RU2640242C2 - Устройство и способ генерации пузырьков и пен - Google Patents
Устройство и способ генерации пузырьков и пен Download PDFInfo
- Publication number
- RU2640242C2 RU2640242C2 RU2015102295A RU2015102295A RU2640242C2 RU 2640242 C2 RU2640242 C2 RU 2640242C2 RU 2015102295 A RU2015102295 A RU 2015102295A RU 2015102295 A RU2015102295 A RU 2015102295A RU 2640242 C2 RU2640242 C2 RU 2640242C2
- Authority
- RU
- Russia
- Prior art keywords
- gas
- bubbles
- electrolyte
- characteristic
- controller
- Prior art date
Links
- 239000006260 foam Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 16
- 239000003792 electrolyte Substances 0.000 claims abstract description 77
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims abstract description 5
- 150000001768 cations Chemical class 0.000 claims description 49
- 150000001450 anions Chemical class 0.000 claims description 42
- 239000000499 gel Substances 0.000 claims description 21
- 229920000642 polymer Polymers 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 9
- 239000004094 surface-active agent Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 125000000129 anionic group Chemical group 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 111
- 239000000243 solution Substances 0.000 description 29
- 238000004519 manufacturing process Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- -1 chloride Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/465—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electroflotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/2319—Methods of introducing gases into liquid media
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/235—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/13—Ozone
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/28—Per-compounds
- C25B1/30—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2376—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
- B01F23/23764—Hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Automation & Control Theory (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа. Изобретение позволяет регулировать характеристику газа в пузырьке на основе практических требований к газу, а также снизить уровень шума и габариты устройства для вырабатывания пузырьков и пен. 2 н. и 11 з.п. ф-лы, 11 ил.
Description
ОБЛАСТЬ ТЕХНИКИ
Это раскрытие относится к выработкам пузырьков и пен, содержащих пузырьки, в частности к выработкам пузырьков посредством вырабатывания газа.
УРОВЕНЬ ТЕХНИКИ
Пена обычно образуется путем задерживания большого числа газовых пузырьков в жидкости и широко применяется в повседневной жизни людей, например при бритье, чистке поверхностей и т.д.
Обычно пузырьки вырабатывают и потом подвергают процессу активации поверхности, который снижает поверхностное натяжение жидкости так, чтобы предотвращать разрушение пузырьков.
Один популярный способ вырабатывания пузырьков называется механическим шурованием. Более конкретно, воздух и жидкость перемешивают путем механического шурования, вырабатывая пузырьки. Другие способы включают в себя прокачивание газа, нагрев и др.
Однако вышеуказанные способы вырабатывания пузырьков, чтобы вырабатывать пены, обычно бывают для промышленных приложений и имеют свои собственные недостатки, такие как высокая стоимость, высокая сложность и низкая регулируемость.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
По сравнению с жидкостью без пузырьков внутри, пену легче намазывать и она имеет лучшую проникающую способность. Различие в проникающей способности изображено на фиг. 1а и 1b. Ссылаясь на фиг. 1, поверхностное натяжение жидкости удерживает молекулы вместе, образуя большие капли 10, что ограничивает полную площадь контакта между жидкостью и поверхностью 12 и ограничивает поглощение 14 в поверхность 12. Флотационная способность воды также снижает длительность контакта между каплей 10 и поверхностью 12. Ссылаясь на фиг. 1b, пена 16, состоящая из некоторого числа пузырьков 18, с большей площадью контакта и относительно меньшей флотационной способностью пены 16 обеспечивает большее время контакта между пеной 16 и поверхностью 12. Кроме того, пена 16 обычно имеет меньшее поверхностное натяжение, чем таковое больших капель, вследствие чего также достигается более глубокое и более быстрое проникновение 14' в поверхность 12, что резко повышает содержание влаги.
Однако характеристики газа в пузырьках, такие как количество газа в каждом пузырьке и тип газа в пузырьках, обеспеченные вышеуказанными решениями, являются постоянными. Поэтому пользователь не мог легко приспосабливать устройство для вырабатывания пузырьков с различными контролируемыми характеристиками газа, чтобы удовлетворять различным потребностям. Например, количество газа в каждом пузырьке может влиять на мелкоразмерность пузырьков пены, тогда как тип газа в пузырьках тесно связан с возможным применением пены.
Чтобы лучше решить одну или несколько из этих проблем, было бы выгодно иметь технологию вырабатывания пузырьков, которая является регулируемой по характеристике газа, например, согласно типу газа и/или практическому применению пузырьков, которое связано с типом газа. Было бы выгодно также иметь малоразмерное малошумное устройство для вырабатывания пузырьков и пен.
В первом аспекте этого изобретения обеспечено устройство для вырабатывания пузырьков, содержащее:
- первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках;
- второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий:
- электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки;
- контроллер, выполненный с возможностью контролировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа.
Согласно этому аспекту контроллер регулирует вырабатывание пузырьков согласно характеристике газа в пузырьках и, таким образом, вырабатывание пузырьков является регулируемым в отношении газа в пузырьках на основании практических требований к газу и является более гибким. Кроме того, электролизер обычно имеет небольшой размер и не будет производить много шума. Поэтому данное устройство является более удобным для пользователя.
В предпочтительном варианте осуществления электролизер содержит:
источник постоянного электрического тока;
по меньшей мере два анода с разными признаками и/или по меньшей мере два катода с разными признаками, которые присоединены к этому источник постоянного электрического тока;
контроллер, дополнительно выполненный с возможностью выбирать для электролиза электролита по меньшей мере один упомянутый анод и/или по меньшей мере один упомянутый катод согласно характеристике газа.
В этом варианте осуществления электроды с разными признаками обеспечиваются для выбора, чтобы обеспечивать требуемую характеристику газа. Так как электроды электролизера являются маленькими, данное устройство может быть небольших размеров, чтобы содержать различные электроды для обеспечения разнообразия характеристик газа.
В другом предпочтительном варианте осуществления электролизер содержит по меньшей мере два из инертного анода, активного металлического анода и анода с емкостью двойного электрического слоя, и/или
электролизер содержит по меньшей мере два из инертного катода, металлического катода и катода с емкостью двойного электрического слоя;
первый блок в качестве характеристики газа определяет, на каком одном или нескольких электродах должен вырабатываться.
