JP2021195299A - Iii族窒化物系エピタキシャル成長用基板とその製造方法 - Google Patents

Iii族窒化物系エピタキシャル成長用基板とその製造方法 Download PDF

Info

Publication number
JP2021195299A
JP2021195299A JP2020207624A JP2020207624A JP2021195299A JP 2021195299 A JP2021195299 A JP 2021195299A JP 2020207624 A JP2020207624 A JP 2020207624A JP 2020207624 A JP2020207624 A JP 2020207624A JP 2021195299 A JP2021195299 A JP 2021195299A
Authority
JP
Japan
Prior art keywords
substrate
group iii
iii nitride
layer
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020207624A
Other languages
English (en)
Inventor
芳宏 久保田
Yoshihiro Kubota
実 川原
Minoru Kawahara
雅人 山田
Masato Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to KR1020227041224A priority Critical patent/KR20230020968A/ko
Priority to EP21822039.0A priority patent/EP4163424A1/en
Priority to PCT/JP2021/015123 priority patent/WO2021250991A1/ja
Priority to US18/008,495 priority patent/US20230340694A1/en
Priority to CN202180041183.XA priority patent/CN115698391A/zh
Priority to TW110120751A priority patent/TW202212291A/zh
Publication of JP2021195299A publication Critical patent/JP2021195299A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】III族窒化物の単結晶を高品質で安価に作製可能なIII族窒化物エピタキシャル成長用基板とその製造方法を提供する。【解決手段】本発明に係るIII族窒化物系エピタキシャル成長用基板は、窒化物セラミックスからなるコアが厚み0.05μm以上1.5μm以下の封止層で包み込まれた構造を有する支持基板と、支持基板の上面に設けられ、0.5μm以上3.0μm以下の厚みを有する平坦化層と、平坦化層の上面に設けられ、0.1μm以上1.5μm以下の厚みを有するIII族窒化物の単結晶からなる種結晶層とを備える。【選択図】図1

Description

本発明は、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGa1−xN(ただし、0.<x<1.0)、窒化ガリウム(GaN)等のIII族窒化物単結晶のエピタキシャル成長に用いるための種基板に関する。
結晶性AlN系、GaN系等のIII族窒化物の基板は広いバンドギャップを有し、短波長の発光性や高耐圧で優れた高周波特性を持つ。このため、III族窒化物の基板は、発光ダイオード(LED)、レーザー、ショットキーダイオード、パワーデバイス、高周波デバイス等のデバイスへの応用に期待されている。特に AlNおよびAlGa1−xN(0.5<x<1.0)の単結晶から作製されたLEDの深紫外線領域(UVC;200〜280nm)の発光波長には殺菌効果が報告されており(非特許文献1)、更なる高品質化、大口径化、低価格化が求められている。
AlNは常圧下では融点を持たないことから、シリコン単結晶等で用いられる一般的な融液法での製造は難しい。
非特許文献2および非特許文献3には、1700〜2250℃、N雰囲気下で、SiCやAlNを種結晶として昇華法(改良レリー法)でAlN単結晶基板を製造する方法が記載されている。しかしながら、結晶成長に高温を要するなどの装置上の制約により、低コスト化が難しい上、φ4インチ以上の大口径化も困難であった。
また、特許文献1には、サファイア基板やAlN基板を下地基板としてハイドライド気相成長(HVPE)法でAlN層を成長させる方法が記載されている。しかしながら、サファイアを下地基板に用いると格子定数の違いに起因するAlN層の転位密度を低減することが困難であった。一方、下地基板として昇華法のAlN基板を使うと転位密度を低減できる反面、下地基板自体が高価なため、低コスト化が困難であった。
ところで、特許文献2には、低廉なAlNセラミックスをSi等で封止した上でシリコン<111>単結晶を薄膜転写した複合基板上にGaN単結晶などのIII族窒化物をエピタキシャル成長させる方法が記載されている。しかしながら、この方法で例えばAlNやAlGa1−xN(0<x<1)の単結晶をエピタキシャル成膜すると、転位密度を低減することが難しく、また成膜基板の反りを小さくするのも難しい。これらは、後工程のデバイス製作における特性劣化や歩留まり低下に影響し、結果的に作製されるLEDの高品質化、低コスト化の妨げとなっていた。
