WO2007010860A1 - 希土類焼結磁石及びその製造方法 - Google Patents

希土類焼結磁石及びその製造方法 Download PDF

Info

Publication number
WO2007010860A1
WO2007010860A1 PCT/JP2006/314076 JP2006314076W WO2007010860A1 WO 2007010860 A1 WO2007010860 A1 WO 2007010860A1 JP 2006314076 W JP2006314076 W JP 2006314076W WO 2007010860 A1 WO2007010860 A1 WO 2007010860A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
rare earth
sintered magnet
powder
alloy
Prior art date
Application number
PCT/JP2006/314076
Other languages
English (en)
French (fr)
Inventor
Hideyuki Morimoto
Tomoori Odaka
Original Assignee
Neomax Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005207645A external-priority patent/JP4645336B2/ja
Priority claimed from JP2005233110A external-priority patent/JP5235264B2/ja
Priority claimed from JP2005324058A external-priority patent/JP4635832B2/ja
Priority claimed from JP2005349280A external-priority patent/JP4972919B2/ja
Priority claimed from JP2006039274A external-priority patent/JP4687493B2/ja
Application filed by Neomax Co., Ltd. filed Critical Neomax Co., Ltd.
Priority to CN2006800009480A priority Critical patent/CN101031984B/zh
Priority to DE112006000070T priority patent/DE112006000070T5/de
Priority to US11/575,928 priority patent/US9551052B2/en
Publication of WO2007010860A1 publication Critical patent/WO2007010860A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a rare earth sintered magnet and a manufacturing method thereof.
  • a rare earth-iron-boron-based rare earth sintered magnet which is a typical high-performance permanent magnet, has a structure including an R Fe B-type crystal phase (main phase), which is a tetragonal compound, and a grain boundary phase. Excellent magnets
  • R is a rare earth element and at least one element selected from the group force of yttrium force, and mainly contains Nd and Z or Pr.
  • Fe is iron and B is boron, and some of these elements may be replaced by other elements.
  • a rare earth element R concentration is relatively high
  • an R-rich phase a boron concentration is relatively high
  • a B-rich phase exists.
  • R-TB sintered magnet a rare earth-iron-boron-based rare earth sintered magnet
  • T is a transition metal element mainly composed of iron.
  • the R ⁇ ⁇ phase main phase
  • ferromagnetic phase that contributes to the magnetization action and exists in the grain boundary phase.
  • the R-rich phase is a low melting nonmagnetic phase.
  • R— ⁇ -based sintered magnets are made by compacting a fine powder (average particle size: several / zm) of an alloy for R ——- ⁇ sintered magnets (master alloy) with a press machine, and then sintering. Manufactured by doing. After sintering, aging treatment is performed as necessary.
  • the mother alloy used for the production of the R—T B based sintered magnet is preferably produced by using an ingot method by die forging or a strip casting method in which the molten alloy is rapidly cooled using a cooling roll.
  • Patent Documents 5 and 6 disclose addition of V (vanadium) in order to obtain a coercive force improving effect.
  • Patent Documents 7 to 11 disclose rare earth sintered magnets to which various metal elements are added.
  • Patent Document 1 Japanese Patent Laid-Open No. 60-32306
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-234733
  • Patent Document 3 Japanese Patent Laid-Open No. 4-217302
  • Patent Document 4 Japanese Patent Laid-Open No. 60-138056
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-277795
  • Patent Document 6 Japanese Patent No. 2787580
  • Patent Document 7 Japanese Unexamined Patent Publication No. 59-89401
  • Patent Document 8 JP-A-59-132104
  • Patent Document 9 JP-A-1-220803
  • Patent Document 10 JP-A-5-205927
  • Patent Document 11 Japanese Patent Laid-Open No. 2003-17308
  • Dy, Tb, and Ho have the effect of increasing the coercive force as the added amount is increased.
  • Dy, Tb, and Ho are rare elements.
  • the addition of Al, Cu, and V improves the coercive force, but has the problem of reducing the residual magnetic flux density Br.
  • the present invention has been made to solve the above-mentioned problems, and its main purpose is to add A1 and Cu while exhibiting a coercive force equivalent to that when A1 and Cu are added. It is an object of the present invention to provide a rare earth sintered magnet having a higher residual magnetic flux density than that of the case.
  • the rare earth sintered magnet of the present invention comprises 12.0 atomic% to 15.0 atomic% of a rare earth element (at least one element selected from the group consisting of Nd, Pr, Gd, Tb, Dy, and Ho) Nd and Z or Pr containing 50% or more), 5.5 atomic% to 8.5 atomic% of boron (B), a predetermined amount of added metal A, the balance of iron (Fe) and inevitable Rare earth sintered magnet containing a predetermined impurity, wherein the predetermined amount of additive metal A is 0.005 atomic% to 0.30 atomic% of silver (Ag), 0.005 atomic% to 0.40 atomic atom. % of nickel (Ni), and 0.005 atomic% to 0. at least one of 20 atoms 0/0 gold (Au).
  • a rare earth element at least one element selected from the group consisting of Nd, Pr, Gd, Tb, Dy, and Ho
  • B 5.5 atomic% to 8.5 atomic% of boron
  • the composition ratio of Ag is 0.005 atomic% to 0.20 atomic%.
  • the composition ratio of Ni is 0.005 atomic percent to 0.20 atomic percent.
  • the composition ratio of Au is 0.005 atomic% to 0.10 atomic%.
  • the inevitable impurities include A1, and the content of A1 is 0.
  • 0.05 atomic% to 1.0 atomic% of element M (M is selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) And at least one element).
  • the method for producing a rare earth sintered magnet according to the present invention is selected from 12.0 atomic% to 15.0 atomic% of rare earth elements (group power consisting of Nd, Pr, Gd, Tb, Dy, and Ho). At least one element including Nd and Z or Pr of 50% or more), 5.5 atomic% to 8.5 atomic% boron (B), a predetermined amount of additive metal A, and the balance An alloy containing iron (Fe) and inevitable impurities, wherein the predetermined amount of added metal A is 0.005 atomic% to 0.30 atomic% of silver (Ag), 0.005 atomic% to 0.00.
  • Ni 40 atomic percent nickel (Ni), and 0.005 atomic percent to 0.20 raw material Including a step of preparing an alloy that is at least one of a small percentage of gold (Au), a step of pulverizing the alloy to produce a powder, and a step of sintering the powder.
  • Au gold
  • the alloy comprises 0.05 atomic percent to 1.0 atomic percent of element M (
  • M further includes at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W.
  • the inevitable impurities include A1, and the content of A1 is 0.
  • Another method of manufacturing a rare earth sintered magnet according to the present invention is to select a group force composed of 12.0 atomic% to 15.0 atomic% of rare earth elements (Nd, Pr, Gd, Tb, Dy, and Ho). At least one element including Nd and Z or Pr of 50% or more), 5.5 atomic% to 8.5 atomic% of boron (B), and the balance iron (Fe) and inevitable impurities
  • a step of preparing an alloy containing the above a step of pulverizing the alloy to produce a powder, 0.005 atomic% to 0.30 atomic% of silver (Ag), 0.005
  • a process for producing a powder containing a trace element by adding at least one of atomic% to 0.40 atomic% nickel (Ni) and 0.005 atomic% to 0.20 atomic% gold (Au). And a step of sintering the trace element-added powder.
  • the element M (M of 0.05 atomic% to 1. 0 Nuclear 0/0, Ti, V, Cr, Zr , Nb, Mo, Hf And at least one element selected from the group consisting of T, W, and W) is further added.
  • the method for producing a rare earth sintered magnet according to the present invention is selected from 12.0 atomic% to 15.0 atomic% of rare earth elements (group power consisting of Nd, Pr, Gd, Tb, Dy, and Ho). At least one element, including 50% or more of Nd and Z or Pr), 5.5 atomic% to 8.5 atomic% boron (B), the balance iron (Fe) and inevitable impurities
  • a rare earth magnet alloy powder comprising: a process A for preparing an alloy powder to which a lubricant is added; and a process B for producing a compact of the alloy powder and then sintering the compact And the lubricant contains an aliphatic silver rubonic acid salt or an aromatic carboxylic acid silver salt.
  • the aliphatic carboxylic acid silver salt or the aromatic carboxylic acid is used.
  • the amount of silver salt added is adjusted so that the composition ratio of Ag in the rare earth sintered magnet is 0.005 atomic percent to 0.2 atomic percent.
  • the step A of preparing the alloy powder includes 12.0 atomic% to 15.0 atomic% of a rare earth element (from the group consisting of Nd, Pr, Gd, Tb, Dy, and Ho). At least one element selected, containing 50% or more of Nd and Z or Pr), 5.5 atomic% to 8.5 atomic% boron (B), the balance iron (Fe) and inevitable
  • a step of preparing an alloy for rare earth magnets containing impurities a step of producing a coarsely pulverized powder of the alloy, a step of producing a coarsely pulverized powder of the alloy, and a step of producing a finely pulverized powder.
  • the aliphatic carboxylic acid silver salt or the aromatic carboxylic acid silver salt has 6 to 20 carbon atoms.
  • the inevitable impurities include A1, and the content of A1 is 0.
  • the rare earth sintered magnet of the present invention has the same holding capacity as a conventional R-Fe-B sintered magnet added with Cu or A1 by the action of Ag, Ni, or Au added in a small amount. In addition to expressing magnetic force, it can show higher residual magnetic flux density than those magnets.
  • FIG. 1 is a graph showing the relationship between Ag addition amount and magnet characteristics.
  • the left vertical axis of the graph is the coercive force H (kAZm), and the right vertical axis is the residual magnetic flux density B (T).
  • the measured value of coercive force is “cj r
  • the measured value of residual magnetic flux density B is indicated by “ ⁇ ”.
  • FIG. 2 is a graph showing the relationship between the amount of Ag added and the coercive force H.
  • Ag metal powder is cj
  • the measurement result when added is indicated by “ ⁇ ”, and the measurement result when Ag O powder is added is “ ⁇ ”.
  • FIG. 3 is a graph showing the relationship between residual magnetic flux density B and the amount of A1 added.
  • FIG. 4 is a graph showing the relationship between the amount of Ag added and the coercive force H.
  • FIG. 5 is a graph showing the relationship between the amount of element M added and the coercive force H.
  • FIG. 6 is a graph showing the relationship between Ag addition amount and magnet characteristics.
  • the left vertical axis of the graph is the coercive force H (kAZm), and the right vertical axis is the residual magnetic flux density B (T).
  • the measured value of coercive force is “cj r
  • FIG. 7 is a graph showing the relationship between residual magnetic flux density B and the amount of A1 added.
  • FIG. 8 is a graph showing the relationship between the amount of Ni added and magnet characteristics.
  • the left vertical axis of the graph is the coercive force
  • the measured value of residual magnetic flux density B is indicated by “ ⁇ ”.
  • FIG. 9 is a graph showing the relationship between the Ni content and the coercive force H.
  • the measurement result when Ni metal powder is added is indicated by “ ⁇ ”
  • the measurement result when NiO powder is added is indicated by “X”.
  • FIG. 10 is a graph showing the relationship between residual magnetic flux density B and A1 addition amount.
  • FIG. Ll is a graph showing the relationship between the amount of added Au and the magnet characteristics.
  • the left vertical axis of the graph is the coercive force H (kAZm), and the right vertical axis is the residual magnetic flux density B (T).
  • the measured coercivity is cj r
  • FIG. 12 is a graph showing the relationship between residual magnetic flux density B and the amount of A1 added.
  • the present inventor intentionally added a small amount of various elements to the basic ternary composition of the Nd-Fe-B sintered magnet without adding A1 or Cu.
  • the inventors have found that when a small amount of Ag, Ni, or Au is added, the effect of greatly improving the coercive force is exhibited without lowering the residual magnetic flux density, and the present invention has been completed.
  • at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W is added, the coercive force is further increased. It has been found that a favorable effect of increasing can be obtained.
  • Patent Documents 2 to 4 describe that Ag is added to an R—T—B based sintered magnet although the purpose of the filler is different.
  • Patent Documents 7 to 9 adding Ni to R—T—B based sintered magnets is described in Patent Documents 7 to 9, and adding Au to R—T—B based sintered magnets is referred to in Patent Documents 10 to L1: It is described.
  • the present invention uses a RTB sintered magnet having a basic composition as a comparative example, and it is only possible to add a very small amount of Ag, Ni, or Au. This is based on new knowledge.
  • Ag, Ni, or Au that is added in a small amount in the present invention will be referred to as “added metal A”.
  • the additive metal A is considered to be present in the grain boundary phase of the sintered magnet.