В этом варианте осуществления инертные электроды могут вырабатывать газ, тогда как активный металлический анод и электрод с емкостью двойного электрического слоя не будут вырабатывать газ. Таким образом, является регулируемым то, на каком одном или нескольких электродах должен вырабатываться газ.
Пользователю могут требоваться пузырьки с различной мелкоразмерностью для разных применений соответственно, например пузырьки, применяемые при пенной флотации предпочтительно имеют диаметр 1 мм, с большим диаметром чем 0,1 мм применяются в чистке. Чтобы обеспечить разную мелкоразмерность, устройство должно быть регулируемым, чтобы обеспечивать разное количество газа в каждом пузырьке. Чтобы решить это в другом предпочтительном варианте осуществления, электролизер содержит по меньшей мере два анода с разными размерами и/или формами и/или по меньшей мере два катода с разными размерами и/или формами.
Первый элемент в качестве характеристики газа определяет количество газа в каждом пузырьке и/или мелкоразмерность пузырьков, а
контроллер дополнительно выполнен с возможностью выбирать по меньшей мере один упомянутый анод и/или по меньшей мере один упомянутый катод согласно характеристике газа.
Чтобы обеспечить разную мелкоразмерность пузырьков, в другом предпочтительном варианте осуществления первый блок в качестве характеристики газа определяет количество газа в каждом пузырьке и/или мелкоразмерность пузырьков, а
контроллер дополнительно выполнен с возможностью регулировать ток и/или напряжение, используемые электролизером для электролиза, согласно характеристикам газа.
В этих двух вариантах осуществления разная мелкоразмерность пузырьков может быть обеспечена с помощью устройства, удовлетворяющего разным требованиям, и поэтому применимость этого устройства является очень широкой.
В предпочтительном варианте осуществления это устройство вырабатывает пены из пузырьков, и в электролит добавляют поверхностно-активное вещество. В этом варианте осуществления, так как пузырьки вырабатываются регулируемым образом, пены также вырабатываются регулируемым образом.
В предпочтительном варианте осуществления это устройство вырабатывает пены из пузырьков, первый элемент выполнен с возможностью определять количество пены, а второй элемент дополнительно содержит:
- блок, выполненный с возможностью обеспечивать пузырьки с поверхностной активностью, содержащий, по меньшей мере, одно из:
раздатчика, выполненного с возможностью раздавать поверхностно-активные вещества в электролит, а контроллер регулирует тип и/или концентрацию поверхностно-активного вещества согласно количеству пены; или
источника излучения в средней инфракрасной области спектра, выполненного с возможностью генерировать излучение в средней инфракрасной области спектра на пузырьки, а контроллер регулирует длительность и/или интенсивность приложения излучения этого источника согласно количеству пены; или
магнитного модуля, выполненного с возможностью создавать магнитное поле для пузырьков, а контроллер регулирует длительность и/или интенсивность приложения магнитного поля этого магнитного модуля согласно количеству пены.
В этих вариантах осуществления, так как пузырьки вырабатываются регулируемым образом в отношении газа в пузырьках, пены также вырабатываются регулируемым образом в отношении газа в пенах. Кроме того, количество пен также может быть регулируемым, и таким образом это устройство является более гибким.
Пользователь может предпочитать иметь разные типы газа в пузырьках для разных применений. Например, при дезинфекции предпочтительны пузырьки, обогащенные озоном (О3); тогда как при уходе за кожей требуются пузырьки, обогащенные кислородом (О2). Таким образом, это было бы выгодно для устройства, регулируемого в вырабатывании пузырьков в отношении типа газа в пузырьке и/или применения пузырьков.
Чтобы решить это в предпочтительном варианте осуществления тип газа может быть регулируемым с помощью тока и/или напряжения электролиза. Более конкретно, первый блок в качестве характеристики газа определяет тип газа в пузырьках и/или применение, а контроллер дополнительно выполнен с возможностью регулировать напряжение, используемое электролизером для электролиза, согласно характеристике газа.
В другом предпочтительном варианте осуществления первый блок в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, второй блок дополнительно содержит источник электролита с по меньшей мере двумя типами электролита, а контроллер регулирует источник электролита, чтобы обеспечить по меньшей мере один упомянутый электролит согласно характеристике газа.
В этом варианте осуществления устройство может обеспечивать пузырьки с регулируемыми разными типами газа и для разного применения, и таким образом применимость устройства является очень широкой.
В предпочтительном варианте осуществления источник электролита содержит:
- по меньшей мере один выделяющий катионы модуль, каждый из которых выполнен с возможностью выделять по меньшей мере один тип катионов;
- по меньшей мере один выделяющий анионы элемент, каждый из которых выполнен с возможностью выделять по меньшей мере один тип анионов;
контроллер, выполненный с возможностью:
определять тип катиона для выделения и/или тип аниона для выделения согласно характеристике газа; и
выбирать и управлять по меньшей мере одним упомянутым, выделяющим катионы модулем и/или по меньшей мере одним упомянутым выделяющим анионы модулем согласно определенным типам катионов и/или анионов.
В этом варианте осуществления, так как ионы в электролите подвергают электролизу, чтобы вырабатывать газ, устройство выбирает надлежащие катионы и анионы соответственно в зависимости от типа газа для определенного применения. Поэтому применимость устройства является очень широкой.
В другом предпочтительном варианте осуществления выделяющий катионы модуль содержит первый контейнер для содержания первого раствора, содержащего первый тип катиона, где первый контейнер имеет слой катионной мембраны для отделения первого раствора от электролита,
контроллер выполнен с возможностью прикладывать положительное напряжение к первому раствору, так что упомянутый первый тип катиона выделяется в электролит через катионную мембрану; и/или
выделяющий анионы модуль содержит второй контейнер для содержания второго раствора, содержащего второй тип аниона, второй контейнер имеет слой анионной мембраны для отделения второго раствора от электролита,
контроллер выполнен с возможностью прикладывать отрицательное напряжение ко второму раствору, так что упомянутый второй тип анионов выделяется в электролит через анионную мембрану.
