WO2007010841A1 - 異方性色素膜用組成物、異方性色素膜及び偏光素子 - Google Patents
異方性色素膜用組成物、異方性色素膜及び偏光素子 Download PDFInfo
- Publication number
- WO2007010841A1 WO2007010841A1 PCT/JP2006/314030 JP2006314030W WO2007010841A1 WO 2007010841 A1 WO2007010841 A1 WO 2007010841A1 JP 2006314030 W JP2006314030 W JP 2006314030W WO 2007010841 A1 WO2007010841 A1 WO 2007010841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- dye
- composition
- anisotropic dye
- anisotropic
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/60—Pleochroic dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/02—Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
Definitions
- the present invention relates to an anisotropic dye having high dichroism useful for a polarizing film provided in a display element of a light control element, a liquid crystal element (LCD), or an organic electoluminescence element (OLE D).
- An anisotropic dye film composition capable of forming a film, an anisotropic dye film formed using the anisotropic dye film composition, and a polarizing element using the anisotropic dye film It is about.
- a linearly polarizing plate and a circularly polarizing plate are used in order to control optical rotation and birefringence in display.
- OLEDs also use circularly polarizing plates to prevent reflection of outside light.
- iodine has been widely used as a dichroic material in these polarizing plates (polarizing elements).
- polarizing elements polarizing elements
- the dichroic dyes described in these documents form a lyotropic liquid crystal phase in a solvent such as water or alcohol, and are easily aligned by an external field such as an alignment substrate, a flow field, an electric field, or a magnetic field.
- an external field such as an alignment substrate, a flow field, an electric field, or a magnetic field.
- CI Direct Yellow 4 a positive dichroic dye film is obtained
- Methylene Blue CI Basic Blue 9
- Amaranth CI Food Red 9
- the present invention provides an anisotropic dye film composition capable of forming an anisotropic dye film having high dichroism and high coating uniformity with high productivity, and the anisotropic dye film It is an object of the present invention to provide a high dichroic anisotropic dye film formed using the composition and a polarizing element using the anisotropic dye film.
- the composition for an anisotropic dye film according to the first aspect of the present invention is a composition for an anisotropic dye film containing a dye and capable of forming a lyotropic liquid crystal phase, and having a temperature of 5 ° C and a strain.
- the time until the relaxation modulus G decreases to 1/10 after 0.01 second after application is 0.1 second or less. It is a life.
- the anisotropic dye film of the second aspect of the present invention is formed using this anisotropic dye film composition.
- the anisotropic dye film of the third aspect of the present invention has a thione strength of not less than 0.9 equivalents and not more than 0.99 equivalents, and a strong acid and anion of 0.02 equivalents relative to the dye and the acidic group of the dye. It is characterized by containing at least 0.1 equivalent and below.
- the anisotropic dye film of the fourth aspect of the present invention uses the anisotropic dye film of the second or third aspect.
- compositions for anisotropic dye films containing a dye and capable of forming a lyotropic liquid crystal phase at a temperature of 5 ° C and 0.01 seconds after application of strain are compositions for anisotropic dye films containing a dye and capable of forming a lyotropic liquid crystal phase at a temperature of 5 ° C and 0.01 seconds after application of strain.
- an anisotropic dye film composition in which the time until the subsequent relaxation modulus G decreases to 1/10 is 0.1 second or less dichroism with high coating uniformity can be obtained. It has been found that a highly anisotropic dye film can be formed with high efficiency.
- the composition for an anisotropic dye film of the present invention is a composition for an anisotropic dye film containing a dye and capable of forming a lyotropic liquid crystal phase, at a temperature of 5 ° C and after applying a strain.
- the time until the relaxation modulus G decreases to 1/10 after 01 seconds is 0.1 seconds or less.
- a coating film obtained by forming a film by a wet film-forming method using the composition for anisotropic dye film of the present invention is uniform, and the strength is excellent in productivity. For this reason, an anisotropic dye film that exhibits high dichroism and high coating film uniformity can be formed with high productivity. The reason is estimated as follows.
- the order of the relative position of the aggregate is low.
- the order of the relative position of the aggregate is evaluated by the half-value width of the X-ray diffraction peak shown in Reference 4 (Lydon) above.
- salt is added to increase the ionic strength or decrease the degree of neutralization of the dye, so that the electrical repulsion between the aggregates is moderately adjusted. It is important to suppress. If the neutralization degree of the dye is lowered excessively, the dye will precipitate. In addition, when salt is added excessively, salt is deposited on the coating film and the degree of orientation of the dye is lowered.
- the present inventors assumed that the relaxation time when the concentration was increased by drying was short, and that the relaxation modulus G after 0.01 seconds after applying the strain at a temperature of 5 ° C.
- a composition for an anisotropic dye film whose time to decrease to 1/10 is 0.1 second or less, it was confirmed that defects and cracks in the paint film could be suppressed. It was found that an anisotropic dye film having high uniformity and high dichroism can be formed with high efficiency.
- the dye contained in the anisotropic dye film composition of the present invention is preferably an azo dye.
- Such an anisotropic dye film composition of the present invention is particularly wet-film-formed. This is useful for the formation of anisotropic color films by the method.
- composition for anisotropic dye film of the present invention has a cation of 0.9 equivalent or more and 0.99 equivalent or less and a strong acid guanion of 0.02 equivalent or more and 0.1 equivalent or less with respect to the acidic group of the dye. It is preferable that it contains less than equivalent.
- the anisotropic dye film of the present invention is formed using such a composition for anisotropic dye film of the present invention.
- the anisotropic dye film of the present invention also has a cation of 0.9 equivalents or more and 0.99 equivalents or less and a strong acid anion of 0.02 equivalents or more and 0.1 equivalents or less with respect to the dye and the acidic group of the dye. Including less than or equal to Is.
- the anisotropic dye film of the present invention is useful for various polarizing elements such as a polarizing plate included in a display element of a light control element, a liquid crystal element (LCD), and an organic electoluminescence element (OLED). is there.
- polarizing elements such as a polarizing plate included in a display element of a light control element, a liquid crystal element (LCD), and an organic electoluminescence element (OLED). is there.
- the polarizing element of the present invention uses such an anisotropic dye film of the present invention.
- the anisotropic dye film as used in the present invention refers to electromagnetics in any two directions selected from a total of three directions in a three-dimensional coordinate system in the thickness direction of the dye film and in any two orthogonal planes. It is a dye film having anisotropy in the mechanical properties. Electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance. Examples of the film having optical anisotropy such as absorption and refraction include a linear polarizing film, a circular polarizing film, a retardation film, and a conductive anisotropic film.
- the anisotropic dye film of the present invention is more preferably used for a polarizing film, which is preferably used for a polarizing film, a retardation film, and a conductive anisotropic film.
- anisotropic dye film composition of the present invention will be described.
- the composition for anisotropic dye film of the present invention contains a dye, and is lyotropic.
- the relaxation elastic modulus of the composition for anisotropic dye film uses the Stress Relaxation mode of the viscoelasticity measuring device AR ES viscoelasticity measurement system (manufactured by Rheometric Scientific). And the relaxation modulus measured under the following conditions. Further, it may be measured by a device equivalent to this device.
- the measurement jig if relaxation modulus LOOdynZcm 2 hereinafter samples (composition for an anisotropic dye film) using a cone plate with a diameter of 50 mm, a cone plate with a diameter of 25mm when it exceeds LOOdynZcm 2 Is used.
- samples composition for an anisotropic dye film
- a cone plate with a diameter of 25mm when it exceeds LOOdynZcm 2 Is used used.
- the composition for an anisotropic dye film of the present invention has a time during which the relaxation elastic modulus G decreases to 1/10 after a force of 0.01 seconds after applying a strain in this way for 0.1 second. It is the composition which is the following.
- the relaxation elastic modulus decrease time is preferably as short as possible, more preferably 0.07 seconds or less, and even more preferably 0.05 seconds or less. If the relaxation elastic modulus decrease time exceeds 0.1 seconds, an anisotropic dye film having high coating uniformity and high dichroism cannot be obtained with high production efficiency.
- the composition for an anisotropic dye film of the present invention specifically contains at least a dye and a solvent, and as described in Non-Patent Document 3, specifically, the dye is water or alcohol.
- the composition can form an aggregate in a polar solvent such as the above, and can form a lyotropic liquid crystal phase from the shape anisotropy of the aggregate.
- the dye used in the present invention is preferably soluble in water or an organic solvent, and particularly preferably water-soluble, in order to be used in the wet film forming method described later.
- the composition of the present invention can be obtained by selecting a dye.
- the dye used in the present invention preferably has a molecular weight of 200 or more, particularly 300 or more, 1500 or less, particularly 1200 or less in a free state that does not take a salt form.
- the dye include condensed polycyclic and azo dyes, but are not limited thereto.
- azo dyes are preferred.
- ⁇ acid-based or RR acid-based azo dyes are preferred because they are equally absorbed in the entire visible light range for polarizing film applications where disazo dyes or trisazo dyes are preferred. ,.
- a dye whose free acid form is represented by the following formula is particularly preferable.
- X 1 represents a hydrogen atom or a sulfo group.
- a 1 may have a substituent V, a phenol group, a substituent, an naphthyl group or an aromatic heterocyclic group which may have a substituent Represents.
- B 1 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
- n represents 1 or 2.
- a 1 is an aromatic heterocyclic group
- examples of the hetero atom of the aromatic heterocyclic group include a nitrogen atom and a sulfur atom
- the aromatic heterocyclic group having a nitrogen atom is a liquid crystal.
- sexual expression is preferable because of a decrease in concentration.
- Specific examples of the aromatic heterocyclic group include a pyridyl group, a quinolyl group, a thiazolyl group, and a benzothiazolyl group, and a pyridyl group is preferable.
- B 1 is an aromatic hydrocarbon group
- specific examples include a phenylene group or a naphthylene group.
- the naphthylene group is preferably a 1,4 naphthylene group.
- the force is preferably a 1,4 naphthylene group in order to exhibit the above interaction.
- B 1 is an aromatic heterocyclic group
- examples thereof include the divalent group in the case where A 1 is an aromatic heterocyclic group.
- the aromatic hydrocarbon group or the aromatic heterocyclic group may have include an alkyl group, an alkoxy group, an amino group, an acyl group, a strong rubamoyl group, a carboxy group, a sulfo group, a hydroxyl group, and a cyano group. Is mentioned.
- the dye used in the present invention is particularly a dye represented by the following structural formula (I 1) (hereinafter sometimes referred to as “dye No. (1 1)”), the following structural formula (1-2) ) (Hereinafter sometimes referred to as “Dye No. (I-2)”), a dye represented by the following structural formula (II-1) (hereinafter referred to as “Dye No. (II)”) 1) "), a dye represented by the following structural formula (III-1) (hereinafter sometimes referred to as” Dye No. (Ill-1) "), and the following structural formula (III — Dye represented by 2) (hereinafter sometimes referred to as “Dye No. (Ill—2)”), Dye represented by the following structural formula (IV-1) (hereinafter referred to as “Dye No. 2”). (IV-1) ”may be referred to). These dyes may be in the salt form as described below.
- dye No. (1-1) can be produced by the following steps A) and B).
- the above-mentioned dyes can be used alone. Two or more of these may be used in combination, and the degree of orientation is not reduced. It is also possible to use a mixture with a dye other than the above-mentioned exemplified dyes, whereby an anisotropic dye film having various hues can be produced.
- examples of preferred dyes for blending include C.I.
- Direct Yellow 12 CI Direct Yellow 34, CI Direct Yellow 86, CI Direct Yellow 142, CI Direct Yellow 132, CI Acid Yellow 25, CI Direct Orange 39, CI Direct Orange 72, CI Direct Orange 79, CI Acid Orange 28, CI Direct Red 39, CI Direct Red 79, CI Direct Red 81, CI Direct Red 83, CI Direct Red 89, CI A cid Red 37, CI Direct Violet 9, CI Direct Violet 35, CI Direct
- Acid Blue 25 Anthraquinone— 2— sulfonic acid, Quinalizarin, Anthraquinone— 1, 5— disulfonic acid sodium salt, Acid Violet 3 4, Acid Green 27, Acid Blue 40, Acid Blue 80, Alizarin Safiro 1 SE, Alizarin Astrol , Reacive Blue 5, Reactive Blue 19, Reacti ve Blue 114, Acid Violet 42, Fast Violet B and the like.
- the dye having an acidic group may be used in its free acid form.
- a part of the acidic group may be in a salt form.
- a salt type dye and a free acid type dye may be mixed. Further, when it is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form.
- a salt type exchange method a known method can be arbitrarily used, and examples thereof include the following methods.
- a strong acid such as hydrochloric acid is added to the aqueous solution of the dye obtained in the salt form, the dye is acidified in the form of a free acid, and then an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution) is used.
- a method of neutralizing the acidic group of the dye and exchanging the salt is used.
- aqueous solution of the dye obtained in the salt form is treated with a strongly acidic ion exchange resin, the dye is acidified in the form of a free acid, and then an alkaline solution having a desired counter ion (for example, lithium hydroxide).
- a method in which the acidic group of the dye is neutralized with an aqueous solution and the salt is exchanged.
