WO2006132265A1 - 集光型太陽光発電ユニットおよび集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、および集光レンズ構造体の製造方法 - Google Patents

集光型太陽光発電ユニットおよび集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、および集光レンズ構造体の製造方法 Download PDF

Info

Publication number
WO2006132265A1
WO2006132265A1 PCT/JP2006/311403 JP2006311403W WO2006132265A1 WO 2006132265 A1 WO2006132265 A1 WO 2006132265A1 JP 2006311403 W JP2006311403 W JP 2006311403W WO 2006132265 A1 WO2006132265 A1 WO 2006132265A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing lens
power generation
solar cell
translucent substrate
condensing
Prior art date
Application number
PCT/JP2006/311403
Other languages
English (en)
French (fr)
Inventor
Osamu Anzawa
Kosuke Ueda
Masao Tanaka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005167526A external-priority patent/JP4732015B2/ja
Priority claimed from JP2005167527A external-priority patent/JP5013684B2/ja
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to AU2006256136A priority Critical patent/AU2006256136B8/en
Priority to EP06757110A priority patent/EP1895597A1/en
Priority to US11/921,465 priority patent/US8237044B2/en
Publication of WO2006132265A1 publication Critical patent/WO2006132265A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/15Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using bent plates; using assemblies of plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • Concentrating solar power generation unit Concentrating solar power generation device, condensing lens, condensing lens structure, and manufacturing method of condensing lens structure
  • the present invention relates to a concentrating solar power generation unit capable of increasing power generation capacity by shining sunlight using a condensing lens, and such a concentrating solar power generation unit. And a condensing lens, a condensing lens structure, a concentrating solar power generation unit using the condensing lens, and a method of manufacturing the condensing lens structure.
  • a solar cell element can be provided with a small light receiving area capable of receiving sunlight condensed by an optical system. I hope. In other words, since the solar cell element having a size smaller than the light receiving area of the condensing lens may be used, the size of the solar cell element can be reduced, and the usage amount of the solar cell element which is the most expensive component in the photovoltaic power generation apparatus The cost can be reduced. Because of these advantages, concentrating solar power generation devices are being used for power supply in areas where power can be generated using a large area.
  • FIG. 17 is an explanatory view for explaining a concentrating solar power generation device as a conventional example
  • (A) is a plan view showing an overview of the incident surface force of sunlight
  • (B) ) Is a cross-sectional view showing a cross section taken along arrows BB in (A).
  • a concentrating solar power generation device 100 as this conventional example (see, for example, Patent Document 2) is fitted in a case 101 having an open end and a case 101 to function as a primary optical system.
  • Non-imaging Fresnel lens 102 Seat plate 103 provided at the bottom of case 101, solar cell element installed on bottom surface of case 101, that is, condensing position of non-imaging system Fresnel lens 102 104, a cylindrical reflector 105 that functions as a secondary optical system.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-284217
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-174183
  • the condensing lens of the concentrating solar power generation apparatus must be arranged in an appropriate positional relationship with respect to the solar cell element, and high-level alignment is required.
  • the energy generated by condensing light at the light receiving position is extremely large, and measures to prevent damage caused by irradiation around the solar cell element are necessary as a heat dissipation measure.
  • a concentrating solar power generation apparatus is often installed in an area where the temperature changes drastically in a desert or the like, and it is necessary to take measures against thermal expansion in response to a temperature rise.
  • the present invention has been made in view of such circumstances, a mounting plate for mounting a solar cell element, a light shielding plate having a transmission hole for transmitting sunlight, and covering the mounting plate, and a solar cell Equipped with a condensing lens that collects sunlight in the light receiving area of the element and a frame that aligns the position of the solar cell element and the condensing lens, making assembly easy and productivity and maintenance (maintenance / inspection) work
  • the purpose of the present invention is to provide a concentrating solar power generation unit and a concentrating solar power generation device that improve the performance, can easily align the optical members, and have an excellent effect on heat and sunlight.
  • the concentrating solar power generation device 100 shown in FIG. 17 described above requires a cylindrical reflector 105 corresponding to the solar cell element 104 in order to collect sunlight Ls.
  • Imaging system Problems such as a complicated optical system and complicated manufacturing process, such as the need to form a frame corresponding to each non-imaging Fresnel lens 102 on the case 101 to hold the Renel lens 102 There is.
  • the non-imaging Fresnel lens 102 is held by the frame portion of the case 101, there is a limit to the size of the case, and the concentrating solar power generation device 100 capable of condensing a large area It is difficult to do so.
  • the present invention has been made in view of such circumstances, and a projection region having an inclined surface inclined with respect to a planar first surface and a planar region parallel to the first surface are secondly included.
  • a condenser lens on the surface and a condenser lens structure that holds such a condenser lens with a translucent substrate there is no bias over the entire condenser area (light-receiving area of the solar cell element).
  • Another object of the present invention is to provide a condensing lens structure that can simplify the manufacturing process and improve the condensing efficiency, and a manufacturing method thereof.
  • the present invention provides a concentrating solar power generation device using the above-described condensing lens structure, so that the concentrating lens and the light receiving region (condensing region) of the solar cell element are disposed.
  • a concentrating solar power generation system that can simplify the manufacturing process, improve the light collection efficiency, and achieve high power generation efficiency.
  • the purpose Means for solving the problem
  • the concentrating solar power generation unit is a concentrating solar power generation unit that generates power by irradiating the solar cell element with sunlight condensed by a condensing lens.
  • the light shielding plate is formed integrally with the frame.
  • the light shielding plate has a bent portion obtained by bending the periphery of the transmission hole toward the mounting plate.
  • a substantially center of an end side of the mounting plate is fixed to the light shielding plate, and a substantially center of an end side of the condensing lens is fixed to an upper end of the frame.
  • a plurality of the solar cell elements are arranged on the mounting board.
  • the condensing lens is arranged and held on a light transmitting substrate corresponding to each of the plurality of solar cell elements.
  • the mounting plate is characterized in that a substantially center of an end side in a longitudinal direction is fixed to the light shielding plate.
  • the translucent substrate is characterized in that a substantially center of an end in a longitudinal direction is fixed to an upper end of the frame.
  • the mounting board and the translucent substrate are divided into a plurality of parts in the longitudinal direction of the frame.
  • a concentrating solar power generation device is a concentrating solar power generation device including a concentrating solar power generation unit, wherein the concentrating solar power generation unit is a light collecting device according to the present invention.
  • Type solar power generation unit which is configured to be driven to be tracked.
  • a condensing lens according to the present invention is a condensing lens having a planar first surface and a second surface on which a protrusion having an inclined surface inclined with respect to the first surface is formed.
  • the second side is the front
  • a flat region having a plane parallel to the first surface and a projection region having the projection are provided.
  • a boundary between the planar region and the projection region is defined by a step between the planar region and the projection.
  • the planar region is defined by a circle having a diameter surrounding a light receiving region of a solar cell element to be arranged in a face-to-face relationship, and the protrusion is concentrically formed with respect to the planar region. It is characterized by being!
  • the inclination angle of the inclined surface with respect to the first surface and the inclination change pitch as a pitch for changing the inclination angle determine the short-circuit current of the solar cell element, and the light in the wavelength region Is set so as to collect light in the light receiving area.
  • a condensing lens structure includes a condensing lens having a planar first surface and a second surface on which a protrusion having an inclined surface inclined with respect to the first surface is formed,
  • a condensing lens structure including a translucent substrate for fixing and holding a condensing lens, wherein the second surface is a planar region having a plane parallel to the first surface, and a protrusion having the protrusion
  • the alignment of the condensing lens and the translucent substrate is performed using a boundary defined by a step between the planar region and the protrusion.
  • a planar area fixing portion that fixes the translucent substrate and the condenser lens corresponding to the planar area between the translucent substrate and the first surface, and the protrusions
  • a peripheral edge fixing portion for fixing the translucent substrate and the condenser lens is formed corresponding to the peripheral edge portion of the region.
  • planar region fixing portion and the peripheral edge fixing portion are formed by double-sided adhesive tape.
  • a filling portion filled with an adhesive is formed between the translucent substrate and the first surface.
  • the translucent substrate is characterized in that a plurality of the condensing lenses are juxtaposed.
  • a concentrating solar power generation unit corresponds to a condensing lens structure including a condensing lens and a translucent substrate that holds the condensing lens fixedly, and the condensing lens.
  • Shi 20. A concentrating solar power generation unit comprising a solar cell element disposed in a concentrating manner, wherein the condensing lens structure is the condensing lens structure according to any one of claims 15 to 19. It is characterized by being.
  • a planar region having a plane parallel to the planar first surface and a protrusion having an inclined surface inclined with respect to the first surface are formed.
  • Forming a planar area fixing portion to be fixed, and the first surface Forming a peripheral edge fixing portion for fixing the translucent substrate and the condensing lens at a position corresponding to the peripheral edge portion of the protruding region, and positioning the end portion of the translucent substrate to the substrate end position.
  • the mounting plate on which the solar cell element is mounted is configured to include a frame that defines the positional relationship of the optical lens, and the mounting board and the frame are separated, so productivity such as mounting of solar cell elements on the mounting board As a result, the maintenance and inspection becomes easier and workability and reliability can be improved.
  • the structure frame, light-shielding plate
  • the mounting plate and the light-transmitting substrate can be aligned with respect to the transmission hole, so that the optical member (condensing lens, transparent lens) can be aligned. It is easy to ensure the alignment accuracy between the optical substrate) and the solar cell element. Also, since the positioning accuracy can be improved, the utilization efficiency of the irradiated sunlight can be increased. There is an effect that.
  • the plane area is arranged so as to face the light receiving area. Force The sunlight incident perpendicularly to the plane area enters the light receiving area as it is and enters the protrusion area. The sunlight is refracted by the inclined surface and collected in the light receiving region. Therefore, the light incident on the planar region can reduce the variation in the light intensity distribution on the light receiving surface of the solar cell element that has no chromatic aberration due to the condenser lens, and can improve the power generation efficiency.
  • the alignment between the condensing lens and the translucent substrate (condensing region) is performed using the boundary between the planar region and the projection region.
  • the manufacturing process can be simplified.
  • the mechanical strength of the condensing lens can be enhanced by the translucent substrate, the condensing lens having a predetermined shape necessary for condensing can be obtained, and the desired condensing characteristic is obtained.
  • the manufacturing process is simple and the condensing characteristics are good. There exists an effect that a highly reliable concentrating solar power generation device can be provided.
  • FIG. 1 is an exploded perspective view partially showing an arrangement relationship of main parts of a concentrating solar power generation unit according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory view for explaining the positioning and fixing state of the mounting plate and the frame bottom of the concentrating photovoltaic power generation unit of FIG. 1,
  • A) is a perspective view of the mounting plate
  • B) is a sectional view showing a fixed positioning state
  • C) is a sectional view showing a loosely fixed state.
  • FIG. 3 is an explanatory view for explaining a state in which the positioning of the translucent substrate and the upper end of the frame of the concentrating photovoltaic power generation unit of FIG. 1 is fixed, and (A) is a translucency. (B) is a sectional view showing a positioning and fixing state, and (C) is a sectional view showing a fixing state.
  • Fig. 4 is a schematic side view transparently showing an arrangement relationship of main parts viewed from a side force in the longitudinal direction of the concentrating solar power generation unit according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing an outline of a cross section taken along arrows AA in FIG.
  • FIG. 6 is a plan view showing an arrangement state of the solar cell elements mounted on the concentrating solar power generation unit according to Embodiment 1 of the present invention at the receiver.
  • FIG. 7 is an explanatory view showing a mounting state of solar cell elements and an arrangement state of transmission holes mounted on the concentrating solar power generation unit according to Embodiment 1 of the present invention.
  • FIG. 7 is a side perspective view transparently showing a state seen from the side surface, and (B) is a plan view of the light shielding plate (transmission hole) viewed from the side of the condenser lens.
  • FIG. 8 is a front view showing a front outline of the concentrating solar power generation apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is an exploded perspective view showing the rear outline of the concentrating solar power generation device of FIG. 8 in an exploded manner.
  • FIG. 10 is a plan view of a condensing lens structure according to Embodiment 3 of the present invention.
  • FIG. 11 is an enlarged schematic cross-sectional view of the condensing lens structure of FIG. 10, showing a partial schematic cross-section from the plane center to the arrow A of the condensing lens structure.
  • FIG. 12 is a cross-sectional view for explaining a manufacturing method (manufacturing process) of a condensing lens structure according to Embodiment 3 of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a method (manufacturing process) for a condensing lens structure according to Embodiment 3 of the present invention.
  • FIG. 14 is a cross-sectional view illustrating a method (manufacturing process) for a condensing lens structure according to Embodiment 3 of the present invention.
  • FIG. 15 is a plan view showing a state in plan view in which the condenser lens structure according to Embodiment 3 of the present invention is aligned using a positioning jig base.
  • FIG. 16 is a partial cross-sectional view illustrating a state in which the condensing lens structure according to Embodiment 3 of the present invention is aligned with a solar cell element (frame).
  • FIG. 17 is an explanatory view for explaining a concentrating solar power generation device as a conventional example, (A) is a plan view showing an overview viewed from the incident surface of sunlight, and (B) Is the arrow B in (A) It is sectional drawing which shows a cross section. Explanation of symbols
  • FIG. 1 is an exploded perspective view partially showing an arrangement relationship of main parts of the concentrating solar power generation unit according to Embodiment 1 of the present invention.
  • Fig. 2 is an explanatory diagram for explaining the positioning / fixing state between the mounting plate and the bottom of the frame of the concentrating photovoltaic power generation unit of Fig. 1
  • (A) is a perspective view of the mounting plate
  • (B) is a perspective view.
  • FIG. 4C is a cross-sectional view showing the positioning and fixing state
  • FIG. Figure 3 shows the translucent substrate and frame of the concentrating solar power generation unit of Figure 1. It is explanatory drawing explaining the state of positioning and fixing with the upper end, (A) is a perspective view of a translucent substrate etc., (B) is a sectional view showing the positioning and fixing state, and (C) is a loose fixing state.
  • FIG. 1 is an exploded perspective view partially showing an arrangement relationship of main parts of the concentrating solar power generation unit according to Embodiment 1 of the present invention.
  • the concentrating solar power generation unit 10 of the present embodiment includes a solar cell element 1, a mounting plate 3 on which the solar cell element 1 bonded to the receiver 2 is mounted, and a light shielding plate 4 that covers the mounting plate 3. , The edge force of the two opposite sides of the light shielding plate 4 The frame 5 arranged in the vertical direction, the sunlight Ls in the light receiving area of the solar cell element 1 arranged corresponding to the upper end of the frame 5 opposite the light shielding plate 4 A condensing lens 7 for condensing light, and a translucent substrate 6 fixed to (fixed to) the condensing lens 7 and attached to the upper end of the frame 5.
  • the number of parts is reduced as a component corresponding to the function, it is easy to assemble, can be made small and light, and has high mechanical strength. can do.
  • the member configuration corresponds to the function and the structure is simplified, mechanical strength and productivity can be improved.
  • the optical distance is defined by the frame 5 with high mechanical strength, stable and reliable light collection is possible, and the mounting plate 3 is covered with the light shielding plate 4, so that there is no risk of damage and highly reliable power generation. Is possible.
  • the mounting board 3 for example, five solar cell elements 1 mounted on the receiver 2 are arranged in two rows, for example, five in total.
  • the solar cell element 1 is arranged corresponding to the condensing position of the condensing lens 7.
  • the mounting plate 3 is formed in a dish shape having a recess that secures a space for storing the solar cell element 1 and the receiver 2 in units of ten, and a flange 3a for attaching to the light shielding plate 4 is formed at the periphery.
  • the mounting board 3 is preferably made of, for example, aluminum in consideration of heat dissipation and light weight. Aluminum may be subjected to appropriate insulation treatment such as anodizing.
  • the mounting board 3 is mounted on the light shielding plate 4 and houses the ten solar cell elements 1 together with the light shielding plate 4 to form a protective space for protection from the external environment.
  • the condensing lens 7 is arranged and fixed on the translucent substrate 6 in two rows of 5 to correspond to each of the 10 solar cell elements 1, and is fixed to the lens array (6, 7). Is configured.
  • the collecting lens 7 is made of, for example, acrylic resin in consideration of processability and translucency.
  • the lens material may be polycarbonate or glass.
  • the translucent substrate 6 is made of, for example, glass in consideration of translucency, strength, environmental resistance, and the like, and can prevent the influence of wind and rain due to the surrounding environment.
  • the condensing lens 7 is bonded and held on the translucent substrate 6 with an appropriate translucent adhesive.
  • the material of the translucent substrate 6 may be acrylic resin or polycarbonate.
  • the condensing lens 7 is adjusted by the condensing lens 7 because the optical distance (defined based on the focal length) is adjusted so as to condense on the light receiving region of the solar cell element 1.
  • the irradiated sunlight Ls becomes extremely large energy on the arrangement surface of the solar cell element 1.
  • the configuration is such that the solar light Ls is tracked, the relationship between the solar cell element 1 and the concentrated solar light Ls is not always maintained, and the tracking device is stopped due to the occurrence of an abnormal situation.
  • the concentrated sunlight Ls may irradiate the surrounding members of the mounting board 3 or the mounting board 3 other than the light receiving area that is not in the light receiving area of the solar cell element 1. There is a risk of damage from burning.
  • the light shielding plate 4 is configured to shield the sunlight Ls so as to prevent the occurrence of damage due to the concentrated sunlight Ls. Ls is not affected.
  • the solar cell element 1 in order to enable the solar cell element 1 to receive light in conjunction with the light shielding function, the solar cell element 1 has a transmission hole 4a through which the collected sunlight Ls is transmitted and irradiated to the light receiving region of the solar cell element 1. It is positioned so as to face the light receiving area.
  • the transmission holes 4a are formed corresponding to each of the ten solar cell elements 1 mounted on the mounting board 3, and the position and concentration of the solar cell elements 1 are collected at the positions of the transmission holes 4a. Aligning the condensing position of the optical lens 7 is extremely important for ensuring power generation efficiency. Further, the light shielding plate 4 is disposed in close proximity to the mounting plate 3 and corresponding to the bottom of the frame 5 in order to reliably realize the function of the transmission hole 4a.
  • the frame 5 is preferably formed integrally by continuous molding. Further, it is preferable that the light shielding plate 4 positioned in the middle of the two opposed frames 5 is also integral with the frame 5. Therefore, the light shielding plate 4 and the frame 5 are made of, for example, an iron plate or a steel plate.
  • the metal plate is integrally formed by roll forming. In addition, it is desirable that the iron plate and the steel plate are subjected to a fouling treatment such as zinc plating.
  • the light shielding plate 4 constitutes the bottom of the structure 11 of the concentrating solar power generation unit 10, and the frame 5 constitutes the side wall of the structure 11.
  • the strength of the structure (structural skeleton) 11 can be improved reliably.
  • the mounting plate 3 can be accurately aligned with the condenser lens 7.
  • the light shielding plate 4 formed integrally with the frame 5 at the time of the roll forming cover constitutes a frame bottom portion 4 b that is convex on the upper end side of the frame 5 in order to mount the mounting plate 3.
  • the light shielding plate 4 formed integrally with the frame 5 may be referred to as a frame bottom 4b for convenience.
  • a specific structure for aligning the position of the solar cell element 1 with the position of the transmission hole 4a will be described.
  • the mounting board 3 can be easily positioned in the direction intersecting with the sunlight Ls.
  • the mounting plate protrusion 4d on the frame bottom 4b and the mounting plate alignment portion 3b on the mounting plate 3 are fitted and fixed with screws 30 or the like (see FIG. 2 (B)).
  • a mounting plate alignment portion 3b is provided at approximately the center of two end sides ( ⁇ 3a) facing each other in the longitudinal direction of the mounting plate 3, and the mounting plate 3 is fixed to the frame bottom portion 4b.
  • a mounting plate projection 4e is provided on the frame bottom 4b separately from the mounting plate projection 4d, and a fitting portion 3c corresponding to the mounting plate projection 4e is formed on the mounting plate 3 ( ⁇ 3a).
  • the mounting board 3 can be loosely fixed to the frame bottom 4b.
  • the mounting plate projection 4e and the fitting portion 3c are fitted via the space S between the mounting plate projection 4e of the frame bottom 4b and the fitting portion 3c of the mounting plate 3, and the screw 30 or the like is used.
  • the buffer material 33 may be sandwiched between the frame bottom 4b and the mounting board 3.
  • the mounting plate protrusions 4d and 4e provided on the frame bottom 4b are concave portions, and the mounting plate alignment
  • the fitting part 3b and the fitting part 3c may be convex parts, and any shape can be used as long as they can be positioned and fixed.
  • the upper end of the frame 5 is integrally formed with a flange 5a for supporting the translucent substrate 6 (the condensing lens 7) at the time of roll forming, so that the positioning of the condensing lens 7 is surely performed. Is possible.
  • the flange 5a of the frame 5 is provided with a flange projection 5c (see FIG. 1), and the substrate frame alignment portion 6b corresponding to the flange projection 5c is connected to the longitudinal edge of the translucent substrate 6 (frame By forming it at the approximate center of the part 6a) (see Fig. 3 (A)), the translucent substrate 6 (the condensing lens 7) can be easily positioned in the direction intersecting the sunlight Ls.
  • the hook protrusion 5c provided on the hook 5a may be a recess, and any shape can be used as long as it can be positioned.
  • the frame portion 6a may be fixed to the flange 5a by pouring a silicone-based resin that cures at room temperature into the substrate frame alignment portion 6b without using the flange projection 5c.
  • optical alignment of the solar cell element 1 and the condenser lens 7 is performed by geometrical measurement, power generation power measurement, etc. Fix it.
  • the translucent substrate 6 By forming a pair of substrate frame alignment portions 6b at a near distance in the longitudinal direction of the translucent substrate 6 in the longitudinal direction, the translucent substrate 6 (the condensing lens 7) is rotated without rotation. ), And the translucent substrate 6 is fixed to the flange 5a in a state where there is little stress due to thermal expansion (see FIG. 3B).
  • the frame portion 6a of the translucent substrate 6 is pressed by the pressing member 9 so that the translucent substrate 6 can be expanded and contracted.