  • the grain boundary phase plays an important role in developing the coercive force, and a small amount of additive metal A is retained in the grain boundary phase. It is presumed that it has some effect of increasing the magnetic force.
  • the details of the mechanism for increasing the coercive force due to the addition of these trace elements are currently unknown, and the inventors of the present application are trying to elucidate elucidation.
  • Ag may be mixed with the alloy powder in the form of a lubricant rather than adding it to the raw material alloy itself.
  • a lubricant containing an aliphatic carboxylic acid silver salt or aromatic carboxylic acid silver salt By adding a lubricant containing an aliphatic carboxylic acid silver salt or aromatic carboxylic acid silver salt, the Ag in the silver salt constituting the lubricant diffuses into the particles of the alloy powder during the sintering process. The characteristics of the sintered magnet obtained can be improved.
  • R is at least one element selected from the group consisting of Nd, Pr, Gd, Tb, Dy, and Ho, and includes 50% or more of Nd and / or Pr.
  • the added metals A predetermined amount of 0.005 atomic% to 0. 30 atoms 0/0 Ag, 0.005 atomic% to 0. 40 atomic 0/0 of the Ni or 0.005 atomic% to 0,. 20 atomic percent Au.
  • 0.05 atomic% to 1.0 atomic% of element M (at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) May be added in addition.
  • the composition ratio of R and B is out of the above range, the basic structure of the R—T—B sintered magnet cannot be obtained, and desired magnet characteristics cannot be exhibited.
  • the coercive force without almost reducing the residual magnetic flux density is more than doubled compared to the R—Fe—B rare earth magnet having the basic ternary composition. It can be burned.
  • the composition ratio of the additive metal A is less than 0.005 atomic%, the effect of increasing the coercive force cannot be obtained, and conversely, when the additive metal A exceeds the upper limit of the predetermined amount, the coercive force is reduced. Occurs.
  • the composition ratio of Ag is set in the range of 0.05 atomic% or more and 0.30 atomic% or less.
  • a preferable range of the composition ratio of Ag is 0.005 atomic% or more and 0.20 atomic% or less.
  • the yarn composition ratio of Ni is set in the range of 0.005 atomic% or more and 0.40 atomic% or less.
  • a preferable range of the composition ratio of Ni is 0.005 atomic% or more and 0.20 atomic% or less.
  • the composition ratio of Au is set in the range of 0.005 atomic% or more and 0.20 atomic% or less.
  • a preferable range of the Au composition ratio is 0.005 atomic% or more and 0.10 atomic% or less.
  • composition ratio of the element M exceeds 1.0 atomic%, the coercive force is improved, and the residual magnetic flux density is greatly reduced. For this reason, when element M is added, the composition ratio of element M is set in the range of 0.05 atomic% to 1.0 atomic%. A preferable range of the composition ratio of the element M is 0.1 atomic% or more and 0.5 atomic% or less.
  • the timing of adding metal A and element M is arbitrary as long as it is before the sintering step. It may be added at the time of melting of the raw material alloy, or the mother does not contain added metal A or element M
  • An alloy may be prepared and added as a fine powder of additive metal A or element M before or after pulverization by a jet mill.
  • a mother alloy containing only additive metal A is prepared, and after the mother alloy is pulverized by a jet mill, fine powder of element M may be added, or a mother alloy containing only element M is prepared. Then, after the mother alloy is pulverized by a jet mill, fine powder of additive metal A may be added. That is, the additive metal A and element M do not need to be added at the same time.
  • the fine powder of additive metal A may be produced by pulverizing Ag metal, Ni metal, or Au metal, and compounds such as oxides of these metals are pulverized. Even if it is a thing.
  • the average particle diameter of the additive metal A or the compound of additive metal A in the powder state can be set to 0.5 ⁇ m to 50 ⁇ m, for example. This is because, within such a particle size range, an appropriate sintered body can be obtained by mixing with other alloy powders.
  • the powder of element M is the same as the powder of additive metal A.
  • the average particle size of the M metal or M compound in the powder state can be set to 0.5 ⁇ m to 50 ⁇ m, for example.
  • the sintered magnet of the present invention may contain A1 and Cu as unavoidable impurities.
  • A1 increases, the residual magnetic flux density decreases. Is preferably adjusted to 0.4 atomic% or less.
  • a master alloy used for manufacturing a sintered magnet according to the present invention for example, an ingot forging method or a rapid cooling method (such as a strip casting method or a centrifugal forging method) can be used.
  • a rapid cooling method such as a strip casting method or a centrifugal forging method
  • a method for producing a raw material alloy will be described by taking the case of using the strip casting method as an example.
  • an alloy having the above composition is melted by high frequency melting in an argon atmosphere to form a molten alloy.
  • the molten alloy is rapidly cooled by a single roll method to obtain, for example, a flake-shaped alloy ingot having a thickness of about 0.3 mm.
  • the rapid cooling conditions at this time are, for example, a roll peripheral speed of about lmZ seconds, a cooling speed of 500 ° C. Z seconds, and a supercooling of 200 ° C.
  • the quenched alloy pieces thus prepared are pulverized into flakes having a size of 1 to: LOm m before the next hydrogen pulverization.
  • a method for producing a raw material alloy by strip casting is disclosed in, for example, US Pat. No. 5,383,978.
  • additive metal A and element M have already been added. Alternatively, it may be added after the pulverization step described below.
  • the raw material alloy pieces coarsely crushed into flakes are inserted into the hydrogen furnace.
  • a hydrogen embrittlement process (hereinafter sometimes referred to as “hydrogen crushing process”) is performed inside the hydrogen furnace.
  • the take-out operation in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. This is because the coarsely pulverized powder is prevented from oxidizing and generating heat, and the magnetic properties of the magnet are improved.
  • the rare earth alloy is pulverized to a size of about 0.1 mm to several mm, and the average particle size becomes 500 m or less.
  • a cooling device such as a rotary cooler.
  • the cooling process time using a rotary cooler or the like may be made relatively long.
  • the additive metal A is silver (Ag)
  • a predetermined amount of aliphatic carboxylic acid silver salt or aromatic carboxylic acid silver salt is added to the coarsely pulverized powder after hydrogen pulverization. May be added and mixed.
  • the amount of aliphatic carboxylic acid silver salt or aromatic carboxylic acid silver salt so that the amount of Ag contained in the final sintered magnet is in the range of 0.005 atomic% or more and 0.20 atomic% or less. It is possible to obtain the same effect as when Ag is added by other methods.
  • Examples of the carboxylic acid that forms the silver salt include linear saturated fatty acids such as force prillic acid, force puric acid, lauric acid, and stearic acid, and aromatic carboxylic acids such as benzoic acid and t-butylbenzoic acid. Examples include acids. These silver salts of carboxylic acids can be used alone or in combination of two or more, and other lubricants (those that do not contain silver) may be added. The important point is that the amount of Ag in the finally obtained sintered magnet is within the above-mentioned predetermined range. For this reason, zinc stearate may be added to the coarsely pulverized powder, and then a lubricant containing silver stearate may be added after fine pulverization.
  • linear saturated fatty acids such as force prillic acid, force puric acid, lauric acid, and stearic acid
  • aromatic carboxylic acids such as benzoic acid and t-butylbenzoic acid. Examples include acids.
  • aliphatic carboxylate silver and aromatic carboxylate silver having less than 6 carbon atoms do not sufficiently exert the lubricant effect. There is a possibility.
  • the number of carbons exceeds 20, an increase in the carbon content may lead to insufficient sintering density and deterioration of magnet properties.
  • the force required to set the composition ratio of Ag in the finally obtained sintered magnet in the range of 0.005 atomic% to 0.20 atomic% Varies depending on the timing of adding the lubricant.
  • silver stearate is added before the fine pulverization step described later, for example, about 0.03 to about 23% by weight of silver stearate may be added to the alloy powder.
  • the amount of lubricant added can be adjusted appropriately so that the Ag content of the finally obtained sintered magnet is measured and the composition ratio of Ag is in the range of 0.005 atomic% to 0.20 atomic%. it can.
  • the above-mentioned lubricant is solid at room temperature, it is mixed in a powder state.
  • the powder particle size of the lubricant can be adjusted to a range of 1 to 50 m, for example.
  • the coarsely pulverized powder is finely pulverized using a jet mill pulverizer.
  • a cyclone classifier is connected to the jet mill crusher used in the present embodiment.
  • the jet mill crusher receives a supply of the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization process, and pulverizes it in the pulverizer.
  • the powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier.
  • a fine powder of about 0.1 to 20 m can be obtained.
  • the pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill.
  • 0.3 wt% of a lubricant is added to and mixed with the magnetic powder produced by the above method in a rocking mixer, and the surface of the alloy powder particles is coated with the lubricant.
  • the magnetic powder produced by the above method is molded in an orientation magnetic field using a known press apparatus.
  • the strength of the applied magnetic field is, for example, 1 Tesla (T).
  • a lubricant containing the above-mentioned silver carboxylate may be additionally added after the pulverization step.
  • fine powder without adding lubricant before pulverization process You may make it add said lubrication agent after a crushing process.
  • only a known lubricant may be added before the pulverization process, and a lubricant containing an aliphatic carboxylic acid silver salt or an aromatic silver rubonic acid salt may be added after the pulverization process.
  • sintering particularly when a liquid phase is formed (when the temperature is in the range of 650 to 1000 ° C), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Thereafter, sintering proceeds and a sintered magnet is formed. After sintering, an aging treatment is performed as necessary.
  • a binder removal step (in-hydrogen binder removal step) is performed in which the powder compact is held at a temperature of 200 to 500 ° C for about 30 to 300 minutes in a hydrogen atmosphere. Also good.
  • the carbon in the lubricant reacts with hydrogen and the lubricant is removed as a hydrocarbon, so that the amount of carbon contained in the lubricant can be reduced in the sintered magnet. .
  • Example 1 An alloy consisting of Nd: 14.1 atomic%, B: 6.1 atomic%, Ag: 0.05 to 0.6 atomic%, A1: 0.05 atomic%, and the balance Fe is prepared.
  • a sintered magnet was produced by the manufacturing method (Example 1).
  • Comparative Example 1 was produced in the same manner as in Example 1 except that a mother alloy having the same composition as in Example 1 was used except that Ag was not added.
  • the average particle size of the powder before press molding was 4.4 ⁇ m. Molding was performed in the magnetic field of 1. OT. After molding, 1000 ⁇ : sintering process at L100 ° C for 4 hours and aging treatment at 620 ° C for 2 hours. The obtained sintered body had a rectangular parallelepiped shape of 1 lmm ⁇ 10 mm ⁇ 18 mm.
  • FIG. 1 is a graph showing the relationship between the Ag addition amount and the magnet characteristics.
  • the left vertical axis of the graph is the coercive force H (kAZm), and the right vertical axis is the residual magnetic flux density B (T).
  • the measured value of the residual magnetic flux density B f is indicated by “ ⁇ ”.
  • the coercive force H shows the peak cj value when the added amount of Ag is about 0.1 atomic%.
  • the amount of Ag added exceeds 0.3 atomic%, the effect of Ag addition becomes almost impossible.
  • the residual magnetic flux density B hardly changes if the Ag addition amount is 0.3 atomic percent or less, but gradually decreases when the Ag addition amount exceeds 0.3 atomic percent.
  • the amount of Ag added is set in the range of 0.005 atomic% or more and 0.3 atomic% or less.
  • Example 2 An alloy composed of Nd: 14.1 atomic%, B: 6.1 atomic%, and the balance Fe was prepared, and a sintered magnet was manufactured by the manufacturing method of the above-described embodiment (Example 2 and Comparative Example 2). .