Этот вариант осуществления обеспечивает конкретные исполнения для выделяющего катионы модуля и выделяющего анионы модуля.
В другом предпочтительном варианте осуществления, в котором выделяющий катионы модуль содержит полимер, связанный в комплекс с катионом, и/или гель, сохраняющий катион и выполненный с возможностью погружения в раствор,
контроллер (14) выполнен с возможностью проводить электролиз воды в растворе и образовывать ионы Н+, которые входят в полимер, связанный в комплекс с катионом, и/или гель и вымещают упомянутый тип катионов из полимера и/или геля в раствор;
и/или
выделяющий анионы модуль содержит полимер, связанный в комплекс с анионом, и/или гель, сохраняющий анион и выполненный с возможностью погружения в раствор,
контроллер выполнен с возможностью проводить электролиз воды в растворе и образовывать ионы ОН-, которые входят в анион-комплексующие полимеры и/или гели и вымещают упомянутый тип аниона из полимеров и/или гелей в раствор.
Этот вариант осуществления обеспечивает другие конкретные исполнения для выделяющего катионы модуля и выделяющего анионы модуля. Данные полимеры и/или гели являются легко заменяемыми и экономичными.
В некоторых случаях продукт электролиза может реагировать с некоторым химическим веществом, образуя газ, например Н+ может реагировать с карбонатом кальция (СаСО3) с образованием диоксида углерода (СО2). В предпочтительном варианте осуществления первый блок в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, а второй элемент дополнительно содержит:
- блок добавления химического вещества, выполненный с возможностью добавлять по меньшей мере два вида химических веществ в электролит, каждый из которых реагирует с продуктом электролиза электролита с вырабатыванием газа;
а контроллер дополнительно выполнен с возможностью регулировать блок добавления химического вещества, чтобы добавлять по меньшей мере одно упомянутое химическое вещество согласно характеристике газа.
Этот вариант осуществления имеет широкую применимость.
В предпочтительном варианте осуществления первый блок содержит по меньшей мере одно из:
- интерфейса пользователя, выполненного с возможностью принимать характеристику газа от пользователя;
- машинно-машинного интерфейса, выполненного с возможностью принимать характеристику газа от устройства, приспособленного использовать пузырьки.
В одном варианте осуществления данное устройство может быть регулируемым непосредственно пользователем через интерфейс пользователя. В другом варианте осуществления данное устройство может быть присоединенным и регулируемым через машинно-машинный интерфейс с помощью устройства, приспособленного использовать пузырьки, такого как стиральная машина или посудомоечная машина. Машинно-машинный интерфейс может быть унифицированным для множества домашних приспособлений, и поэтому данное устройство может быть универсальным для обеспечения этих приспособлений надлежащими пузырьками.
Поскольку поверхностное натяжение жидкости будет разрушать пузырьки во избежание образования пен, для того, чтобы накапливать пузырьки для вырабатывания пен, применен способ активации поверхности при вырабатывании пены, который может снижать поверхностное натяжение воды, чтобы поддерживать стабильность пузырька, посредством чего формируется пена путем накопления пузырьков.
Во втором аспекте данного изобретения обеспечен способ вырабатывания пузырьков, и данный способ выполняют с помощью устройства согласно первому аспекту данного изобретения. Например, данный способ содержит этапы:
- определения по меньшей мере одной характеристики газа в пузырьках;
- электролиза электролита, чтобы выработать газ в электролите и тем самым выработать пузырьки согласно по меньшей мере одной характеристике газа.
Эти и другие признаки настоящего изобретения будут подробно описаны в части для вариантов осуществления.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Признаки, аспекты и преимущества настоящего изобретения станут понятны путем прочтения последующего описания неограничивающих вариантов осуществления с помощью приложенных чертежей.
Фиг. 1а схематично показывает поглощение больших капель в поверхность.
Фиг. 1b схематично показывает поглощение пен в поверхность.
Фиг. 2 показывает блок-схему устройства согласно одному варианту осуществления данного изобретения.
Фиг. 3 показывает схематичный вид второго блока с разными анодами и катодами.
Фиг. 4 показывает работу второго блока с одним инертным анодом и одним инертным катодом.
Фиг. 5 показывает работу второго блока с одним активным металлическим анодом и одним катодом.
Фиг. 6а показывает работу второго блока с одним инертным катодом и одним анодом с емкостью двойного электрического слоя.
Фиг. 6b показывает работу второго блока с одним инертным анодом и одним катодом с емкостью двойного электрического слоя.
Фиг. 7 показывает схематичный вид одного выделяющего катионы модуля согласно одному варианту осуществления данного изобретения.
Фиг. 8 показывает схематичный вид одного выделяющего анионы модуля согласно одному варианту осуществления данного изобретения.
Фиг. 9 показывает работу второго блока согласно другому варианту осуществления данного изобретения.
В отношении чего одинаковые или подобные численные обозначения относятся к одинаковым или подобным компонентам/модулям.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Фиг. 2 показывает блок-схему устройства согласно варианту осуществления данного изобретения. Устройство 1 для вырабатывания пузырьков содержит:
- первый блок 10, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках;
- второй блок 12, выполненный с возможностью вырабатывать пузырьки, содержащий:
- электролизер 120, выполненный с возможностью проводить электролиз электролита, чтобы выработать газ в электролите, тем самым вырабатывая пузырьки;
- контроллер 14, выполненный с возможностью регулировать второй блок 12, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа.
Что касается аспекта способа, данный вариант осуществления изобретения обеспечивает способ генерации пузырьков, и данный способ выполняют с помощью устройства 1. Более конкретно, данный способ содержит этапы:
- определения по меньшей мере одной характеристики газа в пузырьках;
- электролиза электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки согласно характеристике пузырьков.
В одном варианте осуществления пузырьки с разными характеристиками газа вырабатывают, используя разные электроды.
Фиг. 3 показывает схематичный вид электролизера 120. Электролизер 120 содержит:
источник постоянного электрического тока 30;
по меньшей мере два анода 32, 32' с разными признаками и/или по меньшей мере два катода 34, 34' с разными признаками, которые присоединены к этому источнику постоянного тока 30.
