WO2006134819A1 - 炭酸ガス溶解液製造方法、製造装置および炭酸水 - Google Patents

炭酸ガス溶解液製造方法、製造装置および炭酸水 Download PDF

Info

Publication number
WO2006134819A1
WO2006134819A1 PCT/JP2006/311502 JP2006311502W WO2006134819A1 WO 2006134819 A1 WO2006134819 A1 WO 2006134819A1 JP 2006311502 W JP2006311502 W JP 2006311502W WO 2006134819 A1 WO2006134819 A1 WO 2006134819A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
solution
oxalic acid
electrolytic cell
aqueous
Prior art date
Application number
PCT/JP2006/311502
Other languages
English (en)
French (fr)
Inventor
Yoh Sano
Masahiko Asano
Hitoshi Yagi
Original Assignee
Omsi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omsi Co., Ltd. filed Critical Omsi Co., Ltd.
Priority to KR1020067025422A priority Critical patent/KR101100607B1/ko
Priority to JP2007521257A priority patent/JPWO2006134819A1/ja
Priority to US11/917,473 priority patent/US8409420B2/en
Priority to CN2006800002392A priority patent/CN101005886B/zh
Priority to EP06766478A priority patent/EP1892030A4/en
Publication of WO2006134819A1 publication Critical patent/WO2006134819A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells

Definitions

  • Carbon dioxide solution manufacturing method manufacturing apparatus, and carbonated water
  • the present invention relates to a method for producing a carbon dioxide solution in which fine bubble carbon dioxide is dissolved, a production apparatus, and carbonated water produced by electrolysis of oxalic acid.
  • Carbonate springs have been used in baths and the like that use hot springs since ancient times because of their excellent heat retention. It is thought that the warming action of carbonated springs is basically due to the improvement of the body environment by the peripheral vasodilatory action of the carbon dioxide contained.
  • Non-Patent Document 1 Regarding carbonated springs, various papers have been published (for example, see Non-Patent Document 1 and Non-Patent Document 2).
  • Non-Patent Document 1 the main direct action of carbonated springs has been observed repeatedly by early hot spring physicians, and Bad Nauheim's Bode has shown congested, velvety, reddish skin. Observe (1845), Piderit (1836) and Beneke (1859) feel warm in a CO bath.
  • Goldschieider discussed the possibility that the flushing of the skin caused by the sensation of carbon dioxide is due to vasomotion.
  • the paper also states that two striking effects are observed as a direct action of the carbonate bath. That is, the first is the countless blisters on the skin surface, and the second is the flushing of the skin.
  • the water bubbles are countless carbonated water bubbles that are in close contact with the skin like fur and are described as “gas brushes”.
  • a diffuser is required.
  • the air diffuser includes a porous body, and the carbon dioxide gas is dissolved in warm water by generating carbon dioxide gas from the porous body as a large number of bubbles.
  • a hollow fiber membrane assembly is known so as to surround the perforated pipe whose end is blocked, and hot water flowing into the perforated pipe is porous. The pores provided on the circumferential surface of the pipe also flow out and come into contact with the hollow fiber membrane, so that the carbon dioxide gas injected from the carbon dioxide inlet through the hollow portion of the hollow fiber membrane is dissolved in warm water. Yes.
  • the conventional method for producing carbonated springs uses a carbon dioxide cylinder to dissolve pressurized carbon dioxide in water. Carbon dioxide that is not dissolved in water is released into the atmosphere as it is, Contrary to the recent reduction of carbon dioxide gas, there was therefore a problem in terms of the global environment.
  • Patent Document 1 JP-A-11 192421
  • Patent Document 2 JP-A-2005-97238
  • Non-Patent Document 1 Paper by K. L. Schmid “Carbonated Bath (Carbonated Spring)” Journal of Artificial Carbonated Spring Research Association No. 1 No. 1, 005— 009,1
  • Non-patent document 2 B. Hartman, M. Pittler, B. Drews, "C02 spa treatment of small arterial occlusive disease: Physiology and clinics" Journal of Artificial Carbonic Acid Research Association, No. 1 No. 1, 010—016,199 8
  • a bath preparation containing a carbon dioxide generator which is a combination of this type of carbonate and acid, has a carbon dioxide concentration of about lOOppm. In order to obtain the unique effect of flushing the skin, it is not far.
  • the present invention has been made in view of the above-mentioned background, and is a feature as a carbonated spring in an aqueous solution by a method completely different from a method for producing a carbonated spring by dissolving carbon dioxide pressurized by a carbon dioxide cylinder in water. Countless water bubbles on the skin surface and high-concentration carbon dioxide gas, which has the special effect of skin flushing, can be dissolved.
  • the purpose of the present invention is to provide a method and apparatus for producing a carbon dioxide gas solution that can be produced easily and at low cost, and to provide carbonated water in which a high concentration of carbon dioxide gas is dissolved! Speak.
  • the method of the present invention generates a carbon dioxide gas by electrolyzing an aqueous solution of oxalic acid filled in the electrolytic cell by applying a DC voltage between the electrodes in the electrolytic cell, and also generates an aqueous solution of oxalic acid. It is characterized in that ultrasonic waves are applied in it, and the bubble force of the generated carbon dioxide gas also forms micro bubbles, which are dissolved in an aqueous oxalic acid solution.
  • ultrasonic waves are caused to act on carbon dioxide gas bubbles generated by electrolyzing a oxalic acid aqueous solution in the oxalic acid aqueous solution to form microbubbles from the bubbles, and the microbubbles are then added to the oxalic acid aqueous solution. Therefore, there is no need for aeration means such as the production method of carbonated springs, or equipment such as carbon dioxide gas cylinders, gas separators, and compressors.
  • the pH value (hydrogen ion concentration index) of the carbon dioxide solution is measured during the process of electrolyzing the aqueous oxalic acid solution in the electrolytic cell. It is preferable to control the electrolysis of the aqueous oxalic acid solution based on the value.
  • the pH value of the carbon dioxide solution When the pH value of the carbon dioxide solution is measured during the process of electrolyzing the aqueous oxalic acid solution in the electrolytic cell, and the electrolysis of the aqueous oxalic acid solution is controlled based on this pH value, the pH value can be reduced. As a result, the amount of carbon dioxide generated by the electrolysis of the aqueous oxalic acid solution can be easily managed, and the appropriate carbon dioxide gas concentration can be easily managed. This is because it can be controlled to a human-friendly PH value.
  • the pH value (hydrogen ion concentration index) of the aqueous oxalic acid solution is weakly acidic.
  • the electrolysis of the aqueous oxalic acid solution when the pH reaches (eg, pH 5.0 to 6.8).
  • the pH reaches eg, pH 5.0 to 6.8.
  • the amount of CO in the aqueous oxalic acid solution ranges from 100,000 to 1 million times.
  • the amount of CO in the aqueous oxalic acid solution was 100,000 to 1 million times.
  • the pH value of oxalic acid aqueous solution has a strongly acidic pH value of 0.01 when oxalic acid is dissolved in the aqueous solution, but the pH value gradually increases by electrolyzing the oxalic acid aqueous solution, and carbon dioxide has a pH value of
  • a weakly acidic range for example, pH 5.0 to 6.8
  • the concentration of carbon dioxide in the solution containing fine carbon dioxide bubbles increases. This is because the myriad water bubbles on the skin surface that are characteristic of carbonated springs and the unique effect of flushing the skin are produced.
  • the method of the present invention generates carbon dioxide gas by electrolyzing the aqueous oxalic acid solution filled in the electrolytic cell by applying a DC voltage between the electrodes in the electrolytic cell.
  • a method for producing a carbon dioxide gas solution in which gas bubbles are dissolved in an aqueous oxalic acid solution is measured, and when the pH value is in a weakly acidic region, Disassembly is stopped.
  • the amount of CO generated at the anode increases 10 times, which means that the amount of CO in the aqueous oxalic acid solution is 100,000 to 1 million times.
  • the redox potential of the carbon dioxide gas solution is measured, and based on this redox potential, the aqueous oxalic acid solution It may be possible to control the electrolysis.
  • the oxidation-reduction potential of the aqueous oxalic acid solution has a positive potential (for example, plus 300 mV to 500 mV) before electrolysis, but with the step of electrolyzing the oxalic acid aqueous solution, negative electrons are present in the aqueous oxalic acid solution. It occurs and goes to the negative potential.
  • the aqueous solution of oxalic acid can produce countless bubbles on the skin surface that are characteristic of carbonated springs, and the unique effect of skin flushing. It is because it becomes.
  • the carbon dioxide gas solution cleaning device has a structure as shown in FIG. 1, for example.
  • the carbon dioxide solution manufacturing apparatus 1 includes an electrolytic tank 2 filled with a oxalic acid aqueous solution, an electrolysis apparatus 3 that electrolyzes the oxalic acid aqueous solution in the electrolytic tank 2 to generate carbon dioxide, and an electrolytic tank.
  • an electrolytic tank 2 filled with a oxalic acid aqueous solution
  • an electrolysis apparatus 3 that electrolyzes the oxalic acid aqueous solution in the electrolytic tank 2 to generate carbon dioxide
  • an electrolytic tank an electrolytic tank.
  • Ultrasonic waves can be applied to the electrode arrangement area in (2), and the generated carbon dioxide bubbles are formed from the bubbles by the action of the ultrasonic waves, and the fine bubbles are dissolved in the aqueous oxalic acid solution.
  • an ultrasonic generator 4 can be applied to the electrode arrangement area in (2), and the generated carbon dioxide bubbles are formed from the bubbles by the action of the ultrasonic waves, and the fine bubbles are dissolved in the aqueous
  • the electrolytic cell 2 filled with the aqueous solution of oxalic acid, the electrolyzer 3 and the ultrasonic generator 4 constitute an apparatus, which is a diffuser means such as a carbonated spring manufacturing method, carbon dioxide gas cylinder, gas separation. Equipment such as compressors and compressors are not required.
  • the electrolysis apparatus 3 and the ultrasonic generator 4 are controlled, and a particle diameter control apparatus 10 that keeps microbubbles of carbon dioxide gas within a certain particle diameter range. I prefer to be equipped with.
  • the particle size control device 10 controls the current of the electrolysis device 3 and the applied voltage of the ultrasonic generator 4 to freely control the particle size of the microbubbles of carbon dioxide gas. In addition, it can control the particle size of the microbubbles of carbon dioxide gas that enters through the percutaneous approach to the size that is most easily penetrated.
  • a pH measuring device 11 for measuring the pH of the aqueous oxalic acid solution is attached to the electrolytic cell 2.
  • the amount of carbon dioxide generated by a work of the electrolysis in the oxalic acid solution can be easily managed, also with respect to the human skin This is because it is possible to easily measure the weakly acidic region, which is regarded as superior, and to control the production of the most suitable carbonated water.
  • the carbon dioxide solution producing apparatus 1 of the present invention is provided with an operation control device 12 for controlling the electrolysis device 3 and the ultrasonic generator 4 by a signal from the pH measuring device 11. Is preferred.
  • the operation control device 12 controls the electrolysis device 3 and the ultrasonic generator 4 according to the signal from the pH measuring device 11, so that the operation of the carbon dioxide solution production device is stopped when a certain pH value is reached. This is because if the operation control device 12 is operated as described above, the production of the carbon dioxide solution by automatic operation can be easily obtained.
  • the electrode 7a of the electrolysis apparatus 3 is formed in a coil shape, and the ultrasonic generator 3 is disposed inside the coiled electrode 7a. It is okay to insert the ultrasonic transducer 4b. In this case, since the ultrasonic vibrator 4b of the ultrasonic generator 4 is inserted inside the coiled electrode 7a of the electrolyzer 3, the carbon dioxide gas bubbles generated from the electrode 7a are efficiently removed. In addition, microbubbles can be formed by applying ultrasonic waves uniformly. Therefore, it becomes possible to efficiently produce a carbon dioxide solution in which microbubbles are dissolved.
  • the electrode is formed in a thin plate shape, and is an assembled electrode composed of one electrode on the anode side and one electrode on the cathode side It is also possible to provide a plurality of electrodes, and to arrange these assembled electrodes so that the anode side faces each other, and to insert an ultrasonic transducer located on the anode side of the assembled electrodes.
  • the efficiency of electrolysis can be improved by the assembled electrode, and the electrodes on the anode side of the assembled electrode are arranged opposite to each other and positioned on the anode side. Since the ultrasonic transducer is inserted, the microbubbles can be formed by directly acting ultrasonic waves simultaneously with the generation of carbon dioxide bubbles generated at the anode-side electrode. Therefore, it is possible to efficiently produce a carbon dioxide solution in which a large amount of microbubbles are dissolved.
  • the present invention generates a carbon dioxide gas by electrolyzing an aqueous oxalic acid solution filled in the electrolytic cell by applying a DC voltage between the electrodes in the electrolytic cell.
  • a manufacturing apparatus for a carbon dioxide solution manufacturing method for dissolving carbon dioxide gas bubbles in an aqueous oxalic acid solution the electrolytic cell 2 filled with the aqueous oxalic acid solution and the aqueous oxalic acid solution in the electrolytic cell 2 are electrolyzed.
  • the measuring instrument 11 for measuring the pH value of the oxalic acid aqueous solution in the electrolytic cell since the P H value of oxalic acid solution is electrolyzed Ru is measured, until a constant pH (e.g. pH value of the weakly acidic region)
  • a constant pH e.g. pH value of the weakly acidic region
  • the present invention generates a carbon dioxide gas by electrolyzing the aqueous oxalic acid solution filled in the electrolytic cell by applying a DC voltage between the electrodes in the electrolytic cell 2.
  • a method for producing a carbon dioxide solution by dissolving bubbles of carbon dioxide in an aqueous oxalic acid solution In the production apparatus, an electrolytic cell 2 filled with an aqueous oxalic acid solution, an electrolysis device 3 for electrolyzing the aqueous oxalic acid solution in the electrolytic cell 2 to generate carbon dioxide, and an aqueous oxalic acid solution in the electrolytic cell
  • the electrolytic cell 2 in the carbon dioxide solution producing apparatus 1, it is preferable to provide the electrolytic cell 2 with a diaphragm 2a that separates the anode and the cathode.
  • the electrolytic cell 2 is provided with the diaphragm 2a, the anode-side electrode and the cathode-side electrode are mutually insulated, so that the dissolution of hydrogen generated at the cathode-side electrode can be insulated, and the anode-side electrode can be insulated. This is because the carbon dioxide concentration in the acid water solution can be increased efficiently.
  • the carbonated water mainly composed of oxalic acid aqueous solution as used in the present invention means that the oxalic acid aqueous solution filled in the electrolytic cell 2 is electrically separated by applying a direct voltage between the electrodes in the electrolytic cell 2.
  • carbon dioxide is generated and ultrasonic waves are applied in an aqueous oxalic acid solution to form microbubbles with a constant particle size by the action of ultrasonic waves from the generated carbon dioxide gas bubbles.
  • the carbonated water of the present invention mainly composed of oxalic acid in which carbon dioxide microbubbles having a fixed particle size are dissolved, the countless water bubbles on the skin surface that are characteristic of carbonated springs, and the uniqueness of skin flushing Can be produced, and can increase and dilate the capillary bed and promote the improvement of blood circulation in the skin.
  • the carbonated water mainly composed of oxalic acid aqueous solution in the present invention means that oxalic acid filled in the electrolytic cell 2 by applying a DC voltage between the electrodes in the electrolytic cell 2.
  • the aqueous solution is electrolyzed to a weakly acidic pH to generate carbon dioxide, and the countless water bubbles on the skin surface, which are characteristic of carbonated springs, and the carbon dioxide microbubbles that can produce the unique effect of skin flushing It means water mainly composed of dissolved oxalic acid aqueous solution.
  • the carbonated water containing oxalic acid aqueous solution as the main component in the present invention means that the oxalic acid aqueous solution filled in the electrolytic cell is electrically charged by applying a DC voltage between the electrodes in the electrolytic cell. Carbon dioxide is generated by decomposition and carbon dioxide bubbles are dissolved in the aqueous oxalic acid solution. The redox potential of the aqueous oxalic acid solution is measured, and this redox potential is minus millivolts. Carbonated water obtained by stopping electrolysis of aqueous oxalic acid solution when the upper limit is reached.
  • the concentration of carbon dioxide gas in the liquid is high, so that it is possible to produce the unique effects of countless water bubbles on the skin surface, which is characteristic of carbonated springs, and flushing of the skin. It can increase and dilate the vascular bed and promote improved skin circulation.
  • the carbonated water concentration is preferably 400 ppm or more.
  • the concentration of carbonated water is 400 ppm or more, the unique effects of the countless water bubbles on the skin surface and the flushing of the skin, which are characteristic of carbonated springs, can be produced. If it is 400 ppm or less, such a specific effect cannot be produced. Therefore, by setting the concentration of carbonated water to 400 ppm or more, oxalic acid in which carbon dioxide microbubbles with a fixed particle size are dissolved is the main component. It is possible to provide carbonated water that does not impair the effect as carbonated water.
  • ultrasonic waves are applied to carbon dioxide gas bubbles generated by electrolyzing a oxalic acid aqueous solution in the oxalic acid aqueous solution to form microbubbles from the bubbles. Since it is dissolved in an acid aqueous solution, there is no need for aeration means such as the production method of carbonated springs, or equipment such as carbon dioxide gas cylinders, gas separators, and compressors.
  • the bubbles of carbon dioxide generated by electrolysis become microbubbles by the action of ultrasonic waves along with the generation of carbon dioxide, and are dissolved in the aqueous solution. Therefore, in this aqueous solution of oxalic acid in which microbubbles of carbon dioxide gas are dissolved, if you put your hand in the aqueous solution, you will be able to obtain the unique effects of countless water bubbles on the skin surface and flushing of the skin. .
  • FIG. 1 is a diagram showing a schematic configuration of a carbon dioxide solution producing apparatus according to the present invention.
  • FIG. 2 is a front view showing a schematic configuration of still another embodiment of the carbon dioxide solution producing apparatus according to the present invention.
  • FIG. 3 is a side view of the same.
  • FIG. 4 is a perspective view showing the assembled electrode placed in the electrolytic cell.
  • FIG. 5 is a first modification of the carbon dioxide solution producing apparatus shown in FIG.
  • FIG. 6 is a second modification of the carbon dioxide solution production apparatus shown in FIG.
  • FIG. 7 is a graph showing the relationship between the electrolysis time of a carbon dioxide aqueous solution and the pH value.
  • FIG. 1 shows a schematic configuration of a carbon dioxide solution producing apparatus according to the present invention.
  • the carbon dioxide solution production apparatus 1 shown in this figure includes an electrolytic cell 2 filled with an aqueous oxalic acid solution, an electrolysis apparatus 3, an ultrasonic generator 4, and an electrolysis apparatus 3 and an ultrasonic generation apparatus 4 includes a driving control unit 10 for controlling the (12), and a P H meter 11 for measuring the pH of the oxalic acid aqueous solution filled in the electrolytic cell 2 (hydrogen ion concentration index)! / Speak.
  • the electrolytic cell 2 includes an electrolytic cell main body 2a filled with an aqueous oxalic acid solution, and a lid 2b that closes the upper opening of the electrolytic cell main body 2a so as to be openable and closable.
  • the electrolytic cell main body 2a is made of, for example, transparent glass or the like, so that the state of internal electrolysis can be observed.
  • the electrolysis device 3 includes a power supply device 5 and a pair of electrodes 7a and 7b electrically connected to the power supply device 5 via wirings 6 and 6.
  • the power supply device 5 can flow a predetermined constant current for a predetermined time, but needless to say, it can also apply a constant voltage and flow a current for a predetermined time.
  • a predetermined voltage to the electrodes 7a and 7b by the power supply device 5
  • a certain size eg, For example, if a constant current of 5A
  • the aqueous oxalic acid solution in the electrolytic cell 2 is electrolyzed and carbon dioxide gas is generated from the electrode 7a on the anode side, the amount generated is S (mol).
  • I ampere
  • t seconds
  • n the valence of oxalic acid
  • the electrodes 7a and 7b are each formed of platinum, the electrode (anode) 7a is formed in a coil shape, and the electrode (cathode) 7b is formed in a rod shape.
  • the electrodes 7a and 7b pass through two holes formed in the lid 2b, and are inserted into the oxalic acid aqueous solution in the electrolytic cell main body 2a.
  • the ultrasonic generator 4 includes an apparatus main body 4a and an ultrasonic transducer 4b electrically connected to the apparatus main body 4a.
  • the ultrasonic transducer 4b has a thin rod shape, and its base end (upper end) is held by a holding portion 4c.