そこで、本発明者等はこれ等の欠点を排除すべく、鋭意検討した結果、本発明に至ったものである。
特許第6042545号 特許第6626607号
LEDs Magazine Japan;2016年12月、p30〜p31 SEIテクニカルレビュー;No.177号、p88〜p91 フジクラ技報;No.119号、2010年Vol.2、p33〜p38
本発明は上記事情に鑑みなされたものであり、III族窒化物、特に深紫外線領域(UVC;200〜280nm)の発光ダイオード用として好適なAlNやAlGa1−xN(0.5<x<1.0)の単結晶を高品質で安価に作製可能なIII族窒化物エピタキシャル成長用基板とその製法を提供することを目的とする。
上記の課題を解決すべく本発明の実施形態に係るIII族窒化物系エピタキシャル成長用基板は、窒化物セラミックスからなるコアが厚み0.05μm以上1.5μm以下の封止層で包み込まれた構造を有する支持基板と、支持基板の上面に設けられ、0.5μm以上3.0μm以下の厚みを有する第1平坦化層と、第1平坦化層の上面に設けられ、0.1μm以上1.5μm以下の厚みを有するIII族窒化物の単結晶からなる種結晶層とを備える。
また、本発明の他の実施形態に係るIII族窒化物系エピタキシャル成長用基板は、窒化物セラミックスからなるコアが厚み0.05μm以上1.5μm以下の封止層で包み込まれた構造を有する支持基板と、支持基板の上面に設けられ、0.5μm以上3.0μm以下の厚みを有する第1平坦化層と、第1平坦化層の上面に設けられ、0.5μm以下の厚みを有する第2平坦化層と、第2平坦化層の上面に設けられ、0.1μm以上1.5μm以下の厚みを有するIII族窒化物の単結晶からなる種結晶層とを備える。ここで、第2平坦化層は、酸化ケイ素、酸窒化ケイ素、及びヒ化アルミニウムのいずれかを含むとよい。
本発明では、III族窒化物系エピタキシャル成長用基板は、支持基板の下面に応力調整層を更に備えるとよい。
本発明では、コアは、窒化アルミニウムセラミックスであるとよい。また、封止層は、窒化ケイ素を含むとよい。また、第1平坦化層は、酸化ケイ素、酸窒化ケイ素、及びヒ化アルミニウムのいずれかを含むとよい。また、応力調整層が、単体のシリコンを含むとよい。
本発明では、種結晶層は、窒化アルミニウムまたは窒化アルミニウムガリウムであるとよい。そして、種結晶層の波長230nmにおける光透過率は、70%以上であることが好ましい。また、種結晶層の抵抗率は、1×10Ω・cm以上であることが好ましい。
また、本発明の実施形態に係るIII族窒化物系エピタキシャル成長用基板の製造方法は、窒化物セラミックスからなるコアを用意するステップと、コアを包み込むように厚み0.05μm以上1.5μm以下の封止層を成膜して支持基板とするステップと、支持基板の上面に厚み0.5μm以上3.0μm以下の第1平坦化層を成膜するステップと、第1平坦化層の上面に厚み0.1μm以上1.5μm以下のIII族窒化物の単結晶からなる種結晶層を設けるステップとを備える。
本発明の他の実施形態に係るIII族窒化物系エピタキシャル成長用基板の製造方法は、窒化物セラミックスからなるコアを用意するステップと、前記コアを包み込むように厚み0.05μm以上1.5μm以下の封止層を成膜して支持基板とするステップと、前記支持基板の上面に厚み0.5μm以上3.0μm以下の第1平坦化層を成膜するステップと、1面をイオン注入面とするIII族窒化物の単結晶基板を用意するステップと、前記イオン注入面からイオン注入して前記単結晶基板に剥離位置を形成するステップと、前記剥離位置を形成するステップの前または後において、前記単結晶基板における前記イオン注入面の上面に厚み0.5μm以下の第2平坦化層を成膜するステップと、前記第2平坦化層と前記第1平坦化層とを接合して接合基板とするステップと、前記接合基板を前記剥離位置で分離して単結晶基板残部を取り除き、厚み0.1μm以上1.5μm以下のIII族窒化物の単結晶からなる種結晶層を形成するステップとを備える。ここで第2平坦化層をプラズマCVD法、LPCVD法、および低圧MOCVD法のいずれかで成膜するとよい。また、第2平坦化層は酸化ケイ素、酸窒化ケイ素、およびヒ化アルミニウムのいずれかを含むとよい。
本発明では、III族窒化物系エピタキシャル成長用基板の製造方法は、支持基板の下面に応力調整層を成膜するステップを更に備えるとよい。
本発明では、封止層をLPCVD法で成膜するとよい。また、第1平坦化層をプラズマCVD法、LPCVD法、および低圧MOCVD法のいずれかで成膜するとよい。
本発明では、種結晶層を設けるステップは、1面をイオン注入面とするIII族窒化物の単結晶基板を用意するステップと、イオン注入面からイオン注入して単結晶基板に剥離位置を形成するステップと、イオン注入面と第1平坦化層とを接合して接合基板するステップと、接合基板を剥離位置で種結晶層と単結晶基板残部とに分離するステップとを備えるとよい。
本発明では、単結晶基板を用意するステップにおいて、単結晶基板を、昇華法によって作製するとよい。
あるいは、単結晶基板を用意するステップにおいて、MOCVD法、HVPE法、およびTHVPE法のいずれかによって、下地基板の上にエピタキシャル層をエピタキシャル成長したものを単結晶基板とするとよい。この場合、下地基板は、昇華法によって作製されたものとするとよい。また、剥離位置を形成するステップにおいて、剥離位置をエピタキシャル層内に形成するとよい。また、単結晶基板残部を、下地基板として再利用するとよい。あるいは、単結晶基板残部を、更に別のIII族窒化物系複合基板の製造における単結晶基板として再利用するとよい。