- a method of performing salt exchange by allowing an aqueous solution of a dye obtained in a salt form to act on a strongly acidic ion exchange resin previously treated with an alkaline solution having a desired counter ion (for example, lithium hydroxide aqueous solution).
- Examples of the salt type of the exemplified dye include salts of alkali metals such as Na, Li and K, substituted with an alkyl group or a hydroxyalkyl group, and may be an ammonium salt or an organic salt.
- Examples include amine salts.
- Examples of the organic amine include a lower alkylamine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkylamine having 1 to 6 carbon atoms, a carboxy-substituted lower alkylamine having 1 to 6 carbon atoms, and the like.
- the type is not limited to one type, and multiple types may be mixed.
- the dye association length in the composition for anisotropic dye film can be made sufficiently long, the orientation of the resulting anisotropic film can be prevented from being lowered. It is possible and more preferable.
- the length of the dye aggregate in the composition for an anisotropic dye film of the present invention is preferably 5 nm or more.
- by providing sufficient orientation when orienting in an external field it is possible to improve the orientation of the resulting anisotropic dye film. Come and preferred.
- the length of the dye aggregate in the composition for anisotropic dye film is, for example, DJEdwards et.al, "Aggregation analyotropic liquid crystal formation or anionic azo dyes for t extile fibers, in 'Physico- Chemical Principles of Color Chemistry "p.83, edited by ATPeters and HS Freeman, Blackie Academic & Professional, (1996)! It can be obtained by X-ray diffraction peak analysis.
- the solvent used in the composition for an anisotropic dye film of the present invention water, a water-miscible organic solvent, or a mixture thereof is suitable.
- the organic solvent include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, glycols such as ethylene glycol and diethylene glycol, and cellosolves such as methyl caffeosolve and ethylcylsolve solve alone or in combination of two or more.
- a mixed solvent is mentioned.
- the concentration of the dye in the anisotropic dye film composition depends on the film forming method described later. It is usually preferred to be at least 0.01% by weight, especially at least 0.1% by weight, usually at most 50% by weight, especially at most 30% by weight. If the dye concentration is too low, sufficient dichroism cannot be obtained in the anisotropic dye film, and if it is too high, the dye may be precipitated.
- composition for anisotropic dye film of the present invention a cation of 0.9 equivalent or more and 0.99 equivalent or less and a strongly acidic anion of 0.02 equivalent or more and 0.1 equivalent or less with respect to the acidic group of the dye in the composition. It is preferable that it contains below.
- the time until the relaxation modulus G decreases to 1/10 after a temperature of 5 ° C and a strain of 0.01 seconds after the strain is applied is 0.1 seconds.
- the following composition for an anisotropic dye film of the present invention can be obtained.
- Examples of the cation include an anion power metal ion such as lithium, sodium, potassium, norevidium, and cesium, an amine ion such as ammonia, an alkylamine, a basic amino acid, and a hydroxyamine, or a pyridinium ion. These can be used alone 2 or more types may be used in combination.
- an anion power metal ion such as lithium, sodium, potassium, norevidium, and cesium
- an amine ion such as ammonia, an alkylamine, a basic amino acid, and a hydroxyamine, or a pyridinium ion.
- These cations include those that form a salt form with the acidic group of the dye.
- strongly acidic ions include monovalent ions such as hydrochloric acid, nitric acid, and perchloric acid, divalent ions such as sulfuric acid, and trivalent ions such as phosphoric acid. These can be used alone.
- Two or more kinds may be used in combination.
- the difference between the cation content and the strong acid ion content in the composition for anisotropic dye film of the present invention is 0.9 equivalent or more and 0.95 equivalent or less with respect to the acidic group of the dye. Is preferred.
- a dye having a neutralization degree of about 50 to 80% and a dye having a neutralization degree of 100% are prepared appropriately. It is possible to obtain a composition containing such a cation and a strong acid ion by blending with a strong acid or strong acid salt and water.
- the composition for anisotropic dye film of the present invention may contain an additive such as a surfactant, if necessary, in order to improve the wettability to the substrate, coating properties, and the like.
- an additive such as a surfactant, any of ionic properties, cationic properties, and nonionic properties can be used.
- the concentration of the additive is sufficient to obtain the desired effect, and is an amount that does not inhibit the orientation of the dye molecules, and is usually 0.05% by weight or more as the concentration in the anisotropic dye film composition. 0.5% by weight or less is preferable.
- pH adjusters such as acid and alkali are used. Etc., before and after mixing the components!
- two groups selected from the group consisting of an acidic group, a basic group and a neutral group are used. It is also preferable to add a compound having at least one of at least one of the two or more groups.
- the acidic group and the basic group are functional groups having pka of less than 7 and 7 or more, respectively, in an aqueous solution containing 0.1 to 3 mol Zdm of an inert supporting electrolyte.
- a neutral group is one that does not have a release multiplier.
- pka is the logarithm of the reciprocal of the concentration acid dissociation constant ka, that is, log ka.
- Examples of the acidic group include a sulfo group, a carboxyl group, and a phosphoric acid group.
- Basic groups include amino group, sulfo group, pyrrole group, 3-pyrroline group, pyrrolidine group, pyrazole group, 2 pyrazoline group, virazolidine group, imidazole group, 1, 2, 3 triazole group, 1, Examples include 2,4-triazole group, pyridine group, pyridazine group, piperidine group, pyrazine group, piperazine group, pyrimidine group, and triazine group.
- Examples of the neutral group include a hydroxyl group, an amine oxide group, a sulfoxide group, and a phosphine oxide group.
- the above group may further have a substituent as long as it does not significantly change the characteristics of the composition for an anisotropic dye film of the present invention.
- a part or all of the acidic group and the basic group may be in a salt form.
- the basic group salt type include salts of inorganic acids such as hydrochloric acid and sulfuric acid, and salts of organic acids such as acetic acid and formic acid.
- the salt type of the acidic group include, for example, an alkali metal salt such as Na, Li, and K, an alkyl group or a hydroxyalkyl group, and an ammonium salt or an organic amine. Salt.
- the type is not limited to one type, and multiple types may be mixed.
- the molecular weight of the compound is usually 60 or more, preferably 75 or more, more preferably 100 or more, more preferably 140 or more, particularly preferably 300 or less, more preferably 250 or less, and further preferably 200 or less. Particularly preferred.
- the compound is preferably a compound having 1 or more carbon atoms, more preferably 3 or more, particularly preferably 6 or more, preferably 15 or less, more preferably 12 or less, and particularly preferably 10 or less. is there.
- the compound should have at least one basic group. However, it is preferably 2 or more, 5 or less, and more preferably 4 or less. In addition, when the compound does not have a neutral group or an acidic group and has only a basic group, the number of basic groups is preferably 3 or more, preferably 5 or less, more preferably 4 or less. It is.
- the acidic group may be 1 or more, preferably 4 or less, more preferably 3 or less.
- the relative ratio between the number of basic groups and acidic groups in the compound is preferably 1.3 or more, and preferably 4 or less.
- the number of neutral groups is not particularly limited as long as it is 1 or more, but is usually 8 or less, preferably 6 or less.
- the two or more groups may be the same group or different groups.
- the compound may be a chain compound or a cyclic compound.
- amines are preferable, and amino acids, betaines, hydroxyamines, and cyclic compounds having a basic group are particularly preferable.
- Amino acids are classified into neutral amino acids, acidic amino acids, and basic amino acids based on the number and nature of acidic groups and basic groups.
- neutral amino acids include glycine, alanine, norine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, serine, threonine, proline, 4-hydroxyproline, cysteine, cystine, methionine, asparagine, glutamine, 13-alanine, citrulline. , Creatine, kynurenine and the like. Among these, ferulalanin, asparagine, 4-hydroxyproline and 13-alanine are particularly preferable.
- acidic amino acid examples include aspartic acid and glutamic acid, and among these, aspartic acid and glutamic acid are particularly preferable.
- basic amino acids include lysine, arginine, histidine and the like.
- the molecular weight of the amino acid is usually 60 or more, preferably 75 or more, and usually 300 or less, preferably 250 or less. If the molecular weight of the amino acid is too large, the molecular size is large, and therefore the orientation of the dye molecule may be disturbed. Conversely, if the molecular weight is too small, the effect of fixing the orientation of the dye molecule may not be sufficiently exerted.
- betaines include carboxyalkyl trialkyl ammonium hydroxide, carboxyalkyl pyridinium hydroxide, sulfoalkyl trialkyl ammonium hydroxide, sulfoalkyl pyridinium.
- phosphoalkyltrialkylammonium hydroxides phosphoalkylpyridinium hydroxides, and derivatives of these compounds.
- carboxymethyltrimethylammonium hydroxide Sulfopropylpyridinium hydroxide is preferred.
- the molecular weight of the betaines is usually 60 or more, preferably 75 or more, and usually 300 or less, preferably 250 or less. If the molecular weight of betaines is too large, the molecular size may be large and the orientation of the dye molecules may be disturbed. On the other hand, if the molecular weight is too small, the effect of fixing the orientation of the dye molecules may not be exhibited sufficiently.
- hydroxyamines include aminoalkyl alcohols, diaminoalkyl alcohols, aminoalkyl diols, diaminoalkyl diols and the like, among which aminopropane diol is preferred.
- the molecular weight of the hydroxyamines is usually 60 or more, preferably 75 or more, and usually 300 or less, preferably 250 or less. If the molecular weight of the hydroxylamine is too large, the molecular size may be large and the orientation of the dye molecule may be disturbed. On the other hand, if the molecular weight is too small, the orientation fixing effect of the dye molecule may not be sufficiently exerted!
- Cyclic compounds having basicity include aminoviridine, diaminopyridine, triaminoviridine, aminoviridazine, diaminopyridazine, triaminoviridazine, aminovirimidine, diaminobrimidine, triaminovirimidine, aminovirazine, diaminovirazine , Triaminovirazine, aminotriazine, diaminotriazine, triaminotriazine, etc., among which triaminovirimidine is preferred.
- the molecular weight of the cyclic compound having a basic group is usually 60 or more, preferably 75 or more, and usually 300 or less, preferably 250 or less. If the molecular weight of the cyclic compound having a basic group is too large, the molecular size may be large and the orientation of the dye molecule may be disturbed. On the other hand, if the molecular weight is too small, the orientation fixing effect of the dye molecule may not be sufficiently exhibited.
- the above-mentioned compounds may be used alone or in combination of two or more of the same or different compounds. Also, for example, present in amino acids These optical isomers may be used either alone or in combination. Further, it may contain a salt-type compound and a free compound, or it may contain a different salt-type compound.
- composition of the present invention can also be obtained by adding the above-mentioned additives to the composition.
- composition of the present invention can be obtained by further adding the above additive, even if the composition specified in the present invention is not obtained with only the dye and the solvent.
- anisotropic dye film of the present invention formed using such an anisotropic dye film composition of the present invention will be described.
- an anisotropic dye film having high dichroism and high coating uniformity can be formed with high productivity.
- the anisotropic dye film of the present invention formed using the anisotropic dye film composition of the present invention is an industrially useful dye film that exhibits high dichroism and is excellent in stability. .
- the anisotropic dye film of the present invention shows a high dichroic ratio, and the dichroic ratio is preferably 5 or more, more preferably 10 or more, and particularly preferably 15 or more.
- Such an anisotropic dye film of the present invention is produced by a dry film formation method or a wet film formation method using the anisotropic dye film composition of the present invention.
- the anisotropic dye film composition containing a dye exhibits liquid crystallinity, it is preferable to employ a wet film forming method.
- Examples of the dry film forming method include a method in which a polymer is formed into a film and then dyed with the anisotropic dye film composition of the present invention, or a polymer polymer solution of the present invention is used. Examples thereof include a method of stretching an unstretched film obtained by a method of adding a composition for anisotropic color film and forming a film after dyeing the stock solution. The dyeing, film formation and stretching can be performed by the following general methods.
- the polymer may be water and Z or alcohol.
- a hydrophilic organic solvent such as glycerol, glycerin, dimethylformamide, etc.
- the anisotropic dye film composition of the present invention is added to perform stock solution dyeing.
- the dyeing stock solution is cast, solution coating, extrusion
- a dyed film is prepared by forming a film by a method or the like.
- the concentration of the polymer to be dissolved in the solvent varies depending on the type of polymer. Usually, it is 5% by weight or more, preferably 10% by weight or more, and usually 30% by weight or less, preferably 20% by weight. % Or less.
- the concentration of the dye dissolved in the solvent is usually 0.1% by weight or more, preferably about 0.8% by weight or more, usually 5% by weight or less, preferably 2.5% by weight based on the high molecular weight polymer. % Or less.
- the unstretched film obtained by dyeing and forming a film as described above is stretched in a uniaxial direction by an appropriate method. By stretching, the dye molecules are aligned and dichroism appears.
- the uniaxial stretching method include a method of performing tensile stretching by a wet method, a method of performing tensile stretching by a dry method, a method of performing inter-roll compression stretching by a dry method, and the like. You may go.
- the draw ratio is 2 times or more and 9 times or less, but when polyvinyl alcohol and derivatives thereof are used as the polymer, the range of 2.5 times or more and 6 times or less is preferable.
