WO2007010979A1 - 液体麹の製造方法 - Google Patents

液体麹の製造方法 Download PDF

Info

Publication number
WO2007010979A1
WO2007010979A1 PCT/JP2006/314372 JP2006314372W WO2007010979A1 WO 2007010979 A1 WO2007010979 A1 WO 2007010979A1 JP 2006314372 W JP2006314372 W JP 2006314372W WO 2007010979 A1 WO2007010979 A1 WO 2007010979A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
producing
enzyme
koji
liquid medium
Prior art date
Application number
PCT/JP2006/314372
Other languages
English (en)
French (fr)
Inventor
Toshikazu Sugimoto
Hiroshi Shoji
Original Assignee
Asahi Breweries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries, Ltd. filed Critical Asahi Breweries, Ltd.
Priority to AU2006270826A priority Critical patent/AU2006270826C1/en
Priority to CA002614457A priority patent/CA2614457A1/en
Priority to US11/995,942 priority patent/US20100120119A1/en
Priority to EP06781332.9A priority patent/EP1908818B1/en
Priority to CN2006800239961A priority patent/CN101218338B/zh
Priority to KR1020087001649A priority patent/KR101394009B1/ko
Priority to BRPI0613646-0A priority patent/BRPI0613646A2/pt
Priority to ES06781332.9T priority patent/ES2521623T3/es
Priority to DK06781332.9T priority patent/DK1908818T3/da
Publication of WO2007010979A1 publication Critical patent/WO2007010979A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/50Soya sauce
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/104Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12FRECOVERY OF BY-PRODUCTS OF FERMENTED SOLUTIONS; DENATURED ALCOHOL; PREPARATION THEREOF
    • C12F3/00Recovery of by-products
    • C12F3/06Recovery of by-products from beer and wine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source
    • C12N9/242Fungal source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi

Definitions

  • the present invention relates to a method for producing a liquid koji, and more particularly to a method for producing a liquid koji having enhanced enzyme activity.
  • the koji used in the production of alcoholic beverages, etc. is a solid koji that is inoculated with spores of filamentous fungi on the raw material after cooking, etc., and a liquid medium by adding the raw materials and other nutrients to water.
  • a liquid koji that is prepared and inoculated with spore of koji mold or precultured mycelia.
  • solid koji produced by a solid culture method is widely used.
  • This solid culture method includes Aspergillus kawachii, Aspergillus awamori, Aspergillus niger, Aspergillus oryzae, Aspergillus solus, etc.
  • solid soot such as Aspergillus kawachii is widely used! /.
  • the solid culture method is a culture system in which raw materials and koji molds are dispersed non-uniformly, so it is difficult to make uniform factors such as temperature, water content, and various nutritional components, and the culture control is very complicated.
  • it is often produced in an open state, and in this case, it is necessary to pay attention in terms of quality control such as contamination by various bacteria. Therefore, it can be said that the method is not suitable for large-scale manufacturing.
  • the liquid culture method is easy to control culture and quality control, and is a culture form suitable for efficient production.
  • a culture obtained by liquid culture of Aspergillus oryzae is actually used as shochu because, for example, sufficient enzyme activity required for shochu brewing cannot be obtained.
  • the culture obtained by the liquid culture method is obtained by the liquid culture method.
  • the cultured product itself hereinafter sometimes referred to as “liquid koji”
  • it may be a culture solution, bacterial cells, a concentrate thereof, or a dried product thereof.
  • Patent Document 1 As a method for improving the darcoamylase activity of Aspergillus oryzae, a method of cultivating Aspergillus oryzae while stressing the growth of mycelia (see Patent Document 1), or a method of adding calorie to roasted cereals to an Aspergillus culture medium 2) has been reported.
  • the method disclosed in Patent Document 1 enhances the enzyme activity by culturing in a porous immobilization agent or in a entrapping immobilization agent having voids to express a new gene glaB that encodes dalcamylase. Or special culture equipment is necessary and not practical.
  • the method disclosed in Patent Document 2 is a method for culturing koji molds in a liquid medium using baked cereals as at least a part of the raw material, and adds a new manufacturing process of roasting cereals. .
  • the present inventors have proposed an invention relating to a method for culturing koji mold using a liquid medium containing a saccharide that is hardly degradable for koji mold (see Patent Document 3).
  • a saccharide degradation-related enzyme such as dalcamylase
  • Non-Patent Document 7 With regard to acid-resistant a amylase, molecular biological analysis has recently been started in detail (see Non-Patent Document 7). According to it, white mold has two types of amylase genes with different properties: non-acid-resistant amylase and acid-resistant a-amylase. However, the expression pattern is very different. In liquid culture, non-acid-resistant ⁇ -amylase is produced sufficiently, but acid-resistant ⁇ -amylase, which is a key enzyme for shochu brewing, is hardly produced. It has been reported.
  • acid-resistant ⁇ -amylase is basically an enzyme that is not produced in liquid culture, and no liquid koji with high activity of acid-resistant ⁇ -amylase has been developed so far.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 225746
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-321154
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-265165
  • Non-patent literature l Iwashita K. et al: Biosci. Biotechnol. Bioche., 62, 1938-1946 (1998)
  • Non-patent literature 2 Yuichi Yamane et al .: Journal of the Japan Brewing Association., 99, 84-92 (2004)
  • Non-Patent Document 3 Hata Y. et. A1 .: J. Ferment. Bioeng., 84, 532-537 (1997)
  • Non-Patent Document 4 Hata Y. et. Al .: Gene., 207, 127-134 (1998)
  • Non-Patent Document 5 Ishida H. et. Al .: J. Ferment. Bioeng., 86, 301-307 (1998)
  • Non-Patent Document 6 Ishida H. et. Al: Curr. Genet., 37, 373-379 (2000)
  • Non-Patent Document 7 Nagamine K. et.al .: Biosci. Biotechnol. Biochem., 67, 2194-2202 (20
  • Non-Patent Document 8 Sudo S. et al: J. Ferment. Bioeng., 76, 105-110 (1993)
  • Non-Patent Document 9 Sudo S. et al: J. Ferment. Bioeng., 77, 483-489 (1994)
  • Non-Patent Document 10 Shigetoshi Sudo et al .: Journal of the Japan Brewing Association, 89, 768-774 (1994)
  • the present inventors have cultivated koji molds in a liquid medium containing, as a culture raw material, cereals whose entire or part of the surface is covered with at least husk, thereby producing shochus such as darcoamylase and acid-resistant ⁇ -amylase.
  • shochus such as darcoamylase and acid-resistant ⁇ -amylase.
  • An object of the present invention is to develop a method for enhancing amylolytic enzymes such as darcoamylase and acid-resistant a amylase, and other enzyme activities in liquid koji, In particular, it is to provide a method for producing a liquid koji having a high enzyme activity by optimizing the composition of the liquid medium.
  • the present inventors have aimed at further high enzyme production in liquid koji, and as a result, contained a specific nitrogen source in the liquid medium. Furthermore, by coexisting sulfate and phosphate, the productivity of starch-degrading enzyme dalcore mirase, cellulose-degrading enzyme cellulase, and proteolytic enzyme acid carboxypeptidase is improved. As a result, the present invention has been completed.
  • the present invention according to claim 1 uses cereals whose whole or part of the surface is at least covered with husks as a culture raw material, and a white medium and a Z or black koji mold in a liquid medium containing a nitrogen source.
  • husks as a culture raw material
  • a white medium and a Z or black koji mold in a liquid medium containing a nitrogen source.
  • the present invention according to claim 2 is the method for producing a liquid koji having enhanced enzyme activity according to claim 1, wherein the nitrogen source is nitrate.
  • the present invention according to claim 3 is characterized in that the nitrogen source is at least one of yeast cells or processed products thereof, cereal husks, and cereal straws, or a mixture of these with nitrate.
  • the present invention according to claim 4 is the method for producing a liquid koji having enhanced enzyme activity according to claim 1, which contains liquid medium strength nitrate at a concentration of 0.05 to 2.0% (wZvol).
  • the present invention according to claim 5 is the method for producing a liquid koji with enhanced enzyme activity according to claim 2, wherein the liquid medium further contains a phosphate.
  • the present invention according to claim 6 is the method for producing a liquid koji with enhanced enzyme activity according to claim 5, wherein the liquid medium contains phosphate at a concentration of 0.05 to L 0% (wZvol). Is the method.
  • the present invention according to claim 7 is the method for producing a liquid koji having enhanced enzyme activity according to claim 5, wherein the liquid medium further contains a sulfate.
  • the present invention according to claim 8 is the method for producing a liquid koji with enhanced enzyme activity according to claim 7, which contains liquid medium strength sulfate at a concentration of 0.01 to 0.5% (wZvol). .
  • the enzyme activity is enhanced according to claim 1, wherein the enzyme is one or more selected from amylolytic enzyme, cellulolytic enzyme and proteolytic enzyme power. This is a method for producing a liquid koji.
  • the present invention according to claim 10 is characterized in that the cereal is rice, wheat, barley, buckwheat, hinoki, potato, millet, corn or corn, wherein the enzyme activity is enhanced. This is a method for producing a liquid koji.
  • the present invention according to claim 11 is a liquid bottle obtained by the method according to claim 1, which is a deviation of claim 1 to LO.
  • the present invention according to claim 12 is a method for producing an enzyme preparation, wherein the liquid koji according to claim 11 is used.
  • the present invention according to claim 13 is an enzyme preparation obtained by the method according to claim 12.
  • the present invention according to claim 14 is a liquid medium containing a cereal in which all or a part of the surface as a culture raw material is covered with at least husks, and a nitrogen source.
  • An enzyme production method characterized by culturing and producing an enzyme.
  • the present invention according to claim 15 is the enzyme production method according to claim 14, characterized in that the nitrogen source is nitrate.
  • the nitrogen source is a yeast cell or a processed product thereof, cereal husk, cereal 15.
  • the present invention according to claim 17 is the method for producing an enzyme according to claim 14, comprising a liquid medium strength nitrate at a concentration of 0.05 to 2.0% (wZvol).
  • the present invention according to claim 18 is the enzyme production method according to claim 15, wherein the liquid medium further contains a phosphate.
  • the present invention according to claim 19 is the enzyme production method according to claim 18, wherein the liquid medium contains phosphate at a concentration of 0.05 to L 0% (wZvol).
  • the present invention according to claim 20 is the enzyme production method according to claim 18, wherein the liquid medium further contains a sulfate.
  • the present invention according to claim 21 is the method for producing an enzyme according to claim 20, wherein the liquid medium contains sulfate in a concentration of 0.01 to 0.5% (wZvol).
  • the present invention according to claim 22 is the method for producing an enzyme according to claim 14, wherein the enzyme is one or more selected from starch degrading enzyme, cellulose degrading enzyme and proteolytic enzyme power.
  • the present invention according to claim 23 is the method for producing an enzyme according to claim 14, characterized in that the cereal as a raw material is rice, wheat, barley, buckwheat, shrimp, ah, millet, sorghum or corn. is there.
  • a specific organic substance and Z or an inorganic substance are added as a nitrogen source to a liquid medium using cereals whose whole or part of the surface is at least covered with husk as a culture raw material, and further sulfated.
  • Cellulose degrading enzyme and proteolytic enzyme that can not only significantly improve the productivity of starch degrading enzyme in liquid koji by culturing koji mold in the liquid medium with the addition of phosphate and phosphate.
  • Highly produced liquid dredgers can be produced.
  • the productivity of all enzymes produced by Aspergillus is considered to increase.
  • fermented foods and drinks such as shochu are produced using the liquid koji produced according to the present invention
  • the cell mouth degrading enzyme activity is high.
  • An increase in lecol yield can be expected.
  • fermented foods and drinks having a brilliant fragrance can be produced by increasing the amount of amino acid produced by high proteolytic enzyme activity.
  • liquid culture allows stricter culture control than solid culture, a liquid koji with stable quality can be produced at low cost.
  • cereals used in the present invention are unmilled or at least refined to such an extent that the husk remains on the surface of the grain, so that the raw material utilization rate and yield are high. Improvement can be expected.
  • FIG. 1 shows the activity of glucoamylase and acid-resistant hyaamylase of a culture obtained by culturing in a liquid medium using potassium nitrate as a nitrogen source.
  • the black bars indicate darcoamylase activity (U / ml), and the white bars indicate acid-resistant a-amylase activity (U / ml).
  • FIG. 2 shows the activity of darcoamylase and acid-resistant ⁇ -amylase in a culture obtained by culturing in a liquid medium using inorganic nitrogen and inorganic salt. Also, the black bar shows dalcoamylase activity (U / ml), and the white bar shows acid-resistant a-amylase activity (U / ml).
  • FIG. 3 shows the activity of darcoamylase and acid-resistant ⁇ -amylase in a culture obtained by culturing in a liquid medium using yeast cells or yeast autolysate as a nitrogen source.
  • the black bar shows darcoamylase activity (U / ml), and the white bar shows acid-resistant a-amylase activity (U / m 1).
  • FIG. 4 shows the activity of darcoamylase and acid-resistant hyaamylase of a culture obtained by culturing in a liquid medium using a combination of inorganic nitrogen, inorganic salt and yeast cells. Also, the black bar shows darcoamylase activity (UZml), and the white bar shows acid-resistant ⁇ -amylase activity (UZ ml).
  • FIG. 5 shows the activity of darcoamylase and acid-resistant ⁇ -amylase of a culture obtained by culturing in a liquid medium using a combination of barley koji, yeast cells and inorganic nitrogen as a nitrogen source.
  • the black bar shows dalcoamylase activity (UZml)
  • the white bar shows acid-resistant ⁇ -amylase activity (UZml).
  • FIG. 6 shows the activity of darcoamylase and acid-resistant a-amylase of a culture obtained by culturing in a liquid medium using a combination of barley husk and yeast cells as a nitrogen source.
  • Ma The black bars show dalcoamylase activity (UZml), and the white bars show acid-resistant ⁇ -amylase activity (U / ml).
  • FIG. 7 is a graph showing various enzyme activities in a koji mold culture obtained by culturing in a liquid medium using sulfate, nitrate, and phosphate.
  • A is dalcamylase (GA)
  • B is acid-resistant a amylase (ASAA)
  • C is cellulase (CEL)
  • D is acid carboxypeptidase (ACP) activity (U / ml) Respectively.
  • koji molds are cultured in a liquid medium prepared by adding raw materials such as cereals and nitrogen sources! / Koji, and liquid koji with enhanced enzyme activity is produced. It includes the process.
  • the koji mold is cultured using a liquid medium containing cereals whose whole or part of the surface is at least covered with husk as a raw material for culturing, so it takes time for saccharification of starch in the cereals.
  • the rate of sugar release into the culture system is suppressed, and the enzyme activity of the liquid koji is enhanced.
  • various enzymes are highly produced by Aspergillus.
  • the enzymes produced by Aspergillus include dalcoamylase, (X-amylase, etc., degrading enzymes, cellulase, 13-darcosidase, etc., cellulose-degrading enzymes, acid power lupoxypeptidase, acidic proteases, etc. 1S including degrading enzyme etc. Not necessarily limited to these.
  • examples of cereals used as a culture raw material include barley, rice, wheat, buckwheat, seaweed, wheat, millet, culyan, and corn.
  • As the shape of these culture raw materials it is necessary that all or a part of the surface is covered with at least the husk, and the degree of the unmilled product or at least the husk being left on the surface of the grain. More than the whitening ratio that has been refined until now can be used, and brown rice, brown wheat, etc. can also be used.
  • rice not only brown rice but also all rice husks may be attached, or some rice husks may be attached!
  • the cereal is barley, it is 100% of unmilled milling ratio or unmilled The milling rate of 100%, and the ratio of the unmilled milling rate (100%) minus the barley grain rate (generally 7-8%), that is, the milling rate of about 92-93% That's it.
  • the milling rate refers to the proportion of cereals that remain after milling the cereals.
  • the milling rate of 90% means that 10% of the skin of the surface layer of the cereals is scraped off.
  • the unpolished barley includes unpolished barley to those that have been refined to such an extent that the husk remains on the surface of the grain, that is, those having a milling ratio of 90% or more.
  • the husk is the outer part that covers the surface of grains of cereals.
  • the above culture raw materials are used alone or in combination of two or more for the preparation of the following liquid medium. That is, the cultivated cereal grains are mixed with water together with a nitrogen source described later to prepare a liquid medium.
  • the blending ratio of cereals is adjusted so that enzymes such as amylolytic enzymes, cellulose-degrading enzymes, and proteolytic enzymes are selectively produced and accumulated in the koji mold culture.
  • barley when barley is used as a culture raw material, it is prepared in a liquid medium supplemented with 1 to 20% (w / vol) brown barley with respect to water.
  • unpolished barley when unpolished barley is used as brown wheat, it is more preferably prepared in a liquid medium supplemented with 8 to 10% (w / vol). Is more preferably prepared in a liquid medium supplemented with 1 to 4% (w / vol).
  • brown rice when brown rice excluding rice husks is used as a culture raw material, brown rice is 1 to 20% (w / vol), preferably 5 to 13% (w / vol), more preferably 8 to 10% with respect to water. Prepared in a liquid medium supplemented with% (w / vol).
  • cereals When other cereals are used, they are also prepared in a liquid medium supplemented with 1-20% (w / vol) of water.
  • the optimum blending amount varies depending on the degree of whitening of the raw material to be used, the koji strain to be used, the type of culture raw material, and the like.
  • the amount of culture raw material used exceeds the upper limit, the viscosity of the culture solution increases, the supply of oxygen and air necessary for aerobic culture of Neisseria gonorrhoeae becomes insufficient, and the oxygen concentration in the culture decreases. This is not preferable because the culture is difficult to proceed.
  • the amount of the raw material used reaches the lower limit. Otherwise, the target enzyme will not be produced at a high rate.
  • the starch contained in the culture raw material may be gelatinized in advance before culturing.
  • the gelatinization method of the starch is not particularly limited and may be carried out according to conventional methods such as a steaming method and a roasting method. In the liquid medium sterilization process described later, when heating to a temperature higher than the gelatinization temperature of starch by high-temperature high-pressure sterilization or the like, starch is gelatinized at the same time by this treatment.