  • the presser member 9 is secured to the flange 5a with a bolt 31 passing through the presser hole 9a, so that the translucent substrate 6 can be protected from mechanical stress and have a water stop function.
  • the translucent substrate 6 is fixed only by the substrate frame alignment portion 6b and is gently pressed by the holding member 9, the stress of expansion and contraction due to thermal expansion is not exerted (See Figure 3 (C)).
  • the frame 5 and the light-shielding plate 4 as the reference position (basic shape) of the structure, the mounting plate 3 and the translucent substrate 6 can be accurately aligned, and accurate light collection is possible. Possible can do.
  • the translucent substrate 6 that fixes the condenser lens 7 is attached to the upper end ( ⁇ 5a) of the frame 5.
  • an optical distance (distance necessary for generating the maximum power) is defined between the solar cell element 1 and the condenser lens 7. It is set as follows.
  • the height of the frame 5 is such that the sunlight Ls incident on the lens region of the condenser lens 7 is transmitted through the light-shielding plate 4 when the solar cell element 1 and the sunlight Ls are in a directly-facing state. It is set so as to surely irradiate the entire light receiving region of the solar cell element 1 mounted on the receiver 2 through the hole 4a.
  • a fitting groove 5b capable of fitting the frames 5 to each other is integrally formed at the time of roll forming.
  • a concentrating solar power generation device 20 can be configured by fitting the fitting groove 5b and connecting a plurality of frames 5 in the short direction intersecting the longitudinal direction. Since the fitting grooves 5b fit the frames 5 to each other, it is possible to maintain the structure 11 having a high mechanical strength even when a plurality of frames are connected.
  • the mounting board 3 and the translucent substrate 6 are divided into a plurality of parts in the longitudinal direction of the frame 5 and attached. With this configuration, even when the longitudinal length of the frame 5 is increased to increase the size of the concentrating photovoltaic power generation unit 10, the ease of assembly can be secured, so that productivity can be improved and maintenance can be performed. Inspection and repair can be easily performed.
  • the alignment of the solar cell element 1 and the condenser lens 7 with respect to the frame 5 is Since it is only necessary to perform a narrow range (divided range) with respect to the system 5 (transmission hole 4a), accurate alignment can be performed.
  • the mounting board 3, the frame 5, and the translucent substrate 6 are made of different materials, the coefficients of thermal expansion are different, so that the longer the length, the greater the effect of thermal expansion. There is a risk that the solar cell element 1 will not be irradiated with the concentrated sunlight Ls due to a positional shift due to a temperature change.
  • the mounting board 3 and translucent board 6 should be divided and shortened. As a result, it is only necessary to consider thermal expansion in a short length (narrow range), so that the influence of thermal expansion can be reduced.
  • the thermal expansion due to the difference in material of the mounting board 3, the translucent board 6 and the frame 5 It is possible to reduce misalignment due to the difference between the two, and it is possible to accurately collect and generate power even in a high temperature environment, so that the concentrating solar power generation unit 10 with high reliability can be obtained.
  • the mounting board 3 and the translucent substrate 6 correspond to a plurality of solar cell elements 1, but the mounting board 3 and the translucent substrate 6 correspond to individual solar cell elements 1.
  • the technical matters according to the present embodiment can be applied even when configured individually.
  • the center of the edge of the mounting plate 3 is fixed to the light shielding plate 4 and the center of the edge of the condenser lens 7 is fixed to the upper end of the frame 5 so as to correspond to each solar cell element 1.
  • the concentrating solar power generation unit 10 can be configured.
  • FIG. 4 is a schematic side view transparently showing an arrangement relationship of main parts viewed from the side surface in the longitudinal direction of the concentrating solar power generation unit according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a cross-sectional outline taken along arrows AA in FIG. In FIG. 4, the solar cell element 1 and the receiver 2 are not shown.
  • Frame 5 for example, a rolled metal plate such as an iron plate or a steel plate is drawn into a flat plate shape, and transmission holes 4a, mounting plate projections 4d and 4e (see Fig. 2), and heel projection 5c (see Fig. 3) Then, press-cage with a flat die that delimits and continuously transfer to a flat plate, and perform a three-dimensional force check on the part that has been press-carryed with a form-former cache. At this time, it is preferable to press-cage the mold with a unit length defined by the mounting board 3 or the translucent substrate 6.
  • the base material formed by continuously bending the roll forming process as described above is a size suitable for the concentrating solar power generation unit 10 constituting the concentrating solar power generation apparatus 20 (see Embodiment 2). Further, it is formed by cutting to about 3 m in the longitudinal direction. That is, in the concentrating solar power generation unit 10 according to the present embodiment, a highly accurate structure with high productivity is required by forming the light shielding plate 4 and the frame 5 by roll forming a metal plate. It is possible to form with a long length.
  • a mounting board 3 and a translucent substrate 6 that are divided into a plurality of pieces (for example, three pieces) and have a length of about lm are arranged at the lower and upper parts of the frame 5, respectively, and fixed ( Installed). Since the mounting board 3 and the translucent substrate 6 are divided into a plurality of parts, the influence of thermal expansion can be reduced according to the number of divisions. For example, since the length of the translucent substrate 6 is about lm, the condensing lenses 7 arranged in the longitudinal direction are about 200 mm square. Therefore, the width of the translucent substrate 6 and the light shielding plate 4 is about 400 mm. The width of the mounting board 3 is about 300 mm.
  • the mounting board 3 is mounted with the flange 3a in contact with the frame bottom 4b.
  • the mounting board 3 is positioned by the mounting board alignment part 3b formed at the approximate center in the longitudinal direction of the flange 3a corresponding to the long side (longitudinal end side) of the mounting board 3, and is appropriately fixed with screws 30 or the like. It is firmly fixed to the frame bottom 4b with metal fittings (see Fig. 2).
  • the flange 3a at the other position is locked (loosely fixed) to the frame bottom 4b with an appropriate fixing bracket such as a screw 30 at the fitting portion 3c (see FIG. 2). That is, by positioning and fixing at substantially the center of the longitudinal edge of the mounting board 3, it is possible to halve the positional shift due to thermal expansion compared to the case where the positioning is performed at the corners, for example.
  • the translucent substrate 6 is a frame portion 6a formed around the region where the condensing lens 7 is pasted, with the surface on which the condensing lens 7 is pasted facing the light shielding plate 4, and the mounting plate 3
  • the light-transmitting substrate 6 (frame portion 6a) is positioned with respect to the flange 5a in the vicinity of the midpoint of the long side (end side in the longitudinal direction).
  • the frame portion 6a is appropriately fixed to the flange 5a with an appropriate fixing bracket such as a pressing member 9 (see FIG. 3). What is necessary is just to fix between the adjacent translucent board
  • the hook projection 5c is provided at the fixing point of the flange 5a corresponding to the board frame alignment portion 6b formed in the frame 6a, and the flange 5a is fitted to the substrate frame alignment section 6b. (Refer to Fig. 3). It can be easily installed or replaced without the operation of positioning the fixing position of the translucent substrate 6 so that the maximum power output that is preferably fixed by the pressing member 9 is obtained.
  • the mounting plate 3 and the translucent substrate 6 can be positioned and fixed with the same accuracy as the common (same) structure 11 (light-shielding plate 4, ⁇ 5a).
  • the positioning accuracy of the power generation unit 10 as a whole can be improved, and the use efficiency of sunlight can be reliably improved.
  • the condensing lens 7 is provided with a size of about 200 mm square corresponding to each solar cell element 1 in consideration of processability at the time of molding. For example, acrylic resin is poured into a Fresnel lens-shaped mold. And one side is molded as a flat Fresnel lens. By using a Fresnel lens, the condensing lens can be reduced in weight, and the condensing lens 7 having a large area can condense on the solar cell element 1 having a small area. Instead of individually molding each solar cell element 1, a plurality of Fresnel lenses can be integrally molded so as to correspond to the plurality of solar cell elements 1. Further, the condenser lens 7 is bonded to the translucent substrate 6 so that the strength and Since flatness can be ensured, it is possible to reduce the thickness and form a lens shape with good condensing characteristics.
  • FIG. 6 is a plan view showing an arrangement state of the solar cell elements mounted on the concentrating solar power generation unit according to Embodiment 1 of the present invention at the receiver.
  • the solar cell element 1 is processed into a 7 mm square light receiving region by forming a PN junction, an electrode, and the like by a known semiconductor manufacturing process using a GaAs compound semiconductor.
  • the solar cell element 1 is electrically and mechanically connected and bonded (mounted) to a copper receiver 2 of about 60 mm square by a back electrode.
  • a reference hole 2p is drilled with high precision at the corner of the receiver 2 at a diagonal position, and the solar cell element 1 is positioned and bonded with reference to the reference hole 2p.
  • the surface of the receiver 2 is exposed in the area of the substrate electrode 1 of the solar cell element 1 that requires electrical connection, the area where the substrate electrode of the bypass diode Di is connected, and the area of the substrate electrode connection portion 2b.
  • the other surface region is covered with an insulating resist 2i.
  • a surface electrode connecting portion 2t serving as an electrode for taking out the output is formed on a part of the surface of the insulating resist 2i with an appropriate thin plate-like conductor.
  • the surface electrodes la formed on the opposite ends of the chip of the solar cell element 1 are wire-bonded to the surface electrode connection portion 2t via the wire Ws, and output is output between the surface electrode connection portion 2b and the substrate electrode connection portion 2b. It can be taken out.
  • the surface electrode of the binos diode Di is wire-bonded to the surface electrode connection portion 2t via the wire Wd, so that the binos operation can be performed.
  • an antireflection film is formed on the chip surface of solar cell element 1, and the reflectivity varies depending on the wavelength due to multiple reflection in the antireflection film, but as the incident angle increases, Since the reflectance tends to be high, reflection loss on the surface of the light receiving region can be reduced.
  • the anti-reflection film the ⁇ 1202 film is used.
  • Surface electrode la Force that needs to be partially exposed to make electrical connection Thickness is about lOOnm, so wedge bonding is performed to melt the wire head by friction and press-fit. That is, the antireflection film on the surface electrode la is polished, and the surface electrode la is partially exposed to perform wire bonding. Therefore, it is possible to electrically connect the surface electrode la to the surface electrode connecting portion 2t without removing the antireflection film.
  • the direction in which the wire head is rubbed is amplified as the longitudinal direction of the pattern shape of the surface electrode la, whereby the short side width of the surface electrode la can be set short.
  • a friction width of about twice the diameter of the wire Ws is sufficient, and when the wire diameter is about 250 ⁇ m, the width of the crimping portion is about 750 ⁇ m.
  • the crimping position of the wire Ws is preferably near the center of the surface electrode la for efficient current collection.
  • a force in which one wire Ws is provided for each surface electrode la may be connected to each surface electrode la. If the wire head is rubbed in the longitudinal direction of the pattern shape of the surface electrode la, the protruding direction of the wire Ws to the surface electrode connection portion 2t may be any, but the path of the shortest distance to the surface electrode connection portion 2t is considered. I like it.
  • the surface electrode connecting portion 2t is preferably arranged in a direction orthogonal to the longitudinal direction of each surface electrode la in order to facilitate parallel connection of the solar cell element 1 and the bypass diode Di.
  • the solar cell element 1 and the bypass diode Di may be joined by wire bonding. Although preferable, solder bonding or welding may be used.
  • Conductive leads 2c for connecting to the adjacent solar cell element 1 are connected to the surface electrode connecting portion 2t and the substrate electrode connecting portion 2b, and the conductive leads 2c are connected in series or in parallel. By connecting to, large-capacity power generation becomes possible.
  • a force using a GaAs-based compound semiconductor solar cell as the solar cell element 1 is not limited to this.
  • a Si solar cell or a mechano-stacked solar cell combining these solar cells is used.
  • FIG. 7 is an explanatory view showing a mounting state of solar cell elements and an arrangement state of transmission holes mounted on the concentrating solar power generation unit according to Embodiment 1 of the present invention.
  • FIG. 5B is a side perspective view showing the state seen from the side, and (B) is a plan view of the light shielding plate (transmission hole) viewed from the condenser lens side.
  • the resin sealing step includes the step of first forming the sealing dam 4sd, the step of injecting and filling the sealing resin 2sr inside the sealing dam 4sd, and the surface of the sealing resin 2sr with an appropriate hardness. It consists of a process of placing glass on
  • the receiver 2 is made of copper, and also functions as a heat radiating unit for the solar cell element 1 that becomes extremely hot when irradiated with the concentrated sunlight Ls.
  • the receiver 2 on which the solar cell element 1 is mounted is bonded to the aluminum mounting board 3 via the insulating heat conductive sheet 3 i, and the heat of the solar cell element 1 is exhausted from the mounting board 3 while maintaining the insulation state. Dissipate heat.
  • the insulating heat conductive sheet 3i a silicone rubber containing an insulating metal such as aluminum oxide as a metal filler can be used.
  • the mounting board 3 can be appropriately provided with heat radiating fins (not shown), and a large heat radiating effect can be obtained especially by disposing it at a position corresponding to the receiver 2.
  • Positioning and fixing between the receiver 2 and the mounting board 3 are performed by forming a receiving hole 3p precisely aligned with the mounting board 3 with respect to the reference hole 2p provided in the receiver 2, and then the reference hole 2p. And by inserting and fixing the rivet 2r with insulation coating in the receiving hole 3p, it can be performed with high accuracy.
  • the periphery of the transmission hole 4a is drawn to form a bent part 4c around it, and the oblique force is also transmitted through the sun. It is preferable to form it with a function (angle) that blocks sunlight Lsd that may irradiate parts other than battery element 1.
  • the light shielding plate 4 has a bent portion 4c in which the periphery of the transmission hole 4a is bent toward the mounting plate 3 side, so that the sunlight Ls obliquely radiated to the transmission hole 4a is blocked by the light shielding plate 4 Therefore, it is possible to prevent the solar cell element 1 from being damaged by the sunlight Ls in the periphery of the solar cell element 1 (that is, the mounting board 3 and the solar cell element 1 side).
  • FIG. 8 is a front view showing a front outline with the light receiving surface of the concentrating solar power generation apparatus according to Embodiment 2 of the present invention in a vertical state.
  • FIG. 9 is an exploded perspective view showing the rear outline of the concentrating solar power generation device of FIG. 8 in an exploded manner.
  • a plurality of concentrating solar power generation units 10 according to Embodiment 1 are connected in the short direction intersecting the longitudinal direction of the frame 5. .
  • a light receiving plane having a weight balance in the vertical direction and the horizontal direction, and to obtain a planar shape suitable for tracking driving.
  • the fitting grooves 5b are fitted to each other so that one group (for example, three) of the frames 5 are connected in the short direction.
  • the U-shaped main girder 21 is arranged in a short direction between the mounting boards 3 that are divided and arranged so as to correspond to the group of frames 5 and are connected to each other.
  • a power generation module 22 is configured on the upper side, and a power generation module 23 is configured on the lower side.
  • the total number of concentrating solar power generation units 10 is six, and the concentrating solar power generation device 20 can be configured with a small number of units, so that mechanical strength is ensured, productivity, Mass productivity can be improved.
  • the frames 5 Since the longitudinal directions of the frames 5 are arranged in the horizontal direction, the frames 5 can be pressed against each other with a large area (using the entire surface of the frames 5). It can be made larger, and the mechanical strength is large and stable connection becomes possible. Further, since the frames 5 are supported by the main beam portion 21, the mechanical strength can be further improved.
  • the mounting board 3 Since the mounting board 3 is arranged so as not to overlap the main girder 21, the mounting board 3 is shielded while the frame 5 is fixed even after the photovoltaic power generation device 20 is installed on site. It is possible to remove it from the plate 4, improving the workability of maintenance inspection and repair.
  • the concentrating solar power generation apparatus 20 includes a plurality of concentrating solar power generation units 10 according to Embodiment 1, and the concentrating solar power generation unit 10 includes a frame.
  • the module When it is configured to be connected in the short direction that intersects the longitudinal direction of 5, the module is structurally stable, so that it can have a planar shape with high mechanical strength and suitable for automatic tracking. It is possible to reliably realize the power generation capacity with good productivity, workability, and reliability.
  • the mechanical strength is greatly stable because the connection between the frames 5 can be made stronger. Can be connected.
  • the concentrating solar power generation device 20 when the main girder part 21 for connecting the frame 5 is provided in the short direction that intersects the longitudinal direction of the frame 5, the connected frame 5 is securely connected. Since it can actually be supported and connected, a concentrating solar power generation device with higher mechanical strength can be configured.
  • the mounting plate 3 and the translucent substrate 6 can be easily removed from the frame 5 and the light-shielding plate 4 with the frame 5 fixed even after installation on site. In addition, on-site maintenance inspection and repair can be easily performed.
  • the power generation modules 22 and 23 are further mechanically fixed by the main girder coupling portion 24.
  • the main girder coupling unit 24 is appropriately held by the support column 26 via the tracking drive unit 25.
  • the tracking drive unit 25 includes a turning drive unit having a horizontal rotation function and a tilting drive unit having a vertical rotation function so as to automatically track sunlight Ls.
  • the tip of the control rod 27 provided in the tilting drive unit is connected to a fixture 27a provided on the back surface of the power generation module 22 to improve controllability and stability.
  • the end face side wall 28 corresponding to the end face in the longitudinal direction of the frame 5 is made of a plate material that integrally covers the plurality of connected frames 5, and is formed in each of the power generation modules 22 and 23.
  • the end face side wall 28 may be divided and formed corresponding to each of the concentrating solar power generation units 10.
  • the end face side wall 28 be in a state of allowing ventilation in order to prevent the temperature inside the frame 5 from rising.
  • the basic configuration of the concentrating solar power generation unit 10 according to the present embodiment is the same as that of the concentrating solar power generation unit 10 in the first embodiment, and FIG. 1, FIG. 4, FIG. Refer to Fig. 6 and Fig. 7 in common. In these drawings, the same components are denoted by the same reference numerals.
  • the concentrating solar power generation unit 10 covers the solar cell element 1, the mounting plate 3 on which the solar cell element 1 adhered to the receiver 2 is mounted, and the solar cell covering the mounting plate 3.
  • a light shielding plate 4 that shields the mounting plate 3 from Ls
  • a frame 5 that extends vertically from the two opposite ends of the light shielding plate 4 and faces each other, and a frame that faces the light shielding plate 4 5 is arranged corresponding to the upper end of the solar cell element 1 and collects the sunlight Ls in the light receiving area (condensing area) of the solar cell element 1.
  • a translucent substrate 6 is provided on the upper end.
  • the translucent substrate 6 and the condensing lens 7 constitute a condensing lens structure 8.
  • the mounting board 3 for example, five solar cell elements 1 mounted on the receiver 2 are arranged in two rows, for example, five in total.
  • the solar cell element 1 (light receiving region) is arranged corresponding to the light condensing position (light collecting region) of the condensing lens 7.
  • the mounting board 3 is formed in a dish shape having a recess that secures a space for storing the solar cell element 1 and the receiver 2 as 10 units, and a flange 3a for attaching to the light shielding plate 4 is formed at the periphery.
  • the mounting board 3 is made of, for example, aluminum in consideration of heat dissipation and weight reduction.
  • the condensing lens 7 is arranged and fixed on the translucent substrate 6 in two rows of 5 so as to correspond to each of the 10 solar cell elements 1, and a lens array is configured. Yes.
  • the condensing lens 7 is made of, for example, PMMA (acrylic resin) in consideration of processability and translucency, and is a Fresnel lens in consideration of moldability and cost.
  • the condensing lens 7 is arranged such that the planar first surface 7f is fixed to the translucent substrate 6 and the second surface 7s faces the light shielding plate 4 (see FIG. 11).
  • the second surface 7s includes a planar region 7sf having a plane parallel to the first surface 7f and a projection region 7sp in which a projection 7p having an inclined surface inclined with respect to the first surface 7f is formed ( (See Figure 11).
  • the translucent substrate 6 is made of, for example, glass in consideration of translucency, strength, environmental resistance, and the like. The effect can be prevented.
  • the condensing lens 7 is bonded and fixed (held) to the translucent substrate 6 with an appropriate translucent adhesive or the like to constitute the condensing lens structure 8 (see FIG. 14).
  • the condenser lens 7 collects light.
  • the emitted sunlight Ls becomes extremely large energy around the solar cell element 1.
  • the configuration is such that the solar light Ls is tracked, the relationship between the solar cell element 1 and the concentrated solar light Ls is not always maintained, and the tracking device is stopped due to the occurrence of an abnormal situation.
  • the concentrated sunlight Ls may irradiate the surrounding members of the mounting board 3 in the light receiving area of the solar cell element 1. The portion may be damaged by burning.
  • the light shielding plate 4 is structured to shield the sunlight Ls so as to prevent the occurrence of damage due to the concentrated sunlight Ls. Ls is not affected.
  • the solar cell element 1 in order to enable the solar cell element 1 to receive light in conjunction with the light shielding function, the solar cell element 1 has a transmission hole 4a through which the collected sunlight Ls is transmitted and irradiated to the light receiving region of the solar cell element 1. It is positioned so as to face the light receiving area.
  • the transmission holes 4a are formed corresponding to each of the ten solar cell elements 1 mounted on the mounting board 3, and the position of the transmission hole 4a is set to the position of the solar cell element 1 and Matching with the condensing position of the condensing lens 7 is extremely important for ensuring power generation efficiency. Further, the light shielding plate 4 is disposed adjacent to the bottom of the frame 5 in the vicinity of the mounting plate 3 in order to reliably realize the function of the transmission hole 4a.
  • the light shielding plate 4 and the frame 5 are integrally formed by continuous molding. Accordingly, the light shielding plate 4 and the frame 5 are integrally formed by roll forming a metal plate such as an iron plate or a steel plate to constitute the structure 11.
  • the light shielding plate 4 By forming the light shielding plate 4 integrally with the frame 5, it is not necessary to use a separate member as the light shielding plate 4, and productivity can be improved. In addition, since the position of the light shielding plate 4 (transmission hole 4a) can be defined integrally with the frame 5, the mounting plate 3 (solar cell element 1) and the condensing lens structure 8 (condensing lens 7) must be aligned. It can be performed with high accuracy.
  • the upper end of the frame 5 is formed integrally with the condensing lens structure 8 (the translucent substrate 6) when supporting the condensing lens 7 (transparent substrate 6). It is possible to reliably perform positioning. In other words, with the structure 11 composed of the frame 5 and the light shielding plate 4 as a reference position (basic shape), the mounting plate 3 and the translucent substrate 6 (the condenser lens 7) can be accurately aligned. And accurate light collection can be made possible.
  • the mounting board 3 is attached to the light shielding plate 4 and houses the ten solar cell elements 1 together with the light shielding plate 4 to form a protective space for protection from the external environment.
  • the mounting plate 3 is attached to the light shielding plate 4.
  • a frame bottom 4b that is convex on the upper end side of the frame 5 is integrally formed at the time of roll forming.
  • the light shielding plate 4 formed integrally with the frame 5 may be referred to as a frame bottom 4b for convenience.