- boric acid treatment is performed for the purpose of improving the water resistance and the degree of polarization of the stretched film.
- the boric acid treatment improves the light transmittance and the degree of polarization of the anisotropic dye film.
- the conditions for boric acid treatment vary depending on the type of hydrophilic high molecular polymer and dye used. Generally, the boric acid concentration is usually 1% by weight or more, preferably about 5% by weight or more, and usually 15%. % By weight or less, preferably about 10% by weight or less.
- the treatment temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher and usually 80 ° C. or lower.
- the boric acid concentration is less than 1% by weight or the treatment temperature is less than 30 ° C, the treatment effect is small. Also, the boric acid concentration exceeds 15% by weight or the treatment temperature exceeds 80 ° C or more. In such a case, the anisotropic dye film becomes brittle, which is not preferable.
- the thickness of the anisotropic dye film obtained by such a dry film-forming method is preferably 10 m or more, particularly 30 ⁇ m or more, 200 ⁇ m or less, particularly 100 ⁇ m or less.
- the composition for anisotropic dye film of the present invention is prepared as a coating solution, and then applied to various substrates such as a glass plate and dried to align and laminate the dye. How to get public Known methods.
- Yuji Harasaki “Coating Engineering” (Asakura Shoten Co., Ltd., issued on March 20, 1971) pp.
- the concentration of the dye in the composition for the anisotropic dye film in the wet film formation method is preferably 0.1% by weight or more, particularly preferably 1% by weight or more, preferably 50% by weight or less, particularly preferably. Is less than 30% by weight.
- the temperature during application is preferably 0 ° C or higher and 80 ° C or lower, and the humidity is preferably about 10% RH or higher and 80% RH or lower.
- the drying temperature of the coating film is preferably 0 ° C or higher and 120 ° C or lower, and the humidity is preferably about 10% RH or higher and 80% RH or lower.
- the anisotropic dye film is usually a film thickness after drying, preferably 50 nm or more, more preferably lOOnm or more, preferably Is 50 m or less, more preferably 20 ⁇ m or less, and even more preferably 1 ⁇ m or less.
- Examples of the substrate used in the wet film-forming method include glass, triacetate, acrylic, polyester, triacetyl cellulose, or urethane film.
- the orientation treatment layer may be applied by a known method.
- An anisotropic dye film of a dichroic dye obtained by a dry film forming method or a wet film forming method is used with a protective layer provided if necessary.
- This protective layer is formed by lamination with a transparent polymer film such as triacetate, acrylic, polyester, polyimide, triacetyl cellulose, or urethane film, and is put to practical use.
- composition for an anisotropic dye film of the present invention is used as a polarizing filter for various display elements such as LCDs and OLEDs, the composition is directly applied to an electrode substrate constituting these display elements.
- the group which formed the anisotropic dye film of the invention or formed the anisotropic dye film of the invention If the material is used as a component of these display elements.
- the anisotropic dye film of the present invention has a cationic acid group of 0.9 equivalent or more and 0.99 equivalent or less with respect to the acidic group of the dye in the anisotropic dye film. It is preferable to contain not less than 0.1 equivalent and not more than equivalent.
- Examples of the cation include anolyzing metal ions such as lithium, sodium, potassium, norevidium and cesium, amine ions such as ammonia, alkylamine, basic amino acid and hydroxyamine, and pyridinium ions. These may be used alone or in combination of two or more.
- These cations include those that form a salt form with the acidic group of the dye.
- strongly acidic ions include monovalent ions such as hydrochloric acid, nitric acid, and perchloric acid, divalent ions such as sulfuric acid, and trivalent ions such as phosphoric acid. These can be used alone.
- Two or more kinds may be used in combination.
- Such an anisotropic dye film has a cation of 0.9 equivalent or more with respect to the acidic group of the dye.
- It may be formed using an anisotropic color film composition containing 9 equivalents or less and strongly acidic anions containing 0.02 equivalents or more and 0.1 equivalents or less, or obtained by other methods. It may be what was given.
- the anisotropic dye film of the present invention functions as a polarizing film for obtaining linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption.
- a polarizing film for obtaining linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption.
- the polarizing element of the present invention uses the above-mentioned anisotropic dye film of the present invention, but it may be a polarizing element that only works with an anisotropic dye film, or an anisotropic dye film on a substrate. Have It may be a polarizing element.
- a polarizing element having an anisotropic dye film on a substrate is referred to as a polarizing element including a base material.
- the anisotropic dye film of the present invention is formed on a substrate and used as a polarizing element, the formed anisotropic dye film itself may be used, or the protective layer as described above may be used.
- optical functions such as adhesive layer or antireflection layer, alignment film, retardation film function, brightness enhancement film function, reflection film function, transflective film function, diffusion film function, etc.
- a layer having various functions, such as a layer having a plurality of layers, may be laminated by a wet film formation method or the like and used as a laminate.
- These layers having an optical function can be formed, for example, by the following method.
- the layer having a function as a retardation film is subjected to, for example, a stretching process described in Japanese Patent No. 2841377, Japanese Patent No. 3094113, or a process described in Japanese Patent No. 3168850. Can be formed.
- the layer having a function as a brightness enhancement film may be formed by forming micropores by a method described in, for example, JP-A-2002-169025 or JP-A-2003-29030, or It can be formed by superimposing two or more cholesteric liquid crystal layers with different selective reflection center wavelengths.
- the layer having a function as a reflective film or a transflective film can be formed using a metal thin film obtained by vapor deposition or sputtering.
- the layer having a function as a diffusion film can be formed by coating the protective layer with a resin solution containing fine particles.
- the layer having a function as a retardation film or an optical compensation film may be formed by applying and aligning a liquid crystalline compound such as a discotic liquid crystalline compound or a nematic liquid crystalline compound. it can.
- the anisotropic dye film of the present invention can be directly formed on a high heat resistant substrate such as glass, and a high heat resistant polarizing element can be obtained. It can be suitably used not only for organic EL displays but also for applications that require high heat resistance, such as liquid crystal projectors and in-vehicle display panels. Examples and Comparative Examples
- the transmittance of the anisotropic dye film was measured with a spectrophotometer in which an iodine polarizing element was arranged in the incident optical system, and then calculated according to the following formula.
- Tz Transmittance for polarized light in the direction of the absorption axis of the dye film
- Ty Transmittance for polarized light in the direction of the polarization axis of the dye film
- the relaxation modulus G measured at the temperature of 5 ° C. and 0.01 seconds after applying the strain was 9.
- the anisotropic dye film composition was applied with an applicator with a gap of 2 m (four-side applicator manufactured by Imoto Seisakusho Co., Ltd.), and then vacuum dried to obtain a film thickness of 0.4 ⁇ m. An anisotropic dye film of m was obtained.
- This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method to obtain an anisotropic dye film.
- the relaxation modulus G measured at the temperature of 5 ° C. and 0.01 seconds after applying the strain was 9.
- This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method to obtain an anisotropic dye film.
- the dichroic ratio at a wavelength of 550 nm was 28.
- Elemental analysis of the anisotropic dye film revealed that the total concentration of lithium and sodium cations was 0.95 equivalents and strong acid key for the acidic groups of dye No. (1-1) and alizarin red S. The concentration of chlorine that was on was 0.06 equivalent.
- Example 4 To 78.94 parts of water, 16 parts of lithium salt of the exemplified dye No. (1-1) desalted and purified, 4 parts of lithium neutralized 80 mol% of the exemplified dye No. (1-1), desalted and purified 1 part of Aldrich Alizarin Red S and 0.08 part of lithium chloride were stirred and dissolved, followed by filtration to obtain a composition for anisotropic color films.
- the relaxation modulus G measured at the temperature of 5 ° C. and 0.01 seconds after applying the strain was 9.
- This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method to obtain an anisotropic dye film.
- the dichroic ratio at a wavelength of 550 nm was 29.
- the relaxation elastic modulus G measured at 0.01 ° C. after applying the strain at a temperature of 5 ° C. and 0.01 seconds after applying the strain was 9.4 ⁇ 10 2 dynZcm 2.
- the time it took for rate G to drop to 1/10 was 0.04 seconds, shorter than 0.1 seconds.
- This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method to obtain an anisotropic dye film.
- the dichroic ratio at a wavelength of 550 nm was 28.
- composition for an anisotropic dye film the temperature 5 ° C as measured by the method described above, relaxation modulus G after 0.01 seconds strain applied 2.
- a 0 X 10 4 dynZcm 2 the relaxation elastic The time it takes for the rate G to drop to 1/10 is 0.5 seconds, longer than 0.1 seconds.
- This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method to obtain an anisotropic dye film.
- the dichroic ratio at a wavelength of 550 nm was 20, which was lower than that of the anisotropic dye films of Examples 1 and 2.
- the relaxation elastic modulus G after the strain application of 0.01 seconds after applying the strain at a temperature of 5 ° C. was 2. l ⁇ 10 2 dynZcm 2 , and this relaxation elasticity The time it takes for rate G to drop to 1/10 is 0.15 seconds, longer than 0.1 seconds.
- This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method to obtain an anisotropic dye film.
- anisotropic dye film When the obtained anisotropic dye film was observed at the extinction position of a polarizing microscope, there were periodic streak defects perpendicular to the coating direction, and cracks were formed parallel to the coating direction.
- the dichroic ratio at a wavelength of 550 nm was 20, which was lower than that of the anisotropic dye films of Examples 3 and 4.
- Elemental analysis of the anisotropic dye film revealed that the total concentration of lithium and sodium cations was 1.01 equivalents of the strong acid key for the acid groups of dye No. (1-1) and alizarin red S. The concentration of chlorine that was on was 0.0001 equivalent.
- Comparative Example 3 Stir 5 parts of the lithium salt of the exemplified dye No. (Ill-1) desalted and purified to 73.5 parts of water and 1.5 part of the sodium salt of the exemplified dye No. (Ill-2) desalted and purified. Then, it was dissolved and filtered to obtain an anisotropic dye film composition.
- the relaxation elastic modulus G at 0.01 ° C. after applying the strain at a temperature of 5 ° C. and the strain measured by the above method is 1.7 ⁇ 10 4 dynZcm 2 , and this relaxation elasticity The time until the rate G drops to 1/10 was 9.4 seconds, longer than 0.1 seconds.
- This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method to obtain an anisotropic dye film.
- the dichroic ratio at a wavelength of 550 nm was 20, which was lower than that of the anisotropic dye film of Example 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Polarising Elements (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
高二色性を示すと共に塗膜均一性も高い異方性色素膜が生産性よく形成される。色素を含有し、リオトロピック液晶相を形成可能な異方性色素膜用組成物は、温度5°C、歪印加後0.01秒後の緩和弾性率Gが10分の1に低下するまでの時間が0.1秒以下である。組成物は、色素の酸性基に対して、カチオンを0.9当量以上0.99当量以下、強酸性アニオンを0.02当量以上0.1当量以下含む。この異方性色素膜用組成物を用いて異方性色素膜が形成される。この異方性色素膜を用いて偏光素子が形成される。
Description
明 細 書
異方性色素膜用組成物、異方性色素膜及び偏光素子
発明の分野
[0001] 本発明は、調光素子や液晶素子 (LCD)、有機エレクト口ルミネッセンス素子 (OLE D)の表示素子に具備される偏光膜等に有用な、高い二色性を示す異方性色素膜を 形成することができる異方性色素膜用組成物と、この異方性色素膜用組成物を用い て形成された異方性色素膜、及びこの異方性色素膜を用いた偏光素子に関するも のである。
発明の背景
[0002] LCDでは、表示における旋光性ゃ複屈折性を制御するために、直線偏光板や円 偏光板が用いられている。 OLEDにおいても、外光の反射防止のために、円偏光板 が使用されている。従来、これらの偏光板 (偏光素子)には、ヨウ素が二色性物質とし て広く使用されてきた。し力しながら、ヨウ素は昇華性が大きいために、偏光板に使用 した場合、その耐熱性と耐光性が十分ではなぐまた偏光特性が経時劣化するという 欠点があった。
[0003] そのため、例えば下記文献 1、 2、 3に記載されるように、有機系の色素を二色性物 質 (二色性色素)として使用した偏光膜としての異方性色素膜が検討されている。
[0004] これら文献に記載された二色性色素は、水やアルコールなどの溶媒中でリオトロピ ック液晶相を形成し、配向基板や流動場、電場、磁場などの外場により容易に配向さ せることが可能である。例えば、 Brilliant Yellow (C. I. Direct Yellow 4)を用 いると正の二色性色素膜、 Methylene Blue (C. I. Basic Blue 9)や Amaranth (C. I. Food Red 9)を用いると負の二色性色素膜を得られることが知られている。
[0005] しかし、これらの二色性色素膜は二色性が低 、と!/、う欠点があった。これは、これら の文献にも記載されているような液晶特有のシュリーレン欠陥も問題である力 湿式 成膜法による色素膜の成膜工程において、塗布膜の乾燥時に生じる乾燥歪による膜 の欠陥や亀裂により光漏れを起こすことも原因し、この結果二色性が低下するという 問題があった。
[0006] 一方で、湿式成膜法による異方性色素膜の成膜にあたり、塗布膜の膜厚一様性を 高め、かつ生産性を高めるためには、異方性色素膜用組成物中の色素の固形分濃 度を下げることが好ましいが、固形分濃度を下げると上記の乾燥歪が大きくなる傾向 にあり、むしろ二色性を下げてしまう結果となる。
[0007] このようなことから、異方性色素膜の成膜にぉ 、て、従来、高 、塗膜均一性及び生 産性と高二色性とを両立させることは困難であった。
[0008] 文献 1 米国特許第 2, 400, 877号明細書
文献 2 DreyerJ.F., Phys. And Colloid Chem., 1948, 52, 808., "The Fixi ng of Molecular Orientation
文献 3 DreyerJ.F., Journal de Physique, 1969, 4, 114., "Light Polarizati on From Films of Lyotropic Nematic Liquid Crystals
[0009] なお、液晶に関する文献 4、 5、 6を次に示す。
文献 4 J.Lydon, Chromonics in 'Handbook of Liquid Crystals vol.2B: Low Molecular Weight Liquid Crystals II", p.981, edited by D.Demus, J. Go odby, G.W.Gray, H.— W.Spiess and V.Vill, Wiley— VCH, (1998).