  • the liquid medium contains organic substances and inorganic substances as a nitrogen source.
  • These nitrogen sources are not particularly limited as long as the koji mold grows and the target enzyme is sufficiently produced.
  • the organic substance include yeast cells or processed products thereof (for example, yeast cell decomposition products, yeast extract, etc.), cereal husks, cereal cocoons and the like, and examples of inorganic substances include nitrates.
  • potassium nitrate As the nitrate, potassium nitrate, sodium nitrate and the like can be used, and potassium nitrate is particularly preferable.
  • These nitrogen sources may be used alone or in combination of two or more organic substances and Z or inorganic substances.
  • the amount of the nitrogen source added is not particularly limited as long as it promotes the growth of Aspergillus, but as an organic material it is 0.1 to 2% (wZvol), preferably 0.5 to 1.0% (wZvol). ). Further, the amount of addition of nitrate as an inorganic substance is 0.05-2.0% (wZvol), preferably 0.1 to 2.0% (w / vol), most preferably 0.2 to 1.5. % (w / vol).
  • Yeasts used as a kind of nitrogen source in the present invention include beer yeasts, wine yeasts, whiskey yeasts, shochu yeasts, sake yeasts, baker's yeasts used in the brewing process and food production, as well as the genus Saccharomyces.
  • Candida Torulopsis, Hanseniaspora, Hansenula, Debaryomyces, Saccharomycopsis, Saccharomycopsis Mycodes (Saccharomycodes), Pichia (Pichia), Nokiisore And yeast cells of the genus Pachysolen.
  • yeasts the cells themselves can be used as a nitrogen source, but they can also be used as a yeast cell decomposition product or a yeast extract.
  • yeast cell degradation products or yeast extracts are produced by self-digestion of yeast cells (method of solubilizing cells using proteolytic enzymes inherent in yeast cells), enzyme decomposition methods (from microorganisms and plants).
  • hot water extract method method of soaking yeast cells in hot water for a certain period of time
  • acid or alkali decomposition method variantous acids Or a method of adding an alkali to make it soluble
  • a physical crushing method sonication, high-pressure homogenization method, mixing by mixing solid materials such as glass beads and crushing by stirring
  • freezing It can be obtained by processing by the thawing method (method of crushing by freezing and thawing once or more).
  • Cereal meal such as rice bran can also be used as a nitrogen source, and this is a by-product produced when the cereal is refined.
  • the seeds of cereals are the epidermis, the embryo, the endosperm, and the power that protects them. Of these, the combination of the embryo and the epidermis is the cocoon.
  • the cereal husk that is, the skin of the cereal
  • the nitrogen source usually the same kind of cereal husk as the cultivated raw material cereal is used.
  • These cereal straws and cereal husks can be used in combination with other nitrogen sources.
  • the liquid medium used in the present invention may contain sulfate and phosphate in addition to the above-described culture raw material and nitrogen source.
  • sulfate and phosphate in addition to the above-described culture raw material and nitrogen source.
  • magnesium sulfate heptahydrate, iron sulfate heptahydrate, ammonium sulfate and the like can be used as the sulfate, and magnesium sulfate heptahydrate is particularly preferable.
  • phosphate potassium dihydrogen phosphate, ammonium phosphate, or the like can be used, and potassium dihydrogen phosphate is particularly preferable.
  • These inorganic salts can be used alone or in combination of two or more.
  • the concentration of the above-mentioned inorganic salts in the liquid medium is such that enzymes such as amylolytic enzymes, cellulose-degrading enzymes, and proteolytic enzymes are selectively produced and accumulated in the koji mold culture. It is adjusted to the extent to be able to. For example, 0.01 -0 5% in the case of sulphate, preferably ⁇ or from 0.02 to 0 1%, in the case of phosphate ⁇ or 0. 05 ⁇ :.. L 0 0 /0, preferably ⁇ or 0 1 ⁇ 0.5 ⁇ / ⁇ 0 ⁇ Deviation is w / vol).
  • the above inorganic salts may be used alone or in combination of two or more.
  • organic substances other than the aforementioned nitrogen sources and inorganic salts, inorganic salts, and the like can be appropriately added as nutrient sources.
  • These additives are not particularly limited as long as they are commonly used for culturing koji mold, but organic substances such as wheat koji, corn steep liquor, soybean koji, defatted soybean, etc., and inorganic salts such as ammonia.
  • water-soluble compounds such as salt, potassium salt, calcium salt, and magnesium salt. Two or more organic substances and Z or inorganic salts may be used at the same time.
  • the amount added is not particularly limited as long as it promotes the growth of Neisseria gonorrhoeae, but is about 0.1 to 5% (wZvol) for organic substances and 0.1 to 1% (w / vol) for inorganic salts. It is preferable to add a certain amount.
  • these nutrient sources are added in excess of the upper limit, it is not preferable because it inhibits the growth of Neisseria gonorrhoeae.
  • the addition amount is less than the lower limit, enzyme production is not promoted, which is also not preferable.
  • the liquid culture medium of the koji mold obtained by mixing the above-described culture raw material and nitrogen source with water is not particularly limited as to a treatment method that may be sterilized as necessary.
  • An example is the high-temperature and high-pressure sterilization method, which can be performed at 121 ° C for 15 minutes.
  • starch-degrading enzymes such as dalcore amylase, acid-resistant ⁇ -amylase and a-amylase, cellulolytic enzymes such as cellulase and 13-darcosidase, and proteolytic fermentation such as acid carboxypeptidase and acid protease Neisseria gonorrhoeae having productivity such as elemental is preferable.
  • Aspergillus kawachii and the like are included as a white mold, and Aspergillus niger and the like are used as a black bacterium and Aspergillus niger.
  • the form of the koji mold inoculated into the medium is arbitrary, and spores or hyphae can be used.
  • These koji molds can be used either by culturing with one kind of strain or by mixed culturing with two or more kinds of the same or different kinds of bacteria. There is no problem with using any form of spores or hyphae obtained by preculture, but it is preferable to use hyphae because the time required for the logarithmic growth phase is shortened.
  • the amount of koji mold inoculated into the liquid medium there is no particular limitation on the amount of koji mold inoculated into the liquid medium, but about 1 X 10 4 to 1 X 10 6 spores per ml of liquid medium, and 0.1 to It is preferable to inoculate about 10%.
  • the culture temperature of the koji mold is not particularly limited as long as it does not affect the growth, but it is preferably 25 to 45 ° C, more preferably 30 to 40 ° C. If the culture temperature is low, the growth of koji molds slows down, and contamination with various bacteria tends to occur. A suitable incubation time is 24 to 72 hours.
  • Any culture apparatus may be used as long as it can perform liquid culture.
  • Neisseria gonorrhoeae needs to perform aerobic culture, it needs to be performed under aerobic conditions where oxygen and air can be supplied into the medium. Further, during the culture, it is preferable to stir so that the raw materials, oxygen, and bacilli in the medium are uniformly distributed in the apparatus.
  • the stirring conditions and the aeration amount may be appropriately selected depending on the culture apparatus, the viscosity of the medium, etc. as long as the culture environment can be maintained aerobically.
  • the liquid koji includes a culture solution obtained by centrifuging a culture, a concentrate thereof, a dry product thereof, and the like in addition to the culture itself.
  • enzymes such as amylolytic enzymes, cellulose-degrading enzymes, protein-degrading enzymes and the like can be produced at high yields.
  • the method for producing an enzyme according to claim 14 includes the method for producing a liquid koji described above. It is the same.
  • the liquid koji obtained by the production method of the present invention can be suitably used for the production of fermented foods and drinks such as shochu.
  • fermented foods and drinks such as shochu.
  • shochu when making sake, at the brewing mother and each mash preparation stage, when making shochu, at the mash preparation stage, when making soy sauce, make miso at the preparation stage.
  • mirin in the preparation stage when producing amazake in the preparation stage, liquid rice cake can be used instead of solid rice cake in the preparation stage.
  • liquid soot a part of the obtained liquid soot can be used as a starter in the next liquid soot production.
  • stable production can be achieved, and at the same time, production efficiency can be improved.
  • the liquid cake obtained by the method of the present invention can be used as a pharmaceutical preparation such as an enzyme preparation and a disinfectant because of its high enzyme activity.
  • the obtained koji mold culture may be concentrated and purified to a desired degree, and an appropriate excipient, thickener, sweetener and the like may be added to prepare a preparation by a conventional method.
  • Example 1 Additional inorganic nitrogen in production of liquid soot
  • the effect of adding potassium nitrate as inorganic nitrogen to the liquid medium is as follows. In other words, in the water with no addition (control), 0.2% (wZvol) or 0.4% (wZvol) potassium nitrate, the raw brown wheat as raw material is 2% (w / vol). Three types of liquid media were prepared.
  • kawachii IFO43008 was inoculated to 1% (v / vol) with respect to the liquid medium.
  • the brown barley used was 95% white sterling from Australia (basically the same in the following examples).
  • the cells were cultured for 48 hours at a temperature of 37 ° C and a shaking speed of lOOrpm. After completion of the culture, the activities of darcoamylase and acid-resistant ⁇ -amylase were measured for each of the obtained cultures.
  • Table 1 and FIG. 1 show the activity of darcoamylase and acid-resistant ⁇ -amylase in the cultures obtained by culturing koji molds in liquid media according to the amount of potassium nitrate used.
  • a sugar squid fraction determination kit (manufactured by Kikkoman) was used for measuring the enzyme activity of dalcore mirase.
  • the enzyme activity of acid-resistant ⁇ -amylase was measured by slightly improving the method described in Non-Patent Document 7, inactivating the non-acid-resistant ⁇ -amylase by acid treatment of the culture, and then a-amylase. Acid resistance a-amylase activity was measured using a measurement kit (manufactured by Kikkoman Corporation).
  • Example 2 Additional treatment of a plurality of inorganic substances in the production of liquid soot
  • potassium nitrate or sodium nitrate as inorganic nitrogen and potassium dihydrogen phosphate as inorganic salt were added to water in the formulation shown in Table 2.
  • the amount of sodium nitrate added was also calculated as a 20 mM force, which is a molar concentration equivalent to 2.0% potassium nitrate, and 1.7% was added so that the nitrate ion concentration would be equal.
  • water containing no inorganic nitrogen and no inorganic salt was used as a control.
  • Example 3 Additional yeast cells or yeast autolysate in the production of liquid koji
  • a liquid koji was produced using a liquid medium supplemented with yeast cells or yeast autolysate (yeast extract).
  • Yeast cells Beer yeast cells obtained by dehydrating beer yeast to a water content of about 70% by centrifugation at 5,000 X g for 15 minutes
  • Yeast autolysate (1) Yeast autolysate obtained by suspending beer yeast cells in an equal volume of water and treating them at 52 ° C for 18 hours
  • Yeast autolysates (2) Yeast autolysates obtained by suspending beer yeast cells in an equal volume of 1% lactic acid and treating them at 52 ° C for 18 hours
  • the prepared yeast cells and yeast autolysates (1) to (2) are added to water so that they are 0.20%, 0.50%, and l% (v / vol), respectively.
  • a liquid medium was prepared by adding cultivated raw barley to 2% (w / vol) to these raw waters, and then liquid culture of white koji molds was performed under the same conditions as in Example 1. Thereafter, darcoamylase activity and acid-resistant a-amylase activity were measured in the same manner as in Example 1.
  • liquid culture medium (N 0.1) prepared by adding only 2% (w / vol) of barley to water was also inoculated with white koji mold in the same manner as in Example 1, and liquid culture was performed. Then, the darcoamylase activity and the acid-resistant ⁇ -amylase activity of the obtained liquid koji were measured in the same manner. The results are shown in Table 3 and Fig. 3.
  • both the test group to which the yeast cells themselves were added and the test group to which the yeast autolysate was added had more dalcoamylase activity than the control group (No. l) without addition, and Both acid resistance ⁇ -amylase activity is increased.
  • the ⁇ ⁇ .7 test plot showed good results.
  • the dalcoamylase activity and acid-resistant ⁇ -amylase activity increased in proportion to the amount of added calories of yeast cells or yeast autolysate.
  • Example 4 Additional a combination of inorganic nitrogen and cocoon or inorganic salt and yeast cells
  • yeast cells were yeast cells (yeast cells of Example 3) obtained by dehydrating brewer's yeast from which beer brewing process capability had been recovered to a water content of about 70% by centrifugation.
  • yeast cells yeast cells of Example 3 obtained by dehydrating brewer's yeast from which beer brewing process capability had been recovered to a water content of about 70% by centrifugation.
  • a control No. 1
  • additive-free raw water was used.
  • Example 5 (combination of barley meal, yeast cells, inorganic substance)
  • Barley koji and yeast cells, potassium nitrate, and potassium dihydrogen phosphate were combined as shown in Table 5 and added to water to obtain raw material water for the liquid medium.
  • the barley koji used was obtained by recovering the kneading power of 70% refined barley (Australian Stirling) and contains barley husk and koji.
  • the yeast cells used were the yeast cells themselves (yeast cells of Example 3) obtained by dewatering beer yeast from which beer brewing process capability had been recovered to a water content of about 70% by centrifugation. On the other hand, additive-free raw water was used as a control.
  • Example 6 Additional a combination of barley husk and yeast cells
  • Potassium nitrate, potassium dihydrogen phosphate, barley husk and yeast cells were combined as shown in Table 6 and added to the raw water to obtain raw water for the liquid medium.
  • the barley husk used was 70% polished barley mashing ability.
  • the obtained barley husk was passed through a 2mm mesh sieve and only barley husk was recovered.
  • the used pressed yeast is a yeast cell itself (yeast cell of Example 3) obtained by dehydrating beer yeast recovered from the beer brewing process to a water content of about 70% by centrifugation.
  • raw water (No.l) with no additive was used as a control.
  • Example 7 (Effect of sulfate addition in liquid koji production)
  • Liquid rice cakes were produced by the following method, and their enzyme activities were measured.
  • dalcoamylase activity (GA) and acid-resistant protease activity (ASAA), which are amylolytic enzymes, were measured.
  • the measurement of darcoamylase activity was performed using a sugar squid fraction determination kit (manufactured by Kikkoman).
  • AZA acid-resistant ⁇ -amylase activity
  • CEL Cellulase activity
  • ACP acid carboxypeptidase activity
  • CEL Cellulase activity
  • CMC carboxymethylcellulose
  • DAS dinitrosalicylic acid
  • DNS dinitrosalicylic acid
  • the reaction stop solution was heated accurately in a boiling water bath for 15 minutes. Subsequently, after cooling to room temperature, the amount of reducing sugar corresponding to glucose was quantified by measuring the absorbance at 540 nm.
  • One unit of cellulase activity (CEL) was expressed as the amount of enzyme that produces a reducing sugar equivalent to: mol of dalcose per minute.
  • the acid carboxypeptidase activity (ACP) was measured using an acid carboxypeptidase measurement kit (manufactured by Kikkoman).
  • test group 2 which was a magnesium sulfate-added cocoon group.
  • cellulase and acid carboxypeptidase activity also increased in test group 2 where magnesium sulfate was added.
  • the activity of the test group 3 to which the same magnesium salt, ie, salt ⁇ magnesium was added did not increase, suggesting that the main body of the enzyme productivity increasing effect was the sulfate group.
  • High production of cellulose-degrading enzyme can be expected to reduce mash viscosity and increase alcohol yield in shochu production, and high production of proteolytic enzyme will increase the amino acid component of shochu mash. It will also be possible to produce shochu with a beautiful and fragrant aroma.
  • the enzyme group produced by Aspergillus oryzae such as the amylolytic enzyme group other than the enzyme measured this time, the cellulose-degrading enzyme group, and the proteolytic enzyme group, may be generally highly produced. Seems to be high.
  • liquid culture enables strict culture control compared to solid culture, so that a liquid koji with stable quality can be produced efficiently and inexpensively.
  • liquid koji produced by the present invention for the production of fermented foods and drinks such as shochu, the yield of alcohol and the amount of amino acids produced can be increased, and a fermented food and drink with a gorgeous flavor can be efficiently produced.
  • cereals used in the present invention are unmilled or at least refined to such an extent that the husk remains on the surface of the grain, so that the raw material utilization rate and yield are high. Improvement can be expected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Alcoholic Beverages (AREA)