Контроллер 14 дополнительно выполнен с возможностью выбирать для электролиза электролита 38 по меньшей мере один анод и/или по меньшей мере один катод согласно характеристике газа.
Предпочтительно, между анодами и катодами могла бы находиться мембрана 36 для разделения катионов и анионов.
В одном варианте осуществления первый блок 10 в качестве характеристики газа определяет, на каком одном или нескольких электродах должен вырабатываться газ,
электролизер 120 содержит по меньшей мере два из инертного анода 32, активного металлического анода 32' и анода с емкостью двойного электрического слоя, и/или
электролизер содержит инертный катод 34, металлический катод 34' и катод с емкостью двойного электрического слоя.
В первом варианте осуществления, показанном на фиг. 4, контроллер 14 подает электричество через один инертный анод 32 и один инертный катод 34 или металлический катод 34'. Газ G1 вырабатывается на аноде 32, и газ G2 вырабатывается на катоде 34. В одном примере нейтральная вода используется в качестве электролита, а газ G1 представляет собой кислород О2, а газ G2 представляет собой водород Н2. Уравнение электролиза на аноде следующее:
А уравнение электролиза на катоде следующее:
В этом примере воду добавляют с поверхностно-активным веществом, таким образом пена, обогащенная О2, образуется из пузырьков на поверхности воды на аноде 32, и пена, обогащенная Н2, образуется из пузырьков на поверхности воды на катоде 34. В одном варианте осуществления данное устройство дополнительно содержит сепаратор 36 между анодом 32 и катодом 34, чтобы предотвратить смешивание двух пен. Если пены требуется смешивать, сепаратор 36 может быть удален.
Во втором варианте осуществления, показанном на фиг. 5, контроллер 14 подает электричество через один активный металлический анод 32' и один инертный катод 34 или один металлический катод 34'. Газ G2 может быть выработан на катоде. На аноде активный металл будет терять электрон и выделять ионы металла. Таким образом, нет вырабатывания газа на аноде 32'. Активный металл должен быть более активным, чем водород. Согласно химической активности K>Ca>Na>Mg>Al>Zn>Fe(>Н)>Cu>Pt>Au. Таким образом, может быть использован активный металлический анод, сделанный из Al, Zn или Fe. Электролит, наполняющий контейнер, может быть водой или раствором кислоты. Например, при использовании Fe в качестве электрода, электролит имеет кислотность, а электролиз вырабатывал бы только газообразный Н2 на катоде 34, тогда как Fe3+ вырабатывался бы на аноде 32'.
Уравнение электролиза на аноде следующее:
А уравнение электролиза на катоде следующее:
В третьем варианте осуществления анод и катод представляют собой материал, который имеет свойство емкости двойного электрического слоя, такой как активированный уголь. Как показано на фиг. 6а, контроллер 14 подает электричество через один инертный анод 32 и катод 34'' с емкостью двойного электрического слоя. Катод 34'' с емкостью двойного электрического слоя будет поглощать ионы в воде, поэтому реакция, в которой должен был быть выработан газ на катоде, была бы остановлена. На фиг. 6а только газ G1 мог бы быть выработан на аноде 32. В другом варианте осуществления контроллер 14 подает электричество через один анод 32'' с емкостью двойного электрического слоя и один инертный катод 34 или металлический катод 34'. В этом варианте осуществления только газ G2 будет вырабатываться на катоде, как показано на фиг. 6b.
В другом варианте осуществления электролизер 120 содержит по меньшей мере два анода разного размера и/или формы и/или по меньшей мере два катода разного размера и/или формы, первый блок в качестве характеристики газа определяет количество газа в каждом пузырьке и/или мелкоразмерность пузырьков, а контроллер дополнительно выполнен с возможностью выбирать по меньшей мере один упомянутый анод и/или по меньшей мере один упомянутый катод согласно характеристике газа. Формы электродов могут быть игольчатыми или пластинчатыми. Электроды разного размера и/или формы могли бы вырабатывать пузырьки разной мелкоразмерности, а именно обеспечивать разное количество газа в пузырьках. А это, в свою очередь, образует пены с разной мелкоразмерностью. Контроллер 14 выбирает анод и/или катод с надлежащим размером и/или формой, и пузырьки с определенной мелкоразмерностью могут быть выработаны на аноде и/или катоде.
Что касается аспекта способа, соответствующего вышеописанному техническому решению, характеристика газа содержит количество газа в каждом пузырьке и/или мелкоразмерность пузырьков, этап генерации дополнительно содержит: выбор для электролиза электролита по меньшей мере одного анода из по меньшей мере двух анодов разного размера и/или формы и/или по меньшей мере одного катода из по меньшей мере двух катодов разного размера и/или формы согласно характеристике газа.
В одном варианте осуществления изобретения первый блок 10 определяет количество газа в каждом пузырьке и/или размер пузырьков как характеристика газа, а контроллер 14 дополнительно выполнен с возможностью регулировать ток и/или напряжение, используемые электролизером 120 для электролиза, согласно характеристике газа. Эксперименты показали, что: при заданной одинаковой площади электродов, чем выше амплитуда тока, тем меньше диаметр пузырька (Guohua Chen, Separation and Purification Technology, Volume 38, Issue 1, 15 July 2004, Pages 11-41). Поэтому путем регулирования тока и/или напряжения устройство может вырабатывать пузырьки с требуемым количеством газа в каждом пузырьке и/или мелкоразмерностью пузырьков.
В одном варианте осуществления изобретения устройство используется для вырабатывания пен. Первый блок 10 определяет количество пены, образованной из пузырьков, а второй блок 12 дополнительно содержит:
- блок, выполненный с возможностью обеспечивать пузырьки с поверхностной активностью, содержащий по меньшей мере одно из:
раздатчика, выполненного с возможностью раздавать поверхностно-активные вещества в электролит, а контроллер 14 регулирует тип и/или концентрацию поверхностно-активного вещества согласно количеству пены; или
источника излучения в средней инфракрасной области спектра, выполненного с возможностью генерировать излучение средней инфракрасной области спектра на пузырьки, а контроллер 14 регулирует длительность и/или интенсивность приложения излучения этого источника согласно количеству пены; или
магнитного модуля, выполненного с возможностью создавать магнитное поле для пузырьков, а контроллер 14 регулирует длительность и/или интенсивность приложения магнитного поля этого магнитного модуля согласно количеству пены.
