WO2006136201A1 - Verfahren zur datenkommunikation von busteilnehmern eines offenen automatisierungssystems - Google Patents

Verfahren zur datenkommunikation von busteilnehmern eines offenen automatisierungssystems Download PDF

Info

Publication number
WO2006136201A1
WO2006136201A1 PCT/EP2005/010348 EP2005010348W WO2006136201A1 WO 2006136201 A1 WO2006136201 A1 WO 2006136201A1 EP 2005010348 W EP2005010348 W EP 2005010348W WO 2006136201 A1 WO2006136201 A1 WO 2006136201A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
tpa
rpa
data
alu
Prior art date
Application number
PCT/EP2005/010348
Other languages
English (en)
French (fr)
Inventor
Hans Jürgen HILSCHER
Original Assignee
Hilscher Gesellschaft für Systemautomation mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200510029656 external-priority patent/DE102005029656B3/de
Priority claimed from DE102005029654A external-priority patent/DE102005029654B4/de
Priority claimed from DE200510029655 external-priority patent/DE102005029655A1/de
Priority to EP05798012.0A priority Critical patent/EP1894113B1/de
Priority to KR1020087001780A priority patent/KR101125419B1/ko
Priority to JP2008517334A priority patent/JP4903201B2/ja
Application filed by Hilscher Gesellschaft für Systemautomation mbH filed Critical Hilscher Gesellschaft für Systemautomation mbH
Priority to EP08022031.2A priority patent/EP2110754B1/de
Priority to CN2005800502219A priority patent/CN101208674B/zh
Priority to BRPI0520350-3A priority patent/BRPI0520350A2/pt
Priority to US11/922,395 priority patent/US8065455B2/en
Priority to CA002612564A priority patent/CA2612564A1/en
Publication of WO2006136201A1 publication Critical patent/WO2006136201A1/de

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/36Handling requests for interconnection or transfer for access to common bus or bus system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40013Details regarding a bus controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • H04L12/4135Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD] using bit-wise arbitration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems

Definitions

  • the invention relates primarily to a method for data communication, in particular for coupling bus subscribers of an open automation system and a freely programmable communication processor according to the patent claims 1 or 9. Furthermore, the invention relates to a method for data communication, in particular for configuration and a device with flexible Finally, the invention relates to a method and a device for data communication, in particular for the synchronization of bus subscribers communicating with one another via a serial data bus of a distributed control automation system according to claims 20 or 21 and 24.
  • fieldbuses and Ethernet In particular the expansion with respect to real-time Ethernet for data communication between individual units involved in the control of a process, in the control and automation technology.
  • fieldbuses are CAN bus, Profibus, Modbus, DeviceNet or Interbus.
  • the units are communicated on the fieldbus / Etheraet using specified protocols.
  • drive components such as between drive controls, power units and encoders in numerically controlled machine tools and robots, in which a plurality of interpolating axes must be operated synchronously.
  • An automation system consists of hardware components which can be coupled to the bus system, in particular motors, sensors, actuators, among others - ie the process environment - which, in interaction with one or more higher-order controllers, form an automatic production process.
  • the bus master takes over all the tasks that are necessary for the handling of the bus operation. It is usually separate from the actual control unit for controlling the hardware components.
  • BESTATIGUNGSKOPIE To obtain in a simple manner an open and flexible operation of 'the system to', with the hardware components without modification of the control programs are interchangeable, is known from DE 198 50 469 Al an automation system and a method for accessing the functionality of hardware components, in which these each have a system connection unit with function objects as an image of the real functionality of the hardware components, the function objects being provided for accessing the functionality of the hardware components via the bus system.
  • the hardware components as "plug and play" modules, it is necessary to provide a special component directly in the hardware component on which the functional objects can run as access to the functionality of the hardware components. This special module is realized in the form of the system connection unit.
  • the system connection unit is coupled to a bus system of the automation system, so that communication data can be transmitted, for example, from a control system to the hardware component as well as to and from all further components coupled to the bus system.
  • communication data can be transmitted, for example, from a control system to the hardware component as well as to and from all further components coupled to the bus system.
  • the system connection unit With the help of the system connection unit, it is thus possible to replace hardware components without changing the existing structures of the automation system, to supplement, etc. Furthermore, special between a control system and the hardware components previously required switching objects. omitted.
  • the system connection unit has a memory for storing protocols required between the two bus systems.
  • ETHERNET data transmission rate 10 Mbit / s
  • FAST ETHERNET data transmission rate 100 Mbit / s - standard IEEE Std 802.3-1998)
  • Profibus data transmission rate 100 Mbit / s - standard IEEE Std 802.3-1998)
  • the embedding of the system connection units assigned to the hardware components into their environment can take place in that the function objects have at least a first function object for generating a minimum functionality of a hardware component, at least a second function object for shading function objects and at least a third function object for listing in the system processing unit and / or or contain functional objects present on remote system processing units and / or remote computers.
  • the special function of the function object is to enumerate the sum of the functionality of the system, ie to inquire.
  • the function objects are designed, for example, as so-called DCOM objects (Distributed Component Object Model) or as so-called OLE objects (Object Linking and Embedding).
  • the system connection unit has a runtime system (Runtime system) and a protocol processing unit (Profibus, UDP / IP, RPC).
  • the system connection unit is therefore a standard module, which must guarantee the protocols specified for the fieldbus and which is often quite complex and thus comparatively expensive.
  • a control system in which the bus master separated from a first control unit and a signal unit the fieldbus is connected, in which the first control unit is arranged in front of the signal unit with respect to a circulation direction of the telegram traffic, and in which the first control unit has means for replacing telegram data addressed to the signal unit by fail-safe telegram data. It is possible to connect the first control unit as a simple bus subscriber, ie without a bus master functionality to the fieldbus.
  • control system has a second control unit for controlling security-critical processes, which is connected to the fieldbus separately from the first control unit.
  • the second control unit has, among other components known per se, a microcontroller and a master protocol chip.
  • the master protocol chip has in this case a bus master functionality for an Interbus and is referred to as a bus master.
  • Such master protocol chips are available as standard components from various manufacturers.
  • a communication module contained in the first control unit has a slave protocol chip which is connected on the input side via a first bus connection and on the output side via a second bus connection to the field bus.
  • the protocol chip corresponds to the protocol chips contained in the signal units, which as bus subscribers connect safety-related devices to the fieldbus.
  • the protocol chip of a bus station that wants to send data to other bus participants, a transmit memory and possibly a receive memory is added becomes.
  • the functioning of the circulating message traffic is thus based on the same slave protocol chip arranged in each bus subscriber, frequently referred to as "serial microprocessor interface" (SUPI).
  • SUPI serial microprocessor interface
  • each plug-in card has a microprocessor, a memory unit for storing the process data which is connected to the microprocessor, a sensor bus interface (RS 485) and a fieldbus interface (RS 485) which are connected to the microprocessor, a service unit.
  • Interface RS-232
  • ISA bus interface an interface for connecting the microprocessor to a host computer.
  • the integrated fieldbus interface or sensor bus interface in each case has an ISO interface and a fieldbus data processor (SPC 3), in the present example, a Profibus data processor on.
  • a machine control system is optionally connected to the plug-in card via the integrated Profibus interface or to sensor electronic units via an I / O box.
  • the intelligent sensor electronics units each provide power to a sensor, sensor data acquisition, measurement signal preprocessing (signal transduction, gain, etc.), and simple signal analysis (digital filtering, peak detection, etc.).
  • An intelligent sensor electronic unit is therefore understood to mean a module which has its own microcontroller, filter, amplifier, a power supply and a sensor bus interface.
  • the sensor electronics unit can be reconfigured via the plug-in card before each processing. This applies, for example, the gain factors, the filter values and the billing of several input signals to a sum signal.
  • the monitoring is synchronized with the machining process through the Profibus interface.
  • the monitoring system can be easily integrated into the production facility.
  • the automated setup routines perform, for example, the recognition of the language on the controller and the associated language switching, the detection of sensors on the sensor bus and the automatic configuration of the gain and filter values.
  • the inputs and outputs of the programmable logic controller (PLC) are assigned independently and the time of a real-time clock on the plug-in card is automatically adjusted to the time of the host computer.
  • the plug-in card allows the monitoring of, for example, up to four sensor channels, with the communication processor for the sensor bus interface achieving a data rate of up to 460.8 kbaud with simultaneously high interference immunity.
  • the plug-in card microprocessor processes the data in Hamming mode with a Hamming distance of 4 and is responsible for encryption and decryption.
  • an address decoder is provided, which is responsible in a known per se for the encoding and decoding of the address and memory accesses in the PC.
  • the plug-in card is supplied with power via the ISA interface, which also communicates with the host computer. Since the plug-in card has its own processor, which is responsible for the monitoring, the CPU of the host computer is not allocated with computing power.
  • a real-time sensor bus protocol is defined for communication with the sensor electronics units. This makes it possible to query the measured data and to control and parameterize the sensors with defined response times.
  • the monitoring data are processed, for example, in a cycle of 10 ms and the sensor data preprocessing allows a sampling rate under 1 ms. This guarantees a response time of less than 1 ms for collision monitoring.
  • process-specific axis signals such as torques, motor currents and axis speeds can be transmitted in an advantageous manner via the field or profibus.
  • the protocol may allow the query of up to eight different axes.
  • the required control data can also directly from the Control core of the machine control via the fieldbus to the microprocessor of the plug-in card. In this case, no special sensors are needed and the sensor bus interface on the plug-in card can be omitted. All settings, software updates and process visualization can be made via the service interface.
  • a control system with a personal computer which has at least one PC processor, a program memory and a data memory for processing a control program and which is provided with a communication processor for connection to a fieldbus to the sensors and / or actuators can be connected to control a process.
  • a plug-in card is plugged into the personal computer, which is connected to an internal PCI bus, which has data, control and address lines.
  • the PC processor communicates with the components of the plug-in card via a PCI bus interface and the internal bus.
  • On the plug-in card of the communication processor is arranged, which automatically performs a corresponding parameterization by the PC processor cyclic data transmission on the fieldbus and consists essentially of an ASIC.
  • the communication processor can be operated as a master on a fieldbus with cyclic data transmission in the manner of PROFIBUS DP and has the function of a "cycle controller" when acquiring the process data. Furthermore, a memory is provided in which the process data received at the fieldbus are stored. This memory thus holds a current process image, which can be accessed by the PC processor at any time.
  • a monitoring unit is provided in order to relieve the PC processor of the polling of the received process data or of the monitoring of the fieldbus cycle.
  • the monitoring unit can be realized by a configurable hardware circuit, but also a Sottwareans by an extension of the communication processor program is possible.
  • the hardware circuit consists of a small RAM, which is incorporated into the address space of the PC processor and therefore can be addressed directly by this, as well as from a programmable logic device, the cyclic data transmission on the fieldbus and / or on the basis of a parameterization stored in the RAM Fieldbus monitored data monitored.
  • the PC processor accesses the RAM and sets the appropriate bits there to determine the function of the monitoring unit in the desired manner.
  • This parameterization determines, for example, in which cases the monitoring unit should generate an interrupt, which is forwarded to the PC processor via the PCI bus interface and the PCI bus. This determines the events in which the PC processor is to be initiated by the control program for further processing of the data received on the fieldbus.
  • the communication processor When the process control is active, the communication processor continuously polls the users as a master, for example sensors such as a flowmeter or a level transmitter, or actuators such as an inlet valve or a drain valve at one. Tank, on Feldb ⁇ s, which are operated as slaves. If the process data of a slave has been read in by the communications processor, it wants to enter it in the memory cells of the memory which are provided for the respective process data. The logic unit of the monitoring unit uses the address of the write access to check whether an interrupt must be generated when the respective process data is changed. This check is possible in a simple manner, since the process data of the individual slaves are each stored at fixed memory locations within the memory.
  • a data comparator implemented in the logic module compares the data transferred to the bus by the communication process with the earlier process data that was previously read from the memory by the logic module. Since the comparison of the currently received data with the earlier process data and the interrupt generation is performed by a hardware implemented monitoring unit, a very fast response of the control system to changes in the process data is advantageously possible. Another disadvantage is that the communication processor and monitoring unit, which must guarantee the protocols specified for the fieldbus, are complex and thus comparatively expensive.
  • the data transfer time which enters the control loop as dead time, is a particularly important factor.
  • the standardized transmission layer 2 (telegram frame and access method) of the (fast) Ethernet which does not meet these requirements, completely redefined by a new telegram frame and a new • access control and thus uses the Ethernet physics as a basis for real-time communication between, for example, drive components. In this case, both the communication between the control unit and the encoders and power parts and the connection to a motion control can be realized.
  • a common time base for the master and all slaves is established.
  • the slaves are synchronized to the master by means of specially distinguished, time-defined telegrams of the master to the slaves and individually parameterized time counters in the slaves.
  • the user data can be transported in a telegram frame which, in addition to the slave addressing and telegram length information, provides the safeguarding of the data integrity by means of, for example, a CRC checksum and further security-relevant data areas.
  • the data in the message frame can be evaluated not only by an application processor, but also by a communication module, which allows a second trigger channel.
  • the transmission technology used according to the Ethernet standard in principle only allows point-to-point connections, as with (fast) Ethernet networks, the use of network nodes (so-called HUBs) enables the formation of networks by providing several or each network subscriber has a switching part for forming network nodes, which serves for forwarding the telegrams in the direction of another master unit or further slave units.
  • HUBs network nodes
  • the telegrams Via the Fast Ethernet line drivers within each network node and possible network nodes, the telegrams reach the respective protocol blocks which process the message protocol and in which the time slot access method is realized. If the protocol blocks are independent of a microprocessor of the slave application (the actual power section), specific application events can be triggered in the slave by means of control bits of the message frame, without requiring its microprocessor and corresponding software.
  • DE 100 04 425 A1 discloses a network with a plurality of network subscribers, for example sensors and actuators, which are connected to one another via the network for data transmission.
  • the first telegram contains a clock time of a first network subscriber corrected by a transmission time delay, and a second network subscriber is configured to measure the time delay since the first telegram was received and the time received in the first telegram to Lead time and the receive time delay to correct.
  • the second network subscriber is further configured to send a second time-synchronization telegram to a third network subscriber which contains a received time corrected for the transit time and the delay time between receipt of the first telegram and transmission of the second telegram, then an iterative forwarding of the respectively corrected time from network participant to network participant possible.
  • the beginning and end of the term of a telegram can be determined in each case as the time at which leaves a characteristic field of a telegram with a fixed distance from the telegram start a media Independent interface of the first network participant or in a Media Independent interface of the second network participant enters. Measurements of the transmission time delay, transit time and reception time delay are advantageous regardless of the length of the respective telegram.
  • a network subscriber in particular a field device, can be equipped with a plurality of ports, in particular four ports, for connecting further network components.
  • an interface a so-called microprocessor interface, for connecting the ports with a subscriber-internal> processor bus and a control unit, a so-called switch control, are provided, which performs a Telegrammweglenkung between the ports and the microprocessor interface.
  • the integration of switch functions in the network subscriber has the advantage that, in particular in the case of Ethernet, CSMA / CD access control can be deactivated and the network acquires deterministic behavior.
  • a gateway for coupling network areas with different physics and different protocols is not required.
  • the communication with the application-specific circuit parts of the network participant via a microprocessor bus to which a RAM, a microprocessor and a microprocessor interface are connected.
  • the task of the microprocessor is the execution of user programs and communication functions, such as the processing of TCP / IP.
  • Another task can the administration of send and receive lists of telegrams of different priority in an external RAM.
  • four Ethernet controllers are further integrated. Each of these Ethernet controllers enters the data bytes of a fully received frame via a multiplexer, a DMA controller, also referred to as DMA 2 Control, and the microprocessor interface into a receive list in RAM.
  • the microprocessor accesses the Empfa ⁇ gsliste and evaluates the received data according to an application program.
  • the microprocessor interface forms the essential interface between the Ethernet controllers and the microprocessor bus. It controls or arbitrates the write and read accesses to the RAM via the DMA controller or DMA controller.
  • the microprocessor interface decides on the access rights of the two DMA channels.
  • About the microprocessor interface can continue to be written by the microprocessor parameter registers that are required to operate the communication interface of the network participant.
  • One device of the Ethernet controller called Transmit-Control, contains a controller that is responsible for sending telegrams, for retries, for sending interruptions, and so forth. It forms the interface between the internal controller clock and the send clock.
  • Transmit-Control contains a controller that is responsible for sending telegrams, for retries, for sending interruptions, and so forth. It forms the interface between the internal controller clock and the send clock.
  • a transmit status register is provided in each case in the device. If a telegram was sent error-free via the port, a corresponding interrupt is generated.
  • the Media Independent Interface integrates the MAC sublayer of layer 2 into the seven-layer model, ie the data link layer. This forms an interface to a module for physical data transmission. Furthermore, the MII contains a transmit function block and a receive function block. In addition, a MAC control block, an address filter, a statistics counter and a host interface are integrated. Control and configuration data can be transferred to the block via the MII and status information read from it.
  • MII Media Independent Interface
  • the first data network has first means for transmitting data in at least one first transmission cycle, the first transmission cycle being in a first range for transmission of real-time-critical data and a second area for the transmission of non-real-time critical data is divided.
  • second means are provided for transmitting data in at least one second transmission cycle, the second transmission cycle being subdivided into a third region for transmission of real-time-critical data and into a fourth region for transmission of non-real-time-critical data.
  • Ethernet data networks especially isochronous real-time Ethernet communication systems, with PROFIBUS data networks or isochronous real-time Ethernet data networks with SERCOS data networks and / or FIREWIRE data networks or PROFIBUS data networks and / or FIREWIRE data networks with SERCOS data networks is finally a coupling unit ( Router) for transmitting real-time critical data of the first area in the third area.
  • the ability to transmit real-time critical data from one data network to the other is used to transmit cycle synchronization telegrams from one clock beater of one data network to the other data network in order to synchronize local relative clocks in the other data network using the cycle synchronization telegrams ,
  • the different data networks each have their own clocks.
  • a relative clock can be realized in each of the participants of the data networks, which represents a system-wide unique time. Based on this basic mechanism, events in both communication systems can be detected with a uniform understanding of time or time-related switching events can be triggered in one's own or the other data network.
  • the accuracy of the relative clock is at least equal to the accuracy of a transmission cycle.
  • the router can be configured as a discrete device or it can also be an integral part of a subscriber of one of the data networks, whereby the routing of acyclic on-demand communication, eg Remote Procedure Calls (RPC), between the data networks is possible and the corresponding communication with proprietary and / or open protocols.
  • RPC Remote Procedure Calls
  • Automation components eg controllers, drives
  • a runtime level of the automation component (fast-cycle, eg position control in a controller, speed, torque control of a drive) is synchronized to the communication cycle, whereby the communication clock is determined.
  • Other slower-running algorithms (slow-cycle, eg temperature controls) of the automation component can also only communicate with other components (eg binary switches for fans, pumps) via this communication clock, although a slower cycle would be sufficient.
  • the real-time-capable range of the transmission cycles is used and the communication of the data telegrams required for the control takes place within deterministic time windows.
  • a conductance can also be transmitted via the switchable data network which is generated by one of the subscribers of the data network for one or more subscribers of the data network. This may be, for example, the acquisition of an actual value of an axis, that is, a so-called master axis, a system. Based on this actual value, a master value is generated by the participant concerned, which is used for the control of so-called slave axes.
  • a relative clock can also be generated in one of the subscribers.
  • the relative clock is generated by a master clock and distributed cyclically in the network and ensures that all participants involved in the data network have the same time set.
  • the time base for the relative clock is given by the synchronous transmission cycles and / or the subdivision of the transmission cycles in time slots.
  • events with time stamps can be detected (eg edge detection of digital I / Os) or switching operations (eg switching of digital / analog outputs) provided with a corresponding time stamp and the switching output executed based on this common relative time become.
  • a method for the multidirectional exchange of information between is provided in order to provide a method for establishing an Ethernet-based communication system for industrial automation, which has a substantially determinable communication behavior, response times in the lower millisecond range and low costs of the communication nodes Participants (eg automation devices) known , in which, depending on the size of the sent Ethernet data packet (telegram), this decomposed into several smaller packets (short messages) and these at least one control information is added to transfer the smaller packets in several cycles to their destination and, where appropriate, be reassembled there by means of the control information for the original Ethernet data packet. All telegrams whose length is greater than those of the short telegrams are split and all short telegrams have the same fixed size.
  • Participants eg automation devices
  • the control information is the source and the destination of the short telegram, whether it is a disassembled or a disassembled telegram, how many short telegrams have been disassembled and the serial number of the short telegram can be removed.
  • subscribers eg automation devices
  • IDS Industrial Domain Switch
  • the IDS are set up as a network via an Ethernet-compliant connection and each IDS receives a transmission right according to a predetermined, cyclical set of rules.
  • a transmission right is negotiated between the IDS via a management function by means of management telegrams, whereby the IDs recognize that they are management telegrams.
  • the entire control logic of the IDS can be integrated into a highly integrated electronic module.
  • the entire interface is often built as a replaceable module consisting of connectors, physical interface, dedicated communication controller, microprocessor with memory and transfer logic to the CPU of the automation device usually a dual-port memory.
  • This module implements exactly one special transmission protocol and must be specially developed as a whole.
  • the communication processor contains only one particular communication controller for a particular fieldbus system, Meanwhile, there are also circuits containing a plurality of these dedicated communication controllers, as described for example in US Patent Application 09 / 780,979 for a communication controller according to the CAN standard and a communication controller according to the Ethernet standard.
  • HUB and line driver Ethernet controller
  • media interface interface for connection to another network (public data network, another LAN or a Host system), fieldbus interfaces or sensor bus interface, in particular serial peripheral interface with master or slave protocol chips, as well as the implementation of corresponding network access protocols, eg CSMA / CD (Carrier Sense Multiple Access / Collision Detection), token passing (Bit pattern as a token) or TCP / IP (Transmission Control Protocol / Internet Protocol) in protocols specified for the fieldbus.
  • CSMA / CD Carrier Sense Multiple Access / Collision Detection
  • token passing Bit pattern as a token
  • TCP / IP Transmission Control Protocol / Internet Protocol
  • the communication controller implements only one special fieldbus system for the communication of the usual PLC function blocks, whereby, for example, drives are synchronized with one another via fast, deterministic and jitter-free communication links. This is done by detecting a particular date or event in the communication controller that causes the downstream CPU via an interrupt to perform the synchronous drive functions, such as measuring the position or outputting the manipulated variables.
  • This method has the disadvantage that in the Gelnaumaschine the synchronization, the interrupt latency times of the CPU, especially when using operating systems that lock the interrupts for certain times, decisively received.
  • the invention has for its object to design a method for data communication of bus subscribers of an open automation system such that the connection of any bus subscribers with individual, interactive communication is possible. Further Tasks are to allow the interchangeability of parts of the device or an automatic and highly accurate synchronization
  • This object is achieved according to claim 1.
  • the purpose of this is a method for data communication, in particular for coupling bus subscribers communicating with one another via a serial data bus of an open automation system with distributed control, which work together via a communication controller with a superordinate control device, in which:
  • the communication controller is made up of at least one freely programmable communication ALU,
  • the communication ALU logic function blocks are arranged in parallel, which perform special communication functions, whereby the communication functions are not fixed, but are formed on the basis of the freely programmable communication-optimized communication ALUs, whereby a plurality of commands are executed in a system clock and thereby Transitions between different networks can be realized.
  • the method according to the invention makes it possible in a simple manner to set up a "quasi-dedicated" communication controller by constructing it as one or more freely programmable communication ALUs (Arithmetic and Logic Unit) which has an instruction set optimized for the communication tasks This results in the following advantages for the solution according to the invention:
  • Enhancements within the fieldbus / Ethernet and in particular real-time Ethernet specification or implementations of completely new fieldbus systems can be made by software update and do not require a new circuit.
  • the respective fieldbus power therapy systems are defined by loading the software and can thus be combined in a completely flexible manner.
  • a communication controller, which cooperates with a higher-level control device and which has at least one freely programmable communication ALU,
  • Communication ALU the specific communication functions executed, whereby the communication functions are not fixed, but are based on at least one freely programmable and communication functions optimized communication ALU, which are executed in a system clock multiple commands and thereby transitions between different networks can be realized.
  • the device according to the invention Compared to the construction of a dedicated communication controller by programming FPGAs (Field Programmable Gate Array) or parts thereof according to the prior art, which also corresponds to a hardwired logic, the device according to the invention has the advantages described above. Furthermore, in contrast to conventional ALUs, the instructions are executed in parallel in one cycle. For this purpose, according to the invention, the associated logic function blocks are arranged in parallel in the ALUs and can simultaneously process the instruction code, whereby even at high baud rates, e.g. 100 MHz Ethernet, the necessary functions can be realized.
  • FPGAs Field Programmable Gate Array
  • a system clock several commands are executed is known from DE 4220258 C2.
  • a bit processing unit is provided for adaptation to a respective specifiable transmission protocol, which consists of selectively controllable conversion elements which process the individual data bits according to a respective protocol convention and are coordinated by a control unit.
  • the bit processing unit has at least one comparator for sequentially successive data bits whose output signal is output to the control unit.
  • a coupling element is arranged between the transmission line and the bit processing unit, which is designed as a decoding unit or as a coding unit for the data to be output.
  • the bit processing unit, the coupling element as well as two switchable and via the control unit optionally activatable main memory are connected to an internal bus. Furthermore, it is provided for changing the bit order as a function of a respective predetermined protocol structure that one of the conversion elements of the Bit kausemheit is designed as a bit exchanger.
  • the bit exchanger is designed to implement a mirroring of the bits arranged within a data word at a word center.
  • One of the conversion elements of the bit processing unit is designed as a sorting device, whereby it is possible to display a serial bit at any location of a data word.
  • the conversion elements are implemented essentially circuit-wise.
  • the cyclic data exchange with the individual subscribers (devices) must be ensured, ie within a defined time, a »fixed amount of data must be transmitted.
  • the solution according to the invention also ensures the transmission of time-critical data, so that a high quality of service (QoS) and also a network migration, for example a CAN bus, can be migrated to an Ethernet environment that is up to a hundred times faster.
  • QoS quality of service
  • a network migration for example a CAN bus
  • a gateway which has to reformat the application data ie a device which translates the services of an application layer into the other application layer, which in particular leads to a high outlay in the case of bit-oriented data, is not necessary in the case of the inventive solution.
  • the connection between bus system and network takes place in the solution according to the invention by conversion on the data link layer, whereby, for example, CAN messages can be translated into Ethernet messages, since the higher protocols (application layer) are identical.
  • CAN messages can be translated into Ethernet messages, since the higher protocols (application layer) are identical.
  • the solution according to the invention not only master / slave systems but also distributed controllers, which require at least partially non-hierarchical network architecture with permeability in both directions can be realized.
  • this object is achieved according to the invention according to claim 14.
  • This purpose is served by a device having a flexible communication structure, in particular an automation device, which has at least one freely programmable communication controller which cooperates with a higher-level control device, at least one freely programmable integrated in the communication controller
  • an exchangeable physical interface connected via signal lines for transmission of an identification code, control data, reception data and transmission data to the communication controller, whereby the physical interface is exchangeable.
  • the automation device enables in a simple manner the construction of a "quasi-dedicated" communication controller by this as one or more freely programmable communication ALUs (arithmetic and logic unit) is constructed, which is optimized for the communication tasks instruction set and hardware architecture This results in the following advantages for the solution according to the invention:
  • the physical interface as a replaceable module is much smaller, less expensive and only connected to the freely programmable communication controller in the programmable controller with a send and receive line and a few control lines. In contrast, otherwise about 40 signal lines for data, address and control line bus of the usual dual port memory coupling is required, which contains much higher-frequency signals and limits the connection to a few centimeters.
  • the interchangeable physical interface can be mounted anywhere in the programmable controller via a flexible connection. .
  • This object is achieved according to claim 19.
  • This purpose is served by a method for data communication, in particular for configuring a device with a flexible communication structure, in particular an automation device, with at least one communication controller, at least one integrated communication ALU and at least one physical interface, in which
  • the communication functions are not fixed, but are based on freely programmable ALUs optimized for communication functions, • in the start phase, the physical interface via a signal line
  • the identification code is sent to the communication controller and the communication controller independently carries out the correct configuration and loads the associated software into the communication ALU.
  • the respective fieldbus systems are defined by loading the software and can therefore be selected flexibly.
  • the communication controller detects the occurrence of a specific date or event
  • control and communication solution is based on a "quasi-dedicated" communication controller, which is constructed from one or more freely programmable communication ALUs (Arithmetic and Logic Unit) which optimize the communication tasks Instruction set, and hardware architecture.
  • ALUs Arimetic and Logic Unit
  • the respective fieldbus systems are defined by loading the software and can therefore be selected flexibly.
  • the combined control and communication solution according to the invention can be implemented at low cost despite real-time critical requirements and offers sufficient space for future additions, for example, to parallelize processes due to consistent programming and shared data storage (all identifiers are automatically known and unique throughout the system). Insert subroutines, operate analog and digital inputs / outputs as required and move axes either individually or in a variety of dependencies.
  • a method for data communication in particular for the synchronization of mutually communicating via a serial data bus B, usteil distraction an open automation system with distributed control, which a "quasi-dedicated" communication controller, via at least one freely programmable communication ALU with a downstream control device working together, in which:
  • the synchronized local time is stored at the start time of cyclically executing control functions
  • control device connected downstream of the communication controller and at least one logic function block with means for measuring and storing times in the communication ALU, whereby by means of the communication controller a direct synchronization of the control functions without the ⁇ achternen control device or the synchronization in accordance with a stored local time with each start of a control function.
  • the device according to the invention has the advantage that two powerful methods can be used without requiring a basic hardware adaptation. This is due to the communications controller "quasi dedicated" integrated via the interface programming, 'due simply parameterizable A ntriebsparameter.
  • the communication processor includes a plurality of freely programmable communication controllers.
  • This development of the invention has the advantage that it saves the required in the exchange module microprocessor and the associated infrastructure such as memory and dual-port memory compared to the prior art for each channel.
  • the physical interface is designed as a printed circuit in the line connection.
  • This embodiment of the invention has the advantage that due to the small dimensions of the physical interface, ⁇ it can be executed directly as a printed 'circuit at the transfer connector of the line connection.
  • the communication processor operates both the application and the transmission protocol.
  • Today's microprocessors are so powerful that they can handle both the application and the transmission protocol. This advantageously saves a second microprocessor and the associated infrastructure such as memory and dual-port memory in the replacement module.
  • FIG. 1 the block diagram of a communication processor with freely programmable
  • FIG. 2 shows the block diagram of a freely programmable communication controller for a communications processor according to FIG. 1 and FIG. 3 shows an example of a command code according to the invention
  • FIG. 4 the block diagram of an automation device with flexible
  • FIG. 5 is a block diagram of a direct synchronization embodiment of the invention.
  • FIG. 6 shows the block diagram of a second embodiment with storage of the system time at each start of a drive function and FIG. 7 for the embodiment of FIG. 6 is a timing diagram with synchronization of the
  • LANs local area networks
  • MANs Metropolitan Area Networks
  • WANs Wide Area Networks
  • ADSL technology asymmetry Digital Subscriber Line, asymmetric DSL data transmission method
  • HDSL High Data Rate Digital Subscriber Line
  • SDSL Single Line Digital Subscriber Line
  • MDSL Multirate Digital Subscriber Line
  • RADSL Low Rate Adaptive Digital Subscriber Line
  • VDSL Very High Rate Digital Subscriber Line, which are each optimized for the application and are summarized under the generic term xDSL transmission technology.
  • Communication takes place via connections of very different bandwidth, ie for example 56 KBit analogue connection or 64 KBit-ISDN or DSL or - as far as integrated in a LAN - over 100 MBit twisted pair cable, or via dial-up connections 2 MBit and better, or via leased lines X.25. Accordingly, a large number of interface devices are known, for example ⁇ * ISDN S 0 interfaces,
  • ⁇ LAN interface FE (with program memory) to the PCI bus
  • ⁇ "external LAN interface LAN (with program memory) as 10/100 Mbit / s Ethernet or token
  • WAN X.21, V.35, G.703 / 704 to 2 Mbit / s.
  • dialog server In this case, all interactions of the user are fed by events to the dialogue between the user and a dialog server, wherein in a dialog control DE the session ID is stored as access authorization.
  • the hardware concept of the dialog server must be adapted to the manifold, growing connection standards in worldwide network operation. Specially adapted LAN modules with optional BNC, AUI, fiber optic or twisted pair connections connect the dialog server with local token ring and Ethernet networks.
  • the accesses to the Weityerlidsnetzen (eg ISDN, X.25) and leased lines are created with partly multi-channel WAN adapters (S 0 , U P0 , U R 0, X.21, V.24, V.35). For optimum performance, active WAN adapters can be used. In the ISDN area, the DSSl, 1T.R6, NI-I, and Fetex 150 protocols are available.
  • the interfaces are constructed in the form of a freely programmable communication controller KC.
  • this consists of three communication ALUs, which are shown in detail in FIG. 2, namely: The Receive Processing ALU (RPA), which has the task according to the transmission rate to decode the received bit or nibble (half byte) serial data stream and convert it into a parallel representation (eg byte, word or double word),
  • RPA Receive Processing ALU
  • TPA Transmit Processing ALU
  • Protocol Exception ALU which controls the transmission and reception history of a related data packet.
  • the communication ALUs RPA and TPA can execute several commands in parallel.
  • a wide instruction code BC see FIG. 64 bits in which several instructions (see FIG. 3: the seven most significant bits, operation, condition, jump) are encoded. This can e.g. be logical operations, program jumps, set and clear bits in flags F, increment and decrement counters, transfer data, and operate special function registers.
  • these instructions are executed in parallel in one cycle.
  • the associated logic function blocks are arranged in parallel in the communication ALUs and can simultaneously process the command code BC.
  • the communication ALUs RPA and TPA have special function registers that also act in parallel on the data to be processed. In detail these are:
  • Shift registers FI into which the serial data are automatically inserted or removed and which allow the insertion and deletion of bits at arbitrary positions.
  • Counter Z which automatically counts the serial data and comparison registers, which at
  • Comparison register V which compare the serial data to certain bit patterns and at
  • CRC generators CRC which independently calculate CRC polynomials from the bit serial data
  • the communication ALU PEA monitors a large number of special events in parallel via hardware. This can be, for example:
  • the communication ALU PEA When one or a certain combination of events has occurred, the communication ALU PEA responds within a system clock by processing a piece of program code associated with the event.
  • the communication ALU PEA is also capable of a system clock:
  • Access to the local dual-port memory DPM is twofold indexed via two registers in order to be able to access the data structures common in communications technology in one system cycle.
  • the interface between the communication ALUs PEA and the RPA or TPA according to the invention is designed as a FIFO in order to store incoming or outgoing data.
  • a set of common registers SR can be provided for which each communication ALU can write PEA, RPA or TPA as well as read.
  • the shared registers SR can also be accessed by the higher-level control unit CPU in order to monitor or control the communication status.
  • mapping of the bytes to be transmitted detection of collisions in half-duplex operation and execution of a back-off algorithm, provision of, transmit status information to the communication ALU PEA after completion of a transmission process, observing the idle time Inter Packet Gap (IPG) between two telegrams, supplementing the transmission data with a preamble, a start-off-frame delimeter (SFD) and a configurable cyclic redundancy check word (CRC), padding a telegram with pad bytes if the telegram length were ⁇ 60 bytes, and canceling a send on demand.
  • IPG Inter Packet Gap
  • SFD start-off-frame delimeter
  • CRC configurable cyclic redundancy check word
  • the communication ALU RPA functions of the communication ALU RPA are: to provide the received bytes of the communication ALU PEA, detecting the start-of-frame delimeter and a VLAN frame (Virtual LAN), checking the length field and the CRC word in telegrams, after termination of the Receive Receive status information of the communication ALU PEA to make available and remove at r
  • a host interface device is provided with a host control device HC connected to address, data control bus lines, which can be switched between an expansion bus EB for connecting memory and peripheral devices and the dual-port memory DPMH for connecting a further superordinate control device.
  • the register set SR and the dual-port memory DPM of the communication ALUs RPA, TPA, PEA can be read and written in parallel to the current operation of the higher-level control device (CPU), so that, a real-time industrial Ethernet solution with network cycles and microsecond precision, which does not require support from proprietary hardware components or ASICs.
  • This also applies to the optimization and adaptation of the real-time transmission, such as adaptation to the requirements of the application, the system and the communication architecture, so that a continuous data access from the management level to the field level is guaranteed.
  • the device according to the invention also includes a data switch DS which, for example, has a 32-bit control device CPU and the other communication ALUs PEA (four separate communication controllers KC are shown in FIG. the internal peripheral PE and one of the host controller HC associated dual-port memory DPMH connects.
  • the Data Switch DS avoids the "bottleneck" of a common bus known from other communication processors by allowing simultaneous access of the master ports to the data via the various slave ports (in the example, two).
  • the base board of the automation device AG on a communication processor KP with at least one, in the illustrated embodiment four, freely configurable communication controller KC.
  • At least one freely programmable communication ALU KA is integrated in the communication controller KC.
  • the communication ALUs KA have, as already described above, the task according to the transmission rate to decode the received bit or nibble (half byte) serial data stream and convert it into a parallel representation (eg byte, word or double word) and / or to encode data from a parallel representation in bit or nibble serial data stream and to give it at the correct transmission rate on the line and / or to control the transmission and reception history of a related data packet.
  • the base board of the automation device AG contains at least one, in the illustrated embodiment, four, via signal lines IC, ST, ED, SD to the communication controller KC connected, removable, physical interface PS, via which in each case transmit an identification code, control data, received data and transmission data become.
  • the communication processor KP also includes a data switch DS which includes, for example, a 32-bit controller CPU and the communication controllers KC (four separate communication controllers KC are shown in FIG internal peripheral PE and a host controller HC connects.
  • the host controller HC is switchable between an expansion bus EB for connection of external memory and peripheral devices and a dual-port memory DPMH for connection to another higher-level control device.
  • the Data Switch DS thus avoids the "bottleneck" of a common bus known from other bus controllers by allowing the simultaneous access of the master ports (in the example two) to the data via the different slave ports (in the example three)
  • This allows the memory and dual-port memory DPMH to be read and written in parallel with ongoing operation, enabling a real-time Ethernet network-scale, microsecond precision Ethernet solution that does not require support from proprietary hardware components or ASICs.
  • This also applies to the optimization and adaptation of the real-time transmission, such as adaptation to the requirements of the application, the system and the communication architecture, so that a continuous data access from the management level to the field level is guaranteed.
  • the communication functions are not fixed, but formed on the basis of freely programmable and optimized communication functions communication ALUs KA.
  • the communication controller KC reads the identification code in the starting phase a physical interface PS, then configures the communication ALU KA suitable and loads the associated firmware automatically.
  • the communication processor KP includes a plurality of freely programmable communication channels and can thus realize any combination of communication standards. It is preferably provided that the communication processor KP can execute the application in addition to the communication protocols on the basis of a plurality of freely programmable communication controller KC.
  • the physical interface PS is designed as a stand-alone, interchangeable module without its own intelligence or controller functions, which logs by an identification code in the startup phase of the freely programmable communication controller KC and this authorizes to load the appropriate configuration and the associated firmware.
  • the solution according to the invention not only master / slave systems but also distributed controllers which at least partially require non-hierarchical network architecture with permeability in both directions can be realized.
  • a "quasi-dedicated" communication processor KP has at least one, in the illustrated exemplary embodiment, three freely programmable communication controllers KC, each with three communication ALUs RPA, TPA, PEA
  • the first communication ALU RPA has already described above, the task of decoding the received bit or nibble (half byte) serial data stream according to the transmission rate and converting it into a parallel representation (eg byte, word or double word) having second communication ALU TPA, as already described above 'to encode the object, data from a parallel representation in bit or nibble serial data stream and to provide the correct transmission rate on the line
  • the third communication ALU PEA has, as already described above, the Task to control the send and receive history of a related data packet.
  • the position, motor voltage and motor current or phase voltage between the communication controller KC and drive are transmitted.
  • the communication controller KC also includes the data switch DS which, for example, connects the downstream 32-bit control device CPU and the communication ALUs KC to the memory SP and the internal periphery PE.
  • the communication ALUs RPA and TPA can execute several commands in parallel.
  • a broad command code BC may be used, for example 64-bit, in which several commands are encoded.
  • These may be, for example, logical operations, program jumps, set and clear bits, increment and decrement counters, transfer data, and operate special function registers.
  • these instructions are executed in parallel in one cycle.
  • the communications ALU PEA monitors a plurality of special hardware events in parallel. This can eg:
  • the communication ALU PEA When one or a certain combination of events has occurred, the communication ALU PEA responds within a system clock by processing a piece of program code associated with the event.
  • the communication ALU PEA is also capable of within a system clock:
  • Access to the local memory SR is indexed twice over two registers in order to be able to access the data structures common in communications technology in one system cycle.
  • the data switch DS thus avoids the "bottleneck" of a common bus known from other communication processors KP, by enabling the simultaneous access of the various master ports (in the example two) via the different slave ports (in the example three)
  • This enables storage to be read and written in parallel with ongoing operations, enabling a real-time, industrial Ethernet solution with microsecond network cycles and precision that does not require support from proprietary hardware components or ASICs the optimization and adaptation of the real-time transmission, such as adaptation to the requirements of the application, the system and the communication architecture, so that a continuous data access from the management to the field level is ensured.
  • the communication functions are not fixed. predetermined, but on the basis of freely programmable and optimized communication functions communication ALUs KA trained.
  • the communication processor KP configured in the start phase, the communication controller KC suitable and loads the associated firmware independently. Furthermore, the communication processor KP includes several. Freely programmable communication controller KC and can thus realize any combination of communication standards.
  • the communication processor KP can execute the application in addition to the communication protocols on the basis of a plurality of freely programmable communication controllers ' KC.
  • Work according to the invention in which in FIG. 5 embodiment, the freely programmable communication ALUs RPA, TPA, PEA completely deterministic and execute without the downstream control device CPU, the synchronous drive functions independently.
  • the measured values transmitted via the two encoder logics EL or a sample-hold circuit SH and an AD converter AD (position or motor current or phase voltage) or control values transmitted via a PWM modulator PWM are exchanged with the downstream CPU, with which their interrupt latency times are not included in the synchronization of the drive functions.
  • AD position or motor current or phase voltage
  • a direct synchronization of drive functions in particular the measurement of the position or the output of the manipulated variables, to fast, deterministic and jitter-free communication connections ,, in particular real-time Ethernet connections such as PROFINET, POWERLINK, SERCOS-3, EtherCAT allows.
  • the drive may carry a local time, which are synchronized via communication links with the local times on other drives to a common system time within an automation system.
  • the synchronous functions such as measuring the position or outputting the motor current, can then be activated on the individual drives.
  • a particular difficulty is that the functions required for this purpose run cyclically, and the entire cycle is to be synchronized to the local time both in terms of its cycle time and in its phase position.
  • a local clock U and in the connection path of the communication ALUs RPA, TPA, PEA each have a latch L arranged. At the start time.
  • cyclically executed control functions store the synchronized local time in the latch L, measure the cycle time based on the time of the local clock U by subtracting the time stored in the latch L at the last starting point, and finally increase or reduce the current cycle time, these are kept constant in relation to the local time and in a fixed phase relationship. This makes the entire cycle both in its cycle time and synchronized in its phase position to the local time, as directly from the timing diagram of FIG. 7 emerges.
  • a direct synchronization of cyclic drive functions in particular the measurement of the position or the output of the manipulated variables, is thus made possible for a local system time, which is readjusted to a synchronous operation by suitable protocols, in particular IEEE 1588, within the automation system.
  • the method according to the invention makes possible a cost-effective configuration of any networkable bus subscribers with individual interactive communication over any wireless or wired networks or telecommunication networks (for example UTRAN UMTS Terrestrial Radio Access Network).
  • the thereby running iterative process of the network management service, in particular in terms of dialogue includes all meaningful dialog elements (eg initialize, configure, start and stop bus subscribers (devices) or programs, communication protocols), which are deposited accordingly, can be used in particular in inhomogeneous structures and also allows a dialog monitoring including the bus participants and the dialog server in the telecommunications network.
  • dialog elements eg initialize, configure, start and stop bus subscribers (devices) or programs, communication protocols
  • the initialization of new devices and the replacement of defective devices can advantageously be realized by plug & play, and the flexible communication mechanisms allow easy deployment in many applications and system architectures.
  • the flexible communication mechanisms allow easy deployment in many applications and system architectures.
  • master / slave systems but also 'distributed control, which at least partially non-hierarchical network architecture with permeability in both directions may require in the inventive solution can be realized.
  • routing functionalities also as LCR least cost routers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Programmable Controllers (AREA)
  • Information Transfer Systems (AREA)
  • Small-Scale Networks (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