  • 0.02-0. 5 atomic% of Ag powder was mixed with the alloy powder before the press molding step, and in Comparative Example 2, Ag powder was not mixed. Ag was mixed with the alloy powder in two forms, Ag metal powder or AgO powder.
  • the average particle size of the powder before press molding was 4.6 ⁇ m. Press molding was performed in a 1.0 T magnetic field. After press molding, 1000-: L 100 ° C was sintered for 4 hours, and aging treatment was performed at 620 ° C for 2 hours. The obtained sintered body had a rectangular parallelepiped shape of 1 lmm ⁇ 10 mm ⁇ 18 mm.
  • FIG. 2 is a graph showing the relationship between the amount of added Ag and the coercive force H.
  • the measurement result when powder is added is indicated by “ ⁇ ”, and the measurement result when Ag O powder is added
  • the effect of the small amount of Ag additive does not depend on the timing of the additive.
  • Ag may be added with an alloying step force before pulverization, or may be added after pulverization.
  • the Ag additive may be added in the form of an Ag compound such as an oxide or in the form of Ag metal.
  • Sintered magnets were produced by the manufacturing method of the form (Example 3 and Comparative Example 3).
  • the average particle size of the powder before press molding was 4.6 ⁇ m. Molding was performed in the magnetic field of 1. OT. 1000 to 1060 after molding. Sintering process for 4 hours at C and 600-640. Aged at C for 2 hours. The obtained sintered body had a rectangular parallelepiped shape of 1 lmm ⁇ 10 mm ⁇ 18 mm.
  • FIG. 3 is a graph showing the relationship between the residual magnetic flux density B and the amount of added A1.
  • A1 addition amount is 0.4
  • Example 4 Nd: l l. 4 atom%, Pr; 2.8 atom%, B: 6.1 atom%, Ag: 0.1 atom%, the balance Fe is prepared, and the same process as in Example 1 Thus, Example 4 was produced.
  • the coercive force H was 1035 kAZm and the residual magnetic flux density B was 1.
  • Example 5 Nd: 14. 1 atomic%, B: 6. 1 atomic%, Ag:. 0. 005 ⁇ 0 30 atomic%, Mo: 0. 4 atoms 0/0, prepared alloy and the balance Fe, the above-described embodiment A sintered magnet was produced by the manufacturing method according to the embodiment (Example 5). On the other hand, Comparative Example 4 was produced in the same manner as in Example 5 using a mother alloy having the same composition as in Example 5 except that Ag and element M were not added.
  • the average particle size of the powder before press molding was 4.4 ⁇ m. Molding was performed in the magnetic field of 1. OT. After molding, 1000 ⁇ : L was sintered at 100 ° C for 4 hours, and aging treatment was performed at 620 ° C for 2 hours. The obtained sintered body had a rectangular parallelepiped shape of 1 lmm ⁇ 10 mm ⁇ 18 mm.
  • FIG. 4 is a graph showing the relationship between the amount of added Ag and the coercive force H (kAZm).
  • Garden data Is related to an example in which 0.4 atomic% of Mo is added, and the data in IV is related to a comparative example in which Mo is not added.
  • the coercive force H shows a peak value when the added amount of Ag is about 0.1 atomic%.
  • the amount of Ag added exceeds 0.3 atomic%
  • Example 6 At least one selected An alloy consisting of 0.05 atomic% to 1.0 atomic% and the balance Fe was prepared, and a sintered magnet was manufactured by the manufacturing method in the above-described embodiment (Example 6). On the other hand, Comparative Example 5 was produced in the same manner as in Example 6 except that the element M was not added, and a mother alloy having the same composition as in Example 6 was used.
  • the average particle size of the powder before press molding was 4.4 ⁇ m. Molding was performed in a 1.0 T magnetic field. After molding, 1000 ⁇ : L was sintered at 100 ° C for 4 hours, and aging treatment was performed at 620 ° C for 2 hours. The obtained sintered body had a rectangular parallelepiped shape of 1 lmm ⁇ 10 mm ⁇ 18 mm.
  • FIG. 5 is a graph showing the relationship between the additive amount of element M and the coercive force H (kAZm).
  • the vertical axis of is the coercive force H (kAZm).
  • the coercive force H increases as the amount of element M increases. It is added.
  • the effect of adding element M is that the amount of M added is 0.05 atomic% or more 1.
  • the expression was within a range of 0 atomic% or less.
  • the rare earth magnet of the present invention described in the columns of Example 5 and Example 6 is a conventional R-Fe-B rare earth added with Cu or A1. The value was equivalent to that of a magnet.
  • Example 7 An alloy composed of Nd: 14.1 atomic%, B: 6.1 atomic%, A1: 0.05 atomic%, and the balance Fe was prepared, and a sintered magnet was manufactured by the manufacturing method in the above-described embodiment.
  • a lubricant 0.12 to 0.3% by weight of silver stearate was added (Example 7).
  • zinc stearate was added instead of silver stearate.
  • the obtained sintered body had a rectangular parallelepiped shape of 20 mm ⁇ 50 mm ⁇ I 2 mm.
  • FIG. 6 is a graph showing the relationship between the Ag addition amount and the magnet characteristics.
  • the left vertical axis of the graph is the coercive force H (kAZm), and the right vertical axis is the residual magnetic flux density B (T).
  • the amount of Ag added is set in the range of 0.005 atomic% or more and 0.2 atomic% or less.
  • the amount of Ag added is adjusted according to the amount of lubricant added, increasing the amount of Ag added! Inevitably included in the lubricant.
  • the amount of carbon that can be increased also increases. If the carbon content increases, the characteristics of the sintered magnet may deteriorate. Therefore, when increasing the amount of lubricant added, it is preferable to sufficiently evaporate the lubricant before sintering. .
  • An alloy consisting of Nd: 14.1 atomic%, B: 6.1 atomic%, A1: 0.02 to 0.5 atomic% and the balance Fe is prepared, and the sintered magnet is prepared by the manufacturing method of the above-described embodiment.
  • As a lubricant 0.12% by weight of silver stearate was added to the powder before the pulverization step by a jet mill (Example 8). The final Ag addition amount was 0.02 atomic% with respect to the total composition of the sintered magnet.
  • the average particle size of the powder before press molding was 4.4 ⁇ 0. Molding was performed in a 1.7 T magnetic field. After molding, a sintering process of 1000-: L at 100 ° C for 4 hours and an aging treatment at 500-650 ° C for 2 hours were performed. The obtained sintered body had a rectangular parallelepiped shape of 20 mm ⁇ 50 mm ⁇ I 2 mm! /.
  • FIG. 7 is a graph showing the relationship between the residual magnetic flux density B and the A1-addition amount. It can be seen that when the amount of A1 added exceeds 0.4 atomic%, the residual magnetic flux density B decreases, and the effect of adding a small amount of Ag may be impaired.
  • Example 9 An alloy consisting of Nd: 14.1 atomic%, B: 6.1 atomic%, Ni: 0.05 to 0.6 atomic%, A1: 0.05 atomic%, and the balance Fe is prepared.
  • a sintered magnet was produced by the production method (Example 9).
  • Comparative Example 7 was produced in the same manner as Example 9 using a mother alloy having the same composition as Example 9 except that Ni was not added.
  • the average particle size of the powder before press molding was 4.4 to 4.6 ⁇ m. Molding was performed in a 1.0 T magnetic field. After molding, a sintering process of 1000-: L 100 ° C for 4 hours and an aging treatment of 580-660 ° C for 2 hours were performed. The obtained sintered body had a rectangular parallelepiped shape of 1 lmm ⁇ 10 mm ⁇ 18 mm.
  • FIG. 8 is a graph showing the relationship between the Ni addition amount and the magnet characteristics.
  • the left vertical axis of the graph is the coercive force H (kAZm), and the right vertical axis is the residual magnetic flux density B (T).
  • the measured value of the residual magnetic flux density B f is indicated by “ ⁇ ”.
  • the coercive force H shows the peak cj value when the Ni addition amount is about 0.05 atomic%.
  • the amount of Ni additive exceeds 0.4 atomic%, the effect of Ni additive gradually decreases.
  • the residual magnetic flux density B hardly changes if the amount of Ni added is 0.4 atomic% or less.
  • the amount of Ni added is set in the range of 0.005 atomic% or more and 0.4 atomic% or less.
  • Ni powder was mixed with the alloy powder before the press molding process, and in Comparative Example 8, the Ni powder was not mixed.
  • Ni was mixed with alloy powder in two forms, Ni metal powder or NiO powder.
  • the average particle size of the powder before press molding was 4.6 ⁇ m. Press molding was performed in a 1.0 T magnetic field. After press molding, 1000-: L 100 ° C was sintered for 4 hours, and aging was performed at 580-620 ° C for 2 hours. The obtained sintered body had a rectangular parallelepiped shape of l mm ⁇ 10 mm ⁇ 18 mm! /.
  • FIG. 9 is a graph showing the relationship between the Ni addition amount and the coercive force H.
  • Ni metal powder cj Ni metal powder cj
  • the measurement result when powder is added is indicated by “ ⁇ ”, and the measurement result when NiO powder is added is indicated by “X”.
  • the effect of adding a small amount of Ni does not depend on the timing of the additive.
  • An alloy step force before Ni grinding may be added, or may be added after powdering.
  • the Ni additive may be added in the form of a Ni compound such as an oxide or in the form of Ni metal.
  • Example 11 The above-described embodiment is prepared by preparing an alloy comprising Nd: 14.1 atomic%, B: 6.1 atomic%, Ni: 0.05 atomic%, A1: 0.05 to 0.5 atomic%, and the balance Fe. Sintered magnets were produced by the manufacturing method (Example 11 and Comparative Example 9).
  • the average particle size of the powder before press molding was 4.5 to 4.7 m. Molding is 1.0
  • the obtained sintered body had a rectangular parallelepiped shape of l 1 mm ⁇ 10 mm ⁇ 18 mm! /.
  • FIG. 10 is a graph showing the relationship between the residual magnetic flux density B and the amount of additive A1 added. A1 addition amount is 0.
  • Example 12 was produced.
  • the coercive force H was 855 kAZm and the residual magnetic flux density B was 1 cj r.
  • Example 13 An alloy comprising Nd: 14.0 atomic%, B: 6.0 atomic%, Au: 0.01 to 0.3 atomic%, A1: 0.05 atomic%, and the balance Fe is prepared.
  • a sintered magnet was produced by the production method (Example 13).
  • Comparative Example 10 was prepared in the same manner as Example 13 using a mother alloy having the same composition as Example 13 except that no Au was added.
  • the average particle size of the powder before press molding was 4.4 to 4.6 m. Molding was performed in a 1.5 T magnetic field. After molding, 1000-: L was sintered for 4 hours at 100 ° C, and aging treatment was performed at 500-700 ° C for 2 hours. The obtained sintered body had a rectangular parallelepiped shape of 20 mm ⁇ 50 mm ⁇ I 5 mm.
  • FIG. 11 is a graph showing the relationship between the amount of added Au and the magnet characteristics.
  • the left vertical axis of the graph is the coercive force H (kAZm), and the right vertical axis is the residual magnetic flux density B (T).
  • the Au loading force is set in the range of 0.005 atomic% or more and 0.2 atomic% or less.
  • the embodiment described above is prepared by preparing an alloy comprising Nd: 14.0 atomic%, B: 6.0 atomic%, Au: 0.05 atomic%, A1: 0.05 to 0.5 atomic%, and the balance Fe.
  • Sintered magnets were produced by the manufacturing method (Example 14 and Comparative Example 11).
  • the average particle size of the powder before press molding was 4.4 to 4.6 m. Molding was performed in a 1.5 T magnetic field. After the molding, a sintering process for 4 hours at 1000 to 160 ° C. and an aging treatment for 2 hours at 550 to 650 ° C. were performed. The obtained sintered body had a rectangular parallelepiped shape of 20 mm ⁇ 50 mm ⁇ I 5 mm! /.
  • FIG. 12 is a graph showing the relationship between residual magnetic flux density B and A1 addition amount.
  • A1 addition amount is 0.
  • the saturation magnetic flux density will be about the same as the saturation magnetic flux density of a conventional magnet with Al and Cu added, so the effect of adding a small amount of Au may be impaired. ⁇ ⁇ .
  • Example 15 Prepare an alloy consisting of Nd: l l. 2 atomic%, Pr; 2.8, B: 6.0 atomic%, Au: 0.05 atomic%, balance Fe, and perform the same process as in Example 14.
  • Example 15 was made.
  • the coercive force H was 929 kAZm, and the residual magnetic flux density B was 1. 41.
  • the rare earth sintered magnet of the present invention exhibits a coercive force equivalent to that of a conventional R—Fe—B rare earth sintered magnet to which Cu or A1 is added, and exhibits a higher residual magnetic flux density than those magnets. For this reason, the rare earth sintered magnet of the present invention is suitably used for various purposes in which both coercive force and residual magnetic flux density are required to have high values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明の希土類焼結磁石は、12.0原子%~15.0原子%の希土類元素(Nd、Pr、Gd、Tb、Dy、及びHoからなる群から選択された少なくとも一種の元素であり、Nd及び/又はPrを50%以上含む)と、5.5原子%~8.5原子%の硼素(B)と、所定量の添加金属Aと、残部の鉄(Fe)及び不可避的不純物とを含有する。前記所定量の添加金属Aは、0.005原子%~0.30原子%の銀(Ag)、0.005原子%~0.40原子%のニッケル(Ni)、および0.005原子%~0.20原子%の金(Au)の少なくとも1つである。