В этом варианте осуществления количество пены может быть контролируемым, таким образом, устройство имеет широкую область применения.
Следующее описание будет разъяснять вырабатывание разных типов газов в пузырьках для разного применения в устройстве.
В одном варианте осуществления это разнообразие выполняется с помощью разного напряжения электролизера 120. Первый блок 10 в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, а контроллер 14 дополнительно выполнен с возможностью регулировать напряжение, используемое электролизером 120 для электролиза, согласно характеристике газа. Например, как показано на фиг. 3, в одном случае, при применении для ухода за кожей это устройство используют, чтобы выработать обогащенные кислородом О2 пузырьки. Первый блок 10 определяет это применение и/или тип газа и регулирует электролизер 120 так, чтобы использовать нормальное напряжение, которое подходит для вырабатывания кислорода. В другом случае, при использовании для дезинфекции, это устройство используют, чтобы вырабатывать обогащенные озоном О3 пузырьки. Первый блок 10 определяет это применение и/или тип газа и регулирует электролизер 120 так, чтобы использовать увеличенное напряжение, которое подходит для вырабатывания озона.
В другом варианте осуществления это разнообразие выполняют с помощью электролиза разных электролитов. Первый блок 10 в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, второй блок 12 дополнительно содержит источник электролита с по меньшей мере двумя типами электролитов, а контроллер 14 регулирует источник электролита, чтобы обеспечивать по меньшей мере один упомянутый электролит согласно характеристике газа. Например, при применении для дезинфекции это устройство используют, чтобы вырабатывать обогащенные хлором Сl2 пузырьки. Тогда контроллер 14 регулирует источник электролита, чтобы обеспечивать раствор хлорида, такой как NaCl, в качестве электролита. Хлор Сl2 будет вырабатываться на аноде. А при применении для ухода за кожей это устройство используют, чтобы вырабатывать обогащенные кислородом О2 пузырьки. Тогда контроллер 14 регулирует источник электролита, чтобы обеспечивать чистую воду в качестве электролита. Кислород О2 будет выделяться на аноде.
В качестве источника электролита в одном варианте осуществления устройство могло бы содержать:
бак для содержания чистой воды; и
по меньшей мере один блок, причем каждый блок выполнен с возможностью содержать соответствующую соль, такую как хлорид, и добавлять эту соль в воду в этом баке.
Контроллер 14 выбирает и управляет по меньшей мере одним блоком, чтобы добавлять или не добавлять соли в воду согласно типам газа и/или применению пузырьков, чтобы обеспечивать чистую воду или раствор соли.
В другом, более регулируемом и гибком варианте осуществления источник электролита содержит:
- по меньшей мере один выделяющий катионы модуль, каждый из которых выполнен с возможностью выделять по меньшей мере один тип катионов;
- по меньшей мере один выделяющий анионы модуль, каждый из которых выполнен с возможностью выделять по меньшей мере один тип анионов;
контроллер выполнен с возможностью:
определять тип катиона для выделения и/или тип аниона для выделения согласно характеристике газа; и
выбирать и управлять по меньшей мере одним упомянутым, выделяющим катионы модулем и/или по меньшей мере одним упомянутым выделяющим анионы модулем согласно определенным типам катионов и/или анионов.
Что касается выделяющего катионы модуля, в одном конкретном варианте осуществления, показанном на фиг. 7, выделяющий катионы модуль содержит первый контейнер 7 для содержания первого раствора, содержащего тип катионов Аm+, и первый контейнер 7, например, погружен в электролит 38. Первый контейнер 7 имеет слой 70 из катионной мембраны для отделения первого раствора от электролита 38, и выделяющий катионы модуль содержит анод 72 с одним концом, погруженным в первый раствор, и другим концом, соединенным с контроллером 14, который выполнен с возможностью подавать положительное напряжение в первом растворе, так что упомянутые катионы Аm+ выделяются в электролит 38 через катионную мембрану 72. Когда катионы Аm+ выходят из первого раствора, катионы Н+ вырабатываются вокруг анода 72, таким образом поддерживается электронейтральность в первом растворе.
Аналогично, что касается выделяющего анионы модуля, в одном конкретном варианте осуществления, показанном на фиг. 8, выделяющий анионы модуль содержит второй контейнер 8 для содержания второго раствора, содержащего тип анионов Вn-, и второй контейнер 4, например, погружен в электролит 38. Второй контейнер 4 имеет слой 80 из анионной мембраны для отделения второго раствора от электролита 38, и выделяющий анионы модуль содержит катод 82 с одним концом, погруженным во второй раствор, и другим концом, соединенным с контроллером 14, который выполнен с возможностью подавать отрицательное напряжение во втором растворе, так что упомянутые анионы Вn- выделяются в электролит 38 через анионную мембрану 82. Когда анионы Вn- выходят из второго раствора, анионы ОН- образуются вокруг катода 82, таким образом поддерживается электронейтральность во втором растворе.
Существуют другие альтернативные варианты осуществления для выделяющего катионы модуля. В одном примере материалы, такие как полимер, гель, которые могут выделять катионы при электрическом регулировании, могут быть использованы в качестве выделяющего катионы модуля. Более конкретно, полимер, связанный в комплекс с катионом, и/или гель, сохраняющий катион, погружен в электролит, а контроллер 14 выполнен с возможностью проводить электролиз воды в электролите и вырабатывать катионы Н+. Катионы Н+ проникают в полимер, связанный в комплекс с катионом, и/или гель и вымещают сохраненные катионы из полимера и/или геля под действием электрического поля, и сохраненные катионы входят в электролит под действием электрического поля.