In der Automatisierungstechnik bedarf es für spezielle Anwendungen, Schaltkreise oder Kommunikationsschnittstellen,die unabhängig von einem speziellen Feldbussystem, eine individuelle und komfortable Anpassung der Kommunikationsfunktionen ermöglichen. Um ein Verfahren zur Datenkommunikation von Busteilnehmern eines offenen Automatisierungssystems derart auszugestalten, dass der Anschluss beliebiger Busteilnehmer mit individueller, interaktiver Kommunikation ermöglicht wird, wird beim erfindungsgemäßen Verfahren: der Kommunikations-Controller (KC) aus mindestens einer frei programmierbaren Kommunikations-ALU (RPA, TPA, PEA) aufgebaut, sind in einem Befehlscode der Kommunikations-ALU (RPA, TPA) mehrere Befehle kodiert und welcher auf spezielle Kommunikationsfunktionen optimiert ist, und sind in der Kommunikations-ALU (RPA, TPA) Logikfunktionsblöcke (FI, Z, V, CRC) parallel angeordnet, die spezielle Kommunikationsfunktionen ausführen, wodurch die Kommunikationsfunktionen nicht fest vorgegeben sind, sondern auf Basis des frei programmierbaren und auf Kommunikationsfunktionen optimierten Kommunikations-ALUs (RPA, TPA, PEA) ausgebildet sind, wodurch in einem Systemtakt mehrere Befehle ausgeführt werden und wodurch Übergänge zwischen den unterschiedlichsten Netzwerken realisiert werden können.

