アルミニウム化合物に由来す るアルミニウム分成分の含有量が 50ppm以下の (メタ)アクリル酸エステル系重合体 をも円滑に得ることができる。
また、得られる (メタ)アクリル酸エステル系重合体が高 、熱安定性を有するために は、(メタ)アクリル酸エステル系重合体中に残存するリチウム化合物やカリウム化合 物などアルカリ金属化合物に由来するアルカリ金属成分の含有量は、(メタ)アクリル 酸エステル系重合体の質量に基づ 、て、アルカリ金属元素量で 30ppm以下である ことが好ましぐ lOppm以下であることがより好ましぐ 5ppm以下であることが更に好 ましぐ 2ppm以下であることが一層好ましい。本発明の方法による場合は、アルカリ 金属化合物に由来するアルカリ金属成分の含有量が 2ppm以下の (メタ)アクリル酸 エステル系重合体をも円滑に得ることができる。
[0080] 本発明で取得される (メタ)アクリル酸エステル系重合体は、アルミニウム化合物、ァ ルカリ金属化合物などの金属化合物に由来する金属成分 (金属不純物)の含量が極 めて少なぐ優れた透明性を有する。(メタ)アクリル酸エステル系重合体の透明性は 用途などに応じて設定することができるが、本発明による場合は、厚さ 3mmの成形体 にしたときのヘイズ値が 5%以下、更には 3%以下になる高純度の (メタ)アクリル酸ェ ステル系重合体をも円滑に得ることができる。
なお、本明細書でいう前記「ヘイズ値」は、 JIS K7136に準拠した、厚み 3mmの 成形体におけるヘイズ値であり、その詳細な測定方法は以下の実施例の項に記載 するとおりである。
有機アルミニウム化合物を用いた反応によって得られる、ジブロックまたはトリブロッ ク構造を有する (メタ)アクリル酸エステル系ブロック共重合体、特にメタクリル酸エス テル系重合体ブロック アクリル酸エステル系重合体ブロックよりなるジブロック共重 合体、メタクリル酸エステル系重合体ブロック アクリル酸エステル系重合体ブロック
—メタクリル酸エステル系重合体ブロックよりなるトリブロック共重合体では、厚さ 3mm の成形体にしたときのヘイズ値は従来一般に 10%以上であり、そのような従来の (メ タ)アクリル酸エステル系ブロック共重合体に比べて格段に高 、透明性を有する (メタ )アクリル酸エステル系ブロック共重合体力 本発明により提供される。
実施例
[0081] 以下に、本発明について実施例などにより具体的に説明するが、本発明は以下の 実施例に何ら限定されな ヽ。
以下の例にお 、て、取得した (メタ)アクリル酸エステル系重合体(トリブロック共重 合体またはジブロック共重合体)中のアルミニウム成分およびアルカリ金属成分 (リチ ゥム成分)の含有量の測定は、次のようにして行った。
[0082] [ (メタ)アクリル酸エステル系重合体中のアルミニウム成分の含有量の測定]
以下の実施例および比較例にぉ ヽて、分取して得られた (メタ)アクリル酸エステル 系重合体を約 5g採取して精秤し、容量 100mlのメスフラスコに入れた。これに濃硫 酸 10mlをカ卩え、 250〜300°Cの条件下で約 2時間処理 (湿式分解)した。次いでこ の溶液に濃硝酸 5mlをカ卩えて、 250〜300°Cの条件下で約 2時間処理 (湿式分解) する操作を、溶液の色が淡黄色ないし無色透明になるまで計 2回行った。さらに、こ の溶液に過塩素酸を 5mlカ卩えて、 200〜250°Cの条件下で約 2時間処理 (湿式分解 )した。その後、メスフラスコを室温まで冷却し、蒸留水を加えて、溶液の量を正確に 1 OOmlにメスアップした。
この溶液を試料として、 ICP発光分光分析装置(日本ジャーレルアッシュ株式会社 製「IRISZIRISAP」、アルゴンプラズマ使用)を用いて、アルミニウム成分およびァ ルカリ金属成分 (リチウム成分)の含有量を測定した (アルミニウム波長 = 396. 152η m、リチウム波長 = 610. 362nm) 0
[0083] [ (メタ)アクリル酸エステル系重合体のヘイズ値の測定」
JIS K7136に準拠して測定した。 具体的には、以下の実施例および比較例において最終的に得られた (メタ)アタリ ル酸エステル系重合体 (ブロック共重合体)を含む有機溶媒溶液の一部を分取して、 真空乾燥器にて 60°Cで 8時間乾燥して、揮発分を留去乾燥した後、それにより得ら れた (メタ)アクリル酸エステル系重合体 (ブロック共重合体)を用いて、温度 230°C、 圧力 8. 8MPaの条件下にプレス成形を行って、厚さ 3mmのシートを作製し、得られ たプレスシートについて、そのヘイズ値を、ヘイズメーター (スガ試験機株式会社製「 直読ヘーズコンピューター HGF—2DP」を使用して、温度 25°Cで測定した。
[0084] また、以下の実施例および比較例で製造した (メタ)アクリル酸エステル系重合体(ト リブロック共重合体またはジブロック共重合体)の数平均分子量は、テトラヒドロフラン を溶媒としたゲルパーミエーシヨンクロマトグラフィー(GPC)により、標準ポリスチレン 換算の値として測定した値である。
[0085] 《実施例 1》
(1) 内部雰囲気を窒素で置換した内容積 1Lの重合槽に、乾燥トルエン 460mlを入 れた後、室温(23°C)下に、イソブチルビス(2, 6—ジー tーブチルー 4ーメチルフエノ キシ)アルミニウム(有機アルミニウム化合物)のトルエン溶液 (濃度: 0. 6mol/L)を 10. 5ml加えた。この溶液を 0°Cに冷却し、そこに t—ブチルリチウム (有機リチウム化 合物)のシクロへキサン溶液 (濃度: 1. 3molZL)を 2. Oml加えて攪拌し、 10分後に メタクリル酸メチル (MMA) 19. 9mlを徐々に添カ卩しながら重合を開始させ、添カロ終 了後、 0°Cに保ちながら 2時間重合を行った。引き続き、重合槽内の温度を— 30°Cま で冷却し、これにアクリル酸 n—ブチル (nBA) 134mlを 30分間かけて添カ卩した。添 加終了後— 30°Cで 10分間攪拌し、次いで 0°Cに昇温し、これにメタクリル酸メチル( MMA)を 19. 9ml加え、この溶液を 0°Cで約 10分間攪拌した後、 25°Cに昇温し、同 温度に保ちながら 5時間重合を行った後、反応液に酢酸 (水分含量 0. 1質量%以下 ) 7. 2ml (重合反応に使用した有機アルミニウム化合および有機リチウム化合物の中 和に必要な量の 5. 6モル倍)を添加して、重合反応を停止させると共に、反応液中 に含まれるアルミニウム成分およびリチウム成分と酢酸の結合体を形成させた (これ により生成した反応液量 650ml)。