本発明では、コアは、窒化アルミニウムセラミックスであるとよい。また、封止層は、窒化ケイ素を含むとよい。また、第1平坦化層は、酸化ケイ素、酸窒化ケイ素、及びヒ化アルミニウムのいずれかを含むとよい。また、応力調整層が、単体のシリコンを含むとよい。
本発明では、種結晶層は、窒化アルミニウムまたは窒化アルミニウムガリウムであるとよい。そして、種結晶層の波長230nmにおける光透過率は、70%以上であることが好ましい。また、種結晶層の抵抗率は、1×10Ω・cm以上であることが好ましい。
本発明によれば、高品質なIII族窒化物の単結晶を作製可能なIII族窒化物エピタキシャル成長用基板を安価に提供することができる。
複合基板1の断面構造を示す図である。 複合基板1を製造する手順を示す図である。 単結晶基板20として用いられる昇華法で作製した基板を示す模式図である。 単結晶基板20として用いられる単結晶エピタキシャル層基板の構造を示す模式図である。 複合基板1Aの断面構造を示す図である。 複合基板1Aを製造する手順を示す図である。
以下、本発明の実施形態について詳細に説明するが、本発明は、これらに限定されるものではない。
〔第1実施形態〕
本発明の第1実施形態に係る複合基板1の断面構造を図1に示す。図1に示した複合基板1は、支持基板3上に第1平坦化層4及びIII族窒化物の単結晶からなる種結晶層2が積層された構造を備えている。また、必要に応じて、支持基板3の第1平坦化層4が積層された面とは反対の面(下面)には、応力調整層5が設けられる。
支持基板3は、当該支持基板3の芯材となるコア31と、コア31を覆う封止層32とを備える。
コア31に用いる材料は、耐熱性や安定性に優れ、大口径サイズを安価に入手できる窒化物セラミックスが好ましい。窒化物セラミックスとしては、窒化アルミニウム(AlN)、窒化ケイ素(Si)、窒化ガリウム(GaN)、窒化ホウ素(BN)またはこれらの混合体などを用いることができる。AlNは、目的のIII族窒化物結晶と格子定数や熱膨張係数が近いので変形の少ない高品質のIII族窒化物結晶を作製することが可能であり、特に好ましい。また、AlNは、熱伝導性が高いため、加熱を含む後工程における熱伝達に優れる点でも好ましい。
コア31の形状およびサイズは、厚さ200〜1000μmのウエハー形状とすると、通常の半導体プロセスラインにのせることができるので好ましい。加えて、コア31の表面を鏡面仕上げとしておくと、支持基板3の表面の凹凸を低減でき好ましい。
AlNをコア31として用いる場合、AlNセラミックスの製造方法は種々あるが、AlN粉と焼結助剤、有機バインダー、溶剤などを混合して、ウエハー状のグリーンシートを作製、脱脂した後にN雰囲気下で焼結して研磨する、所謂シート成型/常圧焼結法を用いることが生産性を高くできる点で好ましい。焼結助剤としては、Y、Al、CaO等から選ばれるが、特にYを焼結助剤として含むと焼結後の基板の熱伝導性が高く発現するため好適である。
封止層32は、コア全体を覆うように隙間無く包み込んで封止する層であり、0.05μm以上1.5μm以下の厚みを有する。このような構造とすることで、コア31のセラミックス材料に起因する物質が支持基板3の外部に漏出するのを防ぐことができる。
例えばAlNセラミックスをコア31として用いるとAlNや焼結助剤として加えたYに起因する元素物質や、セラミックスを焼結する際に用いた断熱材や炉材、容器などから不純物としてセラミックスに取り込まれた物質が漏出する可能性がある。このような物質が支持基板3の外に漏出すると、目的とするAlNをエピタキシャル成長させる際に不純物として取り込まれて、品質を低下させる要因となりやすい。
封止層32の厚みが厚いと後工程で加熱冷却を繰り返した際に封止層32の表層と内部との間の熱応力に耐えられなくなり、剥離が生じやすい。したがって種々の膜を選び、組み合わせたとしても封止層32は1.5μmを超える厚みは好ましくない。一方、コア31に起因する物質を封止する機能としては厚みが0.05μm未満では不十分である。以上のことから、封止層32の厚みは0.05μm以上1.5μm以下の範囲が好ましい。窒化物セラミックスに起因する材料物質を封止する効果が高いため、封止層32の材料は窒化ケイ素(Si)よりなる膜が好ましい。
封止層32は、緻密な膜となっていると、封止性能が高まるので好ましい。また、封止層32は、焼結助剤などの不純物を含まず、純度が高い膜になっていること好ましい。このようにすることで封止層32は、自体に起因する意図せぬ物質の支持基板3の外への漏出が抑制されるので好ましい。
このような、高純度な膜はMOCVD法、常圧CVD法、LPCVD(低圧CVD)法、スパッター法、などの成膜法を用いて成膜することができる。特にLPCVD法を用いると緻密な膜を形成できるうえ、膜のカバレッジ性に優れるため好ましい。
また、封止層32の材料として窒化ケイ素を用いる際、窒化ケイ素とコアとの密着性を高めるために、酸化ケイ素(SiO)や酸窒化ケイ素(Si)などの膜を封止層の一部としてコア31との間に設けてもよい。しかしその場合でも剥離を避けるため、封止層32全体の厚みは0.05μm以上1.5μm以下の範囲とすることが好ましい。
支持基板3の上面には、封止層32上に厚み0.5μm以上3.0μm以下の第1平坦化層4が積層される。第1平坦化層4を積層することにより、コア31や封止層32などに起因する種々のボイドや凹凸を埋め、種結晶が転写するために十分な平滑性が得られる。ただし、第1平坦化層4の厚みが厚過ぎると反り等の原因になり、好ましくない。このため、第1平坦化層4の厚みは0.5〜3.0μmが好適である。即ち、第1平坦化層4の厚みが0.5μm未満だと支持基板3に生じたボイドや凹凸を十分に埋めることができないため好ましくない。また、第1平坦化層4の厚みが3.0μm以上だと反りが発生し易いため好ましくない。