  • the holding portion 4c is attached to an attachment portion 8a provided at the upper end portion of the support base 8 so that the ultrasonic transducer 4b is substantially vertical.
  • the tip (lower end) of the ultrasonic transducer 4b passes through the lid 2b and is inserted into the oxalic acid aqueous solution in the electrolytic cell body 2a.
  • the ultrasonic transducer 4b is inserted inside the coil-shaped electrode 7a substantially coaxially with the central axis of the coil.
  • the lower end of the ultrasonic vibrator 4b is disposed so as to be positioned on the upper end side of the electrode 7a so that the ultrasonic wave applied from the tip of the ultrasonic transducer 4b is spread over the entire electrode 7a.
  • the operation controller 10 (12) controls the electrolyzer 3 and the ultrasonic generator 4.
  • the receiver 15 receives a signal from the pH meter 11,
  • a memory unit 16 in which the size of the ultrasonic wave and the current, the operation time, and the like for making carbon dioxide bubbles generated by electrolysis into an optimum particle size (nano-order particle size) are stored in a database, and
  • the operation panel 17, the display unit 18, the receiving unit 15, the memory unit 16, the operation panel 17, and the control unit 19 that controls the display unit 18 are mainly configured.
  • the receiving unit 15 receives a signal from the pH measuring device 11 and sends the signal to the control unit 19. Depending on the function of the pH measuring device 11, the receiving unit 15 can receive signals of other parameters such as temperature. // Needless to say! /
  • the memory unit 16 includes various types of components necessary for operating the carbon dioxide solution manufacturing apparatus 1. This data is stored in advance, and by operating the operation panel 17, the data stored in the memory unit 16 can be read and the operation of the carbon dioxide solution producing apparatus 1 can be controlled.
  • the operation control device 10 (12) also functions as a particle size control device that keeps the fine bubbles of carbon dioxide gas within a certain particle size range. Data for aligning the particle size up to the order bubbles is stored in advance.
  • the particle diameter of the carbon dioxide microbubbles can be controlled by the ultrasonic intensity of the ultrasonic generator 4 and the time for which the ultrasonic wave is applied.
  • the operation panel 17 is a key input type or a touch type input device, and the display unit 18 is a liquid crystal screen.
  • the control unit 19 is electrically connected to the receiving unit 15, the memory unit 16, the operation panel 17, the display unit 18, and the like to control them, and the electrolysis device 3 and the ultrasonic wave generation device 4. Is controlled.
  • the pH measuring device 11 measures the pH value (hydrogen ion concentration index) of the carbonate gas solution during the process of electrolyzing the aqueous oxalic acid solution in the electrolytic cell 2.
  • the pH value signal from the pH meter is sent to the operation controller 10 (12), and the operation controller 10 (12) can control the electrolysis of oxalic acid aqueous solution based on this pH value. It has become.
  • the pH measuring device 11 of the example has a function of measuring the oxidation-reduction potential by switching the switch, and sends a current value signal of the oxidation-reduction potential to the operation control device 10 (1 2) for operation.
  • the control device 10 (12) can control the electrolysis of the oxalic acid aqueous solution on the basis of the current value of the oxidation-reduction potential.
  • the pH measuring device 11 is also a measuring device for measuring the acid reduction potential.
  • the pH value or the acid-reduction potential may be digitally output to the display unit 18.
  • Force A small amount of indicator such as methyl red is put in advance in the electrolytic cell 2 filled with aqueous oxalic acid solution.
  • the electrolysis can be controlled by looking at the color tone.
  • an aqueous oxalic acid solution filled in the electrolytic cell body 2a is electrolyzed.
  • the concentration of the aqueous oxalic acid solution can be 0.1 mol (mol / l) – 1 mol. From the viewpoint of solubility at room temperature, an aqueous oxalic acid solution of about 0.5 mol is preferred.
  • the current and time flowing through the electrodes 7a and 7b are set in advance by the power supply device 5 of the electrolyzer 3.
  • the current and time are preferably set so that the pH value (hydrogen ion concentration index) in the carbon dioxide solution is within a weakly acidic region (for example, PH 5.0 to 6.8).
  • the ultrasonic wave intensity of the ultrasonic generator 4 is set in order to keep the range of the particle diameter of the carbon dioxide microbubbles in a certain range.
  • the power of the oxalic acid aqueous solution filled in the electrolytic cell 2 is initially strong acid.
  • this aqueous oxalic acid solution is electrolyzed, the aqueous solution of oxalic acid is electrolyzed to increase the pH value, thereby increasing the alkalinity. I will be on the side.
  • the amount of CO in the aqueous oxalic acid solution was 100,000 to 1 million times. So
  • the oxalic acid aqueous solution will produce a number of water bubbles on the skin surface that are characteristic of carbonated springs, and a unique effect of flushing the skin.
  • This setting is performed using the operation panel 17 of the operation control device 10 (12).
  • the setting of the ultrasonic generator 4 is also performed at the same time, and the power supply device 5, ultrasonic generation is performed from the operation control device 10 (12). Needless to say, control of the device 4 is carried out.
  • the carbon dioxide gas generated at the electrode 7a is a bubble of a size that can be visually observed.
  • the apparatus main body 4a of the ultrasonic generator 4 is activated by the control signal of the operation controller 10 (12), and ultrasonic waves are generated from the ultrasonic transducer 4b. Then, the ultrasonic waves directly act on the carbon dioxide gas bubbles generated at the electrode 7a, and the bubbles burst to form microbubbles, and the microbubbles are dissolved in the oxalic acid aqueous solution. . In this way, a carbon dioxide solution in which fine bubble carbon dioxide is dissolved is produced. Such microbubbles are called nanobubbles (bubbles) and are of a size that is not visible.
  • the ultrasonic generator 4 can be dispensed with if it is not concerned with the particle diameter of the carbon dioxide bubbles.
  • the pH measurement is performed in the carbon dioxide solution producing apparatus 1 of the present invention. It is preferable to provide an operation control device 12 for controlling the electrolyzer 3 and the ultrasonic generator 4 with a signal of the vessel 11 force.
  • aeration means such as a carbonated spring manufacturing method, equipment such as a carbon dioxide gas cylinder, a gas separator, and a compressor.
  • the filled aqueous solution of oxalic acid is electrolyzed by the electrolyzer 3 to generate carbon dioxide, and at the same time, the ultrasonic wave is applied to the generated carbon dioxide bubbles by the ultrasonic generator 4 to generate minute amounts from the bubbles. Since bubbles are formed and the microbubbles are dissolved in the oxalic acid aqueous solution, a carbon dioxide gas solution in which the microbubbles are dissolved can be easily produced and can be produced at low cost.
  • the ultrasonic transducer 4b of the ultrasonic generator 4 is inserted inside the coiled electrode 7a of the electrolyzer 3, the bubbles of carbon dioxide generated from the electrode 7a are efficiently and uniformly formed. Ultrasonic waves can be applied to form microbubbles. Therefore, it is possible to efficiently produce a carbon dioxide solution in which fine bubbles are dissolved.
  • the pH measuring device 11 is switched to measure the acid reduction potential of the aqueous oxalic acid solution in the electrolytic cell. It is also possible to measure the oxidation-reduction potential of the carbon dioxide solution during the process of electrolyzing the oxalic acid aqueous solution in the electrolytic cell, and to control the electrolysis of the oxalic acid aqueous solution based on this oxidation-reduction potential. is there.
  • the oxidation-reduction potential of the aqueous oxalic acid solution has a positive potential (for example, plus 300 mV to 500 mV) before electrolysis, but with the step of electrolyzing the oxalic acid aqueous solution, negative electrons are present in the aqueous oxalic acid solution. It occurs and goes to the negative potential.
  • the negative acid-acid reduction potential becomes a constant value and no longer shifts to the negative potential, so electrolysis of the aqueous oxalic acid solution is performed using this constant value as a guide.
  • the concentration of carbon dioxide gas can be managed by the acid reduction potential.
  • the aqueous oxalic acid solution contained innumerable water bubbles on the skin surface, characteristic of carbonated springs, and a characteristic of skin flushing. It will produce an effect.
  • the carbonate spring can be used in this state alone. As a result, it produces a unique effect of the myriad water bubbles on the skin surface and flushing of the skin, so the ultrasonic generator 4 may be unnecessary if it does not stick to the particle size of the carbon dioxide bubbles. It becomes possible.
  • the amount of CO in the liquid was 100,000 to 1 million times, and this amount was generated.
  • the aqueous solution of oxalic acid will produce countless water bubbles on the skin surface, which is characteristic of carbonated springs, and the unique effect of skin flushing.
  • the ultrasonic generator 4 can be omitted.
  • FIGs. 2 to 4 are diagrams showing another embodiment of the carbon dioxide solution producing apparatus according to the present invention.
  • the carbon dioxide solution manufacturing apparatus shown in these figures differs from the carbon dioxide solution manufacturing apparatus shown in FIG. 1 in terms of the shape and arrangement of electrodes and the arrangement of ultrasonic vibrators. These points will be described in detail, and the other common parts will be denoted by the same reference numerals and the description thereof will be omitted or simplified.
  • the carbon dioxide solution manufacturing apparatus 21 includes an electrolytic cell body 2a installed on the upper surface of the base 22, and an electrolytic cell 2 having a lid 2b that closes and opens the upper opening of the electrolytic cell body 2a.
  • the electrolysis device 3 includes a power supply device 5 and four electrodes 25a, 25b, 26a, and 26b that are electrically connected to the power supply device 5 via wirings 6 and 6.
  • the electrodes 25a and 26a are anodes, and the electrodes 25b and 26b are cathodes.
  • the electrode 25a, the electrode 25b, and the force S set electrode 25 are formed, and the electrode 26a and the electrode 26b form the set electrode 26. That is, in this embodiment, two assembled electrodes 25 and 26 are provided.
  • the electrodes 25a, 25b, 26a, and 26b are each formed into a rectangular thin plate having substantially the same shape, and the electrodes 25a, 25b, 26a, and 26bi have a force formed from platinum, and have a certain thickness of titanium or titanium. An alloy or an appropriate metal plate formed by coating platinum is used.
  • the upper ends of the electrodes 25a, 25b, 26a, and 26b are joined to one piece of a substantially L-shaped conductor 28, and the other piece of the conductor 28 extends upward to Projecting upward.
  • the wirings 6 and 6 are connected to the upper ends of the other pieces of the conductors 28.
  • the electrode 25a and the electrode 25b are arranged in parallel with a predetermined gap therebetween.
  • the electrode 26a And the electrode 26b are arranged in parallel with a predetermined gap.
  • the electrodes 25 and 26 may be arranged vertically as shown in the illustrated example, but may be arranged horizontally. When the electrodes 25 and 26 are arranged in the horizontal direction, it is possible to form appropriate holes in the electrodes themselves so that bubbles generated from the electrodes pass upward.
  • the assembled electrode 25 constituted by the electrode 25a and the electrode 25b and the assembled electrode 26 constituted by the electrode 26a and the electrode 26b are arranged apart from each other in the left-right direction.
  • a sound wave oscillator 4b is arranged.
  • the holding portion 4c of the ultrasonic transducer 4b is supported by a support 22a standing on the base 22 via an arm 22b.
  • the arm 22b can move up and down along the column 22a and can swing left and right.By tightening the handle 22c, the arm 22b can be fixed at a predetermined position in the vertical direction of the column 22a and cannot swing in the left and right direction. It can be fixed. Thus, the vertical and horizontal positions of the ultrasonic transducer 4b can be adjusted.
  • a carbon dioxide solution is produced.
  • the aqueous oxalic acid solution filled in the electrolytic cell main body 2a is electrolyzed.
  • the concentration of oxalic acid aqueous solution is possible up to 0.1 mol (mol / l) -l mol. From the point of solubility at room temperature, up to 0.5 mol oxalic acid aqueous solution is applicable.
  • the current and time to be passed through each of the assembled electrodes 25 and 26 are set in advance by the power supply device 5 of the electrolysis device 3, and the electrolysis is performed at the set current and time, and The apparatus body 4a is activated to generate ultrasonic waves from the ultrasonic transducer 4b.
  • the ultrasonic wave intensity of the ultrasonic generator 4 is set in order to keep the particle size range of the microbubbles of carbon dioxide gas within a certain range.
  • the current and time in this case are also set so that the pH value (hydrogen ion concentration index) in the carbon dioxide solution is within a weakly acidic region (for example, PH 5.0.6.8.8). If this happens, the operation of the carbon dioxide solution producing apparatus 21 is stopped.
  • a weakly acidic region for example, PH 5.0.6.8.8
  • the ultrasonic waves act on the carbon dioxide gas bubbles generated at the electrodes 25a and 26a, so that the bubbles burst to form microbubbles and the microbubbles dissolve in the aqueous oxalic acid solution. .
  • the electrode has a thin plate shape, and a plurality of thread-and-electrodes 25, 26 are configured by the two electrodes 25a, 25b, 26a, 26b on the anode side and the cathode side. Therefore, a large amount of carbon dioxide can be generated.
  • the ultrasonic vibration element 4b is disposed between the assembled electrodes 25 and 26, the ultrasonic bubbles are efficiently and uniformly applied to the carbon dioxide gas bubbles generated from the electrodes 25a and 26a to form microbubbles. Can be formed. Therefore, it is possible to efficiently produce a carbon dioxide solution in which a large amount of microbubbles are dissolved.
  • the pH value is controlled and the oxalic acid aqueous solution is electrolyzed to the weakly acidic region
  • the pH value is controlled by electrolyzing the oxalic acid aqueous solution to the weakly acidic region.
  • the CO generated at the anode increases 10 times.
  • the ultrasonic generator 4 can be dispensed with if it is not concerned with the particle size of the acid gas bubbles.
  • the switch of the pH measuring device 11 is switched to measure the acid reduction potential of the aqueous oxalic acid solution in the electrolytic cell.
  • the switch of the pH measuring device 11 is switched to measure the acid reduction potential of the aqueous oxalic acid solution in the electrolytic cell.
  • the oxidation-reduction potential of the aqueous oxalic acid solution has a positive potential (for example, plus 300 mV to 500 mV) before electrolysis, but with the step of electrolyzing the oxalic acid aqueous solution, negative electrons are present in the aqueous oxalic acid solution. It occurs and goes to the negative potential.
  • the negative acid-acid reduction potential becomes a constant value and no longer shifts to the negative potential, so electrolysis of the aqueous oxalic acid solution is performed using this constant value as a guide.
  • the carbonated water that produces the peculiar effect of countless water bubbles on the skin surface which is characteristic of carbonated springs, and skin flushing. Can be manufactured.
  • the electrode is a thin plate, and the yarn and electrode 25, 26 force composed of two electrodes 25a, 25b, 26a, 26b on the anode side and the cathode side are provided.
  • a plurality of carbon dioxide gases can be generated since a plurality of them are provided.
  • the ultrasonic vibration element 4b is disposed between the assembled electrodes 25 and 26, the ultrasonic bubbles are efficiently and uniformly applied to the carbon dioxide gas bubbles generated from the electrodes 25a and 26a to form microbubbles. Can be formed. Therefore, it is possible to efficiently produce a carbon dioxide solution in which a large amount of microbubbles are dissolved.
  • FIG. 5 and FIG. 6 are diagrams showing another embodiment of the carbon dioxide solution producing apparatus 21 having two assembled electrodes 25 and 26, respectively.
  • the carbon dioxide solution manufacturing apparatus 21A of the embodiment shown in FIG. 5 includes two ultrasonic vibrators 4b and 4b, and these ultrasonic vibrators 4b and 4b are on the inner wall side facing the electrolytic cell body 2a. Is arranged. Accordingly, the electrodes 25b and 26b closer to the ultrasonic transducers 4b and 4b serve as anodes, and carbon dioxide gas is generated from these anodes 25b and 26b.
  • the ultrasonic transducer 4b is disposed in the horizontal direction at the bottom of the electrolytic cell body 2a. Therefore, carbon dioxide gas may be generated using the electrodes 25a and 26a as anodes, or carbonic acid gas may be generated using the electrodes 25b and 26b as anodes.
  • the frequency of the ultrasonic generator 4 was 20 kHz, the current flowing at this time was 300 mA, and the applied voltage of the electrolyzer 3 was ⁇ .
  • the average particle diameter of carbon dioxide microbubbles contained in the produced carbon dioxide solution was measured and found to be 3930 nm.
  • a quasielastic light scattering photometer (manufactured by Otsuka Electronics Co., Ltd., model number ELS-8000) was used for the particle size measurement.
  • the scattering intensity was measured using a quasi-elastic light scattering photometer.
  • the scatter intensity is an indicator of the concentration of carbon dioxide microbubbles contained in the carbon dioxide solution, and the second time is determined to be 55969 ⁇ 21321, and the second time is 60471 ⁇ 1745 6 Met.
  • the average particle size of the microbubbles in the carbon dioxide solution produced by the carbon dioxide solution production apparatus according to the present invention is slightly smaller than the average particle size of the carbonated spring. found.
  • the carbonated spring produced by Mitsubishi Rayon Co., Ltd. carbonated spring production equipment (C. C. Carbo) is considered to have lOOOppm, and in the present invention having the same effect, the concentration of carbon dioxide gas is considered to be lOOOppm.
  • Example 2 Next, as an experiment for producing a carbonate gas solution using the carbon dioxide solution producing apparatus 21 of the embodiment shown in FIGS. 2 to 4, 0.1 mol / l of oxalic acid aqueous solution was added to the electrolytic cell 2 in 3 liters. Then, ultrasonic waves were generated for 75 minutes using an ultrasonic generator (Model number UD-200, manufactured by Tommy Seye) 4, and electrolysis was performed using an electrolyzer 3.
  • an ultrasonic generator Model number UD-200, manufactured by Tommy Seye
  • electrolytic cell 2 an electrolytic cell for thin layer chromatography was used.
  • the frequency of the ultrasonic generator 4 was 20 kHz, and the current of the electrolyzer 3 was 1 A at a constant current.
  • the aqueous solution of oxalic acid filled in the electrolytic cell 2 is initially a strong acid.
  • the pH value increases as the electrolysis time elapses. It will become a strong alkali.
  • an aeration unit such as a carbonated spring manufacturing method, a carbon dioxide gas cylinder, a gas separator, a compressor, and the like are not required, and an aqueous solution of oxalic acid filled in an electrolytic cell is obtained by an electrolysis apparatus.
  • Carbon dioxide is generated by electrolysis, and ultrasonic waves are applied to the generated carbon dioxide bubbles by an ultrasonic generator to form the bubble force microbubbles, which are dissolved in the aqueous oxalic acid solution. Therefore, the carbon dioxide solution in which the microbubbles are dissolved can be easily produced, the cost is low, and it can be produced in an environmentally friendly manner without releasing unnecessary carbon dioxide into the atmosphere.
  • the aqueous solution of oxalic acid in the electrolytic cell is electrolyzed to generate carbon dioxide gas, and ultrasonic waves are applied to the generated carbon dioxide gas bubbles by an ultrasonic generator so that microbubbles are generated from the bubbles.
  • the intensity of this ultrasonic wave constant, the microbubbles of carbon dioxide gas are aligned in a certain particle size range, and an aqueous oxalic acid solution in which carbon dioxide bubbles of a certain size are dissolved is produced. Therefore, it is possible to produce only the required amount of carbonated spring that increases and dilates the capillary bed and promotes the improvement of blood circulation in the skin.
  • carbonated water mainly composed of oxalic acid aqueous solution in which microbubbles of carbon dioxide produced in this way are the main components can produce countless water bubbles on the skin surface and unique effects of skin flushing, It can cause an increase and dilation of the capillary bed and promote improved blood circulation in the skin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