  • the translucent substrate 6 for fixing the condenser lens 7 is attached to the upper end ( ⁇ 5a) of the frame 5.
  • the condensing lens 7 since it is necessary to arrange the condensing lens 7 so that the sunlight Ls that has passed through the condensing lens 7 is condensed on the light receiving region of the solar cell element 1, the height of the frame 5 is In consideration of the focal distance, the optical distance (distance necessary for generating the maximum power) is defined between the solar cell element 1 and the condenser lens 7.
  • the height of the frame 5 is such that when the solar cell element 1 and the sunlight Ls are in a face-to-face state, the sunlight Ls incident on the condenser lens 7 passes through the transmission hole 4a of the light shielding plate 4. It is set so as to be surely focused and irradiated on the entire light receiving region of the solar cell element 1 that passes through and is mounted on the receiver 2.
  • the direct facing refers to a relationship in which the optical axis directions are aligned.
  • a fitting groove 5b capable of fitting the frames 5 (of adjacent concentrating solar power generation units not shown) to each other is integrally formed at the time of the roll forming cover. It is.
  • a concentrating solar power generation apparatus having a larger power generation capacity can be configured by fitting the fitting grooves 5b and connecting a plurality of frames 5 in the short direction crossing the longitudinal direction. Since the fitting grooves 5b fit the frames 5 to each other, it is possible to maintain the structure 11 with a high mechanical strength even when a plurality of the fitting grooves 5b are connected.
  • the mounting board 3 and the light-transmitting substrate 6 are attached in a plurality of divided directions with respect to the longitudinal direction of the frame 5 (structure 11). With this configuration, even when the longitudinal length of the frame 5 is increased in order to increase the size of the concentrating solar power generation unit 10, the ease of assembly can be secured, so that productivity can be improved. Maintenance inspections and repairs can be performed easily.
  • the mounting board 3, frame 5 (structure 11), and translucent substrate 6 are made of different materials.
  • the thermal expansion coefficient differs, the longer the length, the greater the effect of thermal expansion, and there is a risk that the solar cell element 1 will not be irradiated with the concentrated solar light Ls due to a position shift due to a temperature change. .
  • the side wall in the short direction of the frame 5 is covered with a plate material passing between the opposing frames 5, but is covered in a state of allowing ventilation in order to prevent the temperature inside the structure 11 from rising.
  • the side wall in the short direction of the frame 5 is covered with a plate that is formed with a net or a ventilation hole or a mesh that can ensure ventilation while preventing dust from entering.
  • FIG. 4 is a schematic side view transparently showing an arrangement relationship of main parts viewed from the side surface in the longitudinal direction of the concentrating solar power generation unit according to the embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a cross-sectional outline taken along arrows AA in FIG.
  • the structure 11 (light-shielding plate 4, frame 5) is made of a base material formed by continuous bending and caloring with a roll forming machine, and has a length suitable for the concentrating solar power generation unit 10. For example, it is formed by cutting about 3 m in the longitudinal direction.
  • a mounting plate 3 and a translucent substrate 6 each having a length of about lm divided into a plurality of pieces (for example, three pieces) in the longitudinal direction are arranged. Fixed (attached).
  • the length of the translucent substrate 6 is about lm
  • the condensing lenses 7 arranged in the longitudinal direction are about 200 mm square. Therefore, the width of the light shielding plate 4 and the translucent substrate 6 in the short direction is about 400 mm.
  • the width of the mounting board 3 is about 300 mm. Since the mounting board 3 and the translucent substrate 6 are divided into a plurality of parts, the influence of thermal expansion can be reduced according to the number of divisions.
  • the mounting plate 3 is mounted with the flange 3a in contact with the back surface of the light shielding plate 4 (frame bottom portion 4b) connected to the lower end of the frame 5.
  • the mounting board 3 is positioned at the center of the flange 3a corresponding to one long side of the mounting board 3, and is firmly fixed by an appropriate fixing member (not shown). a is appropriately locked (loosely fixed) by a fixing member.
  • the translucent substrate 6 has the surface on which the condensing lens 7 is attached facing the light shielding plate 4, and is between the end of the attached collecting lens 7 and the end of the translucent substrate 6.
  • the substrate frame portion 6a is configured. As with the mounting board 3, positioning is fixed to the flange protrusion 5c formed on the flange 5a by a through hole formed as a substrate frame alignment portion 6b at the center corresponding to one long side of the substrate frame 6a. (See Figure 15 and Figure 16).
  • the translucent substrate 6 as well, the same effect as that of the mounting board 3 is produced against thermal expansion, so that the positional deviation can be suppressed.
  • the translucent substrate 6 is attached to and fixed to the flange 5a by using an appropriate fixing member (not shown) shaped around the translucent substrate 6 so that the substrate frame 6a is attached to the flange 5a. This can be done by crimping. Further, the adjacent translucent substrates 6 may be fixed by a fixing member (not shown) having a shape for passing between the substrates.
  • the mounting board 3 and the translucent substrate 6 are positioned and fixed with the same accuracy with respect to the common (same) structure 11 (the transmission hole 4a of the light shielding plate 4 and the top 5mm of the frame 5). Therefore, the positioning accuracy of the concentrating solar power generation unit 10 as a whole can be improved, and the utilization efficiency of solar light can be improved with certainty.
  • the condensing lens 7 is formed in a size of about 200 mm square corresponding to each of the solar cell elements 1 in consideration of processability at the time of molding.
  • acrylic resin is applied to a Fresnel lens-shaped mold.
  • One side is molded as a flat Fresnel lens by injection injection.
  • a Fresnel lens it is possible to reduce the thickness of the condensing lens 7 even when the condensing lens 7 having a large area condenses on the solar cell element 1 having a small area. Thinning makes it possible to make it lightweight, inexpensive and easy to hold.
  • the condensing lens 7 may be formed by integrally molding a plurality of Fresnel lenses so as to correspond to a plurality of solar cell elements 1, instead of individually molding each solar cell element 1. . Further, since the thin condenser lens 7 can be bonded to the translucent substrate 6 to ensure the strength and flatness, it is possible to obtain a lens shape with good condensing characteristics.
  • Fig. 6 is a plan view showing the arrangement of the solar cell elements mounted on the concentrating solar power generation apparatus according to the embodiment of the present invention at the receiver.
  • the solar cell element 1 is processed into a 7 mm square chip of light receiving area by forming a PN junction, an electrode, etc. by a known semiconductor manufacturing process using a GaAs compound semiconductor.
  • the solar cell element 1 is electrically and mechanically connected and bonded (mounted) to a copper receiver 2 of about 60 mm square by a back electrode.
  • a reference hole 2p is drilled with high precision at the corner of the receiver 2 at a diagonal position, and the solar cell element 1 is positioned and bonded with reference to the reference hole 2p.
  • a bypass diode Di is connected in parallel with the solar cell element 1, and when the solar cell element 1 operates as a resistor by shielding sunlight Ls, a current path to the adjacent solar cell element 1 is formed.
  • the power collecting function can be maintained as a whole of the concentrated solar power generation unit 10.
  • the surface of the receiver 2 is exposed in the region where the substrate electrode of the solar cell element 1 and the substrate electrode of the bypass diode Di that require electrical connection are connected, and in the region of the substrate electrode connection part 2b.
  • the surface region is covered with an insulating resist 2i.
  • a surface electrode connecting portion 2t that serves as an electrode for extracting output is formed on a part of the surface of the insulating resist 2i with an appropriate thin plate-like conductor.
  • the surface electrodes formed on the opposite ends of the chip of the solar cell element 1 are wire-bonded to the surface electrode connection portion 2t via the wire Ws, and output is output to the substrate electrode connection portion 2b. It can be taken out.
  • the surface electrode of the binos diode Di is the wire W It is wire-bonded to the surface electrode connection 2t via d, and bypass operation can be performed.
  • Conductive leads 2c for connecting to the adjacent solar cell element 1 are connected to the surface electrode connecting portion 2t and the substrate electrode connecting portion 2b, respectively, and the solar cell elements are connected using the conductive leads 2c. Large-capacity power generation is possible by connecting 1 in series or in parallel.
  • FIG. 7 is an explanatory view showing the mounting state of the solar cell element and the arrangement state of the transmission holes mounted on the concentrating solar power generation device according to the embodiment of the present invention.
  • FIG. 5B is a side perspective view showing the state seen from the side, and (B) is a plan view of the condensing lens as viewed from the side force light shielding plate (transmission hole).
  • Solar cell element 1 and bypass diode Di solder-bonded to the exposed surface of receiver 2 are surrounded by a sealing dam 2sd (planar periphery) and sealed with sealing resin 2sr. .
  • a sealing dam 2sd planar periphery
  • sealing resin 2sr is formed of, for example, a highly transparent silicone resin.
  • the receiver 2 Since the receiver 2 is made of copper, it functions as a heat dissipation means for the solar cell element 1 that becomes extremely hot when irradiated with the concentrated sunlight Ls.
  • the receiver 2 on which the solar cell element 1 is mounted is bonded to the aluminum mounting board 3 via the insulating heat conductive sheet 3i, and radiates the heat of the solar cell element 1 from the mounting board 3 to the atmosphere while maintaining the insulation state. .
  • Positioning and fixing between the receiver 2 and the mounting board 3 are performed by forming a receiving hole 3p accurately aligned with the mounting board 3 with respect to the reference hole 2p provided in the receiver 2, And by inserting and fixing the rivet 2r with insulation coating in the receiving hole 3p, it can be performed with high accuracy.
  • the shape and size of the transmission hole 4a is such that the sunlight Ls incident on the condenser lens 7 in parallel rays is refracted by the condenser lens 7 and is generated in the short wavelength region of the sensitivity wavelength light of the solar cell element 1.
  • Sunlight Lsa is incident on the edge of the solar cell element 1 away from the solar cell element 1
  • the sunlight Lsb in the long wavelength region of the sensitivity wavelength light of the solar cell element 1 is incident on the edge on the near side of the solar cell element 1. It is preferable to open so as to irradiate each reachable range.
  • Solar cell element 1 with a light receiving area of 7 mm square, focal length (distance to collect light in a planar shape on the light receiving area of solar cell element 1: optical distance)
  • focal length distance to collect light in a planar shape on the light receiving area of solar cell element 1: optical distance
  • the bent part 4c is formed by drawing the periphery of the transmission hole 4a and bending it to the mounting board 3 side. It is preferable to form it with a function (angle) that blocks sunlight (Lsd) that may be transmitted obliquely and irradiate a part other than the solar cell element 1.
  • the surface of the bent portion 4c on the condenser lens 7 side (incident side surface) 4s is mirror-finished so that the sunlight Ls irradiated to the bent portion 4c is reflected to the solar cell element 1 side. Increasing the incident efficiency.
  • FIG. 10 is a plan view of the condensing lens structure according to the embodiment of the present invention.
  • FIG. 11 is an enlarged schematic cross-sectional view of the condensing lens structure of FIG. 10, showing a partial schematic cross section from the center of the condensing lens structure to the arrow A.
  • FIG. 11 shows the vertical direction in the figure enlarged as appropriate.
  • the translucent substrate 6 constitutes the condensing lens structure 8 by fixing the planar first surface 7 f of the condensing lens 7.
  • the condensing lens 7 has a first surface 7f and a second surface 7s facing the first surface.
  • the second surface 7s is formed with a plurality of concentric projections 7p having an inclined surface inclined with respect to the first surface 7f at a pitch pp, and it is possible to condense on the condensing region (light receiving region) (not shown) It is considered to be a Fresnel lens.
  • Protrusion 7p has a triangular wave shape (projection height h, first plane 7f (planar region 7sf)) with a pitch pp of 0.5mm in consideration of the workability during molding, with a slope and a vertical plane The inclination angle is ⁇ ). Since the projection 7p consisting of an inclined surface and a vertical surface is formed concentrically, when molding a Fresnel lens by injecting and curing the resin into the mold, the molded product is removed from the mold without stress. This makes it possible to obtain a highly accurate Fresnel lens.
  • the second surface 7s is a projection having a planar region 7sf having a plane parallel to the first surface 7f and a projection 7p.
  • the area 7sp is provided.
  • the boundary 7b between the planar region 7sf and the projection region 7sp is defined by a step between the planar region 7sf and the projection 7p, and the step is defined by the plane of the planar region 7sf and the vertical plane of the projection 7p.
  • a flat area fixing portion 8a for fixing the translucent substrate 6 and the condensing lens 7 corresponding to the flat area 7sf. Is formed, and the position of the planar region 7 sf can be reliably fixed.
  • a peripheral edge fixing portion 8b for fixing the translucent substrate 6 and the condenser lens 7 is formed corresponding to the peripheral edge portion of the projection region 7sp, so that the large-area condenser lens 7 is securely translucent.
  • a filling portion 8c for removing and filling the air layer between the translucent substrate 6 and the condenser lens 7 is formed.
  • protrusion region 7sp In the protrusion region 7sp, four continuous protrusions 7p are formed at the same inclination angle ⁇ .
  • Four consecutive projections 7p were configured with the same inclination angle ⁇ , and the inclination change pitch ph as the pitch for changing the inclination angle ⁇ was 2 mm.
  • each wavelength light in the sunlight Ls is similarly refracted with a width of 2 mm corresponding to the inclination change pitch ph.
  • the projection 7p at the end of the corner section has an inclination angle ⁇ c with respect to the first plane 7f of 36 degrees, and the projection height he is about 0.4 mm ( Note that the protrusion height he is the highest protrusion 7p because it is located on the outermost circumference of the concentric circle).
  • the inclination angle ⁇ of the four outermost protrusions 7p is 29.73 degrees, and the inclination angle ⁇ of the four inner protrusions 7p is 29 degrees ( Not shown).
  • the inclination angle ⁇ a of the four protrusions 7p adjacent to the planar region 7sf is 4.71 degrees
  • the protrusion height ha is about 0.1 mm.
  • the thickness of the protrusion 7p decreases from the end of the lens toward the center of the lens.
  • the plane area 7sf at the center of the lens is defined as a circle having a diameter of a size that surrounds the 7 mm square light receiving area of the solar cell element 1 and thus has a diameter of 10 mm.
  • the solar cell element 1 is a three-junction type, the depth direction of the chip Thus, a photovoltaic power is generated for light of a wide wavelength band (ultraviolet to blue to green to red to infrared) corresponding to each junction.
  • the short-circuit current of solar cell element 1 according to the present embodiment is a cell (photovoltaic cell element 1 having a light receiving sensitivity in a short wavelength region of sensitivity wavelength light when receiving standard solar radiation (AMI. 5). This is limited by the short-circuit current of one of the three elements stacked in the layer. Therefore, the output of the solar cell element 1 is improved by condensing the light in the short wavelength region more appropriately than the light in other wavelength regions.
  • the solar cell element 1 Since the direction of refraction by the condensing lens 7 varies depending on the wavelength of light, the solar cell element 1 should efficiently receive light in the short wavelength region (ultraviolet to red) of the sensitivity wavelength light of the solar cell element 400 nm. Projecting so that the ultraviolet rays of UV light are condensed (refracted) on the edge side of the photovoltaic power generation element 1 (light receiving area) that is located diagonally (on the far side) with respect to the condenser lens 7 (projection 7p) 7p tilt angle ⁇ is decided.
  • protrusions (2mm wide) 7p are formed at the same inclination angle ⁇ , but if the protrusions 7p with the same inclination angle ⁇ are arranged too far, the light in the short wavelength region is solar cell element 1 (light receiving Since the ratio of protrusion outside the region increases, it is effective to set the width (inclination change pitch ph) to about 2 mm for the solar cell element 1 having a light receiving region of 7 mm square. With this configuration, the narrowing of the focus is relaxed, and light can be received more evenly over the entire light receiving area, and the power generation efficiency can be further increased.
  • the inclination angle ⁇ of the protrusion 7p and the inclination changing pitch ph which is the pitch for changing the inclination angle ⁇
  • are shorter wavelength light in other words, compared to light in other wavelength areas,
  • the short-circuit current of battery element 1 is limited, and light in a wavelength region that is more dominantly determined) is effectively refracted (condensed) toward the light receiving region. Therefore, the light collection efficiency for light in the short wavelength region is improved, and the photoelectric conversion efficiency (power generation efficiency) can be improved.
  • FIG. 12 to FIG. 14 are cross-sectional views illustrating a method (manufacturing process) for manufacturing a condensing lens structure according to an embodiment of the present invention.
  • the positioning jig base 15 is provided with a planar positioning tool 15a for determining the position of the planar region 7sf (condensing lens 7) to be arranged corresponding to the position of the solar cell element 1 (light receiving region).
  • the positioning jig base 15 is formed of, for example, an aluminum substrate, and the planar positioning tool 15a is formed on the aluminum substrate, for example, with a diameter of the planar region 7sf (stepped portion, that is, a vertical surface of the projection 7p adjacent to the planar region 7sf).
  • a pin having an inscribed diameter is provided upright.
  • the positioning jig base 15 is further provided with a lens rotation preventing tool 15b for preventing the condensing lens 7 from rotating so that the condensing lens 7 can be juxtaposed and aligned.
  • the lens rotation preventing tool 15b is configured by erected pins in the same manner as the planar positioning tool 15a.
  • FIG. 12 shows the case where two condenser lenses 7 are juxtaposed, the left side of the figure shows the state after positioning, and the right side shows the state before positioning.
  • the height of the planar positioning tool 15a is equal to the height of the outermost protrusion (height: 0.4 mm).
  • the tip of the planar positioning tool 15a is the boundary 7b, that is, the step between the planar region 7sf and the adjacent projection 7p (the height of the projection defined by the plane of the planar region 7sf and the vertical plane of the projection 7p ha (0.1 mm ) Fits in). Since the step between the planar region 7sf and the protrusion 7p is formed by a vertical surface, there is no displacement in the horizontal direction during positioning, so positioning can be performed with high accuracy.
  • the positioning jig table 15 is further formed with a substrate end positioning tool 15c that determines the position of the end of the translucent substrate 6 corresponding to the position of the planar region 7sf.
  • the substrate end positioning tool 15c is configured by erecting pins, for example, on an aluminum substrate.
  • the condenser lens 7 on the right side of Fig. 12 is moved and aligned in the direction of the arrow, the first area 7f of the condenser lens 7 is made to correspond to the planar area 7sf and the planar area fixing portion 8a is attached.
  • the peripheral edge fixing portion 8b is formed corresponding to the peripheral edge portion of the protruding region 7sp (see FIG. 13). Either the planar region fixing portion 8a or the peripheral region fixing portion 8b may be formed first, or may be formed at the same time.
  • the planar region fixing portion 8a and the peripheral edge fixing portion 8b are, for example, translucent.
  • the translucent substrate 6 is moved in the direction of the arrow in FIG. At this time, the translucent substrate 6 can be accurately aligned by bringing the end of the translucent substrate 6 into contact with the substrate end positioning tool 15c.
  • the center of the light receiving region (solar cell element 1) and the planar region 7sf (condensing lens 7) are accurately aligned, and the condensing lens 7 is translucent. Will be aligned to 6. Therefore, the alignment of the substrate frame alignment portion 6b provided in the substrate frame portion 6a of the translucent substrate 6 between the end portion of the condenser lens 7 and the end portion of the translucent substrate 6 is accurately performed. It can be carried out.
  • the condensing lens 7 and the translucent substrate 6 are joined via the planar region fixing portion 8a and the peripheral edge fixing portion 8b, the air in the air layer between the condensing lens 7 and the translucent substrate 6 After the air is exhausted, the space is filled with an adhesive having high translucency and fluidity, and the adhesive is cured at room temperature or beta to form a filling portion 8c (see FIG. 14).
  • the adhesive a light-transmitting and weather-resistant adhesive, for example, an acrylic resin adhesive containing methyl methacrylate and an acrylic monomer, or a silicone resin adhesive is preferred.
  • FIG. 15 is a plan view showing a plan view state in which the condensing lens structure according to the embodiment of the present invention is aligned using the positioning jig base.
  • the planar area 7sf of the condenser lens 7 is aligned and fitted to the planar positioning tool 15a disposed on the positioning jig base 15. Since the planar area 7sf is circular, the lens rotation preventing tool 15b is arranged at an appropriate position in contact with the end of the condenser lens 7 so that it does not rotate around the planar positioning tool 15a after alignment. Yes. Lens rotation By providing two prevention tools 15b with respect to one plane positioning tool 15a, rotation can be reliably prevented.
  • the planar positioning tool 15a is arranged at a total of 10 locations corresponding to the solar cell element 1 (the transmission hole 4a of the frame bottom 4) mounted on the mounting board 3, and has a total of 10 condenser lenses 7.
  • a lens array can be constructed.
  • the translucent substrate 6 is superposed on the positioned condensing lens 7 (lens array), and the translucent substrate 6 and the condensing lens 7 are joined together to form a condensing lens structure 8.
  • the end portion of the translucent substrate 6 is positioned in contact with the substrate end positioning tool 15c, and the substrate frame alignment portion 6b is formed in the substrate frame portion 6a with the end portion force positioned at a predetermined position. ing. Therefore, the substrate frame alignment portion 6b can be positioned with respect to the planar region 7sf (planar positioning tool 15a).
  • the substrate frame alignment portion 6b is formed at two central portions in the longitudinal direction of the translucent substrate 6 (substrate frame portion 6a), and corresponds to the substrate frame alignment portion 6b.
  • ⁇ protrusion 5c formed on ⁇ 5a at the upper end of 5 see Fig. 16
  • ⁇ Positioning and fixing enables accurate alignment with the solar cell element 1 (transmission hole 4a).
  • the mounting board 3 it is possible to suppress the influence of the displacement due to thermal expansion to about 0.5 m which is half the length (about lm) in the longitudinal direction of the translucent substrate 6.
  • FIG. 16 is a partial cross-sectional view illustrating a state in which the condensing lens structure according to the embodiment of the present invention is aligned with the solar cell element (frame side portion).
  • a protrusion-like protrusion 5c is formed on the flange 5a at the upper end of the frame side part 5 so as to correspond to the central part in the longitudinal direction of the translucent substrate 6 (substrate frame part 6a).
  • ⁇ Projection 5c corresponds to the position of the through hole formed as substrate frame alignment part 6b in substrate frame 6a so that condenser lens 7 is aligned with solar cell element 1 (transmission hole 4a) Is formed.
  • the translucent substrate 6 is moved in the direction of the arrow and the substrate frame alignment portion 6b is fitted to the hook projection portion 5c, alignment and positioning can be performed. Thereafter, the flange 5a and the translucent substrate 6 are fixed by an appropriate fixing member (not shown).
  • the shape of the ridge protrusion 5c and the substrate frame alignment portion 6b is not limited to the above-described example, but may be other shapes.
  • the board frame alignment portion 6b is a through hole
  • a through hole is similarly formed in the flange 5a, and both the through holes are fastened with bolts as fixing members and fixed. Both are possible.
  • the condensing lens structure 8 according to the present embodiment is also applicable to the concentrating solar power generation unit 10 according to the first embodiment.
  • the present invention relates to a concentrating solar power generation unit capable of increasing the power generation capacity by shining sunlight using a condensing lens, and such a concentrating solar power generation unit. And a condenser lens, a condenser lens structure, a condenser solar power generation unit using the condenser lens, and a method of manufacturing the condenser lens structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 集光型太陽光発電ユニット(10)は、太陽電池素子(1)、レシーバ(2)に接着された太陽電池素子(1)が実装された実装板(3)、実装板(3)を覆う遮光板(4)、遮光板(4)の対向する2辺の端部から垂直方向に配置されたフレーム(5)、遮光板(4)に対向してフレーム(5)の上端に対応して配置され太陽電池素子(1)の受光領域に太陽光(Ls)を集光する集光レンズ(7)、集光レンズ(7)を固定(固着)してフレーム(5)の上端に装着される透光性基板(6)を備える。