[0086] (2) 上記(1)で得られた反応液の少量(lml)を採取して溶媒を減圧下に留去し [2 67Pa (2torr)、 60°C、 24時間]、得られた重合体について GPC測定を行った結果、 ポリメタクリル酸メチル(PMMA) ポリアクリル酸ブチル(PnBA)—ポリメタクリル酸メ チル (PMMA)よりなるトリブロック共重合体であった。このトリブロック共重合体にお ける GPCによる第 1の PMMAの数平均分子量は 7600、 PnBAの数平均分子量は 5 1000、第 2の PMMAの数平均分子量は 7600であり、また各重合体ブロックの質量 比(PMMAZPnBAZPMMA)は 11. 5/77/11. 5であった。
また、得られた該トリブロック共重合体 (約 lOOmg)中のアルミニウム成分の含有量 を上記した方法で測定したところ、 1019ppmであつた。
[0087] (3) 上記(1)で得られたトリブロック共重合体(PMMA— PnBA— PMMAトリブロッ ク共重合体)を含有する酢酸添加後の反応液のうち 300mlを、プロペラ型の撹拌装 置を備えた加熱加圧型の容器 A (内容積 1L)に収容して 90°Cに加熱した。
(4) 次に、前記の容器 Aに、予め 90°Cに加熱しておいた蒸留水 300mlを導入して 、加熱加圧下で撹拌しながら、 10分間混合した (混合時のプロペラの回転数 700rp m、容器 A内の圧力 0. 4MPa)。この間、容器 A内の混合液の温度を 90°Cに維持し た。
(5) 次 、で撹拌を停止して容器 A内で混合液を静置させたところ (静置時の液温度 90°C)、撹拌を停止して 30分後に、該混合液は、有機溶媒溶液よりなる上層と水溶 液よりなる下層の 2層に、両層の間に中間層を形成することなぐはっきりと層分離し た。
[0088] (6) 上記 (5)で層分離した上層 (有機溶媒溶液層)から有機溶媒溶液を約 2ml分取 して、減圧下に乾燥することにより [267Pa (2torr)、 60°C、 24時間]、 PMMA— Pn BA— PMMAトリブロック共重合体約 0. 5gを得た。
(7) 上記(6)で得られた PMMA— PnBA— PMMAトリブロック共重合体中のアル ミニゥム成分の含有量を上記した方法で測定したところ、 377ppmであった [上記(2) で測定した PMMA— PnBA PMMAトリブロック共重合体中のアルミニウム成分の 含有量に基づくアルミニウム成分の除去率 63%]。
[0089] 《実施例 2〜6》
(1) 実施例 1の(3)および (4)において、加熱加圧型の容器に収容する反応液の 予熱温度、水の温度および容器内での混合時における混合液の温度を、 100°C (実 施例 2)、 110°C (実施例 3)、 130°C (実施例 4)、 140°C (実施例 5)、 150°C (実施例 6)に変えた以外は、実施例 1の(1)および(3)〜(6)と同じ操作を行った。
(2) それぞれの実施例で得られた PMMA— PnBA— PMMAトリブロック共重合体 中のアルミニウム成分の含有量を上記した方法で測定したところ、下記の表 1に示す とおりであった。
[0090] 《比較例 1および 2》
(1) 実施例 1の(3)および (4)において、加熱加圧型の容器に収容する反応液の 予熱温度、水の温度および容器内での混合時における混合液の温度を、 60°C (比 較例 1)または 80°C (比較例 2)に変えた以外は、実施例 1の(1)および(3)〜(6)と 同じ操作を行った。これらの比較例 1および 2では、反応液に水を混合して洗浄した 後に混合液を静置して層分離させたときに、撹拌を停止して 1時間静置しても有機溶 媒溶液層と水溶液層に完全には層分離しな力つた。し力も、比較例 1および比較例 2 の両方で、有機溶媒溶液よりなる上層と水溶液よりなる下層の間には白濁した中間 層が形成した。
(2) 上記(1)における上層(有機溶媒溶液層)から有機溶媒溶液を約 2ml分取して 、減圧下に乾燥することにより [267Pa (2torr)、 60°C、 24時間]、 PMMA- PnBA — PMMAトリブロック共重合体約 0. 5gを得た。それぞれの比較例で得られた PMM A - PnBA - PMMAトリブロック共重合体中のアルミニウム成分の含有量を上記し た方法で測定したところ、下記の表 1に示すとおりであった。
[0091] [表 1]
水洗浄条件 層分離状態 トリブロック共重合体 反応液の 水 の 混合液の 静陧時間 静置時間 A 1成分 温 度1) 温度2) 温 度3) (1 0分) (30分) 残存量 除去率
vp p m) (%) 実施例 1 90°C 9 0で 9 O ; 2曆 4) 2層 3 7 7 6 3 実施例 2 1 0 o*C 1 0 o l oot 2層 4) 2層4) 2 7 5 7 3 実施例 3 110で 11 o : 11 o 2層 4) 2層4' 265 74 実施例 4 1 30で 1 30*C 1 3 Ot 2層 4) 2層 5) 1 94 8 1 実施例 5 1 401C 1 40"C 1 O 2層 5) 2層5) 1 83 8 2 実施例 6 1 5 Οΐ; 1 50で 1 50で 2層5, 2層 5) 1 43 8 6 比較例 1 6 O : 60*C 60¾: 3層 7) 6 8 3 3 3 比較例 2 8 0°C 8 Ot: 80で 3層 7) 540 4 7
1) PMMA- P n BA- PMMAトリブロック共重合体を含有する反応液の温度
2)洗浄用の蒸留水の温度
3)反応液と蒸留水の混合液の温度
4) 有機溶媒溶液層 (若干白獨) 一水溶液層の 2層に層分離
5) 有機溶媒溶液層 (透明) —水溶液層の 2層に層分離
6)層分離せず
7)有機溶媒溶液層 (白濁) 一中間層 (白满) 一水溶液層の 3層に層分離
[0092] 上記の表 1の結果にみるように、実施例 1〜6では、(メタ)アクリル酸エステル系重 合体(PMMA— PnBA— PMMAトリブロック共重合体)を含有する反応液に酢酸を 添加した後、 90°C以上の温度で水を混合して洗浄し、次いで混合液を静置して、有 機溶媒溶液層と水溶液層に層分離させ、層分離した有機溶媒溶液を分取して、該有 機溶媒溶液から (メタ)アクリル酸エステル系重合体を取得したことにより、アルミ-ゥ ム成分の除去率が 63%以上と高い。特に、 130〜150°Cの温度で水を混合して洗 浄した場合は、アルミニウム成分の除去率が 80%以上の高純度の (メタ)アクリル酸 エステル系重合体(PMMA— PnBA— PMMAトリブロック共重合体)が得られて!/ヽ る。