 電解槽に充填したシュウ酸水溶液を電気分解装置によって電気分解して炭酸ガスを発生させるとともに、発生した炭酸ガスの気泡に超音波発生装置によって超音波を作用させて、該気泡から微小気泡を形成し、この微小気泡をシュウ酸水溶液中に溶解させることにより、炭酸泉の替わりに、微小気泡が溶解している炭酸ガス溶解液を容易にしかも低コストで製造できる。

Description

明 細 書
炭酸ガス溶解液製造方法、製造装置および炭酸水
技術分野
[0001] 本発明は、微小気泡の炭酸ガスが溶解している炭酸ガス溶解液の製造方法、製造 装置およびシユウ酸の電気分解により製造された炭酸水に関する。
背景技術
[0002] 炭酸泉は優れた保温作用があることから、古くから温泉を利用する浴場等で用いら れている。炭酸泉の保温作用は、基本的には、含有炭酸ガスの末梢血管拡張作用 により身体環境が改善されるためと考えられる。
また炭酸ガスの経皮進入によって毛管血管床の増加および拡張が起こり、皮膚の 血行を改善する。このため退行性病変及び末梢循環障害の治療に効果があるとされ ている。
なお、炭酸泉については、従来より種々の論文が発表されている(たとえば、非特 許文献 1、非特許文献 2参照)。
[0003] 非特許文献 1の論文によれば、炭酸泉の主な直接的作用はすでに初期の温泉医 により、くり返し観察されている Bad Nauheimの Bodeは充血した、ビロード状の、赤くな つた皮膚を観察し(1845)、 Piderit (1836)と Beneke (1859)は、 CO浴で温かく感
2
ずることと浴部分の皮膚紅潮を記載し、 Goldschieiderはすでに 1911年に炭酸の感 覚刺激による皮膚紅潮が血管運動によるとの可能性を論じている。
また、同論文によれば、炭酸浴の直接作用として、印象深い 2つの効果が観察され ると記載している。すなわち、一つは、皮膚表面の無数の水泡と、 2つ目は皮膚紅潮 (碓井虚血性の境界によって、 CO泉に浸されていない生体部位とはっきり区別でき
2
る)ということである。水泡は無数の炭酸水泡で、毛皮のように皮膚に密着し、「ガス刷 子」と表現されている。
[0004] また非特許文献 2の論文によれば、治療に必要な炭酸ガスの最小濃度は 400mgと されており、非特許文献 1の論文によれば、 400mgより皮膚紅潮が現れるとある。 このように炭酸泉が優れた効果を持つことから、これを人工的に得る炭酸泉の製造 方法が従来より開発されてきた。その一例が、特許文献 1に記載されている。
特許文献 1に記載の炭酸泉の製造方法は、散気手段を有する炭酸ガス溶解器に 温水を供給し、温水中に浸漬された散気手段の散気部より炭酸ガスを気泡として放 出して温水に溶解させて炭酸泉を製造する方法において、炭酸ガス溶解器内でカロ 圧下で炭酸ガスを温水に溶解させた後、得られた炭酸泉をガス分離器へ送り、大気 圧まで減圧し、該分離器で炭酸泉より揮散した炭酸ガスを圧縮器へ導いて回収し、こ の回収した炭酸ガスを前記炭酸ガス溶解器へ導 ヽて温水へ溶解させる方法である。 ところで、特許文献 1に記載の炭酸泉の製造方法では、まず散気手段が必要であ る。 この散気手段は、多孔質体を備えており、この多孔質体から炭酸ガスを多数の 気泡として発生させることによって、炭酸ガスを温水に溶解するようになっている。 また、他の散気手段としては、先端が遮断された多孔管の周囲を取り巻くようにして 中空糸膜集合体が配置されたものが知られており、多孔管内に流入した温水が、多 孔管周面に設けられた孔カも流出して中空糸膜と接触することにより、炭酸ガスの導 入口から中空糸膜の中空部を経て注入された炭酸ガスを温水に溶解するようになつ ている。
したがって、温水等に含まれている不純物等の細かい粒子力 散気手段の多孔質 体や中空糸膜に詰まり易ぐ散気手段を交換したり掃除したりする必要があり、手間 力 Sかかるという問題があった。
さらに、炭酸ガスボンベ、ガス分離器、圧縮機といった機器が必要であるので、装置 自体が大型化するとともに、コストがかかると 、う問題もある。
しカゝも、従前の炭酸泉の製造方法は、炭酸ガスボンベを使い、加圧された炭酸ガス を水に溶解させる構造のもので、水に溶解されない炭酸ガスがそのまま必要以上に 大気に放出され、近年の炭酸ガスの削減に反し、それ故に、地球全体の環境の面か らも問題があった。
なお、炭酸ガスボンベを用いずに水溶液中に炭酸ガスを発生させる手法としては、 従前より炭酸塩と酸とを組み合わせた炭酸ガス発生物を配合した浴用剤などが知ら れて 、る(例えば特許文献 2参照)。
特許文献 1 :特開平 11 192421号公報 特許文献 2:特開 2005 - 97238号公報
非特許文献 1 :K. L. Schmid著論文「炭酸浴 (炭酸泉)」人工炭酸泉研究会雑誌第 1卷第 1号, 005— 009,1
非特許文献 2 : B. Hartman, M. Pittler, B. Drews著論文「小動脈閉塞性疾患の C02温泉療養:生理と臨床」人工炭酸泉研究会雑誌第 1卷第 1号, 010— 016,199 8
発明の開示
発明が解決しょうとする課題
[0006] ところが、この種の炭酸塩と酸とを組み合わせた炭酸ガス発生物を配合した浴用剤 は、炭酸ガスの濃度が lOOppm程度であり、炭酸泉としての特徴である皮膚表面の 無数の水泡と、皮膚紅潮という特有の効果を得るには遠く及ぶものではない。
[0007] 本発明者等は、このような背景に鑑み、炭酸ガスボンベを使わずに、炭酸ガスを水 溶液中に溶解させ、炭酸泉としての特徴である皮膚表面の無数の水泡と、皮膚紅潮 t 、う特性のある人工炭酸泉の製造方法を得るべく鋭意研究した結果、シユウ酸水 溶液を電気分解すれば、炭酸ガスが陽極より発生するとの知見を得て、水溶液中に 炭酸ガスを高濃度に溶解し得る手法を開発した。
[0008] 特に、シユウ酸水溶液を単純に電気分解しただけでは、炭酸ガスがそのまま外気中 に抜けてしまい、水溶液中に炭酸ガスの気泡が多く溶解できない。また、炭酸ガスの 経皮進入と ヽうことを鑑みれば、炭酸ガス気泡はより微小な粒径のものが好適と考え られる。
そこで、本発明では、前記背景に鑑みてなされたもので、炭酸ガスボンベによる加 圧された炭酸ガスの水への溶解による炭酸泉の製造方法とは全く異なる方法により 水溶液中に炭酸泉としての特徴である皮膚表面の無数の水泡と、皮膚紅潮という特 有の効果を得る高濃度の炭酸ガスを溶解させることができ、炭酸ガスボンベを使わな V、環境に対しても優しく、炭酸ガスの微小気泡が溶解して ヽる炭酸ガス溶解液を容 易にし力ゝも低コストで製造できる炭酸ガス溶解液の製造方法及び製造装置並びに高 濃度の炭酸ガスが溶解された炭酸水を提供することを目的として!ヽる。
課題を解決するための手段 [0009] 上記の目的を達成すベぐ本発明は次の技術的手段を講じた。
すなわち、本発明の方法は、電解槽内の電極間に直流電圧を印加することにより、 電解槽内に充填しておいたシユウ酸水溶液を電気分解して炭酸ガスを発生させると ともにシユウ酸水溶液中で超音波を印カロさせて、発生した炭酸ガスの気泡力も微小 気泡を形成し、この微小気泡をシユウ酸水溶液中に溶解させることを特徴とする。 本発明によれば、シユウ酸水溶液を電気分解して発生した炭酸ガスの気泡にシユウ 酸水溶液中で超音波を作用させて、該気泡から微小気泡を形成し、この微小気泡を シユウ酸水溶液中に溶解させるので、炭酸泉の製造方法のような散気手段や、炭酸 ガスボンベ、ガス分離器、圧縮機といった機器等を必要としない。
したがって、微小気泡が溶解して ヽる炭酸ガス溶解液を容易にし力ゝも低コストで製 造できる。
[0010] また、このようにして製造された炭酸水では、電気分解して発生した炭酸ガスの気 泡が炭酸ガスの発生とともに超音波の作用によって微小気泡となり、水溶液中に溶 解されているため、この炭酸ガスの微小気泡が溶解されたシユウ酸水溶液では、当 該水溶液中に手を入れると、皮膚表面の無数の水泡と、皮膚紅潮という特有の効果 を得ることができる。
[0011] また、本発明の炭酸ガス溶解液製造方法では、電解槽内のシユウ酸水溶液を電気 分解する工程時に、炭酸ガス溶解液の pH値 (水素イオン濃度指数)を測定し、この p H値を基準に、シユウ酸水溶液の電気分解を制御することを特徴とすることが好まし い。
電解槽内のシユウ酸水溶液を電気分解する工程時に、炭酸ガス溶解液の pH値を 測定し、この pH値を基準に、シユウ酸水溶液の電気分解を制御するようにすれば、 p H値を見ることによって、シユウ酸水溶液が電気分解されることにより発生した炭酸ガ スの発生量を容易に管理することができ、適正な炭酸ガス濃度の管理が容易にでき 得て効果的であるとともに、人体に優しい PH値に管理できるためである。
[0012] さらに本発明では、シユウ酸水溶液の pH値 (水素イオン濃度指数)が弱酸性の領域
(例えば pH5. 0-6. 8)になった時に、シユウ酸水溶液の電気分解を停止することが 好ましい。 弱酸性の領域においては、人体に対しても優しぐまた、この弱酸性の pH値まで、 電気分解することによって、シユウ酸水溶液中の COは 10万倍から 100万倍の量が
2
発生したこととなる。
つまり、 pHの値が 1大きくなると、陽極で発生する COは 10倍づっ大きくなるため、
2
シユウ酸水溶液中の COは 10万倍から 100万倍の量が発生したこととなる。
2
シユウ酸水溶液の pH値は、シユウ酸を水溶液に溶解した際は強酸性の pH値 0. 0 1を持つが、シユウ酸水溶液を電気分解することによって pH値は次第に上がり、炭酸 ガスは pH値が上がった分だけ発生することとなり、弱酸性の領域 (例えば pH5. 0— 6. 8)まで pHが上がる状態となると、微細な炭酸ガス気泡を含む溶解液中の炭酸ガ スの濃度が濃くなり、炭酸泉としての特徴である皮膚表面の無数の水泡と、皮膚紅潮 という特有の効果を生み出すこととなるためである。
[0013] また炭酸ガスの経皮進入を促進する上でも、超音波を印加することによって、電気 分解によって発生する炭酸ガスを微細化することは好ましい。
また、本発明の方法は、電解槽内の電極間に直流電圧を印加することにより、電解 槽内に充填しておいたシユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生し た炭酸ガスの気泡をシユウ酸水溶液中に溶解させる炭酸ガス溶解液製造方法であつ て、シユウ酸水溶液の pH値を測定し、当該 pH値が弱酸性の領域になった時に、シ ユウ酸水溶液の電気分解を停止することを特徴とする。
[0014] これは、本発明者等がシユウ酸水溶液を電気分解している際に、超音波をかけず に弱酸性の領域まで pH値を上げたところ、炭酸泉としての特徴である皮膚表面の無 数の水泡と、皮膚紅潮という特有の効果を生み出すことを確認したことによる。
前述したように、 pHの値力 大きくなると、陽極で発生するは 10倍づっ大きくなるた め、シユウ酸水溶液中の COは 10万倍から 100万倍の量が発生したこととなる。そし
2
て、これだけの量の炭酸ガスが発生したときにおいては、シユウ酸水溶液中には、炭 酸泉としての特徴である皮膚表面の無数の水泡と、皮膚紅潮と!、う特有の効果を生 み出す炭酸水が存在することとなるのである。
また pH値を測定して炭酸ガス溶解液を製造する方法にぉ ヽては、シユウ酸水溶液 が充填された電解槽の一部に予めメチルレッド等の指示薬を少量入れた色調確認 のための容器を入れ、容器内の指示薬の色調を見て、電気分解を制御することもで きる。
[0015] すなわち、シユウ酸水溶液を、電気分解していき、 pH値が 5〜6の領域まであがると 、メチルレッドの色調はこの変色域で変化する(この色調が変わる pH範囲を変色域と いう)ので、このときに電気分解を停止することによって、弱酸性の炭酸ガス水溶液を 得ることもできる。このようなメチルレッドの変色域にある弱酸性の炭酸ガス水溶液は 、人間の肌に対して優しいものとなる。
[0016] また、本発明の方法では、電解槽内のシユウ酸水溶液を電気分解する工程時に、 炭酸ガス溶解液の酸化還元電位を測定し、この酸化還元電位を基準に、シユウ酸水 溶液の電気分解を制御するようにしても良 、。
シユウ酸水溶液の酸化還元電位は、電気分解をする前はプラス側の電位 (たとえば プラス 300mV〜500mV)を持つが、シユウ酸水溶液を電気分解する工程とともに、 シユウ酸水溶液の中にマイナスのエレクトロンが発生してマイナス側の電位に推移し て行く。
最終的にはマイナスの酸ィ匕還元電位が一定の値となり、それ以上マイナス側の電 位には推移しなくなるため、この一定の値を目安にシユウ酸水溶液の電気分解を行 えば、炭酸ガスの濃度を管理できるものである。
[0017] そして、本発明では、シユウ酸水溶液の酸ィ匕還元電位がマイナスミリボルトの上限 に達した時に、シユウ酸水溶液の電気分解を停止することが好ま ヽ。
酸ィ匕還元電位がマイナスミリボルトの一定の上限値に落ち着いたときに、シユウ酸 水溶液中には、炭酸泉としての特徴である皮膚表面の無数の水泡と、皮膚紅潮とい う特有の効果を生み出すこととなるためである。
[0018] 本発明で 、う炭酸ガス溶解液清掃装置は、例えば図 1に示すような構造である。
すなわち、炭酸ガス溶解液製造装置 1は、シユウ酸水溶液が充填される電解槽 2と 、この電解槽 2内のシユウ酸水溶液を電気分解して炭酸ガスを発生させる電気分解 装置 3と、電解槽 2内の電極配置領域に超音波を印加可能に配置されかつ発生した 炭酸ガスの気泡を超音波の作用により、該気泡から微小気泡を形成し、この微小気 泡をシユウ酸水溶液中に溶解させる超音波発生装置 4とを備えることを特徴とする。 シユウ酸水溶液が充填された電解槽 2と電気分解装置 3と超音波発生装置 4とによ つて装置が構成されており、炭酸泉の製造方法のような散気手段や、炭酸ガスボン ベ、ガス分離器、圧縮機といった機器等を必要としない。