Description

明 細 書
集光型太陽光発電ユニットおよび集光型太陽光発電装置、ならびに集光 レンズ、集光レンズ構造体、および集光レンズ構造体の製造方法
技術分野
[0001] 本発明は、集光レンズを用いて太陽光^^光することにより発電容量を大きくするこ とが可能な集光型太陽光発電ユニット、およびそのような集光型太陽光発電ユニット を備える集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、集光レ ンズを用いた集光型太陽光発電ユニット、および集光レンズ構造体の製造方法に関 する。
背景技術
[0002] 太陽エネルギーを電力に変換する太陽光発電装置が実用化されているが、低コス ト化を実現し、さらに大電力を得るために、集光レンズで集光した太陽光を集光レン ズの受光面積より小さい太陽電池素子に照射して電力を取り出すタイプの集光型太 陽光発電装置が実用化されて ヽる。
[0003] 集光型太陽光発電装置は、太陽光を集光レンズで集光することから、太陽電池素 子としては、光学系で集光された太陽光を受光できる小さい受光面積を備えれば良 い。つまり、集光レンズの受光面積より小さいサイズの太陽電池素子で良いことから、 太陽電池素子のサイズを縮小することができ、太陽光発電装置において最も高価な 構成物である太陽電池素子の使用量を減らすことができ、コストを低減することが可 能となる。このような利点から、集光型太陽光発電装置は、広大な面積を利用して発 電することが可能な地域などで、電力供給用に利用されつつある。
集光型太陽光発電装置として、太陽電池モジュールを支持板に取り付けると!、ぅ簡 単な構成により、重量の増大を招くことなく充分な強度、剛性が得られ、充分な放熱 性が得られるようにしたものが提案されている(例えば特許文献 1参照。;)。
[0004] 一方、図 17は、従来例としての集光型太陽光発電装置を説明する説明図であり、 ( A)は太陽光の入射面力も見た概要を示す平面図であり、 (B)は (A)の矢符 B— Bで の断面を示す断面図である。 [0005] この従来例 (例えば特許文献 2参照。)としての集光型太陽光発電装置 100は、一 端面が開口するケース 101、一次光学系として機能すべくケース 101の開口に嵌め 付けられた非結像系フレネルレンズ 102、ケース 101の底部に設けられた座板 103、 非結像系フレネルレンズ 102の集光位置であるケース 101の底面すなわち座板 103 の上に設置された太陽電池素子 104、二次光学系として機能する筒型反射鏡 105を 備えている。
特許文献 1:特開平 11― 284217号公報
特許文献 2 :特開 2003— 174183号公報
発明の開示
発明が解決しょうとする課題
[0006] しかし、集光型太陽光発電装置の集光レンズは、太陽電池素子に対して適正な位 置関係に配置されなければならず、高度な位置合わせが要求される。さらに、受光位 置での集光によるエネルギーは極めて大きぐ太陽電池素子周辺への照射による損 傷防止対策などが放熱対策として必要である。
[0007] また、集光型太陽光発電装置は、砂漠等の温度変化の激 、地域に設置されるこ ともしばしばであり、温度上昇に対する熱膨張対策も必要である。
[0008] すなわち、確実に太陽光力 電力を取り出す太陽光発電装置とするために、太陽 電池素子の実装、太陽電池素子と光学系との間の位置関係の調整などにおいて、 熱、集光に対する適切な対策を施すことが極めて重要である。
[0009] 本発明はこのような状況に鑑みてなされたものであり、太陽電池素子を実装する実 装板と、太陽光を透過させる透過穴を有し実装板を覆う遮光板と、太陽電池素子の 受光領域に太陽光を集光する集光レンズと、太陽電池素子と集光レンズとの位置を 合わせるフレームとを備えることにより、組み立てが容易で生産性および保守 (維持 · 点検)の作業性を向上させ、光学部材の位置合わせが容易で、熱、太陽光に対して 優れた作用を生じる集光型太陽光発電ユニットおよび集光型太陽光発電装置を提 供することを目的とする。
[0010] 一方、上記した図 17に示す集光型太陽光発電装置 100は、太陽光 Lsを集光する ために太陽電池素子 104に対応して筒型反射鏡 105が必要であること、非結像系フ レネルレンズ 102を保持するためにケース 101に非結像系フレネルレンズ 102のそ れぞれに対応する枠部を形成する必要があることなど光学系が複雑になり製造工程 が煩雑になるなどの問題がある。
[0011] また、ケース 101の枠部で非結像系フレネルレンズ 102を保持することから、ケース の大きさに限界があり、大面積の集光が可能な集光型太陽光発電装置 100とするこ とは困難であると 、う問題がある。
[0012] また、ケース 101の枠部で非結像系フレネルレンズ 102を保持することから、枠部 形状の精度を上げる必要があること、枠部毎に集光位置への位置合わせが必要に なるなど位置合わせが困難で製造工程が煩雑になり、また高精度の位置合わせが 困難であるという問題がある。
[0013] また、反射筒などの 2次光学系を利用すると、太陽電池素子 104に到達する太陽 光は必ず反射筒などを通過するため、反射筒自体の透過率や反射による光損失を 生じるという問題がある。
[0014] 本発明はこのような状況に鑑みてなされたものであり、平面状の第 1面に対して傾 斜する傾斜面を有する突起領域と第 1面に平行な平面領域とを第 2面に備えた集光 レンズ、また、このような集光レンズを透光性基板で保持する集光レンズ構造体とする ことにより、集光領域 (太陽電池素子の受光領域)全面で偏りがなくかつ確実な集光 が可能で集光効率を向上することができる集光レンズ、集光レンズ構造体およびそ の製造方法を提供することを目的とする。
[0015] また、本発明は、集光レンズの平面領域を利用して集光レンズと集光領域との位置 合わせを行うことにより、簡単な光学系で高精度の位置合わせが容易にできることか ら製造工程を簡略ィ匕でき、集光効率を向上することができる集光レンズ構造体およ びその製造方法を提供することを他の目的とする。
[0016] また、本発明は、上述した集光レンズ構造体を用いた集光型太陽光発電装置とす ることにより、集光レンズと太陽電池素子の受光領域 (集光領域)との間で高精度の 位置合わせが容易にできることから製造工程を簡略ィ匕でき、集光効率を向上すること ができ、また、高い発電効率を実現できる集光型太陽光発電装置を提供することを 他の目的とする。 課題を解決するための手段
[0017] 本発明に係る集光型太陽光発電ユニットは、集光レンズで集光した太陽光を太陽 電池素子に照射して発電する集光型太陽光発電ユニットにおいて、前記太陽電池 素子が実装されて 、る実装板と、前記太陽電池素子の受光領域に太陽光を照射さ せる透過穴を有し前記実装板を覆う遮光板と、該遮光板に対向して配置され前記受 光領域に太陽光を集光する集光レンズと、前記太陽電池素子と前記集光レンズとの 位置を合わせて保持するフレームとを備えることを特徴とする。
[0018] 好ましくは、前記遮光板は、前記フレームと一体に成形されていることを特徴とする
[0019] 好ましくは、前記遮光板は、前記透過穴の周縁を前記実装板側に折り曲げた屈曲 部を有することを特徴とする。
[0020] 好ましくは、前記実装板の端辺の略中央が前記遮光板に固定され、前記集光レン ズの端辺の略中央が前記フレームの上端に固定されていることを特徴とする。
[0021] 好ましくは、前記実装板には、前記太陽電池素子が複数配置されていることを特徴 とする。
[0022] 好ましくは、前記集光レンズは、前記複数の太陽電池素子それぞれに対応して透 光性基板に配置され保持されて ヽることを特徴とする。
[0023] 好ましくは、前記実装板は、長手方向の端辺の略中央が前記遮光板に固定されて いることを特徴とする。
[0024] 好ましくは、前記透光性基板は、長手方向の端辺の略中央が前記フレームの上端 に固定されていることを特徴とする。
[0025] 好ましくは、前記実装板および前記透光性基板は、前記フレームの長手方向で複 数に分割されて 、ることを特徴とする。
[0026] 本発明に係る集光型太陽光発電装置は、集光型太陽光発電ユニットを備える集光 型太陽光発電装置において、前記集光型太陽光発電ユニットは、本発明に係る集 光型太陽光発電ユニットであり、追尾駆動される構成とされていることを特徴とする。
[0027] 本発明に係る集光レンズは、平面状の第 1面と、該第 1面に対して傾斜する傾斜面 を有する突起が形成された第 2面とを有する集光レンズであって、前記第 2面は、前 記第 1面に平行な平面を有する平面領域と、前記突起を有する突起領域とを備えて いることを特徴とする。
[0028] 好ましくは、前記平面領域と前記突起領域との境界は、前記平面領域と前記突起と の段差により画定されて 、ることを特徴とする。
[0029] 好ましくは、前記平面領域は、正対して配置されるべき太陽電池素子の受光領域 を囲む径の円で画定されており、前記突起は前記平面領域に対して同心円状に形 成されて!/ヽることを特徴とする。
[0030] 好ましくは、前記傾斜面の前記第 1面に対する傾斜角および該傾斜角を変更する ピッチとしての傾斜変更ピッチは、前記太陽電池素子の短絡電流を決定して 、る波 長領域の光を前記受光領域に集光するように設定されて ヽることを特徴とする。
[0031] 本発明に係る集光レンズ構造体は、平面状の第 1面および該第 1面に対して傾斜 する傾斜面を有する突起が形成された第 2面を有する集光レンズと、該集光レンズを 固定して保持する透光性基板とを備える集光レンズ構造体であって、前記第 2面は、 前記第 1面に平行な平面を有する平面領域と、前記突起を有する突起領域とを備え 、前記平面領域と前記突起との段差により画定される境界を用いて前記集光レンズと 前記透光性基板との位置合わせがされていることを特徴とする。
[0032] 好ましくは、前記透光性基板と前記第 1面との間に、前記平面領域に対応して前記 透光性基板と前記集光レンズとを固定する平面領域固定部と、前記突起領域の周 縁部に対応して前記透光性基板と前記集光レンズとを固定する周縁固定部とが形成 されていることを特徴とする。
[0033] 好ましくは、前記平面領域固定部および前記周縁固定部は、両面接着テープで形 成されて!/ヽることを特徴とする。
[0034] 好ましくは、前記透光性基板と前記第 1面との間に、接着剤を充填した充填部が形 成されて!/ヽることを特徴とする。
[0035] 好ましくは、前記透光性基板は、前記集光レンズが複数並置されて 、ることを特徴 とする。
[0036] 本発明に係る集光型太陽光発電ユニットは、集光レンズおよび該集光レンズを固 定して保持する透光性基板を備える集光レンズ構造体と、前記集光レンズに対応し て配置された太陽電池素子とを備える集光型太陽光発電ユニットであって、前記集 光レンズ構造体は、請求項 15ないし請求項 19のいずれか一つに記載の集光レンズ 構造体であることを特徴とする。
[0037] 本発明に係る集光レンズ構造体の製造方法は、平面状の第 1面に平行な平面を有 する平面領域と前記第 1面に対して傾斜する傾斜面を有する突起が形成された突起 領域とを第 2面に有する集光レンズと、該集光レンズを固定して保持する透光性基板 とを備え、前記平面領域と集光領域とが正対するように前記集光レンズと前記透光性 基板とを位置合わせする集光レンズ構造体の製造方法であって、前記平面領域の 位置を決める平面位置決め具および前記透光性基板の端部の位置を決める基板端 位置決め具を設けた位置決め治具台の前記平面位置決め具に前記平面領域を位 置合わせする工程と、前記第 1面上の前記平面領域に対応する位置に前記透光性 基板と前記集光レンズとを固定する平面領域固定部を形成する工程と、前記第 1面 上の前記突起領域の周縁部に対応する位置に前記透光性基板と前記集光レンズと を固定する周縁固定部を形成する工程と、前記透光性基板の端部を前記基板端位 置決め具に当接して前記透光性基板を前記平面領域固定部および周縁固定部に 接合する工程と、前記透光性基板と前記集光レンズとの間に接着剤を充填する工程 とを備えることを特徴とする。
発明の効果
[0038] 本発明に係る集光型太陽光発電ユニットおよび集光型太陽光発電装置によれば、 太陽電池素子を実装した実装板および太陽電池素子を覆う遮光板と、太陽電池素 子および集光レンズの位置関係を画定するフレームとを備える構成とされており、実 装板とフレームとが別構成とされて ヽることから、実装板への太陽電池素子の実装な どでの生産性が向上し、保守 '点検が容易になり、作業性、信頼性を高めることがで きるという効果を奏する。
[0039] また、構造体 (フレーム、遮光板)を基準形状として透過穴に対する実装板、透光性 基板 (集光レンズ)の位置合わせを行うことができるので、光学部材 (集光レンズ、透 光性基板)と太陽電池素子との位置合わせ精度の確保が容易になる。また、位置合 わせ精度を向上できることから、照射される太陽光の利用効率を大きくすることができ るという効果を奏する。
[0040] また、本発明に係る集光型太陽光発電ユニットおよび集光型太陽光発電装置によ れば、太陽電池素子を実装する実装板への太陽光は遮光板で阻止されることから、 太陽電池素子を搭載する実装板での損傷を防ぐことができるという効果を奏する。
[0041] 本発明に係る集光レンズによれば、平面領域を受光領域に正対して配置すること 力 平面領域に垂直に入射する太陽光は受光領域にそのまま垂直に入射し、突起 領域に入射した太陽光は傾斜面により屈折して受光領域に集光される。したがって、 平面領域に入射した光は集光レンズによる色収差が無ぐ太陽電池素子の受光面に おける光強度分布のばらつきを低減し、発電効率を向上することができる。
[0042] 本発明に係る集光レンズ構造体およびその製造方法によれば、平面領域と突起領 域との境界を用いて集光レンズと透光性基板 (集光領域)との位置合わせを行うこと から、高精度の位置合わせを容易に行うことが可能となり、製造工程を簡略ィ匕するこ とができるという効果を奏する。また、透光性基板により集光レンズの機械的強度を補 強することができるので集光に必要な所定の形状の集光レンズとすることができ、所 望の集光特性を有し、大面積での集光が可能な集光レンズ構造体を提供することが できるという効果を奏する。
[0043] 本発明に係る集光型太陽光発電ユニットによれば、本発明に係る集光レンズ構造 体を用いることから、製造工程が簡単で、集光特性が良ぐまた、発電効率および信 頼性の高い集光型太陽光発電装置を提供することができるという効果を奏する。 図面の簡単な説明
[0044] [図 1]図 1は、本発明の実施の形態 1に係る集光型太陽光発電ユニットの要部の配置 関係を部分的に示す分解斜視図である。
[図 2]図 2は、図 1の集光型太陽光発電ユニットの実装板とフレーム底部との位置決め •固定の状態を説明する説明図であり、(A)は実装板の斜視図、(B)は位置決め固 定状態を示す断面図、(C)は緩い固定状態を示す断面図である。
[図 3]図 3は、図 1の集光型太陽光発電ユニットの透光性基板とフレーム上端との位 置決め'固定の状態を説明する説明図であり、(A)は透光性基板などの斜視図、 (B )は位置決め固定状態を示す断面図、(C)は固定状態を示す断面図である。 [図 4]図 4は、本発明の実施の形態 1に係る集光型太陽光発電ユニットの長手方向で の側面力 見た要部の配置関係を透視的に示す概略側面図である。
[図 5]図 5は、図 4の矢符 A— Aでの断面概要を示す拡大断面図である。
[図 6]図 6は、本発明の実施の形態 1に係る集光型太陽光発電ユニットに搭載された 太陽電池素子のレシーバでの配置状態を示す平面図である。
[図 7]図 7は、本発明の実施の形態 1に係る集光型太陽光発電ユニットに搭載された 太陽電池素子の実装状態および透過穴の配置状態を示す説明図であり、 (A)は側 面から見た状態を透視的に示す側面透視図であり、 (B)は集光レンズの側カゝら遮光 板 (透過穴)を見た平面図である。
[図 8]図 8は、本発明の実施の形態 2に係る集光型太陽光発電装置の正面概要を示 す正面図である。
[図 9]図 9は、図 8の集光型太陽光発電装置の背面概要を分解して示す分解斜視図 である。
[図 10]図 10は、本発明の実施の形態 3に係る集光レンズ構造体の平面図である。
[図 11]図 11は、図 10の集光レンズ構造体の拡大概略断面図であり、集光レンズ構 造体の平面中心から矢符 Aまでの一部概略断面を示す。
[図 12]図 12は、本発明の実施の形態 3に係る集光レンズ構造体の製造方法 (製造ェ 程)を説明する断面図である。
[図 13]図 13は、本発明の実施の形態 3に係る集光レンズ構造体の製造方法 (製造ェ 程)を説明する断面図である。
[図 14]図 14は、本発明の実施の形態 3に係る集光レンズ構造体の製造方法 (製造ェ 程)を説明する断面図である。
[図 15]図 15は、本発明の実施の形態 3に係る集光レンズ構造体を位置決め治具台 を用いて位置合わせした平面視状態を示す平面図である。
[図 16]図 16は、本発明の実施の形態 3に係る集光レンズ構造体を太陽電池素子 (フ レーム)に位置合わせする状態を説明する部分断面図である。
[図 17]図 17は、従来例としての集光型太陽光発電装置を説明する説明図であり、 (A )は太陽光の入射面から見た概要を示す平面図であり、 (B)は (A)の矢符 B— Bでの 断面を示す断面図である。 符号の説明
1 太陽電池素子 2 レシーノ
3 実装板
3a 鍔
3b 実装板位置合わせ部
4 遮光板
4b フレーム底部
4a 透過穴
4c 屈曲部
4d 実装板用突起部
4s 表面 (入射側表面)
5 フレーム
5a 鍔
5b 嵌合溝
5c 鍔突起部
6 透光性基板
6a 枠部
6b 基板枠位置合わせ部
7 集光レンズ
7b 境界
7f 第 1面
7p 突起
7s 第 2面
7sf 平面領域
7sp 突起領域
8 集光レンズ構造体 8a 平面領域固定部
8b 周縁固定部
8c 充填部
10 集光型太陽光発電ユニット
11 構造体
15 位置決め治具台
15a 平面位置決め具
15b レンズ回転防止具
15c 基板端位置決め具
20 集光型太陽光発電装置
21 主桁部
22 発電モジュール
23 発電モジュール
24 主桁結合部
26 支柱
Ls 太陽光
h 突起高さ
p 傾斜変更ピッチ
pp ビッテ
Θ 傾斜角
発明を実施するための最良の形態
[0046] 以下、本発明の実施の形態を図面に基づいて説明する。
[0047] <実施の形態 1 >
図 1は、本発明の実施の形態 1に係る集光型太陽光発電ユニットの要部の配置関 係を部分的に示す分解斜視図である。図 2は、図 1の集光型太陽光発電ユニットの 実装板とフレーム底部との位置決め ·固定の状態を説明する説明図であり、 (A)は実 装板の斜視図、(B)は位置決め固定状態を示す断面図、(C)は緩い固定状態を示 す断面図である。図 3は、図 1の集光型太陽光発電ユニットの透光性基板とフレーム 上端との位置決め ·固定の状態を説明する説明図であり、 (A)は透光性基板などの 斜視図、(B)は位置決め固定状態を示す断面図、(C)は緩い固定状態を示す断面 図である。
[0048] 本実施の形態の集光型太陽光発電ユニット 10は、太陽電池素子 1、レシーバ 2に 接着された太陽電池素子 1が実装されている実装板 3、実装板 3を覆う遮光板 4、遮 光板 4の対向する 2辺の端部力 垂直方向に配置されたフレーム 5、遮光板 4に対向 してフレーム 5の上端に対応して配置され太陽電池素子 1の受光領域に太陽光 Lsを 集光する集光レンズ 7、集光レンズ 7を固定(固着)してフレーム 5の上端に装着され る透光性基板 6を備える。
[0049] 機能に対応した構成部材として部品点数を少なくしていることから、組み立てが容 易で、小型 ·軽量ィ匕が可能となり、機械的強度の大きい集光型太陽光発電ユニット 1 0とすることができる。つまり、機能に対応した部材構成となり簡略ィ匕した構造となるこ とから、機械的強度および生産性を向上させることができる。また、機械的強度の強 いフレーム 5により光学的距離を画定することから安定した確実な集光が可能となり、 遮光板 4により実装板 3を覆うことから損傷の恐れのない信頼性の高い発電が可能と なる。
[0050] 実装板 3には、レシーバ 2に搭載された太陽電池素子 1が例えば 5個ずつ 2列に計 10個配置されている。太陽電池素子 1は、集光レンズ 7の集光位置に対応して配置 される。実装板 3は、太陽電池素子 1、レシーバ 2を 10個単位として収納する空間を 確保する窪みを持つ皿状に形成され、周縁には遮光板 4へ取り付けるための鍔 3aが 形成されている。
[0051] 実装板 3は、放熱性、軽量ィ匕などを考慮して例えばアルミニウムで形成することが望 ましい。アルミニウムについてはアルマイト加工などの、適当な絶縁処理が施されて いても良い。また、実装板 3は、遮光板 4に装着され、遮光板 4と共に 10個の太陽電 池素子 1を収納し、外部環境から保護する保護空間を形成する。
[0052] 集光レンズ 7は、 10個の太陽電池素子 1のそれぞれに対応するように 5個ずつ 2列 に計 10個が透光性基板 6に配置、固定されレンズアレイ(6、 7)を構成している。集 光レンズ 7は加工性、透光性などを考慮して例えばアクリル榭脂で形成されて ヽる。 なお、レンズ材料としては、ポリカーボネート、ガラスでもよい。
[0053] 透光性基板 6は、透光性、強度、耐環境性などを考慮して例えばガラスで形成され ており、周囲環境力もの風雨の影響を防止することができる。集光レンズ 7は、透光性 を有する適宜の接着剤で透光性基板 6に接着され保持されている。なお、透光性基 板 6の材料としては、アクリル榭脂や、ポリカーボネートでもよい。