文献 5 P.G.de Gennes and J.Prost, "Dynamical Properties of Smectics an d Columnar Phases in "The Physics of Liquid Crystals p.408, clarendon Press. Oxford, (1993)
文献 6 M.uharbia, M.Cagnon and G.Durand, Column undulation instabilit y in a discotic liquid crystal", J. Physique Lett., 46(1985), L683.
発明の概要
[0010] 本発明は、高二色性を示すと共に塗膜均一性も高い異方性色素膜を生産性良く 形成することができる異方性色素膜用組成物と、この異方性色素膜用組成物を用い て形成された高二色性異方性色素膜及びこの異方性色素膜を用いた偏光素子を提 供することを課題とする。
[0011] 本発明の第 1アスペクトの異方性色素膜用組成物は、色素を含有し、リオトロピック 液晶相を形成可能な異方性色素膜用組成物であって、温度 5°C、歪印加後 0. 01秒 後の緩和弾性率 Gが 10分の 1に低下するまでの時間が 0. 1秒以下であることを特徴
とするちのである。
[0012] 本発明の第 2アスペクトの異方性色素膜は、この異方性色素膜用組成物を用いて 形成されたものである。
[0013] 本発明の第 3アスペクトの異方性色素膜は、色素と、該色素の酸性基に対して、力 チオン 0. 9当量以上 0. 99当量以下と、強酸 ¾ァニオン 0. 02当量以上 0. 1当量以 下とを含むことを特徴とするものである。
[0014] 本発明の第 4アスペクトの異方性色素膜は、この第 2又は第 3アスペクトの異方性色 素膜を用いたものである。
詳細な説明
[0015] 本発明者らは、鋭意検討した結果、色素を含有し、リオトロピック液晶相を形成可能 な異方性色素膜用組成物であって、温度 5°C、歪印加後 0. 01秒後の緩和弾性率 G が 10分の 1に低下するまでの時間が 0. 1秒以下である異方性色素膜用組成物を用 いることにより、塗膜均一性が高ぐ二色性も高い異方性色素膜を高効率に形成する ことができることを見出した。
[0016] 本発明の異方性色素膜用組成物は、色素を含有し、リオトロピック液晶相を形成可 能な異方性色素膜用組成物であって、温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gが 10分の 1に低下するまでの時間が 0. 1秒以下であることを特徴とする。
[0017] 本発明の異方性色素膜用組成物を用いて湿式成膜法により成膜して得られる塗膜 は均一であり、し力も、その生産性に優れる。このため、高二色性を示すと共に塗膜 均一性も高い異方性色素膜を生産性良く形成することができる。この理由は次の通り であると推測される。
[0018] 色素を含有するリオトロピック液晶の薄膜を塗布乾燥すると、色素濃度が高まり、色 素会合体間の相互作用が強くなるため、溶液中の会合体の相対位置に秩序性を生 じる。こうした秩序性は、例えば上記文献 4 (Lydon)に示されているように X線回折パ ターンを見ることで観測できる。このような会合体相対位置に秩序性を有する液体に 歪を加えると、相対位置が変化し、元の状態に戻そうとする弾性応力を生じるとともに 、平衡位置に戻ろうと会合体全体が流動してこの応力を緩和していく。こうした液晶の 緩和過程は 1つの会合体の並進及び回転緩和時間に比べ長い時間を要することが
上記文献 5 (Gennes et al.)などに示されている。
[0019] 外場により配向したリオトロピック液晶薄膜を塗布乾燥すると、膜面内に歪を生じ、 上記文献 6 (Gharbia et al.)に示される欠陥と類似した欠陥や膜の亀裂を生じて、 塗膜性状を著しく損ねる場合があるが、会合体の位置を平衡状態に戻す緩和時間 力 塗膜の乾燥時間に比べて十分短ければ、こうした欠陥を生じないことが推測され る。
[0020] この緩和時間を短くするためには、会合体の相対位置の秩序性は低いことが望まし い。会合体の相対位置の秩序性は上記文献 4 (Lydon)に示されている X線回折ピー クの半値幅で評価される。会合体の相対位置の秩序性を低くするためには、塩を添 カロしてイオン強度を高めたり、色素の中和度を下げたりして、会合体間の電気的な斥 力を適度に抑制することが重要である。過度に色素の中和度を下げると色素が析出 してしまう。また、過度に塩を添加すると塗布膜に塩が析出して色素の配向度を低下 させる。
[0021] この理論に基いて、本発明者らは、乾燥により濃度が高くなつた時の上記緩和時間 が短いものとして、温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gが 10分の 1に低下 するまでの時間が 0. 1秒以下である異方性色素膜用組成物を用いることを試みたと ころ、塗膜の欠陥や亀裂を抑制できることを確認し、塗膜均一性が高ぐ二色性も高 い異方性色素膜を高効率に形成することができることを見出した。
[0022] 本発明の異方性色素膜用組成物に含まれる色素はァゾ系色素であることが好まし ぐこのような本発明の異方性色素膜用組成物は、特に湿式成膜法による異方性色 素膜の成膜に有用である。
[0023] また、本発明の異方性色素膜用組成物は、色素の酸性基に対して、カチオン 0. 9 当量以上 0. 99当量以下と、強酸 ¾ァニオン 0. 02当量以上 0. 1当量以下とを含む ことが好ましい。
[0024] 本発明の異方性色素膜は、このような本発明の異方性色素膜用組成物を用いて形 成されたものである。
[0025] 本発明の異方性色素膜はまた、色素と、該色素の酸性基に対して、カチオン 0. 9 当量以上 0. 99当量以下と、強酸 ¾ァニオン 0. 02当量以上 0. 1当量以下とを含む
ものである。
[0026] 本発明の異方性色素膜は、調光素子や液晶素子 (LCD)、有機エレクト口ルミネッ センス素子 (OLED)の表示素子に具備される偏光板等、各種の偏光素子に有用で ある。
[0027] 本発明の偏光素子は、このような本発明の異方性色素膜を用いたものである。
[0028] 本発明によれば、塗膜均一性が高ぐ欠陥の少ない、高い二色性を示す異方性色 素膜を高い生産性で形成することができ、この異方性色素膜により、耐熱性、耐光性 に優れ、しかも偏光性能に優れた偏光素子が提供される。
[0029] 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要 件の説明は、本発明の実施態様の一例であり、本発明はこれらの内容に限定はされ ない。
[0030] なお、本発明でいう異方性色素膜とは、色素膜の厚み方向及び任意の直交する面 内 2方向の立体座標系における合計 3方向から選ばれる任意の 2方向における電磁 気学的性質に異方性を有する色素膜である。電磁気学的性質としては、吸収、屈折 などの光学的性質、抵抗、容量などの電気的性質などが挙げられる。吸収、屈折な どの光学的異方性を有する膜としては、例えば、直線偏光膜、円偏光膜、位相差膜 、導電異方性膜などがある。
[0031] 本発明の異方性色素膜は、偏光膜、位相差膜、導電異方性膜に用いられることが 好ましぐ偏光膜に用いられることがより好ましい。
[0032] [異方性色素膜用組成物]
まず、本発明の異方性色素膜用組成物について説明する。
〈温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gが 10分の 1に低下するまでの時間〉 本発明の異方性色素膜用組成物は、色素を含有し、リオトロピック液晶相を形成可 能な異方性色素膜用組成物であって、温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gが 10分の 1に低下するまでの時間(以下「緩和弾性率低下時間」と称す場合がある 。)が 0. 1秒以下であることを特徴とする。
[0033] 本発明にお ヽて、異方性色素膜用組成物の緩和弾性率とは、粘弾性測定装置 AR ES粘弾性測定システム(Rheometric Scientific社製)の Stress Relaxationモードを用
いて、以下の条件で測定した緩和弾性率をいう。また、本装置と同等の装置で測定さ れたものであってもよい。
[0034] 緩和弾性率の測定方法
測定治具には、試料 (異方性色素膜用組成物)の緩和弾性率が lOOdynZcm2以 下であれば直径 50mmのコーンプレートを使用し、 lOOdynZcm2を超える場合は直 径 25mmのコーンプレートを使用する。試料温度を 5°Cに保ち、試料をセットする際 の履歴をなくすために、測定開始前に剪断速度 1000s— 1のプレシエアーを 10秒与え 、 1分間静置後、歪 10%で測定を行う。
[0035] 本発明の異方性色素膜用組成物は、このようにして歪印加して力 0. 01秒後の緩 和弾性率 Gが 10分の 1に低下する時間が 0. 1秒以下である組成物である。この緩和 弾性率低下時間は短い方が好ましぐより好ましくは 0. 07秒以下、更に好ましくは 0 . 05秒以下である。緩和弾性率低下時間が 0. 1秒を超えるものであると、塗膜均一 性が高ぐ二色性も高い異方性色素膜を高生産効率で得ることはできない。
[0036] 本発明の異方性色素膜用組成物は、具体的には色素及び溶剤を少なくとも含有し 、非特許文献 3に記載されているような、具体的には、色素が水やアルコールなどの 極性溶媒中で会合体を形成し、この会合体の形状異方性からリオトロピック液晶相を 形成できる組成物である。
[0037] 〈色素〉
本発明で用いる色素は、後述の湿式成膜法に供するために、水や有機溶剤に可 溶であることが好ましぐ特に水溶性であることが好ましい。色素の選択により、本発 明の組成物を得ることができる。
[0038] また、本発明で用いる色素は塩型をとらない遊離の状態で、その分子量が 200以 上、特に 300以上で、 1500以下、特に 1200以下であることが好ましい。
[0039] 具体的な色素としては、縮合多環系及びァゾ系色素等が挙げられるが、何らこれら に限定されるものではない。例えば、米国特許第 2, 400, 877号明細書、 DreyerJ.F ., Phys. And Colloid Chem., 1948, 52, 808., "The Fixing of Molecular Ori entation 、 DreyerJ.F., Journal de Physique, 1969, 4, 114., "Light Polarizati on From Films of Lyotropic Nematic Liquid Crystals 、及び J丄 ydon, "Chrom
onics" in "Handbook of Liquid Crystals Vol.2B: Low Molecular Weight Liq uid Crystals II", D.Demus, J.Goodby, G.W.Gray, H.W.Spiessm V.Vill ed., Willey-VCH, P.981-1007, (1998)などに記載の色素を使用することが出来る。
[0040] 中でも好ましくはァゾ系色素である。ァゾ系色素の中では、ジスァゾ色素或いはトリ スァゾ色素が好ましぐ偏光膜用途に関しては、 γ酸系または RR酸系のァゾ色素が 、可視光全域に均等に吸収を有する点で好まし 、。
[0041] 本発明では、特に、遊離酸の形が下記式で表される色素が好ましい。
[化 1]
[0042] 上記式中、 X1は、水素原子またはスルホ基を表す。 A1は、置換基を有していてもよ V、フエ-ル基、置換基を有して 、てもよ 、ナフチル基または置換基を有して 、てもよ い芳香族複素環基を表す。 B1は、置換基を有していてもよい芳香族炭化水素基また は置換基を有していてもよい芳香族複素環基を表す。 nは、 1または 2を表す。
[0043] A1が芳香族複素環基である場合、芳香族複素環基のへテロ原子としては、窒素原 子、硫黄原子等が挙げられるが、窒素原子を有する芳香族複素環基が液晶性発現 濃度低下のため好ましい。芳香族複素環基として具体的には、ピリジル基、キノリル 基、チアゾリル基、ベンゾチアゾリル基などが挙げられ、好ましくは、ピリジル基である
[0044] B1が芳香族炭化水素基である場合、具体的にはフエ-レン基或いはナフチレン基 が挙げられる。フエ-レン基としては 1, 4 フエ-レン基であることが好ましぐナフチ レン基としては 1, 4 ナフチレン基であること力 前記相互作用を示すために好まし い。 B1が芳香族複素環基である場合、上記 A1が芳香族複素環基である場合の例の 2価基が挙げられる。
[0045] A1としてのフエ二ル基、ナフチル基または芳香族複素環基或 、は B1としての芳香
族炭化水素基または芳香族複素環基が有していてもよい置換基としては、アルキル 基、アルコキシ基、アミノ基、ァシル基、力ルバモイル基、カルボキシ基、スルホ基、水 酸基及びシァノ基が挙げられる。
[0046] 本発明で用いる色素は、特に下記構造式 (I 1)で表される色素(以下、「色素 No . (1 1)」と称す場合がある。)、下記構造式 (1— 2)で表される色素(以下、「色素 No . (I— 2)」と称す場合がある。)、下記構造式 (II— 1)で表される色素(以下、「色素 N o. (II 1)」と称す場合がある。)、下記構造式 (III— 1)で表される色素(以下、「色素 No. (Ill— 1)」と称す場合がある。)、下記構造式 (III— 2)で表される色素(以下、「色 素 No. (Ill— 2)」と称す場合がある。)、下記構造式 (IV— 1)で表される色素(以下、「 色素 No. (IV— 1)」と称す場合がある。)などが好ましい。これらの色素は、後述の如 ぐ塩型であってもよい。
[0047] [化 2]
[0048] これらの色素は、それ自体周知の方法に従って製造することができる。 例えば、上記色素 No. (1—1)は、下記 A) , B)の工程で製造することができる。
[0049] A) 4—ァミノべンゾ-トリルと 8—ァミノ一 2—ナフタレンスルホン酸(1, 7— Cleves 酸)とから常法 (例えば、細田豊著「新染料化学」(昭和 48年 12月 21日、技報堂発行 )第 396頁第 409頁参照)に従って、ジァゾ化、カップリング工程を経てモノァゾィ匕合 物を製造する。
B)得られたモノァゾ化合物を同様に、常法によりジァゾィ匕し、 7—ァミノ— 1—ナフト 一ルー 3, 6—ジスルホン酸 (RR酸)とカップリング反応を行い、塩化ナトリウムで塩析 することにより、目的の色素 No. (1—1)が得られる。
[0050] 本発明の異方性色素膜用組成物において、上述のような色素は単独で使用するこ とができる力 これらの 2種以上を併用してもよぐまた、配向を低下させない程度に 上記例示色素以外の色素と混合して用いることもでき、これにより、各種の色相を有 する異方性色素膜を製造することができる。
[0051] 他の色素を配合する場合、配合用として好ましい色素の例としては、例えば C. I.