Аналогично, существуют другие альтернативные варианты осуществления для выделяющего анионы модуля. В одном примере материалы, такие как полимер, гель, которые могут выделять анионы при электрическом регулировании, могли бы быть использованы в качестве выделяющего анионы модуля. Более конкретно, полимер, связанный в комплекс с анионом, и/или гель, сохраняющий анион, погружен в электролит, а контроллер 14 выполнен с возможностью проводить электролиз воды в электролите и вырабатывать анионы ОН-. Анионы ОН- проникают в полимер, связанный в комплекс с анионом, и/или гель и вымещают сохраненные анионы из полимера и/или геля под действием электрического поля, и сохраненные анионы входят в электролит под действием электрического поля.
Что касается аспекта способа, соответствующего вышеуказанному техническому решению, этап определения в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, способ дополнительно содержит этап перед этапом электролиза: обеспечения по меньшей мере одного электролита из по меньшей мере двух видов электролита согласно характеристике газа.
В вышеописанном варианте осуществления газ является прямым продуктом электролиза электролита. В другом варианте осуществления газ вырабатывается при реакции между продуктом электролиза и некоторым химическим веществом. В этом варианте осуществления первый блок 10 в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, а второй блок 12 дополнительно содержит:
- блок добавления химического вещества, выполненный с возможностью добавлять по меньшей мере два вида химических веществ в электролит, каждый из которых реагирует с продуктом электролиза электролита с вырабатыванием газа;
а контроллер 14 дополнительно выполненный с возможностью регулировать блок добавления химического вещества, чтобы добавлять по меньшей мере одно упомянутое химическое вещество согласно характеристике газа.
В примере, показанном на фиг. 9, чтобы вырабатывать некоторое количество диоксида углерода СО2, блок добавления химического вещества добавляет некоторое количество карбоната кальция СаСО3 в электролит вблизи анода 32. На аноде 32, аналогично варианту осуществления, показанному на фиг. 3, вырабатывается не только кислород, но также Н+ в качестве продукта электролиза, и катионы Н+ реагируют с карбонатом кальция СаСО3, чтобы выработать диоксид углерода СО2.
Что касается первого блока 10, он может иметь разные варианты исполнения. В одном варианте осуществления первый блок 10 содержит интерфейс пользователя, выполненный с возможностью принимать характеристику газа от пользователя. Например, пользователь может выбирать тип газа и/или применение путем нажатия кнопок на панели устройства. В другом варианте осуществления первый блок 10 содержит машинно-машинный интерфейс, выполненный с возможностью принимать характеристику от устройства, приспособленного использовать пузырьки, такого как стиральная машина.
Контроллер 14 может быть исполнен с помощью микроконтроллера. Инструкции для контроллера 14, чтобы регулировать второй блок 12 согласно характеристике газа, такие как разный выбор электродов согласно разному количеству газа в пузырьке или разная амплитуда напряжения согласно разным типам газа, могут быть заранее сохранены или загружены в памяти и подгружаться посредством микроконтроллера. Специалисты в данной области техники могли бы понять и выполнить модификации к раскрытым вариантам осуществления путем изучения данного описания, чертежей и формулы изобретения. Все такие модификации, которые не отклоняются от сущности данного изобретения, предполагаются включенными в объем формулы изобретения.
Термин "содержащий" не исключает присутствия элементов или этапов, не перечисленных в пункте формулы изобретения или в описании. Единственное число не исключает присутствия множества элементов. В практическом исполнении настоящего изобретения несколько технических признаков в формуле изобретения могут осуществлены посредством одного компонента. В формуле изобретения любые численные обозначения, помещенные между скобками, не следует рассматривать как ограничивающие формулу изобретения.
Claims (48)
1. Устройство для вырабатывания пузырьков, содержащее:
- первый блок (10), выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках;
- второй блок (12), выполненный с возможностью вырабатывать пузырьки, содержащий:
- электролизер (120), выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки;
- контроллер (14), выполненный с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно упомянутой по меньшей мере одной характеристике газа,
причем первый блок (10) в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков,
второй блок (12) дополнительно содержит источник электролита с по меньшей мере двумя типами электролита, а
контроллер (14) регулирует источник электролита, чтобы обеспечить по меньшей мере один упомянутый электролит согласно характеристике газа.
2. Устройство по п. 1, причем электролизер (120) содержит:
источник постоянного электрического тока (30);
по меньшей мере два анода (32) с разными признаками и по меньшей мере два катода (34) с разными признаками, которые присоединены к электрическому источнику постоянного тока (30);
контроллер (14) дополнительно выполнен с возможностью выбирать для электролиза электролита по меньшей мере один упомянутый анод (30) и/или по меньшей мере один упомянутый катод (34) согласно характеристике газа.
3. Устройство по п. 2, причем электролизер (120) содержит по меньшей мере два из инертного анода, активного металлического анода и анода с емкостью двойного электрического слоя, выполненного из активированного угля, и/или электролизер (120) содержит по меньшей мере два из инертного катода,
металлического катода и катода с емкостью двойного электрического слоя выполненного из активированного угля;
первый блок (10) в качестве характеристики газа определяет, на каком одном или более электродах должен вырабатываться газ;
второй блок (12) дополнительно содержит сепаратор (36) между анодами и катодами, чтобы избежать смешения пузырьков, выработанных на анодах (32) и катодах (34).
4. Устройство по п. 2, причем электролизер (120) содержит по меньшей мере два анода с разными размерами и/или формами и/или по меньшей мере два катода с разными размерами и/или формами,
первый блок (10) в качестве характеристики газа определяет количество газа в каждом пузырьке и/или мелкоразмерность пузырьков, а
контроллер (14) дополнительно выполнен с возможностью выбирать по меньшей мере один упомянутый анод и/или по меньшей мере один упомянутый катод согласно характеристике газа.
5. Устройство по п. 1, причем первый блок (10) в качестве характеристики газа определяет количество газа в каждом пузырьке и/или мелкоразмерность пузырьков, а контроллер (14) дополнительно выполнен с возможностью регулировать ток и/или напряжение, используемые электролизером (120) для электролиза, согласно характеристике газа.