[0054] 集光レンズ 7は、太陽電池素子 1の受光領域に集光するように光学的距離 (焦点距 離に基づいて規定される)を調整していることから、集光レンズ 7により集光された太 陽光 Lsは、太陽電池素子 1の配置面で極めて大きなエネルギーとなる。また、太陽 光 Lsを追尾する構成とした場合に、集光された太陽光 Lsに太陽電池素子 1が常に 正対する関係を維持できるとは限らず、さらに、異常事態の発生によって追尾装置が 停止する事態も想定される。つまり、集光した太陽光 Lsが、太陽電池素子 1の受光領 域ではなぐ受光領域以外の実装板 3の周囲部材もしくは実装板 3に照射される恐れ があり、そのような場合、照射部分が焼損などにより損傷する恐れがある。
[0055] したがって、遮光板 4は、集光された太陽光 Lsによる損傷の発生を防止するように 太陽光 Lsを遮光する構造とされており、太陽電池素子 1の受光領域以外には太陽光 Lsが影響しないように構成されている。また、遮光機能に併せて太陽電池素子 1での 受光を可能にするため、集光した太陽光 Lsを透過させて太陽電池素子 1の受光領 域に照射する透過穴 4aを太陽電池素子 1の受光領域に対向させるように位置合わ せして設けている。
[0056] つまり、実装板 3に実装された 10個の太陽電池素子 1のそれぞれに対応して透過 穴 4aが穿設されており、透過穴 4aの位置に太陽電池素素子 1の位置および集光レ ンズ 7の集光位置を整合させることが発電効率を確保するために極めて重要である。 また、遮光板 4は、透過穴 4aの作用を確実に実現するために、実装板 3と近接してフ レーム 5の底部に対応して配置される。
[0057] 集光型太陽光発電ユニット 10の機械的強度を確保、向上するため、また、生産性 を向上するために、フレーム 5は連続成形により一体として形成することが好ましい。 また、対向する 2つのフレーム 5の中間に位置する遮光板 4もフレーム 5と一体である ことが好ましい。そのために、遮光板 4およびフレーム 5は、例えば鉄板、鋼板などの 金属板をロールフォーミング加工することにより一体に形成されている。なお、鉄板、 鋼板にっ 、ては亜鉛メツキなどの防鲭処理が施されて 、ることが望まし 、。
[0058] したがって、遮光板 4は集光型太陽光発電ユニット 10の構造体 11の底部を、フレ ーム 5は構造体 11の側壁をそれぞれ構成することとなり、集光型太陽光発電ユニット 10の構造体 (構造骨格) 11の強度を確実に向上することができる。
[0059] 遮光板 4をフレーム 5と一体とすることにより、遮光板 4として別部材を用いる必要が なく生産性を向上することができる。また、遮光板 4 (透過穴 4a)の位置が画定される ことから、集光レンズ 7に対する実装板 3の位置合わせを精度良く行うことができる。
[0060] ロールフォーミンダカ卩ェ時にフレーム 5と一体に形成された遮光板 4は、実装板 3を 装着するためにフレーム 5の上端側に凸状とされたフレーム底部 4bを構成する。以 下、フレーム 5と一体化して形成された遮光板 4を便宜上フレーム底部 4bと記載する ことがある。
[0061] つづいて、透過穴 4aの位置に太陽電池素素子 1の位置を整合させる具体的な構 造について説明する。フレーム底部 4bに実装板用突起部 4dを設け、実装板用突起 部 4dに対応する実装板位置合わせ部 3bを実装板 3 (鍔 3a)に形成することにより(図 2 (A)参照)、太陽光 Lsと交差する方向での実装板 3の位置決めが容易に行える。つ まり、フレーム底部 4bの実装板用突起部 4dと実装板 3の実装板位置合わせ部 3bを 嵌合し、ビス 30などで固定する(図 2 (B)参照)。本実施の形態では実装板 3の長手 方向で対向する 2つの端辺 (鍔 3a)の略中央に実装板位置合わせ部 3bをそれぞれ 設けて、フレーム底部 4bに実装板 3を固定している。
[0062] さらに、フレーム底部 4bに実装板用突起部 4dとは別に実装板用突起部 4eを設け、 実装板用突起部 4eに対応する嵌合部 3cを実装板 3 (鍔 3a)に形成することにより(図 2 (A)参照)、実装板 3をフレーム底部 4bに緩やかに固定することができる。つまり、 フレーム底部 4bの実装板用突起部 4eと実装板 3の嵌合部 3cとの間のスペース Sを 介して実装板用突起部 4eと嵌合部 3cを嵌合し、ビス 30などで固定する(図 2 (C)参 照)。なお、フレーム底部 4bと実装板 3との間には緩衝材 33を挟み込んでおいても構 わない。
[0063] また、フレーム底部 4bに設けた実装板用突起部 4d、 4eが凹部で、実装板位置合 わせ部 3b、嵌合部 3cが凸部でも構わず、位置決め、固定を行えるものであれば形状 は問わない。
[0064] つづいて、透過穴 4aの位置に集光レンズ 7の集光位置を整合させる具体的な構造 について説明する。フレーム 5の上端には、透光性基板 6 (集光レンズ 7)を支持する ための鍔 5aがロールフォーミング加工時に一体に形成されており、集光レンズ 7の位 置決めを確実に行うことが可能となる。
[0065] また、フレーム 5の鍔 5aに鍔突起部 5cを設け(図 1参照)、鍔突起部 5cに対応する 基板枠位置合わせ部 6bを透光性基板 6の長手方向の端辺 (枠部 6a)の略中央に形 成することにより(図 3 (A)参照)、太陽光 Lsと交差する方向での透光性基板 6 (集光 レンズ 7)の位置決めが容易に行える。なお、鍔 5aに設けた鍔突起部 5cは、凹部でも 構わず、位置決めを行えるものであれば形状は問わな 、。
[0066] また、鍔突起部 5cを用いずに、基板枠位置合わせ部 6bに常温で硬化するシリコー ン系榭脂などを流し込むことで、枠部 6aを鍔 5aに固定しても構わない。位置決めに 際しては太陽電池素子 1と集光レンズ 7の光学的位置合せを幾何学的測定や発電 電力測定などにより行い、透光性基板 6を鍔 5aに仮止めした後榭脂にて固定すれば よい。
[0067] 透光性基板 6の長手方向で端辺の略中央に基板枠位置合わせ部 6bを近距離の 位置に一対形成することにより、回転することなく透光性基板 6 (集光レンズ 7)の姿勢 を固定することができ、また、透光性基板 6は熱膨張によるストレスの少ない状態で鍔 5aに固定されることとなる(図 3 (B)参照)。
[0068] また、透光性基板 6の枠部 6aは押え部材 9によって、透光性基板 6が伸縮可能とな るように押えることが好ましぐ透光性基板 6の端面に緩衝材 32を巻き付け、押え部 材 9を押え穴 9aを通るボルト 31で鍔 5aに固定することで、透光性基板 6の機械的スト レスからの保護と止水機能を持たせることができる。つまり、透光性基板 6は基板枠位 置合わせ部 6bのみで固定され、押え部材 9により緩やかに押えられた状態となること から、熱膨張などによる伸縮のストレスが力からないこととなる(図 3 (C)参照)。
[0069] したがって、フレーム 5および遮光板 4を構造体の基準位置 (基本形状)として、実 装板 3と透光性基板 6との位置合わせを正確に行うことができ、正確な集光を可能に することができる。
[0070] 集光レンズ 7を固定する透光性基板 6は、フレーム 5の上端 (鍔 5a)に装着される。
また、集光レンズ 7を通過した太陽光 Lsが太陽電池素子 1の受光領域に集光するよう に集光レンズ 7を配置する必要があることから、フレーム 5 (構造体 11の側壁)の高さ は、集光レンズ 7の焦点距離を考慮して、太陽電池素子 1と集光レンズ 7との間に必 要な光学的距離 (最大電力の発電とするのに必要な距離)を画定するように設定され ている。
[0071] つまり、フレーム 5の高さは、太陽電池素子 1と太陽光 Lsとを正対状態とした場合に 、集光レンズ 7のレンズ領域に入射した太陽光 Lsが、遮光板 4の透過穴 4aを通過し てレシーバ 2上に搭載された太陽電池素子 1の受光領域全域に確実に照射されるよ うに設定されている。
[0072] フレーム 5の長手方向には、フレーム 5を相互に嵌合できる嵌合溝 5bがロールフォ 一ミング加工時に一体に形成されている。嵌合溝 5bを嵌合させて、長手方向と交差 する短手方向にフレーム 5を複数連結して、集光型太陽光発電装置 20 (実施の形態 2参照)を構成することができる。嵌合溝 5bは、フレーム 5を相互に嵌合することから、 複数連結した場合でも機械的強度の大き!ヽ構造体 11を維持することが可能となる。
[0073] 実装板 3および透光性基板 6は、フレーム 5の長手方向に対して複数に分割して装 着されている。この構成により、集光型太陽光発電ユニット 10を大型化するためにフ レーム 5の長手方向の長さを長くした状態でも、組み立ての容易性を確保できること から生産性を向上でき、また、保守点検、補修などを容易に行うことが可能となる。
[0074] また、長手方向でフレーム 5の長さに対して実装板 3および透光性基板 6を短くする ことにより、フレーム 5に対する太陽電池素子 1、集光レンズ 7の位置合わせは、フレ ーム 5 (透過穴 4a)に対して狭い範囲(分割した範囲)で行えば良くなることから、正確 な位置合わせを行うことが可能となる。
[0075] 特に実装板 3、フレーム 5、透光性基板 6は、それぞれ異なる素材で構成される場 合、それぞれの熱膨張率が異なるので、長さが長くなるほど熱膨張の影響が大きくな り、温度変化による位置ずれにより集光された太陽光 Lsが太陽電池素子 1に照射さ れなくなる恐れがある。しかし、実装板 3および透光性基板 6を分割して短くすること により、短い長さ (狭い範囲)での熱膨張を考慮すれば良いこととなるので、熱膨張の 影響を低減することが可能となる。
[0076] つまり、実装板 3および透光性基板 6は、フレーム 5の長手方向で複数に分割して いる場合、実装板 3、透光性基板 6およびフレーム 5の材料の相違に伴う熱膨張の差 異による位置ずれを低減することが可能となり、高温の環境下でも正確な集光、発電 が可能となり、信頼性の高い集光型太陽光発電ユニット 10となる。
[0077] また、透光性基板 6の長手方向の端辺の略中央をフレーム 5の上端 (鍔 5a)に固定 することにより、熱膨張による位置ずれの影響を低減することが可能となる。
[0078] さらに、透光性基板 6の少なくとも 2箇所でフレーム 5の上端 (鍔 5a)に固定すること により、熱膨張による回転ずれの影響を低減することが可能となる。
[0079] 実装板 3および透光性基板 6は複数の太陽電池素子 1に対応して 、る場合が好ま しいが、実装板 3および透光性基板 6が個々の太陽電池素子 1に対応して個別に構 成されている場合においても、本実施の形態に係る技術事項が適用できることは言う までもない。つまり、個々の太陽電池素子 1にそれぞれ対応させて実装板 3の端辺の 略中央を遮光板 4に固定し、集光レンズ 7の端辺の略中央をフレーム 5の上端に固定 することにより、集光型太陽光発電ユニット 10を構成することができる。
[0080] 図 4は、本発明の実施の形態 1に係る集光型太陽光発電ユニットの長手方向での 側面から見た要部の配置関係を透視的に示す概略側面図である。図 5は、図 4の矢 符 A— Aでの断面概要を示す拡大断面図である。なお、図 4では太陽電池素子 1、レ シーバ 2は図示を省略している。
[0081] フレーム 5は、例えば鉄板、鋼板などのロール状金属板を平板状に引き出し、透過 穴 4a、実装板用突起部 4d、 4e (図 2参照)、鍔突起部 5c (図 3参照)を画定した平面 金型によりプレスカ卩ェして平板に連続的に転写し、プレスカ卩ェされた部位について口 ールフォーミンダカ卩ェにより三次元力卩ェを行う。このとき、金型は実装板 3もしくは透 光性基板 6で規定される単位長さでプレスカ卩ェすることが好ま 、。このようにロール フォーミング加工で連続的に曲げ加工して形成した母材を、集光型太陽光発電装置 20 (実施の形態 2参照)を構成する集光型太陽光発電ユニット 10に適した大きさとし て長手方向に約 3m程度に切断して形成されて 、る。 [0082] つまり、本実施の形態に係る集光型太陽光発電ユニット 10では、金属板のロール フォーミング加工により遮光板 4およびフレーム 5を成形することで、生産性良く精度 の高い構造体を必要な長さで形成することが可能となる。
[0083] フレーム 5の長手方向には、複数 (例えば 3個)に分割され約 lm程度の長さとした 実装板 3、透光性基板 6がそれぞれフレーム 5の下部、上部に配置され、固定 (装着) されている。実装板 3、透光性基板 6は、複数に分割していることから、分割数に応じ て熱膨張の影響を低減することができる。例えば、透光性基板 6の長さは約 lm程度 であることから、長手方向で 5個の配列とされた集光レンズ 7は約 200mm角程度とな る。したがって、透光性基板 6、遮光板 4の幅は約 400mm程度となる。また、実装板 3の幅は、 300mm程度とされている。
[0084] 透光性基板 6の表面カゝら入射して集光レンズ 7を透過した太陽光 Lsは、集光されて 遮光板 4の透過穴 4aを通過して実装板 3に実装された太陽電池素子 1に照射される
[0085] 実装板 3は、鍔 3aをフレーム底部 4bに当接して装着されている。実装板 3は、実装 板 3の長辺 (長手方向の端辺)に対応する鍔 3aの長手方向の略中央に形成された実 装板位置合わせ部 3bで位置決めされ、ビス 30など適宜の固定金具でフレーム底部 4bに強く固定される(図 2参照)。その他の位置の鍔 3aは嵌合部 3cでビス 30など適 宜の固定金具でフレーム底部 4bに係止 (緩く固定)される(図 2参照)。つまり、実装 板 3の長手方向の端辺の略中央で位置決め固定することにより、例えば角部で位置 決めした場合と比較して熱膨張による位置ずれを半減することが可能となる。
[0086] また、実装板 3の 4辺の全体を同じ強度で固定する場合には熱膨張による反りなど の影響が大きくなるが実装板 3 (鍔 3a)の長辺の中点付近のみを強く固定し、他の位 置を係止状態として緩く固定することにより反り(橈み)などの発生を防止することがで き、熱膨張の影響を低減することができる。
[0087] つまり、長さが約 lmの鍔 3a (実装板 3)の長辺の中点付近で位置決め固定すること により、熱膨張による位置ずれの影響が生じる範囲を半分の約 0. 5mに抑えることが 可能となる。なお、固定に際して鍔 3a (実装板 3)の長辺の略中央には分離した 2つ の固定点を設けることにより、実装板 3の回転による位置ずれが生じないようにするこ とが好ましい。分離した 2つの固定点は同一長辺の中点付近に近接して配置しても 構わなぐ固定される双方の材質の熱膨張率が同等の場合は対辺の中点付近に設 けても構わない。
[0088] 透光性基板 6は、集光レンズ 7を貼り付けた面を遮光板 4に対向させ、集光レンズ 7 を貼り付けた領域の周囲に形成される枠部 6aで、実装板 3と同様に、透光性基板 6 ( 枠部 6a)の長辺 (長手方向の端辺)の中点付近で鍔 5aに対して位置決めされる。透 光性基板 6の場合にも実装板 3と同様の作用効果を生じることから位置ずれを抑制 することができる。なお、枠部 6aは押え部材 9など適宜の固定金具で鍔 5aに対して 適宜固定される(図 3参照)。隣接する透光性基板 6相互間では、相互間を差し渡す 形状の固定金具 (不図示)により固定すれば良い。
[0089] このとき、枠部 6aに形成された基板枠位置合わせ部 6bに対応する鍔 5aの固定点 に鍔突起部 5cを設けて、鍔 5aを基板枠位置合わせ部 6bに嵌合させて(図 3参照)、 押え部材 9により固定することが好ましぐ最大発電出力が得られるように透光性基板 6の固定位置を位置決めする操作なしで容易に設置もしくは交換が行える。
[0090] また、透光性基板 6の他の固定方法として、透光性基板 6を位置決めした後、基板 枠位置合わせ部 6bに接着剤を流し込んで枠部 6aを鍔 5aに固定する構成としても構 わない。
[0091] 実装板 3および透光性基板 6の位置決め、固定は、共通(同一)の構造体 11 (遮光 板 4、鍔 5a)に対して同等の精度で行えることから、集光型太陽光発電ユニット 10全 体として位置決め精度を向上することができ、太陽光の利用効率を確実に向上する ことができる。
[0092] 集光レンズ 7は、成型時の加工性を考慮して、太陽電池素子 1それぞれに対応して 約 200mm角のサイズで設けられ、フレネルレンズ状の金型に例えばアクリル榭脂を 流し込んで一面が平板なフレネルレンズとして成型されて 、る。フレネルレンズとする ことにより、集光レンズの軽量ィ匕が行え、大面積の集光レンズ 7で小面積の太陽電池 素子 1への集光が可能となる。太陽電池素子 1毎に個別に成型する代わりに、複数 の太陽電池素子 1に対応するように複数のフレネルレンズを一体に成型して構成す ることも可能である。また、集光レンズ 7は透光性基板 6に貼り合わされて強度および 平面性を確保できることから、薄型化が可能となり集光特性の良いレンズ形状とする ことが可能となる。
[0093] 図 6は、本発明の実施の形態 1に係る集光型太陽光発電ユニットに搭載された太陽 電池素子のレシーバでの配置状態を示す平面図である。
[0094] 本実施の形態では、太陽電池素子 1は、 GaAs系の化合物半導体を用いて公知の 半導体製造プロセスにより PN接合、電極などを形成してウェファ力ゝら受光領域 7mm 角のチップに加工されている。太陽電池素子 1は、約 60mm角の銅製のレシーバ 2 に裏面電極によって電気的、機械的に接続、接着 (搭載)されている。レシーバ 2の 対角位置のコーナー部に基準穴 2pが高精度に穿設され、この基準穴 2pを基準に太 陽電池素子 1が位置決めされ接着される。
[0095] 太陽電池素子 1と並列にバイパスダイオード Diが接続されており、太陽光 Lsの遮断 などにより太陽電池素子 1が抵抗として動作する場合に隣接する太陽電池素子 1へ の電流経路を構成して、特定の太陽電池素子 1が発電機能を果たさない場合でも全 体として発電機能を維持できる構成とされて ヽる。
[0096] レシーバ 2の表面は、電気的接続が必要となる太陽電池素子 1の基板電極、バイパ スダイオード Diの基板電極が接続される領域、基板電極接続部 2bの領域で露出さ れており、他の表面領域は絶縁性レジスト 2iで被覆されている。絶縁性レジスト 2iの 表面の一部に出力取り出しのための電極となる表面電極接続部 2tが適宜の薄板状 の導体で形成されている。
[0097] 太陽電池素子 1の対向するチップ両端部に形成された表面電極 laは、ワイヤ Wsを 介して表面電極接続部 2tにワイヤボンディングされており、基板電極接続部 2bとの 間で出力を取り出すことができる。また、バイノ スダイオード Diの表面電極は、ワイヤ Wdを介して表面電極接続部 2tにワイヤボンディングされており、バイノス動作を行う ことができる。
[0098] 本実施の形態では太陽電池素子 1のチップ表面に反射防止膜が形成されており、 反射防止膜内の多重反射のため波長によって反射率は変化するが、入射角の増加 に伴って反射率は高くなる傾向があるため、受光領域表面における反射損失を低減 することができる。反射防止膜としては ΉΟΖΑ1202膜を採用している。表面電極 la を部分的に露出させて電気的に接続する必要がある力 厚さ lOOnm程度の厚みで あるため、ワイヤーヘッドを摩擦により溶解させて圧着接続させるゥエッジボンディン グを行う。つまり、表面電極 la上の反射防止膜を研磨し、表面電極 laを部分的に露 出させてワイヤボンディングを行う。したがって、反射防止膜を取り除く工程なしに表 面電極 laを表面電極接続部 2tに電気的に接続することが可能である。
[0099] ワイヤボンディングに際し、ワイヤーヘッドを摩擦する方向は、表面電極 laのパター ン形状の長手方向として振幅させることにより、表面電極 laの短辺幅を短く設定する ことが可能となる。本実施の形態においては、ワイヤ Wsの直径の約 2倍程度の摩擦 幅があれば十分でありワイヤ径が 250 μ m程度の場合、圧着部の幅は約 750 μ m程 度である。
[0100] また、各表面電極 laに対してワイヤ Wsを 1本にする場合は、効率よく集電するため にワイヤ Wsの圧着位置は表面電極 laの中央付近とすることが好ま ヽ。本実施の 形態では各表面電極 laに対してワイヤ Wsを 1本としている力 各表面電極 laに対し て複数本接続しても良 ヽ。表面電極 laのパターン形状の長手方向にワイヤーヘッド を摩擦させれば、ワイヤ Wsの表面電極接続部 2tへの張り出し方向はいずれでも構 わな 、が、表面電極接続部 2tへ最短距離の経路を迪るのが好ま 、。
[0101] 表面電極接続部 2tは太陽電池素子 1とバイパスダイオード Diとの並列接続を容易 にするために、各表面電極 laの長手方向に対して直交方向に配置されるのが好まし い。太陽電池素子 1の対向するチップ両端部に形成された表面電極 laをワイヤボン デイングにより表面電極接続部 2tに電気的に接続することで、電極形状の短辺幅を 短く設定でき、太陽電池素子 1のチップあたりの発電面積比率を大きくすることができ ることから製造コストを削減することができる。
[0102] 太陽電池素子 1の表面に不透明で厚みを有する電極などが存在する場合は入射 角の増大により電極の陰による入射光損失が大きくなるが、チップ両端部に表面電 極 laを形成する本実施の形態によればそのような問題が抑制されることから発電効 率が向上する。また、ワイヤ Wsを用いることにより太陽電池素子 1の表面を被覆する 電極の面積力 S小さくなり、発電効率が向上する。
[0103] なお、太陽電池素子 1、及びバイパスダイオード Diの接合はワイヤボンディングが 好ましいが、半田接合や、溶接による接合でも良い。