[0019] したがって、微小気泡が溶解して ヽる炭酸ガス溶解液を容易にし力ゝも低コストで製 造できる。
また、本発明の炭酸ガス溶解液製造装置 1において、前記電気分解装置 3と、超音 波発生装置 4とを制御し、炭酸ガスの微小気泡を一定粒径の範囲に納める粒径制御 装置 10を備えて 、ることが好ま 、。
粒径制御装置 10が、電気分解装置 3の電流と、超音波発生装置 4の印加電圧とを 制御することによって、炭酸ガスの微小気泡の粒径を自在に制御するので、炭酸ガス 濃度を容易にコントロールできるとともに、経皮進入によって入るとされる炭酸ガスの 微小気泡の粒径を最も経皮進入されやすい大きさにコントロールできる効果がある。
[0020] また本発明の炭酸ガス溶解液製造装置 1にお ヽては、前記電解槽 2に、シユウ酸水 溶液の pHを計測する pH測定器 11を付設しておくことが好ま 、。
電解槽 2に付設されて 、る PH測定器 11により、シユウ酸水溶液中に電気分解の作 用により発生する炭酸ガスの量を容易に管理することができ、また、人の肌に対して 優 ヽとされる弱酸性の領域を容易に測定し得て最も好適な炭酸水を製造する際の 制御が可能になるためである。
[0021] また本発明の炭酸ガス溶解液製造装置 1においては、前記 pH測定器 11からの信 号により、電気分解装置 3と超音波発生装置 4を制御する運転制御装置 12を備えて おくことが好ましい。
運転制御装置 12は、 pH測定器 11からの信号によって、電気分解装置 3と超音波 発生装置 4を制御するため、一定の pH値になったときに、炭酸ガス溶解液製造装置 の運転を取りやめるように運転制御装置 12を操作すれば良ぐ自動運転による炭酸 ガス溶解液の製造が容易に得られるためである。
[0022] さらに本発明の炭酸ガス溶解液製造装置 1においては、前記電気分解装置 3の電 極 7aをコイル状に形成し、このコイル状の電極 7aの内側に、前記超音波発生装置 3 の超音波振動子 4bが挿入するようにしても良 ヽ。 この場合には、電気分解装置 3のコイル状の電極 7aの内側に、超音波発生装置 4 の超音波震動子 4bが挿入されているので、電極 7aから発生した炭酸ガスの気泡に、 効率良くかつ均一に超音波を作用させて微小気泡を形成することができる。したがつ て、微小気泡が溶解している炭酸ガス溶解液を効率良く製造できることが可能になる
[0023] また本発明の炭酸ガス溶解液製造装置 1にお ヽて、前記電極を薄板状に形成し、 陽極側の 1つの前記電極と陰極側の 1つの前記電極とから構成される組電極を複数 設け、かつ、これら組電極を、陽極側が対向して設置するように配置するとともに、組 電極の陽極側に位置して超音波振動子を挿入するようにしても良!ヽ。
[0024] このような構成の発明によれば、組電極によって、電気分解の効率を向上させるこ とができるとともに、組電極の陽極側の電極を互いに対向配置させ、かつこれら陽極 側に位置して超音波振動子を挿入したので、陽極側の電極で発生する炭酸ガス気 泡を発生と同時に直接的に超音波を作用させて、微小気泡を形成することができる。 したがって、大量の微小気泡が溶解して ヽる炭酸ガス溶解液を効率良く製造すること が可能になる。
[0025] さらに本発明は、電解槽内の電極間に直流電圧を印加することにより、電解槽内に 充填してお!ヽたシユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生した炭酸 ガスの気泡をシユウ酸水溶液中に溶解させる炭酸ガス溶解液製造方法のための製 造装置において、シユウ酸水溶液が充填される電解槽 2と、この電解槽 2内のシユウ 酸水溶液を電気分解して炭酸ガスを発生させる電気分解装置 3と、電解槽内のシュ ゥ酸水溶液の pH値を測定する測定器 11とを備えたことを特徴とする。
電解槽内のシユウ酸水溶液の pH値を測定する測定器 11によって、電気分解され るシユウ酸水溶液の PH値が測定されるため、一定の pH値 (たとえば弱酸性の領域の pH値)まで電気分解して得ることのできる炭酸ガス溶解液の製造を容易にすることが できる。
[0026] さらにまた本発明は、電解槽 2内の電極間に直流電圧を印加することにより、電解 槽内に充填しておいたシユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生し た炭酸ガスの気泡をシユウ酸水溶液中に溶解させる炭酸ガス溶解液製造方法のた めの製造装置において、シユウ酸水溶液が充填される電解槽 2と、この電解槽 2内の シユウ酸水溶液を電気分解して炭酸ガスを発生させる電気分解装置 3と、電解槽内 のシユウ酸水溶液の酸ィ匕還元電位を測定する測定器 11とを備えたことを特徴とする この場合には、酸化還元電位を基準に制御する炭酸ガス溶解液製造装置による炭 酸ガス溶解液の製造を容易にすることができる。
[0027] さらに本発明では、炭酸ガス溶解液製造装置 1において、電解槽 2に、陽極と陰極 とを分ける隔膜 2aを設けることが好ましい。
電解槽 2に隔膜 2aが設けられて 、るので、陽極側の電極と陰極側の電極とが互!ヽ に絶縁され、陰極側の電極で発生する水素の溶解を絶縁できて陽極側のシユウ酸水 溶液の炭酸ガス濃度を効率良く高めることができるためである。
本発明でいうシユウ酸水溶液を主成分とする炭酸水とは、電解槽 2内の電極間に直 流電圧を印加することにより、電解槽 2内に充填しておいたシユウ酸水溶液を電気分 解して炭酸ガスを発生させるとともにシユウ酸水溶液中で超音波を印加させて、発生 した炭酸ガスの気泡から超音波の作用により一定粒径の微小気泡を形成し、一定粒 径の炭酸ガス微小気泡が溶解されたシユウ酸水溶液を主成分とする水を意味する。 この発明の炭酸水によれば、一定粒径の炭酸ガス微小気泡が溶解されたシユウ酸 を主成分とする炭酸水により、炭酸泉としての特徴である皮膚表面の無数の水泡と、 皮膚紅潮という特有の効果を生み出すことができ、毛細血管床の増加および拡張を 起こさせ、皮膚の血行の改善を促進することができる。
[0028] また、本発明でいうシユウ酸水溶液を主成分とする炭酸水とは、電解槽 2内の電極 間に直流電圧を印加することにより、電解槽 2内に充填しておいたシユウ酸水溶液を 、弱酸性の pHまで電気分解して炭酸ガスを発生させ、炭酸泉としての特徴である皮 膚表面の無数の水泡と、皮膚紅潮という特有の効果を生み出すことができる炭酸ガ ス微小気泡が溶解されたシユウ酸水溶液を主成分とする水を意味する。
このような炭酸水によっても、液中の炭酸ガス濃度が高いために、炭酸泉としての 特徴である皮膚表面の無数の水泡と、皮膚紅潮という特有の効果を生み出すことが でき、毛細血管床の増加および拡張を起こさせ、皮膚の血行の改善を促進すること ができる。
[0029] さらに本発明でいうシユウ酸水溶液を主成分とする炭酸水とは、電解槽内の電極間 に直流電圧を印加することにより、電解槽内に充填しておいたシユウ酸水溶液を電気 分解して炭酸ガスを発生させ、発生した炭酸ガスの気泡をシユウ酸水溶液中に溶解 させた炭酸水であって、シユウ酸水溶液の酸化還元電位を測定し、この酸化還元電 位がマイナスミリボルトの上限に達した時に、シユウ酸水溶液の電気分解を停止して 得た炭酸水をいう。
そして、このような炭酸水によっても、液中の炭酸ガス濃度が高いために、炭酸泉と しての特徴である皮膚表面の無数の水泡と、皮膚紅潮という特有の効果を生み出す ことができ、毛細血管床の増加および拡張を起こさせ、皮膚の血行の改善を促進す ることがでさる。
なお本発明の炭酸水において、炭酸水の濃度を、 400ppm以上とすることが好まし い。
炭酸水の濃度が 400ppm以上であると、炭酸泉としての特徴である皮膚表面の無 数の水泡と、皮膚紅潮という特有の効果を確実に生み出すことができるためである。 400ppm以下の場合には、このような特有効果を生み出すことができないため、炭酸 水の濃度を 400ppm以上の濃度とすることによって、一定粒径の炭酸ガス微小気泡 が溶解されたシユウ酸を主成分とする炭酸水としての効果を損なうことのない炭酸水 を提供することができるものである。
発明の効果
[0030] 本発明によれば、シユウ酸水溶液を電気分解して発生した炭酸ガスの気泡にシユウ 酸水溶液中で超音波を作用させて、該気泡から微小気泡を形成し、この微小気泡を シユウ酸水溶液中に溶解させるので、炭酸泉の製造方法のような散気手段や、炭酸 ガスボンベ、ガス分離器、圧縮機といった機器等を必要としない。
したがって、微小気泡が溶解して ヽる炭酸ガス溶解液を容易にし力ゝも低コストで製 造できる。
また、本発明の製造された炭酸水では、電気分解して発生した炭酸ガスの気泡が 炭酸ガスの発生とともに超音波の作用によって微小気泡となり、水溶液中に溶解され ているため、この炭酸ガスの微小気泡が溶解されたシユウ酸水溶液では、当該水溶 液中に手を入れると、皮膚表面の無数の水泡と、皮膚紅潮という特有の効果を得るこ とがでさる。
図面の簡単な説明
[0031] [図 1]本発明に係る炭酸ガス溶解液製造装置の概略構成を示す図である。
[図 2]本発明に係る炭酸ガス溶解液製造装置のさらに別の実施形態の概略構成を示 すもので、正面図である。
[図 3]同、側面図である。
[図 4]同、電解槽に入れられた組電極を示す斜視図である。
[図 5]図 3に示す炭酸ガス溶解液製造装置の第 1の変形例である。
[図 6]図 3に示す炭酸ガス溶解液製造装置の第 2の変形例である。
[図 7]炭酸ガス水溶液の電気分解時間と pH値との関係を示すグラフである。
発明を実施するための最良の形態
[0032] 以下、図面を参照して本発明の実施の形態について説明する。
図 1は本発明に係る炭酸ガス溶解液製造装置の概略構成を示すものである。この 図に示す炭酸ガス溶解液製造装置 1は、シユウ酸水溶液が充填される電解槽 2と、電 気分解装置 3と、超音波発生装置 4と、これら電気分解装置 3と超音波発生装置 4を 制御する運転制御装置 10 (12)と、電解槽 2に充填されたシユウ酸水溶液の pH (水 素イオン濃度指数)を計測する PH測定器 11とを備えて!/ヽる。
電解槽 2は、シユウ酸水溶液が充填された電解槽本体 2aと、この電解槽本体 2aの 上部開口を開閉可能に閉塞する蓋 2bとによって構成されている。電解槽本体 2aは 例えば、透明なガラス等によって形成されており、内部の電気分解の様子が観察で きるようになつている。
電気分解装置 3は、電源装置 5と、この電源装置5に配線 6, 6を介して電気的に接 続された一対の電極 7a, 7bとを備えている。
[0033] 電源装置 5は、予め設定した一定電流を所定時間流すことができるものであるが、 一定電圧を印加して、電流を所定時間流すこともできることは言うまでもない。この電 源装置 5によって電極 7a, 7bに所定電圧を印加することによって、一定の大きさ(例 えば 5A)の定電流を流し、電解槽 2内のシユウ酸水溶液が電気分解されて、陽極側 の電極 7aから炭酸ガスが発生する力 その発生量を、 S (mol)とすると、
S =I X t X (l/9. 65 Χ 104) Χ 1/η (1)
となる。なお、 Iはアンペア、 tは秒、 nはシユウ酸の価数を示し、 n= 2である。
前記電極 7a, 7bは、それぞれ白金で形成されており、電極(陽極) 7aはコイル状に 形成され、電極(陰極) 7bは棒状に形成されている。また、電極 7a, 7bは前記蓋 2b に形成された 2つの孔をそれぞれ貫通して、電解槽本体 2a内のシユウ酸水溶液中に 挿入されている。
[0034] 前記超音波発生装置 4は、装置本体 4aと、この装置本体 4aに電気的に接続された 超音波振動子 4bとを備えている。超音波振動子 4bは細い棒状のものであり、その基 端部(上端部)は保持部 4cによって保持されている。保持部 4cは、支持台 8の上端 部に設けられた取付部 8aに、超音波振動子 4bがほぼ鉛直となるようにして取り付け られている。
この超音波振動子 4bの先端部(下端部)は、蓋 2bを貫通して電解槽本体 2a内のシ ユウ酸水溶液中に挿入されている。超音波振動子 4bを挿入する場合、コイル状に形 成された電極 7aの内側に、コイルの中心軸とほぼ同軸に挿入する。また、超音波振 動子 4bの下端は、電極 7aの上端側に位置するように配置され、超音波振動子 4bの 先端より印加される超音波が電極 7a全体に行き渡るようにするのが好ましい。
[0035] 前記運転制御装置 10 (12)は、前記電気分解装置 3と超音波発生装置 4の制御を するもので、実施例では、 pH測定器 11からの信号を受信する受信部 15と、電気分 解により生じた炭酸ガスの気泡を最適な粒径 (ナノオーダーの粒径)にするための超 音波の大きさと電流の大きさ及びこれらの運転時間等がデータベース化されたメモリ 部 16と、操作パネル 17と、表示部 18と、これら受信部 15、メモリ部 16、操作パネル 1 7、表示部 18を制御する制御部 19とを主体として構成されて 、る。
前記受信部 15は、 pH測定器 11からの信号を受信してその信号を制御部 19に送 るもので、 pH測定器 11の機能によっては、温度等の他のパラメータの信号を受信で きるようになって!/ヽることは言うまでもな!/、。
[0036] 前記メモリ部 16は、この炭酸ガス溶解液製造装置 1を運転するために必要な種々 のデータが予め記憶されたもので、操作パネル 17の操作によって、メモリ部 16に記 憶されたデータを読み出し、この炭酸ガス溶解液製造装置 1を運転制御することがで きる。
実施例では、運転制御装置 10 (12)は、炭酸ガスの微小気泡を一定粒径の範囲に 納める粒径制御装置を兼ねており、前記メモリ部 16には、炭酸ガスの微小気泡をナ ノオーダーの気泡にまで粒径を揃えるデータが予め記憶されている。
なお、炭酸ガスの微小気泡の粒径は、超音波発生装置 4の超音波の強さと超音波 を当てる時間によりコントロールできるものである。
操作パネル 17は、キー入力式のものや、タツチ式入力装置等のものが適用され、ま た表示部 18は液晶画面等が採用される。
そして、制御部 19は、これら受信部 15、メモリ部 16,操作パネル 17,表示部 18等 に電気的に接続されて、これらを制御するとともに、電気分解装置 3と超音波発生装 置 4とを運転制御するものである。
[0037] また pH測定器 11は、電解槽 2内のシユウ酸水溶液を電気分解する工程時に、炭 酸ガス溶解液の pH値 (水素イオン濃度指数)を測定するもので、実施例では、この p H測定器からの pH値の信号を運転制御装置 10 (12)に送り、運転制御装置 10 (12 )では、この pH値を基準に、シユウ酸水溶液の電気分解を制御することができるよう になっている。
なお、実施例の pH測定器 11は、スィッチを切り替えることにより、酸化還元電位を 測定できる機能を備えており、酸化還元電位の電流値の信号を運転制御装置 10 (1 2)に送り、運転制御装置 10 (12)では、この酸化還元電位の電流値を基準に、シュ ゥ酸水溶液の電気分解を制御することもできるようになって ヽる。
したがって、実施例では、 pH測定器 11が酸ィ匕還元電位を測定する測定器ともなる ものである。
[0038] また、 pH値あるいは酸ィ匕還元電位はデジタルで表示部 18に出すようにしても良い 力 シユウ酸水溶液が充填された電解槽 2に予めメチルレッド等の指示薬を少量入れ て指示薬の色調を見て、電気分解を制御することもできる。
すなわち、シユウ酸水溶液を、電気分解していき、 pH値が 5〜6の領域まであがると 、メチルレッドの色調はこの変色域で変化する(この色調が変わる pH範囲を変色域と いう)ので、このときに電気分解を停止することによって、弱酸性の炭酸ガス水溶液を 得ることもできる。このようなメチルレッドの変色域にある弱酸性の炭酸ガス水溶液は 、人間の肌に対して優しいものとなる。
[0039] 上記のような炭酸ガス溶解液製造装置 1を使用して、炭酸ガス溶解液を製造するに は、電解槽本体 2a内に充填されているシユウ酸水溶液を電気分解する。
シユウ酸水溶液の濃度は 0. 1モル (mol/l)—lモルまで可能である力 常温での溶 解度の点からは 0. 5モル程度のシユウ酸水溶液までが好適である。
そして、この場合、電気分解装置 3の電源装置 5によって、電極 7a, 7bに流す電流 と時間とを予め設定しておく。
この場合の電流と時間は、炭酸ガス溶解液中の pH値 (水素イオン濃度指数)が弱 酸性の領域 (例えば PH5. 0-6. 8)に納まる時間としておくのが好適である。
また、炭酸ガスの微小気泡の粒径の範囲を一定範囲にするために、超音波発生装 置 4の超音波の強さを設定しておく。
[0040] 前記電解槽 2に充填されたシユウ酸水溶液は当初強酸である力 このシユウ酸水溶 液を電気分解すると、シユウ酸水溶液が電気分解されることによって、 pH値が上昇し ていき、アルカリ側になっていく。
また、炭酸ガスは pH値が上がった分だけ発生したことになるため、濃度の高い炭酸 水溶液を pH値の管理により容易にコントロールできることになる。
すなわち、 pHの値力 ^大きくなると、陽極側で発生する COは 10倍づっ大きくなる
2
ため、シユウ酸水溶液中の COは 10万倍から 100万倍の量が発生したこととなる。そ
2
して、これだけの量が発生したときに、シユウ酸水溶液中には、炭酸泉としての特徴 である皮膚表面の無数の水泡と、皮膚紅潮という特有の効果を生み出すこととなるの である。
なお、この設定には運転制御装置 10 (12)の操作パネル 17を用いて行い、一方、 超音波発生装置 4の設定も同時に行い、運転制御装置 10 (12)から電源装置 5、超 音波発生装置 4の制御を実施することは言うまでもな 、。
[0041] シユウ酸水溶液を電気分解すると、電極(陽極 7a)から炭酸ガスが発生する。 化学式で示すと以下の通りである。
H C O→2CO + 2H++ 2e"
2 2 4 2
なお、電極 7aで発生する炭酸ガスは目視が可能な程度の大きさの気泡となってい る。
一方、電気分解を行うと同時に、運転制御装置 10 (12)力もの制御信号によって、 超音波発生装置 4の装置本体 4aを起動させ、超音波振動子 4bから超音波を発生さ せる。すると、この超音波が電極 7aで発生する炭酸ガスの気泡に直接的に作用する ことによって、この気泡が破裂して微小気泡が形成されるとともに、この微小気泡がシ ユウ酸水溶液中に溶解する。このようにして微小気泡の炭酸ガスが溶解して ヽる炭酸 ガス溶解液を製造する。このような微小気泡はナノバブル (気泡)と称されるもので、 目視できな 、ほどの大きさである。
[0042] また、弱酸性の領域までシユウ酸水溶液を電気分解すると、 pH値が 1アルカリ性に 近づくたびに陽極で発生する COは 10倍づっ大きくなるため、シユウ酸水溶液中の
2
COは 10万倍から 100万倍の量が発生したこととなり、これだけの量が発生したとき
2
に、シユウ酸水溶液中には、炭酸泉としての特徴である皮膚表面の無数の水泡と、皮 膚紅潮という特有の効果を生み出すこととなる。
したがって、炭酸ガス気泡の粒径にこだわらなければ、超音波発生装置 4について は、不要とすることも可能となる。
なお、粒径の大きさをより細力べし、炭酸ガスの皮膚からの経皮進入を考慮すること を目的とする場合には、本発明の炭酸ガス溶解液製造装置 1において、前記 pH測 定器 11力 の信号により、電気分解装置 3と超音波発生装置 4を制御する運転制御 装置 12を備えておくことが好ましい。
[0043] 以上のように、本実施の形態によれば、炭酸泉の製造方法のような散気手段や、炭 酸ガスボンベ、ガス分離器、圧縮機といった機器等を必要とせず、電解槽 2に充填し たシユウ酸水溶液を電気分解装置 3によって電気分解して炭酸ガスを発生させるとと もに、発生した炭酸ガスの気泡に超音波発生装置 4によって超音波を作用させて、 該気泡から微小気泡を形成し、この微小気泡をシユウ酸水溶液中に溶解させるので 、微小気泡が溶解して ヽる炭酸ガス溶解液を容易にし力ゝも低コストで製造できる。 また、電気分解装置 3のコイル状の電極 7aの内側に、超音波発生装置 4の超音波 振動子 4bが挿入されているので、電極 7aから発生した炭酸ガスの気泡に、効率良く かつ均一に超音波を作用させて、微小気泡を形成することができる。したがって、微 小気泡が溶解している炭酸ガス溶解液を効率よく製造できる。
[0044] また、実施例の炭酸ガス溶解液製造装置 1にお!/、て、 pH測定器 11のスィッチを切 り替え、電解槽内のシユウ酸水溶液の酸ィ匕還元電位を測定するようにし、電解槽内 のシユウ酸水溶液を電気分解する工程時に、炭酸ガス溶解液の酸化還元電位を測 定し、この酸化還元電位を基準に、シユウ酸水溶液の電気分解を制御することも可能 である。
シユウ酸水溶液の酸化還元電位は、電気分解をする前はプラス側の電位 (たとえば プラス 300mV〜500mV)を持つが、シユウ酸水溶液を電気分解する工程とともに、 シユウ酸水溶液の中にマイナスのエレクトロンが発生してマイナス側の電位に推移し て行く。
最終的にはマイナスの酸ィ匕還元電位が一定の値となり、それ以上マイナス側の電 位には推移しなくなるため、この一定の値を目安にシユウ酸水溶液の電気分解を行う ものである。
[0045] このような構成とすれば、炭酸ガスの濃度を酸ィ匕還元電位によって管理できるもの である。そして、実施例では、マイナスの酸ィ匕還元電位の一定の値に落ち着いたとき に、シユウ酸水溶液中には、炭酸泉としての特徴である皮膚表面の無数の水泡と、皮 膚紅潮という特有の効果を生み出すこととなるのである。
また pH値の測定もしくは酸ィ匕還元電位の測定を行い、これらの測定値によって、炭 酸ガス発生量の管理をすることによって、炭酸水を製造するようにすれば、この状態 だけでも、炭酸泉としての特徴である皮膚表面の無数の水泡と、皮膚紅潮という特有 の効果を生み出すこととなるため、炭酸ガス気泡の粒径にこだわらなければ、超音波 発生装置 4については、不要とすることも可能となる。
[0046] すなわち、弱酸性の領域までシユウ酸水溶液を電気分解すると、 pH値が 1アルカリ 性に近づくたびに、陽極で発生する COは 10倍づっ大きくなるため、シユウ酸水溶
2
液中の COは 10万倍から 100万倍の量が発生したこととなり、これだけの量が発生し たときに、シユウ酸水溶液中には、炭酸泉としての特徴である皮膚表面の無数の水泡 と、皮膚紅潮という特有の効果を生み出すこととなるため、炭酸ガス気泡の粒径にこ だわらなければ、超音波発生装置 4については、不要とすることもできるのである。
[0047] なお、酸化還元電位についても、同様のことが言え、酸ィ匕還元電位がマイナスにな れば、電解槽内のシユウ酸水溶液はアルカリ側に近づくため、酸化還元電位は、一 定値以上にはマイナスにならなくなるため、その値で製造装置を管理すれば、 pH値 の測定と同様の効果を得ることができるものである。
さらに、シユウ酸水溶液を電気分解して炭酸ガスを得るので、前述した(1)式によつ て発生する炭酸ガスの発生量を得ることができ、よって、得られる炭酸ガス溶解液中 の炭酸ガスの濃度を得ることも可能になる。
また、上述した実施形態による製造装置により製造した方法で、製造した炭酸水は
、炭酸水中に高濃度の炭酸ガスが溶解されるため、この炭酸水に手 (身体)を浸けれ ば、皮膚表面には無数の水泡と、皮膚紅潮という特有の効果を生み出すことができる ものとなる。したがって、この炭酸水を使用すれば、毛細血管床の増加および拡張を 起こさせ、皮膚の血行の改善を促進することができる。
[0048] 図 2〜図 4は本発明に係る炭酸ガス溶解液製造装置の別の実施の形態を示す図 である。
これらの図に示す炭酸ガス溶解液製造装置が、図 1に示す炭酸ガス溶解液製造装 置と異なる点は、電極の形状や配置状態、超音波振動子の配置状態であるので、以 下ではこれらの点について詳しく説明し、その他の共通部分については同一符号を 付してその説明を省略または簡略ィ匕する。
炭酸ガス溶解液製造装置 21は、基台 22の上面に設置された電解槽本体 2aと、こ の電解槽本体 2aの上部開口を開閉可能に閉塞する蓋 2bとを備えた電解槽 2と、電 気分解装置 3と、超音波発生装置 4と、これら電気分解装置 3と超音波発生装置 4を 制御する運転制御装置 10 (12)と、電解槽 2に充填されたシユウ酸水溶液の pH (水 素イオン濃度指数)を計測する PH測定器 11とを備えて!/ヽる。
なお、この実施の形態の pH測定器 11も酸ィ匕還元電位の測定に切り替える機能を もって 、ることは言うまでもな!/、。 [0049] 電気分解装置 3は、電源装置 5と、この電源装置 5に配線 6, 6を介して電気的に接 続された 4枚の電極 25a, 25b、 26a, 26bとを備えている。電極 25a, 26aは陽極で あり、電極 25b, 26bは陰極である。そして、電極 25aと電極 25bと力 S組電極 25を構 成し、電極 26aと電極 26bとが組電極 26を構成している。つまり、本実施の形態では 、 2つの組電極 25, 26を備えている。
電極 25a, 25b, 26a, 26bは、それぞれほぼ同一形状の長方形薄板状に形成され ており、また、電極 25a, 25b, 26a, 26biま白金で形成される力、ある ヽ ίまチタンや、 チタニウム合金または適宜な金属板に白金を被覆して形成されたものなどが適用さ れる。
電極 25a, 25b, 26a, 26bの上端部〖こは、それぞれ略 L字型の導体 28の一片部 が接合されており、該導体 28の他片部は上方に延出して、電解槽 2の上方に突出し ている。そして、これら導体 28の他片部の上端部に前記配線 6, 6が接続されている また、電極 25aと電極 25bとは所定の隙間をもって平行離間して配置されており、 同様に、電極 26aと電極 26bとは所定の隙間をもって平行離間して配置されている。 なお、これら電極 25, 26の配置は図示例に示すように、垂直に配置しても良いが、 水平方向に配置する構成としても良い。そして、電極 25, 26を水平方向に配置する 場合には、電極自身に適宜な孔を形成して、電極より生じる気泡が上に通過するよう にすることちでさる。
[0050] さらに、電極 25aおよび電極 25bによって構成された組電極 25と、電極 26aおよび 電極 26bによって構成された組電極 26とは、左右に離間して配置されており、これら の間に、超音波振動子 4bが配置されている。
超音波振動子 4bの保持部 4cは、基台 22に立設された支柱 22aにアーム 22bを介 して支持されて 、る。アーム 22bは支柱 22aに沿って上下動可能でかつ左右に首振 り可能であり、ハンドル 22cを締付けることによって、支柱 22aの上下方向の所定位置 で固定でき、かつ、左右方向に首振り不能に固定できるようになつている。これによつ て、超音波振動子 4bの上下、左右の位置を調整できるようになつている。
[0051] 上記のような炭酸ガス溶解液製造装置 21を使用して、炭酸ガス溶解液を製造する には、電解槽本体 2a内に充填されているシユウ酸水溶液を電気分解する。
シユウ酸水溶液の濃度は 0. 1モル (mol/l)—lモルまで可能である力 常温での溶 解度の点からは 0. 5モル程度のシユウ酸水溶液までが適用可能である。
そして、電気分解装置 3の電源装置 5によって、各組電極 25, 26に流す電流と時 間とを予め設定しておき、設定した電流と時間において、電気分解するとともに、超 音波発生装置 4の装置本体 4aを起動して、超音波振動子 4bから超音波を発生させ る。
また、炭酸ガスの微小気泡の粒径の範囲を一定範囲にするために、超音波発生装 置 4の超音波の強さを設定しておくことはもちろんである。
この場合の電流と時間も、炭酸ガス溶解液中の pH値 (水素イオン濃度指数)が弱 酸性の領域 (例えば PH5. 0- 6. 8)に納まる時間としておき、弱酸性領域にシユウ酸 水溶液がなったならば、炭酸ガス溶解液製造装置 21の運転を停止する。
すると、この超音波が電極 25a, 26aで発生する炭酸ガスの気泡に作用すること〖こ よって、この気泡が破裂して微小気泡が形成されるとともに、この微小気泡がシユウ酸 水溶液中に溶解する。
このように本実施の形態によれば、電極が薄板状であり、陽極側と陰極側との 2つ の電極 25a, 25b、 26a, 26bで構成された糸且電極 25, 26力複数設けられているの で、炭酸ガスを大量に発生させることができる。
また、組電極 25, 26の間に超音波震動子 4bが配置されているので、電極 25a, 26 aから発生した炭酸ガスの気泡に、効率良くかつ均一に超音波を作用させて微小気 泡を形成することができる。したがって、大量の微小気泡が溶解している炭酸ガス溶 解液を効率よく製造できる。
また、この実施の形態においても、 pH値を管理して、弱酸性の領域までシユウ酸水 溶液を電気分解するようにすれば、弱酸性の領域までシユウ酸水溶液を電気分解す ると、 pH値が 1アルカリ性に近づくたびに、陽極で発生する COは 10倍づっ大きくな
2
るため、シユウ酸水溶液中の COは 10万倍から 100万倍の量が発生したこととなり、
2
これだけの量が発生したときに、シユウ酸水溶液中には、炭酸泉としての特徴である 皮膚表面の無数の水泡と、皮膚紅潮という特有の効果を生み出すこととなるため、炭 酸ガス気泡の粒径にこだわらなければ、超音波発生装置 4については、不要とするこ とも可能となることは言うまでもな 、。
[0053] さらにこの実施形態の炭酸ガス溶解液製造装置 1にお 、ても、 pH測定器 11のスィ ツチを切り替え、電解槽内のシユウ酸水溶液の酸ィ匕還元電位を測定するようにし、電 解槽内のシユウ酸水溶液を電気分解する工程時に、炭酸ガス溶解液の酸化還元電 位を測定し、この酸化還元電位を基準に、シユウ酸水溶液の電気分解を制御するこ とも可能である。
シユウ酸水溶液の酸化還元電位は、電気分解をする前はプラス側の電位 (たとえば プラス 300mV〜500mV)を持つが、シユウ酸水溶液を電気分解する工程とともに、 シユウ酸水溶液の中にマイナスのエレクトロンが発生してマイナス側の電位に推移し て行く。
最終的にはマイナスの酸ィ匕還元電位が一定の値となり、それ以上マイナス側の電 位には推移しなくなるため、この一定の値を目安にシユウ酸水溶液の電気分解を行う ものである。
そして、この実施の形態においても超音波を印加することなぐ pH値と酸化還元電 位の測定によって、炭酸泉としての特徴である皮膚表面の無数の水泡と、皮膚紅潮 という特有の効果を生み出す炭酸水を製造することができる。
[0054] このような本実施の形態によれば、電極が薄板状であり、陽極側と陰極側との 2つ の電極 25a, 25b、 26a, 26bで構成された糸且電極 25, 26力複数設けられているの で、炭酸ガスを大量に発生させることができる。
また、組電極 25, 26の間に超音波震動子 4bが配置されているので、電極 25a, 26 aから発生した炭酸ガスの気泡に、効率良くかつ均一に超音波を作用させて微小気 泡を形成することができる。したがって、大量の微小気泡が溶解している炭酸ガス溶 解液を効率よく製造できる。
[0055] 図 5および図 6はそれぞれ 2つの組電極 25, 26を備えた炭酸ガス溶解液製造装置 21の別の実施形態を示す図である。
図 5および図 6に示す炭酸ガス溶解液製造装置 21Aと 21Bと炭酸ガス溶解液製造 装置 21の共通部分には同一符号を付してその説明を省略する。 図 5に示す実施の形態の炭酸ガス溶解液製造装置 21Aでは、 2つの超音波振動 子 4b, 4bを備えており、これら超音波振動子 4b, 4bは電解槽本体 2aの対向する内 壁側に配置されている。したがって、超音波振動子 4b, 4bに近い方の電極 25b, 26 bが陽極となり、この陽極 25b, 26bから炭酸ガスが発生する。
図 6に示す別の実施の形態の炭酸ガス溶解液製造装置 21Bでは、超音波振動子 4bが横向きとなって、電解槽本体 2aの底部に配置されている。したがって、電極 25a , 26aを陽極として、炭酸ガスが発生させてもよいし、電極 25b, 26bを陽極として、炭 酸ガスが発生させてもよい。
以下に実施例を示した本発明をさらに具体的に説明する力 本発明はこれらの実 施例に限定されるものではない。
(実施例 1)
炭酸ガス溶解液を製造する実験として、 0. lmol/1のシユウ酸水溶液を電解槽 2に 充填し、超音波発生装置(トミー精ェ製、型番 UD-200) 4によって、 60分間超音波 を発生させるとともに、電気分解装置 3によって電気分解を行った。なお、電解槽 2と しては、薄層クロマトグラフィー用の電解槽を使用した。
超音波発生装置 4の周波数は 20kHz、このとき流した電流は 300mA、電気分解装 置 3の印加電圧は ΙΟνであった。
また、製造された炭酸ガス溶解液中に含まれる炭酸ガスの微小気泡の平均粒径を 測定したところ、 3930nmであった。
なお、この粒径測定には、準弾性光散乱光度計 (大塚電子株式会社製、型番 ELS- 8000)を使用した。また、同準弾性光散乱光度計を使用して散乱強度を測定した。散 乱強度は、炭酸ガス溶解液中に含まれる炭酸ガスの微小気泡の濃度を示す指標で あり、 2回柳』定したところ、 1回目は 55969± 21321であり、 2回目は 60471 ± 1745 6であった。
比較のために、炭酸ガスを lOOOppm含む炭酸泉の炭酸ガスの微小気泡の粒径と 散乱強度を測定した。その結果、平均粒径は 4327 散乱強度は 1回目は 12042 ±4433 2回目は 10004± 1390であった。なお、前記炭酸泉は、三菱レーヨン株 式会社製の炭酸泉製造装置 (C. C. Carbo)によって製造したものを使用した。 これらの結果を表 1に示す。
[表 1]
Figure imgf000024_0001
上表のように、本発明に係る炭酸ガス溶解液製造装置によって製造された炭酸ガス 溶解液中の微小気泡の平均粒径は、炭酸泉の平均粒径とほぼ同じカゝ若干小さめで あることが判明した。
また、炭酸ガス溶解液の散乱強度は、炭酸泉の散乱強度より大きいことが判明した 。したがって、炭酸ガス溶解液中に含まれる炭酸ガスの微小気泡の濃度は、炭酸泉 より大きいことが予想できる。また、炭酸ガスボンベによる加圧された炭酸ガスを多く 大気中に放出することがな 、ので、環境にも優し 、。
また、この実験によって製造した炭酸水に 5分間手を入れて、手につく泡の状態と 皮膚の紅潮減少を観察したところ、手には、ゆっくりとではあるが、炭酸水につけた手 の表面全体に細かい泡が付くことが観察され、また 5分後炭酸水につけた手を炭酸 水から取り上げて、室温の中で観察したところ、炭酸水につけたところだけ (水面より 下の部分だけ)が明確に紅くなつていることが確認された。
[0057] なお、比較例として三菱レーヨン株式会社製の炭酸泉製造装置 ( C. Carbo)によ つて製造した炭酸泉に 5分間手を浸けて手の皮膚の状態を観察したところ、皮膚表 面に同様の無数の水泡と、皮膚紅潮という特有の効果が現れた。
三菱レーヨン株式会社製の炭酸泉製造装置 (C. C. Carbo)によって製造した炭酸 泉は lOOOppmあるとされ、同様の効果を奏する本発明においても炭酸ガスの濃度 は lOOOppmあると考えられる。
なお、この炭酸ガスの濃度は電気分解の時間を長くすれば、炭酸ガスの濃度は上 がるが、治療に効果のある 400ppmまでの炭酸ガス濃度を作るならば、電気分解の 時間を短くすれば良 、ことは言うまでもな 、。
[0058] (実施例 2) 次に、図 2ないし図 4に示す実施の形態の炭酸ガス溶解液製造装置 21により、炭 酸ガス溶解液を製造する実験として、 0. lmol/1のシユウ酸水溶液を電解槽 2に 3リット ル充填し、超音波発生装置(トミー精ェ製、型番 UD-200) 4によって、 75分間超音 波を発生させるとともに、電気分解装置 3によって電気分解を行った。
なお、電解槽 2としては、薄層クロマトグラフィー用の電解槽を使用した。
超音波発生装置 4の周波数は 20kHz、電気分解装置 3の電流は 1Aを定電流で流 した。
また、製造された炭酸ガス溶解液中に含まれる炭酸ガスの散乱強度を測定したとこ ろ、
294238 ± 563470であった。この散乱強度測定には、準弾性光散乱光度計 (大塚 電子株式会社製、型番 ELS-8000)を使用した。
表 1で比較例として測定した、三菱レーヨン株式会社製の炭酸泉製造装置 (C. C. Carbo)により製造した炭酸泉の散乱強度と比較すると、その散乱強度は 30倍近くあ り、それだけ炭酸ガス溶液中には炭酸ガスが溶解されて ヽることがゎカゝつた。
また、この炭酸ガス溶解液中に手を 5分間浸けて手の皮膚の状態を観察したところ 、皮膚表面に無数の水泡がつき、また皮膚紅潮という特有の効果を生み出すことが 観察された。
したがって、この炭酸水を使用すれば、毛細血管床の増加および拡張を起こさせ、 皮膚の血行の改善を促進することができる。
また、本実施例によれば、炭酸ガスボンベによる加圧された炭酸ガスを多く大気中 に放出することがないので、環境にも優しい。
(実施例 3)
炭酸ガス溶解液を製造する実験として、 0. lmol/1のシユウ酸水溶液を電解槽 2に 3 リットル充填し、電気分解を 40分行った。そして、炭酸ガス溶解液中の pH値 (水素ィ オン濃度指数)を pH測定器 11にて測定したところ pH値は、図 7に示すようなグラフと なった。
この例では、超音波の印加は行わず、電気分解装置 3の電流は 1Aを定電流で流 し、 電気分解のみで行った。
図 7に示すように、前記電解槽 2に充填されたシユウ酸水溶液は当初強酸であるが 、このシユウ酸水溶液を電気分解すると、電気分解時間の経過に伴って、 pH値が上 昇していき、強アルカリとなっていく。
[0060] なお、このようにして製造された炭酸ガス水溶液が弱酸性領域になったところで、一 度電気分解を停止し、弱酸性の炭酸ガス溶解液を取り、この実験によって製造した 炭酸水に 5分間手を入れて、手につく泡の状態と皮膚の紅潮減少を観察したところ、 手には、ゆっくりとではあるが、炭酸水につけた手の表面全体に細かい泡が付くこと が観察され、また 5分後炭酸水につけた手を炭酸水力 取り上げて、室温の中で観 察したところ、炭酸水につけたところだけ (水面より下の部分だけ)が明確に紅くなつ ていることが確認された。
[0061] (実施例 4)
炭酸ガス溶解液を製造する実験として、図 2に示すような装置を使い、 0. 2mol/lの シユウ酸水溶液を電解槽 2に 3リットル充填し、電気分解を 30分行い、酸化還元電位 を測定した。この例では、超音波の印加は行わず、電気分解装置 3の電流は 4. 54A を定電流で流し、電気分解を行った。
結果を表 2に示す。
[表 2]
時間 (分) 酸化還元電位 (m V )
0 + 4 6 8
0 . 5 + 2 9 7
1 + 3 3
2 + 1 7
3 1 3 9
4 2 5 6
5 2 5 9
6 ― 2 5 8
7 ― 2 5 9
8 2 5 9
9 2 5 9
1 0 一 2 5 8
1 5 ― 2 5 8
2 0 2 6 0 この例では、 5分ほど電気分解を行うと、—258ミリボルトのあたりで酸ィ匕還元電位 が変わらなくなり、 30分電気分解した炭酸水に 5分間手を入れて、手につく泡の状態 と皮膚の紅潮減少を観察したところ、手には、ゆっくりとではあるが、炭酸水につけた 手の表面全体に細かい泡が付くことが観察され、また 5分後炭酸水につけた手を炭 酸水から取り上げて、室温の中で観察したところ、炭酸水につけたところだけ (水面よ り下の部分だけ)が明確に紅くなつていることが確認された。
産業上の利用可能性
本発明によれば、炭酸泉の製造方法のような散気手段や、炭酸ガスボンベ、ガス分 離器、圧縮機といった機器等を必要とせず、電解槽に充填したシユウ酸水溶液を電 気分解装置によって電気分解して炭酸ガスを発生させるとともに、発生した炭酸ガス の気泡に超音波発生装置によって超音波を作用させて、該気泡力 微小気泡を形 成し、この微小気泡をシユウ酸水溶液中に溶解させるので、微小気泡が溶解している 炭酸ガス溶解液を容易にし力ゝも低コストで、かつ不要な炭酸ガスを大気中に放出す ることなく環境に優しく製造できる。
また本発明によれば、電解槽中のシユウ酸水溶液を電気分解して炭酸ガスを発生 させつつ、発生した炭酸ガスの気泡に超音波発生装置によって超音波を作用させて 、該気泡から微小気泡を形成し、この超音波の強さを一定にすることによって、炭酸 ガスの微小気泡を一定粒径の範囲に揃え、一定の大きさの炭酸ガス気泡が溶解され たシユウ酸水溶液を製造することができるので、毛細血管床の増加および拡張を起こ させ、皮膚の血行の改善を促進する炭酸泉を、必要量だけ製造できる。
また、このようにして製造された炭酸ガスの微小気泡が溶解されたシユウ酸水溶液 を主成分とする炭酸水は、皮膚表面の無数の水泡と、皮膚紅潮という特有の効果を 生み出すことができ、毛細血管床の増加および拡張を起こさせ、皮膚の血行の改善 を促進することができる。

Claims

請求の範囲
[1] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を電気分解して炭酸ガスを発生させるとともにシユウ酸水溶液中で超 音波を印加させて、発生した炭酸ガスの気泡から微小気泡を形成し、この微小気泡 をシユウ酸水溶液中に溶解させることを特徴とする炭酸ガス溶解液製造方法。
[2] 電解槽内のシユウ酸水溶液を電気分解する工程時に、炭酸ガス溶解液の pH値を 測定し、この pH値を基準に、シユウ酸水溶液の電気分解を制御することを特徴とする ことを特徴とする請求の範囲第 1項に記載の炭酸ガス溶解液製造方法。
[3] シユウ酸水溶液の pH値 (水素イオン濃度指数)が弱酸性の領域 (例えば pH5. 0- 6. 8)になった時に、シユウ酸水溶液の電気分解を停止することを特徴とする請求の 範囲第 2項に記載の炭酸ガス溶解液製造方法。
[4] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生した炭酸ガスの気泡をシ ユウ酸水溶液中に溶解させる炭酸ガス溶解液製造方法であって、シユウ酸水溶液の pH値を測定し、当該 pH値が弱酸性の領域になった時に、シユウ酸水溶液の電気分 解を停止することを特徴とする炭酸ガス溶解液製造方法。
[5] シユウ酸水溶液が充填された電解槽の一部に予めメチルレッド等の指示薬を少量 入れた色調確認のための容器を入れ、容器内の指示薬の色調を見て、電気分解を 制御することを特徴とする請求の範囲第 2項または第 4項に記載の炭酸ガス溶解液 製造方法。
[6] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生した炭酸ガスの気泡をシ ユウ酸水溶液中に溶解させる炭酸ガス溶解液製造方法であって、シユウ酸水溶液の 酸化還元電位を測定し、この酸化還元電位を基準に、シユウ酸水溶液の電気分解を 制御することを特徴とする炭酸ガス溶解液製造方法。
[7] シユウ酸水溶液の酸ィ匕還元電位がマイナスミリボルトの上限に達した時に、シユウ酸 水溶液の電気分解を停止することを特徴とする請求の範囲第 6項に記載の炭酸ガス 溶解液製造方法。
[8] シユウ酸水溶液が充填される電解槽と、この電解槽内のシユウ酸水溶液を電気分 解して炭酸ガスを発生させる電気分解装置と、電解槽内の電極配置領域に超音波を 印加可能に配置されかつ発生した炭酸ガスの気泡を超音波の作用により、該気泡か ら微小気泡を形成し、この微小気泡をシユウ酸水溶液中に溶解させる超音波発生装 置とを備えることを特徴とする炭酸ガス溶解液製造装置。
[9] 電気分解装置と、超音波発生装置とを制御し、炭酸ガスの微小気泡を一定粒径の 範囲に納める粒径制御装置を備えていることを特徴とする請求の範囲第 8項に記載 の炭酸ガス溶解液製造装置。
[10] 電解槽には、シユウ酸水溶液の pHを計測する pH測定器が付設されて ヽることを特 徴とする請求の範囲第 8項または 9項に記載の炭酸ガス溶解液製造装置。
[11] pH測定器力 の信号により、電気分解装置と超音波発生装置を停止させる運転制 御装置が備えられていることを特徴とする請求の範囲第 10項に記載の炭酸ガス溶解 液製造装置。
[12] 電気分解装置の電極がコイル状に形成されており、このコイル状の電極の内側に、 前記超音波発生装置の超音波振動子が挿入されていることを特徴とする請求の範 囲第 8項に記載の炭酸ガス溶解液製造装置。
[13] 電極が薄板状に形成されており、陽極側の 1つの前記電極と陰極側の 1つの前記 電極とから構成される組電極が複数設けられ、かつ、これら組電極は陽極側が対向 して設置されるとともに、組電極の陽極側に位置して超音波振動子が挿入されている ことを特徴とする請求の範囲第 8項に記載の炭酸ガス溶解液製造装置。
[14] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生した炭酸ガスの気泡をシ ユウ酸水溶液中に溶解させる炭酸ガス溶解液製造方法のための製造装置にぉ 、て 、シユウ酸水溶液が充填される電解槽と、この電解槽内のシユウ酸水溶液を電気分 解して炭酸ガスを発生させる電気分解装置と、電解槽内のシユウ酸水溶液の pH値を 測定する測定器とを備えたことを特徴とする炭酸ガス溶解液製造装置。
[15] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生した炭酸ガスの気泡をシ ユウ酸水溶液中に溶解させる炭酸ガス溶解液製造方法のための製造装置にぉ 、て 、シユウ酸水溶液が充填される電解槽と、この電解槽内のシユウ酸水溶液を電気分 解して炭酸ガスを発生させる電気分解装置と、電解槽内のシユウ酸水溶液の酸化還 元電位を測定する測定器とを備えたことを特徴とする炭酸ガス溶解液製造装置。
[16] 電解槽には、陽極と陰極とを分ける隔膜が設けられて ヽることを特徴とする請求の 範囲第 8項〜第 15項のうちの何れか一項に記載の炭酸ガス溶解液製造装置。
[17] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を電気分解して炭酸ガスを発生させるとともにシユウ酸水溶液中で超 音波を印加させて、発生した炭酸ガスの気泡力 超音波の作用により一定粒径の微 小気泡を形成し、一定粒径の炭酸ガス微小気泡が溶解されたシユウ酸水溶液を主成 分とすることを特徴とする炭酸水。
[18] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を、弱酸性の pHまで電気分解して炭酸ガスを発生させ、炭酸泉とし ての特徴である皮膚表面の無数の水泡と、皮膚紅潮という特有の効果を生み出すこ とができる炭酸ガス微小気泡が溶解されたシユウ酸水溶液を主成分とすることを特徴 とする炭酸水。
[19] 電解槽内の電極間に直流電圧を印加することにより、電解槽内に充填しておいた シユウ酸水溶液を電気分解して炭酸ガスを発生させ、発生した炭酸ガスの気泡をシ ユウ酸水溶液中に溶解させた炭酸水であって、シユウ酸水溶液の酸化還元電位を測 定し、この酸ィ匕還元電位がマイナスミリボルトの上限に達した時に、シユウ酸水溶液の 電気分解を停止して得たことを特徴とする炭酸水。
[20] 炭酸水の濃度を、 400ppm以上としたことを特徴とする請求の範囲第 17項〜第 19 項のうちのいずれか一項に記載の炭酸水。
PCT/JP2006/311502 2005-06-13 2006-06-08 炭酸ガス溶解液製造方法、製造装置および炭酸水 WO2006134819A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020067025422A KR101100607B1 (ko) 2005-06-13 2006-06-08 탄산가스 용액의 제조방법, 제조장치 및 탄산수
JP2007521257A JPWO2006134819A1 (ja) 2005-06-13 2006-06-08 炭酸ガス溶解液製造方法、製造装置および炭酸水
US11/917,473 US8409420B2 (en) 2005-06-13 2006-06-08 Process for producing carbonic acid gas solution, an apparatus for the same and carbonated water
CN2006800002392A CN101005886B (zh) 2005-06-13 2006-06-08 碳酸气溶液的制造方法和制造装置以及碳酸水
EP06766478A EP1892030A4 (en) 2005-06-13 2006-06-08 PROCESS FOR PRODUCING SOLUTION CONTAINING DISSOLVED CARBON DIOXIDE, APPROPRIATE DEVICE AND GAS WATER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005172149 2005-06-13
JP2005-172149 2005-06-13
JP2005-337575 2005-11-22
JP2005337575 2005-11-22

Publications (1)

Publication Number Publication Date
WO2006134819A1 true WO2006134819A1 (ja) 2006-12-21

Family

ID=37532182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311502 WO2006134819A1 (ja) 2005-06-13 2006-06-08 炭酸ガス溶解液製造方法、製造装置および炭酸水

Country Status (7)

Country Link
US (1) US8409420B2 (ja)
EP (1) EP1892030A4 (ja)
JP (1) JPWO2006134819A1 (ja)
KR (1) KR101100607B1 (ja)
CN (1) CN101005886B (ja)
TW (1) TWI305731B (ja)
WO (1) WO2006134819A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178440A (ja) * 2007-01-23 2008-08-07 Sharp Corp 浴槽装置、糖尿病治療装置、美容装置、育毛促進装置、中枢神経疾患装置、心血管系疾患装置、代謝異常疾患装置、消化器疾患装置、運動器疾患装置および皮膚科領域疾患装置
JP2008206887A (ja) * 2007-02-28 2008-09-11 Sharp Corp 血流量増加装置
JP2008212276A (ja) * 2007-03-01 2008-09-18 Sharp Corp 血流増加装置
JP2008246054A (ja) * 2007-03-30 2008-10-16 Sharp Corp 浴槽装置、治療用浴槽装置、入浴水および治療用入浴水
JP2008253582A (ja) * 2007-04-05 2008-10-23 Sharp Corp 入浴装置および入浴方法
JP2011038145A (ja) * 2009-08-10 2011-02-24 Yokogawa Electric Corp 電気分解装置及び電気分解方法
JP2015528855A (ja) * 2012-06-27 2015-10-01 コーニンクレッカ フィリップス エヌ ヴェ バブルおよびバブルを発生させる機器および方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520242B (zh) * 2012-06-27 2016-11-02 皇家飞利浦有限公司 生成气泡和泡沫的装置和方法
KR102296456B1 (ko) 2015-02-17 2021-09-02 삼성전자주식회사 냉장고 및 냉장고의 제어 방법
KR20160103422A (ko) 2015-02-24 2016-09-01 삼성전자주식회사 탄산수 제조 장치, 그를 가지는 냉장고 및 그 제어 방법
US10374230B2 (en) 2017-03-31 2019-08-06 Arya Mangesh Bairat Method of providing electricity to a vehicle
TWI642355B (zh) * 2017-08-16 2018-12-01 國立高雄科技大學 二氧化碳供應系統
CN109158039B (zh) * 2018-09-05 2021-04-30 中国石油天然气股份有限公司 一种超声波微气泡生成方法、装置及系统
CN110152511A (zh) * 2019-04-22 2019-08-23 中国科学院上海应用物理研究所 一种产生纳米级气泡的方法及其装置
CN112522729B (zh) * 2020-12-01 2022-04-08 宁波八益集团有限公司 一种次氯酸生产系统及其高稳定性次氯酸生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941598A (ja) * 1972-05-24 1974-04-18
JPH08196880A (ja) * 1995-01-20 1996-08-06 Toyo Tanso Kk 二酸化炭素を溶解させた浴用水の調製方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043881A (en) * 1976-08-23 1977-08-23 University Of Southern California Electrolytic recovery of economic values from shale oil retort water
US5336388A (en) * 1991-12-26 1994-08-09 Ppg Industries, Inc. Analyte and pH measuring sensor assembly and method
US5423454A (en) * 1992-08-19 1995-06-13 Lippman, Deceased; Lawrence G. Method of propellant gas generation
WO1995003537A1 (en) * 1993-07-26 1995-02-02 Biotechtronix, Inc. Colorimetric titration method and apparatus
JP3313263B2 (ja) * 1995-04-15 2002-08-12 株式会社東芝 電解水生成方法及びその生成装置、半導体製造装置
KR100199313B1 (ko) * 1995-05-30 1999-06-15 다카노 야스아키 탄산수 제조 장치
JP2001019815A (ja) 1999-07-07 2001-01-23 Toyo Chem Co Ltd テープ
US6387228B1 (en) * 2000-08-03 2002-05-14 Henri J. R. Maget Electrochemical generation of carbon dioxide and hydrogen from organic acids
CN1311101C (zh) * 2002-07-02 2007-04-18 刘春桥 超声波电解槽
CN2635679Y (zh) * 2003-06-17 2004-08-25 华东理工大学 一种超声波电化学电解槽
JP4313230B2 (ja) * 2003-08-26 2009-08-12 花王株式会社 浴用剤組成物
JP4362780B2 (ja) 2005-03-30 2009-11-11 株式会社蛋白科学研究所 アナフィラトキシンC5aを不活性化するペプチド
JP4941598B2 (ja) 2011-02-04 2012-05-30 日本精工株式会社 軸受ユニット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941598A (ja) * 1972-05-24 1974-04-18
JPH08196880A (ja) * 1995-01-20 1996-08-06 Toyo Tanso Kk 二酸化炭素を溶解させた浴用水の調製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1892030A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178440A (ja) * 2007-01-23 2008-08-07 Sharp Corp 浴槽装置、糖尿病治療装置、美容装置、育毛促進装置、中枢神経疾患装置、心血管系疾患装置、代謝異常疾患装置、消化器疾患装置、運動器疾患装置および皮膚科領域疾患装置
JP2008206887A (ja) * 2007-02-28 2008-09-11 Sharp Corp 血流量増加装置
JP2008212276A (ja) * 2007-03-01 2008-09-18 Sharp Corp 血流増加装置
JP2008246054A (ja) * 2007-03-30 2008-10-16 Sharp Corp 浴槽装置、治療用浴槽装置、入浴水および治療用入浴水
JP2008253582A (ja) * 2007-04-05 2008-10-23 Sharp Corp 入浴装置および入浴方法
JP2011038145A (ja) * 2009-08-10 2011-02-24 Yokogawa Electric Corp 電気分解装置及び電気分解方法
JP2015528855A (ja) * 2012-06-27 2015-10-01 コーニンクレッカ フィリップス エヌ ヴェ バブルおよびバブルを発生させる機器および方法

Also Published As

Publication number Publication date
JPWO2006134819A1 (ja) 2009-01-08
EP1892030A4 (en) 2009-06-24
KR20080016770A (ko) 2008-02-22
TW200706236A (en) 2007-02-16
US20090297633A1 (en) 2009-12-03
US8409420B2 (en) 2013-04-02
TWI305731B (en) 2009-02-01
CN101005886B (zh) 2012-07-18
CN101005886A (zh) 2007-07-25
EP1892030A1 (en) 2008-02-27
KR101100607B1 (ko) 2011-12-29

Similar Documents

Publication Publication Date Title
WO2006134819A1 (ja) 炭酸ガス溶解液製造方法、製造装置および炭酸水
JP5087408B2 (ja) 炭酸ガス溶解液製造方法、製造装置および炭酸水
JP2007007591A (ja) 電解水及びその製造方法
WO2017090431A1 (ja) 還元水の製造装置および還元水の製造方法
JP2009208021A (ja) 吸水装置及び霧化装置
CN202201742U (zh) 一种中性富氢水电解装置
JP6173835B2 (ja) オゾン水生成装置
JP2009006253A (ja) 炭酸水の製造方法
JP6373213B2 (ja) ミスト発生装置
JP2015058423A (ja) オゾン水生成装置
JP4668884B2 (ja) 微酸性水生成装置
JP2006266554A (ja) 気体混合機能付給湯装置
JP2017056390A (ja) 電解水生成装置
JP6539131B2 (ja) 機能水生成器
JPH10296262A (ja) 特殊電解水素水
US10590549B2 (en) Salt dissolver
JP2009006254A (ja) 炭酸水素塩泉の改良方法および炭酸水素塩泉の改良装置
JP3244650U (ja) 浴槽給水装置
JP2012162429A (ja) 水素ガス発生装置及び水素飲料製造装置
TWI658843B (zh) 超音波除菌洗淨機
JP3136083U (ja) 足湯装置
JP5119557B2 (ja) 炭酸水の製造方法
RU2640242C2 (ru) Устройство и способ генерации пузырьков и пен
JP2016036787A (ja) 機能水生成装置
JP2014008433A (ja) 電解水生成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680000239.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067025422

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521257

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006766478

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11917473

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006766478

Country of ref document: EP