6. Устройство по п. 1, причем устройство дополнительно используется для вырабатывания пен из пузырьков, а в электролит добавлено поверхностно-активное вещество, или
первый блок дополнительно выполнен с возможностью определять количество пены, а второй блок (12) дополнительно содержит:
- блок, выполненный с возможностью обеспечивать пузырьки с поверхностной активностью, содержащий по меньшей мере одно из:
раздатчика, выполненного с возможностью раздавать поверхностно-активные вещества в электролит, а контроллер регулирует тип и/или концентрацию поверхностно-активного вещества согласно количеству пены; или
источника излучения в средней инфракрасной области спектра, выполненного с возможностью генерировать излучение в средней инфракрасной области спектра на пузырьки, а контроллер регулирует длительность и/или интенсивность приложения излучения источника согласно количеству пены; или
магнитного модуля, выполненного с возможностью создавать магнитное поле для пузырьков, а контроллер регулирует длительность и/или интенсивность приложения магнитного поля магнитного модуля согласно количеству пены.
7. Устройство по п. 1, причем первый блок (10) в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, а контроллер (14) дополнительно выполнен с возможностью регулировать напряжение, используемое электролизером (120) для электролиза, согласно характеристике газа.
8. Устройство по п. 1, причем источник электролита содержит:
- по меньшей мере один выделяющий катионы модуль, каждый из которых выполнен с возможностью выделять по меньшей мере один тип катионов;
- по меньшей мере один выделяющий анионы модуль, каждый из которых выполнен с возможностью выделять по меньшей мере один тип анионов;
контроллер выполнен с возможностью:
определять тип катиона для выделения и/или тип аниона для выделения согласно характеристике газа; и
выбирать и управлять по меньшей мере одним упомянутым выделяющим катионы модулем и/или по меньшей мере одним упомянутым выделяющим анионы модулем согласно определенным типам катионов и/или анионов.
9. Устройство по п. 8, причем выделяющий катионы модуль содержит первый контейнер (7) для содержания первого раствора, содержащего первый тип катиона, первый контейнер (7) имеет слой катионной мембраны (70) для отделения первого раствора от электролита,
контроллер выполнен с возможностью прикладывать положительное напряжение к первому раствору, так что упомянутый первый тип катиона выделяется в электролит через катионную мембрану; и/или
выделяющий анионы модуль содержит второй контейнер (8) для содержания второго раствора, содержащего второй тип аниона, второй контейнер (8) имеет слой анионной мембраны (80) для отделения второго раствора от электролита,
контроллер (14) выполнен с возможностью прикладывать отрицательное напряжение ко второму раствору, так что упомянутый второй тип анионов выделяется в электролит через анионную мембрану (80).
10. Устройство по п. 8, причем выделяющий катионы модуль содержит полимер, связанный в комплекс с катионом, и/или гель, содержащий катион и выполнен с возможностью погружения в раствор,
контроллер (14) выполнен с возможностью проводить электролиз воды в растворе и вырабатывать ионы Н+, которые входят в полимер, связанный в комплекс с катионом, и/или гель, содержащий катион, и переводят соответствующий тип катиона из полимера и/или геля в раствор;
и/или
выделяющий анионы модуль содержит полимер, связанный в комплекс с анионом, и/или гель, содержащий анион и выполнен с возможностью погружения в раствор, контроллер (14) выполнен с возможностью проводить электролиз воды в растворе и вырабатывать ионы ОН-, которые проникают в полимер, связанный в комплекс с анионом, и/или гель, содержащий анион, и переводят соответствующий тип аниона из полимеров и/или гелей в раствор.
11. Устройство по п. 1, причем первый блок (10) в качестве характеристики газа определяет тип газа в пузырьках и/или применение пузырьков, а второй блок (12) дополнительно содержит:
- блок добавления химического вещества, выполненный с возможностью добавлять по меньшей мере два вида химических веществ в электролит, каждое из которых реагирует с продуктом электролиза электролита с вырабатыванием газа;
а контроллер (14) дополнительно выполнен с возможностью регулировать блок добавления химического вещества, чтобы добавлять по меньшей мере одно упомянутое химическое вещество согласно характеристике газа.
12. Устройство по п. 1, причем первый блок (10) содержит по меньшей мере одно из:
- интерфейса пользователя, выполненного с возможностью принимать характеристику газа от пользователя;
- машинно-машинного интерфейса, выполненного с возможностью принимать характеристику газа от устройства, приспособленного использовать пузырьки.
13. Способ генерации пузырьков, причем способ осуществляют с помощью устройства по любому из пп. 1-11.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2012/077625 | 2012-06-27 | ||
CN2012077625 | 2012-06-27 | ||
PCT/IB2013/054995 WO2014001964A2 (en) | 2012-06-27 | 2013-06-18 | An apparatus and a method of generating bubbles and foams |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015102295A RU2015102295A (ru) | 2016-08-20 |
RU2640242C2 true RU2640242C2 (ru) | 2017-12-27 |
Family
ID=49117896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015102295A RU2640242C2 (ru) | 2012-06-27 | 2013-06-18 | Устройство и способ генерации пузырьков и пен |
Country Status (6)
Country | Link |
---|---|
US (1) | US9885120B2 (ru) |
EP (1) | EP2867171A2 (ru) |