Direct Yellow 12、 C. I. Direct Yellow 34、 C. I. Direct Yellow 86、 C. I. Direct Yellow 142、 C. I. Direct Yellow 132、 C. I. Acid Yellow 25、 C. I. Direct Orange 39、 C. I. Direct Orange 72、 C. I. Direct Orange 79、 C. I. Acid Orange 28、 C. I. Direct Red 39、 C. I. Direct Red 79、 C. I. Direct Red 81、 C. I. Direct Red 83、 C. I. Direct Red 89、 C. I. A cid Red 37、 C. I. Direct Violet 9、 C. I. Direct Violet 35、 C. I. Direct
Violet 48、 C. I. Direct Violet 57、 C. I. Direct Blue 1、 C. I. Direct B lue 67、 C. I. Direct Blue 83、 C. I. Direct Blue 90、 C. I. Direct Green
42、 C. I. Direct Green 51、 C. I. Direct Green 59、 Alizarin Red S Monohydrate, Acid Blue 45, Acid Green 25, Alizarin Blue Black
B, Acid Blue 25, Anthraquinone— 2— sulfonic acid, Quinalizarin , Anthraquinone― 1 , 5— disulfonic acid sodium salt, Acid Violet 3 4, Acid Green 27, Acid Blue 40, Acid Blue 80, Alizarin Safiro 1 SE, Alizarin Astrol, Reacive Blue 5, Reactive Blue 19, Reacti
ve Blue 114, Acid Violet 42, Fast Violet B等が挙げられる。
[0052] これらの色素のうち、酸性基を有する色素は、その遊離酸型のまま使用してもよぐ 酸性基の一部が塩型を取っているものであってもよい。また、塩型の色素と遊離酸型 の色素が混在していてもよい。また、製造時に塩型で得られた場合はそのまま使用し てもよいし、所望の塩型に変換してもよい。塩型の交換方法としては、公知の方法を 任意に用いることができ、例えば以下の方法が挙げられる。
1)塩型で得られた色素の水溶液に塩酸等の強酸を添加し、色素を遊離酸の形で 酸析せしめた後、所望の対イオンを有するアルカリ溶液 (例えば水酸化リチウム水溶 液)で色素酸性基を中和し塩交換する方法。
2)塩型で得られた色素の水溶液に、所望の対イオンを有する大過剰の中性塩 (例 えば、塩化リチウム)を添加し、塩析ケーキの形で塩交換を行う方法。
3)塩型で得られた色素の水溶液を、強酸性イオン交換樹脂で処理し、色素を遊離 酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液 (例えば水酸化リチ ゥム水溶液)で色素酸性基を中和し塩交換する方法。
4)予め所望の対イオンを有するアルカリ溶液 (例えば水酸化リチウム水溶液)で処 理した強酸性イオン交換樹脂に、塩型で得られた色素の水溶液を作用させ、塩交換 を行う方法。
[0053] 前記例示色素の塩型の例としては、 Na、 Li、 K等のアルカリ金属の塩、アルキル基 もしくはヒドロキシアルキル基で置換されて 、てもよ 、アンモ-ゥムの塩、又は有機ァ ミンの塩が挙げられる。有機ァミンの例として、炭素数 1〜6の低級アルキルァミン、ヒ ドロキシ置換された炭素数 1〜6の低級アルキルァミン、カルボキシ置換された炭素 数 1〜6の低級アルキルアミン等が挙げられる。これらの塩型の場合、その種類は 1種 類に限られず複数種混在して 、てもよ 、。
[0054] 本発明にお ヽて、異方性色素膜用組成物中の色素会合長を十分に長くすることが できれば、得られる異方性膜の配向性が低下することを防止することが出来、さらに 好ましい。異方性色素膜の配向を高めるためには、本発明の異方性色素膜用組成 物中の色素会合体長は 5nm以上であることが好ましい。また、外場で配向させる際 に十分な配向を与えることにより、得られる異方性色素膜の配向性を高めることが出
来、好ましい。
[0055] なお、異方性色素膜用組成物中の色素会合体長は、例えば D.J.Edwards et.al," Aggregation ana lyotropic liquid crystal formation or anionic azo dyes for t extile fibers ,in 'Physico— Chemical Principles of Color Chemistry"p.83, edited b y A.T.Peters and H.S. Freeman, Blackie Academic&Professional,(1996)に 載され て!、る X線回折ピーク解析で得ることができる。
[0056] 〈溶剤〉
本発明の異方性色素膜用組成物に使用される溶剤としては、水、水混和性のある 有機溶剤、或いはこれらの混合物が適している。有機溶剤の具体例としては、メチル ァノレコーノレ、エチルアルコール、イソプロピルアルコール等のアルコール類、ェチレ ングリコール、ジエチレングリコール等のグリコール類、メチルセ口ソルブ、ェチルセ口 ソルブ等のセロソルブ類等の単独又は 2種以上の混合溶剤が挙げられる。
[0057] 〈色素濃度〉
本発明の異方性色素膜用組成物が上述のような溶剤を含む溶液である場合、異方 性色素膜用組成物中の色素の濃度としては、後述の成膜法にもよるが、通常 0. 01 重量%以上、特に 0. 1重量%以上で、通常 50重量%以下、特に 30重量%以下で あることが好ま 、。色素濃度が低過ぎると異方性色素膜にお!、て十分な二色性を 得ることができず、高すぎると色素が析出する恐れがある。
[0058] 〈カチオン、ァニオン〉
本発明の異方性色素膜用組成物は、組成物中において、色素の酸性基に対して、 カチオン 0. 9当量以上 0. 99当量以下と、強酸性ァニオン 0. 02当量以上 0. 1当量 以下とを含むことが好ましい。
カチオン及びァ-オンをこの範囲で含むことによつても、温度 5°C、歪印加後 0. 01 秒後の緩和弾性率 Gが 10分の 1に低下するまでの時間が 0. 1秒以下の、本発明の 異方性色素膜用組成物を得ることができる。
[0059] カチオンとしては、リチウム、ナトリウム、カリウム、ノレビジゥム、セシウムなどのァノレ力 リ金属イオン、アンモニア、アルキルァミン、塩基性アミノ酸、ヒドロキシァミンなどのァ ミン系イオンまたはピリジ-ゥムイオンなどが挙げられる。これらは 1種を単独で用いて
もよぐ 2種以上を併用してもよい。
これらのカチオンは、色素の酸性基と塩型を形成して!/ヽるものも含める。
[0060] 強酸性ァ-オンとしては、塩酸、硝酸、過塩素酸などの 1価イオン、硫酸などの 2価 イオン、燐酸などの 3価イオンなどが挙げられる。これらは 1種を単独で用いてもよぐ
2種以上を併用してもよい。
[0061] また、本発明の異方性色素膜用組成物中のカチオン含有量と強酸性ァ-オン含有 量の差は、色素の酸性基に対して 0. 9当量以上 0. 95当量以下であることが好まし い。
[0062] 上記範囲よりカチオンが多いと乾燥歪による欠陥や亀裂を生じる恐れがある。また、 強酸性ァ-オンが多いとカチオンと強酸性ァ-オンの塩が析出して配向を乱したり、 更に多い場合では色素の溶解性を阻害する恐れがある。
[0063] 具体的には、色素の塩 +を作製する際に、 50〜80%程度の中和度の色素と 100% の中和度の色素を作製するなどして、適宜、これらの色素と強酸もしくは強酸塩と水 とを配合することにより、このようなカチオンと強酸性ァ-オンを含有する組成物を得 ることがでさる。
[0064] 〈添加剤〉
本発明の異方性色素膜用組成物は、基材への濡れ性、塗布性等を向上させるた め、必要に応じて、界面活性剤等の添加剤が配合されていてもよい。界面活性剤とし ては、ァ-オン性、カチオン性、ノ-オン性いずれも使用可能である。その添加濃度 は、目的の効果を得るために十分であって、かつ色素分子の配向を阻害しない量と して、異方性色素膜用組成物中の濃度として通常 0. 05重量%以上、 0. 5重量%以 下が好ましい。
[0065] また、本発明の異方性色素膜用組成物中での色素の造塩や凝集などの不安定性 を抑制する等の目的のために、通常公知の酸、アルカリ等の pH調整剤などを、構成 成分の混合の前後!、ずれかで添加して pH調整を行ってもょ 、。
[0066] 更に、上記以外の添加物として、 "Additive for Coating", Edited by J.Bieleman ,Willey-VCH(2000)記載の公知の添力卩物を用いることもできる。
[0067] また、添加剤として、酸性基、塩基性基及び中性基よりなる群から選ばれる基を 2つ
以上有し、該 2つ以上の基のうちの少なくとも 1つは塩基性基である化合物を加えるこ とも好ましい。
[0068] 酸性基及び塩基性基とは不活性支持電解質を 0. l〜3molZdm加えた水溶液中 で、それぞれ 7未満、 7以上の pkaを有する官能基のことである。また、中性基とは解 離乗数を持たないもののことである。なお、化学便覧基礎編 II、 p. 331 (日本化学会 編、丸善)に記載されているように、 pkaとは濃度酸解離定数 kaの逆数の対数値、す なわち log kaである。
[0069] 酸性基としては、例えば、スルホ基、カルボキシル基、リン酸基などが挙げられる。
塩基性基としては、アミノ基、スルホ -ゥム基、ピロール基、 3—ピロリン基、ピロリジン 基、ピラゾール基、 2 ピラゾリン基、ビラゾリジン基、イミダゾール基、 1, 2, 3 トリア ゾール基、 1, 2, 4ートリアゾール基、ピリジン基、ピリダジン基、ピぺリジン基、ピラジ ン基、ピぺラジン基、ピリミジン基、トリアジン基などが挙げられる。中性基としては、水 酸基、アミンォキシド基、スルホキシド基、ホスフィンォキシド基などが挙げられる。上 記の基は、本発明の異方性色素膜用組成物の特性を大きく変化させない程度のも のであれば、更に置換基を有していてもよい。
[0070] 上記酸性基と塩基性基は、その一部又は全部が塩型をとつて ヽてもよ ヽ。塩基性 基の塩型としては、例えば、塩酸や硫酸等の無機酸の塩、酢酸ゃギ酸等の有機酸の 塩が挙げられる。また、酸性基の塩型としては、例えば、 Na、 Li、 K等のアルカリ金属 の塩、アルキル基もしくはヒドロキシアルキル基で置換されて 、てもよ 、アンモ -ゥム の塩、或いは有機ァミンの塩が挙げられる。これらの塩型の場合、その種類は 1種類 に限られず複数種混在して 、てもよ 、。
[0071] 該化合物の分子量としては、通常 60以上、 75以上が好ましぐ 100以上が更に好 ましぐ 140以上が特に好ましぐ 300以下が好ましぐ 250以下が更に好ましぐ 200 以下が特に好ましい。
[0072] 該化合物は、炭素数 1以上の化合物であることが好ましぐ更に好ましくは 3以上、 特に好ましくは 6以上、好ましくは 15以下、更に好ましくは 12以下、特に好ましくは 1 0以下である。
[0073] 分子配向性、凝集性等の点から、該化合物が有する塩基性基は 1以上であればよ
いが、好ましくは 2以上で、 5以下、更に好ましくは 4以下である。尚、該化合物が、中 性基、酸性基を有さず、塩基性基のみを有する場合には、塩基性基の数が 3以上が 好ましぐ 5以下が好ましぐ更に好ましくは 4以下である。
該化合物が酸性基を有する場合、酸性基は 1以上であればよいが、好ましくは 4以 下、更に好ましくは 3以下である。なお、該化合物中の塩基性基と酸性基の数の相対 比は、 1. 3以上が好ましぐ 4以下が好ましい。
該化合物が中性基を有する場合、中性基は 1以上であればよぐその数には特に 制限はないが、通常 8以下、好ましくは 6以下である。
該化合物が塩基性基、酸性基、中性基を 2以上有する場合、 2以上の基は同一の 基であっても異なる基であってもよ!/、。
[0074] 該化合物としては、鎖状化合物或いは環式化合物の 、ずれでもよ 、。
該化合物としては、ァミン類が好ましく、特にアミノ酸類、ベタイン類、ヒドロキシアミ ン類、塩基性基を有する環式化合物が好ましい。
[0075] アミノ酸類は、酸性基及び塩基性基の数と性質から、中性アミノ酸、酸性アミノ酸、 塩基性アミノ酸に分類される。
中性アミノ酸の具体例として、グリシン、ァラニン、ノ リン、ロイシン、イソロイシン、フ ェニルァラニン、チロシン、トリプトファン、セリン、トレオニン、プロリン、 4ーヒドロキシ プロリン、システィン、シスチン、メチォニン、ァスパラギン、グルタミン、 13ーァラニン、 シトルリン、クレアチン、キヌレニン等が挙げられ、これらのうち、特にフエ-ルァラニン 、ァスパラギン、 4—ヒドロキシプロリン、 13—ァラニンが好ましい。
また、酸性アミノ酸の具体例として、ァスパラギン酸、グルタミン酸等が挙げられ、こ れらのうち、特にァスパラギン酸、グルタミン酸が好ましい。
また、塩基性アミノ酸の具体例として、リジン、アルギニン、ヒスチジンなどが挙げら れる。
[0076] アミノ酸の分子量としては通常 60以上、好ましくは 75以上で、通常 300以下、好ま しくは 250以下である。アミノ酸の分子量が大き過ぎると分子サイズが大き 、ために色 素分子の配向を乱すことがあり、逆に小さ過ぎると色素分子の配向固定効果が十分 発揮されな ヽおそれがある。