なお、支持基板3の第1平坦化層4が積層された上面とは反対側の面(下面)には、応力調整層5を設けられる。応力調整層5は、第1平坦化層4を積層することにより生じる応力を相殺し、反りを低減する。
また、第1平坦化層4は支持基板3の種結晶層2を積層する側の片面(上面)のみに積層すればよいが、支持基板の両面(上面および下面)若しくは支持基板全体を覆うように成膜してもよい。このようにすると下面に積層した材料が応力調整層5として作用し、基板上下で第1平坦化層4に起因する応力が構造上相殺されるので基板の反りが更に低減される。
また、応力調整層5として、単体のシリコン(多結晶シリコンなど)を積層してもよい。このようにすることで、静電チャックによる吸着・離脱にも対応した複合基板となる利点がある。
第1平坦化層4の材料は、酸化ケイ素(SiO)、酸化アルミニウム(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)或いは酸窒化ケイ素(Si)や、シリコン(Si)、ヒ化ガリウム(GaAs)、ヒ化アルミニウム(AlAs)等から選ぶとよい。特に、酸化ケイ素(SiO)、酸窒化ケイ素(Si)、ヒ化アルミニウム(AlAs)は、平坦化時の研削や研磨が容易で且つ、目的とするAlN等のIII族窒化物をエピタキシャル成長した後、支持基板3を分離するための犠牲層になり易いので好ましい。
第1平坦化層4の成膜はプラズマCVD法又はLPCVD法、或いは低圧MOCVD法などからその必要膜質と成膜効率から任意に選ぶことができる。積層された第1平坦化層4の膜の状況により、成膜後に焼き締めの熱処理やCMP研磨を施し、種結晶層2の形成に備えられる。
支持基板3の上面に形成された第1平坦化層4の上にはIII族窒化物の単結晶からなる種結晶層2が形成される。種結晶層2は、高品質なIII族窒化物単結晶から剥離することにより形成するとよい。種結晶層2の厚みは0.1μm以上1.5μm以下とすることが好ましい。このようにすることで、高品質な種結晶層2を形成することが可能になる。即ち、III族窒化物単結晶基板に対してイオン注入剥離を適用して高品質な結晶層を薄膜転写することができる。種結晶層2の厚みが0.1μm未満ではイオン注入時のダメージ層が略、その厚みに近いため、良好な種結晶とは成り得ない。また、種結晶層2の厚みが1.5μm以上になるとイオン注入装置が莫大な大きさになり、莫大な投資を必要とし、現実的でない。
このとき使用される高品質のIII族窒化物単結晶とは、昇華法、MOCVD法(有機金属気相成長法)、HVPE(ハイドライド気相成長法)法、およびTHVPE法(トリハライド気相成長法)の何れかによって、エピタキシャル成長した単結晶であることが好ましい。また当該単結晶のEPDは1×10cm−2以下と極めて低い転位密度の結晶であることが好ましい。
種結晶層2の組成は、目的とするエピタキシャル成長させる膜の組成と一致していることが好ましい。例えば、種結晶層2の組成は、深紫外線領域(UVC;200〜280nm)の発光ダイオード用として好適な材料である窒化アルミニウム(AlN)または窒化アルミニウムガリウム(AlGa1−xN(0.5<x<1.0))とすることが好ましい。
目的とするエピタキシャル膜を発光ダイオード等の光学素子に使用する場合、種結晶層2の透明度を高めておくことにより、成長させたエピタキシャル膜を種結晶層2と一体で取り出して、デバイスに加工して利用できる。例えば、深紫外線領域の光学素子に用いる場合、種結晶層2の光透過率を波長230nmにおいて70%以上とすることが好ましく、90%以上とするとより好ましく、95%以上とすることが更に好ましい。
また、種結晶層2の抵抗率は1×10Ω・cm以上とすることが好ましい。このようにすると、種結晶層2上にエピタキシャル成膜された目的材料に取り込まれる不純物を低減でき、目的材料の着色(すなわち光吸収)を抑制することができる。
続いて、図2を参照して、本発明の第1実施形態に係るIII族窒化物系エピタキシャル成長用基板の製造方法の手順を説明する。はじめに、窒化物セラミックスからなるコア31を準備する(図2のS01)。続いて、コア31を包み込むように厚み0.05μm以上1.5μm以下の封止層32を成膜して支持基板3とする(図2のS02)。このとき、封止層32は、LPCVD法で成膜するとよい。
続いて、支持基板3の上面に厚み0.5μm以上3.0μm以下の第1平坦化層4を成膜する(図2のS03)。第1平坦化層4は、プラズマCVD法、LPCVD法、および低圧MOCVD法のいずれかで成膜するとよい。また、支持基板3の下面に応力調整層5を更に成膜する(図2のS04)。なお、第1平坦化層4と応力調整層5は同時に成膜してもよい。
また、S01〜S04とは別に、種結晶層2を剥離転写するためのIII族窒化物の単結晶基板20を用意する(図2のS11)。この単結晶基板20を用意する具体的な手法については後述する。続いて、単結晶基板20の1面(イオン注入面)からイオン注入を行い、単結晶基板20内に剥離位置(脆化層)21を形成する(図2のS12)。このとき注入するイオンは、例えば、H、H 、Ar、He等とするとよい。