[0093] それに対して、比較例 1および 2では、(メタ)アクリル酸エステル系重合体 (PMMA — PnBA— PMMAトリブロック共重合体)を含有する反応液に酢酸を添加した後に、 90°Cよりも低 、温度で水を混合して洗浄したことにより、洗浄後の混合液を静置した ときに、長時間にわたって静置しても有機溶媒溶液層と水溶液層の 2層に層分離せ ずに有機溶媒溶液層と水溶液層の間に白濁した中間層が発生した。しカゝも、分取し た有機溶媒溶液カゝら取得した (メタ)アクリル酸エステル系重合体 (PMMA— PnBA PMMAトリブロック共重合体)では、アルミニウム成分の除去率が実施例 1〜6に 比べて低く、実施例 1〜6で得られた PMMA— PnBA— PMMAトリブロック共重合 体に比べて純度が低い。
[0094] 《実施例 7》
(1) 内部雰囲気を窒素で置換した内容積 20Lの重合槽に、乾燥トルエン 6. 75Lを 入れた後、室温(23°C)下に、 n—ォクチルビス(2, 6 ジー tーブチルフエノキシ)ァ ルミ-ゥム(有機アルミニウム化合物)のトルエン溶液 (濃度 : 0. 6molZL)を 0. 13L 加えた。この溶液を 0°Cに冷却し、そこに t—ブチルリチウム (有機リチウム化合物)の シクロへキサン溶液 (濃度:1. 3molZL)を 23. 2mlカ卩えて攪拌し、 30分後にメタタリ ル酸メチル(MMA) 244mlを徐々に添カ卩しながら重合を開始させ、添加終了後、 0 °Cに保ちながら 2時間重合を行った。引き続き、重合槽内の温度を— 30°Cまで冷却 し、これにアクリル酸 n—ブチル(nBA) 1734mlを添カ卩した。添加終了後、 30°Cで 10分間攪拌し、反応液の温度を室温に戻して、酢酸 (水分含量 0. 1質量%以下) 14 4ml (重合反応に使用した有機アルミニウム化合物および有機リチウム化合物の中和 に必要な量の 9モル倍)を添加して、重合反応を停止させると共に、反応液中に含ま れるアルミニウム成分およびリチウム成分と酢酸の結合体を形成させた。
[0095] (2) 上記(1)で得られた反応液の少量(lml)を採取して減圧下に乾燥して [267P a (2torr)、 60°C、 24時間]、得られた重合体について GPC測定を行った結果、ポリ メタクリル酸メチル(PMMA) ポリアクリル酸ブチル(PnBA)よりなるジブロック共重 合体であった。このジブロック共重合体における GPCによる PMMAの数平均分子量 は 7600、 PnBAの数平均分子量は 51000であり、また各重合体ブロックの質量比( PMMA/PnBA)は 13/87であった。
また、得られたジブロック共重合体中のアルミニウム成分の含有量を上記した方法 で測定したところ、 1146ppmであった。
[0096] (3) 上記(1)で得られた、ジブロック共重合体(PMMA— PnBAジブロック共重合 体)を含有する酢酸添加後の反応液の 10Lを容器 Bに収容した。
(4) 容器 B内の反応液を、加熱装置 (熱交換器)を経て 100°Cに加熱して静的混合 器 (スーパースタティックミキサー) Ma (シンユー技研社製「S. SM」)に 5LZ分の供 給量で供給すると同時に、蒸留水を加熱装置 (熱交換器)を経て 90°Cに加熱して前 記静的混合器 Maに 5LZ分の供給量で供給して、該静的混合器 Maで反応液と水 を混合し (静的混合器 Maでの混合液の温度 90°C、滞留時間 0. 5秒)、次いで静的 混合器 Maから排出された混合液を加熱加圧型の容器 Cに導入して、該容器。内で 加熱加圧下 (温度 90°C、圧力 0. 4MPa)に静置した。
(5) 静置開始時点 [容器 B内に収容した反応液の全量(10L)が静的混合器 Maで 水と混合されてから加熱加圧の容器 C内に収容された時点]から 30分後に、容器 C 内の混合液は有機溶媒溶液よりなる上層と水溶液よりなる下層の 2層に、両層間に 中間層を形成することなぐはっきりと層分離した。
[0097] (6) 上記 (5)で層分離した上層 (有機溶媒溶液層)から有機溶媒溶液約 2mlを分取 して減圧下に乾燥することにより [267Pa (2torr)、 60°C、 24時間]、 PMMA— PnB Aジブロック共重合体約 0. 5gを得た。
(7) 上記(6)で得られた PMMA— PnBAジブロック共重合体中のアルミニウム成分 の含有量を上記した方法で測定したところ、 435ppmであった [上記(2)で測定した PMMA— PnBAジブロック共重合体中のアルミニウム成分の含有量に基づくアルミ ニゥム成分の除去率 62%]。
[0098] 《実施例 8》
(1) 実施例 1の(1)と同じ条件および同じ操作を採用して重合を行って、 PMMA— PnBA— PMMAトリブロック共重合体を含有する反応液を調製し、この反応液の温 度を室温に戻した後、酢酸 (水分含量 0. 1質量%以下) 7. 2ml (重合反応に使用し た有機アルミニウム化合物および有機リチウム化合物の合計モル数の 3モル倍)を添 加して、重合反応を停止させると共に、反応液中に含まれるアルミニウム成分および リチウム成分と酢酸の結合体を形成させた(生成した反応液の総量 617ml)。
(2) 上記(1)で得られた、トリブロック共重合体(PMMA— PnBA— PMMAトリブロ ック共重合体)を含有する酢酸添加後の反応液の約 2分の 1 (300ml)を、実施例 1で 使用したのと同じプロペラ型の撹拌装置を備えた加熱加圧型の容器 A内に収容して 110°Cに加熱した。 [0099] (3) 次に、前記の容器 Aに、予め 110°Cに加熱しておいた蒸留水 300mlを導入し て、加熱加圧下で撹拌しながら、 10分間混合した (混合時のプロペラの回転数 700r pm、容器 A内の圧力 0. 4MPa)。この間、容器 A内の混合液の温度を 110°Cに維持 した。
(4) 次 、で撹拌を停止して容器 A内で混合液を静置させたところ (静置時の液温度 110°C)、撹拌を停止して 30分後に、有機溶媒溶液よりなる上層と水溶液よりなる下 層の 2層に、両層の間に中間層を形成することなぐはっきりと層分離した。
(5) 上記 (4)で層分離した下層の水溶液を、容器 Aの底部力も排出させて、容器 A 内に有機溶媒溶液のみを残留させた後、容器 A内に残留させて有機溶媒溶液を 11 0°Cに加熱した。
[0100] (6) 110°Cに加熱した有機溶媒溶液を収容した前記の容器 Aに、予め 110°Cにカロ 熱しておいた蒸留水 300mlを導入して、加熱加圧下で撹拌しながら、 10分間混合し た(混合時のプロペラの回転数 700rpm、容器 A内の圧力 0. 4MPa)。この間、容器 A内の混合液の温度を 110°Cに維持した。
(7) 次 、で撹拌を停止して容器 A内で混合液を静置させたところ (静置時の液温度 110°C)、撹拌を停止して 30分後に、有機溶媒溶液よりなる上層と水溶液よりなる下 層の 2層に、両層の間に中間層を形成することなぐはっきりと層分離した。
(8) 上記 (7)で層分離した上層 (有機溶媒溶液層)から有機溶媒溶液約 2mlを分取 して減圧下に乾燥することで [267Pa (2torr)、 60°C、 24時間]、 PMMA— PnBA — PMMAトリブロック共重合体約 0. 5を得た。
(9) 上記(8)で得られた PMMA— PnBA— PMMAトリブロック共重合体中のアル ミニゥム成分の含有量を上記した方法で測定したところ、 69ppmであった [実施例 1 の(2)で測定した PMMA— PnBA— PMMAトリブロック共重合体中のアルミニウム 成分の含有量に基づくアルミニウム成分の除去率 93%]。
[0101] 《比較例 3》
(1) 実施例 8の(2)、(3)、(5)および (6)において加熱加圧型の容器 A内に収容し た反応液、有機溶媒溶液、蒸留水及び混合液の温度を 80°Cにし、また実施例 8の( 4)及び(7)における静置温度を 75°Cに変更した以外は、実施例 8の(1)〜(7)と同 じ操作を行って、 2回の水洗浄工程を経た、有機溶媒溶液層と水溶液層との層分離 した液を得た。
この比較例 3では、反応液に水を混合して第 1回目の洗浄処理を行った後に反応 液と水の混合液を静置して層分離させたときに、撹拌を停止して 1時間静置しても有 機溶媒溶液層と水溶液層の 2層に完全に層分離せず、有機溶媒溶液よりなる上層と 水溶液よりなる下層の間には白濁した中間層が形成した。
また、この比較例 3では、有機溶媒溶液層の上澄み液を分取して、それに 80°Cで 蒸留水を混合して第 2回目の洗浄処理を行って生じた混合液を静置したときにも完 全には層分離せず [実施例 8の(7)に相当する操作]、有機溶媒溶液よりなる上層と 水溶液よりなる下層の間に前記よりも厚みの小さ ヽ白濁した中間層が形成された。
(2) 上記(1)の上層 (有機溶媒溶液層)カゝら有機溶媒溶液約 2mlを分取して、減圧 下に乾燥することにより [267Pa (2torr)、 60°C、 24時間]、 PMMA— PnBA— PM MAトリブロック共重合体約 0. 5gを得た。
(3) 上記(2)で得られた PMMA— PnBA— PMMAトリブロック共重合体中のアル ミニゥム成分の含有量を上記した方法で測定したところ、 321ppmであり [実施例 1の (2)で測定した PMMA— PnBA— PMMAトリブロック共重合体中のアルミニウム成 分の含有量に基づくアルミニウム成分の除去率 72%]、実施例 8に比べて、アルミ- ゥム成分の残存量が多 、ものであった。
《実施例 9》
(1) 内部雰囲気を窒素で置換した内容積 1Lの重合槽に、乾燥トルエン 1700mlを 入れた後、室温(23°C)下に、イソブチルビス(2, 6—ジー tーブチルー 4ーメチルフ エノキシ)アルミニウム (有機アルミニウム化合物)のトルエン溶液 (濃度: 0. 6mol/L )を 36mlおよび N, N, Ν' , Ν" , Ν,,一ペンタメチノレジェチレントリアミンを 3. 6ml 加えた。この溶液を 23°Cに冷却し、そこに t—ブチルリチウム (有機リチウム化合物) のシクロへキサン溶液 (濃度:1. 3molZL)を 7ml加えて攪拌し、そこにメタクリル酸メ チル (MMA) 74mlを徐々に添カ卩しながら重合を開始させ、添加終了後、 30°Cに保 ちながら 2時間重合を行った。引き続き、重合槽内の温度を— 30°Cまで冷却し、これ にアクリル酸 n—ブチル (nBA) 270mlを 60分間かけて添カ卩した。添加終了後、速や 力にメタクリル酸メチル (MMA)を 194mlカ卩え、この溶液を一 30°Cで約 5分間攪拌し た後、 20°Cに昇温し、同温度に保ちながら 12時間重合を行った。
(2) 上記(1)で得られた反応液の少量(1ml)を採取して溶媒を減圧下に留去し [2 67Pa (2torr)、 60°C、 24時間]、得られた重合体について GPC測定を行った結果、 ポリメタクリル酸メチル(PMMA)—ポリアクリル酸ブチル(PnBA)—ポリメタクリル酸メ チル (PMMA)よりなるトリブロック共重合体であった。このトリブロック共重合体にお ける GPCによる第 1の PMMAの数平均分子量は 8500、 PnBAの数平均分子量は 3 1000、第 2の PMMAの数平均分子量は 15000であり、また各重合体ブロックの質 量比(PMMAZPnBAZPMMA)は 14Z50Z36であった。
また、上記(1)で得られたトリブロック共重合体 (約 lOOmg)中のアルミニウム成分 およびリチウム成分の含有量を上記した方法で測定したところ、アルミニウム成分 (ァ ルミ-ゥム元素量)は 1030ppmであり、リチウム成分(リチウム元素量)は l lOppmで めつに。
[0103] (3) 上記(1)で得られた反応液に、酢酸 (水分含量 0. 1質量%以下)を 0. 9質量% の量でカ卩えた。加えた酢酸の量は、反応液に含まれるアルミニウム成分、リチウム成 分および N, N, Ν' , N" , Ν,,一ペンタメチノレジェチレントリアミンを中和するのに 必要な量の 2. 5モル倍であった。
(4) 上記(3)で得られたトリブロック共重合体(PMMA— PnBA— PMMAトリブロッ ク共重合体)を含有する酢酸添加後の反応液のうち 300mlを、プロペラ型の撹拌装 置を備えた加熱加圧型の容器 A (内容積 1L)に収容して 115°Cに加熱した。
(5) 次に、前記の容器 Aに、予め 115°Cに加熱しておいた蒸留水 300mlを導入し て、加熱加圧下で撹拌しながら 60分間混合した (混合時の撹拌動力 100wZm3、容 器 A内の圧力 0. 4MPa)。この間、容器 A内の混合液の温度を 115°Cに維持した。
(6) 次 、で撹拌を停止して容器 A内で混合液を静置させたところ (静置時の液温度 115°C)、撹拌を停止して 30分後に、該混合液は、有機溶媒溶液よりなる上層と水溶 液よりなる下層の 2層に、両層の間に中間層を形成することなぐはっきりと層分離し た。
[0104] (7) 上記 (6)で層分離した上層 (有機溶媒溶液層)を分離'回収して、上記 (4)〜( 6)と同じ操作を同じ条件(同じ温度、撹拌動力、同じ容器内圧力、撹拌時間)でもう 1 回繰り返した (洗浄回数の合計 2回)。
(8) 上記 (7)の 2回目の洗浄工程後に、有機溶媒溶液よりなる上層と水溶液よりな る下層の 2層に中間層を形成することなく層分離した上層 (有機溶媒溶液層)から有 機溶媒溶液を減圧下に乾燥することにより [267Pa (2torr)、 60°C、 24時間]、 PM MA— PnBA— PMMAトリブロック共重合体を得た。
(9) 上記(8)で得られた PMMA— PnBA— PMMAトリブロック共重合体中のアル ミニゥム成分およびリチウム成分の含有量を上記した方法で測定したところ、アルミ- ゥム成分の含有量は 65ppm [上記(2)で測定した PMMA— PnBA— PMMAトリブ ロック共重合体中のアルミニウム成分の含有量に基づくアルミニウム成分の除去率 9 3. 7%]、リチウム成分の含有量は 1. 8ppm [上記(2)で測定した PMMA— PnBA — PMMAトリブロック共重合体中のリチウム成分の含有量に基づくリチウム成分の除 去率 98. 4%]であった。
また、上記(8)で得られた PMMA— PnBA— PMMAトリブロック共重合体を用い て上記した方法で厚さ 3mmのシートを作製し、そのヘイズ値を上記した方法で測定 したところ、 4%であった。
《実施例 10》
(1) 実施例 9の(3)で得られた酢酸添加後の反応液のうちの 300mlを用い、実施例 9の(4)〜(8)にお 、て反応液 (被洗浄液)の予熱温度および洗浄時の水の温度を 1 20°Cに変え、合計洗浄回数を 4回に変えて、実施例 9の (4)〜(8)と同様の操作を 行った。
(2) 上記(1)において、 4回目の洗浄工程後に、有機溶媒溶液よりなる上層と水溶 液よりなる下層の 2層に中間層を形成することなく層分離した上層(有機溶媒溶液層 )から有機溶媒溶液を減圧下に乾燥することにより [267Pa (2torr)、 60°C、 24時間 ]、 PMMA— PnBA— PMMAトリブロック共重合体を得た。
(3) 上記(2)で得られた PMMA— PnBA— PMMAトリブロック共重合体中のアル ミニゥム成分およびリチウム成分の含有量を上記した方法で測定したところ、アルミ- ゥム成分の含有量は 9ppm [実施例 9の(2)で測定した PMMA— PnBA— PMMAト リブロック共重合体中のアルミニウム成分の含有量に基づくアルミニウム成分の除去 率 99. 1%]、リチウム成分の含有量は 0. 6ppm [実施例 9の(2)で測定した PMMA PnBA— PMMAトリブロック共重合体中のリチウム成分の含有量に基づくリチウム 成分の除去率 99. 5%]であった。
また、上記(8)で得られた PMMA— PnBA— PMMAトリブロック共重合体を用い て上記した方法で厚さ 3mmのシートを作製し、そのヘイズ値を上記した方法で測定 したところ、 1%であった。
《実施例 11》
(1) 使用した原料のスケールが異なる以外は、実施例 9の(1)と同じ操作を行って、 PMMA— PnBA PMMAトリブロック共重合体(第 1の PMMAの数平均分子量 = 8300、 PnBAの数平均分子量 = 32000、第 2の PMMAの数平均分子量 = 15000 、 PMMAZPnBAZPMMAの質量比 = 14/50/36)を含有する反応液を得た( トリブロック共重合体中のアルミニウム成分の含有量 = 1030ppm、リチウム成分の含 有量 = 110ppm)。
(2) 上記(1)で得られた反応液に、酢酸 (水分含量 0. 1質量%以下)を 0. 7質量% の量で加えた (加えた酢酸量 =反応液中のアルミニウム成分とリチウム成分の合計モ ル数の 4. 0倍))。
(3) 上記(2)で得られた酢酸添加後の反応液 10Lを容器 Bに収容した。
(4) 混合器 C1 (プロペラ型の撹拌装置を備えた加熱加圧型の容器で内容量は 1L) 、静置器 D1 (加熱加圧型の容器で内容量は 1L)、混合器 C2 (プロペラ型の撹拌装 置を備えた加熱加圧型の容器で内容量は 500ml)、静置器 D2 (加熱加圧型の容器 で内容量は 1L)を直列に配置した。
(5) 蒸留水を加熱装置 (熱交翻)を経て 140°Cに加熱して混合器 C2に 600mlZ 時間の供給量で供給して、混合器 C2内の液温度を 140°Cに保ち混合器 C2内の液 を静置器 D2に 600mlZ時間の供給量で供給した。
(6) 静置器 D2の下部から内液を 600mlZ時間の送液量で混合器 C1に供給し、同 時に、容器 B内の反応液を、加熱装置 (熱交換器)を経て 140°Cに加熱して、混合器 C1に 600mlZ時間の供給量で供給し、該混合器 C1で反応液と静置器 D2下部から 供給される水とを混合し (混合器 CIでの液温度は 140°C)、次いで混合器 C1の液量 を一定に保つようにして混合液を静置器 D1に導入して、該静置器 D1内で加熱加圧 下(温度 140°C、圧力 0. 6MPa)に静置した。
(7) 該静置器 D1にて 2層に分離した下層液 (排水)を 600mlZ時間の送液量で払 出し、かつ液総量を一定に保つようにして (滞留時間焼く 40分)、上層液(1回洗浄後 の反応液)を 600mlZ時間の送液量で混合器 C2に導入した。
(8) 混合器 C2で、静置器 D1上層から供給された液(1回洗浄後の反応液)と、予め 供給されている 140°Cに加熱された蒸留水とを混合し (混合器 C2での液温度は 140 °C)、次いで混合器 C2内の液量を一定に保つようにして混合液を静置器 D2に導入 して、該静置器 D2内で加熱加圧下(温度 140°C、圧力 0. 6MPa)に静置した。
(9) 該静置器 D2にて 2層に分離した下層液(1回目の洗浄用水として再利用)は、 引き続き、 600mlZ時間の送液量で混合器 C1に供給し、該静置器 D2内の液総量 を一定に保つようにしながら (滞留時間約 40分)、上層液 (2回洗浄後の反応液)を 6 OOmlZ時間の送液量で、冷却器 (熱交換器)で冷却しながら回収した。
(10) 上記の連続的脱触操作を約 8時間実施した後、回収液をサンプリングし、有 機溶媒溶液を減圧下に乾燥することにより [267Pa (2torr)、 60°C、 24時間]、 PM MA— PnBA— PMMAトリブロック共重合体を得た。
(11) 上記( 10)で得られた PMMA— PnBA PMMAトリブロック共重合体中のァ ルミ-ゥム成分およびリチウム成分の含有量を上記した方法で測定したところ、アルミ
-ゥム成分の含有量は 8ppm [上記(1)で得られた PMMA— PnBA— PMMAトリブ ロック共重合体中のアルミニウム成分の含有量に基づくアルミニウム成分の除去率 9 9. 2%]、リチウム成分の含有量は 0. 2ppm [上記(1)で測定した PMMA— PnBA — PMMAトリブロック共重合体中のリチウム成分の含有量に基づくリチウム成分の除 去率 99. 8%]であった。