Description

明 細 書
希土類焼結磁石及びその製造方法
技術分野
[0001] 本発明は希土類焼結磁石及びその製造方法に関する。
背景技術
[0002] 高性能永久磁石として代表的な希土類一鉄 硼素系の希土類焼結磁石は、正方 晶化合物である R Fe B型結晶相(主相)と粒界相とを含む組織を有し、優れた磁石
2 14
特性を発揮する。ここで、 Rは希土類元素及びイットリウム力 なる群力 選択された 少なくとも 1種の元素であり、主として Nd及び Z又は Prを含む。 Feは鉄、 Bは硼素で あり、これらの元素の一部は他の元素によって置換されていても良い。粒界相には、 希土類元素 Rの濃度が相対的に高 、Rリッチ相と、硼素の濃度が相対的に高 、Bリツ チ相とが存在している。
[0003] 以下、希土類一鉄 硼素系の希土類焼結磁石を「R— T B系焼結磁石」と称する こととする。ここで、「T」は鉄を主成分とする遷移金属元素である。 R—T—B系焼結 磁石では、 R Τ Β相(主相)が磁化作用に寄与する強磁性相であり、粒界相に存在
2 14
する Rリッチ相は低融点の非磁性相である。
[0004] R— Τ Β系焼結磁石は、 R— Τ Β系焼結磁石用合金 (母合金)の微粉末 (平均 粒径:数/ z m)をプレス装置で圧縮成形した後、焼結することによって製造される。焼 結後、必要に応じて時効処理が施される。 R— T B系焼結磁石の製造に用いられ る母合金は、金型铸造によるインゴット法や冷却ロールを用いて合金溶湯を急冷する ストリップキャスト法を用いて好適に作製される。
[0005] 保磁力の高い R—Fe— B系焼結磁石を製造するためには、希土類元素 Rとして広 く用いられている Ndや Prの一部を、重希土類である Dy、 Ho、及び Z又は Tbで置換 することが行われている(例えば特許文献 1)。 Dy、 Tb、 Hoは、異方性磁界の高い希 土類元素であるため、主相の希土類元素 Rのサイトで Ndを置換することにより、保磁 力を増大させる効果を発揮する。
[0006] 一方、保磁力発現のため、 A1や Cuを微量に添加することが R—T—B系焼結磁石 の開発当初力も行われてきた (例えば、特許文献 2)。 R— T— B系焼結磁石が開発さ れた当時、不可避的不純物として原料合金中に混入していた A1や Cuが、その後、 R T B系焼結磁石の高い保磁力を実現する上で不可欠ともいえる添加元素である ことがわ力つてきた。逆に、 A1や Cuを意図的に排除すると、 R— T— B系焼結磁石の 保磁力は極めて低 、値しカゝ示さず、実用には供しな ヽこともゎカゝつて ヽる。
[0007] また、特許文献 5および特許文献 6は、保磁力向上効果を得るため、 V (バナジウム )を添加することを開示して 、る。
[0008] 更に、特許文献 7〜 11は種々の金属元素を添加した希土類焼結磁石を開示して いる。
特許文献 1:特開昭 60— 32306号公報
特許文献 2:特開平 5 - 234733号公報
特許文献 3:特開平 4— 217302号公報
特許文献 4:特開昭 60 - 138056号公報
特許文献 5:特開 2004 - 277795号公報
特許文献 6:特許第 2787580号明細書
特許文献 7:特開昭 59— 89401号公報
特許文献 8:特開昭 59— 132104号公報
特許文献 9:特開平 1― 220803号公報
特許文献 10:特開平 5— 205927号公報
特許文献 11:特開 2003 - 17308号公報
発明の開示
発明が解決しょうとする課題
[0009] Dy、 Tb、 Hoは、その添加量を増やすほど、保磁力が高く上昇するという効果が得 られる力 Dy、 Tb、 Hoは稀少元素であるため、今後、電気自動車の実用化が進展 し、電気自動車用モーターなどに用いられる高耐熱磁石の需要が拡大してゆくと、 D y資源が逼迫する結果、原料コストの増加が懸念される。このため、高保磁力磁石に おける Dy使用量削減技術の開発が強く求められている。一方、 Al、 Cu、 Vの添カロは 、保磁力を向上させるが、残留磁束密度 Brの低下を招くという問題がある。 [0010] 本発明は、上記課題を解決するためになされたものであり、その主たる目的は、 A1 や Cuを添加した場合の保磁力と同等の保磁力を発揮しつつ、 A1や Cuを添加した場 合よりも残留磁束密度を向上させた希土類焼結磁石を提供することにある。
課題を解決するための手段
[0011] 本発明の希土類焼結磁石は、 12. 0原子%〜15. 0原子%の希土類元素 (Nd、 Pr 、 Gd、 Tb、 Dy、及び Hoからなる群から選択された少なくとも一種の元素であり、 Nd 及び Z又は Prを 50%以上含む)と、 5. 5原子%〜8. 5原子%の硼素(B)と、所定量 の添加金属 Aと、残部の鉄 (Fe)及び不可避的不純物とを含有する希土類焼結磁石 であって、前記所定量の添加金属 Aは、 0. 005原子%〜0. 30原子%の銀 (Ag)、 0 . 005原子%〜0. 40原子%のニッケル(Ni)、および 0. 005原子%〜0. 20原子0 /0 の金(Au)の少なくとも 1つである。
[0012] 好ましい実施形態において、 Agの組成比率が 0. 005原子%〜0. 20原子%であ る。
[0013] 好ましい実施形態において、 Niの組成比率が 0. 005原子%〜0. 20原子%であ る。
[0014] 好ましい実施形態において、 Auの組成比率が 0. 005原子%〜0. 10原子%であ る。
[0015] 好ましい実施形態において、不可避的不純物は A1を含み、前記 A1の含有量は 0.
4原子%以下である。
[0016] 好ましい実施形態において、 0. 05原子%〜1. 0原子%の元素 M (Mは、 Ti、 V、 Cr、 Zr、 Nb、 Mo、 Hf、 Ta、および Wからなる群から選択された少なくとも 1種の元素 )を更に含む。
[0017] 本発明による希土類焼結磁石の製造方法は、 12. 0原子%〜15. 0原子%の希土 類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoからなる群力 選択された少なくとも一種の 元素であり、 Nd及び Z又は Prを 50%以上含む)と、 5. 5原子%〜8. 5原子%の硼 素(B)と、所定量の添加金属 Aと、残部の鉄 (Fe)及び不可避的不純物とを含有する 合金であって、前記所定量の添加金属 Aが 0. 005原子%〜0. 30原子%の銀 (Ag) 、 0. 005原子%〜0. 40原子%のニッケル(Ni)、および 0. 005原子%〜0. 20原 子%の金 (Au)の少なくとも 1つである合金を用意する工程と、前記合金を粉砕して 粉末を作製する工程と、前記粉末を焼結する工程とを含む。
[0018] 好ましい実施形態において、前記合金は、 0. 05原子%〜1. 0原子%の元素 M (
Mは、 Ti、 V、 Cr、 Zr、 Nb、 Mo、 Hf、 Ta、および Wからなる群から選択された少なく とも 1種の元素)を更に含む。
[0019] 好ましい実施形態において、不可避的不純物は A1を含み、前記 A1の含有量は 0.
4原子%以下である。
[0020] 本発明による他の希土類焼結磁石の製造方法は、 12. 0原子%〜15. 0原子%の 希土類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoからなる群力も選択された少なくとも一 種の元素であり、 Nd及び Z又は Prを 50%以上含む)と、 5. 5原子%〜8. 5原子% の硼素(B)と、残部の鉄 (Fe)及び不可避的不純物とを含有する合金を用意するェ 程と、前記合金を粉砕して粉末を作製する工程と、前記粉末に対して 0. 005原子% 〜0. 30原子%の銀 (Ag)、 0. 005原子%〜0. 40原子%のニッケル(Ni)、および 0 . 005原子%〜0. 20原子%の金 (Au)の少なくとも 1つを添カ卩し、微量元素添加粉 末を作製する工程と、前記微量元素添加粉末を焼結する工程とを含む。
[0021] 好ましい実施形態において、前記微量元素添加粉末には、 0. 05原子%〜1. 0原 子0 /0の元素 M (Mは、 Ti、 V、 Cr、 Zr、 Nb、 Mo、 Hf、 Ta、および Wからなる群から選 択された少なくとも 1種の元素)が更に添加されている。
[0022] 好ま 、実施形態にぉ 、て、不可避的不純物は A1を含み、前記 A1の含有量は 0.
4原子%以下である。
[0023] 本発明による希土類焼結磁石の製造方法は、 12. 0原子%〜15. 0原子%の希土 類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoからなる群力 選択された少なくとも一種の 元素であり、 Nd及び Z又は Prを 50%以上含む)と、 5. 5原子%〜8. 5原子%の硼 素 (B)と、残部の鉄 (Fe)及び不可避的不純物とを含有する希土類磁石用合金粉末 であって、潤滑剤が添加された合金粉末を用意する工程 Aと、前記合金粉末の成形 体を作製した後、前記成形体を焼結する工程 Bとを含み、前記潤滑剤は、脂肪族力 ルボン酸銀塩または芳香族カルボン酸銀塩を含有する。
[0024] 好ま 、実施形態にぉ 、て、前記脂肪族カルボン酸銀塩または芳香族カルボン酸 銀塩の添加量は、希土類焼結磁石における Agの組成比率が 0. 005原子%〜0. 2 0原子%となるように調節されて 、る。
[0025] 好ましい実施形態において、前記合金粉末を用意する工程 Aは、 12. 0原子%〜1 5. 0原子%の希土類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoからなる群から選択され た少なくとも一種の元素であり、 Nd及び Z又は Prを 50%以上含む)と、 5. 5原子% 〜8. 5原子%の硼素(B)と、残部の鉄 (Fe)及び不可避的不純物とを含有する希土 類磁石用合金を用意する工程 alと、前記合金の粗粉砕粉末を作製する工程 a2と、 前記合金の粗粉砕粉末力 微粉砕粉末を作製する工程 a3と、前記工程 a2と工程 a3 の間、または前記工程 a3の後に、前記潤滑剤を前記粉末に添加する工程 a4とを含 む。
[0026] 好ま 、実施形態にぉ 、て、前記脂肪族カルボン酸銀塩または芳香族カルボン酸 銀塩の炭素数は 6以上 20以下である。
[0027] 好ま 、実施形態にぉ 、て、不可避的不純物は A1を含み、前記 A1の含有量は 0.
4原子%以下である。
発明の効果
[0028] 本発明の希土類焼結磁石は、微量に添カ卩した Ag、 Ni、または Auの働きにより、 C uや A1を添加した従来の R -Fe- B系焼結磁石と同等の保磁力を発現するとともに、 それらの磁石よりも高い残留磁束密度を示すことができる。
図面の簡単な説明
[0029] [図 l]Ag添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保磁力 H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定値は「 cj r
〇」で示し、残留磁束密度 Bの測定値は「♦」で示して!/、る。
[図 2] Ag添加量と保磁力 H との関係を示すグラフである。図 2では、 Agメタル粉末を cj
添加した場合の測定結果を「〇」で示し、 Ag O粉末を添加した場合の測定結果は「
2
X」で示している。
[図 3]残留磁束密度 Bと A1添加量との関係を示すグラフである。
[図 4] Ag添加量と保磁力 H との関係を示すグラフである。
cj
[図 5]元素 Mの添カ卩量と保磁力 H との関係を示すグラフである。 [図 6]Ag添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保磁力 H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定値は「 cj r
♦」で示し、残留磁束密度 Bの測定値は「口」で示している。
[図 7]残留磁束密度 Bと A1添加量との関係を示すグラフである。
[図 8]Ni添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保磁力
H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定値は「 cj r
〇」で示し、残留磁束密度 Bの測定値は「♦」で示して!/、る。
[図 9]Ni添カ卩量と保磁力 H との関係を示すグラフである。図 9では、 Niメタル粉末を 添加した場合の測定結果を「〇」で示し、 NiO粉末を添加した場合の測定結果は「 X 」で示している。
[図 10]残留磁束密度 Bと A1添加量との関係を示すグラフである。
[図 ll]Au添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保磁 力 H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定値は cj r
「〇」で示し、残留磁束密度 Bの測定値は「♦」で示している。
[図 12]残留磁束密度 Bと A1添加量との関係を示すグラフである。
発明を実施するための最良の形態
[0030] 従来、保磁力を高める目的で、種々の元素を添加する試みが行われてきた。しかし ながら、比較の対象となる R— T B系焼結磁石には、不可避的不純物とともに、当 然の如く A1や Cuが含有されて 、た。これらの元素を含有しな!ヽ場合に得られる保磁 力が余りに低力つたためである。
[0031] しかしながら、本発明者は、敢えて A1や Cuの添カ卩を行わない Nd— Fe— B系焼結 磁石の基本三元組成に対して、種々の元素を微量に添カ卩したところ、微量の Ag、 Ni 、または Auを添加した場合に、残留磁束密度を低下させることなく保磁力を大幅に 向上させる効果が発現することを見出し、本発明を完成するに至った。また、これらの 微量元素に加えて、 Ti、 V、 Cr、 Zr、 Nb、 Mo、 Hf、 Ta、および Wからなる群から選 択された少なくとも 1種の元素を添加した場合に、更に保磁力が増加するという好まし い効果が得られることを見出した。
[0032] なお、従来、 Agを R—T—B系焼結磁石に添加する試みが全く行われてこな力つた わけではない。例えば特許文献 2〜4には、添カ卩の目的は異なるとはいえ、 Agを R— T—B系焼結磁石に添加することが記載されている。同様に、 Niを R— T— B系焼結 磁石に添加することが特許文献 7〜9に、 Auを R— T— B系焼結磁石に添加すること が特許文献 10〜: L 1に記載されて 、る。
[0033] しカゝしながら、添加の対象となる R—T—B系焼結磁石には、当然に A1や Cuが(意 図的又は不可避的に)添加されていたため、 Ag、 Ni、または Auの微量添カ卩による保 磁力上昇効果は、 A1や Cuあるいは Dyなどによる保磁力上昇効果に埋もれてしまつ て観察されな力つた。し力も、後に詳しく説明するように、本願発明者が見出した、こ れら微量元素添加の効果は、その添加量を極めて低ぐかつ狭い範囲に抑えること によって得られるものであり、特許文献 2〜4などに教示されている添カ卩量では、この ような効果を適切に得ることはできな力つた。
[0034] このように本発明は、基本的組成を有する R—T—B系焼結磁石を比較例として用 い、しかも、極めて微量の Ag、 Ni、または Auを添加することによって初めてわ力る新 しい知見に基づいてなされたものである。以下、簡単のため、本発明で微量に添カロ する Ag、 Ni、または Auを「添加金属 A」と称することとする。
[0035] 本願発明者の検討によると、添加金属 Aは、焼結磁石の粒界相中に存在するもの と考えられる。 R— T B系焼結磁石では、その保磁力の発現に粒界相が重要な役 割を担って 、ることが知られており、微量の添加金属 Aが粒界相中にお 、て保磁力 を高める何らかの作用をしていると推定される。しかしながら、これらの微量元素添加 による保磁力上昇メカニズムの詳細は、現在のところ不明であり、本願発明者は鋭意 解明を試みつつある。
[0036] なお、好ま 、実施形態にお!、て、 Agを原料合金そのものに添加しておくのでは なぐ潤滑剤の形態で合金粉末と混合してもよい。脂肪族カルボン酸銀塩または芳 香族カルボン酸銀塩を含有する潤滑剤を添加することにより、潤滑剤を構成する銀 塩中の Agが焼結時に合金粉末の粒子中に拡散し、最終的に得られる焼結磁石の 特性を向上させられる。
[0037] 以下、本発明の希土類焼結磁石の好ましい実施形態を説明する。