[0077] ベタイン類としては、カルボキシアルキルトリアルキルアンモ-ゥム水酸化物、カル ボキシアルキルピリジ-ゥム水酸化物、スルホアルキルトリアルキルアンモ-ゥム水酸 化物、スルホアルキルピリジニゥム水酸化物、ホスホアルキルトリアルキルアンモニゥ ム水酸化物、ホスホアルキルピリジニゥム水酸化物等、及びこれら化合物の誘導体が 挙げられ、これらのうちカルボキシメチルトリメチルアンモ -ゥム水酸化物、スルホプロ ピルピリジニゥム水酸ィ匕物が好まし 、。
[0078] ベタイン類の分子量としては通常 60以上、好ましくは 75以上で、通常 300以下、好 ましくは 250以下である。ベタイン類の分子量が大き過ぎると分子サイズが大きいた めに色素分子の配向を乱すことがあり、逆に小さ過ぎると色素分子の配向固定効果 が十分発揮されな ヽおそれがある。
[0079] ヒドロキシァミン類としては、アミノアルキルアルコール、ジァミノアルキルアルコール 、アミノアルキルジオール、ジァミノアルキルジオール等が挙げられ、これらのうち、ァ ミノプロパンジオールが好まし 、。
[0080] ヒドロキシァミン類の分子量としては通常 60以上、好ましくは 75以上で、通常 300 以下、好ましくは 250以下である。ヒドロキシァミン類の分子量が大き過ぎると分子サ ィズが大きいために色素分子の配向を乱すことがあり、逆に小さ過ぎると色素分子の 配向固定効果が十分発揮されな!、おそれがある。
[0081] 塩基性を有する環式化合物としては、アミノビリジン、ジァミノピリジン、トリアミノビリ ジン、アミノビリダジン、ジァミノピリダジン、トリアミノビリダジン、アミノビリミジン、ジアミ ノビリミジン、トリアミノビリミジン、アミノビラジン、ジアミノビラジン、トリアミノビラジン、ァ ミノトリァジン、ジアミノトリアジン、トリアミノトリアジン、等が挙げられ、これらのうち、トリ アミノビリミジンが好ましい。
[0082] 塩基性基を有する環式ィ匕合物の分子量としては通常 60以上、好ましくは 75以上で 、通常 300以下、好ましくは 250以下である。塩基性基を有する環式化合物の分子 量が大き過ぎると分子サイズが大きいために色素分子の配向を乱すことがあり、逆に 小さ過ぎると色素分子の配向固定効果が十分発揮されないおそれがある。
[0083] 上述のような該化合物は、 1種を単独で用いてもよぐ同種の化合物或いは異種の 化合物の各々の 2種以上を組合わせて用いてもよい。また、例えばアミノ酸に存在す
る光学異性体は、それぞれを単独で用いてもよぐ両方を含んでいてもよい。また、塩 型の化合物と遊離の化合物とを含んでいてもよぐ異なる塩型の化合物を含んでい てもよい。
[0084] 上記添加剤を組成物に加えることによつても、本発明の組成物を得ることができる。
例えば、色素及び溶剤のみでは本発明で特定する組成物とならなくても、上記添カロ 剤を更に加えることによって本発明の組成物を得ることができる。
[0085] [異方性色素膜]
次に、このような本発明の異方性色素膜用組成物を用いて形成される本発明の異 方性色素膜にっ 、て説明する。
[0086] 本発明の異方性色素膜用組成物によれば、高二色性を示すと共に塗膜均一性が 高い異方性色素膜を高い生産性で形成することができ、従って、このような本発明の 異方性色素膜用組成物を用いて形成された本発明の異方性色素膜は、高 ヽ二色性 を示すと共にその安定に優れた工業的に有用な色素膜である。
[0087] 本発明の異方性色素膜は高い二色比を示すが、その二色比は 5以上のものが好ま しぐより好ましくは 10以上、特に好ましくは 15以上である。
[0088] このような本発明の異方性色素膜は、本発明の異方性色素膜用組成物を用いて乾 式成膜法もしくは湿式成膜法により作製される。本発明においては、色素を含む異 方性色素膜用組成物が液晶性を示すので、湿式成膜法を採用することが好まし ヽ。
[0089] 乾式成膜法としては、高分子重合体を成膜してフィルムとした後に本発明の異方性 色素膜用組成物で染色する方法、又は高分子重合体の溶液に本発明の異方性色 素膜用組成物を添加し原液染色後成膜する方法等により得られた未延伸フィルムを 延伸する方法などを挙げることができる。上記染色及び成膜並びに延伸は、一般的 な下記の方法で行うことができる。
[0090] 本発明の異方性色素膜用組成物及び必要に応じて塩化ナトリウム、ボウ硝等の無 機塩、界面活性剤等の染色助剤を加えた染浴中に、通常 20°C以上、好ましくは 30 °C以上、通常 80°C以下、好ましくは 50°C以下で、通常 1分以上、好ましくは 3分以上 、通常 60分以下、好ましくは 20分以下、高分子フィルムを浸漬して染色し、次いで必 要に応じてホウ酸処理し、乾燥する。あるいは、高分子重合体を水及び Z又はアルコ
ール、グリセリン、ジメチルホルムアミド等の親水性有機溶媒に溶解し、本発明の異方 性色素膜用組成物を添加して原液染色を行い、この染色原液を流延法、溶液塗布 法、押出法等により成膜して染色フィルムを作成する。溶媒に溶解させる高分子重合 体の濃度としては、高分子重合体の種類によっても異なる力 通常 5重量%以上、好 ましくは 10重量%以上程度で、通常 30重量%以下、好ましくは 20重量%以下程度 である。また、溶媒に溶解する色素の濃度としては、高分子重合体に対して通常 0. 1 重量%以上、好ましくは 0. 8重量%以上程度で、通常 5重量%以下、好ましくは 2. 5 重量%以下程度である。
[0091] 上記のようにして染色及び成膜して得られた未延伸フィルムは、適当な方法によつ て一軸方向に延伸する。延伸処理することによって色素分子が配向し、二色性が発 現する。一軸に延伸する方法としては、湿式法にて引っ張り延伸を行う方法、乾式法 にて引っ張り延伸を行う方法、乾式法にてロール間圧縮延伸を行う方法等があり、い ずれの方法を用いて行ってもよい。延伸倍率は 2倍以上、 9倍以下にて行われるが、 高分子重合体としてポリビニルアルコール及びその誘導体を用いた場合は 2. 5倍以 上、 6倍以下の範囲が好ましい。延伸配向処理したあとで、該延伸フィルムの耐水性 向上と偏光度向上の目的でホウ酸処理を実施する。ホウ酸処理により、異方性色素 膜の光線透過率と偏光度が向上する。ホウ酸処理の条件としては、用いる親水性高 分子重合体及び色素の種類によって異なる力 一般的にはホウ酸濃度としては、通 常 1重量%以上、好ましくは 5重量%以上程度で、通常 15重量%以下、好ましくは 1 0重量%以下程度である。また、処理温度としては通常 30°C以上、好ましくは 50°C 以上で、通常 80°C以下の範囲にあることが望ましい。ホウ酸濃度が 1重量%未満で あるか、処理温度が 30°C未満の場合は、処理効果が小さぐまた、ホウ酸濃度が 15 重量%を超えるか、処理温度が 80°C以上を超える場合は異方性色素膜がもろくなり 好ましくない。
[0092] このような乾式成膜法により得られる異方性色素膜の膜厚は 10 m以上、特に 30 μ m以上で、 200 μ m以下、特に 100 μ m以下であることが好ましい。
[0093] 一方、湿式成膜法としては、本発明の異方性色素膜用組成物を塗布液として調製 後、ガラス板などの各種基材に塗布、乾燥し、色素を配向、積層して得る方法など公
知の方法が挙げられる。塗布法としては、原崎勇次著「コーティング工学」(株式会社 朝倉書店、 1971年 3月 20日発行) 253頁〜 277頁ゃ巿村國宏監修「分子協調材料 の創製と応用」(株式会社シーエムシー出版、 1998年 3月 3日発行) 118頁〜 149頁 などに記載の公知の方法や、例えば、予め配向処理を施した基材上に、スピンコート 法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法などで塗布す ることが挙げられる。この場合、異方性色素膜用組成物中の色素濃度は、低すぎると 十分な二色性を得ることができず、高すぎると成膜が困難になる。湿式成膜法におけ る異方性色素膜用組成物中の色素濃度は、好ましくは 0. 1重量%以上、特に好まし くは 1重量%以上で、好ましくは 50重量%以下、特に好ましくは 30重量%以下であ る。塗布時の温度は好ましくは 0°C以上、 80°C以下、湿度は好ましくは 10%RH以上 、 80%RH以下程度である。
[0094] また、塗膜の乾燥時の温度は好ましくは 0°C以上、 120°C以下、湿度は好ましくは 1 0%RH以上、 80%RH以下程度である。
[0095] 湿式成膜法で基材上に異方性色素膜を形成する場合、異方性色素膜は、通常乾 燥後の膜厚で、好ましくは 50nm以上、更に好ましくは lOOnm以上、好ましくは 50 m以下、より好ましくは 20 μ m以下、更に好ましくは 1 μ m以下である。
[0096] なお、湿式成膜法に使用される基材としては、ガラスやトリアセテート、アクリル、ポリ エステル、トリァセチルセルロース又はウレタン系のフィルム等が挙げられる。また、こ の基材表面には、二色性色素の配向方向を制御するために、「液晶便覧」(丸善株 式会社、平成 12年 10月 30日発行) 226頁〜 239頁などに記載の公知の方法により 、配向処理層を施しておいてもよい。
[0097] 乾式成膜法もしくは湿式成膜法により得られた二色性色素の異方性色素膜は、必 要に応じ、保護層を設けて使用する。この保護層は、例えば、トリアセテート、アクリル 、ポリエステル、ポリイミド、トリァセチルセルロース又はウレタン系のフィルム等の透明 な高分子膜によりラミネーシヨンして形成され、実用に供される。
[0098] また、本発明の異方性色素膜用組成物を LCDや OLEDなどの各種の表示素子に 偏光フィルタ一等として用いる場合には、これらの表示素子を構成する電極基板など に直接本発明の異方性色素膜を形成したり、本発明の異方性色素膜を形成した基
材をこれら表示素子の構成部材として用いればょ ヽ。
[0099] また、本発明の異方性色素膜は、異方性色素膜中の色素の酸性基に対して、カチ オン 0. 9当量以上 0. 99当量以下と、強酸 ¾ァニオン 0. 02当量以上 0. 1当量以下 とを含むことが好ましい。
[0100] カチオンとしては、リチウム、ナトリウム、カリウム、ノレビジゥム、セシウムなどのァノレ力 リ金属イオン、アンモニア、アルキルァミン、塩基性アミノ酸、ヒドロキシァミンなどのァ ミン系イオンまたはピリジ-ゥムイオンなどが挙げられる。これらは 1種を単独で用いて もよぐ 2種以上を併用してもよい。
これらのカチオンは、色素の酸性基と塩型を形成して!/ヽるものも含める。
[0101] 強酸性ァ-オンとしては、塩酸、硝酸、過塩素酸などの 1価イオン、硫酸などの 2価 イオン、燐酸などの 3価イオンなどが挙げられる。これらは 1種を単独で用いてもよぐ
2種以上を併用してもよい。
[0102] また、本発明の異方性色素膜中のカチオン含有量と強酸性ァ-オン含有量の差は
、色素の酸性基に対して 0. 9当量以上 0. 95当量以下であることが好ましい。
上記範囲よりカチオンが多 、と乾燥歪による欠陥や亀裂を生じる恐れがある。また、 強酸性ァ-オンが多いとカチオンと強酸性ァ-オンの塩が析出して配向を乱したり、 更に多い場合では色素の溶解性を阻害する恐れがある。
[0103] このような異方性色素膜は、色素の酸性基に対して、カチオンが 0. 9当量以上 0. 9
9当量以下、強酸性ァニオンが 0. 02当量以上 0. 1当量以下含まれている異方性色 素膜用組成物を用いて形成されたものであってもよいし、他の方法により得られたも のであってもよい。
[0104] 本発明の異方性色素膜は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏 光等を得る偏光膜として機能する他、膜形成プロセスと基材ゃ色素を含有する組成 物の選択により、屈折異方性や伝導異方性などの各種異方性膜として機能化が可 能となり、様々な種類の、多様な用途に使用可能な偏光素子とすることができる。
[0105] [偏光素子]
本発明の偏光素子は、上述した本発明の異方性色素膜を用いたものであるが、異 方性色素膜のみ力 なる偏光素子であってもよいし、基板上に異方性色素膜を有す
る偏光素子であってもよい。基板上に異方性色素膜を有する偏光素子は、基材も含 めて偏光素子とよぶ。
[0106] 本発明の異方性色素膜を基板上に形成して偏光素子として使用する場合、形成さ れた異方性色素膜そのものを使用してもよぐまた上記の様な保護層のほか、粘着層 或いは反射防止層、配向膜、位相差フィルムとしての機能、輝度向上フィルムとして の機能、反射フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルム としての機能などの光学機能をもつ層など、様々な機能をもつ層を湿式成膜法など により積層形成し、積層体として使用してもよい。
[0107] これら光学機能を有する層は、例えば以下の様な方法により形成することが出来る
[0108] 位相差フィルムとしての機能を有する層は、例えば特許第 2841377号公報、特許 第 3094113号公報などに記載の延伸処理を施したり、特許第 3168850号公報など に記載された処理を施したりすることにより形成することができる。
[0109] また、輝度向上フィルムとしての機能を有する層は、例えば特開 2002— 169025 号公報ゃ特開 2003— 29030号公報に記載されるような方法で微細孔を形成するこ と、或いは、選択反射の中心波長が異なる 2層以上のコレステリック液晶層を重畳す ること〖こより形成することができる。
[0110] 反射フィルム又は半透過反射フィルムとしての機能を有する層は、蒸着やスパッタリ ングなどで得られた金属薄膜を用いて形成することができる。
[0111] 拡散フィルムとしての機能を有する層は、上記の保護層に微粒子を含む榭脂溶液 をコーティングすることにより、形成することができる。
[0112] また、位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコテイツ ク液晶性化合物、ネマティック液晶性化合物などの液晶性化合物を塗布して配向さ せること〖こより形成することができる。