JP (1) | JP6285427B2 (ru) |
BR (1) | BR112014032245A2 (ru) |
RU (1) | RU2640242C2 (ru) |
WO (1) | WO2014001964A2 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU66558A1 (ru) * | 1944-12-25 | 1945-11-30 | Е.М. Балабанов | Способ флотации |
US4039439A (en) * | 1972-08-23 | 1977-08-02 | Clark John W | Method for destratifying bodies of water |
CA1312219C (en) * | 1989-02-21 | 1993-01-05 | Tei Stewart Sanmiya | Process of controlling foam which limits acids mist during electrowinning |
RU2048609C1 (ru) * | 1990-03-22 | 1995-11-20 | Научно-производственный кооператив "Эврика" | Электролизер для получения кислородно-водородной смеси |
CN1987414A (zh) * | 2005-12-21 | 2007-06-27 | 中国科学院上海应用物理研究所 | 生长纳米级气泡的方法及其观察并控制装置与方法 |
US20090297633A1 (en) * | 2005-06-13 | 2009-12-03 | Omsi Co., Ltd. | Process for producing solution having carbon dioxide dissolved therein, apparatus therefor and carbonated water |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3401637A1 (de) | 1984-01-19 | 1985-07-25 | Hoechst Ag, 6230 Frankfurt | Verfahren zum elektrolysieren von fluessigen elektrolyten |
JPS60262986A (ja) * | 1984-06-08 | 1985-12-26 | Miyazawa Seisakusho:Kk | 酸水素ガス同時生成機 |
JPH01234585A (ja) * | 1988-03-11 | 1989-09-19 | Choichi Furuya | ガス拡散電極を用いる電解方法及び装置 |
JP3181795B2 (ja) * | 1994-10-28 | 2001-07-03 | オルガノ株式会社 | 電解水製造装置 |
FR2733330B1 (fr) | 1995-04-19 | 1997-06-06 | Kodak Pathe | Procede d'electro-oxydation de solutions photographiques |
RU2095477C1 (ru) | 1995-07-19 | 1997-11-10 | Акционерное общество "Челябинский электролитный цинковый завод" | Способ предотвращения образования сернокислотного тумана |
US6884866B2 (en) * | 2001-10-19 | 2005-04-26 | Avant Immunotherapeutics, Inc. | Bulk drying and the effects of inducing bubble nucleation |
TWI240767B (en) | 2002-05-02 | 2005-10-01 | Chang Chak Man Thomas | Plasma electroplating |
KR20040060095A (ko) | 2002-12-30 | 2004-07-06 | 한무영 | 불용성 양극을 이용한 전해부상장치 |
US7901549B2 (en) * | 2006-12-06 | 2011-03-08 | General Electric Company | Gas evolving electrolysis system |
JP2010138345A (ja) | 2008-12-15 | 2010-06-24 | Oji Paper Co Ltd | 微細気泡発泡体およびその製造方法 |
DE102009025887B3 (de) | 2009-05-29 | 2011-01-13 | Helmut Dr. Fackler | Elektrolysegerät |
JP5336280B2 (ja) | 2009-07-08 | 2013-11-06 | 京楽産業.株式会社 | 遊技機 |
CN101984142A (zh) | 2010-11-23 | 2011-03-09 | 浙江大学 | 用微纳探针电解生成单一尺寸微纳气泡的装置 |
WO2012122001A2 (en) * | 2011-03-04 | 2012-09-13 | Tennant Company | Cleaning solution generator |
-
2013
- 2013-06-18 JP JP2015519411A patent/JP6285427B2/ja not_active Expired - Fee Related
- 2013-06-18 US US14/409,753 patent/US9885120B2/en not_active Expired - Fee Related
- 2013-06-18 RU RU2015102295A patent/RU2640242C2/ru not_active IP Right Cessation
- 2013-06-18 EP EP13758988.3A patent/EP2867171A2/en not_active Withdrawn
- 2013-06-18 BR BR112014032245A patent/BR112014032245A2/pt not_active Application Discontinuation
- 2013-06-18 WO PCT/IB2013/054995 patent/WO2014001964A2/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU66558A1 (ru) * | 1944-12-25 | 1945-11-30 | Е.М. Балабанов | Способ флотации |
US4039439A (en) * | 1972-08-23 | 1977-08-02 | Clark John W | Method for destratifying bodies of water |
CA1312219C (en) * | 1989-02-21 | 1993-01-05 | Tei Stewart Sanmiya | Process of controlling foam which limits acids mist during electrowinning |
RU2048609C1 (ru) * | 1990-03-22 | 1995-11-20 | Научно-производственный кооператив "Эврика" | Электролизер для получения кислородно-водородной смеси |
US20090297633A1 (en) * | 2005-06-13 | 2009-12-03 | Omsi Co., Ltd. | Process for producing solution having carbon dioxide dissolved therein, apparatus therefor and carbonated water |
CN1987414A (zh) * | 2005-12-21 | 2007-06-27 | 中国科学院上海应用物理研究所 | 生长纳米级气泡的方法及其观察并控制装置与方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2014001964A3 (en) | 2014-04-17 |
RU2015102295A (ru) | 2016-08-20 |
EP2867171A2 (en) | 2015-05-06 |
US20150191836A1 (en) | 2015-07-09 |
WO2014001964A2 (en) | 2014-01-03 |
US9885120B2 (en) | 2018-02-06 |
JP6285427B2 (ja) | 2018-02-28 |
BR112014032245A2 (pt) | 2017-06-27 |
JP2015528855A (ja) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8262872B2 (en) | Cleansing agent generator and dispenser | |
JP3139159U (ja) | 水電気分解用電解槽 | |
KR101978380B1 (ko) | 전기분해용 전극셀 및 기능수 생성모듈 | |
JP2002336856A (ja) | 電解水製造装置、及び電解水の製造方法 | |
JP4665880B2 (ja) | 電解水生成装置 | |
JP2006322053A (ja) | 水電気分解用電極 | |
US20130277211A1 (en) | Reusable spray bottle with integrated dispenser | |
AU2008276573A1 (en) | Cleansing agent generator and dispenser | |
JP4801877B2 (ja) | 水素水製造用攪拌具 | |
CN104520242B (zh) | 生成气泡和泡沫的装置和方法 | |
JP2008086885A (ja) | 電解水生成装置 | |
US20160097132A1 (en) | Reusable spray bottle with integrated dispenser | |
JP2005144240A (ja) | 電解槽及び電解水生成装置 | |
KR101732659B1 (ko) | 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치 | |
US9410255B2 (en) | System and method for generating and dispensing sodium hydroxide solutions | |
WO2015141858A1 (ja) | 電解水の生成装置 | |
RU2640242C2 (ru) | Устройство и способ генерации пузырьков и пен | |
US20140190820A1 (en) | Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting | |
JP2006346672A (ja) | バッチ式酸性電解水製造装置及びこれを用いて酸性電解水を製造する方法 | |
JPH07155765A (ja) | 電解水の生成方法および生成装置 | |
JP2019147073A (ja) | 次亜塩素酸水の製造装置 | |
JP4685838B2 (ja) | 電解水の製造装置、電解水の製造方法および電解水 | |
JP6675112B2 (ja) | 電解原水貯留式電解装置 | |
KR101866762B1 (ko) | 전기분해수 생성장치 | |
JP2022087568A (ja) | オゾン水生成装置及び電極の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190619 |