次に、単結晶基板20のイオン注入面を、支持基板3上に形成した第1平坦化層4と接合して接合基板とする(図2のS21)。そして、接合基板における単結晶基板20の剥離位置21で、単結晶基板20を分離する(図2のS22)。このようにすることによって、支持基板3の上の第1平坦化層4の上にIII族窒化物の単結晶膜が種結晶層2として薄膜転写され、支持基板3、第1平坦化層4、種結晶層2が積層されたIII族窒化物系複合基板となる。一方、分離されたIII族窒化物の単結晶基板20の残部は、再びこの表面を研磨してイオン注入面とすることによって、更に別のIII族窒化物系複合基板を作製する際の種結晶層を薄膜転写するために繰り返し利用することができる。
なお、III族窒化物の単結晶基板20のイオン注入面を一旦シリコンウエハ等の別の仮支持基板に接合して、分離して種結晶層2が仮支持基板に接合した状態にしておき、この仮支持基板上の種結晶層2を第1平坦化層4に接合した上で、仮支持基板を種結晶層から切り離す工程を行ってもよい。このようにすることで、第1平坦化層4に接合する種結晶層2の上下を反転することができる。
続いて、III族窒化物の単結晶基板20を用意する方法について説明する。III族窒化物の単結晶基板20は、昇華法で作製することができる。昇華法で作製したAlN基板は高価であるが、図3に示すように、0.1μm〜1.5μmの厚みで薄膜転写を行い残った単結晶基板の残部を次の複合基板の作製に再利用することにより繰り返し使用できるので、複合基板の作製にかかるコストを著しく低減できる。
あるいは、図4に示すように、III族窒化物の単結晶基板20として、下地基板22上にIII族窒化物のエピタキシャル層23をMOCVD法、HVPE法、THVPE法のいずれかの方法でエピタキシャル成膜形成したIII族窒化物の単結晶エピタキシャル層基板を用いることができる。この場合、下地基板22には昇華法で作製したIII族窒化物単結晶基板(例えばAlN基板)を用いてもよい。単結晶エピタキシャル層基板を用いる場合、イオン注入による剥離位置21をエピタキシャル層23内に設定するとよい。このようにすれば、昇華法で作製した高価なAlN基板を消費することなく種結晶層2を形成することが可能となり、製造コストを低減できる。加えて、MOCVD法、HVPE法、THVPE法のいずれかの方法でAlGa1−xN単結晶をエピタキシャル成膜形成する場合は、原料ガス組成などを調整することによってAlGa1−xNのxの値を0≦x≦1の間を変化させることができるので、目的とする後工程のエピタキシャル成長に最適な値を選択できる利点がある。
更に、剥離位置をエピタキシャル層内に設定した場合、0.1μm〜1.5μmの厚みで薄膜転写を行い残った単結晶エピタキシャル層基板の残部を次の複合基板の作製に再利用するとよい。このようにすれば単結晶エピタキシャル層基板を繰り返し使用できるので、複合基板の作製にかかるコストを著しく低減できる。また、繰り返し使用の結果、エピタキシャル層部分が薄くなった単結晶エピタキシャル層基板の残部を下地基板として、III族窒化物のエピタキシャル層をMOCVD法、HVPE法、THVPE法のいずれかの方法でエピタキシャル成膜形成することによりエピタキシャル層を再生すれば、最初の下地基板を繰り返し使用することができ、作製コストを更に低減することができる。
〔第2実施形態〕
続いて本発明の第2実施形態を説明する。本実施形態に係る複合基板1Aの特徴は、第1実施形態における第1平坦化層4に加え、第2平坦化層24を備える点にある。なお、それ以外については、上述した第1の実施形態と同様である。第1実施形態と共通の部分については、同一符号を付してその説明を省略する。
図5は、第2実施形態に係る複合基板1Aの断面構造を示している。図5に示した複合基板1Aは、支持基板3上に第1平坦化層4、第2平坦化層24、及びIII族窒化物の単結晶からなる種結晶層2が積層された構造を備えている。また、必要に応じて、支持基板3の第1平坦化層4が積層された面とは反対の面(下面)には、応力調整層5が設けられる。
第2実施形態において、支持基板3、第1平坦化層4、及び応力調整層5は第1実施形態と同様である。支持基板3の上面に形成された第1平坦化層4の上には、第2平坦化層24と、III族窒化物の単結晶からなる種結晶層2が形成される。種結晶層2は、第1実施形態と同様、高品質なIII族窒化物単結晶から剥離することにより形成するとよい。
第2平坦化層24の材料は、酸化ケイ素(SiO)、酸化アルミニウム(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)或いは酸窒化ケイ素(Si)や、シリコン(Si)、ヒ化ガリウム(GaAs)、ヒ化アルミニウム(AlAs)等から選ぶとよい。第2平坦化層24の膜厚は500nm(0.5μm)以下とするとよい。
続いて、図6を参照して、本発明の第2実施形態に係るIII族窒化物系エピタキシャル成長用基板の製造方法の手順を説明する。はじめに、窒化物セラミックスからなるコア31を準備する(図6のS101)。続いて、コア31を包み込むように厚み0.05μm以上1.5μm以下の封止層32を成膜して支持基板3とする(図6のS102)。このとき、封止層32は、LPCVD法で成膜するとよい。
続いて、支持基板3の上面に厚み0.5μm以上3.0μm以下の第1平坦化層4を成膜する(図6のS103)。第1平坦化層4は、プラズマCVD法、LPCVD法、および低圧MOCVD法のいずれかで成膜するとよい。また、支持基板3の下面に応力調整層5を更に成膜する(図6のS104)。なお、第1平坦化層4と応力調整層5は同時に成膜してもよい。
また、S101〜S104とは別に、種結晶層2を剥離転写するためのIII族窒化物の単結晶基板20を用意する(図6のS111)。この単結晶基板20を用意する具体的な手法については第1実施形態と同様である。続いて、単結晶基板20の1面に厚み0.5μm以下の第2平坦化層24を製膜する(図6のS112)。第2平坦化層24は、プラズマCVD法、LPCVD法、および低圧MOCVD法のいずれかで成膜するとよい。