[0038] (実施形態) [原料合金]
まず、 12. 0原子%〜15. 0原子%の希土類元素 Rと、 5. 5原子%〜8. 5原子% の Bと、所定量の添加金属 Aと、残部 Fe及び不可避的不純物とを含有する原料合金 を用意する。ここで、 Rは、 Nd、 Pr、 Gd、 Tb、 Dy、及び Hoからなる群から選択された 少なくとも一種の元素であり、 Nd及び/又は Prを 50%以上含む。所定量の添加金 属 Aは、 0. 005原子%〜0. 30原子0 /0の Ag、 0. 005原子%〜0. 40原子0 /0の Ni、 または 0. 005原子%〜0. 20原子%の Auである。また、 0. 05原子%〜1. 0原子% の元素 M (Ti、 V、 Cr、 Zr、 Nb、 Mo、 Hf、 Ta、および Wからなる群から選択された少 なくとも 1種の元素)を追加的に添加してもよ 、。
[0039] R、 Bの組成比率が上記範囲力 外れると、 R— T— B系焼結磁石の基本的な組織 構造が得られず、所望の磁石特性を発揮させることができない。本発明では、上記の 添加金属 Aを微量に添加することにより、基本三元組成の R—Fe— B系希土類磁石 に比べ、残留磁束密度をほとんど低下させることなぐ保磁力を 2倍以上に増カロさせ ることが可能である。添加金属 Aの組成比率が 0. 005原子%未満になると、保磁力 上昇効果が得られず、逆に添加金属 Aが上記所定量の上限を超えると、保磁力が低 下してしまうという問題が発生する。本発明者の実験によると、 Agの組成比率は 0. 0 05原子%以上 0. 30原子%以下の範囲に設定される。 Agの組成比率の好ましい範 囲は 0. 005原子%以上 0. 20原子%以下である。 Niの糸且成比率は 0. 005原子% 以上 0. 40原子%以下の範囲に設定される。 Niの組成比率の好ましい範囲は 0. 00 5原子%以上 0. 20原子%以下である。 Auの組成比率は 0. 005原子%以上 0. 20 原子%以下の範囲に設定される。 Auの組成比率の好ましい範囲は 0. 005原子% 以上 0. 10原子%以下である。
[0040] なお、元素 Mの組成比率が 1. 0原子%を超えると、保磁力は向上する力 残留磁 束密度が大きく低下してしまう。このため、元素 Mを添加する場合、元素 Mの組成比 率は 0. 05原子%以上 1. 0原子%以下の範囲に設定される。元素 Mの組成比率の 好ましい範囲は 0. 1原子%以上 0. 5原子%以下である。
[0041] なお、添加金属 Aおよび元素 Mの添カ卩のタイミングは、焼結工程前であれば任意 である。原料合金の溶解時に添加してもよいし、添加金属 Aや元素 Mを含まない母 合金を用意し、ジェットミルによって粉砕する前、又は粉砕した後に添加金属 Aや元 素 Mの微粉末として添カ卩してもよい。また、添加金属 Aのみを添カ卩した母合金を用意 し、母合金をジェットミルによって粉砕した後、元素 Mの微粉末を添加しても良いし、 元素 Mのみを添加した母合金を用意し、母合金をジェットミルによって粉砕した後、 添加金属 Aの微粉末を添カ卩しても良い。すなわち、添加金属 Aと元素 Mの添加タイミ ングは同時である必要は無い。
[0042] 添加金属 Aの微粉末は、 Agメタル、 Niメタル、または Auメタルを粉砕することによ つて作製されたものであってもょ 、し、これら金属の酸化物などの化合物を粉末化し たものであってもょ ヽ。粉末状態の添加金属 A又は添加金属 Aの化合物の平均粒径 は、例えば 0. 5 μ m〜50 μ mに設定され得る。このような粒径範囲にあれば、他の 合金粉末と混合して適正な焼結体を得ることができるからである。元素 Mの粉末につ いても、添加金属 Aの粉末と同様である。粉末状態の Mメタル又は M化合物の平均 粒径は、例えば 0. 5 μ m〜50 μ mに設定され得る。
[0043] なお、本発明の焼結磁石は、不可避的不純物として A1や Cuを含有して ヽてもよ ヽ 力 A1の含有量が増加すると、残留磁束密度が低下するため、 A1の含有量は 0. 4原 子%以下に調節することが好ましい。
[0044] 本発明による焼結磁石の製造に用いられる母合金を作製するには、例えばインゴッ ト铸造法や急冷法 (ストリップキャスティング法や遠心铸造法など)を用いることができ る。以下、ストリップキャスティング法を用いる場合を例にとり、原料合金の作製方法を 説明する。
[0045] まず、上記組成を有する合金をアルゴン雰囲気中において高周波溶解によって溶 融し、合金溶湯を形成する。次に、この合金溶湯を 1350°Cに保持した後、単ロール 法によって合金溶湯を急冷し、例えば厚さ約 0. 3mmのフレーク状合金铸塊を得る。 このときの急冷条件は、例えばロール周速度約 lmZ秒、冷却速度 500°CZ秒、過 冷却 200°Cとする。こうして作製した急冷合金铸片を、次の水素粉砕前に、 1〜: LOm mの大きさのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製 造方法は、例えば、米国特許第 5、 383、 978号明細書に開示されている。
[0046] このような原料合金の段階にぉ 、て、既に添加金属 Aや元素 Mが添加されて 、て も良いし、以下に説明する粉砕工程の後に添加されても良い。
[0047] [粗粉砕工程]
上記のフレーク状に粗く粉砕された原料合金铸片を水素炉の内部へ挿入する。次 に、水素炉の内部で水素脆化処理 (以下、「水素粉砕処理」と称する場合がある)ェ 程を行なう。水素粉砕後の粗粉砕合金粉末を水素炉から取り出す際、粗粉砕粉が大 気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そ うすれば、粗粉砕粉が酸化'発熱することが防止され、磁石の磁気特性が向上するか らである。
[0048] 水素粉砕によって、希土類合金は 0. 1mm〜数 mm程度の大きさに粉砕され、その 平均粒径は 500 m以下となる。水素粉砕後、脆ィ匕した原料合金をロータリクーラ等 の冷却装置によって、より細力べ解砕するとともに冷却することが好ましい。比較的高 い温度状態のまま原料を取り出す場合は、ロータリクーラ等による冷却処理の時間を 相対的に長くすれば良い。
[0049] [潤滑剤添加工程]
添加金属 Aが銀 (Ag)の場合は、上述した方法で Agを添加する代わりに、水素粉 砕後の粗粉砕粉に対して所定量の脂肪族カルボン酸銀塩または芳香族カルボン酸 銀塩を含有する潤滑剤を添加し、混合してもよい。最終的な焼結磁石に含まれる Ag 量が 0. 005原子%以上 0. 20原子%以下の範囲になるように脂肪族カルボン酸銀 塩または芳香族カルボン酸銀塩の量を調節することにより、他の方法で Agを添加し た場合と同様の効果を得ることが可能になる。
[0050] 銀塩を形成するカルボン酸としては、例えば、力プリル酸、力プリン酸、ラウリン酸及 びステアリン酸等の直鎖飽和脂肪酸や、安息香酸及び t ブチル安息香酸などの芳 香族カルボン酸が挙げられる。これらカルボン酸の銀塩は 1種単独で使用することも できるが、 2種以上を組み合わせて用いてもよいし、他の潤滑剤 (銀を含まないもの) が添加されていてもよい。重要な点は、最終的に得られる焼結磁石中の Ag量が上記 の所定範囲内にあることである。このため、粗粉砕粉にステアリン酸亜鉛をカロえ、その 後微粉砕後にステアリン酸銀を含む潤滑剤を加えてもよい。なお、炭素数が 6未満の 脂肪族カルボン酸塩銀、芳香族カルボン酸塩銀は、潤滑剤効果を充分に発揮しな い可能性がある。一方、炭素数が 20を超えると、炭素量の増加により、焼結密度不 足や磁石特性の低下を引き起こす可能性がある。炭素による磁石特性の劣化を抑 制するには、最終的に得られる焼結磁石中の炭素濃度が 2000ppmを超えないよう に潤滑剤の添加量または残存量を調節することが好ましい。
[0051] 本発明では、最終的に得られる焼結磁石における Agの組成比率を 0. 005原子% 〜0. 20原子%の範囲に設定する必要がある力 そのために添加すべき潤滑剤の量 は、潤滑剤を添加するタイミングによっても変化する。後述する微粉砕工程の前にス テアリン酸銀を添加する場合は、合金粉末に対して例えば 0. 03〜: L 23重量%程 度のステアリン酸銀を添加すればよい。潤滑剤の添加量は、最終的に得られる焼結 磁石の Ag量を測定し、 Agの組成比率を 0. 005原子%〜0. 20原子%の範囲内に なるように適宜調整することができる。
[0052] なお、上記の潤滑剤は室温では固体であるため、粉末状態で混合されることになる 。潤滑剤の粉末粒径は例えば 1〜50 mの範囲に調整され得る。
[0053] [微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施 形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されて ヽる。ジエツ トミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金 (粗粉砕粉)の供給を受 け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回 収タンクに集められる。こうして、 0. 1〜20 m程度の微粉末を得ることができる。こ のような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミ ルであってもよい。
[0054] [プレス成形]
本実施形態では、上記方法で作製された磁性粉末に対し、ロッキングミキサー内で 潤滑剤を例えば 0. 3wt%添加 '混合し、潤滑剤で合金粉末粒子の表面を被覆する 。次に、上述の方法で作製した磁性粉末を公知のプレス装置を用いて配向磁界中で 成形する。印加する磁界の強度は、例えば 1テスラ (T)である。
[0055] なお、 Agを添加する場合、上述したカルボン酸銀塩を含む潤滑剤を微粉砕工程後 に追加的に加えてもよい。また、微粉砕工程前には潤滑剤を添加することなぐ微粉 砕工程後に上記の潤滑剤を加えるようにしてもよい。あるいは、微粉砕工程前には公 知の潤滑剤のみを添加し、微粉砕工程後に脂肪族カルボン酸銀塩または芳香族力 ルボン酸銀塩を含む潤滑剤を添加するようにしてもょ 、。
[0056] [焼結工程]
上記の粉末成形体に対して、 650〜1000°Cの範囲内の温度で 10〜240分間保 持する工程と、その後、上記の保持温度よりも高い温度 (例えば 1000〜: L100°C)で 焼結を更に進める工程とを順次行なうことが好ましい。焼結時、特に液相が生成され るとき(温度が 650〜1000°Cの範囲内にあるとき)、粒界相中の Rリッチ相が融け始 め、液相が形成される。その後、焼結が進行し、焼結磁石が形成される。焼結後、必 要に応じて、時効処理が行われる。
[0057] 上記の焼結工程を行なう前に、粉末成形体を水素雰囲気中において 200〜500 °Cの温度で 30〜300分程度保持する脱バインダ工程 (水素中脱バインダ工程)を行 なってもよい。このような工程により、潤滑剤中の炭素が水素と反応し、潤滑剤が炭化 水素として取り除かれるため、潤滑剤に含まれている炭素が焼結磁石中に残存する 量を低減することができる。水素中脱バインダ工程を行う場合は、添加する潤滑剤の 量を多くすることが可能になる。
[0058] 以下、本発明の実施例を説明する。
[0059] (実施例 1)
Nd: 14. 1原子%、B: 6. 1原子%、Ag:0. 05〜0. 6原子%、A1:0. 05原子%、 残部 Feからなる合金を用意し、上述した実施形態における製造方法により、焼結磁 石を作製した (実施例 1)。一方、 Agを添加しないこと以外では実施例 1と同様の組 成を有する母合金を用い、実施例 1と同様にして比較例 1を作製した。
[0060] プレス成形前における粉末の平均粒径は 4. 4 μ mであった。成形は、 1. OTの磁 場中で行った。成形後、 1000〜: L100°Cで 4時間の焼結工程、及び 620°Cで 2時間 の時効処理を行った。得られた焼結体は、 1 lmm X 10mm X 18mmの直方体形状 を有していた。
[0061] 図 1は、 Ag添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保 磁力 H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定値 cj r は「〇」で示し、残留磁束密度 Bfの測定値は「♦」で示して!/、る。
[0062] 図 1からわ力るように、僅か 0. 05原子%の Agを添加するだけで、比較例 1 (Ag無 添加)の保磁力 H (約 340kAZm)に比べて 2倍以上の値 (約 930kAZm)に増加 cj
することがわかる。図 1の例では、 Ag添加量が 0. 1原子%程度で保磁力 H はピーク cj 値を示している。 Ag添加量が 0. 3原子%を超えて大きくなると、 Ag添加の効果はほ とんど得られなくなる。一方、残留磁束密度 Bは、 Ag添加量が 0. 3原子%以下であ れば、ほとんど変化しないが、 Ag添加量が 0. 3原子%を超えて大きくなると、徐々に 低下してゆく。
[0063] 更に詳しい実験によると、 Ag添加の効果は、 Ag添加量が 0. 005原子%以上の場 合に発現することがわ力つた。以上のことから、本発明では、 Ag添加量を 0. 005原 子%以上 0. 3原子%以下の範囲に設定している。
[0064] (実施例 2)
Nd: 14. 1原子%、B: 6. 1原子%、残部 Feからなる合金を用意して、上述した実 施形態の製造方法によって焼結磁石を作製した (実施例 2及び比較例 2)。この例で は、プレス成形工程前における上記合金の粉末に対して 0. 02-0. 5原子%の Ag 粉末を混合し、比較例 2では、 Ag粉末を混合しなカゝつた。 Agは、 Agメタル粉末又は Ag O粉末の 2通りの形態で合金粉末と混合した。
2
[0065] プレス成形前における粉末の平均粒径は 4. 6 μ mであった。プレス成形は 1. 0T の磁場中で行った。プレス成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び、 62 0°Cで 2時間の時効処理を行った。得られた焼結体は、 1 lmm X 10mm X 18mmの 直方体形状を有していた。
[0066] 図 2は、 Ag添カ卩量と保磁力 H との関係を示すグラフである。図 2では、 Agメタル粉 cj
末を添加した場合の測定結果を「〇」で示し、 Ag O粉末を添加した場合の測定結果
2
は「X」で示している。
[0067] 図 1及び図 2を比較してわ力るように、 Ag微量添カ卩の効果は、添カ卩のタイミングに依 存していない。 Agは粉砕する前の合金段階力も添加していてもよいし、また、粉末ィ匕 した後に添加してもよい。また、図 2から明らかなように、 Agの添カ卩は、酸化物などの Ag化合物の形態で添加しても、 Agメタルの状態で添加してもよ 、。 [0068] (実施例 3)
Nd: 14. 1原子%、B: 6. 1原子%、Ag : 0. 1原子%、 A1: 0. 05〜0. 5原子%、残 部 Feからなる合金を用意して、上述した実施形態の製造方法によって焼結磁石を作 製した (実施例 3及び比較例 3)。
[0069] プレス成形前における粉末の平均粒径は 4. 6 μ mであった。成形は、 1. OTの磁 場中で行った。成形後、 1000〜1060。Cで 4時間の焼結工程、及び、 600〜640。C で 2時間の時効処理を行った。得られた焼結体は、 1 lmm X 10mm X 18mmの直 方体形状を有していた。
[0070] 図 3は、残留磁束密度 Bと A1添カ卩量との関係を示すグラフである。 A1添加量が 0. 4
0原子%を超えると、飽和磁束密度が低くなり、 Ag微量添加の効果が損なわれるお それがあることがわかる。
[0071] (実施例 4)
Nd: l l. 4原子%、Pr; 2. 8原子%、B : 6. 1原子%、Ag : 0. 1原子%、残部 Feか らなる合金を用意し、実施例 1と同様の工程により、実施例 4を作製した。実施例 4〖こ ついて磁石特性を測定したところ、保磁力 H は 1035kAZm、残留磁束密度 Bは 1
cj r
. 39Tであった。 Nd以外に Prなどの希土類元素が添加される場合でも本発明の効 果を奏することができることを確認した。
[0072] (実施例 5)