[0104] 表面電極接続部 2t、基板電極接続部 2bに対して隣接する太陽電池素子 1との接 続を行うための導電リード 2cがそれぞれ接続されており、導電リード 2cを直列あるい は並列に接続することにより大容量の発電が可能となる。
[0105] 本実施の形態では太陽電池素子 1として GaAs系化合物半導体太陽電池を用いた 力 これに限定されず Si太陽電池や、それら太陽電池を組み合わせたメカ-カルス タック型太陽電池などを使用してもょ 、。
[0106] 図 7は、本発明の実施の形態 1に係る集光型太陽光発電ユニットに搭載された太陽 電池素子の実装状態および透過穴の配置状態を示す説明図であり、 (A)は側面か ら見た状態を透視的に示す側面透視図であり、 (B)は集光レンズの側から遮光板( 透過穴)を見た平面図である。
[0107] レシーバ 2の露出表面に半田接合された太陽電池素子 1およびバイパスダイオード Diは、封止ダム 2sdにより周囲 (平面状周囲)を囲まれ、封止榭脂 2srで榭脂封止さ れる。封止榭脂の表面に封止ガラス 2sgを配置することにより(遮光板 4側の表面での )榭脂封止の耐湿性を向上することができる。なお、封止ガラスの上には、 MgF2など の適当な反射防止膜が形成されて 、ても良 、。封止ダム 2sdは例えば白色などのシ リコーン榭脂、封止榭脂 2srは例えば透光性の大きいシリコーン榭脂で形成する。榭 脂封止の工程は、まず封止ダム 4sdを形成する工程、次に封止ダム 4sdの内側に封 止榭脂 2srを注入充填する工程、適宜の硬度とした封止榭脂 2srの表面にガラスを載 置する工程で構成される。
[0108] 本実施の形態ではレシーバ 2は銅製であり、集光された太陽光 Lsが照射されること によって極めて高温になる太陽電池素子 1に対して放熱手段としても機能する。太陽 電池素子 1を搭載したレシーバ 2は、アルミニウム製の実装板 3に絶縁熱伝導シート 3 iを介して接着され、絶縁状態を維持しながら太陽電池素子 1の熱を実装板 3から大 気に放熱する。なお、絶縁熱伝導シート 3iとしては、酸ィ匕アルミニウムなどの絶縁性 金属を金属フイラとして含むシリコーン系ゴムを適用することができる。また、実装板 3 には適宜放熱フィン (不図示)を設けることが可能であり、特にレシーバ 2に対応する 位置に配置することにより大きな放熱効果を得ることができる。 [0109] レシーバ 2と実装板 3の相互間の位置決め、固定は、レシーバ 2に設けられた基準 穴 2pに対して、実装板 3に正確に位置合わせした受穴 3pを形成し、基準穴 2pおよ び受穴 3pに絶縁被覆されたリベット 2rを挿通して固定することにより精度良く行うこと ができる。
[0110] 透過穴 4aの形状およびサイズは、受光領域 7mm角の太陽電池素子 1、焦点距離( 太陽電池素子 1の受光領域に平面状に集光する距離:光学的距離) 300mmの集光 レンズ 7に対して、長さ b= 13mm角の開口とされている。なお、遮光板 4と実装板 3と の間隔を適宜調整しておくことは言うまでもない。
[0111] また、透過穴 4aの形状は b = 13mm角のサイズに打ち抜きすることもできる力 透 過穴 4aの周囲を絞り加工して周辺に屈曲部 4cを形成し、斜め力も透過して太陽電 池素子 1以外の部分を照射する恐れのある太陽光 Lsdを遮断する機能 (角度)を持た せて形成することが好まし 、。
[0112] つまり、遮光板 4は、透過穴 4aの周縁を実装板 3の側に折り曲げた屈曲部 4cを有 する構成により、透過穴 4aに対して斜めに照射する太陽光 Lsが遮光板 4の裏側(す なわち実装板 3および太陽電池素子 1側)へ透過することを防止できることから、太陽 電池素子 1の周辺部での太陽光 Lsによる損傷を防止することが可能となる。
[0113] さらに、屈曲部 4cの集光レンズ 7側の表面 (入射側表面) 4sを鏡面加工すること〖こ より、屈曲部 4cに照射された太陽光 Lsを太陽電池素子 1側に反射させて入射効率を 高めることができる。
[0114] <実施の形態 2 >
図 8は、本発明の実施の形態 2に係る集光型太陽光発電装置の受光面を垂直状 態とした正面概要を示す正面図である。図 9は、図 8の集光型太陽光発電装置の背 面概要を分解して示す分解斜視図である。
[0115] 本実施の形態の集光型太陽光発電装置 20は、実施の形態 1に係る集光型太陽光 発電ユニット 10がフレーム 5の長手方向と交差する短手方向で複数連結されている。 この構成により、垂直方向と水平方向で重量バランスの取れた受光平面とすることが でき、追尾駆動に適した平面形状とすることができる。
[0116] つまり、嵌合溝 5bを相互に嵌合して 1群 (例えば 3個)のフレーム 5を短手方向で連 結し、また、分割して配置された実装板 3相互間の短手方向に U字状の主桁部 21を 1群のフレーム 5に対応配置して支持、連結することにより、垂直方向の上部側に発 電モジュール 22、下部側に発電モジュール 23が構成されている。つまり、全体で集 光型太陽光発電ユニット 10の数は 6個で良ぐ少ないユニット数で集光型太陽光発 電装置 20を構成することができることから機械的強度を確保し、生産性、量産性を向 上することができる。
[0117] フレーム 5の長手方向を水平方向に配置することから、大面積で (フレーム 5の全面 を利用して)フレーム 5を相互に押圧することができるのでフレーム 5相互間の連結強 度をより大きくでき、機械的強度が大きく安定した連結が可能となる。また、フレーム 5 相互を主桁部 21で支持することから、機械的強度をさらに向上させることができる。
[0118] また、実装板 3は主桁部 21に重ならないように配置されていることにより、太陽光発 電装置 20を現地に設置した後でもフレーム 5を固定したままで実装板 3を遮光板 4か ら取り外すことが可能となり、保守点検、補修の作業性が向上する。
[0119] つまり、集光型太陽光発電装置 20は、実施の形態 1に係る集光型太陽光発電ュニ ット 10が複数連結されており、集光型太陽光発電ユニット 10は、フレーム 5の長手方 向と交差する短手方向に連結する構成とした場合、構造的に安定したモジュールを 構成することから、機械的強度が大きく自動追尾に適した平面形状とすることができ、 大きな発電容量を生産性、作業性、信頼性良ぐ確実に実現することが可能となる。
[0120] また、集光型太陽光発電装置 20では、フレーム 5の長手方向を水平方向に配置す る構成とした場合、フレーム 5相互間の連結をより強固にできることから機械的強度が 大きく安定した連結が可能となる。
[0121] また、集光型太陽光発電装置 20では、フレーム 5の長手方向と交差する短手方向 で、フレーム 5を連結する主桁部 21を備える構成とした場合、連結したフレーム 5を確 実に支持、連結することができることから、機械的強度のより大きい集光型太陽光発 電装置を構成することができる。
[0122] また、集光型太陽電池装置 20では、現地に設置した後でもフレーム 5を固定したま まで実装板 3および透光性基板 6をフレーム 5、遮光板 4力 容易に取り外せることに より、現地での保守点検、補修を容易に行うことが可能となる。 [0123] 集光型太陽光発電装置 20の設置に際しては、発電モジュール 22、 23間をさらに、 主桁結合部 24によって機械的に強固に固定する。主桁結合部 24は、追尾駆動部 2 5を介して支柱 26により適宜保持される。追尾駆動部 25は、太陽光 Lsを自動追尾す るように水平方向の回動機能を有する旋回駆動部、垂直方向の回動機能を有する 傾倒駆動部で構成される。傾倒駆動部が備える制御棒 27の先端は発電モジュール 22の背面に設けた固定金具 27aに連結され制御性、安定性を向上している。
[0124] フレーム 5の長手方向の端面に対応する端面側壁 28は、連結された複数のフレー ム 5を一体的に覆う板材により構成されており、発電モジュール 22、 23それぞれに形 成されている。もちろん、端面側壁 28は、集光型太陽光発電ユニット 10のそれぞれ に対応して分割して形成されてもょ ヽ。
[0125] また、端面側壁 28は、フレーム 5内の温度上昇を防止するために通気可能な状態 とされることが望ましい。即ち、塵芥などの進入を防ぎながら通気を確保できる通気孔 あるいは網材を板材の一部に形成して構成されることが望まし ヽ。
[0126] なお、集光型太陽光発電ユニット 10のみで追尾駆動される集光型太陽光発電装 置とすることが可能であることは言うまでもな 、。
[0127] <実施の形態 3 >
本実施の形態に係る集光型太陽光発電ユニット 10は、基本的な構成は、実施の形 態 1における集光型太陽光発電ユニット 10と同様であり、図 1、図 4、図 5、図 6、図 7 を共通して参照する。なお、これらの図面において、同一構成のものについては、同 じ符号を付している。
[0128] 本実施の形態の集光型太陽光発電ユニット 10は、太陽電池素子 1、レシーバ 2に 接着された太陽電池素子 1が実装されている実装板 3、実装板 3を覆って太陽光 Ls から実装板 3を遮光する遮光板 4、遮光板 4の対向する 2辺の端部から垂直方向に延 長して相対して立設配置されたフレーム 5、遮光板 4に対向してフレーム 5の上端に 対応して配置され太陽電池素子 1の受光領域 (集光領域)に太陽光 Lsを集光する集 光レンズ 7、集光レンズ 7を保持、固定(固着)してフレーム 5の上端に装着される透光 性基板 6を備える。透光性基板 6および集光レンズ 7は集光レンズ構造体 8を構成す る。 [0129] 機能に対応した構成部材で構成することにより部品点数を少なくしていることから、 組み立てが容易で、小型 ·軽量化が可能となり、機械的強度の大きい集光型太陽光 発電ユニット 10とすることができる。
[0130] 実装板 3には、レシーバ 2に搭載された太陽電池素子 1が例えば 5個づっ 2列に計 10個配置されている。太陽電池素子 1 (受光領域)は、集光レンズ 7の集光位置 (集 光領域)に対応して配置される。実装板 3は、太陽電池素子 1、レシーバ 2を 10個単 位として収納する空間を確保する窪みを持つ皿状に形成され、周縁には遮光板 4へ 取り付けるための鍔 3aが形成されている。実装板 3は、放熱性、軽量化などを考慮し て例えばアルミニウムで形成されて 、る。
[0131] 集光レンズ 7は、 10個の太陽電池素子 1のそれぞれに対応するように 5個づっ 2列 に計 10枚が透光性基板 6に配置、固定され、レンズアレイを構成されている。集光レ ンズ 7は加工性、透光性などを考慮して例えば PMMA (アクリル榭脂)で形成され、 成形性やコストを考慮して、フレネルレンズとされて 、る。
[0132] 集光レンズ 7は、平面状の第 1面 7fが透光性基板 6に固定され、第 2面 7sが遮光板 4に対向するように配置されている(図 11参照)。第 2面 7sは、第 1面 7fに平行な平面 を有する平面領域 7sfと、第 1面 7fに対して傾斜する傾斜面を有する突起 7pが形成 された突起領域 7spとを備えて 、る(図 11参照)。
[0133] 透光性基板 6は、透光性、強度、耐環境性などを考慮して例えばガラスで形成され ており、集光型太陽光発電ユニット 10が設置される周囲環境力もの風雨の影響を防 止することができる。集光レンズ 7は、透光性を有する適宜の接着剤などで透光性基 板 6に接着固定 (保持)され、集光レンズ構造体 8を構成している(図 14参照)。
[0134] 集光レンズ 7は、太陽電池素子 1の受光領域に集光するように光学的距離 (焦点距 離に基づいて規定される)が調整されていることから、集光レンズ 7により集光された 太陽光 Lsは、太陽電池素子 1の周囲では極めて大きなエネルギとなる。また、太陽 光 Lsを追尾する構成とした場合に、集光された太陽光 Lsに太陽電池素子 1が常に 正対する関係を維持できるとは限らず、さらに、異常事態の発生によって追尾装置が 停止する事態も想定される。つまり、集光した太陽光 Lsが、太陽電池素子 1の受光領 域ではなぐ実装板 3の周囲部材に照射される恐れがあり、そのような場合、照射部 分が焼損などにより損傷する恐れがある。
[0135] したがって、遮光板 4は、集光された太陽光 Lsによる損傷の発生を防止するように 太陽光 Lsを遮光する構造とされており、太陽電池素子 1の受光領域以外には太陽光 Lsが影響しないように構成されている。また、遮光機能に併せて太陽電池素子 1での 受光を可能にするため、集光した太陽光 Lsを透過させて太陽電池素子 1の受光領 域に照射する透過穴 4aを太陽電池素子 1の受光領域に対向させるように位置合わ せして設けてある。
[0136] つまり、実装板 3に実装された 10個の太陽電池素子 1のそれぞれに対応して透過 穴 4aが穿設されており、透過穴 4aの位置を、太陽電池素素子 1の位置および集光レ ンズ 7の集光位置と整合させることが発電効率を確保するために極めて重要である。 また、遮光板 4は、透過穴 4aの作用を確実に実現するために、実装板 3と近接してフ レーム 5の底部に連接して配置される。
[0137] 集光型太陽光発電ユニット 10の機械的強度を確保、向上するため、また、生産性 を向上するために、遮光板 4およびフレーム 5は連続成形により一体として形成するこ とが好ましい。したがって、遮光板 4およびフレーム 5は、例えば鉄板、鋼板などの金 属板をロールフォーミング加工することにより一体に形成され構造体 11を構成してい る。
[0138] 遮光板 4をフレーム 5と一体に形成することにより、遮光板 4として別部材を用いる必 要がなく生産性を向上することができる。また、遮光板 4 (透過穴 4a)の位置がフレー ム 5と一体に画定できることから、実装板 3 (太陽電池素子 1)と集光レンズ構造体 8 ( 集光レンズ 7)との位置合わせを精度良く行うことができる。
[0139] フレーム 5の上端には、集光レンズ構造体 8 (透光性基板 6)を支持するための鍔 5a 力 Sロールフォーミンダカ卩ェ時に一体に形成されており、集光レンズ 7の位置決めを確 実に行うことが可能となる。つまり、フレーム 5および遮光板 4で構成される構造体 11 を基準位置 (基本形状)として、実装板 3と透光性基板 6 (集光レンズ 7)との位置合わ せを正確に行うことができ、正確な集光を可能にすることができる。
[0140] 実装板 3は、遮光板 4に装着され、遮光板 4と共に 10個の太陽電池素子 1を収納し 、外部環境から保護する保護空間を形成する。遮光板 4には、実装板 3を装着するた めにフレーム 5の上端側に凸とされたフレーム底部 4bがロールフォーミンダカ卩ェ時に 一体に形成されている。以下、フレーム 5と一体化して形成された遮光板 4を便宜上 フレーム底部 4bと記載することがある。
[0141] 集光レンズ 7を固定する透光性基板 6は、フレーム 5の上端 (鍔 5a)に装着される。
また、集光レンズ 7を通過した太陽光 Lsが太陽電池素子 1の受光領域に集光するよう に集光レンズ 7を配置する必要があることから、フレーム 5の高さは、集光レンズ 7の焦 点距離を考慮して、太陽電池素子 1と集光レンズ 7との間に必要な光学的距離 (最大 電力の発電とするのに必要な距離)を画定するように設定されている。
[0142] つまり、フレーム 5の高さは、太陽電池素子 1と太陽光 Lsとを正対状態とした場合に 、集光レンズ 7に入射した太陽光 Lsが、遮光板 4の透過穴 4aを通過してレシーバ 2上 に搭載された太陽電池素子 1の受光領域全域に確実に集光して照射されるように設 定されている。なお、正対とは光軸方向が揃う関係をいう。
[0143] フレーム 5の長手方向には、(図示しない隣接する集光型太陽光発電ユニットの)フ レーム 5を相互に嵌合できる嵌合溝 5bがロールフォーミンダカ卩ェ時に一体に形成さ れている。嵌合溝 5bを嵌合させて、長手方向と交差する短手方向にフレーム 5を複 数連結して、さらに発電容量の大きい集光型太陽光発電装置を構成することができ る。嵌合溝 5bは、フレーム 5を相互に嵌合することから、複数連結した場合でも機械 的強度の大き 、構造体 11を維持することが可能となる。
[0144] 実装板 3および透光性基板 6は、フレーム 5 (構造体 11)の長手方向に対して複数 に分割して装着される。この構成により、集光型太陽光発電ユニット 10を大型化する ためにフレーム 5の長手方向の長さを長くした状態でも、組み立ての容易性を確保で きることから生産性を向上でき、また、保守点検、補修などを容易に行うことが可能と なる。
[0145] また、長手方向でフレーム 5 (構造体 11)の長さに対して実装板 3および透光性基 板 6を短くすることにより、フレーム 5に対する太陽電池素子 1、集光レンズ 7の位置合 わせは、遮光板 4 (透過穴 4a)、フレーム 5に対して狭い範囲(分割した範囲)で行え ば良くなることから、正確な位置合わせを行うことが可能となる。
[0146] 実装板 3、フレーム 5 (構造体 11)、透光性基板 6は、それぞれ異なる素材で構成さ れる場合、それぞれの熱膨張率が異なるので、長さが長くなるほど熱膨張の影響が 大きくなり、温度変化による位置ずれにより集光された太陽光 Lsが太陽電池素子 1に 照射されなくなる恐れがある。しかし、実装板 3および透光性基板 6を分割して短くす ることにより、短い長さ (狭い範囲)での熱膨張を考慮すれば良いこととなるので、熱 膨張の影響を低減することが可能となる。
[0147] フレーム 5の短手方向の側壁は、対向するフレーム 5の間を差し渡す板材によって 覆うが、構造体 11内の温度上昇を防止するために通気可能な状態で覆われる。す なわち、フレーム 5の短手方向の側壁は、塵芥の進入を防ぎながら通気を確保できる 通気孔或 ヽは網材を一部に形成した板材で覆われる。
[0148] 図 4は、本発明の実施の形態に係る集光型太陽光発電ユニットの長手方向での側 面から見た要部の配置関係を透視的に示す概略側面図である。図 5は、図 4の矢符 A— Aでの断面概要を示す拡大断面図である。
[0149] 構造体 11 (遮光板 4、フレーム 5)は、ロールフォーミンダカ卩ェで連続的に曲げカロェ して形成した母材を、集光型太陽光発電ユニット 10に適した長さとし、例えば長手方 向に約 3m程度に切断して形成されて 、る。
[0150] 遮光板 4の背面、フレーム 5の上端には、長手方向で複数 (例えば 3個)に分割され 約 lm程度の長さとされた実装板 3、透光性基板 6がそれぞれ配置され、固定 (装着) されている。例えば、透光性基板 6の長さは約 lm程度であることから、長手方向で 5 個の配列とされた集光レンズ 7は約 200mm角程度となる。したがって、短手方向で 遮光板 4、透光性基板 6の幅は約 400mm程度となる。また、実装板 3の幅は、 300m m程度とされている。実装板 3、透光性基板 6は、複数に分割されていることから、分 割数に応じて熱膨張の影響を低減することができる。
[0151] 透光性基板 6の表面カゝら入射して集光レンズ 7を透過した太陽光 Lsは、集光されて 遮光板 4の透過穴 4aを通過して実装板 3に実装された太陽電池素子 1に照射される
[0152] 実装板 3は、フレーム 5の下端に連接する遮光板 4 (フレーム底部 4b)の背面に鍔 3 aを当接して装着されている。実装板 3は、実装板 3の 1長辺に対応する鍔 3aの中心 部で位置決めされ、適宜の固定部材 (不図示)で強く固定され、その他の位置の鍔 3 aは固定部材で適宜係止 (緩く固定)される。中心部で位置決め固定することにより、 熱膨張による位置ずれを例えば端部で位置決めした場合に比較して半減することが 可能となる。また、実装板 3の 4辺の全体を同じ強度で固定する場合には熱膨張によ る反りなどの影響が大きくなるが中心部のみを強く固定し、他の位置を係止状態とし て緩く固定すること〖こより反り (橈み)などの発生を防止することができ、熱膨張の影響 を低減することができる。
[0153] つまり、長さが約 lmの鍔 3a (実装板 3)の中心部で位置決め固定することにより、熱 膨張による位置ずれの影響が生じる範囲を半分の約 0. 5mに抑えることが可能とな る。なお、固定に際して中心部には分離した 2つの固定点を設けることにより、実装板 3の回転による位置ずれが生じないようにされている。 2つの固定点は、図示しないが 、後述する透光性基板 6の位置決めを行う 2つの基板枠位置合わせ部 6bと同様に配 置することで同様の効果を生じる(図 15、図 16参照)。
[0154] 透光性基板 6は、集光レンズ 7を貼り付けた面を遮光板 4に対向させ、貼り付けた集 光レンズ 7の端部と透光性基板 6の端部との間に基板枠部 6aを構成する。実装板 3と 同様に、基板枠部 6aの 1長辺に対応する中心部に基板枠位置合わせ部 6bとして形 成した貫通穴により鍔 5aに形成されている鍔突起部 5cに対して位置決め固定される (図 15、図 16参照)。透光性基板 6の場合も実装板 3と同様の作用効果を熱膨張に 対して生じることから位置ずれを抑制することができる。
[0155] なお、透光性基板 6の鍔 5aへの装着、固定は透光性基板 6の周囲を巡る形状にし た適宜の固定部材 (不図示)を用いて基板枠部 6aを鍔 5aに圧着することにより行うこ とができる。また、隣接する透光性基板 6相互間では、相互間を差し渡す形状の固定 部材 (不図示)により固定すれば良い。
[0156] 実装板 3および透光性基板 6の位置決め、固定は、共通(同一)の構造体 11 (遮光 板 4の透過穴 4a、フレーム 5の上端の鍔 5a)に対して同一の精度で行うこととなるから 、集光型太陽光発電ユニット 10全体として位置決め精度を向上することができ、太陽 光の利用効率を確実に向上することができる。
[0157] 集光レンズ 7は、成型時の加工性を考慮して、太陽電池素子 1それぞれに対応して 約 200mm角のサイズで形成され、フレネルレンズ状の金型に例えばアクリル榭脂を 射出注入するなどして一面が平板なフレネルレンズとして成型されて 、る。フレネル レンズとすることにより、大面積の集光レンズ 7で小面積の太陽電池素子 1へ集光す る場合にも集光レンズ 7を薄型化することが可能となる。薄型化により、軽量、安価で 、保持も容易なものとすることが可能となる。
[0158] 集光レンズ 7は、太陽電池素子 1毎に個別に成型する代わりに、複数の太陽電池 素子 1に対応するように複数のフレネルレンズを一体に成型して構成することも可能 である。また、薄型化した集光レンズ 7を透光性基板 6に貼り合わせて強度および平 面性を確保できることから、集光特性の良いレンズ形状とすることが可能となる。
[0159] 図 6は、本発明の実施の形態に係る集光型太陽光発電装置に搭載された太陽電 池素子のレシーバでの配置状態を示す平面図である。
[0160] 本実施の形態では、太陽電池素子 1は、 GaAs系の化合物半導体を用いて公知の 半導体製造プロセスにより PN接合、電極などを形成してウェファ力ゝら受光領域 7mm 角のチップに加工されている。太陽電池素子 1は、約 60mm角の銅製のレシーバ 2 に裏面電極によって電気的、機械的に接続、接着 (搭載)されている。レシーバ 2の 対角位置のコーナー部に基準穴 2pが高精度に穿設され、この基準穴 2pを基準に太 陽電池素子 1が位置決めされ接着される。
[0161] 太陽電池素子 1と並列にバイパスダイオード Diが接続されており、太陽光 Lsの遮光 などにより太陽電池素子 1が抵抗として動作する場合に隣接する太陽電池素子 1へ の電流経路を構成して、特定の太陽電池素子 1が発電機能を果たさない場合でも集 光型太陽光発電ユニット 10全体として発電機能を維持できる構成とされている。
[0162] レシーバ 2の表面は、電気的接続が必要となる太陽電池素子 1の基板電極および バイパスダイオード Diの基板電極が接続される領域、基板電極接続部 2bの領域で 露出されており、他の表面領域は絶縁性レジスト 2iで被覆されている。絶縁性レジス ト 2iの表面の一部に出力取り出しのための電極となる表面電極接続部 2tが適宜の薄 板状の導体で形成されて ヽる。
[0163] 太陽電池素子 1の対向するチップ両端部に形成された表面電極は、ワイヤ Wsを介 して表面電極接続部 2tにワイヤボンディングされており、基板電極接続部 2bとの間 で出力を取り出すことができる。また、バイノ スダイオード Diの表面電極は、ワイヤ W dを介して表面電極接続部 2tにワイヤボンディングされており、バイパス動作を行うこ とがでさる。
[0164] 表面電極接続部 2t、基板電極接続部 2bに対して隣接する太陽電池素子 1との接 続を行うための導電リード 2cがそれぞれ接続されており、導電リード 2cを用いて太陽 電池素子 1を直列あるいは並列に接続することにより大容量の発電が可能となる。
[0165] 図 7は、本発明の実施の形態に係る集光型太陽光発電装置に搭載された太陽電 池素子の実装状態および透過穴の配置状態を示す説明図であり、 (A)は側面から 見た状態を透視的に示す側面透視図であり、 (B)は集光レンズの側力 遮光板 (透 過穴)を見た平面図である。
[0166] レシーバ 2の露出表面に半田接合された太陽電池素子 1およびバイパスダイオード Diは、封止ダム 2sdにより周囲 (平面状周囲)を囲まれ、封止榭脂 2srで榭脂封止さ れる。封止榭脂 2srの表面に封止ガラス 2sgを配置することにより(フレーム底部 4側 の表面での)榭脂封止 2srの耐湿性を向上することができる。封止ダム 2sdは例えば 白色などのシリコーン榭脂、封止榭脂 2srは例えば透光性の大きいシリコーン榭脂で 形成する。
[0167] レシーバ 2は銅製であることから、集光された太陽光 Lsが照射されることによって極 めて高温になる太陽電池素子 1に対して放熱手段として機能する。太陽電池素子 1 を搭載したレシーバ 2は、アルミニウム製の実装板 3に絶縁熱伝導シート 3iを介して 接着され、絶縁状態を維持しながら太陽電池素子 1の熱を実装板 3から大気に放熱 する。
[0168] レシーバ 2と実装板 3の相互間の位置決め、固定は、レシーバ 2に設けられた基準 穴 2pに対して、実装板 3に正確に位置合わせした受穴 3pを形成し、基準穴 2pおよ び受穴 3pに絶縁被覆されたリベット 2rを挿通して固定することにより精度良く行うこと ができる。
[0169] 透過穴 4aの形状およびサイズは、集光レンズ 7に平行光線で入射した太陽光 Lsに ついて、集光レンズ 7で屈折して生じる太陽電池素子 1の感度波長光における短波 長領域の太陽光 Lsaが太陽電池素子 1の離れたエッジ側に、太陽電池素子 1の感度 波長光における長波長領域の太陽光 Lsbが太陽電池素子 1の近い側のエッジにそ れぞれ届く範囲を照射するように開口することが好ましい。受光領域 7mm角の太陽 電池素子 1、焦点距離 (太陽電池素子 1の受光領域に平面状に集光する距離:光学 的距離) 300mmの集光レンズ 7に対して、長さ b = 13mm角の開口を設けてある。な お、フレーム底部 4と実装板 3との間隔を適宜調整しておくことは言うまでもない。
[0170] また、透過穴 4aの形状は b = 13mm角のサイズに打ち抜きすることもできる力 透 過穴 4aの周縁を絞り加工して実装板 3の側に折り曲げた屈曲部 4cを形成し、斜めか ら透過して太陽電池素子 1以外の部分を照射する恐れのある太陽光 (Lsd)を遮断す る機能 (角度)を持たせて形成することが好ま 、。
[0171] さらに、屈曲部 4cの集光レンズ 7側の表面 (入射側表面) 4sを鏡面加工すること〖こ より、屈曲部 4cに照射された太陽光 Lsを太陽電池素子 1側に反射させて入射効率を 高めることができる。
[0172] 図 10は、本発明の実施の形態に係る集光レンズ構造体の平面図である。図 11は、 図 10の集光レンズ構造体の拡大概略断面図であり、集光レンズ構造体の平面中心 から矢符 Aまでの一部概略断面を示す。なお、図面の見易さを考慮して透光性基板 6に 1個の集光レンズ 7 (図面の見易さを考慮してハッチングは省略している。)のみを 固定した状態として示す。また、図 11は図上縦方向を適宜拡大して示している。
[0173] 透光性基板 6は集光レンズ 7の平面状の第 1面 7fを固定して集光レンズ構造体 8を 構成している。集光レンズ 7は、第 1面 7fおよび第 1面に対向する第 2面 7sを有する。 第 2面 7sには第 1面 7fに対して傾斜する傾斜面を有する突起 7pがピッチ ppで同心 円状に複数形成され、集光領域 (受光領域)(不図示)への集光が可能なフレネルレ ンズとされている。
[0174] 突起 7pは、成型時の加工性を考慮してピッチ ppを 0. 5mmとし、傾斜面と垂直面 で形成される三角波形状 (突起高さ h、第 1平面 7f (平面領域 7sf)に対する傾斜角 Θ )とされている。傾斜面と垂直面で構成される突起 7pが同心円状に形成されているこ とから、金型に榭脂を注入硬化してフレネルレンズを成型する場合、金型からストレス なしに成型品を離脱することが容易となり、精度の高いフレネルレンズとすることがで きる。
[0175] 第 2面 7sは、第 1面 7fに平行な平面を有する平面領域 7sfと突起 7pを有する突起 領域 7spとを備える。平面領域 7sfと突起領域 7spとの境界 7bは、平面領域 7sfと突 起 7pの段差で画定され、段差は平面領域 7sfの平面と突起 7pの垂直面で画定され る。境界 7b (の段差)を用いることにより、平面領域 7sfを集光領域に精度良く位置合 わせすることが可能となる(図 12な 、し図 14参照)。
[0176] 透光性基板 6と集光レンズ 7 (第 1面 7f)の間には、平面領域 7sfに対応して透光性 基板 6と集光レンズ 7とを固定する平面領域固定部 8aが形成されており、平面領域 7 sfの位置を確実に固定することができる。また同様に、突起領域 7spの周縁部に対応 して透光性基板 6と集光レンズ 7を固定する周縁固定部 8bが形成されており、大面積 の集光レンズ 7を確実に透光性基板 6に固定することができる。また、透光性基板 6と 集光レンズ 7との間の空気層を除去して充填する充填部 8cが形成されている。
[0177] 突起領域 7spは、連続する 4個の突起 7pが同じ傾斜角 Θで形成されている。連続 する 4個の突起 7pを同じ傾斜角 Θとして構成し、傾斜角 Θを変更するピッチとしての 傾斜変更ピッチ phは 2mmとした。つまり、太陽光 Ls中の各波長の光は各々、傾斜変 更ピッチ phに対応して 2mmの幅で同様に屈折することになる。
[0178] 例えば 200mm角の集光レンズ 7の場合、角部断面の端の突起 7pは第 1平面 7fに 対する傾斜角 Θ cは 36度で、突起高さ heは約 0. 4mmである(なお、突起高さ heは 同心円の最外周に位置することから最も高い突起 7pとなる)。また、同心円の中心を 通り辺に直交する方向で最外周 4個の突起 7pの傾斜角 Θは 29. 73度、その内側 4 個の突起 7pの傾斜角 Θは 29度で形成されている(不図示)。また、平面領域 7sfに 隣接する 4個の突起 7pの傾斜角 Θ aは 4. 71度で、突起高さ haは約 0. 1mmである。
[0179] このように突起 7pの厚み(突起高さ h)はレンズ端からレンズ中央に向力つて小さく なる。また、レンズ中央の平面領域 7sfは、太陽電池素子 1の受光領域 7mm角を内 側に囲む大きさの径を有する円として画定することから、直径 10mmの円となる。集 光レンズ構造体 8を太陽光 Lsに正対させた場合、平面領域 7sfに垂直に入射した太 陽光 Lsは集光レンズによる色収差が無ぐ太陽電池素子 1の受光領域にそのまま入 射することとなり、光強度分布のばらつきを低減できるので発電効率を向上すること ができる。
[0180] 本実施の形態では、太陽電池素子 1は、 3接合型であることから、チップの深さ方向 で各接合に対応して幅広 、波長帯 (紫外〜青〜緑〜赤〜赤外)の光に対して光起 電力を生じる。本実施の形態による太陽電池素子 1の短絡電流は、標準的な太陽光 放射 (AMI. 5)を受光したときに、感度波長光における短波長領域に受光感度をも つセル (太陽電池素子 1を構成する 3層に積層された素子の 1つ)の短絡電流によつ て制限されている。したがって、前記短波長領域の光を、他の波長領域の光に比較 して、より適切に集光することによって、太陽電池素子 1の出力が向上する。集光レン ズ 7による屈折方向は光の波長により異なることから、太陽電池素子 1の感度波長光 における短波長領域 (紫外〜赤)の波長を太陽電池素子 1に効率よく受光させるベく 波長 400nmの紫外線が、集光レンズ 7 (突起 7p)に対して対角の位置 (離れた側)と なる太陽光発電素子 1 (受光領域)の端辺側に集光 (屈折)されるように突起 7pの傾 斜角 Θを決めてある。
[0181] また、 4個(2mmの幅)の突起 7pを同じ傾斜角 Θに形成するが、同じ傾斜角 Θの突 起 7pを並べすぎると上記短波長領域の光が太陽電池素子 1 (受光領域)外にはみ出 る割合が大きくなることから、受光領域 7mm角の太陽電池素子 1に対しては 2mm程 度の幅 (傾斜変更ピッチ ph)にするのが効果的であった。この構成により焦点の絞込 みが緩和され、受光領域全面でより均等な受光が可能となり発電効率をさらに大きく することができる。
[0182] つまり、突起 7pの傾斜角 Θおよび傾斜角 Θを変更するピッチである傾斜変更ピッ チ phは、短波長領域の光 (換言すれば、他の波長領域の光に比較して、太陽電池 素子 1の短絡電流を制限し、より支配的に決定している波長領域の光)が有効に受 光領域に向けて屈折 (集光)するように設定されている。したがって、短波長領域の光 に対する集光効率が向上し、光電変換効率 (発電効率)を向上することが可能となる
[0183] 本実施例では出力電流に対する寄与が大きい短波長領域の光を効率よく受光領 域に集光し、且つ、その他の波長の光も一定割合以上、受光領域に集光するように 光学設計することで全体として効率よく発電を行うことが可能になる。本実施例は太 陽電池素子の特性の一例であり、出力電流に対する寄与が大きい波長を優先的に 集光することが好ましい。 [0184] 図 12ないし図 14は、本発明の実施の形態に係る集光レンズ構造体の製造方法( 製造工程)を説明する断面図である。
[0185] 位置決め治具台 15には、太陽電池素子 1 (受光領域)の位置に対応して配置すベ き平面領域 7sf (集光レンズ 7)の位置を決める平面位置決め具 15aが形成されてい る。位置決め治具台 15は、例えばアルミニウム基板で形成されており、平面位置決 め具 15aはアルミニウム基板に例えば平面領域 7sfの径 (段差部分つまり平面領域 7 sfに隣接する突起 7pの垂直面)に内接する径を有するピンを立設して構成されてい る。位置決め治具台 15には、さらに集光レンズ 7を並置して整列できるように集光レ ンズ 7の回転を防止するレンズ回転防止具 15bが設けられている。レンズ回転防止具 15bは、平面位置決め具 15aと同様にピンを立設して構成されている。
[0186] 境界 7bを用いて集光レンズ 7の平面領域 7sfを平面位置決め具 15aに嵌合するこ とにより高精度に集光レンズ 7 (平面領域 7sf)の位置決めを行うことができる。図 12で は、集光レンズ 7を 2個並置する場合を示してあり、図上左側は位置決めを終了した 状態を、右側は位置決めをする前の状態を示す。
[0187] 平面位置決め具 15aの高さは、最外周の突起高さ he (0. 4mm)と同等とすることが 集光レンズ 7の平坦度を向上するために好ましい。平面位置決め具 15aの先端は境 界 7b、つまり平面領域 7sfと隣接する突起 7pとの間の段差 (平面領域 7sfの平面と突 起 7pの垂直面で画定される突起高さ ha (0. 1mm) )で嵌合される。平面領域 7sfと 突起 7pとの段差は、垂直面で構成されることから、位置決めの際に水平方向でのず れが生じないことから精度良く位置決めすることができる。
[0188] 位置決め治具台 15にはさらに平面領域 7sfの位置に対応して透光性基板 6の端部 の位置を決める基板端位置決め具 15cが形成されている。基板端位置決め具 15c はアルミニウム基板に例えばピンを立設して構成されている。
[0189] 図 12の右側の集光レンズ 7を矢符方向に移動して位置合わせをした後、集光レン ズ 7の第 1面 7fに平面領域 7sfに対応させて平面領域固定部 8aを形成し、また、突 起領域 7spの周縁部に対応させて周縁固定部 8bを形成する(図 13参照)。平面領 域固定部 8aおよび周縁固定部 8bはいずれを先に形成しても良ぐまた同時に形成 することも可能である。平面領域固定部 8aおよび周縁固定部 8bは例えば透光性の 高い両面接着テープを用いることにより、容易に形成することが可能となり、作業性を 向上することができる。
[0190] 平面領域固定部 8aおよび周縁固定部 8bを形成した後、透光性基板 6を図 13の矢 符方向に移動し集光レンズ 7に接合 (仮止め)する。この際、基板端位置決め具 15c に透光性基板 6の端部を当接することにより精度良く透光性基板 6の位置合わせを 行うことができる。
[0191] 透光性基板 6の位置合わせにより、受光領域 (太陽電池素子 1)の中心と平面領域 7sf (集光レンズ 7)を精度良く位置合わせした状態で集光レンズ 7を透光性基板 6に 位置合わせすることとなる。したがって、集光レンズ 7の端部と透光性基板 6の端部と の間で透光性基板 6が有する基板枠部 6aに設けてある基板枠位置合わせ部 6bの位 置合わせを精度良く行うことができる。
[0192] 平面領域固定部 8aおよび周縁固定部 8bを介して集光レンズ 7と透光性基板 6とを 接合した後、集光レンズ 7と透光性基板 6との間の空気層の空気を排気した後、その 空間に透光性および流動性の大きい接着剤を充填し、常温もしくはベータにより接 着剤を硬化して充填部 8cを形成する(図 14参照)。充填部 8cにより、集光レンズ 7と 透光性基板 6とは相互に全面で固定され、機械的強度が大きぐ所望の光学特性を 備えた集光レンズ構造体 8となる。なお、接着剤としては透光性'耐候性の良い接着 剤、たとえばメタクリル酸メチルとアクリルモノマー等を含むアクリル榭脂系の接着剤も しくはシリコーン榭脂接着剤などが好ま 、。
[0193] 充填部 8c中の空気層は除去されていることから、透光性基板 6の集光レンズ 7に対 向する面、集光レンズ 7の第 1面 7fにおける屈折率差が小さくなり反射によるロスを低 減することができる。
[0194] 図 15は、本発明の実施の形態に係る集光レンズ構造体を位置決め治具台を用い て位置合わせした平面視状態を示す平面図である。
[0195] 位置決め治具台 15に配置された平面位置決め具 15aに対して集光レンズ 7の平 面領域 7sfが位置合わせされ、嵌合される。平面領域 7sfは円状であることから位置 合わせ後に平面位置決め具 15aを中心にして回転することがないように集光レンズ 7 の端部に接する適宜の位置にレンズ回転防止具 15bが配置されている。レンズ回転 防止具 15bは、 1個の平面位置決め具 15aに対して 2箇所設けることにより確実に回 転を防止することができる。平面位置決め具 15aは、実装板 3に搭載された太陽電池 素子 1 (フレーム底部 4の透過穴 4a)に対応して、計 10箇所に配置されており、計 10 枚の集光レンズ 7を有するレンズアレイを構成できる。
[0196] 位置決めされた集光レンズ 7 (レンズアレイ)の上に透光性基板 6が重畳して配置さ れ、透光性基板 6と集光レンズ 7は接合されて集光レンズ構造体 8を構成する。なお、 透光性基板 6の端部は基板端位置決め具 15cに当接して位置決めされ、また、基板 枠部 6aには端部力 所定の位置に位置決めされた基板枠位置合わせ部 6bが形成 されている。したがって、基板枠位置合わせ部 6bを平面領域 7sf (平面位置決め具 1 5a)に対して位置決めすることができる。
[0197] なお、基板枠位置合わせ部 6bは透光性基板 6 (基板枠部 6a)の長手方向の中心 部に 2箇所形成されており、基板枠位置合わせ部 6bに対応させてフレーム側部 5の 上端の鍔 5aに形成した鍔突起部 5c (図 16参照)〖こ位置決め固定することにより、太 陽電池素子 1 (透過穴 4a)に対して精度良く位置合わせすることができ、また、実装 板 3の場合と同様に熱膨張による位置ずれの影響を透光性基板 6の長手方向で長さ (約 lm)の半分の約 0. 5mに抑えることが可能となる。
[0198] 図 16は、本発明の実施の形態に係る集光レンズ構造体を太陽電池素子 (フレーム 側部)に位置合わせする状態を説明する部分断面図である。
[0199] 透光性基板 6 (基板枠部 6a)の長手方向の中心部に対応させてフレーム側部 5の 上端の鍔 5aに突起状の鍔突起部 5cが形成されている。鍔突起部 5cは、太陽電池素 子 1 (透過穴 4a)に対して集光レンズ 7を位置合わせするように基板枠部 6aに基板枠 位置合わせ部 6bとして形成された貫通穴の位置に対応させて形成されている。
[0200] したがって、透光性基板 6を矢符方向に移動して基板枠位置合わせ部 6bを鍔突起 部 5cに嵌合すれば位置合わせ、位置決めを行うことができる。その後、鍔 5aと透光 性基板 6を適宜の固定部材 (不図示)により固定する。なお、鍔突起部 5c、基板枠位 置合わせ部 6bの形状は上述した例に限らず、その他の形状であっても良いことは言 うまでもない。例えば、基板枠位置合わせ部 6bが貫通穴の場合、鍔 5aにも同様に貫 通穴を形成し、双方の貫通穴を固定部材としてのボルトなどで締めつけて固定するこ とも可能である。
[0201] なお、本実施の形態に係る集光レンズ構造体 8は、実施の形態 1に係る集光型太 陽光発電ユニット 10にも適用可能である。
[0202] 本発明は、その精神または主要な特徴力も逸脱することなぐ他のいろいろな形で 実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず 、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであ つて、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属す る変形や変更は、全て本発明の範囲内のものである。
[0203] なお、この出願は、日本で 2005年 6月 7日に出願された特願 2005— 167526号、 および 2005年 6月 7日に出願された特願 2005— 167527号に基づく優先権を請求 する。その内容はこれに言及することにより、本出願に組み込まれるものである。また 、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組 み込まれるものである。
産業上の利用可能性
[0204] 本発明は、集光レンズを用いて太陽光^^光することにより発電容量を大きくするこ とが可能な集光型太陽光発電ユニット、およびそのような集光型太陽光発電ユニット を備える集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、集光レ ンズを用いた集光型太陽光発電ユニット、および集光レンズ構造体の製造方法に適 用できる。