続いて、単結晶基板20における第2平坦化層24が形成された面(イオン注入面)からイオン注入を行い、単結晶基板20内に剥離位置(脆化層)21を形成する(図6のS113)。このとき注入するイオンは、例えば、H、H 、Ar、He等とするとよい。
次に、単結晶基板20上に形成した第2平坦化層24を、支持基板3上に形成した第1平坦化層4と接合して接合基板とする(図6のS121)。そして、接合基板における単結晶基板20の剥離位置21で、単結晶基板20を分離する(図2のS122)。このようにすることによって、支持基板3の上の第1平坦化層4の上に第2平坦化層24とIII族窒化物の単結晶膜である種結晶層2とが薄膜転写され、支持基板3、第1平坦化層4、第2平坦化層24、および種結晶層2が積層されたIII族窒化物系複合基板となる。一方、分離されたIII族窒化物の単結晶基板20の残部は、再びこの表面を研磨してイオン注入面とすることによって、更に別のIII族窒化物系複合基板を作製する際の種結晶層を薄膜転写するために繰り返し利用することができる。なお、第2平坦化層24の成膜(ステップS112)は、単結晶基板20にイオン注入する工程(ステップS113)の後に成膜してもよいが、イオン注入の均一性を考慮すると、イオン注入の前が好ましい
第2実施形態に係る複合基板1Aは、上述のように第1平坦化層4に加え、第2平坦化層24を備え、第1平坦化層4と第2平坦化層24の境界が接合界面となる。このような構成により、第1実施形態における複合基板1と同様の作用効果が得られる他、支持基板3と種結晶層との接合強度を高めることができる。
以下に実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
(支持基板の準備)
(1)AlN粉、100重量部と焼結助剤としてY、5重量部を、有機バインダー、溶剤などと混合して、グリーンシートを作成後、脱脂し、N下、1900℃で焼結した、両面研磨のφ(直径)2インチ×t(厚み)300μmのAlN多結晶セラミックス基板をコアとした。(2)このAlNセラミックス・コア全体をLPCVD法により0.1μm厚の酸窒化珪素層で包み込む様に覆い、その上に更に別LPCVD装置を使い、0.4μm厚の窒化ケイ素(Si)層で全体を包み込むように覆って、封止(封止層の総厚み=0.5μm)し、支持基板とした。
(第1平坦化層の積層)
支持基板の片面(上面)のSi層上に更に平坦化の目的で、プラズマCVD法(ICP―CVD装置)で6μm厚のSiOを積層した。その後、このSiOを1000℃で焼き締めた後、CMP研磨により、2μm厚まで研磨・平坦化し表面粗さRa=0.2nmの第1平坦化層とした。
(種結晶の準備)
種結晶として用いるAlN結晶は、以下の手順による昇華法(改良レリー法)で作成した。まず、高純度化処理をした黒鉛製の成長容器中に更にTaC製坩堝を入れ、そのTaC坩堝の底部に高純度AlN原料を、上部にAlN結晶を設けた。高周波誘導加熱により成長容器と坩堝を加熱し、原料部を2000℃に保ち、原料の昇華分解を行い、上部のAlN結晶上にAlN単結晶を析出させた。このAlN単結晶をスライスし、研磨して厚さ200μmの平滑なφ2インチ基板を作った。この基板の面内8点等間隔で抵抗率を測定したところ、1×10Ω・cm〜3×1011Ω・cmであった。また、波長230nmの光透過率は厚み100μm換算で0.2%であった。
(種結晶層の作製)
このAlN単結晶基板に100keVで水素を深さ0.6μm(剥離位置)、ドース量8×1017cm−2のイオン注入を実施した。このイオン注入後のAlN単結晶基板のイオン注入面と、先に準備しておいた支持基板の第1平坦化層とを接合した。その後、剥離位置(0.6μm部分)で剥離・分離することによってAlN単結晶の種結晶層を支持基板に薄膜転写した。イオン注入と転写の際に種結晶層のAlN単結晶が受けたダメージ部分をCMPで軽く研磨し、AlN種結晶層の厚みを0.4μmとした。この種結晶層の波長230nmの光透過率は99.9%であった。なお、種結晶層の光透過率を測定する際、支持基板が不透明のため、支持基板上に転写したままの状態では透過率を測定できなかったので、別途同条件で石英基板上に転写した種結晶層で代用して光透過率を確認した。この薄膜転写後のAlN単結晶基板の残部(すなわち、支持基板に転写されずに剥離・分離された部分)は、イオン注入を何度も繰り返し実施することにより、多数の種結晶として利用でき、極めて経済的であった。本実施により(1)AlNのセラミック・コアと(2)封止層との構造を有する支持基板に、2μm厚の第1平坦化層及び、0.4μm厚のAlN種結晶層を備えたAlNエピタキシャル成長用基板が得られた。
(基板の評価)
次いで、更に上記基板に対し以下の簡便なAlNエピタキシャル成長用基板としての評価を行った。即ち、上記AlNエピタキシャル用基板にMOCVD法で2μmのAlNを成膜し、転位密度を評価するために溶融アルカリ(KOH+NaOH)エッチング法によりエッチピットを発生させエッチピット密度(Etch pit Density、以下EPDという)の測定を行った。また、結晶性の評価としてX線ロッキングカーブ(XRC)測定を行った。その結果、EPDは1.2×10cm−2と極めて低い転位密度を示した。また、基板の(0002)面のXRC測定での半値幅FWHMは187arcsecとなり、高品質のAlN単結晶が得られた。これらの結果から、本実施例によるエピタキシャル用基板は優れていることが分かる。
[比較例1]
φ2インチのサファイア基板上で実施例1と同様にMOCVD 法で2μmのAlNを成膜した。その結果、EPDは3.5×1010cm−2と極めて大きい転位密度を示した。また、基板の(0002)面のXRC測定でのFWHMは2300arcsecとなり、低品質のAlN単結晶となった。これはサファイアとAlNとの格子定数、熱膨張率が大きく異なるためと考えられる。
[比較例2]
実施例1で準備した昇華法(改良レリー法)AlN結晶のφ2インチ×t150μm基板1枚をそのまま、種結晶を兼ねた下地基板とした。この種結晶は、波長230nmで厚さ100μm換算の光線透過率は0.2%であった。その基板上に実施例1と同様にMOCVD 法で2μmのAlNを成膜した。得られたAlN基板は著しく着色し、EPDは2.5×10cm−2であった。また、基板の(0002)面のXRC測定でのFWHMは300arcsecで、結晶としては略、実施例1に近いレベルであったが、着色が強く深紫外線用のエピタキシャル用基板としては不適であった。実施例1では安価なセラミックス基板をベース基板とし、高価な昇華法のAlN基板を薄膜転写により、多数の薄膜の種結晶として利用でき、極めて経済的であったが、本例では極めて高価な昇華法の基板を再度使用することは難しかった。
[実施例2]
(支持基板の準備)
支持基板の構造として(1)コアは実施例1と同様のAlN多結晶セラミックス基板とした。(2)この封止層としてまず、AlNセラミックス・コア全体をLPCVD法による0.5μm厚のSiO層で包み込む様に覆い、その上に更に別LPCVD装置で、0.8μm厚のSi層で全体を封止(封止層の総厚み=1.3μm)し、支持基板とした。
(第1平坦化層ならびに応力調整層の積層)
支持基板の片面(上面)のSi層上に更に平坦化の目的で、プラズマCVD法(ICP―CVD装置)で6μm厚のSiOを積層した。その後、このSiOを1000℃で焼き締めた後、CMP研磨により、2μm厚まで研磨・平坦化し表面粗さRa=0.2nmの第1平坦化層とした。
支持基板の片面(上面)のSi層上に更に平坦化の目的で、LPCVD法により酸窒化珪素を4μm積層した。その後、CMP研磨で酸窒化珪素層を3μm厚とした。基板全体が約30μmと大きく反ったため、その反りを矯正すべく、下面に応力調整層として、酸窒化珪素をLPCVD法により5μm厚で積層した。その後、静電チャックによる吸着・離脱に対応すべく、更にLPCVD法で多結晶Siを0.2μm付け加えた。その結果、反りが略、解消した。
(種結晶の準備)
実施例1で作成した昇華法によるAlN単結晶基板上に、AlCl、GaCl及びNHを原料にTHVPE法でAl0.9Ga0.1Nの単結晶を500μmエピタキシャル成膜した。このAl0.9Ga0.1Nの単結晶をAlN単結晶基板からワイヤソーで切り分けた。このAl0.9Ga0.1N単結晶を研磨して平滑なφ2インチ基板を作った。また、この切り分けられたAl0.9Ga0.1N単結晶は着色なく、膜厚100μm換算で波長230nmの光の透過率は約70%で、抵抗共々、極めて良好であった。なお、基板の静電チャックによる吸着・離脱にも何ら問題が無かった。
上記のAl0.9Ga0.1N単結晶基板に100keVで水素を深さ1.8μm、ドース量、5×1017cm−2のイオン注入を実施した。このイオン注入後のAl0.9Ga0.1N単結晶基板を、先に準備しておいた支持基板の第1平坦化層へ薄膜転写した。支持基板に転写されたAl0.9Ga0.1N単結晶の上部の剥離部分をCMPで軽く研磨した。Al0.9Ga0.1N単結晶層の厚みを0.2μmとした。この種結晶層の波長230nmの光の透過率は約98%だった。このAl0.9Ga0.1N単結晶は昇華法AlNの下地基板から多くの枚数を薄膜転写して、残部のAlN単結晶基板の膜厚に近くまで減ったときに、再度、AlCl、GaCl及びNHを原料にTHVPE法でAl0.9Ga0.1Nの単結晶の成膜を繰り返し、高価な昇華法AlNの下地基板をリサイクルして使用することができた。上部のAl0.9Ga0.1N単結晶はイオン注入を何度も繰り返し実施することにより、多数の種結晶として利用できて、深紫外線領域用のエピタキシャル用基板、無垢基板として安価で高特性のものが得られた。
実施例1と同様な方法で、(1)AlNのセラミック・コアと(2)封止層との構造を有する支持基板に、3μm厚の第1平坦化層及び、0.2μm厚のAl0.9Ga0.1N種結晶層を備えた深紫外領域に好適な窒化アルミニウムガリウムエピタキシャル成長用基板が得られた。なお、上記の薄膜転写層は透明で着色は全く見られなかった。
(基板の評価)
次いで、更に上記基板を窒化アルミニウムガリウムのエピタキシャル成長用基板として以下の簡便評価を行った。即ち、上記窒化アルミニウムガリウムのエピタキシャル成長用基板にMOCVD法で2μmのAl0.9Ga0.1Nを成膜し、前記同様に転位密度を評価するために溶融アルカリ(KOH+NaOH)エッチング法によりエッチピットを発生させEPDの測定を行った。また、結晶性の評価としてXRC測定を行った。その結果、EPDは0.5×10cm−2と極めて低い転位密度を示した。また、基板の(0002)面のXRC測定でのFWHMは152arcsecと高品質のAl0.9Ga0.1N単結晶が得られた。これらの結果からわかるように、本実施例によるエピタキシャル用基板は、実施例1によるものと同様に優れていた。
[比較例3]
実施例1においてAlN種結晶基板が面内8点等間隔の抵抗率の値が、1×10Ω・cm〜8×10Ω・cmで、且つ、著しく着色した基板だった以外、他は全く同様にした。