[0113] 本発明の異方性色素膜は、ガラスなどの高耐熱性基板上に直接形成することが可 能であり、高耐熱性の偏光素子を得ることができるという点から、液晶ディスプレーや 有機 ELディスプレーだけでなく液晶プロジェクタや車載用表示パネル等、高耐熱性 が求められる用途に好適に使用することができる。
実施例及び比較例
[0114] 次に、実施例及び比較例により本発明を更に具体的に説明する力 本発明はその 要旨を超えない限り以下の実施例に限定されるものではない。以下において「部」は 「重量部」を示す。
[0115] なお、以下において、形成した色素膜の各種評価は次のようにして行った。
0 二色比
ヨウ素系偏光素子を入射光学系に配した分光光度計で異方性色素膜の透過率を 測定した後、次式により計算した。
Az= -log (Tz)
Ay= -log (Ty)
Tz:色素膜の吸収軸方向の偏光に対する透過率
Ty:色素膜の偏光軸方向の偏光に対する透過率
ii) 欠陥,亀裂
偏光顕微鏡 Nikon Optiphot—POLを用い、 100倍の対物レンズ及び 10倍の接 眼レンズを用いて消光位にて観察した。
[0116] 実施例 1
水 80部に前記例示色素 No. (I— 1)のリチウム塩 20部を撹拌溶解後、濾過して異 方性色素膜用組成物を得た。
この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 9. S X lo ynZcm2であり、この緩和弾性率 Gが 10 分の 1に低下するまでの時間は 0. 04秒であり、 0. 1秒より短かった。
[0117] ガラス製基板(75mm X 25mm、厚さ lmm)上にシルク印刷法によりポリイミドの配 向膜 (膜厚約 800 A)が形成された基板を、予め布でラビング処理を施したものを用 意しておき、これに上記異方性色素膜用組成物をギャップ 2 mのアプリケータ (井 元製作所社製四面アプリケータ)で塗布した後、真空乾燥することにより膜厚 0. 4 μ mの異方性色素膜を得た。
得られた異方性色素膜に、欠陥及び亀裂は観察されな力つた。また、波長 550nm
における二色比は 27であった。
[0118] 実施例 2
水 69部に前記例示色素 No. (II— 1)のリチウム塩 30部と 4, 5, 6—トリアミノビリミジ ン硫酸塩 (東京化成社製) 1部を撹拌溶解後濾過して異方性色素膜用組成物を得た この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 1. 8 X 104dynZcm2であり、緩和弾性率 Gが 10分の 1 に低下するまでの時間は 0. 05秒であり、 0. 1秒より短かった。
[0119] この異方性色素膜用組成物を実施例 1と同様の基板に同様の方法で塗布して異 方性色素膜を得た。
得られた異方性色素膜に、欠陥及び亀裂は観察されず、波長 550nmにおける二 色比は 30であった。
[0120] 実施例 3
水 78. 94部に、脱塩精製した前記例示色素 No. (1—1)のリチウム塩 15部、前記 例示色素 No. (1—1)のリチウム 80mol%中和塩 5部、脱塩精製したアルドリッチ製 ァリザリンレッド S 1部、及び塩化リチウム 0. 06部を撹拌溶解後、濾過して異方性色 素膜用組成物を得た。
この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 9. S X lo ynZcm2であり、この緩和弾性率 Gが 10 分の 1に低下するまでの時間は 0. 04秒であり、 0. 1秒より短かった。
[0121] この異方性色素膜用組成物を実施例 1と同様の基板に同様の方法で塗布して異 方性色素膜を得た。
得られた異方性色素膜に、欠陥及び亀裂は観察されな力つた。また、波長 550nm における二色比は 28であった。
異方性色素膜の元素分析をしたところ、色素 No. (1—1)とァリザリンレッド Sの酸性 基に対して、カチオンであるリチウム及びナトリウムの濃度の合計は 0. 95当量、強酸 性ァ-オンである塩素濃度は 0. 06当量であった。
[0122] 実施例 4
水 78. 94部に、脱塩精製した前記例示色素 No. (1—1)のリチウム塩 16部、前記 例示色素 No. (1- 1)のリチウム 80mol%中和塩 4部、脱塩精製したアルドリッチ製 ァリザリンレッド S 1部、及び塩化リチウム 0. 08部を撹拌溶解後、濾過して異方性色 素膜用組成物を得た。
この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 9. S X lo ynZcm2であり、この緩和弾性率 Gが 10 分の 1に低下するまでの時間は 0. 04秒であり、 0. 1秒より短かった。
[0123] この異方性色素膜用組成物を実施例 1と同様の基板に同様の方法で塗布して異 方性色素膜を得た。
得られた異方性色素膜に、欠陥及び亀裂は観察されな力つた。また、波長 550nm における二色比は 29であった。
異方性色素膜の元素分析をしたところ、色素 No. (1—1)とァリザリンレッド Sの酸性 基に対して、カチオンであるリチウム及びナトリウムの濃度の合計は 0. 99当量、強酸 性ァ-オンである塩素濃度は 0. 08当量であった。
[0124] 実施例 5
水 58. 4部に脱塩精製した前記例示色素 No. (Ill— 1)のリチウム塩 15. 8部、前記 例示色素 No. (Ill— 1)のリチウム 80mol%中和塩 9. 2部、脱塩精製した前記例示 色素 No. (Ill— 2)のナトリウム塩 1. 5部、及び塩化リチウム 1重量%水溶液 15. 1部 を撹拌して溶解させた後、濾過して異方性色素膜用組成物を得た。
この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 9. 4 X 102dynZcm2であり、この緩和弾性率 Gが 10 分の 1に低下するまでの時間は 0. 04秒であり、 0. 1秒より短かった。
[0125] この異方性色素膜用組成物を実施例 1と同様の基板に同様の方法で塗布して異 方性色素膜を得た。
得られた異方性色素膜に、欠陥及び亀裂は観察されな力つた。また、波長 550nm における二色比は 28であった。
[0126] この異方性色素膜の元素分析をしたところ、色素 No. (Ill— 1)と (III— 2)の酸性基 に対して、カチオンであるリチウム及びナトリウムの濃度の合計は 0. 98当量、強酸性
ァ-オンである塩素濃度は 0. 04当量であった。
[0127] 比較例 1
水 70部に、上記構造式 (II— 1)で表される色素化合物のリチウム塩 30部を撹拌溶 解後、濾過して pH7の異方性色素膜用組成物を得た。
この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 2. 0 X 104dynZcm2であり、この緩和弾性率 Gが 10 分の 1に低下するまでの時間は 0. 5秒であり、 0. 1秒より長力つた。
[0128] この異方性色素膜用組成物を実施例 1と同様の基板に同様の方法で塗布して異 方性色素膜を得た。
得られた異方性色素膜を偏光顕微鏡の消光位で観察すると、塗布方向に垂直な 周期的な筋状欠陥があり塗布方向に平行な亀裂ができていた。また、波長 550nm における二色比は 20であり、実施例 1及び 2の異方性色素膜に比べ、低かった。
[0129] 比較例 2
水 76. 9部に、脱塩精製した前記例示色素 No. (I— 1)のリチウム塩 22部、及び脱 塩精製したアルドリッチ製ァリザリンレッド S 1. 1部を撹拌溶解後、濾過して異方性 色素膜用組成物を得た。
この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 2. l X 102dynZcm2であり、この緩和弾性率 Gが 10 分の 1に低下するまでの時間は 0. 15秒であり、 0. 1秒より長力つた。
[0130] この異方性色素膜用組成物を実施例 1と同様の基板に同様の方法で塗布して異 方性色素膜を得た。
得られた異方性色素膜を偏光顕微鏡の消光位で観察すると、塗布方向に垂直な 周期的な筋状欠陥があり、塗布方向に平行な亀裂ができていた。また、波長 550nm における二色比は 20であり、実施例 3及び 4の異方性色素膜に比べ、低かった。 異方性色素膜の元素分析をしたところ、色素 No. (1—1)とァリザリンレッド Sの酸性 基に対して、カチオンであるリチウム及びナトリウムの濃度の合計は 1. 01当量、強酸 性ァ-オンである塩素濃度は 0. 0001当量であった。
[0131] 比較例 3
水 73. 5部に脱塩精製した前記例示色素 No. (Ill— 1)のリチウム塩 25部、及び脱 塩精製した前記例示色素 No. (Ill— 2)のナトリウム塩 1. 5部を撹拌して溶解させた 後、濾過して異方性色素膜用組成物を得た。
この異方性色素膜用組成物について、前述の方法で測定した温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gは 1. 7 X 104dynZcm2であり、この緩和弾性率 Gが 10 分の 1に低下するまでの時間は 9. 4秒であり、 0. 1秒より長力つた。
[0132] この異方性色素膜用組成物を実施例 1と同様の基板に同様の方法で塗布して異 方性色素膜を得た。
得られた異方性色素膜を偏光顕微鏡の消光位で観察すると、塗布方向に垂直な 周期的な筋状欠陥があり、塗布方向に平行な亀裂ができていた。また、波長 550nm における二色比は 20であり、実施例 5の異方性色素膜に比べ、低かった。
この異方性色素膜の元素分析をしたところ、色素 No. (Ill— 1)と (III— 2)の酸性基 に対して、カチオンであるリチウム及びナトリウムの濃度の合計は 1. 01当量、強酸性 ァ-オンである塩素濃度は 0当量であった。
[0133] 上記実施例 1〜5及び比較例 1〜3の結果から、温度 5°C、歪印加後 0. 01秒後の 緩和弾性率 Gが 10分の 1に低下するまでの時間が 0. 1秒以下である異方性色素膜 用組成物を用いることにより、塗膜均一性が高ぐ二色性も高い異方性色素膜を形成 することができることが分力ゝる。
[0134] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 7月 19日付で出願された日本特許出願 (特願 2005— 2 08751)及び 2005年 11月 29日付で出願された日本特許出願(特願 2005— 3440 98)に基づいており、その全体が引用により援用される。
Claims
請求の範囲
[1] 色素を含有し、リオトロピック液晶相を形成可能な異方性色素膜用組成物であって 温度 5°C、歪印加後 0. 01秒後の緩和弾性率 Gが 10分の 1に低下するまでの時間 が 0. 1秒以下であることを特徴とする異方性色素膜用組成物。
[2] 請求項 1にお 、て、前記色素がァゾ系色素であることを特徴とする異方性色素膜用 組成物。
[3] 請求項 1において、湿式成膜法による異方性色素膜の成膜に使用されることを特 徴とする異方性色素膜用組成物。
[4] 請求項 1において、前記色素の酸性基に対して、カチオン 0. 9当量以上 0. 99当 量以下と、強酸性ァ-オン 0. 02当量以上 0. 1当量以下とを含有することを特徴とす る異方性色素膜用組成物。
[5] 請求項 1において、前記色素が遊離酸の形が下記式で表される色素であることを 特徴とする異方性色素膜用組成物。
[化 3]
(上記式中、 X1は、水素原子またはスルホ基を表す。 A1は、置換基を有していてもよ V、フエ-ル基、置換基を有して 、てもよ 、ナフチル基または置換基を有して 、てもよ い芳香族複素環基を表す。 B1は、置換基を有していてもよい芳香族炭化水素基また は置換基を有していてもよい芳香族複素環基を表す。 nは、 1または 2を表す。 ) 請求項 5において、前記色素が、遊離酸の形が下記構造式 (I 1)、 (1- 2) , (II 1)、(111—1)、(III 2)または(IV— 1)で表される色素であることを特徴とする異方性 色素膜用組成物。
剛 C0MC/900Zdf/X3d 83 80蒙00 OAV
[7] 請求項 4において、カチオンが、アルカリ金属イオン、アミン系イオンおよびピリジ- ゥムイオンよりなる群力 選ばれる 1又は 2種以上であることを特徴とする異方性色素 膜用組成物。
[8] 請求項 4にお 、て、強酸性ァ-オンが、塩酸、硝酸、過塩素酸、硫酸、および燐酸 よりなる群力 選ばれる 1又は 2種以上のイオンであることを特徴とする異方性色素膜 用組成物。
[9] 請求項 7において、異方性色素膜用組成物中のカチオン含有量と強酸性ァ-オン 含有量の差が、色素の酸性基に対して 0. 9当量以上 0. 95当量以下であることを特 徴とする異方性色素膜用組成物。
[10] 請求項 1の異方性色素膜用組成物を用いて形成された異方性色素膜。
[11] 色素と、該色素の酸性基に対して、カチオン 0. 9当量以上 0. 99当量以下と、強酸 性ァ-オン 0. 02当量以上 0. 1当量以下とを含むことを特徴とする異方性色素膜。
[12] 請求項 10に記載の異方性色素膜を用いた偏光素子。
[13] 請求項 11に記載の異方性色素膜を用いた偏光素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/995,124 US20090166583A1 (en) | 2005-07-19 | 2006-07-14 | Composition for anisotropic pigmented film, anisotropic pigmented film, and polarizing element |
EP06781104A EP1906216A1 (en) | 2005-07-19 | 2006-07-14 | Composition for anisotropic pigmented film, anisotropic pigmented film, and polarizing element |