Abstract

 本発明は、液体麹において、液体培地の組成を最適化することにより、酵素活性の高い液体麹を製造する方法を提供することを目的とする。  本発明は、表面の全部又は一部が少なくとも穀皮で覆われた穀類を培養原料とし、窒素源を含有する液体培地で白麹菌および/または黒麹菌を培養することを特徴とする酵素活性の増強された液体麹の製造方法を提供する。

Description

液体麹の製造方法
技術分野
[0001] 本発明は、液体麹の製造方法に関し、詳しくは酵素活性の増強された液体麹の製 造方法に関する。
背景技術
[0002] 酒類等の製造に用いられる麹は、蒸煮等の処理後の原料に糸状菌の胞子を接種 して培養する固体麹と、水に原料及びその他の栄養源を添加して液体培地を調製し 、これに麹菌の胞子又は前培養した菌糸等を接種して培養する液体麹がある。
[0003] 従来の酒類などの発酵飲食品、例えば、日本酒、焼酎、しょうゆ、みそ、みりん等の 製造では、固体培養法により製麹された、いわゆる固体麹が広く利用されている。こ の固体培養法は、ァスペルギルス ·カヮチ(Aspergillus kawachii)、ァスペルギル ス ·ァヮモリ (Aspergillus awamori)、ァスヘルキノレス · -ガー (Aspergillus niger )、ァスペルギルス 'オリーゼ (Aspergillus oryzae)、ァスペルギルス ·ソーャ( Aspe rgillus sojae)等の麹菌の胞子を、蒸煮した穀類等の固体原料へ散布し、その表面 で麹菌を増殖させる培養方法である。
[0004] 例えば、焼酎の製造では、ァスペルギルス ·カヮチ(Aspergillus kawachii)ゃァ スペルギルス ·ァヮモリ(Aspergillus awamori)等の固体麹が広く用いられて!/、る。 しかしながら、固体培養法は、原料や麹菌が不均一に分散する培養系であるため、 温度や水分含量、各種栄養成分といった因子を均一にすることが困難であり、その 培養制御は大変煩雑である。また、開放状態で製麹されることも多ぐこの場合は、 雑菌による汚染といった品質管理面での注意も要する。そのため、大規模製造には 不向きな方法とも言える。
[0005] これに対して、液体培養法は、培養制御や品質管理が容易であり、効率的な生産 に適した培養形態である。しかし、例えば、焼酎醸造に必要な酵素活性が十分に得 られない等の理由から、麹菌を液体培養して得られる培養物を、実際に焼酎麹として 用いた例は少ない。ここで、液体培養法で得られる培養物とは、液体培養法で得ら れる培養物そのもの (以下、液体麹と称することがある)の他、培養液、菌体、それらの 濃縮物又はそれらの乾燥物であってもよ 、。
[0006] 液体培養法で得られる培養物が焼酎等の発酵飲食品の製造に利用されない大き な理由として、上記理由の他に、液体培養では麹菌のアミラーゼ、セルラーゼ等の酵 素生産挙動が固体培養と大きく異なるばかりか、全般的に生産性が低下することが 知られている (非特許文献 1、 2参照)。
[0007] 通常、焼酎をはじめとする酒類の製造では、並行複発酵によりアルコールが生成さ れる。従って、麹菌へのグルコース供給に影響を与える麹菌の糖質分解関連酵素、 特にダルコアミラーゼや耐酸性ひ一アミラーゼは、アルコール発酵における鍵酵素で ある。しかしながら、液体培養法で得られる培養物において、ダルコアミラーゼの活性 は著しく低ぐ生産挙動も固体培養とは大きく異なることが知られている (非特許文献 3〜6参照)。
[0008] 麹菌のダルコアミラーゼ活性を向上させる方法として、菌糸の生育にストレスを与え ながら麹菌を培養する方法 (特許文献 1参照)ゃ焙焼した穀類を麹菌培養液に添カロ する方法 (特許文献 2参照)が報告されている。特許文献 1に開示の方法は、多孔性 膜上又は空隙を有する包括固定化剤中で培養してダルコアミラーゼをコードする新 規遺伝子 glaBを発現させて同酵素活性を高めるもので、厳密な制御又は特殊な培 養装置が必要であり、実用的ではない。また、特許文献 2に開示の方法は、原料の 少なくとも一部に焙焼した穀類を用いた液体培地で麹菌を培養するもので、穀類を 焙焼するという、新たな製造工程が加わることになる。
[0009] そこで、本発明者らは、麹菌にとって難分解性の糖質を含有する液体培地を用い た麹菌の培養方法に関する発明を提案した (特許文献 3参照)。この発明によれば、 麹菌の液体培養において、酒類などの発酵飲食品の製造に使用可能な、ダルコアミ ラーゼ等の糖質分解関連酵素の活性が高い麹菌培養物を、簡便、且つ安価に得る ことができる。
[0010] 一方、耐酸性 a アミラーゼについては、最近、分子生物学的な解析が詳細に行 なわれ始めている (非特許文献 7参照)。それによれば、白麹菌は非耐酸性ひ—アミラ ーゼと耐酸性 a—アミラーゼという性質の異なる 2種類のアミラーゼ遺伝子を有して いるが、その発現様式は大きく異なっており、液体培養においては、非耐酸性 α—ァ ミラーゼは十分に生産されるものの、焼酎醸造の鍵酵素である耐酸性 α—アミラーゼ はほとんど生産されな 、ことが報告されて 、る。
[0011] 焼酎製造では、焼酎もろみの腐造防止のために低 ρΗ環境下で醸造する。しかし、 非耐酸性 α—アミラーゼは、低 ρΗ条件では速やかに失活してしまうため、焼酎醸造 の糖質分解にはほとんど貢献しない。そのため、焼酎醸造の糖質分解に寄与してい ると考えられる耐酸性ひ—アミラーゼを、麹菌の液体培養で大量に生成させることが 、焼酎製造のために不可欠である。
[0012] 過去には、麹菌の液体培養における耐酸性 a アミラーゼの生産挙動を詳細に検 討した報告があるものの、その方法はペプトンやクェン酸緩衝液を含む合成培地を 用いている上に、培養時間が 100時間以上かかるなど、実際の焼酎醸造に適用でき るような液体麹の製造方法であるとは言 ヽ難 ヽ (非特許文献 8〜10参照)。
このように、耐酸性 α—アミラーゼは、基本的に液体培養では生成されない酵素で あると一般的に考えられており、これまでに耐酸性 α アミラーゼの活性が高い液体 麹は開発されていない。
[0013] 特許文献 1:特開平 11 225746号公報
特許文献 2:特開 2001— 321154号公報
特許文献 3:特開 2003 - 265165号公報
非特許文献 l:Iwashita K. et al:Biosci. Biotechnol. Bioche., 62, 1938-1946(1998) 非特許文献 2:山根雄一ら:日本醸造協会誌., 99, 84-92(2004)
非特許文献 3:Hata Y. et. A1.:J. Ferment. Bioeng., 84, 532-537(1997)
非特許文献 4:Hata Y. et. al.:Gene., 207, 127-134(1998)
非特許文献 5:Ishida H. et. al.:J. Ferment. Bioeng., 86, 301-307(1998)
非特許文献 6:Ishida H. et. al:Curr. Genet., 37, 373-379(2000)
非特許文献 7:Nagamine K. et.al. :Biosci. Biotechnol. Biochem., 67, 2194-2202(20
03)
非特許文献 8:Sudo S. et al:J. Ferment. Bioeng., 76, 105-110(1993)
非特許文献 9:Sudo S. et al:J. Ferment. Bioeng., 77, 483-489(1994) 非特許文献 10 :須藤茂俊ら:日本醸造協会誌, 89, 768-774(1994)
発明の開示
発明が解決しょうとする課題
[0014] 本発明者らは、表面の全部又は一部が少なくとも穀皮で覆われた穀類を培養原料 として含む液体培地で麹菌を培養することにより、ダルコアミラーゼや耐酸性 α—アミ ラーゼといった焼酎等の製造に必要な酵素活性を十分に含有する液体麹が製造で きることを見出し、既に特許出願した (特願 2004— 350661号明細書、特願 2004— 352320号明細書参照)。
し力しながら、これらの方法によるダルコアミラーゼや耐酸性 α アミラーゼ以外の 酵素生産挙動はこれまで不明であった。
[0015] 本発明の目的は、液体麹にお!、て、ダルコアミラーゼ及び耐酸性 a アミラーゼと いったデンプン分解酵素、並びに、それ以外の酵素活性を増強させる方法を開発す ることであり、特に、液体培地の組成を最適化することにより、酵素活性の高い液体 麹を製造する方法を提供することである。
課題を解決するための手段
[0016] 本発明者らは、液体麹における更なる酵素高生産を目指し、上記培養原料と種々 の栄養源との併用効果について鋭意検討を重ねた結果、液体培地中に特定の窒素 源を含有させることにより、さらには、硫酸塩およびリン酸塩を共存させることによって 、デンプン分解酵素であるダルコアミラーゼ、セルロース分解酵素であるセルラーゼ、 並びに、タンパク分解酵素である酸性カルボキシぺプチダーゼの生産性が向上する ことを見出し、本発明を完成したのである。
[0017] すなわち、請求項 1に係る本発明は、表面の全部又は一部が少なくとも穀皮で覆わ れた穀類を培養原料とし、窒素源を含有する液体培地で白麹菌および Zまたは黒麹 菌を培養することを特徴とする酵素活性の増強された液体麹の製造方法である。 請求項 2に係る本発明は、窒素源が硝酸塩であることを特徴とする請求項 1に記載 の酵素活性の増強された液体麹の製造方法である。
請求項 3に係る本発明は、窒素源が、酵母菌体又はその処理物、穀類穀皮、穀類 糠の中の少なくとも 1種類、ある 、はこれらと硝酸塩との混合物であることを特徴とす る請求項 1に記載の酵素活性の増強された液体麹の製造方法である。 請求項 4に係る本発明は、液体培地力 硝酸塩を 0. 05〜2. 0% (wZvol)の濃度 で含有する請求項 1に記載の酵素活性の増強された液体麹の製造方法である。 請求項 5に係る本発明は、液体培地が、更にリン酸塩を含有することを特徴とする 請求項 2に記載の酵素活性の増強された液体麹の製造方法である。
請求項 6に係る本発明は、液体培地が、リン酸塩を 0. 05〜: L 0% (wZvol)の濃 度で含有する請求項 5に記載の酵素活性の増強された液体麹の製造方法である。 請求項 7に係る本発明は、液体培地が、更に硫酸塩を含有することを特徴とする請 求項 5に記載の酵素活性の増強された液体麹の製造方法である。
請求項 8に係る本発明は、液体培地力 硫酸塩を 0. 01〜0. 5% (wZvol)の濃度 で含有する請求項 7に記載の酵素活性の増強された液体麹の製造方法である。
[0018] 請求項 9に係る本発明は、酵素が、デンプン分解酵素、セルロース分解酵素および タンパク分解酵素力 選ばれた 1種または 2種以上である請求項 1に記載の酵素活 性の増強された液体麹の製造方法である。
請求項 10に係る本発明は、穀類が、米、小麦、大麦、そば、ヒ工、ァヮ、キビ、コゥリ ヤン又はトウモロコシであることを特徴とする請求項 1に記載の酵素活性の増強され た液体麹の製造方法である。
請求項 11に係る本発明は、請求項 1〜: LOの 、ずれか 1項に記載の方法で得られ た液体麹である。
請求項 12に係る本発明は、請求項 11に記載の液体麹を用いることを特徴とする酵 素製剤の製造方法である。
請求項 13に係る本発明は、請求項 12に記載の方法で得られた酵素製剤である。
[0019] 請求項 14に係る本発明は、培養原料である表面の全部又は一部が少なくとも穀皮 で覆われた穀類と、窒素源とを含む液体培地で、白麹菌および Zまたは黒麹菌を培 養して酵素を生産することを特徴とする酵素の生産方法である。
請求項 15に係る本発明は、窒素源が、硝酸塩であることを特徴とする請求項 14に 記載の酵素の生産方法である。
請求項 16に係る本発明は、窒素源が、酵母菌体又はその処理物、穀類穀皮、穀 類糠の中の少なくとも 1種類、ある 、はこれらと硝酸塩との混合物であることを特徴と する請求項 14に記載の酵素の生産方法である。
請求項 17に係る本発明は、液体培地力 硝酸塩を 0. 05〜2. 0% (wZvol)の濃 度で含有する請求項 14に記載の酵素の生産方法である。
請求項 18に係る本発明は、液体培地が、更にリン酸塩を含有することを特徴とする 請求項 15に記載の酵素の生産方法である。
請求項 19に係る本発明は、液体培地が、リン酸塩を 0. 05〜: L 0% (wZvol)の濃 度で含有する請求項 18に記載の酵素の生産方法である。
請求項 20に係る本発明は、液体培地が、更に硫酸塩を含有することを特徴とする 請求項 18に記載の酵素の生産方法である。
請求項 21に係る本発明は、液体培地が、硫酸塩を 0. 01〜0. 5% (wZvol)の濃 度で含有する請求項 20に記載の酵素の生産方法である。
請求項 22に係る本発明は、酵素が、デンプン分解酵素、セルロース分解酵素およ びタンパク分解酵素力も選ばれた 1種または 2種以上である請求項 14に記載の酵素 の生産方法である。
請求項 23に係る本発明は、原料の穀類が米、小麦、大麦、そば、ヒェ、ァヮ、キビ、 コゥリヤン又はトウモロコシであることを特徴とする請求項 14に記載の酵素の生産方 法である。
発明の効果
[0020] 本発明によれば、表面の全部又は一部が少なくとも穀皮で覆われた穀類を培養原 料とする液体培地に窒素源として特定の有機物及び Z又は無機物を添加し、さらに 硫酸塩およびリン酸塩を添加して、該液体培地で麹菌を培養することで、液体麹に おけるデンプン分解酵素の生産性を著しく向上することができるだけでなぐセル口 ース分解酵素およびタンパク分解酵素が高生産された液体麹を製造することができ る。また、上記の酵素以外にも、麹菌が生産する酵素全般について生産性が増大す るものと考えられる。
[0021] 本発明により製造した液体麹を用いて焼酎等の発酵飲食品を製造すると、セル口 ース分解酵素活性が高いことから、モロミ粘度の低下により良好な発酵が行われ、ァ ルコール収量の増大が期待できる。また、高いタンパク分解酵素活性によりアミノ酸 生成量が増大し、華や力な香りを有する発酵飲食品を製造することができる。
[0022] さらに、液体培養は、固体培養に比べ厳密な培養コントロールが可能であるため、 品質が安定した液体麹を安価に製造することができる。
しカゝも、本発明において使用される穀類は、未精白、或いは少なくとも穀皮が穀粒 の表面に残されている程度までに精白されたものであるので、原料利用率や歩留ま りの向上が期待できる。
図面の簡単な説明
[0023] [図 1]窒素源として硝酸カリウムを使用した液体培地で培養して得られた培養物のグ ルコアミラーゼ、及び耐酸性ひ—アミラーゼの活性を示す。また、黒棒はダルコアミラ ーゼ活性 (U/ml)を、白棒は耐酸性 a -アミラーゼ活性 (U/ml)を示す。
[図 2]無機窒素物と無機塩を使用した液体培地で培養して得られた培養物のダルコ アミラーゼ、及び耐酸性 α—アミラーゼの活性を示す。また、黒棒はダルコアミラーゼ 活性 (U/ml)を、白棒は耐酸性 a -アミラーゼ活性 (U/ml)を示す。
[図 3]窒素源として酵母菌体又は酵母自己消化物を使用した液体培地で培養して得 られた培養物のダルコアミラーゼ、及び耐酸性 α—アミラーゼの活性を示す。また、 黒棒はダルコアミラーゼ活性 (U/ml)を、白棒は耐酸性 a—アミラーゼ活性 (U/m 1)を示す。
[図 4]無機窒素物と無機塩と酵母菌体を組み合わせて使用した液体培地で培養して 得られた培養物のダルコアミラーゼ、及び耐酸性ひ—アミラーゼの活性を示す。また 、黒棒はダルコアミラーゼ活性 (UZml)を、白棒は耐酸性 α—アミラーゼ活性 (UZ ml)を示す。
[図 5]窒素源として大麦糠、酵母菌体及び無機窒素物を組み合わせて使用した液体 培地で培養して得られた培養物のダルコアミラーゼ、及び耐酸性 α—アミラーゼの活 性を示す。また、黒棒はダルコアミラーゼ活性 (UZml)を、白棒は耐酸性 α—アミラ ーゼ活性 (UZml)を示す。
[図 6]窒素源として大麦穀皮と酵母菌体を組み合わせて使用した液体培地で培養し て得られた培養物のダルコアミラーゼ、及び耐酸性 a—アミラーゼの活性を示す。ま た、黒棒はダルコアミラーゼ活性 (UZml)を、白棒は耐酸性 α アミラーゼ活性 (U /ml)を示す。