また、上記(10)で得られた PMMA— PnBA— PMMAトリブロック共重合体を用 ヽ て上記した方法で厚さ 3mmのシートを作製し、そのヘイズ値を上記した方法で測定 したところ、 2%であった。
産業上の利用可能性 本発明による場合は、(メタ)アクリル酸エステル系単量体を金属化合物 (特に有機 アルカリ金属化合物からなる重合開始剤および有機アルミニウム化合物)の存在下 で重合した (メタ)アクリル酸エステル系重合体を含む反応液から、金属成分よりなる 不純物の残存量の少ない、高純度で、耐熱性、透明性などの特性に優れる高品質 の (メタ)アクリル酸エステル系重合体を簡単な操作で、円滑に、効率よく取得すること ができるので、工業的に有用である。

Claims

請求の範囲
[1] (メタ)アクリル酸エステル系重合体を含有する反応液から (メタ)アクリル酸エステル 系重合体を取得する方法であって、
(a) (メタ)アクリル酸エステルを主体とする単量体を水不溶性の有機溶媒中で金属化 合物の存在下に重合した (メタ)アクリル酸エステル系重合体を含有する反応液に、 酸を添加する工程;
(b)工程 (a)で酸を添加した反応液に、 90°C以上の温度で、水を混合して反応液を 洗浄する工程;
(c)工程 (b)で生じた反応液と水の混合液を、有機溶媒溶液層と水溶液層に層分離 させる工程;および、
(d)層分離した有機溶媒溶液および水溶液のそれぞれを分取する工程; を有し、工程 (d)で分取した有機溶媒溶液から、(メタ)アクリル酸エステル系重合体 を取得することを特徴とする、反応液からの (メタ)アクリル酸エステル系重合体の取 得方法。
[2] (メタ)アクリル酸エステル系重合体を含有する反応液から (メタ)アクリル酸エステル 系重合体を取得する方法であって、
(a) (メタ)アクリル酸エステルを主体とする単量体を水不溶性の有機溶媒中で金属化 合物の存在下に重合した (メタ)アクリル酸エステル系重合体を含有する反応液に、 酸を添加する工程;
(b)工程 (a)で酸を添加した反応液に、 90°C以上の温度で、水を混合して反応液を 洗浄する工程;
(c)工程 (b)で生じた反応液と水の混合液を、有機溶媒溶液層と水溶液層に層分離 させる工程;および、
(d)層分離した有機溶媒溶液および水溶液のそれぞれを分取する工程; を有し、前記の工程 (d)の後に、
(e) (e— 1)分取した有機溶媒溶液に、 90°C以上の温度で、水を混合して有機溶媒 溶液を洗浄し、(e— 2)前記洗浄により生じた有機溶媒溶液と水の混合液を有機溶 媒溶液層と水溶液層に層分離させ、次!ヽで (e— 3)層分離した有機溶媒溶液および 水溶液のそれぞれを分取することからなる一連の工程;
を更に 1回以上行い、最終段階で分取した有機溶媒溶液力も (メタ)アクリル酸エステ ル系重合体を取得することを特徴とする、反応液からの (メタ)アクリル酸エステル系 重合体の取得方法。
[3] 金属化合物が、有機アルカリ金属化合物からなる重合開始剤および有機アルミ二 ゥム化合物である請求項 1または 2に記載の (メタ)アクリル酸エステル系重合体の取 得方法。
[4] 工程 (a)において、反応液中に含まれる金属化合物由来の金属成分を酸と接触さ せる請求項 1〜3のいずれ力 1項に記載の(メタ)アクリル酸エステル系重合体の取得 方法。
[5] 工程 (a)で添加する酸が、水分含量が 20質量%以下のカルボン酸である請求項 1 〜4の 、ずれか 1項に記載の (メタ)アクリル酸エステル系重合体の取得方法。
[6] 水不溶性の有機溶媒が、炭化水素である請求項 1〜5のいずれか 1項に記載の (メ タ)アクリル酸エステル系重合体の取得方法。
[7] 工程 (b)、および工程 (e)の(e— 1)の工程を、 90〜180°Cの温度で行う請求項 1 〜6の 、ずれか 1項に記載の (メタ)アクリル酸エステル系重合体の取得方法。
[8] 工程 (b)、および工程 (e)の (e— 1)の工程を、反応液または分取した有機溶媒溶 液 1容量部に対して、水を 0. 1〜10容量部の割合で混合して行う請求項 1〜7のい ずれか 1項に記載の (メタ)アクリル酸エステル系重合体の取得方法。
[9] 有機アルミニウム化合物が、下記の一般式 (I);
AIR'R'R3 (I)
(式中、
Figure imgf000051_0001
R2および R3はそれぞれ独立して置換基を有していてもよいアルキル基 、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいァリール基 、置換基を有していてもよいァラルキル基、置換基を有していてもよいアルコキシル 基、置換基を有していてもよいァリールォキシ基または N, N—二置換アミノ基である 力 或いは R1が前記 、ずれかの基で且つ R2と R3が一緒になつて置換基を有して!/、て もよぃァリーレンジォキシ基を形成している。 )
で表される有機アルミニウム化合物である請求項 3〜8の 、ずれか 1項に記載の (メタ )アクリル酸エステル系重合体の取得方法。
[10] (メタ)アクリル酸エステル系重合体力 ポリメタクリル酸エステル、メタクリル酸エステ ル系重合体ブロック アクリル酸エステル系重合体ブロックよりなるジブロック共重合 体であるか、またはメタクリル酸エステル系重合体ブロック アクリル酸エステル系重 合体ブロックーメタクリル酸エステル系重合体ブロックよりなるトリブロック共重合体で ある請求項 1〜9のいずれ力 1項に記載の(メタ)アクリル酸エステル系重合体の取得 方法。
[11] (メタ)アクリル酸エステル系重合体を含有する反応液から (メタ)アクリル酸エステル 系重合体を取得する前記一連の工程を連続プロセスで行う、請求項 1〜10のいずれ 力 1項に記載の (メタ)アクリル酸エステル系重合体の取得方法。
[12] 請求項 1〜: L 1のいずれ力 1項に記載の取得方法により得られる、厚さ 3mmの成形 体にしたときのヘイズ値が 5%以下である、(メタ)アクリル酸エステル系重合体。
PCT/JP2006/314460 2005-07-22 2006-07-21 反応液からの(メタ)アクリル酸エステル系重合体の取得方法 WO2007011017A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/996,426 US8119749B2 (en) 2005-07-22 2006-07-21 Method of taking (meth)acrylic ester polymer out of liquid reaction mixture