Nd: 14. 1原子%、B: 6. 1原子%、Ag : 0. 005〜0. 30原子%、Mo : 0. 4原子0 /0 、残部 Feからなる合金を用意し、上述した実施形態における製造方法により、焼結 磁石を作製した (実施例 5)。一方、 Agおよび元素 Mを添加しないこと以外では実施 例 5と同様の組成を有する母合金を用いて、実施例 5と同様にして比較例 4を作製し た。
[0073] プレス成形前における粉末の平均粒径は 4. 4 μ mであった。成形は、 1. OTの磁 場中で行った。成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び 620°Cで 2時間 の時効処理を行った。得られた焼結体は、 1 lmm X 10mm X 18mmの直方体形状 を有していた。
[0074] 図 4は、 Ag添カ卩量と保磁力 H (kAZm)との関係を示すグラフである。園のデータ は、 0. 4原子%の Moを添カ卩した実施例に関しており、◊のデータは、 Moを添加し ない比較例に関している。
[0075] 図 4からわ力るように、実施例も比較例も、僅か 0. 05原子%の Agを添加するだけ で、 Ag無添カ卩の場合における保磁力 H (約 340kAZm)に比べて 2倍以上の値 (約
cj
930kA/m)に増加することがわかる。図 4の例では、 Ag添加量が 0. 1原子%程度 で保磁力 H はピーク値を示している。 Ag添加量が 0. 3原子%を超えて大きくなると
cj
、 Ag添加の効果はほとんど得られなくなる。
[0076] また図 4から明らかなように、 Agに加えて 0. 4原子%の Moを添加することにより、 保磁力が更に増大することがわ力る。
[0077] 詳しい実験によると、 Mo以外にも、 Ti、 V、 Nb、および Wからなる群力も選択された 少なくとも 1種の元素を添加しても、 Ag微量添カ卩による保磁力増大効果が更に促進 されることがわかった。これらの元素 Mの添カ卩効果は、 Agの組成比率が 0. 005〜0 . 30原子%の範囲にあるとき発現することも確認した。
[0078] (実施例 6)
Nd: 14. 1原子%、B: 6. 1原子%、Ag : 0. 1原子%、元素 M (Mは、 Ti、 V、 Nb、 Mo、および Wからなる群力 選択された少なくとも 1種の元素):0. 05原子%〜1. 0 原子%、残部 Feからなる合金を用意し、上述した実施形態における製造方法により 、焼結磁石を作製した(実施例 6)。一方、元素 Mを添加しないこと以外では実施例 6 と同様の組成を有する母合金を用い、実施例 6と同様にして比較例 5を作製した。
[0079] プレス成形前における粉末の平均粒径は 4. 4 μ mであった。成形は、 1. 0Tの磁 場中で行った。成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び 620°Cで 2時間 の時効処理を行った。得られた焼結体は、 1 lmm X 10mm X 18mmの直方体形状 を有していた。
[0080] 図 5は、元素 Mの添カ卩量と保磁力 H (kAZm)との関係を示すグラフである。グラフ
cj
の縦軸は保磁力 H (kAZm)である。
cj
[0081] 図 5からわ力るように、僅か 0. 1原子%程度の Ti、 V、 Nb、 Mo、 Wを添加するだけ で、比較例 5 (0. 1原子%の Ag添加あり)の保磁力 H (約 95kAZm)に比べて増加
cj
することがゎカゝる。図 5の例では、元素 Mの添加量が増加するつれて保磁力 Hも増 加している。
[0082] 更に詳しい実験によると、元素 M添加の効果は、 M添加量が 0. 05原子%以上 1.
0原子%以下の範囲内で発現することがわ力つた。
[0083] また、残留磁束密度につ!ヽては、実施例 5および実施例 6の欄に記載した本発明 の希土類磁石は、 Cuや A1が添加された従来の R— Fe— B系希土類磁石と同等の値 を示した。
[0084] なお、 M元素としては、上記実施例において添加した元素以外に、 Cr、 Zr、 Hf、 T aを用いても同様の効果を得ることを確認した。
[0085] (実施例 7)
Nd: 14. 1原子%、B: 6. 1原子%、A1: 0. 05原子%、残部 Feからなる合金を用意 し、上述した実施形態における製造方法により、焼結磁石を作製した。潤滑剤として は、 0. 12〜0. 3重量%のステアリン酸銀を添加した (実施例 7)。一方、比較例 6で は、ステアリン酸銀に代えて、ステアリン酸亜鉛を添加した。
[0086] プレス成形前における粉末の平均粒径は 4. 4±0. 2 mであった。成形は、 1. 7
Tの磁場中で行った。成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び 500〜70
0°Cで 2時間の時効処理を行った。得られた焼結体は、 20mm X 50mm X I 2mmの 直方体形状を有していた。
[0087] 図 6は、 Ag添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保 磁力 H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定値 cj r
は「♦」で示し、残留磁束密度 Bの測定値は「口」で示している。
[0088] 図 6からわかるように、僅か 0. 02原子%の Agを添加するだけで、比較例 (Ag無添 カロ)の保磁力 H (約 340kAZm)に比べて 2倍以上の値 (約 880kAZm)に増加す
cj
ることがわ力る。図 6には示されていないが、 Ag添カ卩量が 0. 2原子%を超えて大きく なると、磁石特性が劣化し、 Ag添加の効果はほとんど得られなくなる。
[0089] 更に詳しい実験によると、 Ag添加の効果は、 Ag添加量が 0. 005原子%以上の場 合に発現することがわ力つた。以上のことから、本発明では、 Ag添加量を 0. 005原 子%以上 0. 2原子%以下の範囲に設定している。本発明では、 Ag添加量は、潤滑 剤の添加量によって調節しており、 Ag添加量を増力!]させると、必然的に潤滑剤に含 まれる炭素量も増加する。炭素含有量が多くなると、焼結磁石の特性が劣化する可 能性があるため、潤滑剤の添加量を増やす場合は、焼結前に潤滑剤を揮発させるェ 程を充分に行なうことが好ましい。前述した水素中脱バインダを行う場合、最終的な
Ag添加量が 0. 2原子%となるような潤滑剤を添加しても問題な ヽ。
[0090] (実施例 8)
Nd: 14. 1原子%、B: 6. 1原子%、A1: 0. 02〜0. 5原子%、残部 Feからなる合金 を用意して、上述した実施形態の製造方法によって焼結磁石を作製した。潤滑剤と しては、 0. 12重量%のステアリン酸銀をジェットミルによる微粉砕工程前に粉末に添 加した(実施例 8)。最終的な Ag添加量は焼結磁石の組成全体に対して 0. 02原子 %になった。
[0091] プレス成形前における粉末の平均粒径は 4. 4±0. であった。成形は、 1. 7 Tの磁場中で行った。成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び、 500〜 650°Cで 2時間の時効処理を行った。得られた焼結体は、 20mm X 50mm X I 2mm の直方体形状を有して!/、た。
[0092] 図 7は、残留磁束密度 Bと A1添カ卩量との関係を示すグラフである。 A1添加量が 0. 4 0原子%を超えると、残留磁束密度 Bが低くなり、 Ag微量添加の効果が損なわれる おそれがあることがわかる。
[0093] (実施例 9)
Nd: 14. 1原子%、B: 6. 1原子%、Ni: 0. 05〜0. 6原子%、A1: 0. 05原子%、 残部 Feからなる合金を用意し、上述した実施形態における製造方法により、焼結磁 石を作製した (実施例 9)。一方、 Niを添加しないこと以外では実施例 9と同様の組成 を有する母合金を用い、実施例 9と同様にして比較例 7を作製した。
[0094] プレス成形前における粉末の平均粒径は 4. 4〜4. 6 μ mであった。成形は、 1. 0 Tの磁場中で行った。成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び 580〜66 0°Cで 2時間の時効処理を行った。得られた焼結体は、 1 lmm X 10mm X 18mmの 直方体形状を有していた。
[0095] 図 8は、 Ni添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保 磁力 H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定値 cj r は「〇」で示し、残留磁束密度 Bfの測定値は「♦」で示して!/、る。
[0096] 図 8からわかるように、僅か 0. 05原子%の Niを添加するだけで、比較例 7 (Ni無添 カロ)の保磁力 H (約 340kAZm)に比べて 2倍以上の値 (約 800kAZm)に増加す cj
ることがわ力る。図 8の例では、 Ni添加量が 0. 05原子%程度で保磁力 H はピーク cj 値を示している。 Ni添カ卩量が 0. 4原子%を超えて大きくなると、 Ni添カ卩の効果は徐 々に低下してゆく。一方、残留磁束密度 Bは、 Ni添加量が 0. 4原子%以下であれば 、ほとんど変化しない。
[0097] 更に詳しい実験によると、 Ni添加の効果は、 Ni添加量が 0. 005原子%以上の場 合に発現することがわ力つた。以上のことから、本発明では、 Ni添加量を 0. 005原子 %以上 0. 4原子%以下の範囲に設定している。
[0098] (実施例 10)
Nd: 14. 1原子%、B: 6. 1原子%、残部 Feからなる合金を用意して、上述した実 施形態の製造方法によって焼結磁石を作製した (実施例 10及び比較例 8)。この例 では、プレス成形工程前における上記合金の粉末に対して 0. 02-0. 5原子%の Ni 粉末を混合し、比較例 8は、 Ni粉末を混合しなカゝつた。 Niは、 Niメタル粉末又は NiO 粉末の 2通りの形態で合金粉末と混合した。
[0099] プレス成形前における粉末の平均粒径は 4. 6 μ mであった。プレス成形は 1. 0T の磁場中で行った。プレス成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び、 58 0〜620°Cで 2時間の時効処理を行った。得られた焼結体は、 l lmm X 10mm X 18 mmの直方体形状を有して!/、た。
[0100] 図 9は、 Ni添加量と保磁力 H との関係を示すグラフである。図 9では、 Niメタル粉 cj
末を添加した場合の測定結果を「〇」で示し、 NiO粉末を添加した場合の測定結果 は「X」で示している。
[0101] 図 8及び図 9を比較してわ力るように、 Ni微量添加の効果は、添カ卩のタイミングに依 存していない。 Ni粉砕する前の合金段階力も添加していてもよいし、また、粉末化し た後に添加してもよい。また、図 9から明らかなように、 Ni添カ卩は、酸ィ匕物などの Niィ匕 合物の形態で添加しても、 Niメタルの状態で添加してもよ 、。
[0102] (実施例 11) Nd: 14. 1原子%、B: 6. 1原子%、Ni: 0. 05原子%、A1: 0. 05〜0. 5原子%、 残部 Feからなる合金を用意して、上述した実施形態の製造方法によって焼結磁石を 作製した (実施例 11及び比較例 9)。
[0103] プレス成形前における粉末の平均粒径は 4. 5〜4. 7 mであった。成形は、 1. 0
Tの磁場中で行った。成形後、 1000〜1060°Cで 4時間の焼結工程、及び、 600〜
620°Cで 2時間の時効処理を行った。得られた焼結体は、 l lmm X 10mm X 18mm の直方体形状を有して!/、た。
[0104] 図 10は、残留磁束密度 Bと A1添カ卩量との関係を示すグラフである。 A1添加量が 0.
40原子%を超えると、飽和磁束密度が低くなり、 Ni微量添加の効果が損なわれるお それがあることがわかる。
[0105] (実施例 12)
Nd: l l. 4原子%、 Pr; 2. 8原子%、 B : 6. 1原子%、 Ni: 0. 05原子%、残部 Feか らなる合金を用意し、実施例 9と同様の工程により、実施例 12を作製した。実施例 12 について磁石特性を測定したところ、保磁力 H は 855kAZm、残留磁束密度 Bは 1 cj r
. 39Tであった。 Nd以外に Prなどの希土類元素が添加される場合でも本発明の効 果を奏することができることを確認した。
[0106] (実施例 13)
Nd: 14. 0原子%、B: 6. 0原子%、Au: 0. 01〜0. 3原子%、A1: 0. 05原子%、 残部 Feからなる合金を用意し、上述した実施形態における製造方法により、焼結磁 石を作製した (実施例 13)。一方、 Auを添加しないこと以外では実施例 13と同様の 組成を有する母合金を用い、実施例 13と同様にして比較例 10を作製した。
[0107] プレス成形前における粉末の平均粒径は 4. 4〜4. 6 mであった。成形は、 1. 5 Tの磁場中で行った。成形後、 1000〜: L 100°Cで 4時間の焼結工程、及び 500〜70 0°Cで 2時間の時効処理を行った。得られた焼結体は、 20mm X 50mm X I 5mmの 直方体形状を有していた。
[0108] 図 11は、 Au添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は 保磁力 H (kAZm)であり、右側縦軸は残留磁束密度 B (T)である。保磁力の測定 cj r
値は「〇」で示し、残留磁束密度 Bの測定値は「♦」で示している。 [0109] 図 11からわ力るように、僅か 0. 01原子%の Auを添加するだけで、比較例 10 (Au 無添加)の保磁力 H (約 340kAZm)に比べて 2倍以上の値 (約 890kAZm)に増
cj
カロすることがゎカゝる。図 11の例では、 Au添加量が 0. 01原子%程度で保磁力 H は
cj ピーク値を示している。 Au添カ卩量が 0. 3原子%を超えて大きくなると、 Au添力卩の効 果はほとんど得られなくなる。一方、残留磁束密度 Bは、 Au添加量が増えるに従い、 徐々に低下してゆく。
[0110] 更に詳しい実験によると、 Au添加の効果は、 Au添カ卩量が 0. 005原子%以上の場 合に発現することがわ力つた。以上のことから、本発明では、 Au添力卩量を 0. 005原 子%以上 0. 2原子%以下の範囲に設定している。
[0111] (実施例 14)
Nd: 14. 0原子%、B: 6. 0原子%、Au: 0. 05原子%、A1: 0. 05〜0. 5原子%、 残部 Feからなる合金を用意して、上述した実施形態の製造方法によって焼結磁石を 作製した (実施例 14及び比較例 11)。
[0112] プレス成形前における粉末の平均粒径は 4. 4〜4. 6 mであった。成形は、 1. 5 Tの磁場中で行った。成形後、 1000〜1060°Cで 4時間の焼結工程、及び、 550〜 650°Cで 2時間の時効処理を行った。得られた焼結体は、 20mm X 50mm X I 5mm の直方体形状を有して!/、た。
[0113] 図 12は、残留磁束密度 Bと A1添加量との関係を示すグラフである。 A1添加量が 0.
4原子%を超えると、飽和磁束密度が、 Al、 Cuが添加された従来組成の磁石が有す る飽和磁束密度と同程度になるため、 Au微量添加の効果が損なわれるおそれがあ ることがゎカゝる。
[0114] (実施例 15)
Nd: l l. 2原子%、 Pr; 2. 8、 B : 6. 0原子%、 Au: 0. 05原子%、残部 Feからなる 合金を用意し、実施例 14と同様の工程により、実施例 15を作製した。実施例 15につ いて磁石特性を測定したところ、保磁力 H は 929kAZm、残留磁束密度 Bは 1. 41
cj r
Tであった。 Nd以外に Prなどの希土類元素が添加される場合でも本発明の効果を 奏することができることを確認した。
[0115] 以上の実施例に基づくと、添加金属 Aのうち、 Agを添加した場合に最も優れた効 果が得られることがわ力つた。添カ卩の効果は、 Ni、 Au、 Agの順序で大きくなる。 産業上の利用可能性
本発明の希土類焼結磁石は、 Cuや A1が添加された従来の R— Fe— B系希土類焼 結磁石と同等の保磁力を発現するとともに、それらの磁石よりも高い残留磁束密度を 示す。このため、本発明の希土類焼結磁石は、保磁力及び残留磁束密度の両方が 高 ヽ値を有することの求められる種々の用度に好適に用いられる。