[図 7]硫酸塩、硝酸塩、リン酸塩を使用した液体培地で培養して得られた麹菌培養物 における各種酵素活性を示すグラフである。(A)はダルコアミラーゼ (GA)、(B)は耐 酸性 a アミラーゼ (ASAA)、 (C)はセルラーゼ(CEL)、(D)は酸性カルボキシぺプ チダーゼ (ACP)の活性(U/ml)をそれぞれ示す。
発明を実施するための最良の形態
[0024] 以下、本発明について具体的に説明する。
[0025] 本発明における液体麹の製造方法は、穀類及び窒素源等の原料を添加して調製 された液体培地で麹菌の培養を行な!/ヽ、酵素活性を増強した液体麹を製造するェ 程を包含するものである。
すなわち、本発明においては、培養原料として表面の全部又は一部が少なくとも穀 皮で覆われた穀類を含む液体培地を使用して麹菌を培養するため、当該穀類中の でん粉の糖化に時間がかかり、培養系への糖の放出速度が抑制され、液体麹の酵 素活性が増強される。さらに、特定の栄養源を含有する液体培地を用いるため、麹 菌により種々の酵素が高生産される。
[0026] ここで、麹菌が生産する酵素としては、ダルコアミラーゼ、 (X アミラーゼ等のデン プン分解酵素や、セルラーゼ、 13 -ダルコシダーゼ等のセルロース分解酵素、酸性力 ルポキシぺプチダーゼ、酸性プロテアーゼ等のタンパク分解酵素などが挙げられる 1S 必ずしもこれらに限定されない。
[0027] 本発明において、培養原料として用いる穀類としては大麦、米、小麦、そば、ヒェ、 ァヮ、キビ、コゥリヤン、トウモロコシ等を挙げることができる。これらの培養原料の形状 としては、表面の全部又は一部が少なくとも穀皮で覆われていることが必要であって 、未精白物、または少なくとも穀皮が穀粒の表面に残されている程度までに精白され た精白歩合以上のもの等を用いることができ、玄米、玄麦なども使用できる。また、米 の場合には、玄米はもちろんのこと、籾殻が全部付いているものでもよいし、籾殻が 一部付!、て!/、るものでもよ!/、。
例えば、穀類が大麦の場合には、未精白の精白歩合 100%のもの、或いは未精白 の精白歩合を 100%とし、この未精白の精白歩合(100%)から大麦の穀皮歩合 (一 般的には 7〜8%)を差し引いた割合、すなわち、 92〜93%程度の精白歩合以上の ものである。
[0028] ここで、精白歩合とは穀類を精白して残った穀類の割合を言い、例えば精白歩合 9 0%とは、穀類の表層部の穀皮等を 10%削り取ることを意味する。また、本発明にお いて玄麦とは、未精白の大麦から、穀皮が穀粒の表面に残されている程度までに精 白されたものまで、すなわち精白歩合 90%以上のものを含む。また、穀皮とは穀類 の粒の表面を覆って 、る外側部位のことを言う。
[0029] 上記の培養原料は、単独あるいは 2種以上を組み合わせて、以下の液体培地の調 製に用いる。すなわち、培養原料の穀類は、後述する窒素源とともに水と混合して液 体培地を調製する。穀類の配合割合は、麹菌培養物中にデンプン分解酵素やセル ロース分解酵素、タンパク分解酵素などの酵素が選択的に生成、蓄積される程度の ものに調製される。
[0030] 例えば、大麦を培養原料とした場合には、水に対して玄麦を 1〜20% (w/vol)添 カロした液体培地に調製される。また、玄麦として未精白の大麦を用いた場合には、さ らに好ましくは 8〜10% (w/vol)添加した液体培地に調製され、玄麦として 95%精 白した大麦を原料とした場合には、さらに好ましくは 1〜4% (w/vol)添加した液体 培地に調製される。
また、籾殻を除いた玄米を培養原料とした場合には、水に対して玄米を 1〜20% ( w/vol)、好ましくは 5〜 13% (w/vol)、より好ましくは 8〜 10% (w/vol)を添カロし た液体培地に調製される。
その他の穀類を使用する場合も、同様に水に対して 1〜20% (w/vol)添加した液 体培地に調製される。
[0031] このように、使用する原料の精白度、使用する麹菌株、培養原料の種類等によって 、最適な配合使用量は異なるので、これらを考慮して適宜に選択すればよい。
培養原料の使用量が上限値より多くなると、培養液の粘性が高くなり、麹菌を好気 培養するために必要な酸素や空気の供給が不十分となり、培養物中の酸素濃度が 低下して、培養が進み難くなるので好ましくない。一方、該原料の使用量が下限値に 満たないと、目的とする酵素が高生産されない。
[0032] 培養原料に含まれるデンプンは、培養前にあらかじめ糊化しておいてもよい。デン プンの糊化方法については特に限定はなぐ蒸きよう法、焙焼法等常法に従って行 なえばよい。後述する液体培地の殺菌工程において、高温高圧滅菌等によりデンプ ンの糊化温度以上に加熱する場合は、この処理によりデンプンの糊化も同時に行な われる。
[0033] 液体培地には、前述の培養原料の他に窒素源として有機物、無機物等を添加し含 有させる。これらの窒素源は、麹菌が増殖し、目的とする酵素が十分に生産されるも のであれば特に限定はない。有機物としては、例えば、酵母菌体又はその処理物( 例えば、酵母菌体分解物、酵母エキスなど)、穀類穀皮、穀類糠等が挙げられ、無機 物としては、例えば、硝酸塩が挙げられる。
硝酸塩としては硝酸カリウム、硝酸ナトリウムなどを用いることができ、特に硝酸カリ ゥムが好ましい。
[0034] これらの窒素源は、単独で用いる他、 2種類以上の有機物及び Z又は無機物を組 み合せて使用してもよい。
窒素源の添加量は、麹菌の増殖を促進する程度であれば特に限定はないが、有 機物としては 0. l〜2%(wZvol)、好ましくは 0. 5〜1. 0% (wZvol)である。また、 無機物としての硝酸塩の添力卩量は 0. 05-2. 0% (wZvol)、好ましくは 0. 1〜2. 0 % (w/vol)、もっとも好ましくは 0. 2〜1. 5% (w/vol)である。
上限値を超えて窒素源を添加した場合は、麹菌の増殖を阻害するため好ましくな い。また、添加量が下限値未満である場合は、酵素生産が促されないため、やはり好 ましくない。
[0035] 本発明で窒素源の一種として用いられる酵母は、醸造工程や食品製造で用いられ るビール酵母、ワイン酵母、ウィスキー酵母、焼酎酵母、清酒酵母、パン酵母のほか にサッカロマイセス (Saccharomyces)属、キャンディダ (Candida)属、トノレロプシス (Torulopsis)属、ノヽンゼ-ァスポラ (Hanseniaspora)属、ノヽンゼヌラ (Hansenula) 属、テノリオマイセス (Debaryomyces)属、サッカロマイコプシス (Saccharomycop sis)属、サッカロマイコデス (Saccharomycodes)属、ピヒア (Pichia)属、ノキイソレ ン(Pachysolen)属等の酵母菌体を挙げることができる。
[0036] これらの酵母は、菌体そのものを窒素源として用いることもできるが、酵母菌体分解 物や酵母エキスとして用いることもできる。酵母菌体分解物あるいは酵母エキスは、 酵母菌体を自己消化法 (酵母菌体内に本来あるタンパク質分解酵素を利用して菌体 を可溶化する方法)、酵素分解法 (微生物由来や植物由来の酵素製剤等を添加して 可溶化する方法)、熱水抽出物法 (熱水中に酵母菌体を一定時間浸潰して可溶ィ匕す る方法)、酸あるいはアルカリ分解法 (種々の酸あるいはアルカリを添加して可溶ィ匕す る方法)、物理的破砕法 (超音波処理や高圧ホモジナイズ法、ガラスビーズ等の固形 物を混合して混合 '攪拌することにより破砕する方法)、凍結融解法 (凍結 ·融解を 1 回以上行なうことにより破砕する方法)等により処理することで得られる。
[0037] また、窒素源として米糠等の穀類糠を用いることもでき、これは穀類を精白した時に できる副産物である。穀類の種子は表皮部、胚芽部、胚乳部と、それらを保護するモ ミガラ力もできている力 このうち胚芽と表皮部を合わせたものが糠である。
さらに、本発明においては、穀類穀皮、すなわち穀類の表皮部を窒素源として用い ることもでき、通常は培養原料の穀類と同一種類の穀類穀皮を用いる。これらの穀類 糠や穀類穀皮は他の窒素源と併用することができる。
[0038] 本発明に用いる液体培地には、前述の培養原料や窒素源の他に、硫酸塩およびリ ン酸塩を添加し含有させることができる。これらの無機塩類を併用することにより、デ ンプン分解酵素、セルロース分解酵素およびタンパク分解酵素などの酵素活性を増 強させることが可會となる。
たとえば、硫酸塩としては硫酸マグネシウム 7水和物、硫酸鉄 7水和物、硫酸アンモ -ゥムなどを用いることができ、特に硫酸マグネシウム 7水和物が好ましい。リン酸塩と してはリン酸 2水素カリウム、リン酸アンモ-ゥムなどを用いることができ、特にリン酸 2 水素カリウムが好ましい。
これらの無機塩類は、単独で用いることもでき、 2種以上を組み合わせて用いること ちでさる。
[0039] また、液体培地における上記の無機塩類の濃度は、麹菌培養物中にデンプン分解 酵素やセルロース分解酵素、タンパク分解酵素などの酵素が選択的に生成、蓄積さ れる程度のものに調整される。たとえば、硫酸塩の場合は 0. 01 -0. 5 %、好ましく ίま 0. 02〜0. 1 % ,リン酸塩の場合 ίま 0. 05〜: L 00/0、好ましく ίま 0. 1〜0. 5 ο/ο 0ヽ ずれも w/vol)とする。
上記の無機塩類は、単独で用いる他、 2種類以上を組み合わせて使用してもよい。
[0040] 液体培地には、前述の窒素源や無機塩類以外の有機物や無機塩類等も、栄養源 として適宜添加することができる。これらの添加物は麹菌の培養に一般に使用されて いるものであれば特に限定はないが、有機物としては小麦麩、コーンスティープリカ 一、大豆粕、脱脂大豆等を、無機塩類としてはアンモ-ゥム塩、カリウム塩、カルシゥ ム塩、マグネシウム塩等の水溶性の化合物を挙げることができ、 2種類以上の有機物 及び Z又は無機塩類を同時に使用してもよい。
これらの添加量は麹菌の増殖を促進する程度であれば特に限定はないが、有機物 としては 0. l〜5% (wZvol)程度、無機塩類としては 0. 1〜1 % (w/vol)程度添加す るのが好ましい。
上限値を超えてこれらの栄養源を添加した場合は、麹菌の増殖を阻害するため好 ましくない。また、添加量が下限値未満である場合は、酵素生産が促されないため、 やはり好ましくない。
[0041] 上記の培養原料および窒素源を水と混合することにより得られる麹菌の液体培地 は、必要に応じて滅菌処理を行なってもよぐ処理方法には特に限定はない。例とし ては、高温高圧滅菌法を挙げることができ、 121°Cで 15分間行なえばよい。
[0042] 滅菌した液体培地を培養温度まで冷却後、白麹菌および Zまたは黒麹菌を液体 培地に接種する。
本発明で用いる麹菌としては、ダルコアミラーゼ、耐酸性 α—アミラーゼ、 a—アミ ラーゼなどのデンプン分解酵素、セルラーゼ、 13—ダルコシダーゼなどのセルロース 分解酵素、酸性カルボキシぺプチダーゼ、酸性プロテアーゼなどのタンパク分解酵 素等の生産能を有する麹菌が好ましい。具体的には、白麹菌としてはァスペルギル ス ·カヮチ(Aspergillus kawachii)等、黒麹菌としてはァスペルギルス ·ァヮモリ(A perigillus awamori)ゃァスへノレ ノレス ·ユカ一 (Aspergillus niger)等力挙げら れる。 また、培地に接種する麹菌の形態は任意であり、胞子又は菌糸を用いることができ る。
[0043] これらの麹菌は 1種類の菌株による培養、又は同種若しくは異種の 2種類以上の菌 株による混合培養のどちらでも用いることができる。これらは胞子又は前培養により得 られる菌糸のいずれの形態のものを用いても問題はないが、菌糸を用いる方が対数 増殖期に要する時間が短くなるので好ましい。
麹菌の液体培地への接種量には特に制限はないが、液体培地 lml当り、胞子であ れば 1 X 104〜1 X 106個程度、菌糸であれば前培養液を 0. 1〜10%程度接種するこ とが好ましい。
[0044] 麹菌の培養温度は、生育に影響を及ぼさない限りであれば特に限定はないが、好 ましくは 25〜45°C、より好ましくは 30〜40°Cで行なうのがよい。培養温度が低いと、 麹菌の増殖が遅くなるため雑菌による汚染が起きやすくなる。培養時間は 24〜72時 間が適当である。
培養装置は、液体培養を行なうことができるものであればよいが、麹菌は好気培養 を行なう必要があるので、酸素や空気を培地中に供給できる好気的条件下で行なう 必要がある。また、培養中は培地中の原料、酸素、及び麹菌が装置内に均一に分布 するように撹拌をするのが好ましい。撹拌条件や通気量については、培養環境を好 気的に保つことができる条件であればいかなる条件でもよぐ培養装置、培地の粘度 等により適宜選択すればよい。
[0045] 上記の培養法で培養することにより、デンプン分解酵素、セルロース分解酵素、タ ンパク分解酵素などの酵素が高生産され、焼酎等の製造に使用できる酵素活性を有 する液体麹が得られる。
尚、本発明において液体麹とは、培養したそのものの他に、培養物を遠心分離等 することにより得られる培養液、それらの濃縮物又はそれらの乾燥物等も包含するも のとする。
[0046] 上述の通り、上記の培養法によれば、デンプン分解酵素、セルロース分解酵素、タ ンパク分解酵素などの酵素を高生産することができる。
したがって、請求項 14に記載の酵素の生産方法は、上記した液体麹の製造方法と 同様である。
[0047] 本発明の製造方法で得られた液体麹は、焼酎等の発酵飲食品の製造に好適に用 いることができる。例えば、清酒を製造する場合には、酒母や各もろみ仕込み段階に おいて、焼酎を製造する場合には、もろみ仕込み段階において、しょうゆを製造する 場合には、盛り込みの段階において、味噌を製造する場合には、仕込み段階におい て、みりんを製造する場合は、仕込み段階において、甘酒を製造する場合には、仕 込みの段階にぉ 、て、液体麹を固体麹の代わりに用いることができる。
また、得られた液体麹の一部を次の液体麹製造におけるスターターとして用いるこ ともできる。このように液体麹を連続的に製造することにより、安定的な生産が可能に なると同時に、生産効率の向上も図ることができる。
[0048] また、上記した液体麹を用いて焼酎等の発酵飲食品を製造する場合には、全工程 を液相で行なうことができる。全工程を液相で行なう発酵飲食品の製造方法としては 、例えば、焼酎を製造する場合、トウモロコシ、麦、米、いも、さとうきび等を掛け原料 に用い、該原料を約 80°Cの高温で耐熱性酵素剤を使用して溶かして液化した後、こ れに上記した液体麹、及び酵母を添加することでアルコール発酵させたもろみを、常 圧蒸留法又は減圧蒸留法等により蒸留して製造する方法が挙げられる。
[0049] 本発明の方法で得られた液体麹は、その高 、酵素活性から、酵素製剤、並びに消 ィ匕剤などの医薬品などとしての利用も可能である。この場合、得られた麹菌培養物を 所望の程度に濃縮'精製し、適当な賦形剤、増粘剤、甘味料などを添加して常法に より製剤化すればよい。
また、麹菌のデンプン分解酵素などの遺伝子のプロモーター領域を利用することに より、麹菌培養物中に目的の異種タンパク質を高生産させることが可能である。 実施例
[0050] 以下、本発明を実施例によってより具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。
[0051] 実施例 1 (液体麹の製造における無機窒素物の添加)
液体培地に無機窒素物として硝酸カリウムを添加した場合の効果を以下の方法で すなわち、無添加(対照)、 0. 2% (wZvol)又は 0. 4% (wZvol)の硝酸カリウムを 添カロした水に、原料となる玄麦を 2% (w/vol)となるようにカ卩えた 3種類の液体培地 を調製した。
それぞれの液体培地 100mlを容量 500mlのバッフル付三角フラスコに入れ、ォー トクレーブ滅菌後、あらカゝじめ液体培地で前培養した白麹菌 (Aspergillus
kawachii IFO4308)を液体培地に対して 1 % (v/vol)になるように接種した。尚 、玄麦はオーストラリア産スターリング 95%精白のものを使用した (以下の実施例も基 本的に同様)。