EP06768338A EP1916262B1 (en) 2005-07-22 2006-07-21 Method of taking (meth)acrylic ester polymer out of liquid reaction mixture
JP2006529392A JP5225583B2 (ja) 2005-07-22 2006-07-21 反応液からの(メタ)アクリル酸エステル系重合体の取得方法
CN2006800267548A CN101238155B (zh) 2005-07-22 2006-07-21 从反应液中获取(甲基)丙烯酸酯系聚合物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005212245 2005-07-22
JP2005-212245 2005-07-22

Publications (1)

Publication Number Publication Date
WO2007011017A1 true WO2007011017A1 (ja) 2007-01-25

Family

ID=37668888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314460 WO2007011017A1 (ja) 2005-07-22 2006-07-21 反応液からの(メタ)アクリル酸エステル系重合体の取得方法

Country Status (6)

Country Link
US (1) US8119749B2 (ja)
EP (1) EP1916262B1 (ja)
JP (1) JP5225583B2 (ja)
KR (1) KR100969834B1 (ja)
CN (1) CN101238155B (ja)
WO (1) WO2007011017A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113444A (ja) * 2013-12-13 2015-06-22 東邦化学工業株式会社 ブロック共重合体の製造方法
JP2017213882A (ja) * 2016-05-30 2017-12-07 住友化学株式会社 樹脂積層体の製造方法
JP2017213883A (ja) * 2016-05-30 2017-12-07 住友化学株式会社 樹脂積層体の製造方法
JP2020007416A (ja) * 2018-07-04 2020-01-16 株式会社クラレ メタクリル樹脂製レンズ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132831B2 (ja) * 2012-03-22 2017-05-24 株式会社クラレ (メタ)アクリル酸エステル系共重合体の製造方法
WO2017208885A1 (ja) * 2016-05-31 2017-12-07 住友化学株式会社 偏光板付き樹脂積層体及びそれを含む表示装置
TWI750324B (zh) * 2017-02-22 2021-12-21 日商可樂麗股份有限公司 甲基丙烯酸樹脂組成物及其用途
JP2018178134A (ja) * 2018-08-27 2018-11-15 株式会社クラレ アニオン重合方法および重合体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108003A (ja) * 1986-10-24 1988-05-12 Nippon Steel Chem Co Ltd 重合体の洗浄方法
JPH0632814A (ja) * 1992-07-21 1994-02-08 Toshiba Corp 電子部品用樹脂中の不純物除去方法
JPH07333894A (ja) * 1994-06-07 1995-12-22 Mitsubishi Chem Corp トナー用樹脂の製造方法
JPH08253527A (ja) * 1995-03-17 1996-10-01 Mitsubishi Rayon Co Ltd メタクリル樹脂の精製法
JP2000044631A (ja) * 1998-05-25 2000-02-15 Kuraray Co Ltd アクリル酸エステル重合体の製造方法
JP2002097219A (ja) * 2000-09-21 2002-04-02 Sumitomo Chem Co Ltd 金属含量の低減されたポリ(メタ)アクリレート類の製造方法
JP2002356509A (ja) * 2001-05-30 2002-12-13 Asahi Kasei Corp 重合体の脱灰方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296172A (en) * 1963-02-28 1967-01-03 Du Pont Preparing aqueous polymer dispersions in presence of polar liquids
JPS60152438A (ja) * 1984-01-21 1985-08-10 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸の精製方法
EP0367577B1 (en) * 1988-10-31 1994-01-05 Japan Synthetic Rubber Co., Ltd. Novel ester group-containing (meth) acrylic acid ester, novel (co)polymer thereof, composition comprising the (co) polymer and composition comprising the ester group- containing (meth) acrylic acid ester
IT1241155B (it) * 1990-05-18 1993-12-29 Vedril Procedimento per la produzione di polimeri acrilici in massa continua
JPH0757766A (ja) 1993-08-05 1995-03-03 Nippon Muki Co Ltd 鉛蓄電池
FR2720749B1 (fr) 1994-06-06 1996-07-19 Atochem Elf Sa Procédé de fabrication d'un poly(méthacrylate de méthyle) à teneur élevée en triades syndiotactiques.