Claims

請求の範囲
[1] 12. 0原子%〜15. 0原子%の希土類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoから なる群力も選択された少なくとも一種の元素であり、 Nd及び/又は Prを 50%以上含 む)と、
5. 5原子%〜8. 5原子%の硼素(B)と、
所定量の添加金属 Aと、
残部の鉄 (Fe)及び不可避的不純物と、
を含有する希土類焼結磁石であって、
前記所定量の添加金属 Aは、
0. 005原子%〜0. 30原子%の銀 (Ag)、 0. 005原子%〜0. 40原子%の-ッケ ル(Ni)、および 0. 005原子%〜0. 20原子%の金(Au)の少なくとも 1つである、希 土類焼結磁石。
[2] Agの組成比率が 0. 005原子%〜0. 20原子%である請求項 1に記載の希土類焼 結磁石。
[3] Niの組成比率が 0. 005原子%〜0. 20原子%である請求項 1に記載の希土類焼 結磁石。
[4] Auの組成比率が 0. 005原子%〜0. 10原子%である請求項 1に記載の希土類焼 結磁石。
[5] 不可避的不純物は A1を含み、前記 A1の含有量は 0. 4原子%以下である請求項 1 に記載の希土類焼結磁石。
[6] 0. 05原子%〜1. 0原子0 /0の元素 M (Mは、 Ti、 V、 Cr、 Zr、 Nb、 Mo、 Hf、 Taゝ および Wからなる群力 選択された少なくとも 1種の元素)を更に含む、請求項 1に記 載の希土類焼結磁石。
[7] 12. 0原子%〜15. 0原子%の希土類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoから なる群力も選択された少なくとも一種の元素であり、 Nd及び/又は Prを 50%以上含 む)と、 5. 5原子%〜8. 5原子%の硼素(B)と、所定量の添加金属 Aと、残部の鉄( Fe)及び不可避的不純物とを含有する合金であって、前記所定量の添加金属 Aが 0 . 005原子%〜0. 30原子%の銀 (Ag)、 0. 005原子%〜0. 40原子%のニッケル( Ni)、および 0. 005原子%〜0. 20原子%の金(Au)の少なくとも 1つである合金を 用意する工程と、
前記合金を粉砕して粉末を作製する工程と、
前記粉末を焼結する工程と、
を含む希土類焼結磁石の製造方法。
[8] 前記合金は、 0. 05原子%〜1. 0原子%の元素 M (Mは、 Ti、 V、 Cr、 Zr、 Nb、 M o、 Hf、 Ta、および Wからなる群力 選択された少なくとも 1種の元素)を更に含む請 求項 7に記載の希土類焼結磁石の製造方法。
[9] 不可避的不純物は A1を含み、前記 A1の含有量は 0. 4原子%以下である請求項 7 に記載の希土類焼結磁石の製造方法。
[10] 12. 0原子%〜15. 0原子%の希土類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoから なる群力も選択された少なくとも一種の元素であり、 Nd及び/又は Prを 50%以上含 む)と、 5. 5原子%〜8. 5原子%の硼素(B)と、残部の鉄 (Fe)及び不可避的不純物 とを含有する合金を用意する工程と、
前記合金を粉砕して粉末を作製する工程と、
前記粉末に対して 0. 005原子%〜0. 30原子%の銀 (Ag)、 0. 005原子%〜0.
40原子%のニッケル(Ni)、および 0. 005原子%〜0. 20原子%の金(Au)の少なく とも 1つを添加し、微量元素添加粉末を作製する工程と、
前記微量元素添加粉末を焼結する工程と、
を含む希土類焼結磁石の製造方法。
[11] 前記微量元素添加粉末には、 0. 05原子%〜1. 0原子%の元素 M (Mは、 Ti、 V、
Cr、 Zr、 Nb、 Mo、 Hf、 Ta、および Wからなる群から選択された少なくとも 1種の元素
)が更に添加されている請求項 10に記載の希土類焼結磁石の製造方法。
[12] 不可避的不純物は A1を含み、前記 A1の含有量は 0. 4原子%以下である請求項 1
0に記載の希土類焼結磁石の製造方法。
[13] 12. 0原子%〜15. 0原子%の希土類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoから なる群力も選択された少なくとも一種の元素であり、 Nd及び/又は Prを 50%以上含 む)と、 5. 5原子%〜8. 5原子%の硼素(B)と、残部の鉄 (Fe)及び不可避的不純物 とを含有する希土類磁石用合金粉末であって、潤滑剤が添加された合金粉末を用 意する工程 Aと、
前記合金粉末の成形体を作製した後、前記成形体を焼結する工程 Bと、 を含み、
前記潤滑剤は、脂肪族カルボン酸銀塩または芳香族カルボン酸銀塩を含有する、 希土類焼結磁石の製造方法。
[14] 前記脂肪族カルボン酸銀塩または芳香族カルボン酸銀塩の添加量は、希土類焼 結磁石における Agの糸且成比率が 0. 005原子%〜0. 20原子%となるように調節さ れて 、る請求項 13に記載の希土類焼結磁石の製造方法。
[15] 前記合金粉末を用意する工程 Aは、
12. 0原子%〜15. 0原子%の希土類元素(Nd、 Pr、 Gd、 Tb、 Dy、及び Hoから なる群力も選択された少なくとも一種の元素であり、 Nd及び/又は Prを 50%以上含 む)と、 5. 5原子%〜8. 5原子%の硼素(B)と、残部の鉄 (Fe)及び不可避的不純物 とを含有する希土類磁石用合金を用意する工程 alと、
前記合金の粗粉砕粉末を作製する工程 a2と、
前記合金の粗粉砕粉末から微粉砕粉末を作製する工程 a3と、
前記工程 a2と工程 a3の間、または前記工程 a3の後に、前記潤滑剤を前記粉末に 添加する工程 a4と、
を含む、請求項 13に記載の希土類焼結磁石の製造方法。
[16] 前記脂肪族カルボン酸銀塩または芳香族カルボン酸銀塩の炭素数は 6以上 20以 下である、請求項 13に記載の希土類焼結磁石の製造方法。
[17] 不可避的不純物は A1を含み、前記 A1の含有量は 0. 4原子%以下である請求項 1
3に記載の希土類焼結磁石の製造方法。
PCT/JP2006/314076 2005-07-15 2006-07-14 希土類焼結磁石及びその製造方法 WO2007010860A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800009480A CN101031984B (zh) 2005-07-15 2006-07-14 稀土类烧结磁体及其制造方法
DE112006000070T DE112006000070T5 (de) 2005-07-15 2006-07-14 Seltenerdmetall-Sintermagnet und Verfahren zu seiner Herstellung
US11/575,928 US9551052B2 (en) 2005-07-15 2006-07-14 Rare earth sintered magnet and method for production thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005207645A JP4645336B2 (ja) 2005-07-15 2005-07-15 希土類焼結磁石及びその製造方法
JP2005-207645 2005-07-15
JP2005233110A JP5235264B2 (ja) 2005-08-11 2005-08-11 希土類焼結磁石及びその製造方法
JP2005-233110 2005-08-11
JP2005324058A JP4635832B2 (ja) 2005-11-08 2005-11-08 希土類焼結磁石の製造方法
JP2005-324058 2005-11-08
JP2005-349280 2005-12-02
JP2005349280A JP4972919B2 (ja) 2005-12-02 2005-12-02 希土類焼結磁石及びその製造方法
JP2006-039274 2006-02-16
JP2006039274A JP4687493B2 (ja) 2006-02-16 2006-02-16 希土類焼結磁石及びその製造方法

Publications (1)

Publication Number Publication Date
WO2007010860A1 true WO2007010860A1 (ja) 2007-01-25

Family

ID=37668741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314076 WO2007010860A1 (ja) 2005-07-15 2006-07-14 希土類焼結磁石及びその製造方法

Country Status (4)

Country Link
US (1) US9551052B2 (ja)
CN (1) CN101031984B (ja)
DE (1) DE112006000070T5 (ja)
WO (1) WO2007010860A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081041A (zh) * 2011-06-24 2013-05-01 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法
JP2015023242A (ja) * 2013-07-23 2015-02-02 Tdk株式会社 希土類磁石、電動機、及び電動機を備える装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503570B1 (en) * 2010-03-31 2015-01-21 Nitto Denko Corporation Manufacturing method for permanent magnet
WO2011125591A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
WO2011125584A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
US8500921B2 (en) * 2010-03-31 2013-08-06 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
US9048014B2 (en) 2010-03-31 2015-06-02 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
KR101189840B1 (ko) * 2010-03-31 2012-10-10 닛토덴코 가부시키가이샤 영구 자석 및 영구 자석의 제조 방법
WO2011125585A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP2012015168A (ja) * 2010-06-29 2012-01-19 Showa Denko Kk R−t−b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
KR101878998B1 (ko) 2011-06-24 2018-07-16 닛토덴코 가부시키가이샤 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
JP5908247B2 (ja) * 2011-09-30 2016-04-26 日東電工株式会社 永久磁石の製造方法
JP5908246B2 (ja) * 2011-09-30 2016-04-26 日東電工株式会社 希土類永久磁石の製造方法
CN104934175B (zh) * 2014-03-20 2019-08-16 江西理工大学 一种基于晶界改性的高矫顽力低镝/铽钕铁硼磁体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204211A (ja) * 1983-05-06 1984-11-19 Sumitomo Special Metals Co Ltd 等方性永久磁石材料
JPS61221353A (ja) * 1985-03-26 1986-10-01 Sumitomo Special Metals Co Ltd 永久磁石材料
JPS63241142A (ja) * 1987-12-28 1988-10-06 Sumitomo Special Metals Co Ltd 強磁性合金
JPS63241141A (ja) * 1987-12-28 1988-10-06 Sumitomo Special Metals Co Ltd 強磁性合金
JPH04133406A (ja) * 1990-09-26 1992-05-07 Mitsubishi Materials Corp 磁気的異方性および耐食性に優れた希土類―Fe―B系永久磁石粉末およびボンド磁石
JPH04293206A (ja) * 1991-03-20 1992-10-16 Kobe Steel Ltd 希土類元素−Fe−B系異方性化永久磁石
JPH04343204A (ja) * 1991-05-20 1992-11-30 Kobe Steel Ltd 希土類元素−遷移元素−b系異方性化永久磁石の製造方法
JPH0562814A (ja) * 1991-05-22 1993-03-12 Kobe Steel Ltd 希土類元素−Fe−B系磁石の製造方法
JPH07272929A (ja) * 1994-03-29 1995-10-20 Kobe Steel Ltd 希土類元素−Fe−B系薄膜永久磁石
JPH09270310A (ja) * 1996-03-29 1997-10-14 Seiko Epson Corp 希土類永久磁石

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989401A (ja) 1982-11-15 1984-05-23 Sumitomo Special Metals Co Ltd 永久磁石
JPS5946008A (ja) 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd 永久磁石
JPS59132104A (ja) 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd 永久磁石
CA1316375C (en) 1982-08-21 1993-04-20 Masato Sagawa Magnetic materials and permanent magnets
US4792368A (en) 1982-08-21 1988-12-20 Sumitomo Special Metals Co., Ltd. Magnetic materials and permanent magnets
US4840684A (en) 1983-05-06 1989-06-20 Sumitomo Special Metals Co, Ltd. Isotropic permanent magnets and process for producing same
JPS6032306A (ja) 1983-08-02 1985-02-19 Sumitomo Special Metals Co Ltd 永久磁石
JPS60138056A (ja) 1983-12-27 1985-07-22 Sumitomo Special Metals Co Ltd 焼結磁石材料
JPS60184661A (ja) 1984-03-01 1985-09-20 Tdk Corp 永久磁石
JPH0684550B2 (ja) 1988-02-19 1994-10-26 昭和電工株式会社 高純度電解鉄の製造方法
JP2741508B2 (ja) 1988-02-29 1998-04-22 住友特殊金属株式会社 磁気異方性焼結磁石とその製造方法
JP2787580B2 (ja) 1988-10-06 1998-08-20 眞人 佐川 熱処理性がすぐれたNd−Fe−B系焼結磁石
US5250206A (en) 1990-09-26 1993-10-05 Mitsubishi Materials Corporation Rare earth element-Fe-B or rare earth element-Fe-Co-B permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet manufactured therefrom
JPH04217302A (ja) 1990-12-18 1992-08-07 Sumitomo Metal Mining Co Ltd 耐蝕性に優れたAg含有焼結磁石
JP3254229B2 (ja) 1991-09-11 2002-02-04 信越化学工業株式会社 希土類永久磁石の製造方法
JPH05205927A (ja) 1991-11-22 1993-08-13 Kawasaki Steel Corp 希土類−遷移金属系永久磁石及びその製造方法
US5383978A (en) 1992-02-15 1995-01-24 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
JPH05234733A (ja) 1992-02-20 1993-09-10 Tdk Corp 焼結磁石
CN1044940C (zh) 1992-08-13 1999-09-01 Ybm麦格奈克斯公司 基于钕铁硼的生产永久磁铁的方法
EP0921533B1 (en) 1997-06-26 2007-04-18 Neomax Co., Ltd. Method of producing laminated permanent magnet
JP2003017308A (ja) 2001-06-27 2003-01-17 Nissan Motor Co Ltd 高抵抗磁石およびその製造方法
JP4415551B2 (ja) 2003-03-14 2010-02-17 日立金属株式会社 希土類合金、希土類焼結磁石およびその製造方法
US20060207689A1 (en) 2003-10-31 2006-09-21 Makoto Iwasaki Method for producing sintered rare earth element magnet
JP4415374B2 (ja) 2004-03-31 2010-02-17 Tdk株式会社 希土類焼結磁石の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204211A (ja) * 1983-05-06 1984-11-19 Sumitomo Special Metals Co Ltd 等方性永久磁石材料
JPS61221353A (ja) * 1985-03-26 1986-10-01 Sumitomo Special Metals Co Ltd 永久磁石材料
JPS63241142A (ja) * 1987-12-28 1988-10-06 Sumitomo Special Metals Co Ltd 強磁性合金
JPS63241141A (ja) * 1987-12-28 1988-10-06 Sumitomo Special Metals Co Ltd 強磁性合金
JPH04133406A (ja) * 1990-09-26 1992-05-07 Mitsubishi Materials Corp 磁気的異方性および耐食性に優れた希土類―Fe―B系永久磁石粉末およびボンド磁石
JPH04293206A (ja) * 1991-03-20 1992-10-16 Kobe Steel Ltd 希土類元素−Fe−B系異方性化永久磁石
JPH04343204A (ja) * 1991-05-20 1992-11-30 Kobe Steel Ltd 希土類元素−遷移元素−b系異方性化永久磁石の製造方法
JPH0562814A (ja) * 1991-05-22 1993-03-12 Kobe Steel Ltd 希土類元素−Fe−B系磁石の製造方法
JPH07272929A (ja) * 1994-03-29 1995-10-20 Kobe Steel Ltd 希土類元素−Fe−B系薄膜永久磁石
JPH09270310A (ja) * 1996-03-29 1997-10-14 Seiko Epson Corp 希土類永久磁石

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081041A (zh) * 2011-06-24 2013-05-01 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法
CN103081041B (zh) * 2011-06-24 2017-07-11 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法
JP2015023242A (ja) * 2013-07-23 2015-02-02 Tdk株式会社 希土類磁石、電動機、及び電動機を備える装置

Also Published As

Publication number Publication date
US9551052B2 (en) 2017-01-24
CN101031984B (zh) 2011-12-21
US20090053094A1 (en) 2009-02-26
CN101031984A (zh) 2007-09-05
DE112006000070T5 (de) 2008-08-14

Similar Documents

Publication Publication Date Title
WO2007010860A1 (ja) 希土類焼結磁石及びその製造方法
JP4635832B2 (ja) 希土類焼結磁石の製造方法
JP6489052B2 (ja) R−Fe−B系焼結磁石及びその製造方法
JP4743211B2 (ja) 希土類焼結磁石及びその製造方法
JP6541038B2 (ja) R−t−b系焼結磁石
JP3715573B2 (ja) 磁石材料及びその製造方法
JP4900085B2 (ja) 希土類磁石の製造方法
JPH04184901A (ja) 希土類鉄系永久磁石およびその製造方法
JP5299737B2 (ja) R−t−b系焼結永久磁石用急冷合金およびそれを用いたr−t−b系焼結永久磁石
JP4449900B2 (ja) 希土類合金粉末の製造方法および希土類焼結磁石の製造方法
JP6623998B2 (ja) R−t−b系焼結磁石の製造方法
JP4415374B2 (ja) 希土類焼結磁石の製造方法
JP3474684B2 (ja) 耐食性のすぐれた高性能R−Fe−B−C系磁石材料
JP2005197301A (ja) 希土類焼結磁石及びその製造方法
JP4687493B2 (ja) 希土類焼結磁石及びその製造方法
JP5235264B2 (ja) 希土類焼結磁石及びその製造方法
JPH068488B2 (ja) 永久磁石合金
JP2005288493A (ja) 合金薄板の製造方法及び製造装置、合金粉末の製造方法
JP3763774B2 (ja) 鉄基希土類合金磁石用急冷合金、及び鉄基希土類合金磁石の製造方法
JP7228097B2 (ja) R-t-b系焼結磁石の製造方法
JP4645336B2 (ja) 希土類焼結磁石及びその製造方法
JP4972919B2 (ja) 希土類焼結磁石及びその製造方法
JP4802927B2 (ja) 希土類焼結磁石及びその製造方法
JP2005197300A (ja) 希土類焼結磁石及びその製造方法
JP4415551B2 (ja) 希土類合金、希土類焼結磁石およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11575928

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680000948.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060000705

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006000070

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06768236

Country of ref document: EP

Kind code of ref document: A1