Description

VERFAHREN ZUR DATENKOMMUNIKATION VON BUSTEILNEHMERN EINES OFFENEN AUTOMATISIERUNGSSYSTEMS
Die Erfindung betrifft in erster Linie ein Verfahren zur Datenkommunikation, insbesondere zur Kopplung von Busteilnehmern eines offenen Automatisierungssystems und einen frei programmierbaren Kommunikations-Prozessor gemäß den Patentansprüchen 1 oder 9. Weiterhin betrifft die Erfindung ein Verfahren zur Datenkommunikation, insbesondere zur Konfiguration und ein Gerät mit flexibler Kommunikationsstruktur, insbesondere Automatisierungsgerät, gemäß den Patentansprüchen 14 und 19. Schließlich betrifft die Erfindung ein Verfahren und eine Vorrichtung zur Datenkommunikation, insbesondere zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines Automatisierungssystems mit verteilter Steuerung gemäß den Patentansprüchen 20 oder 21 und 24.
Seit längerem ist es bekannt, in der Steuer- und Automatisierungstechnik Feldbusse und Ethernet, insbesondere die Erweiterung bezüglich Real-Time Ethernet zur Datenkpmmunikation zwischen einzelnen, an der Steuerung eines Prozesses beteiligten Einheiten zu verwenden. Beispiele für bekannte Feldbusse sind CAN-Bus, Profϊbus, Modbus, DeviceNet oder Interbus. Die Kommunikation der Einheiten erfolgt auf dem Feldbus/Etheraet anhand von spezifizierten Protokollen. Um der Forderung nach offenen Systemen zur Vernetzung entsprechen zu können, besteht die Notwendigkeit, einfache und kostengünstige Kommunikationsmechanismen zur Verfügung zu stellen, um industrielle Geräte netzwerkfähig zu machen. Diese Forderung besteht vor allem auch im Zusammenhang mit der Kopplung von Antriebskomponenten, wie zwischen Antriebsregelungen, Leistungsteilen und Gebern bei numerisch gesteuerten Werkzeugmaschinen und Robotern, bei denen eine Mehrzahl interpolierender Achsen synchron betrieben werden müssen. Bei der zunehmenden Vernetzung verschiedenster technischer Systeme wächst deshalb die Forderung nach standardisierten Strukturen in der Industrie.
' Ein Beispiel hierfür ist der Feldbus nach dem sogenannten Aktuator-Sensor-Interface-Standard, kurz ASl-Standard. Dieses Feldbuskonzept ist speziell darauf abgestimmt, binäre Sensoren oder Aktuatoren direkt busfähig zu machen, was mit anderen Feldbussystemen bislang nicht möglich war. Ein Automatisierungssystem besteht aus mit dem Bussystem koppelbaren Hardwarekomponenten, insbesondere Motoren, Sensoren, Aktuatoren u.a - d.h. der Prozessumgebung - die im Zusammenspiel mit einer oder mehreren übergeordneten Steuerungen einen automatischen Produktionsprozess bilden. Der Busmaster übernimmt dabei alle Aufgaben, die füF die Abwicklung des Busbetriebes notwendig sind. Er ist in der Regel getrennt von der eigentlichen Steuereinheit zum Steuern der Hardwarekomponenten.
BESTATIGUNGSKOPIE Um auf einfache Weise eine offene und flexible Betriebsweise' des Systems zu' erzielen, wobei die Hardwarekomponenten ohne Änderungen der Steuerprogramme austauschbar sind, ist aus der DE 198 50 469 Al ein Automatisierungssystem und ein Verfahren zum Zugriff auf die Funktionalität von Hardwarekomponenten bekannt, bei dem diese jeweils eine Systemverbindungseinheit mit Funktionsobjekten als Abbild der realen Funktionalität der Hardwarekomponenten aufweisen, wobei die Funktionsobjekte zum Zugriff auf die Funktionalität der Hardwarekomponenten über das Bussystem vorgesehen sind. Für eine Realisierung der Hardwarekomponenten als "plug and play"- Module ist es erforderlich, direkt in der Hardwarekomponente einen speziellen Baustein vorzusehen, auf dem die Funktionsobjekte als Zugang zur Funktionalität der Hardwarekomponenten ablauffähig sind. Dieser spezielle Baustein ist in Form der Systemverbindungseinheit realisiert. Die Systemverbindungseinheit ist mit einem Bussystem des Automatisierungssystems gekoppelt, so dass Kommunikationsdateή beispielsweise von einem Leitsystem zur Hardwarekomponente wie auch von und zu sämtlichen mit dem Bussystem gekoppelten weiteren Komponenten übertragen werden können. Mit Hilfe der Systemverbindungseinheit wird es somit möglich, Hardwarekomponenten ohne Änderung der bestehenden Strukturen des Automatisierungssystems zu ersetzen, zu ergänzen etc. Weiterhin können spezielle zwischen einem Leitsystem und den Hardwarekomponenten bisher erforderliche Vermittlungsobjekte . entfallen. Für einen Netzübergang weist die Systemverbindungseinheit einen Speicher zur Speicherung von zwischen den beiden Bussystemen erforderlichen Protokollen auf. So ist beispielsweise auf einfache Weise ein Netzübergäng zwischen ETHERNET (Datenübertragungsrate 10 Mbit/s), insbesondere des FAST ETHERNET (Datenübertragungsrate 100 Mbit/s - Norm IEEE Std 802.3-1998), und dem Profibus möglich. Die Einbettung der den Hardwarekomponenten zugeordneten Systemverbindungseinheiten in ihre Umgebung kann dadurch erfolgen, dass die Funktionsobjekte mindestens ein erstes Funktionsobjekt zur Erzeugung einer minimalen Funktionalität einer Hardwarekomponente, mindestens ein zweites Funktionsobjekt zur Verschattung von Funktionsobjekten und mindestens ein drittes Funktionsobjekt zur Auflistung von in der Systemverarbeitungseinheit und/oder auf entfernten Systemverarbeitungseinheiten und/oder entfernten Rechnern vorhandenen Funktionsobjekten enthalten. Die besondere Funktion des Funktionsobjekts besteht darin, die Summe der Funktionalität des Systems zu enumerieren, d. h. zu erfragen. Die Funktionsobjekte sind beispielsweise als sogenannte DCOM-Objekte (Distributed Component Object Model) bzw. als sogenannte OLE-Objekte (Object Linking and Embedding) ausgebildet. Weiterhin weist die Systemverbindungseinheit ein Laufzeitsystem (Runtime-System) sowie eine Protokollverarbeitungseinheit (Profibus, UDP/IP, RPC) auf. Die Systemverbindungseinheit ist deshalb ein Standardbaustein, der die für den Feldbus spezifizierten Protokolle gewährleisten muss und der häufig recht komplex und damit vergleichsweise teuer ist. Um eine fehlersichere Kommunikation der an einem sicherheitskritischen Prozess beteiligten Einheiten zu gewährleisten, wobei gleichzeitig die Verwendung von Standardbausteinen als Busmaster möglich ist, ist aus der DE 199 28 517 C2 ein Steuerungssystem bekannt, bei dem der Busmaster getrennt von einer ersten Steuereinheit und einer Signaleinheit an den Feldbus angeschlossen ist, bei dem die erste Steuereinheit bezogen auf eine Umlaufrichtung des Telegrammverkehrs vor der Signaleinheit angeordnet ist, und bei dem die erste Steuereinheit Mittel aufweist, um Telegrammdaten, die an die Signaleinheit adressiert sind, durch fehlersichere Telegrammdaten zu ersetzen. Dabei ist es möglich, die erste Steuereinheit als einfachen Busteilnehmer, d. h. ohne eine Busmasterfunktionalität an den Feldbus anzuschließen. Weiterhin weist das Steuerungssystem eine zweite Steuereinheit zum Steuern von sicherheitsunkritischen Prozessen auf, welche getrennt von der ersten Steuereinheit an den Feldbus angeschlossen ist. Die zweite Steuereinheit weist neben anderen, an sich bekannten Komponenten einen Mikro-Controller sowie einen Master-Protokollchip auf. Der Master-Protokollchip besitzt im vorliegenden Fall eine Busmasterfunktionalität für einen Interbus und wird als Busmaster bezeichnet. Derartige Master- Protokollchips sind als Standardbauelemente von verschiedenen Herstellern erhältlich. Ein in der ersten Steuereinheit enthaltener Kommunikationsbaustein besitzt einen Slave-Protokollchip, der über einen ersten Busanschluss eingangsseitig und über einen zweiten Busanschluss ausgangsseitig mit dem Feldbus verbunden ist. Der Protokollchip entspricht den in den Signaleinheiten enthaltenen Protokollchips, welche als Busteilnehmer sicherheitsbezogene Einrichtungen an den Feldbus anschließen. Um bei einem Feldbus mit sequentiell umlaufenden Telegrammverkehr auch eine Slave- to-Slave-Kommunikation zwischen Busteilnehmern bereitzustellen, von denen keiner eine Busmasterfunktionalität besitzt, wird der Protokollchip eines Busteilnehmers, der Daten an andere Busteilnehmer versenden will, um einen Sendespeicher und gegebenenfalls einen Empfangsspeicher ergänzt wird. Die Funktionsweise des umlaufenden Telegrammverkehrs basiert also auf dem in jedem Busteilnehmer angeordneten gleichen Slave-Protokoll-Chip, häufig als "Serielles Mikroprozessor Interface" (SUPI) bezeichnet. Durch die Benutzung eines Standardbauelement, das von verschiedenen Herstellern erhältlich ist, können die Kosten des Steuerungssystem niedriger gehalten werden; insgesamt sind die Kosten für den Busmaster und die Signaleinheiten, die für den Feldbus spezifizierten Protokolle gewährleisten müssen, komplex und damit vergleichsweise hoch.
Ein ähnlicher Weg wird bei dem aus dem DE 299 07 909 Ul bekannten und in der Fertigungseinrichtung integrierten Überwachungssystem, basierend auf Einsteckkarten, eingeschlagen. Im einzelnen weist jede Einsteckkarte einen Mikroprozessor, eine Speichereinheit zum Abspeichern der Prozessdaten, die mit dem Mikroprozessor verbunden ist, eine Sensorbus-Schnittstelle (RS 485) und eine Feldbus-Schnittstelle (RS 485), die mit dem Mikroprozessor verbunden sind, eine Service- Schnittstelle (RS-232) zum Anschluss an ein Modem und eine Schnittstelle (ISA-Busschnittstelle) zur Verbindung des Mikroprozessors mit einem Host-Rechner auf. Die integrierte Feldbus-Schnittstelle bzw. Sensorbus-Schnittstelle weist jeweils eine ISO-Schnittstelle und einen Feldbus-Datenprozessor (SPC 3), im vorliegenden Beispiel ein Profibus-Datenprozessor, auf. Eine Maschinensteuerung ist wahlweise über die integrierte Profibus-Schnittstelle mit der Einsteckkarte oder über eine I/O-Box mit Sensor-Elektronikeinheiten verbunden. Die intelligenten Sensor-Elektronikeinheiten ermöglichen jeweils die Versorgung eines Sensors, die Erfassung der Sensordaten, die Messsignalvorverarbeitung (Signalfϊlterung, -Verstärkung usw.) und die einfache Signalanalyse (digitales Filtern, Erfassen der Spitzenwerte, usw.). Unter einer intelligenten Sensor-Elektronikeinheit wird daher ein Modul verstanden, welches einen eigenen Mikro-Controller, Filter, Verstärker, eine Stromversorgung und eine Sensorbusschnittstelle aufweist. Die Sensor-Elektronikeinheit kann über die Einsteckkarte vor jeder Bearbeitung neu parametriert werden. Dies betrifft z.B. die Verstärkungsfaktoren, die Filterwerte und die Verrechnung mehrerer Eingangssignale zu einem Summensignal. Durch die Profibus- Schnittstelle wird die Überwachung mit dem Bearbeitungsprozess synchronisiert. Über sogenannte automatisierte Einstellroutinen kann das Überwachungssystem einfach in die Fertigungseinrichtung eingebunden werden. Die automatisierten Einstellroutinen führen z.B. die Erkennung der Sprache auf der Steuerung und die damit verbundene Sprachumschaltung, die Erkennung der Sensoren am Sensorbus und die automatische Konfiguration der Verstärkungs- und Filterwerte durch. Die Ein- und Ausgänge der speicherprogrammierbaren Steuerung (SPS) werden selbständig zugeordnet und die Uhrzeit einer Echtzeit-Uhr auf der Einsteckkarte wird automatisch mit der Uhrzeit des Hostrechners abgeglichen. Die Einsteckkarte erlaubt die Überwachung von beispielsweise bis zu vier Sensorkanälen, wobei mit dem Kommunikationsprozessor für die Sensorbus-Schnittstelle eine Datenrate von bis zu 460,8 kBaud bei gleichzeitig hoher Störsicherheit erreicht wird. Vorzugsweise verarbeitet der Mikroprozessor der Einsteckkarte die Daten im Hammingeode mit einer Hamming- Distanz von 4 und ist für die Verschlüsselung und Entschlüsselung zuständig. Zwischen dem Mikroprozessor und der ISA-Busschnittstelle zum Host-Rechner ist ein Adressdekoder vorgesehen, der auf an sich bekannte Weise für die Kodierung und Dekodierung der Adress- und Speicherzugriffe im PC zuständig ist. Die Spannungsversorgung der Einsteckkarte erfolgt über die ISA-Schnittstelle, über die auch die Kommunikation mit dem Hostr'echner erfolgt. Da die Einsteckkarte einen eigenen Prozessor aufweist, der für die Überwachung zuständig ist, wird die CPU des Hostrechners nicht mit Rechenleistung belegt. Für die Kommunikation mit den Sensor-Elektronikeinheiten ist ein echtzeitfähiges Sensorbusprotokoll definiert. Dies ermöglicht die Abfrage der Messdaten sowie die Steuerung und Parametrierύng der Sensoren mit definierten Antwortzeiten. Die Überwachungsdaten werden beispielsweise in einem Takt von 10 ms verarbeitet und die Sensordatenvorverarbeitung erlaubt eine Abtastrate unter 1 ms. Damit kann für eine Kollisionsüberwachung eine Reaktionszeit unter 1 ms garantiert werden. Über den Feld- bzw. Profibus können neben den Synchronisationsdaten in vorteilhafter Weise auch prozessspezifische Achssignale wie Drehmomente, Motorströme und Achsgeschwindigkeiten übertragen werden. Das Protokoll kann beispielsweise die Abfrage von bis zu acht verschiedenen Achsen erlauben. Die benötigten Steuerdaten können auch direkt aus dem Steuerkern der Maschinensteuerung über den Feldbus an den Mikroprozessor der Einsteckkarte geliefert werden. In diesem Fall wird keine spezielle Sensorik benötigt und die Sensorbus-Schnittstelle auf der Einsteckkarte kann entfallen. Über die , Service-Schnittstelle können alle Einstellungen, Software-Updates sowie die Prozessvisualisierung erfolgen. Durch die Auslegung als Modemschnittstelle sind über ein Modem Teleservice- und Ferndiagnose-Funktionalitäten verfügbar. Dadurch ist das System aus der Ferne voll bedien- und parametrierbar. Die Visualisierung der Prozessdaten kann über ein Programm auf dem Hostrechner (Steuerung, Industrie-PC) erfolgen. Nachteilig ist wieder, dass die Einsteckkarten und die intelligenten Sensor-Elektronikeinheiten, die für den Feldbus spezifizierten Protokolle gewährleisten müssen, komplex und damit vergleichsweise teuer sind.
Weiterhin ist aus der DE 198 31 405 Al ein Steuerungssystem mit einem Personalcomputer bekannt, der zur Bearbeitung eines Steuerprogramms zumindest einen PC-Prozessor, einen Programmspeicher und einen Datenspeicher aufweist und der mit einem Kommunikationsprozessor zur Anschaltung an einen Feldbus versehen ist, an den Sensoren und/oder Aktuatoren zur Steuerung eines Prozesses anschließbar sind. Zur Kommunikation am Feldbus ist in dem Personalcomputer eine Steckkarte gesteckt, die an einen internen PCI-Bus, der Daten-, Steuer- und Adressleitungen besitzt, angeschlossen ist. Über eine PCI-Busanschaltung und den internen Bus kommuniziert der PC-Prozessor mit den Komponenten der Steckkarte. Auf der Steckkarte ist der Kommunikationsprozessor angeordnet, der nach einer entsprechenden Parametrierung durch den PC-Prozessor selbständig eine zyklische Datenübertragung am Feldbus durchführt und im wesentlichen aus einem ASIC besteht. Der Kommunikationsprozessor ist als Master an einem Feldbus mit zyklischer Datenübertragung nach Art des PROFIBUS DP betreibbar und hat die Funktion eines "Taktschlägers" bei der Erfassung der Prozessdaten. Weiterhin ist ein Speicher vorgesehen, in welchem die am Feldbus eingegangenen Prozessdaten abgelegt werden. Dieser Speicher hält damit ein aktuelles Prozessabbild, auf das durch den PC-Prozessor jederzeit zugegriffen werden kann. Um den PC-Prozessor von dem Pollen der eingegangenen Prozessdaten oder von dem Überwachen des Feldbuszyklus zu entlasten, ist eine Überwachungseinheit vorgesehen. Die Überwachungseinheit kann durch eine parametrierbare Hardwareschaltung realisiert werden, aber auch eine Sottwarelösung durch eine Erweiterung des Kommunikationsprozessorprogramms ist möglich. Dabei besteht die Hardwareschaltung aus einem kleinen RAM, der in den Adressraum des PC-Prozessors eingegliedert ist und daher von diesem direkt adressiert werden kann, sowie aus einem programmierbaren Logikbaustein, der entsprechend einer im RAM abgelegten Parametrierung die zyklische Datenübertragung am Feldbus und/oder am Feldbus eingegangene Daten überwacht. Bei Anlauf des Steuerprogramms im Programmspeicher greift der PC-Prozessor auf das RAM zu und setzt dort die entsprechenden Bits, um die Funktion der Überwachungseinheit in der gewünschten Weise zu bestimmen. Durch diese Parametrierung wird beispielsweise festgelegt, in welchen Fällen die Überwachungseinheit einen Interrupt erzeugen soll, der über die PCI-Busanschaltung und den PCI-Bus an den PC-Prozessor weitergeleitet wird. Damit wird festgelegt, bei welchen Ereignissen der PC-Prozessor zur Weiterverarbeitung der am Feldbus eingegangenen Daten durch das Steuerprogramm veranlasst werden soll. Bei aktiver Prozesssteuerung pollt der Kommunikationsprozessor als Master fortwährend die Teilnehmer, beispielsweise Sensoren wie ein Durchfluss- bzw. ein Füllstandsmessumformer, oder Aktuatoren wie ein Zu- bzw. ein Ablaufventil an einem. Tank, am Feldbύs, die als Slaves betrieben werden. Wenn durch den Kommunikationsprozessor die Prozessdaten eines Slaves eingelesen wurden, will er sie in die Speicherzellen des Speichers eintragen, die für die jeweiligen Prozessdaten vorgesehen sind. Der Logikbaustein der Überwachungseinheit überprüft anhand der Adresse des Schreibzugriffs, ob bei einer Änderung der jeweiligen Prozessdaten ein Interrupt erzeugt werden muss. Diese Überprüfung ist in einfacher Weise möglich, da die Prozessdateri der einzelnen Slaves jeweils an festen Speicherplätzen innerhalb des Speichers abgelegt sind. Soll ein Interrupt bei einer Änderung der jeweiligen Daten erzeugt werden, so vergleicht ein im Logikbaustein realisierter Datenkomparator die durch den Kommunikationsprozessόr auf den Bus gelegten Daten mit den früheren Prozessdaten, die durch den Logikbaustein zuvor aus dem Speicher ausgelesen wurden. Da der Vergleich der aktuell eingegangenen Daten mit den früheren Prozessdaten sowie die Interrupt-Generierung durch eine in Hardware realisierte Überwachungseinheit durchgeführt wird, ist in vorteilhafter Weise eine sehr schnelle Reaktion des Steuerungssystems auf Änderungen der Prόzessdaten möglich. Nachteilig ist wieder, dass Kommunikationsprozessor und Überwachungseinheit, die für den Feldbus spezifizierten Protokolle gewährleisten müssen, komplex und damit vergleichsweise teuer sind.
Auch ist die Nutzung der (Fast)-Ethernet-Übertragungstechnik bei der Vernetzung verschiedener Kommunikationssysteme bekannt. Beispielsweise ist aus der DE 100 47 925 Al ein Verfahren zur Echtzeitkommunikation zwischen mehreren Netzwefkteilnehmern in einem Kommunikationssystem mit Ethernet-Physik bekannt, bei dem eine Mastereinheit und ein oder mehrere Slaveeinheiten mittels über das Netzwerk übertragenen Telegrammen miteinander kommunizieren, ein zyklischer Austausch der Telegramme mit äquidistanten Abtastzeitpunkten stattfindet, indem jede Slaveeinheit auf die Mastereinheit durch eine gemeinsame Zeitbasis synchronisiert wird und eine Zugriffssteuerung für den Sendebetrieb und Empfangsbetrieb zwischen den Netzwerkteilnehmern über ein Zeitschlitz- Zugriffsverfahren erfolgt. Die Anforderungen an die Leistungsfähigkeit von Kommunikationssystemeri sind in der Automatisierungstechnik, z. B. bei der Kopplung von Antriebskomponenten, besonders groß. Beim Datenaustausch zwischen Gebern, Leistungsteilen und einer Antriebsregelung ist die Datenübertragungszeit, die als Totzeit in die Regelschleife eingeht, eine besonders wichtige Größe. Je kleiner diese Totzeit ist, desto höhere Dynamik kann mit dem Regelungssystem erreicht werden. Da es in der Automatisierungstechnik sowohl auf eine hochgenaue Einhaltung der Echtzeitbedingung als auch auf eine hohe Sicherheit der Übertragung ankommt, wird die genormte Übertragungsschicht 2 (Telegrammrahmen und Zugriffsverfahren) des (Fast)-Ethernet, die diese Anforderungen nicht erfüllt, durch einen neuen Telegrammrahmen und eine neue •Zugriffsteuerung vollständig neu definiert und damit die Ethernet-Physik als Basis für eine Echtzeitkommunikation zwischen beispielsweise Antriebskomponenten genutzt. Dabei kann sowohl die Kommunikation zwischen der Regelungseinheit und den Gebern und Leistungsteilen als auch die Verbindung zu einer Bewegungssteuerung realisiert werden. Um einen zyklischen Datenaustausch mit gleichen Abtastzeitpunkten realisieren zu können, wird eine gemeinsame Zeitbasis für den Master und alle Slaves hergestellt. Die Synchronisierung der Slaves auf den Master erfolgt durch speziell ausgezeichnete, zeitlich definierten Telegramme des Masters an die Slaves und individuell parametrierte Zeitzähler in den Slaves. Die Nutzdaten können in einem Telegrammrahmen transportiert werden, der neben der Slave-Adressierung und Telegrammlängeninformation die Absicherung der Datenintegrität mittels beispielsweise einer CRC-Checksumme und weitere sicherheitsrelevante Datenbereiche zur Verfügung stellt. Die Daten im Telegrammrahmen können nicht nur von einem Applikationsprozessor, sondern auch von einem Kommunikationsbaustein ausgewertet werden, was einen zweiten Auslösekanal ermöglicht. Obwohl die zur Anwendung kommende Übertragungstechnik nach dem Ethernet-Standard prinzipiell nur Punkt-zu-Punkt- Verbindungen erlaubt, kann wie bei (Fast)-Ethernet Netzen auch durch die Verwendung von Netzknoten (sogenannte HUBs) die Bildung von Netzwerken ermöglicht werden, indem mehrere oder jeder Netzwerkteilnehmer über einen Schal'tungsteil zur Bildung von Netzknoten verfügt, der zur Weiterleitung der Telegramme in Richtung einer anderen Mastereinheit oder weiterer Slaveeinheiten dient. Dadurch können auch hierarchische Netzwerke mit über Netzknoten verbundenen Punkt-zuPunkt-Verbindungen mit Ethernet-Physik zur Durchführung einer Echtzeitkommunikation in größeren Netztopologien erstellt werden. Dieses eignet sich auch zur Vernetzung bzw. Kopplung eines verteilten Antriebssystems, indem ein erstes Kommunikationssystem eine numerische Bewegungssteuerung als Mastereinheit und mindestens eine Regelungseinheit als Slaveeinheit umfasst, wobei jede Regelungseinheit als Mastereinheit eines weiteren Kommunikationssystems dient, welches mindestens ein Leistungsteil zur Ansteuerung eines Motors und ein zugeordnetes Gebersystem als Slaveeinheiten aufweist. Über die Fast Ethernet-Leitungstreiber innerhalb jedes Netzwerkteilnehmers und eventuelle Netzknoten gelangen die Telegramme zu den jeweiligen Protokollbausteinen, die das Telegrammprotokoll abarbeiten und in denen das Zeitschlitz- Zugriffsverfahren realisiert wird. Wenn der Protokollbausteinen unabhängig von einem Mikroprozessor der Slave-Applikation (dem eigentlichen Leistungsteil) ist, können mittels Kontroll-Bits des Telegrammrahmens bestimmte Applikationsereignisse im Slave ausgelöst werden, ohne dessen Mikroprozessor und eine entsprechende Software zu benötigen. Dies entspricht einem zweiten Auslösekanal, wie er für bestimmte sicherheitsgerichtete Anwendungen (z. B. Not-Aus etc.) gefordert ist. Weiterhin ist aus der DE 100 04 425 Al ein Netzwerk mit einer Mehrzahl von Netzwerkteilnehmern, beispielsweise Sensoren und Aktuatoren, bekannt, die über das Netzwerk zur Datenübertragung miteinander verbunden sind. Um eine verbesserte Genauigkeit bezüglich der Uhrzeitsynchronisation zu erreichen, enthält das erste Telegramm eine um eine Sendezeitverzögerung korrigierte Uhrzeit eines ersten Netzwerkteilnehmers, und ein zweiter Netzwerkteilnehmer ist dazu ausgebildet, die Zeitverzögerung seit Empfang des ersten Telegramms zu messen und die im ersten Telegramm empfangene Uhrzeit um die Durchlaufzeit und die Empfangszeitverzögerung zu korrigieren. Ist der zweite Netzwerkteilnehmer weiterhin dazu ausgebildet, ein zweites Telegramm zur Uhrzeitsynchronisation an einen dritten Netzwerkteilnehmer zu senden, das eine um die Laufzeit und die Verzögerungszeit zwischen Empfang des ersten Telegramms und Senden des zweiten Telegramms korrigierte empfangene Uhrzeit enthält, so wird ein iteratives Weitersenden der jeweils korrigierten Uhrzeit von Netzwerkteilnehmer zu Netzwerkteilnehmer möglich. Weiterhin können Beginn und Ende der Laufzeit eines Telegramms jeweils als der Zeitpunkt bestimmt werden, zu welchem ein charakteristisches Feld eines Telegramms mit festem Abstand vom Telegrammanfang ein Media- Independent-Interface des ersten Netzwerkteilnehmers verlässt bzw. in ein Media-Independent- Interface des zweiten Netzwerkteilnehmers einläuft. Vorteilhaft sind dabei Messungen der Sendezeitverzögerung, Laufzeit und Empfangszeitverzögerung unabhängig von der Länge des jeweiligen Telegramms. Erfüllen die Netzwerkkomponenten die Ethernet-, Fast-Ethernet- oder Gigabit-Ethernet-Spezifikatiorl, so kann mit Vorteil als charakteristisches Feld des Telegramms das Type-Feld verwendet werden. Ein Netzwerkteilnehmer, insbesondere ein Feldgerät, kann mit mehreren Ports, insbesondere vier Ports, zum Anschluss weiterer Netzwerkkomponenten ausgestattet werden. Dabei kann eine Schnittstelle, ein sogenanntes Mikroprozessor-Interface, zur Verbindung der Ports mit einem teilnehmerinternen >Prozessorbus und eine Steuereinheit, eine sogenannte Switch- Control, vorgesehen werden, welche eine Telegrammweglenkung zwischen den Ports und dem Mikroprozessor-Interface vornimmt. Das hat den Vorteil, dass Netzwerkteilnehmer, insbesondere Feldgeräte, in der vom Anwender von Feldbussen gewohnten Weise in einer Linienstruktur verschaltet werden können. Ein separater Switch, wie er bei einer sternförmigen Struktur erforderlich wäre, entfällt. Die Integration von Switch-Funktionen in den Netzwerkteilnehmer hat den Vorteil, dass insbesondere bei Ethernet die CSMA/CD-Zugriffssteuerung deaktiviert werden kann und das Netzwerk ein deterministisches Verhalten erhält. Somit wird der Einsatzbereich der Netzwerkteilnehmer und des Netzwerks auf Anwendungsfälle erweitert, in welchen Echtzeitverhalten gefordert wird. Ein Gateway zur Kopplung von Netzwerkbereichen mit verschiedener Physik und verschiedenen Protokollen ist nicht erforderlich. Die Kommunikation mit den anwendungsspezifischen Schaltungsteilen des Netzwerkteilnehmers erfolgt über einen Mikroprozessor-Bus, an welchen ein RAM, ein Mikroprozessor und ein Mikroprozessor-Interface angeschlossen sind. Aufgabe des Mikroprozessors ist die Ausführung von Anwenderprogrammen und von Kommunikationsfunktionen, beispielsweise die Abwicklung von TCP/IP. Eine weitere Aufgabe kann die Verwaltung von Sende- und Empfangs listen von Telegrammen unterschiedlicher Priorität in einem externen RAM sein. In ein ASIC der Kommunikationsschnittstelle sind weiterhin vier Ethernet- Kontroller integriert. Jeder dieser Ethernet-Kontroller trägt die Datenbytes eines vollständig empfangenen Telegramms über einen Multiplexer, einen DMA-Kontroller, der auch als DMA 2- Control bezeichnet wird, und das Mikroprozessor-Interface in eine Empfangsliste im RAM ein. Der Mikroprozessor greift auf die Empfaηgsliste zu und wertet die empfangenen Daten entsprechend einem Applikationsprogratnm aus. Das Mikroprozessor-Interface bildet die wesentliche Schnittstelle zwischen den Ethernet-Kontrollern und dem Mikroprozessor-Bus. Es , steuert oder arbitriert die Schreib- und Lesezugriffe, die über den DMA-Kontroller bzw. den DMA-Kontroller auf das RAM erfolgen. Liegen von beiden DMA-Kontrollern gleichzeitig DMA-Anforderungen vor, so entscheidet das Mikroprozessor-Interface über die Zugriffsrechte der beiden DMA-Kanäle. Über das Mikroprozessor-Interface können weiterhin durch den Mikroprozessor Parameterregister geschrieben werden, die zum Betrieb der Kommunikationsschnittstelle des Netzwerkteilnehmers erforderlich sind. Eine Einrichtung der Ethernet-Kontroller, die als Transmit-Control bezeichnet wird, enthält ein Steuerwerk, das für das Senden von Telegrammen, für Wiederholungen, Sendeabbruch usw. verantwortlich ist. Sie bildet die Schnittstelle zwischen dem internen Kontrollertakt und dem Sendetakt. Zum Speichern einer Transmit-Status-Information für niederpriore und hochpriore Telegramme ist jeweils ein Transmit-Status-Register in der Einrichtung vorgesehen. Wenn ein Telegramm fehlerfrei über den Port gesendet wurde, wird ein entsprechender Interrupt erzeugt. Das Media Independent Interface (MII) integriert den MAC-Sublayer des Layers 2 nach dem Sieben-Schichten- Modell, d. h. des Data-Link-Layer. Dieses bildet eine Schnittstelle zu einem Baustein zur physikalischen Datenübertragung. Weiterhin enthält das MII einen Transmit-Function-Block sowie einen Receive-Function-Block. Darüber hinaus sind ein MAC-Control-Block, ein Adressfilter, ein Statistikzähler und ein Host-Interface integriert. Über das MII können Steuer- und Konfigurationsdaten an den Baustein übertragen und Status informationen von diesem gelesen werden.
In verteilten Automatisierungssystemen, beispielsweise im Bereich Antriebstechnik, müssen bestimmte Daten zu bestimmten Zeiten (d:h. echtzeitkritische Daten) bei. den dafür bestimmten Teilnehmern eintreffen und von den Empfängern verarbeitet werden. Gemäss JEC 61491, EN61491 SERCOS interface - Technische Kurzbeschreibung (http:/ / www.ser-cos.de/deutsch/index deutsch.htm) kann ein erfolgreicher echtzeitkritischer Datenverkehr der genannten Art in verteilten Automatisierungssystemen gewährleistet werden. Weiterhin sind aus der Automatisierungstechnik synchrone, . getaktete Kommunikationssysteme mit Äquidistanz-Eigenschaften bekannt, wie dies beispielsweise in der DE 101 40 861 Al für ein System und ein Verfahren zur Übertragung von Daten zwischen Datennetzen beschrieben ist. Im Einzelnen weist das erste Datennetz erste Mittel zur Übertragung von Daten in. wenigstens einem ersten Übertragungszyklus auf, wobei der erste Übertragungszyklus in einen ersten Bereich zur Übertragung von echtzeitkritischen Daten und einen zweiten Bereich zur Übertragung von nichtechtzeitkritischen Daten unterteilt ist. In dem zweiten Datennetz sind zweite Mittel zur Übertragung von Daten in wenigstens einen zweiten Übertragungszyklus vorgesehen, wobei der zweite Übertragungszyklus in einen dritten Bereich zur Übertragung von echtzeitkritischen Daten und in einen vierten Bereich zur Übertragung von nichtechtzeitkritischen Daten unterteilt ist. Zur Kopplung der Datennetze mit denselben oder unterschiedlichen Kommunikationsprotokollen, z. B. Ethernet-Datennetze, insbesondere isochrone Echtzeitethernet-Kommunikationssysteme, mit PROFIBUS-Datennetzen oder isochrone Echtzeitethernet-Datennetze mit SERCOS-Datennetzen und/oder FIREWIRE-Datennetzen oder PROFIBUS-Datennetze und/oder FIREWIRE-Datennetze mit SERCOS-Datennetze ist schließlich eine Koppeleinheit (Router) zur Übertragung von echtzeitkritischen Daten des ersten Bereichs in den dritten Bereich vorgesehen. Die Möglichkeit echtzeitkritische Daten von einem Datennetz in das andere übertragen zu können, wird dazu benutzt, Zyklus-Synchronisationstelegramme von einen Taktschläger des einen Datennetzes in das andere Datennetz zu übertragen, um auch in dem anderen Datennetz lokale Relativuhren mit Hilfe der Zyklus-Synchronisationstelegrammen zu synchronisieren. Hierzu haben die unterschiedlichen Datennetze jeweils eigene Taktschläger. Aufgrund der datennetzübergreifenden Taktsynchronisation kann in jedem der Teilnehmer der Datennetze eine Relativuhr realisiert werden, die eine systemweit eindeutige Uhrzeit darstellt. Basierend auf diesem Grundmechanismus können hiermit Ereignisse in beiden Kommunikationssystemen mit einem einheitlichen Zeitverständnis erfasst werden bzw. zeitbezogene Schaltereignisse im eigenen oder dem anderen Datennetz ausgelöst werden. Die Genauigkeit der Relativuhr entspricht mindestens ,der Genauigkeit eines Übertragungszyklus. Der Router kann dabei als diskretes Gerät ausgebildet sein oder er kann auch integraler Bestandteil eines Teilnehmers eines der Datennetze sein, wobei auch das Routing von azyklischer bedarfsgesteuerter Kommunikation, z.B. Remote Procedure Calls (RPC), zwischen den Datennetzen möglich ist und die entsprechende Kommunikation dabei mit proprietären und/oder offenen Protokollen erfolgen kann.
Automatisierungskomponenten (z. B. Steuerungen, Antriebe) verfügen im Allgemeinen über eine Schnittstelle zu einem zyklisch getakteten Kommunikationssystem. Eine Ablaufebene der Automatisierungskomponente (Fast-cycle, z.B. Lageregelung in einer Steuerung, Drehzahl-, Drehmomentregelung eines Antriebs) ist auf den Kommunikationszyklus synchronisiert, wodurch der Kommunikationstakt festgelegt wird. Andere langsamer ablaufende Algorithmen (Slow-cycle, z.B. Temperaturregelungen) der Automatisierungskomponente können ebenfalls nur über diesen Kommunikationstakt mit anderen Komponenten (z. B. Binärschalter für Lüfter, Pumpen) kommunizieren, obwohl ein langsamerer Zyklus ausreichend wäre. Durch Verwendung nur eines Kommunikationstaktes zur Übertragung von allen Informationen im System entstehen hohe Anforderungen an die Bandbreite der Übertragungsstrecke. Demzufolge nutzen die Systemkomponenten zur Kommunikation für jede Prozess- bzw. Automatisierungsebene nur ein Kommunikationssystem bzw. einen Kommunikationszyklus (Fast-cycle) in dessen Takt alle relevanten Informationen übertragen werden. Daten, die nur im Slow-cycle benötigt werden, können z. B. über zusätzliche Protokolle gestaffelt übertragen werden, um die Anforderungen an die Bandbreite zu begrenzen. Aus der DE 101 47 421 Al ein Verfahren zur Regelung eines ersten Teilnehmers in einem schaltbaren Datennetz von einem zweiten Teilnehmer in dem schaltbaren Datennetz bekannt, bei dem der Regelkreis über das schaltbare Datennetz geschlossen wird. Hierzu erfolgt die Kommunikation zwischen Teilnehmern des schaltbaren Datennetzes über eine oder mehrere Punkt-zuPunkt Verbindungen in zueinander synchronen Übertragungszyklen. Für die Kommunikation von Ist- und Soll-Werten bzw. von Stellgrößen über das Datennetz wird dabei der echtzeitfähige Bereich der Übertragungszyklen genutzt und die Kommunikation der für die Regelung erforderlichen Datentelegramme erfolgt innerhalb determinierter Zeitfenster. Weiterhin kann auch ein Leitwert über das schaltbare Datennetz übertragen werden, welcher von einem der Teilnehmer des Datennetzes für einen oder mehrere Teilnehmer des Datennetzes generiert wird. Hierbei kann es sich beispielsweise um die Erfassung , eines Ist-Werts einer Achse, das heißt, einer so genannten Master-Achse, einer Anlage handeln. Aufgrund dieses Ist-Werts wird von dem betreffenden Teilnehmer ein Leitwert generiert, der für die Steuerung von so genannten Slave-Achsen verwendet wird. Die Funktionalität einer solchen Steuerung, beispielsweise eine speicherprogrammierbare Steuerung, eine Motion- Control-Steuerung oder eine numerische Steuerung, kann auch in einem Antrieb integriert sein. Neben der Kopplung einer Eingabe/Ausgabe-Station an eine Steuereinheit kann auch eine Relativuhr in einem der Teilnehmer generiert werden. Die Relativuhr wird von einer Master-Uhr generiert und zyklisch im Netzwerk verteilt und sorgt dafür, dass alle im Datennetzwerk beteiligten Teilnehmer über eine gleich eingestellte Uhrzeit verfügen. Die Zeitbasis für die Relativuhr ist dabei durch die synchronen Übertragungszyklen und/oder die Unterteilung der Übertragungszyklen in Zeitschlitze gegeben. Basierend auf dieser gemeinsamen Uhrzeit können Ereignisse mit Uhrzeitstempeln erfasst werden (z.B. Flankenerkennung von digitalen I/O's) bzw. Schaltvorgänge (z. B. Schalten von digitalen/analogen Ausgängen) mit einem entsprechenden Zeitstempel versehen werden und die Schaltausgabe basierend auf dieser gemeinsamen Relativzeit ausgeführt werden. Innerhalb der , Echtzeitkommunikation gibt es potentiell mehrere Kommunikationszyklen, um unterschiedliche "quality of Services" zu realisieren, wie beispielsweise: lms-Zyklus für Gleichlaufverbindung (Leitwert über Bus), Drehzahlsoll-/Lagesoll-/I/O-Schnittstelle für zeitkritische Achsen, Fast I/O- Ankopplung oder 4ms-Zyklus für zeitunkritische Achsen (Frequenzumrichter, einfache Positionierachsen), Applikationsdaten z.B.: Not-Aus-Steuerung, Verteiltes Schieberegister (Produktverfolgung), Ansteuerung (z. B. Betriebsarten) in verteilten Systemen, Vorgabe von neuen Bohraufträgen (z. B. Bohrtiefe) bei Bohrautomaten oder asynchroner und/oder event-gesteuerter Zyklus für Projektierungs-Daten und -Ereignisse oder Daten und Routinen für Fehlerhandling und Diagnose. Um ein Verfahren zum Aufbau eines auf Ethernet basierenden Kommunikationssystems für die Industrieautomation bereitzustellen, das ein im wesentlichen determinierbares Kommunikationsverhalten, Reaktionszeiten im unteren Millisekundenbereich und niedrige Kosten der Kommunikationsknoten aufweist, ist schließlich aus der DE 100 55 066 Al ein Verfahren zum multidirektionalen Austausch von Informationen zwischen Teilnehmern (z.B. Automatisierungsgeräte) bekannt,, bei dem je nach Größe des gesendeten Ethernet-Datenpaketes (Telegramm), dieses in mehrere kleinere Pakete (Kurztelegramme) zerlegt und diesen jeweils mindestens eine Steuerinformation hinzugefügt wird, die kleineren Pakete in mehreren Zyklen an ihr Ziel übertragen werden und gegebenenfalls dort mittels der Steuerinformationen zum ursprünglichen Ethernet- Datenpaket wieder zusammengesetzt werden. Dabei werden alle Telegramme, deren Länge größer als die der Kurztelegramme ist, zerlegt und alle Kurztelegramme besitzen die gleiche fest eingestellte Größe. Der Steuerinformation sind die Quelle und das Ziel des Kurztelegramms, ob es sich um ein zerlegtes oder unzerlegtes Telegramm handelt, in wieviele Kurztelegramme zerlegt wurde und die laufende Nummer des Kurztelegramms entnehmbar. Zum multidirektionalen Austausch von Informationen zwischen Teilnehmern (z. B. Automatisierungsgeräte), wobei einem Industrial Domain Switch (IDS) ein Teilnehmer zuweisbar ist, welcher mit dem IDS über einen Ethernet- Anschluss verbunden ist, sind die IDS über einen ethernetkonformen Anschluss als Netzwerk aufgebaut und jeder IDS erhält nach einem vorgegebenen, zyklischen Regelwerk zeitlich determiniert ein Senderecht. Eine Senderechtsvergabe wird beim Start des Systems bzw. Neustart (Power On oder Reset) über eine Managementfunktion mittels Managementtelegramme, wobei die IDS erkennen, dass es sich um Managementtelegramme handelt, zwischen den IDS ausgehandelt. Die gesamte Steuerlogik des IDS kann in einem hochintegrierten elektronischen Baustein integriert werden.
Wie die vorstehende Würdigung des Standes der Technik aufzeigt, werden in der Automatisierungstechnik zur Kommunikation zwischen den einzelnen Geräten verschiedene Schnittstellen mit ihren physikalischen Eigenschaften und Übertragungsprotokolle definiert und in internationale Normen eingebracht oder etablieren sich als Industriestandards. Diese Systeme werden allgemein als Feldbussystem bezeichnet, wobei auch die Ethernet-basierten Technologien dazu zu zählen sind. Die Schnittstellen sind in Form von dedizierten Kommunikations-Controllern, zum Teil mit CPU als integrierte Schaltkreise (Kommunikations-Prozessor) aufgebaut, siehe beispielsweise DE 198 31 405 (ASIC: ASPC2), DE 299 07 909 (ASIC: SPC3), DE 199 28 517 C2 (ASIC: SUPI), DE 100 04 425 Al. Ebenso wird das gesamte Interface oft als auswechselbares Modul aufgebaut, bestehend aus Steckverbinder, physikalischem Interface, dedizierter Kommunikations-Controller, Mikroprozessor mit Speicher und Übergabelogik zur CPU des Automatisierungsgeräts in der Regel ein Dual-port Memory. Dieses Modul realisiert genau ein spezielles Übertragungsprotokoll und muss in der Gesamtheit darauf speziell entwickelt werden. In der Regel enthält der Kommunikations- Prozessor jeweils nur einen speziellen Kommunikations-Controller für ein spezielles Feldbussystem, wobei es mittlerweile auch Schaltkreise gibt, die mehrere dieser dedizierten Kommunikations- Controller enthalten, wie dies beispielsweise in der US-Patentanmeldung 09/780,979 für einen Kommunikations-Controller nach dem CAN-Standard und einen Kommunikations-Controller nach dem Ethernet -Standard beschrieben ist. Dabei sind in der Regel spezielle Hard- und Softwarekomponenenten mit einer Reihe von teueren, für die Kommunikation speziell ausgelegten Komponenten, wie HUB und Leitungstreiber, Ethernet-Controller, Media Interpent Interface für die Verbindung zu einem anderen Netz (öffentliches Datennetz, anderes LAN oder einem Hostsystem), Feldbus-Schnittstellen bzw. Sensorbus-Schnittstelle, insbesondere Serial Peripheral Interface mit Master- bzw. Slave-Protokollchips, sowie die Umsetzung entsprechender Netzwerk- Zugangsprotokolle, z.B. CSMA/CD (Carrier Sense Multiple Access/Collision Detection), Token- Passing (Bitmuster als Berechtigungsmarke) oder TCP/IP (Transmission Control Protocol/Internet Protocol) in für den Feldbus spezifizierte Protokolle erforderlich. Wenig Beachtung findet jedoch die Entwicklung eines solchen Schaltkreises oder einer Kommunikationsschnittstelle unabhängig von einem speziellen Feldbussystem, um darauf basierend eine individuelle und komfortable Anpassung der Kommunikationsfunktionen zu ermöglichen. In der Regel realisiert der Kommunikations- Controller jeweils nur ein spezielles Feldbussystem zur Kommunikation der üblichen SPS- Funktionsbausteinen, wobei beispielsweise Antriebe über schnelle, deterministische und jitterfreie Kommunikationsverbindungen miteinander synchronisiert werden. Dies erfolgt über das Detektieren eines bestimmten Date oder Ereignisses im Kommunikations-Controller, der die nachgeschaltete CPU über einen Interrupt veranlasst, die synchronen Antriebsfunktionen, wie das Messen der Position oder das Ausgeben der Stellgrößen, auszuführen. Dieses Verfahren hat den Nachteil, dass in die Gfenauigkeit der Synchronisation die Interruptlatenz-Zeiten der CPU, besonders bei Verwendung von Betriebssystemen, welche die Interrupte für bestimmte Zeiten sperren, entscheidend eingehen. Deshalb fehlen in der Praxis kostengünstige Verfahren und Kommunikationsschnittstellen für ein in Echtzeit betreibbares Automatisierungssystem, welches eine individuelle, insbesondere automatisch anpassbare, interaktive Kommunikation sicherstellt oder eine einfache Austauschbarkeit ermöglicht bzw. Funktionsbausteine für ein in Echtzeit betreibbares Automatisierungssystem, welches auch ohne zusätzliche Hardware-Funktionsmodule und ohne aufwendige Schnittstellenanpassungen schnell und wirtschaftlich anspruchsvolle Automatisierungslösungen aufbauen. Besonders bedeutsam ist dies, weil die Telekommunikations- und Computerindustrie, insbesondere auf dem Gebiet der Automatisierungsund Antriebstechnik, als äußerst fortschrittliche, entwicklungsfreudige Industrien anzusehen sind, die schnell Verbesserungen und Vereinfachungen aufgreifen und in die Tat umsetzen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Datenkommunikation von Busteilnehmern eines offenen Automatisierungssystems derart auszugestalten, dass der Anschluss beliebiger Busteilnehmer mit individueller, interaktiver Kommunikation ermöglicht wird. Weitere Aufgaben bestehen darin, die Austauschbarkeit von Teilen des Geräts oder eine automatische und hochgenaue Synchronisation zu ermöglichen
Diese Aufgabe wird erfindungsgemäß gemäß Patentanspruch 1 gelöst. Dazu dient ein Verfahren zur Datenkommunikation, insbesondere zur Kopplung von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines offenen Automatisierungssystems mit verteilter Steuerung, welche über einen Kommunikations-Controller mit einer übergeordneten Steuereinrichtung zusammenarbeiten, bei dem:
• der Kommunikations-Controller aus mindestens einer frei programmierbaren Kommunikations-ALU aufgebaut ist,
• in einem Befehlscode der Kommunikations-ALU mehrere Befehle kodiert sind und welcher auf spezielle Kommunikationsfunktionen optimiert ist,
• in der Kommunikations-ALU Logikfunktionsblöcke parallel angeordnet sind, die spezielle Kommunikationsfunktionen ausfuhren, wodurch die Kommunikationsfunktionen nicht fest vorgegeben sind, sondern auf Basis des frei programmierbaren und auf Kommunikationsfunktionen optimierten Kommunikations-ALUs ausgebildet sind, wodurch in einem Systemtakt mehrere Befehle ausgeführt werden und wodurch Übergänge zwischen den unterschiedlichsten Netzwerken realisiert werden können.
Das erfindungsgemäße Verfahren ermöglicht auf einfache Art und Weise den Aufbau eines „quasi dezidierten" Kommunikations-Controllers, indem dieser als eine bzw. mehrere frei programmierbare Kommunikations-ALUs (Arithmetik and Logic Unit) aufgebaut wird, welche einen auf die Kommunikationsaufgaben optimierten Befehlssatz, und Hardwarearchitektur besitzt. Damit ergeben sich für die erfindungsgemäße Lösung folgende Vorteile:
• Die Entwicklung, Produktion und Vertrieb eines solchen Schaltkreises kann unabhängig von einem speziellen Feldbussystem/Ethernet erfolgen.
• Erweiterungen innerhalb der Feldbus-/Ethernet- und im Besonderen Real-Time- Ethernetspezifikation oder Implementierungen komplett neuer Feldbussysteme können per Softwareupdate erfolgen und benötigen keinen neuen Schaltkreis.
• Besonders bei zwei oder mehreren Kommunikationsschnittstellen innerhalb eines Schaltkreises werden die jeweiligen FeldbusVEthernetsysteme durch Laden der Software festgelegt und sind damit völlig flexibel kombinierbar.
Weiterhin wird diese Aufgabe erfindungsgemäß nach Patentanspruch 9 gelöst. Dazu dient eine Vorrichtung zur Datenkommunikation, insbesondere zur Kopplung von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines offenen Automatisierungssystems mit verteilter Steuerung gelöst, welche aufweist:
^" einen Kommunikations-Controller, welcher mit einer übergeordneten Steuereinrichtung zusammenarbeitet und welcher mindestens eine frei programmierbare Kommunikations-ALU aufweist,
^" einen Befehlscode, in welchem mehrere Befehle kodiert sind und welcher auf
Kommunikationsfunktionen optimiert ist, und
^" eine parallele Anordnung von mindestens zwei Logikfunktionsblöcken in der
Kommunikations-ALU, die spezielle Kommunikationsfunktionen ausfuhren, wodurch die Kommunikationsfunktionen nicht fest vorgegeben sind, sondern auf Basis von mindestens einem frei programmierbaren und auf Kommunikationsfunktionen optimierten Kommunikations-ALU ausgebildet sind, wodurch in einem Systemtakt mehrere Befehle ausgeführt werden und wodurch Übergänge zwischen den unterschiedlichsten Netzwerken realisiert werden können.
Im Vergleich zum Aufbau eines dedizierten Kommunikations-Controller durch Programmierung von FPGAs (Field programmable Gate Array) oder Teile davon nach dem Stand der Technik, welcher ebenfalls eine fest verdrahteten Logik entspricht, weist die erfindungsgemäße Vorrichtung die oben beschriebenen Vorteile auf. Weiterhin werden im Gegensatz zu herkömmlichen ALUs die Befehle in einem Takt parallel ausgeführt. Dazu sind erfindungsgemäß die zugehörigen Logikfunktionsblöcke in den ALUs parallel angeordnet und können gleichzeitig den Befehlscode verarbeiten, wodurch auch bei hohen Baudraten, z.B. 100 MHz Ethernet, die notwendigen Funktionen realisiert werden können.
Eine Vorrichtung zur Datenverarbeitung von auf einer Übertragungsleitung bitseriell übertragbaren Daten, die entsprechend einem vorgegebenen Protokoll zur Datenübermittlung seriell übertragen und innerhalb einer Schnittstelle vor einer Übertragung als Datenwort parallel verfugbar bzw. nach einer Übertragung als paralleles Datenwort rekonstruierbar sind und bei der in einem Bit-Takt eines Systemtaktes mehrere Befehle ausgeführt werden, ist ansich aus der DE 4220258 C2 bekannt. Im einzelnen ist für eine Adaption an' ein jeweils vorgebbares Übertragungsprotokoll eine Bitverarbeitungseinheit vorgesehen, die aus wahlweise ansteuerbaren Umsetzungselementen besteht, welche die einzelnen Datenbits gemäß einer jeweiligen Protokollkonvention verarbeiten und von einem Steuerwerk koordiniert sind. Die Bitverarbeitungseinheit weist mindestens einen Vergleicher für sequentiell aufeinander folgende Datenbits auf, dessen Ausgangssignal an das Steuerwerk abgegeben wird. Weiterhin ist zwischen der Übertragungsleitung und der Bitverarbeitungseinheit ein Kopplungselement angeordnet, welches als eine Dekodierungseinheit oder als eine Kodierungseinheit für die auszugebenden Daten ausgebildet ist. Zur Erhöhung der Arbeitsgeschwindigkeit bei zeitlich verschachtelt durchzuführenden Kommunikationsabläufen und Verarbeitungsabläufen ist vorgesehen, dass die Bitverarbeitungseinheit, das Kopplungselement sowie zwei umschaltbare und über das Steuerwerk wahlweise aktivierbare Arbeitsspeicher an einen internen Bus angeschlossen sind. Weiterhin ist zur Veränderung der Bitreihenfolge in Abhängigkeit von einer jeweils vorgegebenen Protokollstruktur vorgesehen, dass eines der Umsetzungselemente der Bitverarbeitungsemheit als ein Bitvertauscher ausgebildet ist. Insbesondere bei Protokollen mit unterschiedlichen Reihenfolgen der Wertigkeit der Bits ist vorgesehen, dass der Bitvertauscher zur Realisierung einer Spiegelung der innerhalb eines Datenwortes angeordneten Bits an einer Wortmitte ausgebildet ist. Eines der Umsetzungselemente der Bitverarbeitungseinheit ist als eine Sortiervorrichtung ausgebildet, wodurch es möglich ist, ein serielles Bit an eine beliebige Stelle eines Datenwortes einzublenden. Zur Gewährleistung einer ausreichend hohen Verarbeitungsgeschwindigkeit, die beispielsweise im Bereich von 1 Mbit/s liegen kann, werden die Umsetzungselemente im wesentlichen schaltungstechnisch realisiert. Im Gegensatz dazu können bei der erfindungsgemäßen Vorrichtung - infolge des flexiblen Befehlssatzes und der zugehörigen Logikfunktionsblöcke - in einem wesentlich höheren Systemtakt, nämlich von 100 MHz, und ereignisgesteuert mehrere Teilaufgaben parallel gelöst werden, wodurch protokollunabhängig eine hohe Verarbeitungsgeschwindigkeit erreicht wird. Beim Gegenstand der DE 42 20 258 C2 ist also, wie beim Stand der Technik, eine spezielle Kommunikationslösung für die Übertragung von Daten am Data Link Layer (Schicht T) entwickelt worden, ohne höhere Netzwerkschichten und anwendungsnahe Services, wie Konfiguration von Parametern oder Netzwerk- Management, zu berücksichtigen. Bei den Büro- und Heimanwendungen gemäß der IEEE 802.11 spielt es in der Regel keine Rolle, ob die Datenübertragung bei höherer Netzlast mal stockt und ein Telegramm wiederholt werden muss. In der Automatisierungstechnik muss der zyklische Datenaustausch mit den einzelnen Teilnehmern (Geräte) sichergestellt werden, d.h. innerhalb einer definierten Zeit muss also eine» festgelegte Datenmenge übertragen werden. Durch die erfindungsgemäße Lösung ist auch die Übertragung zeitkritischer Daten sichergestellt, so dass eine hohe Dienstgüte (Quality of Service QoS) und auch eine Netzwerk-Migration, beispielsweise einen CAN-Bus auf eine bis zu hundertmal schnellere Ethernet-Umgebung zu migrieren, ermöglicht wird. Weiterhin kann in vorteilhafter Weise die Initialisierung neuer und der Austausch fehlerhafter Geräte durch Plug- & Play verwirklicht werden und die flexiblen Kommunikations-Mechanismen ermöglichen den einfachen Einsatz in vielen Anwendungsfällen und Systemarchitekturen. Ein Gateway, welches die Anwendungsdaten umformatieren muss, d.h. ein Gerät, welches die Dienste einer Anwendungsschicht (Application Layer) in die andere Anwendungsschicht übersetzt, was insbesondere bei Bit-orientierten Daten zu einem hohen Aufwand führt, ist bei der erfindungsgemäßen Lösung nicht erforderlich. Die Verbindung zwischen Bussystem und Netzwerk erfolgt bei der erfindungsgemäßen Lösung durch Umsetzung auf der Datenverbindungsschicht (Data link layer), wodurch beispielsweise CAN- Nachrichten in Ethernet-Nachrichten übersetzt werden können, da die höheren Protokolle (Anwendungsschicht) identisch sind. Insbesondere können bei der erfindungsgemäßen Lösung nicht nur Master/Slave-Systeme sondern auch verteilte Steuerungen, welche zumindest partiell nicht-hierarchische Netzwerkarchitektur mit Durchlässigkeit in beide Richtungen erfordern, realisiert werden.
Weiterhin wird diese, Aufgabe erfindungsgemäß nach Patentanspruch 14 gelöst. Dazu dient ein Gerät mit flexibler Kommunikationsstruktur, insbesondere Automatisierungsgerät, welches aufweist: ^" mindestens einen frei programmierbaren Kommunikations-Controller, welcher mit einer übergeordneten Steuereinrichtung zusammenarbeitet, ^ mindestens eine im Kommunikations-Controller integrierte frei programmierbare
Kommunikations-ALU und
^ eine über Signalleitungen zur Übertragung eines Identifizierungscodes, Steuerdaten, Empfangsdaten und Sendedaten mit dem Kommunikations-Controller verbundene, austauschbare, physikalische Schnittstelle, wodurch die physikalische Schnittstelle austauschbar ist.
Die erfindungsgemäße Automatisierungsgerät ermöglicht auf einfache Art und Weise den Aufbau eines „quasi dezidierten" Kommunikations-Controllers, indem dieser als eine bzw. mehrere frei programmierbare Kommunikations-ALUs (Arithmetik and Logic Unit) aufgebaut wird, welche einen auf die Kommunikationsaufgaben optimierten Befehlssatz und Hardwarearchitektur besitzen. Damit ergeben sich für die erfindungsgemäße Lösung folgende Vorteile:
• Die physikalische Schnittstelle als austauschbares Modul ist wesentlich kleiner, preiswerter und nur mit einer Sende- und Empfangs- und einigen Steuerleitungen an den frei programmierbaren Kommunikations-Controller im Automatisierungsgerät angebunden. Im Gegensatz dazu werden sonst ca. 40 Signalleitungen für Daten-, Adress- und Steuerleitungsbus der sonst üblichen Dualport Memory Kopplung benötigt, die wesentlich höherfrequente Signale enthält und die Verbindung auf wenige Zentimeter beschränkt.
• Auf Grund der geringen Signalleitungen kann das austauschbare physikalische Interface über eine flexible Verbindung an jeder beliebigen Stelle im Automatisierungsgerät angebracht werden. ,
Weiterhin wird diese Aufgabe erfindungsgemäß nach Patentanspruch 19 gelöst. Dazu dient ein Verfahren zur Datenkommunikation, insbesondere zur Konfiguration eines Geräts mit flexibler Kommunikationsstruktur, insbesondere Automatisierungsgerät, mit mindestens , einem Kommunikations-Controller, mindestens einer in diesem integrierte Kommunikations-ALU und mindestens einer physikalischen Schnittstelle, bei dem
• die Kommunikationsfunktionen nicht fest vorgegeben sind, sondern auf Basis von frei programmierbaren und auf Kommunikationsfunktionen optimierten ALUs ausgebildet sind, • in der Startphase die physikalische Schnittstelle über eine Signalleitung einen
Identifizierungscode an den Kommunikations-Controller sendet und der Kommunikations-Controller selbständig die richtige Konfiguration durchfuhrt und die zugehörige Software in die Kommunikations-ALU lädt.
Damit ergeben sich für die erfmdungsgemäße Lösung folgende Vorteile:
• Die Entwicklung, Produktion und Vertrieb eines solchen Automatisierungsgeräts mit austauschbarer, physikalischer Schnittstellenschaltung kann unabhängig von einem speziellen Feldbussystem erfolgen.
• Erweiterungen innerhalb der Feldbusspezifikation oder Implementierungen komplett neuer Feldbussysteme können per Softwareupdate erfolgen und benötigen keine neue Schnittstellenschaltung.
• Besonders bei zwei oder mehreren Kommunikationsschnittstellen werden die jeweiligen Feldbussysteme durch Laden der Software festgelegt und sind damit völlig flexibel auswählbar.
Weiterhin wird diese Aufgabe erfmdungsgemäß nach Patentanspruch 20 gelöst. Dazu dient ein Verfahren zur Datenkommunikation, insbesondere zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines offenen Automatisierungssystems mit verteilter Steuerung, welche einen „quasi dezidierten" Kommunikations-Controller, der über mindestens eine' frei programmierbare Kommunikations-ALU mit einer nachgeschalteten Steuereinrichtung zusammenarbeitet, aufweisen, bei dem:
• der Kommunikations-Controller das Auftreten eines bestimmten Date oder Ereignisses detektiert,
• die Kommunikations-ALU die synchronen Steuerungsfunktionen ausführen und
• zwischen den Synchronisationszeitpunkten die Mess- und Stellwerte mit der nachgeschalteten Steuereinrichtung ausgetauscht werden, wodurch die Interruptlatenzzeiten der nachgeschalteten Steuereinrichtung nicht in die direkte Synchronisation der Steuerungsfunktionen eingehen.
Das erfindungsgemäße Verfahren ermöglicht auf einfache Art und Weise unter Beibehaltung des modularen Aufbaus die Kommunikation über einen taktsynchronen und äquidistanten Bus zur Steuerung hoch präziser Abläufe bei kürzesten Zykluszeiten. Die Steuerungs- und Kommunikationslösung beruht erfindungsgemäß auf einen „quasi dezidierten" Kommunikations- Controller,, welcher aus einer bzw. mehreren frei programmierbare Kommunikations- ALUs (Arithmetik and Logic Unit) aufgebaut ist, die einen auf die Kommunikationsaufgaben optimierten Befehlssatz, und Hardwarearchitektur besitzt. Damit ergeben sich für die erfindungsgemäße Lösung folgende Vorteile:
• Die Entwicklung, Produktion und Vertrieb eines solchen Schaltkreises kann unabhängig von einem speziellen Feldbussystem erfolgen.
• Erweiterungen innerhalb der Feldbusspezifikation oder Implementierungen komplett neuer Feldbussysteme können per Softwareupdate erfolgen und benötigen keinen neuen Schaltkreis.
• Besonders bei zwei oder mehreren Kommunikationsschnittstellen innerhalb eines Schaltkreises werden die jeweiligen Feldbussysteme durch Laden der Software festgelegt und sind damit völlig flexibel auswählbar.
• Die erfmdungsgemäße kombinierte Steuerungs- und Kommunikationslösung ist trotz Erfüllung echtzeitkritischer Anforderung mit geringem Kostenaufwand realisierbar und bietet - infolge einer durchgängigen Programmierung und gemeinsamen Datenhaltung (alle Bezeichner sind systemweit automatisch bekannt und eindeutig) - noch genügend Freiraum für zukünftige Ergänzungen, beispielsweise Abläufe zu parallelisieren, Unterroutinen einzufügen, analoge und digitale Ein- /Ausgänge nach Anforderung zu betreiben und Achsen wahlweise einzeln oder in unterschiedlichsten Abhängigkeiten zueinander zu verfahren.
Weiterhin wird diese Aufgabe erfindungsgemäß nach Patentanspruch 21 gelöst. Dazu dient ein Verfahren zur Datenkommunikation, insbesondere zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden B,usteilnehmern eines offenen Automatisierungssystems mit verteilter Steuerung, welche einen „quasi dezidierten" Kommunikations-Controller, der über mindestens eine frei programmierbare Kommunikations-ALU mit einer nachgeschalteten Steuereinrichtung zusammenarbeitet, aufweisen, bei dem:
• zum Startzeitpunkt von zyklisch ablaufenden Steuerungsfunktionen die synchronisierte lokale Zeit abspeichert wird,
• durch Differenzbildung mit der gespeicherten Zeit im letzten Startpunkt die Zykluszeit auf Basis der lokalen Zeit gemessen wird und
• durch Vergrößern oder Verkleinern der aktuellen Zykluszeit, diese in Bezug auf die lokale Zeit konstant und in einer festen Phasenbeziehung gehalten wird, wodurch der gesamte Zyklus sowohl in seiner Zykluszeit als auch in seiner Phasenlage auf die lokale Zeit synchronisiert ist.
Im Vergleich zum Verfahren gemäß Patpntanspruch "20, bei dem mittels des „quasi dezidierten" Kommunikations-Controller eine direkte Synchronisation der Steuerungsfunktionen ohne die nachgeschaltete Steuereinrichtung erfolgt, wird die Synchronisation beim Verfahren gemäß Patentanspruch 21 nach Maßgabe einer gespeicherten lokalen Zeit mit jedem Start einer Steuerungsfunktion durchgeführt. Bei beiden Verfahren gehen die Interruptlatenzzeiten der nachgeschalteten Steuereinrichtung nicht in die Synchronisation der Steuerungsfunktionen ein, wobei das zweite Verfahren einen etwas höheren Hardewareaufwand für das Führen einer lokalen Zeit erfordert.
Schließlich wird diese Aufgabe erfϊndύngsgemäß nach Patentanspruch 24 gelöst. Dazu dient eine Vorrichtung zur Datenkommunikation, insbesondere zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines offenen Automatisierungssystems mit verteilter Steuerung, mit:
^" einem „quasi dezidierten" Kommunikations-Controller, welcher mindestens eine frei programmierbare Kommunikations-ALU aufweist,
^ einer dem Kommunikations-Controller nachgeschalteten Steuereinrichtung und ^" mindestens einem Logikfunktionsblock mit Mitteln zur Messung und Speicherung von Zeiten in der Kommunikations-ALU, wodurch mittels des Kommunikationscontrollers eine direkte Synchronisation der Steuerungsfunktionen ohne die ηachgeschaltete Steuereinrichtung oder die Synchronisation nach Maßgabe einer gespeicherten lokalen Zeit mit jedem Start einer Steuerungsfunktion erfolgt.
Die erfindungsgemäße Vorrichtung weist den Vorteil auf, dass zwei leistungsstarke Verfahren genutzt werden können, ohne dass damit eine grundlegende Hardwareanpassung erforderlich ist. Dies ist auf die im „quasi dezidierten" Kommunikations-Controller über die Schnittstellenprogrammierung integrierte, einfach parametrierbare A'ntriebsparameter zurückzuführen.
In Weiterbildung der Erfindung sind, gemäß Patentanspruch 15, im Kommunikations-Prozessor mehrere frei programmierbare Kommunikations-Controller enthalten.
Diese Weiterbildung der Erfindung weist den Vorteil auf, dass man im Vergleich zum Stand der Technik für jeden Kanal den im Austauschmodul benötigten Mikroprozessor und die zugehörige Infrastruktur wie Speicher und Dual-port Memory einspart.
Bei einer bevorzugten Ausgestaltung der Erfindung ist, gemäß Patentanspruch 16, die physikalische Schnittstelle als gedruckte Schaltung im Leitungsanschluss ausgestaltet.
Diese Ausgestaltung der Erfindung weist den Vorteil auf, dass auf Grund der kleinen Abmessungen des physikalischen Interface, dieses direkt als gedruckte' Schaltung am Übergabestecker des Leitungsanschluss ausgeführt werden kann. Vorzugsweise arbeitet, gemäß Patentanspruch 18, der Kommunikations-Prozessor sowohl die Applikation als auch das Übertragungsprotokoll ab.
Heutige Mikroprozessoren sind so • leistungsfähig, dass sie sowohl die Applikation als auch das Übertragungsprotokoll abarbeiten können. Damit erspart man sich auf vorteilhafte Weise einen zweiten Mikroprozessor und die zugehörige Infrastruktur wie Speicher und Dual-port Memory im Austauschmodul .
Weitere Vorteile und Einzelheiten lassen sich der nachfolgenden Beschreibung von bevorzugten Ausfuhrungsformen der Erfindung unter Bezugnahme auf die Zeichnung entnehmen. In der Zeichnung zeigt:
FIG. 1 das Blockschaltbild eines Kommunikations-Prozessors mit frei programmierbaren
Kommunikations-Control ler, FIG. 2 das Blockschaltbild eines frei programmierbaren Kommunikations-Controllers für einen Kommunikations- Prozessor gemäß FIG. 1 und FIG. 3 ein Beispiel für einen Befehlscode gemäß der Erfindung,
FIG. 4 das Blockschaltbild eines Automatisierungsgerät mit flexibler
Kommunikationsstruktur gemäß der Erfindung, FIG. 5 das Blockschaltbild einer Ausführungsform mit direkter Synchronisation der,
Antriebsfunktionen, FIG. 6 das Blockschaltbild einer zweiten Ausführungsform mit Speicherung der Systemzeit bei jedem Start einer Antriebsfunktion und FIG. 7 für die Ausführungsform nach FIG. 6 ein Zeitdiagramm mit Synchronisation des
PWM-Zyklus auf die lokale Systemzeit gemäß der Erfindung.
In der Automatisierungstechnik sind seit Jahren verschiedene Kommunikg.tionssysteme mit standardisierten Kommunikationsdiensten und Protokollen, mit denen man zwischen heterogenen und homogenen Netzwerken kommunizieren kann, im Einsatz. In der untersten Ebene sind beispielsweise einfache Sensor-Aktuator-Bussysteme oder Rückwandbussysteme (z.B. auf handelsüblichen Norm- Tragschienen anbringbare modulare Ein-/Ausgabe-Geräte), in der mittleren Ebene „eingebettete" Netzwerke zur Steuerung der Maschinen (welche programmierbare Steuerungen, komplexe elektrische und hydraulische Antriebsgeräte, Ein-/Ausgabe-Geräte, Datenerfassuhgsgeräte oder Mensch/Maschine-Schnittstellen verbinden) und in der obersten Ebene die Netzwerke zur Fabrikautomation angeordnet. Bei der erfmdungsgemäßen Lösung liegt in Hinblick auf die Kommunikationsbeziehungen ein einheitliches logisches Netzwerk vor so dass eine scharfe Trennlinie zwischen der Technik in herkömmlichen Telekommunikationsnetzen, ' welche nachfolgend beschrieben wird, und (Computer)-Datennetzen nicht mehr gezogen werden kann.
In der Telekommunikationstechnik erfolgt die Übermittelung kontinuierlicher Datenströme, z.B. Sprach- oder Videokommunikation, in der Regel über paketvermittelnde Kommunikationsnetze, wie z.B. LANs (Local Area Networks), MANs (Metropolitan Area Networks) oder WANs (Wide Area Networks). Zunehmend wird auch die ADSL-Technik (Asymmetrie Digital Subscriber Line, asymmetrisches DSL-Datenübertragungsverfahren) genutzt. Neben der ADSL-Technik sind auch andere DSL-Techniken gebräuchlich, beispielsweise HDSL = High Data Rate Digital Subscriber Line; SDSL = Single Line Digital Subscriber Line; MDSL = Multirate Digital Subscriber Line; RADSL = Low Rate Adaptive Digital Subscriber Line und VDSL = Very High Rate Digital Subscriber Line, die jede für den Anwendungsfall optimiert sind und unter dem Oberbegriff xDSL-Übertragungstechnik zusammengefasst werden. Die Kommunikation erfolgt über Verbindungen ganz unterschiedlicher Bandbreite, d.h. beispielsweise 56 KBit Analoganschluss oder 64 KBit -ISDN oder DSL oder - soweit in einem LAN eingebunden - über 100 MBit Twisted Pair-Leitung, oder über Wähl- Verbindungen 2 MBit und besser, oder über Standleitungen X.25. Dementsprechend ist eine ganze Vielzahl von .Schnittstelleneinrichtungen bekannt, beispielsweise ^* ISDN S0 - Schnittstellen,
^ LAN-Interface FE (mit Programmspeicher) zum PCI-Bus, ^" externes LAN-Interface LAN (mit Programmspeicher) als 10/100 Mbit/s Ethernet oder Token-
Ring, > WAN-Schnittstellen WAN: X.21, V.35, G.703/704 bis 2 Mbit/s.
Dabei werden alle Interaktionen des Benutzers durch Events dem Dialog zwischen dem Benutzer und einem Dialogserver zugeführt, wobei in einer Dialogsteuerung DE die Session-ID als Zugangsberechtigung abgespeichert ist. Das Hardware-Konzept des Dialogservers muss auf die vielfältigen, gewachsenen Anschlussnormen im weltweiten Netzwerkbetrieb angepasst werden. Speziell angepasste LAN-Module mit wahlweise BNC-, AUI-, LWL- oder Twisted Pair-Anschlüssen verbinden den Dialogserver mit lokalen Token-Ring- und Ethernet-Netzwerken. Die Zugänge zu den Weityerkehrsnetzen (z.B. ISDN, X.25) und Standleitungen werden mit zum Teil mehrkanaligen WAN- Adaptern (S0, UP0, URO, X.21, V.24, V.35) geschaffen. Für die optimale Performance können aktive WAN-Adapter eingesetzt werden. Im ISDN-Bereich sind die Protokolle DSSl, 1T.R6, Nl-I, sowie Fetex 150 verfügbar.
Bei der in FIG. 1 dargestellten erfindungsgemäßen Lösung sind die Schnittstellen in Form eines frei programmierbaren Kommunikations-Controllers KC aufgebaut. Erfϊndungsgemäß besteht dieser aus drei Kommunikations-ALUs, welche im Einzelnen in FIG. 2 dargestellt sind, nämlich: • die Receive Processing ALU (RPA), welche die Aufgabe hat entsprechend der Übertragungsrate den empfangenen Bit- bzw. Nibble (halbes Byte) seriellen Datenstrom zu dekodieren und in eine parallele Darstellung (z.B. Byte, Wort oder Doppelwort) zu konvertieren,
• die Transmitt Processing ALU (TPA), welche die Aufgabe hat Daten aus einer parallelen Darstellung in Bit- bzw_. Nibble seriellen Datenstrom zu kodieren und mit der richtigen Übertragungsrate auf die Leitung zu geben und
• die Protocol Excecution ALU (PEA), welche den Sende- und Empfangsverlauf eines zusammengehörigen Datenpakets steuert.
Um auch bei hohen Baudraten, z.B. 100 MHz Ethernet, die notwendigen Funktionen realisieren zu können, werden durch die erfmdungsgemäße Lösung folgende Anforderungen erfüllt:
• Die Kommunikations-ALUs RPA und TPA können mehrere Befehle parallel ausführen. Dazu wird erfindungsgemäß ein breiter Befehlscode BC (siehe FIG. 3) benutzt, z.B. 64 Bit, in dem mehrere Befehle (siehe FIG. 3: die sieben höchstwertigsten Bits, Operation, Condition, Jump) kodiert sind. Dies können z.B. logische Operationen, Programmsprünge, Setzen und Löschen von Bits in den Flags F, Inkrementieren und Dekrementieren von Zählern, Transfer von Daten und Bedienen von speziellen Funktionsregistern sein. Im Gegensatz zu herkömmlichen ALUs werden diese Befehle in einem Takt parallel ausgeführt. Dazu sind erfϊndungsgemäß die zugehörigen Logikfunktionsblöcke in den Kommunikations-ALUs parallel angeordnet und können gleichzeitig den Befehlscode BC verarbeiten.
• Die Kommunikations-ALUs RPA und TPA verfügen über spezielle Funktionsregister, die ebenfalls parallel auf die zu verarbeitenden Daten wirken. Im einzelnen sind dies:
Schieberegister FI, in die die seriellen Daten automatisch rein- bzw. rausgeschoben werden und das Einfügen und Löschen von Bits an beliebigen Positionen ermöglichen,
- Zähler Z, welche die seriellen Daten automatisch mitzählen und Vergleichsregister, welche bei
Gleichheit ein Bit setzen,
Vergleichsregister V, welche die serielle Daten auf bestimmte Bitmuster vergleichen und bei
Gleichheit ein Bit in den Flags F setzen,
CRC-Generatoren CRC, welche aus den bitseriellen Daten selbständig CRC-Polynome berechnen,
• Die Kommunikations-ALU PEA überwacht im Gegensatz zu herkömmlichen ALUs eine Vielzahl von speziellen Ereignissen per Hardware parallel. Dies kann z.B.:
- die Übergabe bestimmter Daten von der RPA bzw. zur TPA bzw. zur übergeordneten CPU,
- das Ablaufen von Zeiten,
- das Erreichen bestimmter Zählerstände oder - das Setzen bestimmter Zustandsbits sein.
Wenn eines oder eine bestimmte Kombination von Ereignissen eingetreten ist, reagiert die Kommunikations-ALU PEA innerhalb eines Systemtakts durch Abarbeitung eines dem Ereignis zugeordneten Stück Progrämmcodes.
• Die Kommunikations-ALU PEA ist ferner in der Lage innerhalb eines Systemtakts:
- einen Date aus einem lokalen Dual Port Memory DPM zu lesen,
- zu verarbeiten und
- an die Kommunikations-ALU TPA zu übergeben bzw. von der Kommunikations-ALU RPA '
- entgegen zu nehmen,
- zu verarbeiten und
- in das lokale Dual Port Memory DPM abzulegen.
• Der Zugriff auf das lokale Dual Port Memory DPM erfolgt über zwei Register zweifach indiziert, um in einem Systemtakt auf die in der Kommunikationstechnik üblichen Datenstrukturen direkt zugreifen zu können.
• Die Schnittstelle zwischen den Kommunikations-ALUs PEA und der RPA bzw. TPA ist erfindungsgemäß als FIFO ausgeprägt, um ein- bzw. ausgehende Daten zwischen zu speichern.
• Die Schnittstelle zwischen dem Kommunikations-Controller KC und einer übergeordneten Steuereinrichtung CPU ist erfindungsgemäß als DMA-Controller DMA zur schnellen Übertragung von großen Datenmengen als auch als Dual-port Memory DPM zum Führen von Statusvariablen als auch als gemeinsamer Registersatz SR zur Synchronisation ausgeprägt.
• Erfindungsgemäß ist, um die Kommunikations-ALUs PEA, RPA bzw. TPA untereinander zu synchronisieren, ein Satz gemeinsamer Register SR vorgesehen auf die jede Kommunikations- ALU PEA, RPA bzw. TPA schreiben als auch lesen kann.
• Auf die gemeinsamen Register SR kann auch die übergeordnete Steuereinrichtung CPU zugreifen, um den Kommunikationsstatus zu monitoreh bzw. zu steuern.
Weitere Funktionen der Kommunikations-ALU TPA, welche per Software bei Ethernet-Protokollen realisiert sind: Abbilden der zu sendenden Bytes, Erkennen von Kollisionen im Halbduplexbetfieb und Ausführen eines Back-Off-Algorithmus, Zurverfügungstellen von, Transmit-Status-Informationen an die Kommunikations-ALU PEA nach Beenden eines Sendevorganges, Einhalten der Ruhezeit Inter- Packet-Gap (IPG) zwischen zwei Telegrammen, Ergänzen der Sendedaten um eine Präambel, einen Start-Off-Frame-Delimeter (SFD) und ein parametrierbares Cyclic-Redundancy-Check-Wort (CRC), Auffüllen eines Telegramms mit Pad-Bytes, wenn die Telegrammlänge < 60 Byte wäre, und ein Abbrechen eines Sendevorgangs auf Anforderung. Weitere Funktionen der Kommunikations-ALU RPA sind: die empfangenen Bytes der Kommunikations-ALU PEA zur Verfügung zu stellen, Erkennen des Start-Of-Frame-Delimeter und eines VLAN-Frame (Virtuell- LAN), Überprüfen des Längenfelds und des CRC-Worts in Telegrammen, nach Beendigung des Empfangsvorgangs Receive- Status-Informationen der Kommunikations-ALU PEA zur Verfügung zu stellen sowie Entfernen bei r
Telegrammen von Präambel und Start-Of-Frame-Delimeter.
Diese Kommunikations-ALUs PEA, RPA bzw. TPA arbeiten mit der übergeordneten Steuereinrichtung CPU zusammen, welche mit im Schaltkreis integriert aber auch extern angeordnet sein kann. Ist die übergeordnete Steuereinrichtung CPU integriert, kann der Schaltkreis die Kommunikatϊonsfünktionen ausführen und enthält dann zur Ankopplung an eine externe Steuereinrichtung (Hostsystem) das Dual-port Memory DPMH oder er führt neben der Kommunikation die gesamte Applikation aus und hat dann zum Anschluss von externem Speicher und Peripheriebausteinen den internen Systembus als Extension Bus EB rausgefiihrt. Vorzugsweise ist eine Hostschnittstelleneinrichtung mit einem an Adress-, Daten- Steuerbusleitungen angeschlossen Hoststeuereinrichtung HC vorgesehen, welche zwischen einem Erweiterungsbus EB zum Anschluss von Speicher und Peripheriebausteinen und dem Dual-port Memory DPMH zum Anschluss einer weiteren übergeordneten Steuereinrichtung umschaltbar ist. Es bietet sich an für beide Betriebsarten die gleichen Signale zu benutzen und diese per Software umzuschalten. Dabei können der Registersatz SR und das Dual-port Memory DPM der Kommunikations-ALUs RPA, TPA, PEA parallel zum laufenden Betrieb von der übergeordneten Steuereinrichtung (CPU) gelesen und beschrieben werden, so ' dass eine , industrielle Echtzeit-Ethernet-Lösung mit Netzwerkzyklen und Präzision im Mikrosekundenbereich ermöglicht wird, welche keine Unterstützung durch proprietäre Hardwarekomponenten oder ASICs benötigt. Dies gilt auch für die Optimierung und Anpassung der Echtzeit-Übertragung, wie Anpassung an die Anforderungen der Anwendung, des Systems und der Kommunikations-Architektur, so dass ein durchgängiger Datenzugriff von der Management- bis zur Feldebene gewährleistet ist.
Wie in FIG. ' 1 dargestellt, enthält die .erfϊndungemäße Vorrichtung auch einen Data Switch DS, welcher beispielsweise eine 32-Bit Steuereinrichtung CPU und die anderen Kommunikations-ALUs PEA (wobei in FIG. 1 vier getrennte Kommunikations-Controller KC dargestellt sind) mit einem Speicher SP, der internen Peripherie PE und einem der Hoststeuereinrichtung HC zugeordneten Dual- port Memory DPMH verbindet. Der Data Switch DS vermeidet den aus anderen Kommunikations- Prozessoren bekannten „Flaschenhals" eines gemeinsamen Busses, indem er den gleichzeitigen Zugriff der Masterports über die verschiedenen Slaveports (im Beispielsfall zwei) auf die Daten ermöglicht. Bei der in FIG. 4 dargestellten erfϊndungsgemäßen Lösung eines Automatisierungsgeräts mit flexibler Kommunikationsstruktur weist das Basisboard des Automatisierungsgeräts AG einen Kommunikations-Prozessor KP mit mindestens einen, im dargestellten Ausführungsbeispiel vier, frei konfigurierbare Kommunikations-Controller KC auf. Erfindungsgemäß ist mindestens eine frei programmierbare Kommunikations-ALU KA im Kommunikations-Controller KC integriert. Die Kommunikations-ALUs KA haben, wie bereits vorstehend beschrieben, die Aufgabe, entsprechend der Übertragungsrate den empfangenen Bit- bzw. Nibble (halbes Byte) seriellen Datenstrom zu dekodieren und in eine parallele Darstellung (z.B. Byte, Wort oder Doppelwort) zu konvertieren und/oder Daten aus einer parallelen Darstellung in Bit- bzw. Nibble seriellen Datenstrom zu kodieren und mit der richtigen Übertragungsrate auf die Leitung zu geben und/oder den Sende- und Empfangsverlauf eines zusammengehörigen Datenpakets zu steuern.
Weiterhin enthält das Basisboard des Automatisierungsgeräts AG mindestens eine, im dargestellten Ausführungsbeispiel vier, über Signalleitungen IC, ST, ED, SD mit dem Kommunikations-Controller KC verbundene, austauschbare, physikalische Schnittstelle PS, über welche jeweils ein Identifizierungscode, Steuerdaten, Empfangsdaten und Sendedaten übertragen werden. Wie in FIG. 4 dargestellt, enthält der Kommunikations-Prozessor KP auch einen Data Switch DS, welcher beispielsweise eine 32-Bit Steuereinrichtung CPU und die Kommunikations-Controller KC (wobei in FIG. 4 vier getrennte Kommunikations-Controller KC dargestellt sind) mit einem Speicher SP, der internen Peripherie PE und einer Hoststeuereinrichtung HC verbindet. Die Hoststeuereinrichtung HC ist zwischen einem Erweiterungsbus EB zum Anschluss von externen Speicher und Peripheriebausteinen und einem Dual-port Memory DPMH zum Anschluss einer weiteren übergeordneten Steuereinrichtung umschaltbar. Der Data Switch DS vermeidet, wie bereits vorstehend beschrieben, somit den aus anderen Bus-Controllern bekannten „Flaschenhals" eines gemeinsamen Busses, indem er den gleichzeitigen Zugriff der Masterports (im Beispielsfall zwei) über die verschiedenen Slaveports (im Beispielsfall drei) auf die Daten ermöglicht. Dadurch können die Speicher und das Dual-port Memory DPMH parallel zum laufenden Betrieb gelesen und beschrieben werden, so dass eine industrielle Echtzeit-Ethernet-Lösung mit Netzwerkzyklen und Präzision im Mikrosekundenbereich ermöglicht wird, welche keine Unterstützung durch proprietäre Hardwarekomponenten oder ASICs benötigt. Dies gilt auch für die Optimierung und Anpassung der Echtzeit-Übertragung, wie Anpassung an die Anforderungen der Anwendung, des Systems und der Kommunikations-Architektur, so dass ein durchgängiger Datenzugriff von der Management- bis zur Feldebene gewährleistet ist.
Erfindungsgemäß sind also die Kommunikationsfunktionen nicht fest vorgegeben, sondern auf Basis von frei programmierbaren und auf Kommunikationsfunktionen optimierten Kommunikations-ALUs KA ausgebildet. Der Kommunikations-Controller KC liest in der Startphase den Identifizierungscode einer physikalischen Schnittstelle PS ein, konfiguriert danach die Kommunikations- ALU KA passend und lädt die zugehörige Firmware selbständig ein. Weiterhin beinhaltet der Kommunikations- Prozessor KP mehrere frei programmierbare Kommunikations-Kanäle und kann damit beliebige Kombinationen an Kommunikations-Standards realisieren. Vorzugsweise ist vorgesehen, dass der Kommunikations- Prozessor KP auf der Basis mehrerer frei programmierbarer Kommunikations- Controller KC neben den Kommunikations-Protokollen auch die Applikation ausführen kann. Erfϊndungsgemäß ist die physikalische Schnittstelle PS als eigenständiges, austauschbares Modul ohne eigene Intelligenz oder Controllerfunktionen ausgestaltet, welche sich durch einen Identifizierungscode in der Startphase beim frei programmierbaren Kommunikations-Controller KC anmeldet und diesen dazu ermächtigt, die passende Konfiguration und die zugehörige Firmware zu laden. Insbesondere können bei der erfindungsgemäßen Lösung nicht nur Master/Slave-Systeme sondern auch verteilte Steuerungen, welche zumindest partiell nicht-hierarchische Netzwerkarchitektur mit Durchlässigkeit in beide Richtungen erfordern, realisiert werden.
Bei der in FIG. 5 dargestellten erfindungsgemäßen Lösung eines „quasi dezidierten" Kommunikations-Prozessor KP weist dieser mindestens einen, im dargestellten Ausführungsbeispiel drei frei programmierbare Kommunikations-Controller KC mit jeweils drei Kommunikations-ALUs RPA, TPA, PEA auf. Die erste Kommunikations-ALU RPA hat, wie bereits vorstehend beschrieben, die Aufgabe, entsprechend der Übertragungsrate den empfangenen Bit- bzw. Nibble- (halbes Byte) seriellen Datenstrom zu dekodieren und in eine parallele Darstellung (z.B. Byte, Wort oder Doppelwort) zu konvertieren, die zweite Kommunikations-ALU TPA hat, wie bereits vorstehend ' beschrieben, die Aufgabe, Daten aus einer parallelen Darstellung in Bit- bzw. Nibble-seriellen Datenstrom zu kodieren und mit der richtigen Übertragungsrate auf die Leitung zu geben und die dritte Kommunikations-ALU PEA hat, wie bereits vorstehend beschrieben, die Aufgabe, den Sende- und Empfangsverlauf eines zusammengehörigen Datenpakets zu steuern.
Bei der in FIG. 5 dargestellten Ausführungsform dient ein Kommunikations-Controller KC mit der Puls- Weiten-Modulationsstufe PWM zur Ansteuerung der Motorendstufe, die Encoderlogik EL zum Einlesen der Istposition und die Sample- and - Hold - Stufe SH sowie der Analog-/Digitalwandler AD zum Messen der Phasenspannung und des Motorstroms. Dabei werden insbesondere die Position, Motorspannung und Motorstrom bzw. Phasenspannung zwischen Kommunikations-Controller KC und Antrieb übertragen.
Wie in FIG. 5 dargestellt, enthält der Kommunikations-Controller KC auch den Data Switch DS, welcher beispielsweise die nachgeschaltete 32-Bit Steuereinrichtung CPU und die Kommunikations- ALUs KC mit dem Speicher SP und der internen Peripherie PE verbindet. Die Kommunikations- ALUs RPA und TPA können mehrere Befehle parallel ausführen. Dazu kann, wie bereits vorstehend beschrieben, ein breiter Befehlscode BC benutzt werden, z.B. 64 Bit, in dem mehrere Befehle kodiert sind. Dies können z.B. logische Operationen, Programmsprünge, Setzen und Löschen von Bits, Inkrementieren und Dekrementieren von Zählern,, Transfer von Daten und Bedienen von speziellen Funktionsregistern sein. Im Gegensatz zu herkömmlichen ALUs werden diese Befehle in einem Takt parallel ausgeführt. Entsprechend überwacht die Kommunikations-ALU PEA im Gegensatz zu herkömmlichen ALUs eine Vielzahl von speziellen Ereignissen per Hardware parallel. Dies kann z.B.:
- die Übergabe bestimmter Daten von der Kommunikations-ALU RPA bzw. zur Kommunikations-ALU TPA bzw. zur nachgeschalteten Steuereinrichtung CPU,
- das Ablaufen von Zeiten,
- das Erreichen bestimmter Zählerstände oder
- ^as Setzen bestimmter Zustandsbits sein.
Wenn eines oder eine bestimmte Kombination von Ereignissen eingetreten ist, reagiert die Kommunikations-ALU PEA innerhalb eines Systemtakts durch Abarbeitung eines dem Ereignis zugeordneten Stück Programmcodes.
Die Kommunikations-ALU PEA ist ferner in der Lage innerhalb eines Systemtakts:
- einen Date aus einem lokalen Speicher SR zu lesen,
- zu verarbeiten und an die Kommunikations-ALU TPA zu übergeben
bzw. von der Kommunikations-ALU RPA
- entgegen zu nehmen,
- zu verarbeiten und in dem lokalen Speicher SR abzulegen.
Der Zugriff auf den lokalen Speicher SR erfolgt über zwei Register zweifach indiziert, um in einem Systemtakt auf die in der Kommunikationstechnik üblichen Datenstrukturen direkt zugreifen zu können. Der Data Switch DS vermeidet, wie bereits vorstehend beschrieben, somit den aus anderen Kbmmunikations-Prozessoren KP bekannten „Flaschenhals" eines gemeinsamen Busses, indem er den gleichzeitigen Zugriff der verschiedenen Masterports (im Beispielsfall zwei) über die verschiedenen Slaveports (im Beispielsfall drei) auf die Daten ermöglicht. Dadurch können die Speicher parallel zum laufenden Betrieb gelesen und beschrieben werden, so dass eine industrielle Echtzeit-Ethernet-Lösung mit Netzwerkzyklen und Präzision . im Mikrosekundenbereich ermöglicht wird, welche keine Unterstützung durch proprietäre Hardwarekomponenten oder ASICs benötigt. Dies gilt auch für die Optimierung und Anpassung der Echtzeit-Übertragung, wie Anpassung an die Anforderungen der Anwendung, des Systems und der Kommunikations-Architektur, so dass ein durchgängiger Datenzugriff von der Management- bis zur Feldebene gewährleistet ist. Erfindungsgemäß sind also die Kommunikationsfunktionen nicht fest. vorgegeben, sondern auf Basis von frei programmierbaren und auf Kommunikationsfunktionen optimierten Kommunikations-ALUs KA ausgebildet. Der Kommunikations-Prozessor KP konfiguriert in der Startphase den Kommunikations-Controller KC passend und lädt die zugehörige Firmware selbständig ein. Weiterhin beinhaltet der Kommunikations-Prozessor KP mehrere . frei programmierbare Kommunikations- Controller KC und kann damit beliebige Kombinationen an Kommunikations-Standards realisieren.
Vorzugsweise ist vorgesehen, dass der Kommunikätions-Prozessor KP auf der Basis mehrerer frei programmierbarer Kommunikations-Controller' KC neben den Kommunikations-Protokollen auch die Applikation ausführen kann. Erfindungsgemäß arbeiten, bei der in FIG. 5 dargestellten Ausführungsform, die frei programmierbaren Kommunikations-ALUs RPA, TPA, PEA völlig deterministisch und führen ohne die nach geschaltete Steuereinrichtung CPU die synchronen Antriebsfunktionen selbständig aus. Zwischen den Synchronisationszeitpunkten werden die über die beiden Encoderlogiken EL oder einer Sample-Hold-Schaltung SH und einen AD-Wandler AD übertragenen Messwerte (Position oder Motorstrom bzw. Phasenspannung) bzw. über einen PWM- Modulator PWM übertragenen Stellwerte mit der nachgeschalteten CPU ausgetauscht, womit deren Interruptlatenzzeiten dann nicht in die Synchronisation der Antriebsfunktionen eingehen. Erfindungsgemäß wird also eine direkte Synchronisation von Antriebsfunktionen, insbesondere das Messen der Position oder das Ausgeben der Stellgrößen, auf schnelle, deterministische und jitterfreie Kommunikationsverbindungen,, insbesondere Realtime-Ethernet Verbindungen wie z.B. PROFINET, POWERLINK, SERCOS-3 , EtherCAT ermöglicht.
Alternativ dazu kann der Antrieb eine lokale Zeit führen, die über Kommunikationsverbindungen mit den lokalen Zeiten auf anderen Antrieben auf eine innerhalb einer Automatisierungsanlage gemeinsamen Systemzeit synchronisiert werden. Zu fest definierten Zeitpunkten können dann auf den einzelnen Antrieben die synchronen Funktionen, wie das Messen der Position oder das Ausgeben des Motorstroms, aktiviert werden. Besondere Schwierigkeit besteht darin, dass die dazu benötigten Funktionen zyklisch, ablaufen und der gesamte Zyklus sowohl in seiner Zykluszeit als auch in seiner Phasenlage auf die lokale Zeit zu synchronisieren ist. Bei der in FIG. 6 dargestellten Ausfuhrungsform sind im Vergleich zur Ausführungsform nach FIG. 5 zusätzlich eine lokale Uhr U und im Verbindungsweg der Kommunikations-ALUs RPA, TPA, PEA jeweils ein Latch L angeordnet. Zum Startzeitpunkt. von zyklisch ablaufenden Steuerungsfunktionen wird die synchronisierte lokale Zeit im Latch L abspeichert, es wird durch Differenzbildung mit der im Latch L gespeicherten Zeit im letzten Startpunkt die Zykluszeit auf Basis der Zeit der lokalen Uhr U gemessen und schließlich wird durch Vergrößern oder Verkleinern der aktuellen Zykluszeit, -diese in Bezug auf die lokale Zeit konstant und in einer festen Phasenbeziehung gehalten. Dadurch ist der gesamte Zyklus sowohl in seiner Zykluszeit als auch in seiner Phasenlage auf die lokale Zeit synchronisiert, wie dies unmittelbar aus dem Zeitdiagramm der FIG. 7 hervorgeht. Erfmdungsgemäß wird also eine direkte Synchronisation von zyklischen Antriebsfünktionen, insbesondere das Messen der Position oder das Ausgeben der Stellgrößen, auf eine lokale Systemzeit ermöglicht, die durch geeignete Protokolle, insbesondere IEEE 1588, innerhalb des Automatisierungssystems auf einen Gleichlauf nachgeregelt wird.
Auch wenn die Ausgestaltung der erfindungsgemäßen Lösung für den Einsatz bei der Automatisierungstechnik, insbesondere für Antriebsfunktionen beschrieben ist, (einschließlich universelle Kommunikations-Plattform für Barcode- und Identifikationssysteme, intelligente EAs, Low-Cost-Antriebe, SPSen oder Maschinenterminals) beschrieben ist, so ist der Einsatz des Verfahrens und der Vorrichtung auch in anderen Nachrichtennetzen mit entspredhenden Netzwerkübergängen möglich. Durch eine intelligente Verzahnung von Standardsteuerungs- und Sicherheitsfunktionen lassen sich sowohl Standardfunktionen als auch Sicherheitsfunktionen rückwirkungsfrei in einem System kombinieren. Die Modularität des Systems bietet dem Anwender große Flexibilität für maßgeschneiderte, jederzeit einfach erweiterbare Lösungen und erlaubt auch eine Migration. Dies ist darauf zurückzuführen, dass das erfϊndungsgemäße Konzept auf Vorleistungen in Nachrichtennetzen oder Systemen/Anlagen (auch für vermittelte Verbindungen) aufbaut und die einfache Anpassung an die jeweiligen Gegebenheiten und Einbindung ohne Änderung der Erfindung bzw. des Grundkonzepts erlaubt. Beispielsweise ermöglicht das erfϊndungsgemäße Verfahren einen kostengünstigen Aufbau beliebig vernetzbarer Busteilnehmer mit individueller interaktiver Kommunikation über beliebige drahtlose oder drahtgebundene Netzwerke bzw. Telekommunikationsnetze (beispielsweise UTRAN UMTS Terrestrial Radio Access Network). Der dabei ablaufende iterative Prozess des Netzwerkmanagementdienstes, insbesondere hinsichtlich des Dialogs umfasst alle sinnvoll vorkommende Dialogelemente (z.B. Initialisieren, Konfigurieren, Starten und Stoppen von Busteilnehmern (Geräten) oder Programmen, Kommunikationsprotokollen), welche entsprechend hinterlegt sind, kann insbesondere auch bei inhomogenen Strukturen eingesetzt werden und erlaubt auch ein Dialogmonitoring mit Einschluss der Busteilnehmer und des Dialogservers im Telekommunikationsnetz. So wird beispielsweise ein Zugriff auf Daten, Parameter, Funktionen in jedem Busteilnehmer von jedem Ort aus via Internet und auch eine einheitliche, geräteunabhängige Fehlerbehandlung ermöglicht. Weiterhin kann in vorteilhafter Weise die Initialisierung neuer und der Austausch fehlerhafter Geräte durch Plug- & Play verwirklicht werden und die flexiblen Kommunikätions-Mechanismen ermöglichen den einfachen Einsatz in vielen Anwendungsfällen und Systemarchitekturen. Beispielsweise können bei der erfindungsgemäßen Lösung nicht nur Master/Slave-Systeme sondern auch' verteilte Steuerungen, welche zumindest partiell nicht-hierarchische Netzwerkarchitektur mit Durchlässigkeit in beide Richtungen erfordern, realisiert werden. In Weiterbildung der Erfindung können beispielsweise im Dialogserver für TCP/IP und SPX/IPX Routing-Funktionalitäten (auch als LCR Least Cost Router) installiert werden usw.

Claims

Patentansprüche
1. Verfahren zur Datenkommunikation, insbesondere zur Kopplung von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines offenen Automatisierungssystems mit verteilter Steuerung, welche über einen Kommunikations-Controller (KC) mit einer übergeordneten Steuereinrichtung (CPU) zusammenarbeiten, bei dem:
• der Kommunikations-Controller (KC) aus mindestens einer frei programmierbaren Kommunikations-ALU (RPA, TPA, PEA) aufgebaut ist,
• in einem Befehlscode der Kommunikations-ALU (RPA, TPA) mehrere Befehle kodiert sind und welcher auf spezielle Kommunikationsfunktionen optimiert ist, und
• in der Kommunikations-ALU (RPA, TPA) Logikfunktionsblöcke (FI, Z, V, CRC) parallel angeordnet sind, die spezielle Kommunikationsfunktionen ausführen, wodurch die Kommunikationsfunktionen nicht fest vorgegeben sind, sondern auf Basis des frei programmierbaren und auf Kommunikationsfunktionen optimierten Kommunikations-ALUs (RPA, TPA, PEA) ausgebildet sind, wodurch in einem Systemtakt mehrere Befehle ausgeführt werden und wodurch Übergänge zwischen den unterschiedlichsten Netzwerken realisiert werden können.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kommunikation zweistufig erfolgt, indem die Kommunikationsfunktion auf zwei Kommunikations-ALUs (RPA, TPA) der ersten Stufe, nämlich:
• eine erste Kommunikations-ALU (RPA)5 welche auf den Empfang und die Dekodierung eines Bit- oder Nibble- orientierten, seriellen Datenstroms und dessen Parallelwandlung in Byte, Wort oder Doppelwort Darstellung optimiert ist,
• eine zweite Kommunikations-ALU (TPA), welche auf die Seriellwandlung von Byte, Wort oder Doppelwort Darstellung in Bit- oder Nibole-orientierten serielle Daten und das Kodieren und Senden diese seriellen Datenstroms optimiert ist, und auf eine Kommunikations-ALU (PEA) der zweiten Stufe, nämlich:
• eine dritte Kommunikations-ALU (PEA), welche über eine Überwachungslogik verfügt, welche eine Vielzahl von möglichen Ereignissen und Kombinationen daraus gleichzeitig überwacht und welche im Ereignisfall innerhalb eines Systemtaktes mit dem zugehörigen Programmcode startet, aufgeteilt ist.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die übergeordnete Steuereinrichtung (CPU) zusammen mit der oder den Kommunikations-ALUs (RPA, TPA, PEA) in einem Schaltkreis integriert sind, welcher zur Ankopplung an eine externe . Steuereinrichtung (Hostsystem) ein Dual-port Memory (DPMH) enthält, oder dass die übergeordnete Steuereinrichtung (CPU) des Schaltkreises die gesamte Applikation ausführt und dieser dann zum Anschluss von externem Speicher und Peripheriebausteinen den internen Systembus als Extension Bus (EB) rausfuhrt und dass für beide Betriebsarten die gleichen Signale benutzt und diese per Software umgeschaltet werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein sehr breiter, insbesondere 64 Bit breiter, Befehlscode (BC) benutzt wird, in dem mehrere Befehle,- insbesondere logische Operationen, Programmsprünge, Setzen und Löschen von Bits, Inkrementieren und Dekrementieren von Zählern, Transfer von Daten und Bedienen von speziellen Funktionsregistern, kodiert sind, wobei diese Befehle in einem Systemtakt parallel ausgeführt werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die dritte Kommunikations- ALU (PEA) eine Vielzahl von speziellen Ereignissen, insbesondere die Übergabe bestimmter Daten von der ersten Kommunikations-ALU (RPA) bzw. zur zweiten Kommunikations- ALU (TPA) bzw. zur übergeordneten Steuereinrichtung (CPU), das Ablaufen von Zeiten, das Erreichen bestimmter Zählerstände oder das Setzen bestimmter Zustandsbits, parallel überwacht.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass' die Kpmmunikations-ALUs (RPA, TPA, PEA) zur Seriell/Parallel- bzw. Parallel/Seriell- Wandlung mit weiteren Kommunikations- ALUs über einen gemeinsamen Registersatz (SR) gekoppelt sind, auf die alle gleichzeitig schreibend und lesend zugreifen können, wobei beim Schreiben der letzte Wert gültig ist.
7. Verfahren nach Anspruch 3 und 6, dadurch gekennzeichnet, dass der Registersatz (SR) und das Dual-port Memory (DPM) der Kommunikations-ALU (RPA, TPA, PEA), parallel zum
-laufenden Betrieb von der übergeordneten Steuereinrichtung (CPU) gelesen und beschrieben werden können.
8. Verfahren nach Anspruch 3 und 6, dadurch gekennzeichnet, dass der Kommunikations- Controller (KC) bestehend aus mindestens einer Kommunikations-ALU. (RPA, TPA, PEA), über einen DMA-Controller (DMA), einem Dual-port Memory (DPMH) und einem gemeinsamen Register (SR) mit der übergeordneten Steuereinrichtung (CPU) gekoppelt ist.
9. Vorrichtung zur Datenkömmunikation, insbesondere zur Kopplung von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines offenen
Automatisierungssystems mit verteilter Steuerung, mit: ^ einem Kommunikations-Controller (KC), welcher mit einer , übergeordneten
Steuereinrichtung (CPU) zusammenarbeitet und welcher mindestens eine frei programmierbare
Kommunikations-ALU (RPA, TPA, PEA) aufweist,
^- einem Befehlscode, in welchem mehrere Befehle kodiert sind und welcher auf
Kommunikationsfunktionen optimiert ist, und
^" einer parallelen Anordnung von mindestens zwei Logikfunktionsblöcken (FI, Z, V, CRC), die spezielle Kommunikatiosfunktionen ausführen, in der Kommunikations-ALU (RPA,
TPA, PEA), wodurch die Kommunikationsfunktionen nicht fest vorgegeben sind, sondern auf Basis von mindestens einem frei programmierbaren und auf Kommunikationsfunktionen optimierten Kommunikations-ALU (RPA, TPA, PEA) ausgebildet sind, wodurch in einem Systemtakt mehrere Befehle ausgeführt werden und wodurch Übergänge zwischen den unterschiedlichsten Netzwerken realisiert werden können.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass zur Seriell/Parallel- bzw. Parallel/Seriell-Wandlung von ein bis 32 Bit breiten Daten und deren Kodierung und Dekodierung, die parallel liegenden Logikfunktionsblöcke (FI, Z, V, CRC) mindestens ein Schieberegister (FI), mindestens einen Zähler (Z) und mindestens einen Vergleicher (V), welche die seriellen Daten auswerten und in Abhängig von vorgegebenen Werten Statusbits in Flags (F) setzen, und mindestens einen CRC-Generator (CRC), welcher auf Befehl der Kommunikations- ALU (RPA, TPA, PEA) die seriellen Daten in die Berechnung des CRC-Polynoms aufnimmt, aufweisen.
I L. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Kommunikations-ALUs (RPA, TPA, PEA) zur Seriell/Parallel- bzw. Parallel/Seriell-Wandlung mit weiteren Kommunikations-ALUs (RPA, TPA, PEA) über FIFOs und zusätzlich über Befehls- und Statusregister angekoppelt sind oder dass die weiteren Kommunikations-ALUs (RPA, TPA, PEA) über einen gemeinsamen Registersatz (SR) gekoppelt sind, auf die alle gleichzeitig schreibend und lesend zugreifen können, wobei beim Schreiben der letzte Wert gültig ist.
12. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass zumindest eine der Kommunikations-ALUs (RPA, TPA, PEA) über einen DMA-Controller (DMA) und / oder einem Dual-port Memory (DPMH) mit der übergeordneten Steuereinrichtung (CPU) verbunden ist.
13. Vorrichtung nach Anspruch 9 und 12, dadurch gekennzeichnet, dass eine Hostschnittstelleneinrichtung mit einem an Adress-, Daten- Steuerbusleitungen angeschlossen Hoststeuereinrichtung (HC) vorgesehen ist, welche zwischen einem Erweiterungsbus (EB) zum Anschluss vön Speicher und Peripheriebausteinen und dem Dual-port Memory (DPMH) zum Ansch'luss einer weiteren übergeordneten Steuereinrichtung umschaltbar ist.
14. Gerät mit flexibler ■ Kommunikationsstruktur, insbesondere Automatisierungsgerät, welches aufweist:
^ mindestens einen frei programmierbaren Kommunikations-Controller (KC), welcher mit einer übergeordneten Steuereinrichtung zusammenarbeitet, ^* mindestens eine im Kommunikations-Controller (KC) integrierte frei programmierbare
Kommunikations-ALU (KA)und ^ eine über Signalleitungen zur Übertragung eines Identifizierungscodes, Steuerdaten,
Empfangsdaten und Sendedaten (IC, ST, ED, SD) mit dem Kommunikations-Controller
(KC) verbundene, austauschbare, physikalische Schnittstelle (PS), wodurch die physikalische Schnittstelle (PS) austauschbar ist.
15. Automatisierungsgerät nach Anspruch 14, dadurch gekennzeichnet, dass im Kommunikations- Prozessor (KP) mehrere frei programmierbare Kommunikations-Controller (KC) enthalten sind.
16. Automatisierungsgerät nach Anspruch 14, dadurch gekennzeichnet, dass die physikalische Schnittstelle (PS) als gedruckte Schaltung mit dem Anschlussstecker des Kommunikationsnetzwerkes ausgestaltet ist.
17. Automatisierungsgerät nach Anspruch 14, dadurch gekennzeichnet, dass eine physikalische Schnittstelle (PS) mit dem Anschlussstecker des Kommunikationsnetzwerkes als eine integrierte Einheit ausgestaltet ist.
18. Automatisierungsgerät nach Anspruch 14, dadurch gekennzeichnet, dass der Kommunikations-Prozessor (KP) sowohl die Applikation als auch das Übertragungsprotokoll abarbeitet. .
19. Verfahren zur Konfiguration eines Automatisierungsgeräts mit mindestens einem Kommunikations-Controller (KC), mindestens einer in diesem . integrierte Kommunikations- ALU. (KA) und mindestens einer physikalischen Schnittstelle (PS), bei dem
• die Kommunikationsfunktionen nicht fest vorgegeben sind, sondern auf Basis von frei programmierbaren und auf Kommunikationsfunktionen optimierten ALUs (KA) ausgebildet sind, • in der Startphase die physikalische Schnittstelle (PS) über eine Signalleitung (IC) einen Identifizierungscode an den Kommunikations-Controller (KC) sendet und
• der Kommunikations-Controller (KC) selbständig die richtige Konfiguration durchfuhrt und die zugehörige Software in die Kommunikations-ALU (KA) lädt.
20. Verfahren . zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines Automatisierungssystems mit verteilter Steuerung, welche einen „quasi dezidierten" Kommunikations-Controller (KC), der über mindestens eine frei programmierbare Kommunikations-ALU (RPA, TPA, PEA) mit einer nachgeschalteten Steuereinrichtung (CPU) zusammenarbeitet, aufweisen, bei dem:
• der Kommunikations-Controller (KC) das Auftreten eines bestimmten Date oder Ereignisses detektiert,
• die Kommunikations-ALU (RPA, TPA, PEA) die synchronen Steuerungsfunktionen ausführen und
• zwischen den Synchronisationszeitpunkten die Mess- und Stellwerte mit der nachgeschalteten Steuereinrichtung (CPU) ausgetauscht werden, wodurch die Interruptlatenzzeiten der nachgeschalteten Steuereinrichtung (CPU) nicht in die direkte Synchronisation der Steuerungsfunktiόnen eingehen.
21. Verfahren zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines Automatisierungssystems mit verteilter Steuerung, welche einen „quasi dezidierten" Kommunikations-Controller (KC), der über mindestens eine frei programmierbare Kommunikations-ALU (RPA, TPA, PEA) mit einer nachgeschalteten Steuereinrichtung (CPU) zusammenarbeitet, aufweisen, bei dem:
• zum Startzeitpunkt von zyklisch ablaufenden Steuerungsfunktionen die synchronisierte lokale Zeit abspeichert (L) wird,
• durch Differenzbildung mit der gespeicherten Zeit im letzten Startpunkt die Zykluszeit auf Basis der lokalen Zeit (U) gemessen wird und
• durch Vergrößern oder Verkleinern der aktuellen Zykluszeit, diese in Bezug auf die lokale Zeit konstant und in einer festen Phasenbeziehung gehalten wird, wodurch der gesamte Zyklus sowohl in seiner Zykluszeit als auch in seiner Phasenlage auf die lokale Zeit synchronisiert ist.
22. Verfahren nach Anspruch 20, gekennzeichnet , durch direkte Synchronisation von Antriebsfunktionen, insbesondere das Messen der Position oder das Ausgeben der Stellgrößen, auf schnelle, deterministische und jitterfreie Kommunikationsverbindungen erfolgt.
23. Verfahren nach Anspruch 21, gekennzeichnet durch direkte Synchronisation von zyklischen Antriebsfunktionen, insbesondere das Messen der Position oder das Ausgeben der Stellgrößen, auf eine lokale Systemzeit, die durch geeignete Protokolle, insbesondere EBEE 1588, innerhalb des Automatisierungssystems auf einen Gleichlauf nachgeregelt wird.
24. Vorrichtung zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines Automatisierungssystems mit verteilter Steuerung, mit:
^" einem „quasi dezidierten" Kommunikations-Controller (KC), welcher mindestens eine frei programmierbare Kommunikations-ALU (RPA, TPA, PEA) aufweist,
^ einer dem Kommunikations-Controller (KC) nachgeschalteten Steuereinrichtung (CPU) und ^* mindestens einem Logikfunktionsblock mit Mitteln zur Messung und Speicherung von
Zeiten in der Kommunikations-ALU (ElPA, TPA, PEA), wodurch mittels des Kommunikations-Controller (KC) eine direkte Synchronisation der Steuerungsfunktionen ohne die nachgeschaltete Steuereinrichtung (CPU) oder die Synchronisation nach Maßgabe einer gespeicherten lokalen Zeit mit jedem Start einer Steuerungsfunktion erfolgt.
PCT/EP2005/010348 2005-06-23 2005-09-25 Verfahren zur datenkommunikation von busteilnehmern eines offenen automatisierungssystems WO2006136201A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002612564A CA2612564A1 (en) 2005-06-23 2005-09-25 Method for data communication of bus users in an open automation system
US11/922,395 US8065455B2 (en) 2005-06-23 2005-09-25 Method for data communication of bus users in an open automation system
BRPI0520350-3A BRPI0520350A2 (pt) 2005-06-23 2005-09-25 processo para a comunicação de dados de participantes coletivos de um sistema de automação aberto
KR1020087001780A KR101125419B1 (ko) 2005-06-23 2005-09-25 개방 자동화 시스템 내에 있는 버스 사용자의 데이터 통신방법
JP2008517334A JP4903201B2 (ja) 2005-06-23 2005-09-25 オープンなオートメーションシステムのバス加入機器のデータ通信方法
EP05798012.0A EP1894113B1 (de) 2005-06-23 2005-09-25 Verfahren zur datenkommunikation von busteilnehmern eines offenen automatisierungssystems
EP08022031.2A EP2110754B1 (de) 2005-06-23 2005-09-25 Verfahren und Vorrichtung zur Synchronisation von Busteilnehmern eines Automatisierungssystems
CN2005800502219A CN101208674B (zh) 2005-06-23 2005-09-25 用于开放式自动化系统的总线用户的数据通信的方法和装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102005029656.4 2005-06-23
DE102005029654.8 2005-06-23
DE200510029656 DE102005029656B3 (de) 2005-06-23 2005-06-23 Verfahren zur Kopplung von Busteilnehmern eines Automatisierungssystems und frei programmierbarer Kommunikations-Prozessor hierfür
DE102005029655.6 2005-06-23
DE200510029655 DE102005029655A1 (de) 2005-06-23 2005-06-23 Verfahren und Vorrichtung zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines Automatisierungssystems
DE102005029654A DE102005029654B4 (de) 2005-06-23 2005-06-23 Gerät mit flexibler Kommunikationsstruktur und Verfahren zu dessen Konfiguration

Publications (1)

Publication Number Publication Date
WO2006136201A1 true WO2006136201A1 (de) 2006-12-28

Family

ID=35695581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/010348 WO2006136201A1 (de) 2005-06-23 2005-09-25 Verfahren zur datenkommunikation von busteilnehmern eines offenen automatisierungssystems

Country Status (8)

Country Link
US (1) US8065455B2 (de)
EP (2) EP2110754B1 (de)
JP (1) JP4903201B2 (de)
KR (1) KR101125419B1 (de)
CN (1) CN101208674B (de)
BR (1) BRPI0520350A2 (de)
CA (1) CA2612564A1 (de)
WO (1) WO2006136201A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062387A1 (de) * 2007-12-22 2009-06-25 Robert Bosch Gmbh Verfahren zum Übertragen von Feldbus-Daten sowie Feldbus-Kommunikationssystem
EP2197160A1 (de) * 2008-12-10 2010-06-16 Siemens Aktiengesellschaft Azyklischer Datentransfer über einen Feldbuskoppler
EP2219116A1 (de) * 2009-02-13 2010-08-18 Abb Ag Kommunikationsmodul für ein Automatisierungssystem
EP2249217A1 (de) * 2009-05-08 2010-11-10 Siemens Aktiengesellschaft Automatisierungsgerät und Automatisierungssystem
DE102011011587A1 (de) * 2011-02-17 2012-08-23 Phoenix Contact Gmbh & Co. Kg Portunabhängiges topologisch geplantes Echtzeitnetzwerk
WO2013124037A1 (de) * 2012-02-22 2013-08-29 Phoenix Contact Gmbh & Co. Kg Profinet ethernet adapter
CN103513620A (zh) * 2012-06-27 2014-01-15 上海华建电力设备股份有限公司 一种profibus-dp1主站通讯服务器及其实现方法
EP2784988A1 (de) * 2013-03-27 2014-10-01 Siemens Aktiengesellschaft Kommunikationsschnittstellenmodul für ein modulares Steuerungsgerät eines industriellen Automatisierungssystems
EP2352264A4 (de) * 2009-04-15 2015-11-11 Supcon Group Co Ltd Ethernet-basiertes datenübertragungsverfahren, ethernetstation und kontrollsystem
CN112505246A (zh) * 2020-11-11 2021-03-16 山西科致成科技有限公司 数字式矿用气体传感器校准检定装置及方法
CN114097210A (zh) * 2019-07-11 2022-02-25 因温特奥股份公司 用于尤其在电梯设备中传送数据内容的方法和数据网络

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185969A1 (en) * 2005-08-19 2007-08-09 Davis Wayne R Drive with Server
US8554877B2 (en) * 2005-08-19 2013-10-08 Rockwell Automation Technologies, Inc. Motor drive with integrated server module
US7844703B2 (en) * 2006-11-02 2010-11-30 International Business Machines Corporation System and method of measurement for a distributed computer system
US8183982B2 (en) * 2007-08-14 2012-05-22 Infineon Technologies Ag System including reply signal that at least partially overlaps request
DE102007050708B4 (de) * 2007-10-22 2009-08-06 Phoenix Contact Gmbh & Co. Kg System zum Betreiben wenigstens eines nicht-sicherheitskritischen und wenigstens eines sicherheitskritischen Prozesses
US8072174B2 (en) * 2008-11-17 2011-12-06 Rockwell Automation Technologies, Inc. Motor controller with integrated serial interface having selectable synchronization and communications
US8212514B2 (en) * 2008-11-17 2012-07-03 Rockwell Automation Technologies, Inc. Serial interface motor controller having user configurable communications speeds
US8080965B2 (en) * 2008-11-17 2011-12-20 Rockwell Automation Technologies, Inc. Motor controller with deterministic synchronous interrupt having multiple serial interface backplane
DE112008004237B4 (de) * 2008-12-25 2016-02-11 Mitsubishi Electric Corporation Datenkommikationssystem und Datenkommunikationsvorrichtung
US9535876B2 (en) * 2009-06-04 2017-01-03 Micron Technology, Inc. Conditional operation in an internal processor of a memory device
DE102009054155A1 (de) * 2009-11-23 2011-05-26 Abb Ag Ein- und/oder Ausgabe-Sicherheitsmodul für ein Automatisierungsgerät
JP5411725B2 (ja) * 2010-01-27 2014-02-12 株式会社日立産機システム 制御用ネットワークシステム、マスタ装置、制御用データ処理方法、および、制御用データ処理プログラム
US20110261832A1 (en) * 2010-04-23 2011-10-27 Lobuono Mark Anthony Method, system, and apparatus for exchanging input and output data
DE102010043706A1 (de) * 2010-07-05 2012-01-05 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße
EP2416528B1 (de) * 2010-08-05 2013-01-30 Siemens Aktiengesellschaft Verfahren zur Kommunikation in einem Automatisierungsnetzwerk
ES2501593T3 (es) * 2010-11-19 2014-10-02 Siemens Aktiengesellschaft Nodo de red de conmutación modular para una red de comunicación
CN103339574B (zh) * 2011-02-04 2015-11-25 三菱电机株式会社 工程设计工具及可编程控制器
WO2012136546A1 (de) * 2011-04-06 2012-10-11 Robert Bosch Gmbh Verfahren und vorrichtung zur anpassung der datenübertragungssicherheit in einem seriellen bussystem
KR101932787B1 (ko) 2011-04-06 2019-03-15 로베르트 보쉬 게엠베하 직렬 버스 시스템에서 데이터 전송 용량을 증대하기 위한 방법 및 장치
CN103649933B (zh) 2011-04-26 2016-10-19 罗伯特·博世有限公司 用于与存储器大小匹配的串行数据传输的方法和设备
KR20140043401A (ko) * 2011-05-20 2014-04-09 지멘스 악티엔게젤샤프트 AS-i 슬레이브를 파라미터화하기 위한 방법 및 장치
JP5783802B2 (ja) * 2011-05-27 2015-09-24 ミネベア株式会社 モータ駆動装置、集積回路装置、モータ装置、及びモータ駆動システム
US9690742B2 (en) 2011-06-29 2017-06-27 Robert Bosch Gmbh Method and device for serial data transmission having a flexible message size and a variable bit length
US10613506B2 (en) 2012-01-06 2020-04-07 General Electric Company Apparatus and method for creating and presenting control logic
AT512742A1 (de) * 2012-04-11 2013-10-15 Fts Computertechnik Gmbh Verfahren und Verteilereinheit zur zuverlässigen Vermittlung von Synchronisationsnachrichten
DE102012206272A1 (de) * 2012-04-17 2013-10-17 Beckhoff Automation Gmbh Feldbus-Datenübertragung
EP2759896B1 (de) * 2013-01-28 2017-08-02 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Automatisierungssystems
KR101946455B1 (ko) 2013-03-14 2019-02-11 삼성전자주식회사 시스템 온-칩 및 이의 동작 방법
DE102013005748A1 (de) 2013-04-05 2014-10-09 Phoenix Contact Gmbh & Co. Kg Automatisierungseinrichtung und Verfahren zur Reduzierung von Jittern
US20150055644A1 (en) * 2013-08-22 2015-02-26 Lsi Corporation Precise timestamping of ethernet packets by compensating for start-of-frame delimiter detection delay and delay variations
US9270620B2 (en) * 2013-09-25 2016-02-23 International Business Machines Corporation Memory transfer optimization of network adapter data placement when performing header-data split operations
CN104683198B (zh) * 2013-11-29 2018-11-27 深圳市国微电子有限公司 一种航空总线组件的信号优化系统及其优化方法
CN104753899B (zh) * 2013-12-31 2018-02-13 中核控制系统工程有限公司 一种具有多级扩展结构的开放性总线结构
KR101933447B1 (ko) * 2014-03-17 2018-12-28 엘에스산전 주식회사 RAPIEnet 네트워크 시스템에서의 2채널 버스 데이터의 모니터링 장치
DE102014108455A1 (de) * 2014-06-16 2015-12-17 Beckhoff Automation Gmbh Verfahren zum Betreiben eines Netzwerks
CN104202228B (zh) * 2014-09-02 2015-06-10 卡乐电子(苏州)有限责任公司 一种控制器的终端操作器
EP3024128B1 (de) * 2014-11-18 2018-04-25 Siemens Aktiengesellschaft Modulare Steuerung eines Linearantriebs mit Kommunikation
EP3070551B1 (de) * 2015-03-17 2018-04-25 Siemens Aktiengesellschaft Datenbuskoppler und verfahren zum betrieb
EP3342556A4 (de) * 2015-08-25 2019-05-29 Kawasaki Jukogyo Kabushiki Kaisha Robotersystem
DE102016123400B3 (de) * 2016-01-19 2017-04-06 Elmos Semiconductor Aktiengesellschaft Eindrahtlichtsteuerbus mit mehreren Pegeln
CN105743755B (zh) * 2016-04-19 2018-12-25 上海君协光电科技发展有限公司 一种双冗余can总线通信系统
US20180011468A1 (en) * 2016-07-11 2018-01-11 Ron Slack Anchor testing data collection apparatus
EP3270547A1 (de) * 2016-07-14 2018-01-17 Deutsche Telekom AG Feldbusgerät zum kommunizieren mit einem entfernten automatisierungsgerät
DE102016220197A1 (de) * 2016-10-17 2018-04-19 Robert Bosch Gmbh Verfahren zum Verarbeiten von Daten für ein automatisiertes Fahrzeug
CN108664436B (zh) * 2017-03-28 2021-10-15 上海山里智能科技有限公司 一种综合计算系统
DE102017208827A1 (de) * 2017-05-24 2018-11-29 Wago Verwaltungsgesellschaft Mbh Verteilte Verarbeitung von Prozessdaten
US10401816B2 (en) * 2017-07-20 2019-09-03 Honeywell International Inc. Legacy control functions in newgen controllers alongside newgen control functions
JP2019029765A (ja) * 2017-07-27 2019-02-21 オムロン株式会社 スレーブ装置、産業用ネットワークシステム、およびスレーブ装置制御方法
DE102017007815A1 (de) * 2017-08-18 2019-02-21 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Prozesssteuerung
CN108415869B (zh) * 2018-02-28 2020-06-26 北京零壹空间科技有限公司 串行数据的发送方法及装置
US11300604B2 (en) * 2018-04-06 2022-04-12 Bently Nevada, Llc Monitoring system with serial data lane transmission network
DE102018206109B4 (de) * 2018-04-20 2021-01-07 Lenze Automation Gmbh Elektrisches Steuergerät und Steuergerätesystem
WO2019236840A1 (en) * 2018-06-07 2019-12-12 Dd Dannar Llc Mobile platform systems and methods
EP3657758B1 (de) * 2018-11-20 2021-05-26 Siemens Aktiengesellschaft Verfahren zur funktional sicheren verbindungsidentifizierung
KR20200079595A (ko) * 2018-12-26 2020-07-06 현대자동차주식회사 메시지 라우팅 시스템 및 그 방법
DE102019114303B3 (de) * 2019-05-28 2020-09-17 Beckhoff Automation Gmbh Verfahren zum Erfassen von Netzwerkteilnehmer in einem Automatisierungsnetzwerk und Automatisierungsnetzwerk
US11003498B1 (en) * 2020-08-10 2021-05-11 Coupang Corp. Computerized systems and methods for fail-safe loading of information on a user interface using a circuit breaker
CN112039743B (zh) * 2020-08-27 2022-04-12 湖南华数智能技术有限公司 一种ASI总线和EtherCAT总线互联互通的装置
TWI786461B (zh) * 2020-11-09 2022-12-11 財團法人工業技術研究院 基於Modbus的資訊轉譯裝置、方法、系統及電腦可讀記錄媒體
CN112363479B (zh) * 2020-12-09 2022-04-08 南昌航空大学 一种现场设备间的数字通信传输方法及系统
RU2760299C1 (ru) * 2021-03-03 2021-11-23 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Дублированная шина для систем автоматизированного контроля и управления атомных станций и других промышленных объектов
CN113672540B (zh) * 2021-07-07 2024-01-26 上海松江飞繁电子有限公司 二总线系统
CZ36308U1 (cs) * 2022-06-15 2022-08-30 AŽD Praha s.r.o. Router a zapojení routeru
CN116540990B (zh) * 2023-06-30 2023-09-01 贵州轻工职业技术学院 基于嵌入式实现电子产品的代码集成方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220258C2 (de) 1992-06-23 1994-09-01 Delta T Entwicklungsgesellscha Vorrichtung zur Datenverarbeitung
DE29907909U1 (de) 1999-05-04 1999-07-15 Spectrum Systementwicklung Mic Einsteckkarte und integriertes Überwachungssystem für Prozesse
US5988846A (en) * 1996-07-01 1999-11-23 Asea Brown Boveri Ag Method of operating a drive system and device for carrying out the method
DE19831405A1 (de) 1998-07-13 2000-01-20 Siemens Ag Steuerungssystem mit einem Personalcomputer
US20010014833A1 (en) 2000-01-26 2001-08-16 Schneider Electric Industries Sa Programmable logic controller provided with communication functions in a client-server architecture
DE19928517C2 (de) 1999-06-22 2001-09-06 Pilz Gmbh & Co Steuerungssystem zum Steuern von sicherheitskritischen Prozessen
DE10004425A1 (de) 2000-02-02 2002-01-17 Siemens Ag Netzwerk sowie Netzwerkteilnehmer, insbesondere Feldgerät, für ein derartiges Netzwerk
US20020095612A1 (en) * 2000-10-27 2002-07-18 Thomas Furhrer Method and system for synchronizing users of a communications link
US20020141438A1 (en) 2001-02-09 2002-10-03 Smith J. Howard Data communication controller and method
DE10258469A1 (de) * 2002-12-09 2004-07-29 Volkswagen Ag Verfahren und Vorrichtung zur Datenübermittlung in einem verteilten System

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598846A (en) * 1898-02-08 Apparatus for spraying poison on plants
US4991133A (en) * 1988-10-07 1991-02-05 International Business Machines Corp. Specialized communications processor for layered protocols
JPH0541722A (ja) * 1991-08-06 1993-02-19 Sharp Corp プログラマブルコントローラ
JP3074248B2 (ja) * 1995-08-07 2000-08-07 株式会社日立製作所 磁気記録再生装置
US5784636A (en) * 1996-05-28 1998-07-21 National Semiconductor Corporation Reconfigurable computer architecture for use in signal processing applications
JP3544849B2 (ja) * 1998-01-28 2004-07-21 株式会社東芝 インバータ装置の通信用オプション装置およびこれを用いた通信システム
US6631466B1 (en) * 1998-12-31 2003-10-07 Pmc-Sierra Parallel string pattern searches in respective ones of array of nanocomputers
WO2001016702A1 (en) * 1999-09-01 2001-03-08 Intel Corporation Register set used in multithreaded parallel processor architecture
JP2001236134A (ja) * 2000-02-24 2001-08-31 Toshiba Corp ネットワークシステム
JP3800305B2 (ja) * 2000-03-07 2006-07-26 オムロン株式会社 ゲートウェイシステム及び通信装置端末
JP4186379B2 (ja) * 2000-04-14 2008-11-26 松下電工株式会社 プログラマブルコントローラ、プログラマブルコントローラの周辺ユニット
US6396392B1 (en) * 2000-05-23 2002-05-28 Wire21, Inc. High frequency network communications over various lines
DE10047925A1 (de) 2000-09-27 2002-05-02 Siemens Ag Verfahren zur Echtzeitkommunikation zwischen mehreren Netzwerkteilnehmern in einem Kommunikationssystem mit Ethernet-Physik sowie korrespondierendes Kommunikationssystem mit Ethernet-Physik
DE10055066A1 (de) 2000-11-07 2002-06-06 Age Aumann & Goertz Engineerin Verfahren zum multidirektionalen Austausch von Informationen zwischen Teilnehmern auf Ethernet Basis
DE10147421A1 (de) 2001-03-16 2002-09-26 Siemens Ag Anwendungen eines schaltbaren Datennetzes für Echtzeit- und Nichtechtzeitkommunikation
DE10140861A1 (de) 2001-03-16 2002-10-02 Siemens Ag Verfahren und System zur Kopplung von Datennetzen
JP3864747B2 (ja) * 2001-10-09 2007-01-10 株式会社デンソー 冗長系信号処理装置
US7268786B2 (en) * 2004-05-14 2007-09-11 Nvidia Corporation Reconfigurable pipeline for low power programmable processor
US7434192B2 (en) * 2004-12-13 2008-10-07 Altera Corporation Techniques for optimizing design of a hard intellectual property block for data transmission

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220258C2 (de) 1992-06-23 1994-09-01 Delta T Entwicklungsgesellscha Vorrichtung zur Datenverarbeitung
US5988846A (en) * 1996-07-01 1999-11-23 Asea Brown Boveri Ag Method of operating a drive system and device for carrying out the method
DE19831405A1 (de) 1998-07-13 2000-01-20 Siemens Ag Steuerungssystem mit einem Personalcomputer
DE29907909U1 (de) 1999-05-04 1999-07-15 Spectrum Systementwicklung Mic Einsteckkarte und integriertes Überwachungssystem für Prozesse
DE19928517C2 (de) 1999-06-22 2001-09-06 Pilz Gmbh & Co Steuerungssystem zum Steuern von sicherheitskritischen Prozessen
US20010014833A1 (en) 2000-01-26 2001-08-16 Schneider Electric Industries Sa Programmable logic controller provided with communication functions in a client-server architecture
DE10004425A1 (de) 2000-02-02 2002-01-17 Siemens Ag Netzwerk sowie Netzwerkteilnehmer, insbesondere Feldgerät, für ein derartiges Netzwerk
US20020095612A1 (en) * 2000-10-27 2002-07-18 Thomas Furhrer Method and system for synchronizing users of a communications link
US20020141438A1 (en) 2001-02-09 2002-10-03 Smith J. Howard Data communication controller and method
DE10258469A1 (de) * 2002-12-09 2004-07-29 Volkswagen Ag Verfahren und Vorrichtung zur Datenübermittlung in einem verteilten System

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BEIKIRCH H ET AL: "Smart field bus nodes with programmable sensor interfaces", EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, 2001. PROCEEDINGS. 2001 8TH IEEE INTERNATIONAL CONFERENCE ON OCT. 15-18, 2001, PISCATAWAY, NJ, USA,IEEE, vol. 2, 15 October 2001 (2001-10-15), pages 683 - 686, XP010589163, ISBN: 0-7803-7241-7 *
HOSEK M: "Clustered-architecture motion control system utilizing IEEE 1394b communication network", AMERICAN CONTROL CONFERENCE, 2005. PROCEEDINGS OF THE 2005 PORTLAND, OR, USA JUNE 8-10, 2005, PISCATAWAY, NJ, USA,IEEE, 8 June 2005 (2005-06-08), pages 2939 - 2945, XP010820243, ISBN: 0-7803-9098-9 *
VALDES M D ET AL: "Configurable interfaces oriented to microprocessor-based control systems", INDUSTRIAL ELECTRONICS SOCIETY, 1998. IECON '98. PROCEEDINGS OF THE 24TH ANNUAL CONFERENCE OF THE IEEE AACHEN, GERMANY 31 AUG.-4 SEPT. 1998, NEW YORK, NY, USA,IEEE, US, vol. 3, 31 August 1998 (1998-08-31), pages 1653 - 1656, XP010308257, ISBN: 0-7803-4503-7 *
WILLMANN P ET AL: "An Efficient Programmable 10 Gigabit Ethernet Network Interface Card", HIGH-PERFORMANCE COMPUTER ARCHITECTURE, 2005. HPCA-11. 11TH INTERNATIONAL SYMPOSIUM ON SAN FRANCISCO, CA, USA 12-16 FEB. 2005, PISCATAWAY, NJ, USA,IEEE, 12 February 2005 (2005-02-12), pages 96 - 107, XP010772269, ISBN: 0-7695-2275-0 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062387A1 (de) * 2007-12-22 2009-06-25 Robert Bosch Gmbh Verfahren zum Übertragen von Feldbus-Daten sowie Feldbus-Kommunikationssystem
EP2197160A1 (de) * 2008-12-10 2010-06-16 Siemens Aktiengesellschaft Azyklischer Datentransfer über einen Feldbuskoppler
CN101753395A (zh) * 2008-12-10 2010-06-23 西门子公司 通过现场总线耦合器的非循环数据传输
EP2219116A1 (de) * 2009-02-13 2010-08-18 Abb Ag Kommunikationsmodul für ein Automatisierungssystem
EP2352264A4 (de) * 2009-04-15 2015-11-11 Supcon Group Co Ltd Ethernet-basiertes datenübertragungsverfahren, ethernetstation und kontrollsystem
US8788609B2 (en) 2009-05-08 2014-07-22 Siemens Ag Automation device and automation system
EP2249217A1 (de) * 2009-05-08 2010-11-10 Siemens Aktiengesellschaft Automatisierungsgerät und Automatisierungssystem
DE102011011587A1 (de) * 2011-02-17 2012-08-23 Phoenix Contact Gmbh & Co. Kg Portunabhängiges topologisch geplantes Echtzeitnetzwerk
US8966022B2 (en) 2011-02-17 2015-02-24 Phoenix Contact Gmbh & Co. Kg Port-independent topologically planned real-time network
WO2013124037A1 (de) * 2012-02-22 2013-08-29 Phoenix Contact Gmbh & Co. Kg Profinet ethernet adapter
US9451055B2 (en) 2012-02-22 2016-09-20 Phoenix Contact Gmbh & Co. Kg PROFINET ethernet adapter
CN103513620A (zh) * 2012-06-27 2014-01-15 上海华建电力设备股份有限公司 一种profibus-dp1主站通讯服务器及其实现方法
EP2784988A1 (de) * 2013-03-27 2014-10-01 Siemens Aktiengesellschaft Kommunikationsschnittstellenmodul für ein modulares Steuerungsgerät eines industriellen Automatisierungssystems
CN114097210A (zh) * 2019-07-11 2022-02-25 因温特奥股份公司 用于尤其在电梯设备中传送数据内容的方法和数据网络
CN114097210B (zh) * 2019-07-11 2023-11-03 因温特奥股份公司 用于尤其在电梯设备中传送数据内容的方法和数据网络
CN112505246A (zh) * 2020-11-11 2021-03-16 山西科致成科技有限公司 数字式矿用气体传感器校准检定装置及方法
CN112505246B (zh) * 2020-11-11 2023-05-02 山西科致成科技有限公司 数字式矿用气体传感器校准检定装置及方法

Also Published As

Publication number Publication date
CN101208674B (zh) 2012-07-04
EP1894113A1 (de) 2008-03-05
BRPI0520350A2 (pt) 2009-05-05
EP2110754B1 (de) 2019-02-13
JP2008547294A (ja) 2008-12-25
KR20080038307A (ko) 2008-05-06
KR101125419B1 (ko) 2012-03-28
EP1894113B1 (de) 2020-06-03
US8065455B2 (en) 2011-11-22
EP2110754A1 (de) 2009-10-21
CA2612564A1 (en) 2006-12-28
JP4903201B2 (ja) 2012-03-28
CN101208674A (zh) 2008-06-25
US20090119437A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
EP2110754B1 (de) Verfahren und Vorrichtung zur Synchronisation von Busteilnehmern eines Automatisierungssystems
EP3522482B1 (de) Verfahren zur daten-kommunikation in einem industriellen netzwerk, steuerungsverfahren, vorrichtung, computerprogramm sowie computerlesbares medium
EP1368942B1 (de) Verfahren und system zur kopplung von datennetzen
EP2730062B1 (de) System und verfahren zur parametrierung von feldgeräten eines automatisierungs- oder steuerungssystems
EP3353610B1 (de) Verbindungseinheit, überwachungssystem und verfahren zum betreiben eines automatisierungssystems
EP1989598B1 (de) Verfahren, kommunikationsnetzwerk und steuereinheit zum zyklischen übertragen von daten
WO1999039463A2 (de) Verfahren und vorrichtung zur kommunikation gleichberechtigter stationen eines ringförmigen, seriellen lichtwellenleiter-busses
EP1193926B1 (de) Verfahren und System zur Echtzeitkommunikation in einem Netz mit Ethernet-Physik
EP1370916B1 (de) Anwendungen eines schaltbaren datennetzes für echtzeit- und nichtechtzeitkommunikation
WO2020157086A1 (de) Teilnehmerstation für ein serielles bussystem und verfahren zur kommunikation in einem seriellen bussystem
EP1430689A2 (de) Empfang von datentelegrammen in kommunikationssystemen mit redundanten netzwerkpfaden
EP3632050B1 (de) Busumsetzer
DE10004425A1 (de) Netzwerk sowie Netzwerkteilnehmer, insbesondere Feldgerät, für ein derartiges Netzwerk
DE10147421A1 (de) Anwendungen eines schaltbaren Datennetzes für Echtzeit- und Nichtechtzeitkommunikation
DE102004001435A1 (de) Verfahren, Schnittstelle und Netzwerk zum zyklischen Versenden von Ethernet-Telegrammen
DE102005029655A1 (de) Verfahren und Vorrichtung zur Synchronisation von untereinander über einen seriellen Datenbus kommunizierenden Busteilnehmern eines Automatisierungssystems
DE102005029656B3 (de) Verfahren zur Kopplung von Busteilnehmern eines Automatisierungssystems und frei programmierbarer Kommunikations-Prozessor hierfür
WO2007121968A2 (de) Austauschbares kommunikations- und steuerungsgerät enthaltend eine austauschbare speicherprogrammierbare steuerung und mehrere kommunikationsschnittstellen
EP1371185B1 (de) Verfahren und elektronischer schaltkreis für eine skalierbare kommunikationsschnittstelle in automatisierungskomponenten
EP1593235B1 (de) Deterministisches kommunikationssystem
EP1371193B1 (de) Electronical switch and method for a communication interface with cut through buffer memory
DE10234149A1 (de) Empfang von Datentelegrammen in Kommunikationssystemen mit redundanten Netzwerkpfaden
WO2001058092A1 (de) Netzwerkteilnehmer, insbesondere feldgerät, mit telegrammweglenkung zwischen ports und einem mikroprozessor-interface, sowie netzwerk mit einem derartigen netzwerkteilnehmer
DE10147432A1 (de) Verfahren und elektronischer Schaltkreis für eine skalierbare Kommunikationsschnittstelle in Automatisierungskomponenten
Schnell et al. 4.1 Sensor/Aktor-Busse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005798012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2129/MUMNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11922395

Country of ref document: US

Ref document number: 2612564

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580050221.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008517334

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087001780

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005798012

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0520350

Country of ref document: BR

Kind code of ref document: A2