CNB2006800229175A CN100568027C (zh) | 2005-07-19 | 2006-07-14 | 各向异性色素膜用组合物、各向异性色素膜及偏光元件 |
KR1020077030557A KR101301468B1 (ko) | 2005-07-19 | 2006-07-14 | 이방성 색소막용 조성물, 이방성 색소막 및 편광 소자 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-208751 | 2005-07-19 | ||
JP2005208751 | 2005-07-19 | ||
JP2005344098 | 2005-11-29 | ||
JP2005-344098 | 2005-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007010841A1 true WO2007010841A1 (ja) | 2007-01-25 |
Family
ID=37668722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314030 WO2007010841A1 (ja) | 2005-07-19 | 2006-07-14 | 異方性色素膜用組成物、異方性色素膜及び偏光素子 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090166583A1 (ja) |
EP (1) | EP1906216A1 (ja) |
KR (1) | KR101301468B1 (ja) |
CN (1) | CN100568027C (ja) |
TW (1) | TWI396719B (ja) |
WO (1) | WO2007010841A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009044600A1 (ja) * | 2007-10-04 | 2009-04-09 | Nitto Denko Corporation | コーティング液および偏光膜 |
JP2011169958A (ja) * | 2010-02-16 | 2011-09-01 | Nitto Denko Corp | 偏光膜 |
CN103149622A (zh) * | 2007-12-28 | 2013-06-12 | 日东电工株式会社 | 偏光膜 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5200325B2 (ja) * | 2005-04-04 | 2013-06-05 | 三菱化学株式会社 | 湿式成膜法により形成された異方性色素膜及び偏光素子 |
EP1881349A1 (en) * | 2005-04-21 | 2008-01-23 | Mitsubishi Chemical Corporation | Composition for anisotropic dye film, anisotropic dye film, and polarizing device |
JP5276532B2 (ja) | 2009-07-01 | 2013-08-28 | 日東電工株式会社 | 液晶性コーティング液および偏光膜 |
JP5623154B2 (ja) | 2009-07-10 | 2014-11-12 | 日東電工株式会社 | 液晶性コーティング液および偏光膜 |
JP5210287B2 (ja) * | 2009-11-09 | 2013-06-12 | 日東電工株式会社 | 液晶性コーティング液および偏光膜 |
KR101127586B1 (ko) * | 2010-02-24 | 2012-03-22 | 삼성모바일디스플레이주식회사 | 고투과 편광판 및 이를 구비하는 유기 발광 장치 |
CN108957616A (zh) * | 2018-09-11 | 2018-12-07 | 深圳市盛波光电科技有限公司 | 一种染料型偏光片的制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08511109A (ja) * | 1993-05-21 | 1996-11-19 | ロシアン テクノロジー グループ | 熱安定で且つ耐光堅牢な二色偏光子 |
JPH08302219A (ja) * | 1995-04-28 | 1996-11-19 | Sumitomo Chem Co Ltd | トリスアゾ化合物及びそれを含有する染料系偏光膜 |
US6049428A (en) * | 1994-11-18 | 2000-04-11 | Optiva, Inc. | Dichroic light polarizers |
JP2002090526A (ja) * | 2000-09-19 | 2002-03-27 | Fuji Photo Film Co Ltd | 二色性偏光素子およびその製造方法 |
JP2002180052A (ja) * | 2000-12-14 | 2002-06-26 | Fuji Photo Film Co Ltd | 水溶性二色性色素、光学フイルム、偏光素子、二色性色素のミセルを配向させる方法および光学フイルムの製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2400877A (en) * | 1941-03-21 | 1946-05-28 | John F Dreyer | Optical device and method and manufacture thereof |
JPH0193703A (ja) * | 1987-10-05 | 1989-04-12 | Mitsubishi Kasei Corp | 偏光膜 |
DE19753223A1 (de) * | 1997-12-01 | 1999-06-02 | Bayer Ag | Disazofarbstoffe |
JP4175455B2 (ja) | 2001-03-15 | 2008-11-05 | 日本化薬株式会社 | 新規なマイクロパターン偏光素子の製造方法及びこれを用いる立体表示液晶表示装置 |
KR101135415B1 (ko) * | 2003-10-14 | 2012-04-23 | 미쓰비시 가가꾸 가부시키가이샤 | 이방성 색소막용 색소, 이방성 색소막용 색소 조성물,이방성 색소막 및 편광소자 |
US7294370B2 (en) * | 2004-08-17 | 2007-11-13 | Kent State University | Aligned lyotropic chromonic liquid crystal films |
EP1881349A1 (en) * | 2005-04-21 | 2008-01-23 | Mitsubishi Chemical Corporation | Composition for anisotropic dye film, anisotropic dye film, and polarizing device |
-
2006
- 2006-07-14 CN CNB2006800229175A patent/CN100568027C/zh active Active
- 2006-07-14 US US11/995,124 patent/US20090166583A1/en not_active Abandoned
- 2006-07-14 EP EP06781104A patent/EP1906216A1/en not_active Withdrawn
- 2006-07-14 WO PCT/JP2006/314030 patent/WO2007010841A1/ja active Application Filing
- 2006-07-14 KR KR1020077030557A patent/KR101301468B1/ko active IP Right Grant
- 2006-07-19 TW TW095126345A patent/TWI396719B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08511109A (ja) * | 1993-05-21 | 1996-11-19 | ロシアン テクノロジー グループ | 熱安定で且つ耐光堅牢な二色偏光子 |
US6049428A (en) * | 1994-11-18 | 2000-04-11 | Optiva, Inc. | Dichroic light polarizers |
JPH08302219A (ja) * | 1995-04-28 | 1996-11-19 | Sumitomo Chem Co Ltd | トリスアゾ化合物及びそれを含有する染料系偏光膜 |
JP2002090526A (ja) * | 2000-09-19 | 2002-03-27 | Fuji Photo Film Co Ltd | 二色性偏光素子およびその製造方法 |
JP2002180052A (ja) * | 2000-12-14 | 2002-06-26 | Fuji Photo Film Co Ltd | 水溶性二色性色素、光学フイルム、偏光素子、二色性色素のミセルを配向させる方法および光学フイルムの製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009044600A1 (ja) * | 2007-10-04 | 2009-04-09 | Nitto Denko Corporation | コーティング液および偏光膜 |
CN103149622A (zh) * | 2007-12-28 | 2013-06-12 | 日东电工株式会社 | 偏光膜 |
JP2011169958A (ja) * | 2010-02-16 | 2011-09-01 | Nitto Denko Corp | 偏光膜 |
Also Published As
Publication number | Publication date |
---|---|
KR20080035525A (ko) | 2008-04-23 |
EP1906216A1 (en) | 2008-04-02 |
CN100568027C (zh) | 2009-12-09 |
TWI396719B (zh) | 2013-05-21 |
US20090166583A1 (en) | 2009-07-02 |
CN101208622A (zh) | 2008-06-25 |
TW200712134A (en) | 2007-04-01 |
KR101301468B1 (ko) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007010841A1 (ja) | 異方性色素膜用組成物、異方性色素膜及び偏光素子 | |
JP6036787B2 (ja) | 異方性膜用アゾ化合物、該化合物を含有する組成物、異方性膜及び偏光素子 | |
JP2010026024A (ja) | 異方性膜用組成物、異方性膜、偏光素子及びアゾ化合物 | |
JP4784417B2 (ja) | 異方性色素膜用組成物、異方性色素膜及び偏光素子 | |
JP2007241269A (ja) | 樹脂組成物、並びに光学素子及び液晶表示素子 | |
JP5168878B2 (ja) | 異方性色素膜用組成物、異方性色素膜および偏光素子 | |
JP4736823B2 (ja) | 異方性色素膜用組成物、異方性色素膜、偏光素子及び異方性色素膜用色素 | |
KR100832759B1 (ko) | 이방성 색소막용 색소 조성물, 이방성 색소막 및 편광 소자 | |
JP2007291246A (ja) | アゾ色素、該色素を含有する異方性色素膜用組成物、異方性色素膜及び偏光素子 | |
KR102170099B1 (ko) | 이방성 색소막용 조성물, 이방성 색소막 및 광학 소자 | |
JP5422875B2 (ja) | 異方性光学膜の製造方法 | |
JP6922381B2 (ja) | 異方性膜用アゾ化合物、該化合物を含む異方性膜用組成物及び異方性膜 | |
JP5092345B2 (ja) | 異方性色素膜、および偏光素子 | |
JP2007148179A (ja) | 異方性色素膜用色素組成物、異方性色素膜用膜形成組成物、異方性色素膜及び偏光素子 | |
JP4973100B2 (ja) | 湿式成膜法により形成された異方性色素膜及び偏光素子 | |
JP2005284260A (ja) | 異方性有機膜およびその製造方法並びに偏光膜および偏光素子 | |
JP5499791B2 (ja) | 異方性膜用アゾ化合物、異方性膜用組成物、異方性膜及び偏光素子 | |
JP6064759B2 (ja) | 異方性色素膜用色素、該色素を含む組成物、異方性色素膜及び偏光素子 | |
JP2007121458A (ja) | 異方性色素膜用基板、異方性色素膜及びその製造方法、並びに偏光素子 | |
JP5521408B2 (ja) | 化合物、該化合物を含有する組成物、異方性膜、および偏光素子 | |
JP6107352B2 (ja) | 異方性色素膜用色素、該色素を含む組成物、異方性色素膜及び偏光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680022917.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020077030557 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11995124 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006781104 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |