WO2006130622A2 - Growth of planar non-polar{1-1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) - Google Patents
Growth of planar non-polar{1-1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) Download PDFInfo
- Publication number
- WO2006130622A2 WO2006130622A2 PCT/US2006/020995 US2006020995W WO2006130622A2 WO 2006130622 A2 WO2006130622 A2 WO 2006130622A2 US 2006020995 W US2006020995 W US 2006020995W WO 2006130622 A2 WO2006130622 A2 WO 2006130622A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polar
- substrate
- plane
- nitride
- growing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02516—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Definitions
- DenBaars entitled “DEFECT REDUCTION OF NON-POLAR GALLIUM NITRIDE WITH SINGLE-STEP SIDEWALL LATERAL EPITAXIAL OVERGROWTH,” attorneys' docket no. 30794.135-US-P1 (2005-565); United States Utility Patent Application Serial No. 10/537,385, filed June 3,
- the present invention relates to the growth of planar non-polar ⁇ 1 -1 0 0 ⁇ m- plane gallium nitride (GaN) with metalorganic chemical vapor deposition (MOCVD). 2. Description of the Related Art.
- Gallium nitride (GaN) and its ternary and quaternary compounds are prime candidates for fabrication of visible and ultraviolet high-power and high-performance optoelectronic devices and electronic devices. These devices are typically grown epitaxially by growth techniques including molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), or hydride vapor phase epitaxy (HVPE).
- MBE molecular beam epitaxy
- MOCVD metalorganic chemical vapor deposition
- HVPE hydride vapor phase epitaxy
- substrate is critical for achieving the desired GaN growth orientation.
- Some of the most widely used substrates for III-N growth include SiC, Al 2 O 3 , and LiAlO 2 .
- Various crystallographic orientations of these substrates are commercially available.
- FIGS. l(a) and l(b) are schematics of crystallographic directions and planes of interest in hexagonal GaN. Specifically, these schematics show the different crystallographic growth directions and also the planes of interest in the hexagonal wurtzite GaN structure, wherein FIG. l(a) shows the crystallographic directions al, a2, a3, c, ⁇ 10-10> and ⁇ 11-20>, and FIG. l(b) shows planes a (11-20), m (10-10) and r (10-12).
- the fill patterns of FIG. l(b) are intended to illustrate the planes of interest, but do not represent the materials of the structure.
- 2(b) is a graph of energy (eV) vs. depth (nm) and represents a non-polar quantum well.
- eV energy
- nm depth
- Such polarization effects decrease the likelihood of electrons and holes recombining, causing the final device to perform poorly.
- One possible approach for eliminating piezoelectric polarization effects in GaN optoelectronic devices is to grow the devices on non-polar planes of the crystal such as a- ⁇ 11-20 ⁇ and m- ⁇ l-100 ⁇ planes family of GaN. Such planes contain equal numbers of Ga and N atoms and are charge-neutral.
- Planar ⁇ 1-100 ⁇ m-plane GaN growth has been developed by HVPE and MBE methods. However, prior to the invention described herein, planar m-plane GaN growth had not been accomplished with MOCVD.
- the general purpose of the present invention is to grow planar non-polar m- ⁇ 1-100 ⁇ plane GaN material using MOCVD.
- the method includes performing a solvent clean and acid dip of an m-SiC substrate to remove oxide from the surface of the substrate ex situ prior to growth, in situ annealing of the substrate, growing an aluminum nitride (AlN) nucleation layer on the annealed substrate, and growing the non-polar m-plane GaN epitaxial layer on the nucleation layer with MOCVD.
- AlN aluminum nitride
- the present invention takes advantage of non-polar nature of m-plane GaN to eliminate polarization fields, and gives rise to flexibility in growth variables, such as temperature, pressure and precursor flows, utilizing the advantage of m-GaN stability during growth.
- FIGS. l(a) and l(b) are schematics of crystallographic directions and planes of interest in hexagonal GaN.
- FIGS. 2(a) and 2(b) are schematics of band bending and electron hole separation as a result of polarization.
- FIG. 3 provides a structural characterization of non-polar planar m-plane GaN on m-plane SiC, from top to bottom, wherein the crystal plane of interest is shown in a unit cell/
- FIG. 4 is a 5 ⁇ m x 5 ⁇ m atomic force microscopy (AFM) surface image with a surface roughness value 2.54nm.
- AFM atomic force microscopy
- FIG. 5 is a graph that illustrates the xray diffraction rocking curves for on-axis and off-axis.
- FIG. 6 is a flowchart that illustrates the processing steps for growing planar m- plane Ill-Nitrides using MOCVD according to the preferred embodiment of the present invention.
- FIG. 7 further illustrates the results of the processing steps of FIG. 6 according to the preferred embodiment of the present invention.
- FIG. 3 illustrates the non-polar m-plane GaN (1-100) crystal plane of interest in the unit cell.
- V /IH ratios of 400-5500 and 200-3000 growth pressures varying in between 50-760 Torr, and temperature series of 1100 0 C - 1275 0 C and 1000 0 C - 1160 0 C for AlN and GaN layers were tested, respectively.
- a 5 ⁇ m x 5 ⁇ m atomic force microscopy (AFM) surface image of the resulting m-plane GaN material is shown in FIG. 4.
- the grains are oriented along the ⁇ 11-20> direction and the surface roughness value (root mean square) is ⁇ 2.54 ran for a 5 ⁇ m x 5 ⁇ m scan.
- FIG. 5 is a graph of omega (degrees) vs. counts/second showing the x-ray diffraction rocking curves on-axis and off-axis.
- on-axis (1-100) full width at half max (FWHM) values are measured as low as 0.22° and 1.2°, for a-mosaic and c-mosaic, respectively, and the off-axis (10-12) reflection has FWHM value of 0.38°.
- FIG. 6 is a flowchart that illustrates the processing steps for growing a planar non polar ⁇ 1-100 ⁇ m-plane Ill-Nitride epitaxial film using MOCVD according to the preferred embodiment of the present invention, wherein the planar non polar m-plane Ill-Nitride epitaxial film may comprise a planar m-plane GaN epitaxial layer.
- FIG. 7 further illustrates the results of each of the processing steps of FIG. 6.
- Block 600 represents a solvent clean and acid dip of a suitable substrate (700), for example, in a 1 : 10 diluted BHF:DI solution, to remove oxide (702) from the substrate (700) surface before loading the substrate (700) into a reactor for the growth step. (Although this step is recommended, its omission would not significantly alter the results.)
- the substrate (700) may comprise an m-SiC or any substrate that is suitable for non-polar m-plane Ill-Nitride growth.
- Block 602 represents in situ annealing of the substrate (700), for example, in hydrogen, prior to the growth step. (Although this step is recommended, its omission would not significantly alter the results.)
- Block 604 represents growing a nucleation layer (704) on the substrate (700).
- the nucleation layer (704) typically comprises an aluminum nitride (AlN) nucleation layer or interlayer, but may comprise any nucleation layer (704) that is appropriate for non-polar m-plane Ill-Nitride growth.
- the nucleation layer (704) may be grown after the annealing step, and prior to the non polar m-plane Ill-Nitride growth.
- Block 606 represents growing the non-polar m-plane Ill-Nitride epitaxial layer (706) using MOCVD.
- the non-polar m-plane Ill-Nitride epitaxial layer (706) typically comprises a non-polar m-plane GaN epitaxial layer, but may comprise other non-polar m-plane Ill-Nitride epitaxial layers as well.
- the non-polar m- plane Ill-Nitride epitaxial layer (706) may be grown on the nucleation layer (704), or on the substrate (700) itself.
- the end result is a device, or a free standing wafer, or a substrate, or a template, having a planar epitaxial layer of the non-polar m-plane Ill-Nitride.
- non-polar m-GaN on m-SiC using an AlN interlayer alternative suitable substrates, on which the non-polar m-plane Ill-Nitride epitaxial film could be formed, include, but are not limited to, 6H or 4H m-plane SiC, freestanding m-GaN, LiGaO 2 and LiAlO 2 .
- the suitable substrate Prior to growth, the suitable substrate can be treated in many different ways in-situ or ex-situ, or it may not be treated at all.
- the non-polar epitaxial film can be nucleated and grown over different nucleation layers, such as GaN or AlN grown at various conditions and methods, or over a bare substrate.
- the epitaxial film can be any non-polar m-plane IE-Nitride material including, but not limited to, GaN, AlN, AlGaN and InGaN with various thicknesses.
- the growth parameters required for the growth of non-polar m-plane Ill- Nitride material may vary from reactor to reactor.
- the growth of m- ⁇ l-100 ⁇ plane GaN has been successfully demonstrated by HVPE and MBE.
- the present invention is the first-ever successful demonstration of high-quality planar non-polar m- ⁇ l-100 ⁇ plane GaN growth by MOCVD.
- planar m-plane GaN has an advantage over growth of planar a- ⁇ l 1- 20 ⁇ GaN with MOCVD in terms of its stability with a large growth window. This was shown when growth variables such as temperature, pressure and precursor flows for AlN nucleation layer and GaN epitaxial film were changed.
- V/m ratios of 400-5500 and 200-3000, growth pressures varying in between 50-760 Torr, and temperature series of 1100 0 C - 1275 0 C and 1000 0 C - 1160 0 C for AlN and GaN layers were tested, respectively. Alterations in such conditions did not affect the crystal and surface quality significantly unlike the planar non-polar a-plane GaN films in which crystal and surface quality are extremely susceptible to change in growth conditions and constrained with small growth window.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020127010536A KR101499203B1 (ko) | 2005-05-31 | 2006-05-31 | 유기금속 화학기상증착법을 이용한 평면 비극성 (1100) m면 갈륨 질화물의 성장 |
| EP06760566A EP1897120A4 (en) | 2005-05-31 | 2006-05-31 | GROWTH OF PLANAR NICHEPOLAR {1-1 0 0} M-LEVEL GALLIUM NITRIDE WITH METAL-ORGANIC CHEMICAL MISTAKING (MOCVD) |
| JP2008514783A JP2008543087A (ja) | 2005-05-31 | 2006-05-31 | 有機金属化学気相成長法(MOCVD)による平坦な無極性{1−100}m面窒化ガリウムの成長方法及び装置 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US68590805P | 2005-05-31 | 2005-05-31 | |
| US60/685,908 | 2005-05-31 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006130622A2 true WO2006130622A2 (en) | 2006-12-07 |
| WO2006130622A3 WO2006130622A3 (en) | 2007-08-02 |
Family
ID=37482235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/020995 Ceased WO2006130622A2 (en) | 2005-05-31 | 2006-05-31 | Growth of planar non-polar{1-1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) |
Country Status (6)
| Country | Link |
|---|---|
| US (3) | US7338828B2 (enExample) |
| EP (1) | EP1897120A4 (enExample) |
| JP (2) | JP2008543087A (enExample) |
| KR (2) | KR101499203B1 (enExample) |
| TW (1) | TWI377602B (enExample) |
| WO (1) | WO2006130622A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009066466A1 (ja) * | 2007-11-21 | 2009-05-28 | Mitsubishi Chemical Corporation | 窒化物半導体および窒化物半導体の結晶成長方法ならびに窒化物半導体発光素子 |
| US9508898B2 (en) | 2014-08-28 | 2016-11-29 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
Families Citing this family (163)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9130119B2 (en) * | 2006-12-11 | 2015-09-08 | The Regents Of The University Of California | Non-polar and semi-polar light emitting devices |
| TWI377602B (en) * | 2005-05-31 | 2012-11-21 | Japan Science & Tech Agency | Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) |
| JP2007277074A (ja) * | 2006-01-10 | 2007-10-25 | Ngk Insulators Ltd | 窒化アルミニウム単結晶の製造方法及び窒化アルミニウム単結晶 |
| GB2436398B (en) * | 2006-03-23 | 2011-08-24 | Univ Bath | Growth method using nanostructure compliant layers and HVPE for producing high quality compound semiconductor materials |
| CN101437987A (zh) * | 2006-04-07 | 2009-05-20 | 加利福尼亚大学董事会 | 生长大表面积氮化镓晶体 |
| TWI334164B (en) * | 2006-06-07 | 2010-12-01 | Ind Tech Res Inst | Method of manufacturing nitride semiconductor substrate and composite material substrate |
| US20080083431A1 (en) * | 2006-10-06 | 2008-04-10 | Mark Schwarze | Device and method for clearing debris from the front of a hood in a mechanized sweepers |
| US9064706B2 (en) * | 2006-11-17 | 2015-06-23 | Sumitomo Electric Industries, Ltd. | Composite of III-nitride crystal on laterally stacked substrates |
| JP2010512661A (ja) * | 2006-12-11 | 2010-04-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 高特性無極性iii族窒化物光デバイスの有機金属化学気相成長法(mocvd)による成長 |
| US8458262B2 (en) * | 2006-12-22 | 2013-06-04 | At&T Mobility Ii Llc | Filtering spam messages across a communication network |
| GB0701069D0 (en) * | 2007-01-19 | 2007-02-28 | Univ Bath | Nanostructure template and production of semiconductors using the template |
| US7598108B2 (en) * | 2007-07-06 | 2009-10-06 | Sharp Laboratories Of America, Inc. | Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers |
| US8652947B2 (en) * | 2007-09-26 | 2014-02-18 | Wang Nang Wang | Non-polar III-V nitride semiconductor and growth method |
| US8097081B2 (en) * | 2008-06-05 | 2012-01-17 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
| US8871024B2 (en) | 2008-06-05 | 2014-10-28 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
| US20110180781A1 (en) * | 2008-06-05 | 2011-07-28 | Soraa, Inc | Highly Polarized White Light Source By Combining Blue LED on Semipolar or Nonpolar GaN with Yellow LED on Semipolar or Nonpolar GaN |
| US9157167B1 (en) | 2008-06-05 | 2015-10-13 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
| US8847249B2 (en) * | 2008-06-16 | 2014-09-30 | Soraa, Inc. | Solid-state optical device having enhanced indium content in active regions |
| US8303710B2 (en) * | 2008-06-18 | 2012-11-06 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
| US20100006873A1 (en) * | 2008-06-25 | 2010-01-14 | Soraa, Inc. | HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN |
| US20090320745A1 (en) * | 2008-06-25 | 2009-12-31 | Soraa, Inc. | Heater device and method for high pressure processing of crystalline materials |
| WO2011044554A1 (en) | 2009-10-09 | 2011-04-14 | Soraa, Inc. | Method for synthesis of high quality large area bulk gallium based crystals |
| US20100003492A1 (en) * | 2008-07-07 | 2010-01-07 | Soraa, Inc. | High quality large area bulk non-polar or semipolar gallium based substrates and methods |
| US8805134B1 (en) | 2012-02-17 | 2014-08-12 | Soraa Laser Diode, Inc. | Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices |
| US8673074B2 (en) * | 2008-07-16 | 2014-03-18 | Ostendo Technologies, Inc. | Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE) |
| US7875534B2 (en) * | 2008-07-21 | 2011-01-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Realizing N-face III-nitride semiconductors by nitridation treatment |
| US8284810B1 (en) | 2008-08-04 | 2012-10-09 | Soraa, Inc. | Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods |
| JP2011530194A (ja) | 2008-08-04 | 2011-12-15 | ソラア インコーポレーテッド | 物質および蛍光体を含んだ非分極性あるいは半極性のガリウムを用いた白色灯デバイス |
| US8323405B2 (en) * | 2008-08-07 | 2012-12-04 | Soraa, Inc. | Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer |
| US8979999B2 (en) * | 2008-08-07 | 2015-03-17 | Soraa, Inc. | Process for large-scale ammonothermal manufacturing of gallium nitride boules |
| US10036099B2 (en) | 2008-08-07 | 2018-07-31 | Slt Technologies, Inc. | Process for large-scale ammonothermal manufacturing of gallium nitride boules |
| US8021481B2 (en) * | 2008-08-07 | 2011-09-20 | Soraa, Inc. | Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride |
| US8430958B2 (en) * | 2008-08-07 | 2013-04-30 | Soraa, Inc. | Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride |
| US8377796B2 (en) | 2008-08-11 | 2013-02-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | III-V compound semiconductor epitaxy from a non-III-V substrate |
| US8803189B2 (en) * | 2008-08-11 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | III-V compound semiconductor epitaxy using lateral overgrowth |
| US8148801B2 (en) | 2008-08-25 | 2012-04-03 | Soraa, Inc. | Nitride crystal with removable surface layer and methods of manufacture |
| US20100295088A1 (en) * | 2008-10-02 | 2010-11-25 | Soraa, Inc. | Textured-surface light emitting diode and method of manufacture |
| US8354679B1 (en) | 2008-10-02 | 2013-01-15 | Soraa, Inc. | Microcavity light emitting diode method of manufacture |
| US8455894B1 (en) | 2008-10-17 | 2013-06-04 | Soraa, Inc. | Photonic-crystal light emitting diode and method of manufacture |
| US20110203514A1 (en) * | 2008-11-07 | 2011-08-25 | The Regents Of The University Of California | Novel vessel designs and relative placements of the source material and seed crystals with respect to the vessel for the ammonothermal growth of group-iii nitride crystals |
| TWI384548B (zh) * | 2008-11-10 | 2013-02-01 | Univ Nat Central | 氮化物結晶膜的製造方法、氮化物薄膜以及基板結構 |
| US8987156B2 (en) | 2008-12-12 | 2015-03-24 | Soraa, Inc. | Polycrystalline group III metal nitride with getter and method of making |
| USRE47114E1 (en) | 2008-12-12 | 2018-11-06 | Slt Technologies, Inc. | Polycrystalline group III metal nitride with getter and method of making |
| US8878230B2 (en) * | 2010-03-11 | 2014-11-04 | Soraa, Inc. | Semi-insulating group III metal nitride and method of manufacture |
| US9543392B1 (en) | 2008-12-12 | 2017-01-10 | Soraa, Inc. | Transparent group III metal nitride and method of manufacture |
| US8461071B2 (en) * | 2008-12-12 | 2013-06-11 | Soraa, Inc. | Polycrystalline group III metal nitride with getter and method of making |
| US20110100291A1 (en) * | 2009-01-29 | 2011-05-05 | Soraa, Inc. | Plant and method for large-scale ammonothermal manufacturing of gallium nitride boules |
| TWI380368B (en) * | 2009-02-04 | 2012-12-21 | Univ Nat Chiao Tung | Manufacture method of a multilayer structure having non-polar a-plane {11-20} iii-nitride layer |
| US20110179993A1 (en) * | 2009-03-06 | 2011-07-28 | Akira Inoue | Crystal growth process for nitride semiconductor, and method for manufacturing semiconductor device |
| US8252662B1 (en) | 2009-03-28 | 2012-08-28 | Soraa, Inc. | Method and structure for manufacture of light emitting diode devices using bulk GaN |
| US8299473B1 (en) | 2009-04-07 | 2012-10-30 | Soraa, Inc. | Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors |
| US8242522B1 (en) | 2009-05-12 | 2012-08-14 | Soraa, Inc. | Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm |
| US8837545B2 (en) | 2009-04-13 | 2014-09-16 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
| US8634442B1 (en) | 2009-04-13 | 2014-01-21 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
| US8254425B1 (en) | 2009-04-17 | 2012-08-28 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
| US8294179B1 (en) | 2009-04-17 | 2012-10-23 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
| US9531164B2 (en) | 2009-04-13 | 2016-12-27 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
| US8416825B1 (en) | 2009-04-17 | 2013-04-09 | Soraa, Inc. | Optical device structure using GaN substrates and growth structure for laser applications |
| US8110889B2 (en) * | 2009-04-28 | 2012-02-07 | Applied Materials, Inc. | MOCVD single chamber split process for LED manufacturing |
| CN101560692A (zh) * | 2009-05-13 | 2009-10-21 | 南京大学 | 一种非极性面InN材料的生长方法 |
| US8306081B1 (en) | 2009-05-27 | 2012-11-06 | Soraa, Inc. | High indium containing InGaN substrates for long wavelength optical devices |
| US10108079B2 (en) | 2009-05-29 | 2018-10-23 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
| US8427590B2 (en) | 2009-05-29 | 2013-04-23 | Soraa, Inc. | Laser based display method and system |
| US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
| US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
| US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
| US8247887B1 (en) | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
| US9829780B2 (en) | 2009-05-29 | 2017-11-28 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
| JP2011016676A (ja) * | 2009-07-07 | 2011-01-27 | Sumitomo Electric Ind Ltd | 窒化物半導体基板の製造方法 |
| EP2456814A1 (en) | 2009-07-24 | 2012-05-30 | Ticona LLC | Thermally conductive thermoplastic resin compositions and related applications |
| US8980984B2 (en) | 2009-07-24 | 2015-03-17 | Ticona Llc | Thermally conductive polymer compositions and articles made therefrom |
| US8153475B1 (en) | 2009-08-18 | 2012-04-10 | Sorra, Inc. | Back-end processes for substrates re-use |
| US20110056429A1 (en) * | 2009-08-21 | 2011-03-10 | Soraa, Inc. | Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices |
| US8207554B2 (en) * | 2009-09-11 | 2012-06-26 | Soraa, Inc. | System and method for LED packaging |
| US8314429B1 (en) | 2009-09-14 | 2012-11-20 | Soraa, Inc. | Multi color active regions for white light emitting diode |
| US8355418B2 (en) | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
| US8750342B1 (en) | 2011-09-09 | 2014-06-10 | Soraa Laser Diode, Inc. | Laser diodes with scribe structures |
| US9293644B2 (en) | 2009-09-18 | 2016-03-22 | Soraa, Inc. | Power light emitting diode and method with uniform current density operation |
| US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
| CN107256915A (zh) | 2009-09-18 | 2017-10-17 | 天空公司 | 发光二极管器件 |
| US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
| US20110186887A1 (en) * | 2009-09-21 | 2011-08-04 | Soraa, Inc. | Reflection Mode Wavelength Conversion Material for Optical Devices Using Non-Polar or Semipolar Gallium Containing Materials |
| US8435347B2 (en) | 2009-09-29 | 2013-05-07 | Soraa, Inc. | High pressure apparatus with stackable rings |
| US8269245B1 (en) | 2009-10-30 | 2012-09-18 | Soraa, Inc. | Optical device with wavelength selective reflector |
| US8629065B2 (en) * | 2009-11-06 | 2014-01-14 | Ostendo Technologies, Inc. | Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE) |
| WO2011058968A1 (ja) * | 2009-11-10 | 2011-05-19 | 株式会社トクヤマ | 積層体の製造方法 |
| CN102422391B (zh) * | 2009-11-12 | 2013-11-27 | 松下电器产业株式会社 | 氮化物半导体元件的制造方法 |
| US20110215348A1 (en) | 2010-02-03 | 2011-09-08 | Soraa, Inc. | Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials |
| US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
| US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
| US20110186874A1 (en) * | 2010-02-03 | 2011-08-04 | Soraa, Inc. | White Light Apparatus and Method |
| US8716049B2 (en) * | 2010-02-23 | 2014-05-06 | Applied Materials, Inc. | Growth of group III-V material layers by spatially confined epitaxy |
| US9927611B2 (en) | 2010-03-29 | 2018-03-27 | Soraa Laser Diode, Inc. | Wearable laser based display method and system |
| US8451876B1 (en) | 2010-05-17 | 2013-05-28 | Soraa, Inc. | Method and system for providing bidirectional light sources with broad spectrum |
| US9564320B2 (en) | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
| US8803452B2 (en) | 2010-10-08 | 2014-08-12 | Soraa, Inc. | High intensity light source |
| US8729559B2 (en) | 2010-10-13 | 2014-05-20 | Soraa, Inc. | Method of making bulk InGaN substrates and devices thereon |
| US8816319B1 (en) | 2010-11-05 | 2014-08-26 | Soraa Laser Diode, Inc. | Method of strain engineering and related optical device using a gallium and nitrogen containing active region |
| US8975615B2 (en) | 2010-11-09 | 2015-03-10 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material |
| US9048170B2 (en) | 2010-11-09 | 2015-06-02 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment |
| US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
| US9318875B1 (en) | 2011-01-24 | 2016-04-19 | Soraa Laser Diode, Inc. | Color converting element for laser diode |
| US9025635B2 (en) | 2011-01-24 | 2015-05-05 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a support member |
| US9595813B2 (en) | 2011-01-24 | 2017-03-14 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a substrate member |
| US9093820B1 (en) | 2011-01-25 | 2015-07-28 | Soraa Laser Diode, Inc. | Method and structure for laser devices using optical blocking regions |
| US8643257B2 (en) | 2011-02-11 | 2014-02-04 | Soraa, Inc. | Illumination source with reduced inner core size |
| US8618742B2 (en) * | 2011-02-11 | 2013-12-31 | Soraa, Inc. | Illumination source and manufacturing methods |
| US10036544B1 (en) | 2011-02-11 | 2018-07-31 | Soraa, Inc. | Illumination source with reduced weight |
| US8324835B2 (en) * | 2011-02-11 | 2012-12-04 | Soraa, Inc. | Modular LED lamp and manufacturing methods |
| US8525396B2 (en) * | 2011-02-11 | 2013-09-03 | Soraa, Inc. | Illumination source with direct die placement |
| US8884517B1 (en) | 2011-10-17 | 2014-11-11 | Soraa, Inc. | Illumination sources with thermally-isolated electronics |
| CN102412123B (zh) * | 2011-11-07 | 2013-06-19 | 中山市格兰特实业有限公司火炬分公司 | 一种氮化铝的制备方法 |
| US8482104B2 (en) | 2012-01-09 | 2013-07-09 | Soraa, Inc. | Method for growth of indium-containing nitride films |
| CN102544276A (zh) * | 2012-02-28 | 2012-07-04 | 华南理工大学 | 生长在LiGaO2衬底上的非极性GaN薄膜及其制备方法、应用 |
| US9076896B2 (en) * | 2012-03-21 | 2015-07-07 | Seoul Viosys Co., Ltd. | Method of fabricating nonpolar gallium nitride-based semiconductor layer, nonpolar semiconductor device, and method of fabricating the same |
| JP5811009B2 (ja) * | 2012-03-30 | 2015-11-11 | 豊田合成株式会社 | Iii族窒化物半導体の製造方法及びiii族窒化物半導体 |
| DE202013012940U1 (de) | 2012-05-04 | 2023-01-19 | Soraa, Inc. | LED-Lampen mit verbesserter Lichtqualität |
| JP6069688B2 (ja) * | 2012-06-18 | 2017-02-01 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
| KR101946010B1 (ko) | 2012-10-23 | 2019-02-08 | 삼성전자주식회사 | 대면적 갈륨 나이트라이드 기판을 포함하는 구조체 및 그 제조방법 |
| CN103151247B (zh) * | 2013-03-10 | 2016-01-13 | 北京工业大学 | 一种在r面蓝宝石衬底上制备非极性GaN薄膜方法 |
| US9166372B1 (en) | 2013-06-28 | 2015-10-20 | Soraa Laser Diode, Inc. | Gallium nitride containing laser device configured on a patterned substrate |
| US9574135B2 (en) * | 2013-08-22 | 2017-02-21 | Nanoco Technologies Ltd. | Gas phase enhancement of emission color quality in solid state LEDs |
| US9520695B2 (en) | 2013-10-18 | 2016-12-13 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser device having confinement region |
| US9368939B2 (en) | 2013-10-18 | 2016-06-14 | Soraa Laser Diode, Inc. | Manufacturable laser diode formed on C-plane gallium and nitrogen material |
| US9379525B2 (en) | 2014-02-10 | 2016-06-28 | Soraa Laser Diode, Inc. | Manufacturable laser diode |
| US9362715B2 (en) | 2014-02-10 | 2016-06-07 | Soraa Laser Diode, Inc | Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material |
| EP3103144A1 (en) | 2014-02-05 | 2016-12-14 | Soraa, Inc. | High-performance led fabrication |
| US9209596B1 (en) | 2014-02-07 | 2015-12-08 | Soraa Laser Diode, Inc. | Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates |
| US9871350B2 (en) | 2014-02-10 | 2018-01-16 | Soraa Laser Diode, Inc. | Manufacturable RGB laser diode source |
| US9520697B2 (en) | 2014-02-10 | 2016-12-13 | Soraa Laser Diode, Inc. | Manufacturable multi-emitter laser diode |
| CN104600162B (zh) * | 2014-03-24 | 2016-01-27 | 上海卓霖半导体科技有限公司 | 基于lao衬底的非极性蓝光led外延片的制备方法 |
| US9564736B1 (en) | 2014-06-26 | 2017-02-07 | Soraa Laser Diode, Inc. | Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode |
| US9246311B1 (en) | 2014-11-06 | 2016-01-26 | Soraa Laser Diode, Inc. | Method of manufacture for an ultraviolet laser diode |
| US12126143B2 (en) | 2014-11-06 | 2024-10-22 | Kyocera Sld Laser, Inc. | Method of manufacture for an ultraviolet emitting optoelectronic device |
| US9653642B1 (en) | 2014-12-23 | 2017-05-16 | Soraa Laser Diode, Inc. | Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes |
| US9666677B1 (en) | 2014-12-23 | 2017-05-30 | Soraa Laser Diode, Inc. | Manufacturable thin film gallium and nitrogen containing devices |
| US10879673B2 (en) | 2015-08-19 | 2020-12-29 | Soraa Laser Diode, Inc. | Integrated white light source using a laser diode and a phosphor in a surface mount device package |
| US10938182B2 (en) | 2015-08-19 | 2021-03-02 | Soraa Laser Diode, Inc. | Specialized integrated light source using a laser diode |
| US11437774B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | High-luminous flux laser-based white light source |
| US11437775B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | Integrated light source using a laser diode |
| CN108137411B (zh) * | 2015-09-30 | 2021-03-02 | 日本碍子株式会社 | 外延生长用取向氧化铝基板 |
| US9787963B2 (en) | 2015-10-08 | 2017-10-10 | Soraa Laser Diode, Inc. | Laser lighting having selective resolution |
| US9608160B1 (en) | 2016-02-05 | 2017-03-28 | International Business Machines Corporation | Polarization free gallium nitride-based photonic devices on nanopatterned silicon |
| CN106268521B (zh) * | 2016-08-29 | 2021-07-16 | 河南飞孟金刚石工业有限公司 | 一种能够提高多晶金刚石产量的合成工艺 |
| CN106981415A (zh) * | 2017-04-19 | 2017-07-25 | 华南理工大学 | GaN高电子迁移率晶体管的氮化镓薄膜及其纳米外延过生长方法 |
| EP3655989A1 (en) * | 2017-07-20 | 2020-05-27 | Swegan AB | A heterostructure for a high electron mobility transistor and a method of producing the same |
| US10771155B2 (en) | 2017-09-28 | 2020-09-08 | Soraa Laser Diode, Inc. | Intelligent visible light with a gallium and nitrogen containing laser source |
| US10222474B1 (en) | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
| CN108231924A (zh) * | 2018-02-28 | 2018-06-29 | 华南理工大学 | 生长在r面蓝宝石衬底上的非极性AlGaN基MSM型紫外探测器及其制备方法 |
| US10551728B1 (en) | 2018-04-10 | 2020-02-04 | Soraa Laser Diode, Inc. | Structured phosphors for dynamic lighting |
| US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
| US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
| US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
| US12152742B2 (en) | 2019-01-18 | 2024-11-26 | Kyocera Sld Laser, Inc. | Laser-based light guide-coupled wide-spectrum light system |
| US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
| US11228158B2 (en) | 2019-05-14 | 2022-01-18 | Kyocera Sld Laser, Inc. | Manufacturable laser diodes on a large area gallium and nitrogen containing substrate |
| US10903623B2 (en) | 2019-05-14 | 2021-01-26 | Soraa Laser Diode, Inc. | Method and structure for manufacturable large area gallium and nitrogen containing substrate |
| EP3812487A1 (en) | 2019-10-25 | 2021-04-28 | Xie, Fengjie | Non-polar iii-nitride binary and ternary materials, method for obtaining thereof and uses |
| JP2021195299A (ja) * | 2020-06-09 | 2021-12-27 | 信越化学工業株式会社 | Iii族窒化物系エピタキシャル成長用基板とその製造方法 |
| US12191626B1 (en) | 2020-07-31 | 2025-01-07 | Kyocera Sld Laser, Inc. | Vertically emitting laser devices and chip-scale-package laser devices and laser-based, white light emitting devices |
| US11688601B2 (en) | 2020-11-30 | 2023-06-27 | International Business Machines Corporation | Obtaining a clean nitride surface by annealing |
| CN112981368B (zh) * | 2021-02-03 | 2022-06-07 | 北航(四川)西部国际创新港科技有限公司 | 一种改进的cvd设备、以及用改进的cvd设备实现共渗沉积铝硅涂层的制备方法 |
| CN114999952B (zh) * | 2022-06-10 | 2025-09-09 | 镓特半导体科技(上海)有限公司 | 氮化镓衬底中m面的确认方法及氮化镓衬底的切割方法 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020084467A1 (en) | 1997-09-30 | 2002-07-04 | Krames Michael R. | Nitride semiconductor device with reduced polarization fields |
Family Cites Families (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6440823B1 (en) * | 1994-01-27 | 2002-08-27 | Advanced Technology Materials, Inc. | Low defect density (Ga, Al, In)N and HVPE process for making same |
| US5679152A (en) * | 1994-01-27 | 1997-10-21 | Advanced Technology Materials, Inc. | Method of making a single crystals Ga*N article |
| JPH09219540A (ja) * | 1996-02-07 | 1997-08-19 | Rikagaku Kenkyusho | GaN薄膜の形成方法 |
| US6072197A (en) * | 1996-02-23 | 2000-06-06 | Fujitsu Limited | Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy |
| US5923950A (en) * | 1996-06-14 | 1999-07-13 | Matsushita Electric Industrial Co., Inc. | Method of manufacturing a semiconductor light-emitting device |
| EP0942459B1 (en) * | 1997-04-11 | 2012-03-21 | Nichia Corporation | Method of growing nitride semiconductors |
| US6069021A (en) * | 1997-05-14 | 2000-05-30 | Showa Denko K.K. | Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer |
| JP3813740B2 (ja) | 1997-07-11 | 2006-08-23 | Tdk株式会社 | 電子デバイス用基板 |
| US6201262B1 (en) * | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
| JPH11297631A (ja) * | 1998-04-14 | 1999-10-29 | Matsushita Electron Corp | 窒化物系化合物半導体の成長方法 |
| US6064078A (en) * | 1998-05-22 | 2000-05-16 | Xerox Corporation | Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities |
| WO1999066565A1 (en) | 1998-06-18 | 1999-12-23 | University Of Florida | Method and apparatus for producing group-iii nitrides |
| JP2000068609A (ja) * | 1998-08-24 | 2000-03-03 | Ricoh Co Ltd | 半導体基板および半導体レーザ |
| JP3592553B2 (ja) | 1998-10-15 | 2004-11-24 | 株式会社東芝 | 窒化ガリウム系半導体装置 |
| US20010047751A1 (en) | 1998-11-24 | 2001-12-06 | Andrew Y. Kim | Method of producing device quality (a1) ingap alloys on lattice-mismatched substrates |
| JP4097343B2 (ja) * | 1999-01-26 | 2008-06-11 | 日亜化学工業株式会社 | 窒化物半導体レーザ素子の製造方法 |
| US20010042503A1 (en) | 1999-02-10 | 2001-11-22 | Lo Yu-Hwa | Method for design of epitaxial layer and substrate structures for high-quality epitaxial growth on lattice-mismatched substrates |
| JP2001007394A (ja) * | 1999-06-18 | 2001-01-12 | Ricoh Co Ltd | 半導体基板およびその作製方法および半導体発光素子 |
| JP2001160656A (ja) | 1999-12-01 | 2001-06-12 | Sharp Corp | 窒化物系化合物半導体装置 |
| JP3946427B2 (ja) | 2000-03-29 | 2007-07-18 | 株式会社東芝 | エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法 |
| JP3968968B2 (ja) | 2000-07-10 | 2007-08-29 | 住友電気工業株式会社 | 単結晶GaN基板の製造方法 |
| JP2002076023A (ja) * | 2000-09-01 | 2002-03-15 | Nec Corp | 半導体装置 |
| US6649287B2 (en) * | 2000-12-14 | 2003-11-18 | Nitronex Corporation | Gallium nitride materials and methods |
| US7501023B2 (en) | 2001-07-06 | 2009-03-10 | Technologies And Devices, International, Inc. | Method and apparatus for fabricating crack-free Group III nitride semiconductor materials |
| US7105865B2 (en) | 2001-09-19 | 2006-09-12 | Sumitomo Electric Industries, Ltd. | AlxInyGa1−x−yN mixture crystal substrate |
| WO2003043150A1 (en) * | 2001-10-26 | 2003-05-22 | Ammono Sp.Zo.O. | Light emitting element structure using nitride bulk single crystal layer |
| IL161420A0 (en) * | 2001-10-26 | 2004-09-27 | Ammono Sp Zoo | Substrate for epitaxy |
| KR101363377B1 (ko) | 2002-04-15 | 2014-02-14 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 무극성 질화 갈륨 박막의 전위 감소 |
| US7208393B2 (en) * | 2002-04-15 | 2007-04-24 | The Regents Of The University Of California | Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy |
| US20060138431A1 (en) * | 2002-05-17 | 2006-06-29 | Robert Dwilinski | Light emitting device structure having nitride bulk single crystal layer |
| JP4201541B2 (ja) | 2002-07-19 | 2008-12-24 | 豊田合成株式会社 | 半導体結晶の製造方法及びiii族窒化物系化合物半導体発光素子の製造方法 |
| US7186302B2 (en) | 2002-12-16 | 2007-03-06 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
| US7427555B2 (en) | 2002-12-16 | 2008-09-23 | The Regents Of The University Of California | Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy |
| US7808011B2 (en) * | 2004-03-19 | 2010-10-05 | Koninklijke Philips Electronics N.V. | Semiconductor light emitting devices including in-plane light emitting layers |
| US7432142B2 (en) | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
| TWI377602B (en) * | 2005-05-31 | 2012-11-21 | Japan Science & Tech Agency | Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) |
| TW200703463A (en) | 2005-05-31 | 2007-01-16 | Univ California | Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO) |
-
2006
- 2006-05-30 TW TW095119277A patent/TWI377602B/zh active
- 2006-05-31 KR KR1020127010536A patent/KR101499203B1/ko active Active
- 2006-05-31 JP JP2008514783A patent/JP2008543087A/ja active Pending
- 2006-05-31 EP EP06760566A patent/EP1897120A4/en not_active Withdrawn
- 2006-05-31 US US11/444,083 patent/US7338828B2/en active Active
- 2006-05-31 WO PCT/US2006/020995 patent/WO2006130622A2/en not_active Ceased
- 2006-05-31 KR KR1020077030279A patent/KR20080014077A/ko not_active Abandoned
-
2007
- 2007-10-10 US US11/870,115 patent/US8097481B2/en active Active
-
2011
- 2011-12-07 US US13/313,335 patent/US8795440B2/en active Active
-
2013
- 2013-11-29 JP JP2013246875A patent/JP2014099616A/ja active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020084467A1 (en) | 1997-09-30 | 2002-07-04 | Krames Michael R. | Nitride semiconductor device with reduced polarization fields |
Non-Patent Citations (6)
| Title |
|---|
| "Epitaxial relationships between GaN and A1203(0001) substrates", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 70, no. 5, 3 February 1997 (1997-02-03), pages 643 |
| CHAKRABORTY A ET AL.: "Demonstration of non-polar m-plane InGan/GaN light-emitting diodes on free-standing m-plane GaN substrates", JAPANESE JOURNAL OF APPLIED PHYSICS, PART 2 (LETTERS) JAPAN SOC. APPL. PHYS JAPAN, vol. 44, no. 1-7, 14 January 2005 (2005-01-14), pages L173 - L175 |
| HASKELL B A ET AL.: "Microstructure and enhanced morphology of planar non-polar m-plane GaN grown by hydride vapor phase epitaxy", JOURNAL OF ELECTRONIC MATERIALS TMS; IEEE USA, vol. 34, no. 4, April 2005 (2005-04-01), pages 357 - 360 |
| See also references of EP1897120A4 |
| WALTEREIT P ET AL.: "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes", NATURE MACMILLAN MAGAZINES UK, vol. 406, no. 6798, 24 August 2000 (2000-08-24), pages 865 - 868, XP002591136 |
| XU KE ET AL.: "MOCVD growth of GaN on LiAlO2 (100) substrates", PHYSICA STATUS SOLIDI A WILEY-VCH GERMANY, vol. 176, no. 1, 16 November 1999 (1999-11-16), pages 589 - 593 |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009066466A1 (ja) * | 2007-11-21 | 2009-05-28 | Mitsubishi Chemical Corporation | 窒化物半導体および窒化物半導体の結晶成長方法ならびに窒化物半導体発光素子 |
| JP2009239250A (ja) * | 2007-11-21 | 2009-10-15 | Mitsubishi Chemicals Corp | 窒化物半導体および窒化物半導体の結晶成長方法ならびに窒化物半導体発光素子 |
| US8652948B2 (en) | 2007-11-21 | 2014-02-18 | Mitsubishi Chemical Corporation | Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element |
| JP2014209664A (ja) * | 2007-11-21 | 2014-11-06 | 三菱化学株式会社 | 窒化物半導体の結晶成長方法および窒化物半導体発光素子 |
| KR101502195B1 (ko) * | 2007-11-21 | 2015-03-12 | 미쓰비시 가가꾸 가부시키가이샤 | 질화물 반도체 및 질화물 반도체의 결정 성장 방법 그리고 질화물 반도체 발광 소자 |
| US9508898B2 (en) | 2014-08-28 | 2016-11-29 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1897120A4 (en) | 2011-08-31 |
| US8097481B2 (en) | 2012-01-17 |
| US8795440B2 (en) | 2014-08-05 |
| JP2014099616A (ja) | 2014-05-29 |
| JP2008543087A (ja) | 2008-11-27 |
| US7338828B2 (en) | 2008-03-04 |
| TW200703470A (en) | 2007-01-16 |
| EP1897120A2 (en) | 2008-03-12 |
| WO2006130622A3 (en) | 2007-08-02 |
| TWI377602B (en) | 2012-11-21 |
| KR101499203B1 (ko) | 2015-03-18 |
| US20080026502A1 (en) | 2008-01-31 |
| US20060270087A1 (en) | 2006-11-30 |
| KR20080014077A (ko) | 2008-02-13 |
| US20120074429A1 (en) | 2012-03-29 |
| KR20120064713A (ko) | 2012-06-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7338828B2 (en) | Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD) | |
| EP2313543B1 (en) | Growth of planar and semi-polar {1 1-2 2} gallium nitride with hydride vapor phase epitaxy (hvpe) | |
| TWI445054B (zh) | 藉由氫化物汽相磊晶術生長減少差排密度之非極性氮化鎵 | |
| US8405128B2 (en) | Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition | |
| US8629065B2 (en) | Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE) | |
| WO2006099138A2 (en) | Technique for the growth of planar semi-polar gallium nitride | |
| US7575947B2 (en) | Method for enhancing growth of semi-polar (Al,In,Ga,B)N via metalorganic chemical vapor deposition | |
| US20120161287A1 (en) | METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION | |
| Speck et al. | Imer et al. | |
| HK1112109B (en) | Technique for the growth of planar semi-polar gallium nitride |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref document number: 2008514783 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006760566 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020077030279 Country of ref document: KR |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020127010536 Country of ref document: KR |