[0052] その後、温度 37°C、振とう速度 lOOrpmにて 48時間培養を行なった。培養終了後 、得られたそれぞれの培養物について、ダルコアミラーゼ、耐酸性 α—アミラーゼの 活性を測定した。そして、表 1及び図 1に硝酸カリウムの使用量別の液体培地で麹菌 を培養して得られた培養物のダルコアミラーゼ、及び耐酸性 α—アミラーゼの活性に ついて示した。
尚、ダルコアミラーゼの酵素活性の測定には、糖ィ匕カ分別定量キット(キッコーマン 製)を用いた。また、耐酸性 α アミラーゼの酵素活性の測定は、非特許文献 7に記 載の方法を若干改良し、培養物を酸処理することで非耐酸性 α アミラーゼを失活 させた後、 a—アミラーゼ測定キット(キッコーマン製)を用いて耐酸性 a—アミラーゼ 活性を測定した。より具体的には、培養液 lmlに 9mlの lOOmM酢酸緩衝液 (pH3) を添加して 37°Cで 1時間酸処理を行なった後に、 a—アミラーゼ測定キット (キッコー マン製)を用いて測定した。
[0053] 表 1及び図 1に示すとおり、無機窒素物である硝酸カリウムを液体培地に添加して 培養したものは 0. 2%添カ卩区、 0. 4%添カ卩区とも無添加の対象区と比較してダルコ アミラーゼと耐酸性 α—アミラーゼの両酵素の活性が大幅に増加しており、し力もグ ルコアミラーゼと耐酸性 α アミラーゼのバランスも良好であることが分かる。
[0054] [表 1] 酵素活性 (U / m 1 )
KN0 3添加量
グノレコアミラーゼ 耐酸性 α ァミラーゼ
( / vo l)
( GA ) (ASAA)
No. 1 (対照) 無添加 32. 6 2. 5
No. 2 0. 20% 8. 7
No. 3 0. 40% 7. 9
[0055] 実施例 2 (液体麹の製造における複数の無機物の添加)
次に、複数の無機物を添加した場合の効果を以下のようにして調べた。 すなわち、無機窒素物として硝酸カリウム又は硝酸ナトリウム、無機塩としてリン酸 2 水素カリウムを表 2に記載する配合で水に添加した。硝酸ナトリウムの添加量は硝酸 カリウム 2. 0%に相当するモル濃度である 20mM力も算出し、硝酸イオン濃度が等し くなるように 1. 7%配合した。対照としては、無機窒素物と無機塩無添加の水を用い た。
上記のように調製した原料水に、培養原料となる玄麦を 2% (w/vol)となるように 加えた 4種類の液体培地を調製し、実施例 1と同じ条件で白麹菌の液体培養を行な つた。その後、ダルコアミラーゼ活性、耐酸性 α アミラーゼ活性を実施例 1と同じ方 法で測定した。結果を表 2及び図 2に示す。
[0056] [表 2]
Figure imgf000017_0001
[0057] 表 2及び図 2に示すとおり、無機窒素物と無機塩を添加した場合も、無添加の対照 区と比較してダルコアミラーゼと耐酸性 a アミラーゼの両酵素の活性が増加した。
[0058] 実施例 3 (液体麹の製造における酵母菌体又は酵母自己消化物の添加)
酵母菌体又は酵母自己消化物 (酵母エキス)を添加した液体培地を用いて液体麹 を製造した。
[0059] (1)添加する酵母菌体又は酵母自己消化物の調製 ビール醸造工程から回収されたビール酵母を、以下の条件で処理し、液体麹製造 で使用するビール酵母菌体及び酵母自己消化物(1)、 (2)とした。
[0060] 酵母菌体:ビール酵母を 5,000 X g、 15分間の遠心分離により水分含量 70%程度に まで脱水して得たビール酵母菌体
酵母自己消化物(1):ビール酵母菌体を等量の水に懸濁後、 52°Cで 18時間処理し て得た酵母自己消化物
酵母自己消化物(2):ビール酵母菌体を等量の 1%乳酸に懸濁後、 52°Cで 18時間 処理して得た酵母自己消化物
[0061] (2)酵母を添加した液体培地を用いた液体麹の調製
調製した酵母菌体ならびに酵母自己消化物(1)〜(2)を、それぞれ 0. 20%、 0. 5 0%、 l% (v/vol)になるように水に添加し、原料水を調製した。これらの原料水に、 培養原料の玄麦を 2% (w/vol)となるように加えて液体培地を調製したのち、実施 例 1と同じ条件で白麹菌の液体培養を行なった。その後、ダルコアミラーゼ活性と耐 酸性 a—アミラーゼ活性を実施例 1と同じ方法で測定した。
[0062] 一方、対照区として、水に玄麦を 2% (w/vol)のみ添加して調製した液体培地 (N 0.1)についても、実施例 1と同様に白麹菌を接種して液体培養を行ない、得られた液 体麹のダルコアミラーゼ活性と耐酸性 α—アミラーゼ活性を同様に測定した。結果を 表 3及び図 3に示す。
[0063] [表 3]
Figure imgf000018_0001
*:単位は vZvol
[0064] (3)結果
表 3及び図 3に示した通り、酵母菌体そのものを添加した試験区、酵母自己消化物 を添加した試験区のいずれも、無添加の対照区 (No. l)よりもダルコアミラーゼ活性、 及び耐酸性 α—アミラーゼ活性ともに増加している。特に、 Νο.7の試験区は良好な 結果を示した。また、どの試験区においても、酵母菌体又は酵母自己消化物の添カロ 量に比例して、ダルコアミラーゼ活性と耐酸性 α—アミラーゼ活性が増加している。
[0065] 実施例 4 (無機窒素物及び Ζ又は無機塩と酵母菌体の組み合わせの添加)
硝酸カリウム、リン酸 2水素カリウム及び酵母菌体を表 4に示した通りに組み合わせ て水に添加し、原料水を調製した。使用した酵母菌体は、ビール醸造工程力も回収 したビール酵母を遠心分離により水分含量 70%程度にまで脱水した酵母菌体その もの(実施例 3の酵母菌体)である。なお、対照 (No.l)として、無添加の原料水を用い た。
表 4の組み合わせで調製した原料水に、玄麦を 2% (w/vol)添加して調製した液 体培地を用いて、実施例 1と同様にそれぞれ白麹菌を接種して液体培養を行ない、 それぞれのダルコアミラーゼ活性と耐酸性ひ一アミラーゼ活性を測定した。結果を表 4及び図 4に示す。
[0066] [表 4]
Figure imgf000020_0001
[0067] 表 4及び図 4から、全ての試験区において、無添カ卩の対照区 (No.l)よりダルコアミラ ーゼ活性と耐酸性ひ—アミラーゼ活性ともに非常に高いことが分かる。特に、試験区 Νο.15〜18は両酵素とも活性が非常に高力つた。このことから、無機窒素物及び Z又 は無機塩と酵母菌体の併用により液体培地中の栄養バランスが改善され、糸状菌に よる酵素生産が活発に行なわれたと考えられる。
[0068] 実施例 5 (大麦糠、酵母菌体、無機物の組み合わせ)
大麦糠及び酵母菌体、硝酸カリウム、リン酸 2水素カリウムを表 5に示した通りに組 み合わせて水に添加し、液体培地の原料水とした。使用した大麦糠は、 70%精白大 麦 (オーストラリア産スターリング)の搗精工程力も回収されたものであり、大麦穀皮及 び糠を含むものである。また、使用した酵母菌体は、ビール醸造工程力も回収したビ ール酵母を遠心分離により水分含量 70%程度にまで脱水した酵母菌体そのもの(実 施例 3の酵母菌体)である。一方、対照としては無添加の原料水を用いた。
表 5の組み合わせで調製した原料水に、玄麦を 2% (w/vol)添加して調製した液 体培地を用いて、実施例 1と同様にそれぞれ白麹菌を接種して液体培養し、それぞ れのダルコアミラーゼ活性及び耐酸性 α—アミラーゼ活性を同様にして測定した。結 果を表 5及び図 5に示す。
[0069] [表 5]
Figure imgf000021_0001
〇:硝酸カリウム 0. 2% (wZvol)とリン酸 2水素カリウム 0. 3% (wZvol)を添カロした 試験区
[0070] 表 5及び図 5から、全ての試験区において、無添カ卩の対照区 (No.l)よりもダルコアミ ラーゼ活性及び耐酸性ひ—アミラーゼ活性とも非常に高いことが分かる。特に、試験 区 No.4は両酵素とも活性が非常に高ぐノ《ランスも良力つた。このことから、大麦糠と 酵母菌体の併用により液体培地中の栄養バランスが改善され、糸状菌による酵素生 産が活発に行なわれたと考えられる。
なお、大麦糠又は酵母菌体と無機窒素物及び無機塩との併用 (No.8、 No.9)も良 好な結果を示した。
[0071] 実施例 6 (大麦穀皮と酵母菌体の組み合わせの添加)
硝酸カリウム、リン酸 2水素カリウム、大麦穀皮及び酵母菌体を表 6に示した通りに 組み合わせて原水に添加し、液体培地の原料水とした。使用した大麦穀皮は、 70% 精白大麦の搗精工程力 得られた大麦糠を 2mmメッシュのふるいに通して、大麦穀 皮のみを回収したものである。また、使用した圧搾酵母は、ビール醸造工程から回収 したビール酵母を遠心分離により水分含量 70%程度にまで脱水した酵母菌体その もの(実施例 3の酵母菌体)である。一方、対照として、無添加の原水 (No.l)を用いた 表 6の組み合わせで調製した原料水に、玄麦を 2% (w/vol)添加して調製した液 体培地を用いて、実施例 1と同様にそれぞれ白麹菌を接種して液体培養し、得られ た液体麹のダルコアミラーゼ活性と耐酸性 α—アミラーゼ活性を測定した。結果を表 6及び図 6に示す。
[0072] [表 6]
Figure imgf000022_0001
[0073] 表 6及び図 6から、全ての試験区において、無添カ卩の対照区 (No.l)よりもダルコアミ ラーゼ活性と耐酸性 α—アミラーゼ活性ともに非常に高いことが分かる。特に、試験 区 Νο.6〜9は両酵素とも活性が非常に高ぐバランスも良力つた。このことから、大麦 穀皮と酵母菌体の併用により液体培地中の栄養バランスが改善され、糸状菌による 酵素生産が活発に行なわれたと考えられる。
[0074] 実施例 7 (液体麹製造における硫酸塩添加効果)
以下のような方法で液体麹を製造し、それらの酵素活性を測定した。
1.前培養方法
65%精白麦(オーストラリア産スターリング) 8gと水 100mlを 500π バッフル付三角 フラスコに張り込み、 121°Cで 15分間オートクレープ滅菌した。放冷後、この前培養 培地に白麹菌(Aspergillus kawachii NBRC4308)を 1 X 106個 Zmlになるように植菌 し、 37°C、 24時間、 lOOrpmで振盪培養し、前培養液とした。
[0075] 2.本培養方法
98%精白麦(玄麦、オーストラリア産スターリング) 2. 0% (w/vol) 硝酸カリウム 0. 2% (wZvol)、リン酸 2水素カリウム 0. 3% (wZvol)、硫酸マグネシウム 7水和物 0. l% (wZvol)及び塩化マグネシウム 6水和物 0. 082 (wZvol)を表 7に示す組成 比で含む 5試験区の液体培地 100mlを調製した。これらの液体培地を 500π バッフ ル付三角フラスコに張り込み、 121°Cで 15分間オートクレープ滅菌した。
放冷後、この本培養培地へ前培養液 lmlを植菌し、 37°C、 48時間、 lOOrpmで振 盪培養した。なお、塩ィ匕マグネシウム 6水和物の添カ卩量は、硫酸マグネシウム 7水和 物 0. 1%に相当するモル濃度である 8. 12mM力 算出し、各試験区の培地中のマ グネシゥム濃度が等しくなるように配合した。
[0076] [表 7]
Figure imgf000023_0001
[0077] 3.酵素活性測定法
培養終了後、デンプン分解酵素であるダルコアミラーゼ活性 (GA)と耐酸性ひ—ァ ミラーゼ活性 (ASAA)について測定した。
ダルコアミラーゼ活性 (GA)の測定は、糖ィ匕カ分別定量キット (キッコーマン製)を用 いて行った。
耐酸性 α—アミラーゼ活性 (ASAA)の測定は、 < Sudo S. et al: J. Ferment. Bi oeng., 76,105— 110(1993)、 Sudo S. et al: J. Ferment. Bioeng., 77, 483— 489(199 4)、須藤茂俊ら: 日本醸造協会誌., 89, 768-774(1994) >に記載の方法を若干改良 し、培養物を酸処理することで非耐酸性ひ—アミラーゼ活性を失活させた後、 —ァ ミラーゼ測定キット (キッコーマン製)を用いて行なった。より具体的には、培養液 lml に 9mlの lOOmM 酢酸緩衝液 (pH3)を添カ卩し、 37°Cで 1時間酸処理を行なった後 に、 a アミラーゼ測定キット (キッコーマン製)を用いて測定した。
[0078] また、セルロース分解酵素であるセルラーゼ活性 (CEL)と、タンパク分解酵素のひ とつである酸性カルボキシぺプチダーゼ活性 (ACP)の測定も同時に行なった。
セルラーゼ活性 (CEL)は、カルボキシメチルセルロース(CMC)を基質として加水分 解により生じた還元糖量を、ジニトロサリチル酸(Dinitrosalicylic acid; DNS)法により 定量する方法により行なった。より具体的には、 1%CMC基質溶液 (シグマ社製 low vi scosity (商品名)を lOOmM酢酸緩衝液 (ρΗδ)に溶解) 1mlに培養液 lmlをカ卩えて、 40°Cにて正確に 10分間酵素反応を行なわせた後、 DNS試薬 (0.75%ジ-トロサリチ ル酸、 1.2%水酸ィ匕ナトリウム、 22.5%酒石酸ナトリウムカリウム 4水和物、 0.3%乳糖 1 水和物を含む) 4mlを加えてよく混合し、反応を停止した。反応停止液に含まれる還 元糖量を定量するために、反応停止液を沸騰水浴中で 15分間正確に加熱した。続 いて、室温まで冷却した後、 540nmの吸光度を測定することでグルコースに相当する 還元糖量として定量した。 1単位のセルラーゼ活性 (CEL)は、 1分間に: molのダル コースに相当する還元糖を生成する酵素量として表した。
酸性カルボキシぺプチダーゼ活性 (ACP)の測定は、酸性カルボキシぺプチダーゼ 測定キット(キッコーマン製)を用いて行なった。
測定結果を図 7に示す。
[0079] 4.結果
図 7 (A)に示すように、硫酸マグネシウム添カ卩区である試験区 2で、ダルコアミラーゼ 活性が顕著に上昇した。また、図 7 (C)や図 7 (D)に示すように、硫酸マグネシウム添 加区である試験区 2では、セルラーゼゃ酸性カルボキシぺプチダーゼ活性も上昇し た。一方、同じマグネシウム塩である塩ィ匕マグネシウムを添加した試験区 3では活性 が上昇しな力つたことから、これらの酵素生産性増大効果の本体が、硫酸根にあるこ とが示唆された。
また、硫酸マグネシウムが添加されている力 硝酸カリウムやリン酸 2水素カリウムが 欠乏している試験区 4、 5では、酵素生産性増大効果が確認されな力つたことから、 硝酸塩、リン酸塩および硫酸塩が共に含まれているときに、顕著に酵素生産性が向 上することが分力つた。
[0080] このように、表面が穀皮で覆われた穀類(玄麦)と、硝酸塩、リン酸塩ならびに硫酸 塩をカ卩えた液体培地を用いて麹菌を培養することで、ダルコアミラーゼや耐酸性 α— アミラーゼといった焼酎等の製造に必要な酵素群に加えて、セルロース分解酵素で あるセルラーゼゃ、タンパク分解酵素である酸性カルボキシぺプチダーゼが同時に 高生産された液体麹が製造できる。
セルロース分解酵素が高生産されることで、焼酎製造におけるもろみ粘度の低下や アルコール収量の増大が期待できるし、また、タンパク分解酵素が高生産されること で、焼酎もろみのアミノ酸成分が増大すれば、華やカゝな香りを持つ焼酎製造も可能と なる。
また、本発明の方法により、今回測定された酵素以外のデンプン分解酵素群ゃセ ルロース分解酵素群、タンパク質分解酵素群など、麹菌の生産する酵素群が全般的 に高生産されて 、る可能性が高 、と思われる。
産業上の利用可能性
本発明によれば、液体麹におけるデンプン分解酵素の生産性を著しく向上すること ができるだけでなぐセルロース分解酵素およびタンパク分解酵素が高生産された液 体麹を製造することができる。し力も、液体培養は、固体培養に比べ厳密な培養コン トロールが可能であるため、品質が安定した液体麹を効率よぐかつ安価に製造する ことができる。
本発明により製造した液体麹を焼酎等の発酵飲食品の製造に用いることにより、ァ ルコール収量やアミノ酸生成量が増大し、華やかな香味の発酵飲食品を効率よく製 造することができる。
しカゝも、本発明において使用される穀類は、未精白、或いは少なくとも穀皮が穀粒 の表面に残されている程度までに精白されたものであるので、原料利用率や歩留ま りの向上が期待できる。

Claims

請求の範囲
[I] 表面の全部又は一部が少なくとも穀皮で覆われた穀類を培養原料とし、窒素源を 含有する液体培地で白麹菌および Zまたは黒麹菌を培養することを特徴とする酵素 活性の増強された液体麹の製造方法。
[2] 窒素源が硝酸塩であることを特徴とする請求項 1に記載の酵素活性の増強された 液体麹の製造方法。
[3] 窒素源が、酵母菌体又はその処理物、穀類穀皮、穀類糠の中の少なくとも 1種類、 あるいはこれらと硝酸塩との混合物であることを特徴とする請求項 1に記載の酵素活 性の増強された液体麹の製造方法。
[4] 液体培地が、硝酸塩を 0. 05〜2. 0% (w/vol)の濃度で含有する請求項 1に記 載の酵素活性の増強された液体麹の製造方法。
[5] 液体培地が、更にリン酸塩を含有することを特徴とする請求項 2に記載の酵素活性 の増強された液体麹の製造方法。
[6] 液体培地が、リン酸塩を 0. 05〜: L 0% (w/vol)の濃度で含有する請求項 5に記 載の酵素活性の増強された液体麹の製造方法。
[7] 液体培地が、更に硫酸塩を含有することを特徴とする請求項 5に記載の酵素活性 の増強された液体麹の製造方法。
[8] 液体培地が、硫酸塩を 0. 01-0. 5% (w/vol)の濃度で含有する請求項 7に記 載の酵素活性の増強された液体麹の製造方法。
[9] 酵素が、デンプン分解酵素、セルロース分解酵素およびタンパク分解酵素から選 ばれた 1種または 2種以上である請求項 1に記載の酵素活性の増強された液体麹の 製造方法。
[10] 穀類が、米、小麦、大麦、そば、ヒェ、ァヮ、キビ、コゥリヤン又はトウモロコシであるこ とを特徴とする請求項 1に記載の酵素活性の増強された液体麹の製造方法。
[I I] 請求項 1〜10のいずれか一項に記載の方法で得られた液体麹。
[12] 請求項 11に記載の液体麹を用いることを特徴とする酵素製剤の製造方法。
[13] 請求項 12に記載の方法で得られた酵素製剤。
[14] 培養原料である表面の全部又は一部が少なくとも穀皮で覆われた穀類と、窒素源 とを含む液体培地で、白麹菌および Zまたは黒麹菌を培養して酵素を生産すること を特徴とする酵素の生産方法。
[15] 窒素源が、硝酸塩であることを特徴とする請求項 14に記載の酵素の生産方法。
[16] 窒素源が、酵母菌体又はその処理物、穀類穀皮、穀類糠の中の少なくとも 1種類、 あるいはこれらと硝酸塩との混合物であることを特徴とする請求項 14に記載の酵素 の生産方法。
[17] 液体培地が、硝酸塩を 0. 05〜2. 0% (w/vol)の濃度で含有する請求項 14に記 載の酵素の生産方法。
[18] 液体培地が、更にリン酸塩を含有することを特徴とする請求項 15に記載の酵素の 生産方法。
[19] 液体培地が、リン酸塩を 0. 05〜: L 0% (w/vol)の濃度で含有する請求項 18に 記載の酵素の生産方法。
[20] 液体培地が、更に硫酸塩を含有することを特徴とする請求項 18に記載の酵素の生 産方法。
[21] 液体培地が、硫酸塩を 0. 01-0. 5% (w/vol)の濃度で含有する請求項 20に記 載の酵素の生産方法。
[22] 酵素が、デンプン分解酵素、セルロース分解酵素およびタンパク分解酵素から選 ばれた 1種または 2種以上である請求項 14に記載の酵素の生産方法。
[23] 原料の穀類が米、小麦、大麦、そば、ヒェ、ァヮ、キビ、コゥリヤン又はトウモロコシで あることを特徴とする請求項 14に記載の酵素の生産方法。
PCT/JP2006/314372 2004-04-09 2006-07-20 液体麹の製造方法 WO2007010979A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2006270826A AU2006270826C1 (en) 2004-04-09 2006-07-20 Method of producing liquid koji
CA002614457A CA2614457A1 (en) 2005-07-22 2006-07-20 Method of producing liquid koji
US11/995,942 US20100120119A1 (en) 2005-07-22 2006-07-20 Method of producing liquid koji
EP06781332.9A EP1908818B1 (en) 2005-07-22 2006-07-20 Process for production of liquid koji
CN2006800239961A CN101218338B (zh) 2005-07-22 2006-07-20 生产液体曲的方法
KR1020087001649A KR101394009B1 (ko) 2005-07-22 2006-07-20 액체국의 제조 방법
BRPI0613646-0A BRPI0613646A2 (pt) 2005-07-22 2006-07-20 método de produzir koji lìquido tendo atividade realçada de uma enzima, koji lìquido, método de produzir uma preparação de enzima, preparação de enzima, e, método de produzir uma enzima
ES06781332.9T ES2521623T3 (es) 2005-07-22 2006-07-20 Procedimiento de producción de koji líquido
DK06781332.9T DK1908818T3 (da) 2005-07-22 2006-07-20 Fremgangsmåde til fremstilling af flydende koji

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005212290 2005-07-22
JP2005-212290 2005-07-22
JP2005-290651 2005-10-04
JP2005290651 2005-10-04

Publications (1)

Publication Number Publication Date
WO2007010979A1 true WO2007010979A1 (ja) 2007-01-25

Family

ID=37668851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314372 WO2007010979A1 (ja) 2004-04-09 2006-07-20 液体麹の製造方法

Country Status (12)

Country Link
US (1) US20100120119A1 (ja)
EP (1) EP1908818B1 (ja)
KR (1) KR101394009B1 (ja)
CN (1) CN101218338B (ja)
AU (1) AU2006270826C1 (ja)
BR (1) BRPI0613646A2 (ja)
CA (1) CA2614457A1 (ja)
DK (1) DK1908818T3 (ja)
ES (1) ES2521623T3 (ja)
RU (1) RU2409659C2 (ja)
TW (1) TWI422679B (ja)
WO (1) WO2007010979A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932905A4 (en) * 2005-10-05 2010-01-06 Asahi Breweries Ltd PROCESS FOR PRODUCING FUNGAL CULTURE
US8124374B2 (en) 2005-10-12 2012-02-28 Asahi Breweries, Ltd. Method of producing recombinant protein

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802170B2 (en) 2004-04-09 2014-08-12 Asahi Breweries, Ltd. Method of manufacturing liquid koji
CN102604876A (zh) * 2012-04-10 2012-07-25 江苏今世缘酒业股份有限公司 细菌液体培养基及制备方法
KR101571827B1 (ko) 2013-04-17 2015-11-25 샘표식품 주식회사 전분 분해 효소 활성을 지니는 균주의 생산방법
JP6337366B2 (ja) * 2013-12-06 2018-06-06 三和油脂株式会社 米糠麹の製造方法およびこれを用いた米糠麹糖化物、米糠麹穀物粉糖化物の製造方法
KR101745784B1 (ko) 2015-09-03 2017-06-20 씨제이제일제당 (주) 전통 메주에서 분리한 신균주와 이를 이용한 콩곡자 제조방법 및 그 제조방법에 의해 제조된 콩곡자
RU2668152C1 (ru) * 2017-12-21 2018-09-26 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ПРОБЛЕМ ЭКОЛОГИИ И ЭВОЛЮЦИИ им. А.Н. СЕВЕРЦОВА РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПЭЭ РАН) Способ стимуляции активности грибов-биодеструкторов полимерных отходов

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225746A (ja) 1998-02-20 1999-08-24 Gekkeikan Sake Co Ltd 麹菌の培養方法
JP2001321154A (ja) 2000-05-12 2001-11-20 Takara Shuzo Co Ltd 液体麹及びそれを用いた酒類の製造方法
JP2003047455A (ja) * 2001-08-06 2003-02-18 Takara Holdings Inc 液体麹の製造方法及びその利用
JP2003265165A (ja) 2002-03-13 2003-09-24 Asahi Kyowa Shurui Seizo Kk 麹菌の培養方法
JP2004352320A (ja) 2003-05-30 2004-12-16 Jfe Plant & Service Corp 地下貯蔵タンクの液体漏洩検知装置
JP2004350661A (ja) 2003-05-26 2004-12-16 Setsuko Kawa 野菜収穫装置
JP2005318886A (ja) * 2004-04-09 2005-11-17 Asahi Breweries Ltd 液体麹の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117096A (en) * 1978-02-27 1979-09-11 Masahisa Takeda Brewing of alcoholic drink
FR2788782B1 (fr) * 1999-01-25 2003-01-31 Gie Agro Ind Produit multienzymatique a activites glucoamylasique, proteolytique et xylanasique et procede pour sa production par fermentation a l'etat solide de son de ble avec aspergillus niger
CN1112436C (zh) * 2000-09-20 2003-06-25 宋书玉 固体曲、液体曲联合发酵生产白酒的方法
JP4309073B2 (ja) * 2001-03-19 2009-08-05 株式会社玄米酵素 大腸癌発症抑制栄養補助組成物並びに製造方法
US7186540B2 (en) * 2001-12-27 2007-03-06 National Institute of Advanced Indusrtial Science and Technology Thermostable glutaminase and thermostable glutaminase gene
KR100449170B1 (ko) * 2002-01-21 2004-09-16 학교법인고려중앙학원 셀룰라아제(Cellulase)와 자일란아제(xylanase)를 생산하는 아스퍼질러스 나이거(Aspergillus niger) KK2 균주와 이에 의해 제조된 효소 및 고체 배양물
US8802170B2 (en) * 2004-04-09 2014-08-12 Asahi Breweries, Ltd. Method of manufacturing liquid koji

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225746A (ja) 1998-02-20 1999-08-24 Gekkeikan Sake Co Ltd 麹菌の培養方法
JP2001321154A (ja) 2000-05-12 2001-11-20 Takara Shuzo Co Ltd 液体麹及びそれを用いた酒類の製造方法
JP2003047455A (ja) * 2001-08-06 2003-02-18 Takara Holdings Inc 液体麹の製造方法及びその利用
JP2003265165A (ja) 2002-03-13 2003-09-24 Asahi Kyowa Shurui Seizo Kk 麹菌の培養方法
JP2004350661A (ja) 2003-05-26 2004-12-16 Setsuko Kawa 野菜収穫装置
JP2004352320A (ja) 2003-05-30 2004-12-16 Jfe Plant & Service Corp 地下貯蔵タンクの液体漏洩検知装置
JP2005318886A (ja) * 2004-04-09 2005-11-17 Asahi Breweries Ltd 液体麹の製造方法

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BLANDINO A. ET AL.: "Utilization of whole wheat flour for the production of extracellular pectinases by some fungal strains", PROCESS BIOCHEMISTRY, vol. 37, no. 5, 2001, pages 497 - 503, XP003007639 *
HATA Y. ET AL., GENE, vol. 207, 1998, pages 127 - 134
HATA Y. ET AL., J. FERMENT. BIOENG., vol. 84, 1997, pages 532 - 537
ISHIDA H. ET AL., CURR. GENET., vol. 37, 2000, pages 373 - 379
ISHIDA H. ET AL., J. FERMENT. BIOENG., vol. 86, 1998, pages 301 - 307
IWASHITA K. ET AL., BIOSCI. BIOTECHNOL. BIOCHE., vol. 62, 1998, pages 1938 - 1946
NAGAMINE K. ET AL., BIOSCI. BIOTECHNOL. BIOCHEM, vol. 67, 2003, pages 2194 - 2202
See also references of EP1908818A4
SHIBATA S. AND NAKAE T.: "Revised and enlarged Komugiko Seihin no Chishiki", 2000, KABUSHIKI KAISHA SAIWAI SHOBO, pages: 72 - 73, XP003007642 *
SHIGETOSHI SUDO ET AL., JOURNAL OF THE BREWING SOCIETY OF JAPAN, vol. 89, 1994, pages 768 - 774
SOTOIKE R.: "Sake no Jiten", KABUSHIKI KAISHA TOKYODO SHUPPAN, 1980, pages 79 - 81, XP003007643 *
SREEKANTIAH K.R. ET AL: "Effekt of Cultural and Nutritional Variations on Certain Exo-Enzymes Secreted by Fungi", CHEM. MIKROBIOL. TECHNOL. LEBENSM., vol. 2, no. 2, 1973, pages 42 - 48, XP003007641 *
SUDO S . ET AL., J. FERMENT. BIOENG., vol. 77, 1994, pages 483 - 489
SUDO S. ET AL., J. FERMENT. BIOENG., vol. 76, 1993, pages 105 - 110
SUDO S. ET AL., J. FERMENT. BIOENG., vol. 77, 1994, pages 483 - 489
SUDO S. ET AL., J..FERMENT. BIOENG, vol. 76, 1993, pages 105 - 110
WAKO H. ET AL.: "Ekitai Kojiho ni yoru Komezu Moromi no Seizo", HIROSHIMA-KEN SHOKUHIN KOGYO SHIKENJO KENKYU HOKOKU, vol. 15, 1980, pages 13 - 19, XP003007640 *
YUICHI YAMANE ET AL., JOURNAL OF THE BREWING SOCIETY OF JAPAN, vol. 99, 2004, pages 84 - 92

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932905A4 (en) * 2005-10-05 2010-01-06 Asahi Breweries Ltd PROCESS FOR PRODUCING FUNGAL CULTURE
US8715979B2 (en) 2005-10-05 2014-05-06 Asahi Breweries, Ltd. Method of producing filamentous fungus culture product
US8124374B2 (en) 2005-10-12 2012-02-28 Asahi Breweries, Ltd. Method of producing recombinant protein

Also Published As

Publication number Publication date
AU2006270826A1 (en) 2007-01-25
US20100120119A1 (en) 2010-05-13
DK1908818T3 (da) 2014-11-03
EP1908818A4 (en) 2009-11-04
EP1908818B1 (en) 2014-10-15
TWI422679B (zh) 2014-01-11
RU2409659C2 (ru) 2011-01-20
TW200738875A (en) 2007-10-16
CA2614457A1 (en) 2007-01-25
CN101218338A (zh) 2008-07-09
AU2006270826B2 (en) 2011-07-14
ES2521623T3 (es) 2014-11-13
BRPI0613646A2 (pt) 2012-11-06
CN101218338B (zh) 2012-04-04
RU2008106769A (ru) 2009-08-27
EP1908818A1 (en) 2008-04-09
KR101394009B1 (ko) 2014-05-12
AU2006270826C1 (en) 2011-12-22
KR20080036044A (ko) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4966346B2 (ja) 糸状菌培養物の製造方法
WO2007010979A1 (ja) 液体麹の製造方法
JP4113252B2 (ja) 植物繊維溶解酵素が増強された液体麹の製造方法、該方法により得られた液体麹およびその用途
JP3718677B2 (ja) 液体麹の製造方法
JP4083194B2 (ja) 液体麹の製造方法
JP4096026B2 (ja) 液体麹を用いた穀類又は芋類の液化方法
JP4906648B2 (ja) 糸状菌培養物の製造方法
JP4723340B2 (ja) 液体麹を用いた清酒の製造方法
JP2007074911A (ja) 液体麹を用いた醤油の製造方法
JP3718681B1 (ja) 雑穀類を用いる液体麹の製造法
JP3718678B1 (ja) 玄米を用いる液体麹の製造方法
JP4482365B2 (ja) 液体麹の製造方法
JP5080730B2 (ja) 液体麹の連続製造方法
JP3718679B1 (ja) 豆類又は芋類を用いる液体麹の製造法
JP4068649B2 (ja) 黄麹菌を用いた液体麹の製造方法
JP4906649B2 (ja) 糸状菌培養物の製造方法
WO2012049737A1 (ja) デンプン分解酵素活性及び食物繊維分解酵素活性が増強された液体麹の製造方法
JP4489488B2 (ja) 液体麹酒母の製造方法とそれを用いた酒類の製造方法
JP2011078366A (ja) デンプン分解酵素活性及び食物繊維分解酵素活性が増強された液体麹の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023996.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006781332

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2614457

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006270826

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12008500145

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1020087001649

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 359/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006270826

Country of ref document: AU

Date of ref document: 20060720

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11995942

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1200800415

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2008106769

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0613646

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080121