Claims

請求の範囲
[1] 集光レンズで集光した太陽光を太陽電池素子に照射して発電する集光型太陽光 発電ユニットにおいて、
前記太陽電池素子が実装されて 、る実装板と、
前記太陽電池素子の受光領域に太陽光を照射させる透過穴を有し前記実装板を 覆う遮光板と、
該遮光板に対向して配置され前記受光領域に太陽光を集光する集光レンズと、 前記太陽電池素子と前記集光レンズとの位置を合わせて保持するフレームと を備えることを特徴とする集光型太陽光発電ユニット。
[2] 前記遮光板は、前記フレームと一体に成形されて 、ることを特徴とする請求項 1に 記載の集光型太陽光発電ユニット。
[3] 前記遮光板は、前記透過穴の周縁を前記実装板側に折り曲げた屈曲部を有する ことを特徴とする請求項 1または請求項 2に記載の集光型太陽光発電ユニット。
[4] 前記実装板の端辺の略中央が前記遮光板に固定され、前記集光レンズの端辺の 略中央が前記フレームの上端に固定されていることを特徴とする請求項 1ないし請求 項 3の 、ずれか一つに記載の集光型太陽光発電ユニット。
[5] 前記実装板には、前記太陽電池素子が複数配置されて!、ることを特徴とする請求 項 1ないし請求項 3のいずれか一つに記載の集光型太陽光発電ユニット。
[6] 前記集光レンズは、前記複数の太陽電池素子それぞれに対応して透光性基板に 配置され保持されていることを特徴とする請求項 5に記載の集光型太陽光発電ュニ ッ卜。
[7] 前記実装板は、長手方向の端辺の略中央が前記遮光板に固定されていることを特 徴とする請求項 5または請求項 6に記載の集光型太陽光発電ユニット。
[8] 前記透光性基板は、長手方向の端辺の略中央が前記フレームの上端に固定され ていることを特徴とする請求項 6または請求項 7に記載の集光型太陽光発電ユニット
[9] 前記実装板および前記透光性基板は、前記フレームの長手方向で複数に分割さ れて 、ることを特徴とする請求項 7または請求項 8に記載の集光型太陽光発電ュ-ッ
[10] 集光型太陽光発電ユニットを備える集光型太陽光発電装置において、 前記集光型太陽光発電ユニットは、請求項 1ないし請求項 9のいずれか一つに記 載の集光型太陽光発電ユニットであり、追尾駆動される構成とされていることを特徴と する集光型太陽光発電装置。
[11] 平面状の第 1面と、該第 1面に対して傾斜する傾斜面を有する突起が形成された第
2面とを有する集光レンズであって、
前記第 2面は、前記第 1面に平行な平面を有する平面領域と、前記突起を有する 突起領域とを備えて ヽることを特徴とする集光レンズ。
[12] 前記平面領域と前記突起領域との境界は、前記平面領域と前記突起との段差によ り画定されて ヽることを特徴とする請求項 11に記載の集光レンズ。
[13] 前記平面領域は、正対して配置されるべき太陽電池素子の受光領域を囲む径の 円で画定されており、前記突起は前記平面領域に対して同心円状に形成されている ことを特徴とする請求項 11または請求項 12に記載の集光レンズ。
[14] 前記傾斜面の前記第 1面に対する傾斜角および該傾斜角を変更するピッチとして の傾斜変更ピッチは、前記太陽電池素子の短絡電流を決定して!/、る波長領域の光 を前記受光領域に集光するように設定されていることを特徴とする請求項 13に記載 の集光レンズ。
[15] 平面状の第 1面および該第 1面に対して傾斜する傾斜面を有する突起が形成され た第 2面を有する集光レンズと、該集光レンズを固定して保持する透光性基板とを備 える集光レンズ構造体であって、
前記第 2面は、前記第 1面に平行な平面を有する平面領域と、前記突起を有する 突起領域とを備え、
前記平面領域と前記突起との段差により画定される境界を用いて前記集光レンズと 前記透光性基板との位置合わせがされていることを特徴とする集光レンズ構造体。
[16] 前記透光性基板と前記第 1面との間に、前記平面領域に対応して前記透光性基板 と前記集光レンズとを固定する平面領域固定部と、前記突起領域の周縁部に対応し て前記透光性基板と前記集光レンズとを固定する周縁固定部とが形成されているこ とを特徴とする請求項 15に記載の集光レンズ構造体。
[17] 前記平面領域固定部および前記周縁固定部は、両面接着テープで形成されてい ることを特徴とする請求項 16に記載の集光レンズ構造体。
[18] 前記透光性基板と前記第 1面との間に、接着剤を充填した充填部が形成されてい ることを特徴とする請求項 16または請求項 17に記載の集光レンズ構造体。
[19] 前記透光性基板は、前記集光レンズが複数並置されていることを特徴とする請求 項 15な 、し請求項 18の 、ずれか一つに記載の集光レンズ構造体。
[20] 集光レンズおよび該集光レンズを固定して保持する透光性基板を備える集光レン ズ構造体と、前記集光レンズに対応して配置された太陽電池素子とを備える集光型 太陽光発電ユニットであって、
前記集光レンズ構造体は、請求項 15ないし請求項 19のいずれか一つに記載の集 光レンズ構造体であることを特徴とする集光型太陽光発電ユニット。
[21] 平面状の第 1面に平行な平面を有する平面領域と前記第 1面に対して傾斜する傾 斜面を有する突起が形成された突起領域とを第 2面に有する集光レンズと、該集光レ ンズを固定して保持する透光性基板とを備え、前記平面領域と集光領域とが正対す るように前記集光レンズと前記透光性基板とを位置合わせする集光レンズ構造体の 製造方法であって、
前記平面領域の位置を決める平面位置決め具および前記透光性基板の端部の位 置を決める基板端位置決め具を設けた位置決め治具台の前記平面位置決め具に 前記平面領域を位置合わせする工程と、
前記第 1面上の前記平面領域に対応する位置に前記透光性基板と前記集光レン ズとを固定する平面領域固定部を形成する工程と、
前記第 1面上の前記突起領域の周縁部に対応する位置に前記透光性基板と前記 集光レンズとを固定する周縁固定部を形成する工程と、
前記透光性基板の端部を前記基板端位置決め具に当接して前記透光性基板を前 記平面領域固定部および周縁固定部に接合する工程と、
前記透光性基板と前記集光レンズとの間に接着剤を充填する工程と
を備えることを特徴とする集光レンズ構造体の製造方法。
PCT/JP2006/311403 2005-06-07 2006-06-07 集光型太陽光発電ユニットおよび集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、および集光レンズ構造体の製造方法 WO2006132265A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2006256136A AU2006256136B8 (en) 2005-06-07 2006-06-07 Concentrating solar power generation unit, concentrating solar power generation apparatus, concentrating lens, concentrating lens structure, and method for manufacturing concentrating lens structure
EP06757110A EP1895597A1 (en) 2005-06-07 2006-06-07 Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure
US11/921,465 US8237044B2 (en) 2005-06-07 2006-06-07 Concentrating solar power generation unit, concentrating solar power generation apparatus, concetrating lens, concentrating lens structure, and method of manufacturing concentrating lens structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005167526A JP4732015B2 (ja) 2005-06-07 2005-06-07 集光型太陽光発電ユニットおよび集光型太陽光発電装置
JP2005-167526 2005-06-07
JP2005167527A JP5013684B2 (ja) 2005-06-07 2005-06-07 集光レンズ、集光レンズ構造体、集光型太陽光発電装置、および集光レンズ構造体の製造方法
JP2005-167527 2005-06-07

Publications (1)

Publication Number Publication Date
WO2006132265A1 true WO2006132265A1 (ja) 2006-12-14

Family

ID=37498464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311403 WO2006132265A1 (ja) 2005-06-07 2006-06-07 集光型太陽光発電ユニットおよび集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、および集光レンズ構造体の製造方法

Country Status (4)

Country Link
US (1) US8237044B2 (ja)
EP (1) EP1895597A1 (ja)
AU (1) AU2006256136B8 (ja)
WO (1) WO2006132265A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044490A1 (en) * 2006-10-06 2008-04-17 Sharp Kabushiki Kaisha Method for manufacturing photovoltaic power generation unit and system for manufacturing photovoltaic power generation unit
WO2009050144A1 (fr) * 2007-10-16 2009-04-23 Avancis Gmbh & Co. Kg Perfectionnements apportés à des éléments capables de collecter de la lumière
WO2009090843A1 (ja) * 2008-01-17 2009-07-23 Sharp Kabushiki Kaisha 集光型太陽光発電ユニットおよび集光型太陽光発電ユニット製造方法
US20100132793A1 (en) * 2006-09-28 2010-06-03 Kenta Nakamua Solar cell, concentrating solar power generation module, concentrating solar power generation unit, method of manufacturing solar cell, and solar cell manufacturing apparatus
JP2010219318A (ja) * 2009-03-17 2010-09-30 Masanori Kobayashi 折畳み可能な太陽追従太陽電池
US20110263067A1 (en) * 2008-02-11 2011-10-27 Emcore Solar Power, Inc. Methods of Forming a Concentrating Photovoltaic Module
US20110283517A1 (en) * 2007-11-29 2011-11-24 Atomic Energy Council-Institute Of Nuclear Energy Research Method for Aligning a Lens Array to a Cell Array
WO2013001944A1 (ja) * 2011-06-29 2013-01-03 シャープ株式会社 集光型太陽光発電装置、および集光型太陽光発電装置の製造方法
JP2013508741A (ja) * 2010-12-01 2013-03-07 パナソニック株式会社 太陽電池に集光するためのフレネルーフライアイマイクロレンズアレイ
WO2014038568A1 (ja) * 2012-09-10 2014-03-13 シャープ株式会社 太陽電池モジュール及び太陽光発電装置
TWI449961B (zh) * 2009-04-02 2014-08-21 Atomic Energy Council 聚光型太陽能發電模組之光學透鏡結構改良
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
JP2017034106A (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252083B2 (en) * 2005-07-18 2007-08-07 Arizona Public Service Company Structure for supporting energy conversion modules and solar energy collection system
EP2278626A4 (en) * 2008-04-17 2014-01-22 Sharp Kk PHOTOVOLTAIC POWER GENERATION DEVICE OF FOLLOW-UP TYPE
US8242350B2 (en) * 2008-05-16 2012-08-14 Cashion Steven A Concentrating photovoltaic solar panel
WO2010048767A1 (zh) * 2008-10-30 2010-05-06 Wang Xu 聚光太阳能电池模组
WO2010137695A1 (ja) * 2009-05-29 2010-12-02 株式会社クラレ 太陽光集光用フレネルレンズシートおよびその設計方法
US20110192446A1 (en) * 2010-02-05 2011-08-11 Denso Corporation Solar cell module and solar panel
US20110290295A1 (en) * 2010-05-28 2011-12-01 Guardian Industries Corp. Thermoelectric/solar cell hybrid coupled via vacuum insulated glazing unit, and method of making the same
US20160067577A1 (en) * 2010-09-17 2016-03-10 Hershel James HOWARD Sports Training System and Method
KR101460984B1 (ko) 2010-10-27 2014-11-14 가부시키가이샤 구라레 광발전 장치
US8358476B2 (en) * 2010-11-23 2013-01-22 Institute Of Nuclear Energy Research, Atomic Energy Council, Executive Yuan Condensing lens for high concentration photovoltaic module and manufacturing method thereof
US9528724B1 (en) 2011-06-08 2016-12-27 Solarreserve Technology, Llc Apparatus and method for configuring heliostat fields
JP2012256783A (ja) * 2011-06-10 2012-12-27 Sumitomo Electric Ind Ltd 集光型太陽光発電パネル、集光型太陽光発電装置及び集光型太陽光発電システム
RU2475888C1 (ru) * 2011-08-02 2013-02-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Конструкция фотоэлектрического модуля
TW201320363A (zh) * 2011-11-04 2013-05-16 Most Energy Corp 聚光透鏡及太陽能發電系統
WO2013156549A1 (en) * 2012-04-18 2013-10-24 Pardell Vilella Ricard Field-assemblable concentration photovoltaics system
CN103456821A (zh) * 2012-05-29 2013-12-18 成都振中电气有限公司 一种太阳能发电板的聚光改进结构
MX345871B (es) 2012-07-09 2017-02-21 Kuraray Co Elemento óptico y dispositivo fotovoltaico concentrador.
JP6028564B2 (ja) * 2012-12-27 2016-11-16 住友電気工業株式会社 集光型太陽光発電モジュール及びその製造方法
DE102013006264A1 (de) * 2013-04-11 2014-10-16 Grenzebach Maschinenbau Gmbh Vorrichtung und Verfahren zur optimalen Justierung der Linsenplatte in einem CPV-Modul
US11894804B2 (en) 2014-06-27 2024-02-06 Sumitomo Electric Industries, Ltd. Photovoltaic module, photovoltaic panel, and production method for photovoltaic module
CN106664054B (zh) 2014-06-27 2019-05-21 住友电气工业株式会社 光伏模块和光伏面板
US9450535B2 (en) * 2014-12-31 2016-09-20 Echostar Technologies L.L.C. Solar powered satellite system
US9705587B2 (en) 2014-12-31 2017-07-11 Echostar Technologies L.L.C. Solar powered satellite system
DE102015213305A1 (de) * 2015-07-15 2017-01-19 Saint-Augustin Canada Electric Inc. Optisches Lichttransmissionselement für eine Solarenergieanordnung mit einem Erntebereich und einem Justiersteuerungsbereich, und Verfahren zur Justierung desselben
JP6631436B2 (ja) * 2016-08-03 2020-01-15 住友電気工業株式会社 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
CN107222165A (zh) * 2017-07-06 2017-09-29 北京铂阳顶荣光伏科技有限公司 具有加热装置的路面发电系统
EP3764539B1 (en) * 2018-03-05 2022-11-02 Sumitomo Electric Industries, Ltd. Method for manufacturing concentrator photovoltaic module, and carrier jig
US12094993B2 (en) * 2022-06-08 2024-09-17 Imam Abdulrahman Bin Faisal University High-concentrating photovoltaic (HCPV) system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572582A (en) * 1980-06-07 1982-01-07 Toyohashi Gijutsu Kagaku Daigaku Solar battery type generator
JPS59161460U (ja) * 1983-04-15 1984-10-29 シャープ株式会社 光・熱複合型コレクタ
JPH10107301A (ja) * 1996-09-26 1998-04-24 Sharp Corp 太陽電池
JP2000068540A (ja) * 1998-08-19 2000-03-03 Honda Motor Co Ltd 太陽光発電装置
JP2000268749A (ja) * 1999-03-15 2000-09-29 Matsushita Electronics Industry Corp 平板状画像表示装置
JP2002134641A (ja) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法ならびに半導体装置の実装方法
JP2002535699A (ja) * 1999-01-13 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー 投影スクリーン用フレネルレンズ
JP2003174183A (ja) * 2001-12-07 2003-06-20 Daido Steel Co Ltd 集光型太陽光発電装置
JP2003266450A (ja) * 2002-03-18 2003-09-24 Canon Inc 光学素子及びその製造方法
JP2003344740A (ja) * 2002-05-30 2003-12-03 Anritsu Corp 光学装置及び光学部品の接着方法
JP2004214491A (ja) * 2003-01-07 2004-07-29 Yasunori Tanji 太陽エネルギーの集積装置及び光電エネルギー変換装置並びに熱電エネルギー変換装置
JP2004241495A (ja) * 2003-02-04 2004-08-26 Nikon Corp 固体撮像装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511755A (en) * 1982-05-17 1985-04-16 Kei Mori Solar ray collection apparatus
EP0113096B1 (en) 1983-01-03 1987-04-29 General Electric Company Modified polyester compositions
US5096505A (en) * 1990-05-21 1992-03-17 The Boeing Company Panel for solar concentrators and tandem cell units
JP3685921B2 (ja) 1998-03-31 2005-08-24 本田技研工業株式会社 集光型太陽光発電装置
US6399874B1 (en) * 2001-01-11 2002-06-04 Charles Dennehy, Jr. Solar energy module and fresnel lens for use in same
US6717045B2 (en) * 2001-10-23 2004-04-06 Leon L. C. Chen Photovoltaic array module design for solar electric power generation systems
IL157716A0 (en) * 2003-09-02 2004-03-28 Eli Shifman Solar energy utilization unit and solar energy utilization system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572582A (en) * 1980-06-07 1982-01-07 Toyohashi Gijutsu Kagaku Daigaku Solar battery type generator
JPS59161460U (ja) * 1983-04-15 1984-10-29 シャープ株式会社 光・熱複合型コレクタ
JPH10107301A (ja) * 1996-09-26 1998-04-24 Sharp Corp 太陽電池
JP2000068540A (ja) * 1998-08-19 2000-03-03 Honda Motor Co Ltd 太陽光発電装置
JP2002535699A (ja) * 1999-01-13 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー 投影スクリーン用フレネルレンズ
JP2000268749A (ja) * 1999-03-15 2000-09-29 Matsushita Electronics Industry Corp 平板状画像表示装置
JP2002134641A (ja) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法ならびに半導体装置の実装方法
JP2003174183A (ja) * 2001-12-07 2003-06-20 Daido Steel Co Ltd 集光型太陽光発電装置
JP2003266450A (ja) * 2002-03-18 2003-09-24 Canon Inc 光学素子及びその製造方法
JP2003344740A (ja) * 2002-05-30 2003-12-03 Anritsu Corp 光学装置及び光学部品の接着方法
JP2004214491A (ja) * 2003-01-07 2004-07-29 Yasunori Tanji 太陽エネルギーの集積装置及び光電エネルギー変換装置並びに熱電エネルギー変換装置
JP2004241495A (ja) * 2003-02-04 2004-08-26 Nikon Corp 固体撮像装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132793A1 (en) * 2006-09-28 2010-06-03 Kenta Nakamua Solar cell, concentrating solar power generation module, concentrating solar power generation unit, method of manufacturing solar cell, and solar cell manufacturing apparatus
WO2008044490A1 (en) * 2006-10-06 2008-04-17 Sharp Kabushiki Kaisha Method for manufacturing photovoltaic power generation unit and system for manufacturing photovoltaic power generation unit
WO2009050144A1 (fr) * 2007-10-16 2009-04-23 Avancis Gmbh & Co. Kg Perfectionnements apportés à des éléments capables de collecter de la lumière
US9097442B2 (en) 2007-10-16 2015-08-04 Saint-Gobain Glass France Made to elements capable of collecting light
CN101897035B (zh) * 2007-10-16 2013-05-08 法国圣戈班玻璃厂 对能够收集光的元件所做的改进
US20110283517A1 (en) * 2007-11-29 2011-11-24 Atomic Energy Council-Institute Of Nuclear Energy Research Method for Aligning a Lens Array to a Cell Array
JP5164999B2 (ja) * 2008-01-17 2013-03-21 シャープ株式会社 集光型太陽光発電ユニットおよび集光型太陽光発電ユニット製造方法
WO2009090843A1 (ja) * 2008-01-17 2009-07-23 Sharp Kabushiki Kaisha 集光型太陽光発電ユニットおよび集光型太陽光発電ユニット製造方法
US20110263067A1 (en) * 2008-02-11 2011-10-27 Emcore Solar Power, Inc. Methods of Forming a Concentrating Photovoltaic Module
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
JP2010219318A (ja) * 2009-03-17 2010-09-30 Masanori Kobayashi 折畳み可能な太陽追従太陽電池
TWI449961B (zh) * 2009-04-02 2014-08-21 Atomic Energy Council 聚光型太陽能發電模組之光學透鏡結構改良
JP2013508741A (ja) * 2010-12-01 2013-03-07 パナソニック株式会社 太陽電池に集光するためのフレネルーフライアイマイクロレンズアレイ
JP2013012605A (ja) * 2011-06-29 2013-01-17 Sharp Corp 集光型太陽光発電装置、および集光型太陽光発電装置の製造方法
WO2013001944A1 (ja) * 2011-06-29 2013-01-03 シャープ株式会社 集光型太陽光発電装置、および集光型太陽光発電装置の製造方法
WO2014038568A1 (ja) * 2012-09-10 2014-03-13 シャープ株式会社 太陽電池モジュール及び太陽光発電装置
JP2017034106A (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
WO2017022325A1 (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
US20180204969A1 (en) * 2015-08-03 2018-07-19 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device
US11139409B2 (en) 2015-08-03 2021-10-05 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device

Also Published As

Publication number Publication date
US8237044B2 (en) 2012-08-07
AU2006256136A1 (en) 2006-12-14
AU2006256136B2 (en) 2010-02-11
AU2006256136B8 (en) 2010-05-27
US20090133737A1 (en) 2009-05-28
EP1895597A1 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
WO2006132265A1 (ja) 集光型太陽光発電ユニットおよび集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、および集光レンズ構造体の製造方法
JP4732015B2 (ja) 集光型太陽光発電ユニットおよび集光型太陽光発電装置
JP5013684B2 (ja) 集光レンズ、集光レンズ構造体、集光型太陽光発電装置、および集光レンズ構造体の製造方法
US9464783B2 (en) Concentrated photovoltaic panel
EP2073279A1 (en) Solar cell, light concentrating photovoltaic power generation module, light concentrating photovoltaic power generation unit, solar cell manufacturing method and solar cell manufacturing apparatus
AU2008305083B2 (en) Solar cell, concentrating photovoltaic power generation module, concentrating photovoltaic power generation unit and solar cell manufacturing method
WO2009157304A1 (ja) 太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法
US20100326494A1 (en) Solar cell, concentrating solar power generation module, and solar cell manufacturing method
US20080128016A1 (en) Parallel Aperture Prismatic Light Concentrator
JP2009510739A (ja) 集光光起電装置、その中における使用のための光起電ユニット及びこれのための製造方法
JP2006332113A (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
JP2009187971A (ja) 太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法
US7868244B2 (en) Solar CPV cell module and method of safely assembling, installing, and/or maintaining the same
JP2000091612A (ja) 集光追尾式発電装置
WO2012160994A1 (ja) 集光型太陽電池及びその製造方法
JP2009272567A (ja) 太陽電池、集光型太陽光発電モジュール、および、太陽電池製造方法
WO2010027083A1 (ja) 太陽電池、集光型太陽光発電モジュール、および、太陽電池製造方法
JP2010135608A (ja) 集光型太陽光発電装置、集光型太陽光発電装置の製造方法、および集光レンズパネル
JP4454666B2 (ja) 太陽電池、集光型太陽光発電モジュール、集光型太陽光発電ユニット、および太陽電池製造方法
US20120206826A1 (en) Light-collecting device and light-collecting method thereof
KR101357200B1 (ko) 박형 집광형 태양전지모듈
US20150096176A1 (en) Concentrating Thin Film Absorber Device and Method of Manufacture
KR101437909B1 (ko) 캐리어 보호기능을 갖는 2차 광학 구성요소 및 이를 구비하는 집광형 태양전지모듈
KR20200041012A (ko) 이중구조의 집광렌즈가 구비된 태양에너지의 집광장치
KR20190096263A (ko) 집광식 태양광 발전 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11921465

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006256136

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006757110

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006256136

Country of ref document: AU

Date of ref document: 20060607

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006256136

Country of ref document: AU