JP4573967B2 (ja) 1999-08-24 2010-11-04 株式会社クラレ アニオン重合方法および該重合方法による重合体の製造方法
JP4549508B2 (ja) 1999-09-20 2010-09-22 株式会社クラレ メタクリル酸エステル又はアクリル酸エステルの重合方法
CA2318720C (en) * 1999-09-20 2008-10-14 Kuraray Co., Ltd. Process for polymerizing a methacrylic ester or an acrylic ester
WO2002085980A1 (en) * 2001-04-20 2002-10-31 Plaskolite, Inc. High heat distortion temperature methacrylate polymer blends

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108003A (ja) * 1986-10-24 1988-05-12 Nippon Steel Chem Co Ltd 重合体の洗浄方法
JPH0632814A (ja) * 1992-07-21 1994-02-08 Toshiba Corp 電子部品用樹脂中の不純物除去方法
JPH07333894A (ja) * 1994-06-07 1995-12-22 Mitsubishi Chem Corp トナー用樹脂の製造方法
JPH08253527A (ja) * 1995-03-17 1996-10-01 Mitsubishi Rayon Co Ltd メタクリル樹脂の精製法
JP2000044631A (ja) * 1998-05-25 2000-02-15 Kuraray Co Ltd アクリル酸エステル重合体の製造方法
JP2002097219A (ja) * 2000-09-21 2002-04-02 Sumitomo Chem Co Ltd 金属含量の低減されたポリ(メタ)アクリレート類の製造方法
JP2002356509A (ja) * 2001-05-30 2002-12-13 Asahi Kasei Corp 重合体の脱灰方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1916262A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113444A (ja) * 2013-12-13 2015-06-22 東邦化学工業株式会社 ブロック共重合体の製造方法
JP2017213882A (ja) * 2016-05-30 2017-12-07 住友化学株式会社 樹脂積層体の製造方法
JP2017213883A (ja) * 2016-05-30 2017-12-07 住友化学株式会社 樹脂積層体の製造方法
KR20170135720A (ko) * 2016-05-30 2017-12-08 스미또모 가가꾸 가부시키가이샤 수지 적층체의 제조 방법
KR101948422B1 (ko) 2016-05-30 2019-02-14 스미또모 가가꾸 가부시키가이샤 수지 적층체의 제조 방법
JP2019043144A (ja) * 2016-05-30 2019-03-22 住友化学株式会社 樹脂積層体の製造方法
KR102366690B1 (ko) * 2016-05-30 2022-02-23 스미또모 가가꾸 가부시키가이샤 수지 적층체의 제조 방법
JP2020007416A (ja) * 2018-07-04 2020-01-16 株式会社クラレ メタクリル樹脂製レンズ
JP7093246B2 (ja) 2018-07-04 2022-06-29 株式会社クラレ メタクリル樹脂製レンズ

Also Published As

Publication number Publication date
KR20080026217A (ko) 2008-03-24
JP5225583B2 (ja) 2013-07-03
US8119749B2 (en) 2012-02-21
EP1916262B1 (en) 2012-02-15
JPWO2007011017A1 (ja) 2009-02-05
EP1916262A4 (en) 2009-07-29
CN101238155B (zh) 2011-05-04
EP1916262A1 (en) 2008-04-30
KR100969834B1 (ko) 2010-07-13
CN101238155A (zh) 2008-08-06
US20090118450A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2007011017A1 (ja) 反応液からの(メタ)アクリル酸エステル系重合体の取得方法
WO2004081062A1 (ja) 変性ポリオレフィン溶液の製造方法
JP4884968B2 (ja) (メタ)アクリル酸エステル重合体または共重合体の連続的製造方法
KR20140041860A (ko) 브로민화 부틸 고무의 제조 방법
CN1096792A (zh) 制备低分子量聚合物的方法
CN1309674A (zh) 共轭二烯采用稀土催化剂在乙烯基芳族溶剂存在下的聚合方法
CN106459272B (zh) 聚乙烯基膦酸二甲酯及聚乙烯基膦酸的制备方法
CN102199236A (zh) 高含量顺-1,4-聚异戊二烯的合成方法
JP5496909B2 (ja) 順次アニオン/ラジカル重合することにより耐衝撃性ビニル芳香族(コ)ポリマーを製造するための半連続統合プロセス
CN106188400B (zh) 一种苯乙烯系多元共聚高分子材料的制备工艺
CN104245752A (zh) 聚合物的制造方法
JP2007523977A (ja) 耐衝撃性ポリスチレンを製造するための改良された方法
WO2015174485A1 (ja) クロス共重合体とその製造方法
CN1350560A (zh) 采用橡胶溶液生产热塑性模塑组合物的方法
JP2016145268A (ja) 重合体の製造方法
JP3103463B2 (ja) 反応性重合体
TWI285212B (en) Liquid rubber composition and its preparation process and uses
JP2750145B2 (ja) ビニル系重合体の製造方法
JP2862868B2 (ja) (メタ)アクリル系モノマーのアニオン(共)重合のためのアミノアルコラート配位子含有開始系およびその使用方法
CN1309672A (zh) 采用钴化合物基催化剂在乙烯基芳族溶剂存在下聚合共轭二烯的方法
CN1150215C (zh) 杂配体碱土金属化合物及立体选择性的阴离子聚合工艺
JP7075583B2 (ja) ポリビニルホスホン酸の製造方法
KR100834962B1 (ko) 커플링된 비닐방향족-공역디엔 랜덤 공중합체의 제조방법
JP3558763B2 (ja) グラフト重合体を製造する方法
EP1645573A1 (en) Process for producing modified polyolefin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026754.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006529392

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11996426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006768338

Country of ref document: EP