その結果、(1)AlNセラミックのコアと(2)封止層との構造を有する支持基板に、2μm厚の第1平坦化層及び、0.4μm厚のAlN種結晶層を備えたAlNエピタキシャル成長用基板が得られたが、薄膜転写層は極めて薄いのにも拘わらず、やや着色が観測された。
次いで、実施例1と同様に上記基板をAlNのエピタキシャル用基板としての簡便な評価を行った。即ち、上記AlNエピタキシャル用基板にMOCVD法で2μmのAlNを成膜し、転位密度を評価するために溶融アルカリ(KOH+NaOH)エッチング法によりEPDの測定を行った。また、結晶性の評価としてXRC測定を行った。その結果、EPDは9.4×10cm−2と極めて多くの転位密度を示した。また、0002XRCのFWHMは1500arcsecと低品質のAlN単結晶となった。これはAlN単結晶中の不純物濃度が高く、着色し、その影響で転位密度も多くなり、また、結晶性も良質とならないためと思われる。
[実施例3]
実施例1において第1平坦化層を2μm厚のSiOから1μm厚のAlAsに変えた以外、他は同じ条件にした。その結果、(1)AlNセラミックのコアと(2)封止層との構造を有する支持基板に、2μm厚のAlAsの第1平坦化層及び、0.4μm厚のAlN種結晶層を備えたAlNエピタキシャル成長用基板が得られた。このAlNエピタキシャル成長用基板に更にHVPE法でAlNを50mm積層した。この積層物を25%HCl水溶液に浸漬してAlAs層を溶解し、50mmのAlN結晶を支持基板から切り離した。このAlN結晶を円筒研削、スライス、研磨を経て、無垢のφ2インチAlN単結晶基板、50枚を得た。
次いで、上記基板をAlNのエピタキシャル用基板として実施例1と同じ簡便評価を行った。その結果、EPDは1.8×10cm−2と極めて低い転位密度を示した。また、0002XRCのFWHMは203arcsecと高品質のAlN単結晶が得られた。更に着色が全く見られず、波長230nmでの光線透過率も約95%と良好で深紫外線領域のデバイス基板として好適なものであった。
[実施例4]
実施例1と同様な方法で、(1)AlNのセラミック・コアと(2)封止層との構造を有する支持基板を準備し、この支持基板上に第1平坦化層を形成した。さらに、実施例1と同様の方法で種結晶として用いる種結晶として用いるAlN結晶を準備した。
このAlN単結晶基板にプラズマCVD法(ICP―CVD装置)で2μm厚のSiOを積層した。その後、このSiOを1000℃で焼き締めた後、CMP研磨により、0.5μm厚まで研磨・平坦化し表面粗さRa=0.2nmの第2平坦化層とした。
AlN単結晶基板の第2平坦化層が積層された面に、100keVで水素を深さ0.6μm(剥離位置)、ドース量8×1017cm−2のイオン注入を実施した。イオン注入後、AlN単結晶基板上に形成された第2平坦化層と、先に準備しておいた支持基板の平坦化層とを接合した。その後、剥離位置(0.6μm部分)で剥離・分離することによってAlN単結晶の種結晶層を支持基板に薄膜転写した。イオン注入と転写の際に種結晶層のAlN単結晶が受けたダメージ部分をCMPで軽く研磨し、AlN種結晶層の厚みを0.4μmとした。この種結晶層の波長230nmの光透過率は99.9%であった。なお、種結晶層の光透過率を測定する際、支持基板が不透明のため、支持基板上に転写したままの状態では透過率を測定できなかったので、別途同条件で石英基板上に転写した種結晶層で代用して光透過率を確認した。この薄膜転写後のAlN単結晶基板の残部(すなわち、支持基板に転写されずに剥離・分離された部分)は、イオン注入を何度も繰り返し実施することにより、多数の種結晶として利用でき、極めて経済的であった。本実施により(1)AlNのセラミック・コアと(2)封止層との構造を有する支持基板に、2μm厚の平坦化層及び、0.4μm厚のAlN種結晶層を備えたAlNエピタキシャル成長用基板が得られた。
(基板の評価)
次いで、更に上記基板に対し以下の簡便なAlNエピタキシャル成長用基板としての評価を行った。即ち、上記AlNエピタキシャル用基板にMOCVD法で2μmのAlNを成膜し、転位密度を評価するために溶融アルカリ(KOH+NaOH)エッチング法によりエッチピットを発生させエッチピット密度(Etch pit Density、以下EPDという)の測定を行った。また、結晶性の評価としてX線ロッキングカーブ(XRC)測定を行った。その結果、EPDは1.2×10cm−2と極めて低い転位密度を示した。また、基板の(0002)面のXRC測定での半値幅FWHMは187arcsecとなり、高品質のAlN単結晶が得られた。これらの結果から、本実施例によるエピタキシャル用基板は優れていることが分かる。
以上で説明した通り、本発明によれば、高品質なIII族窒化物の単結晶を作製可能なIII族窒化物エピタキシャル成長用基板を安価に提供することができる。
1、1A 複合基板
2 種結晶層
3 支持基板
4 第1平坦化層
5 応力調整層
20 III族窒化物の単結晶基板
21 剥離位置
22 下地基板
23 エピタキシャル層
24 第2平坦化層

Claims (32)

  1. 窒化物セラミックスからなるコアが厚み0.05μm以上1.5μm以下の封止層で包み込まれた構造を有する支持基板と、
    前記支持基板の上面に設けられ、0.5μm以上3.0μm以下の厚みを有する第1平坦化層と、
    前記第1平坦化層の上面に設けられ、0.1μm以上1.5μm以下の厚みを有するIII族窒化物の単結晶からなる種結晶層と
    を備えるIII族窒化物系エピタキシャル成長用基板。
  2. 窒化物セラミックスからなるコアが厚み0.05μm以上1.5μm以下の封止層で包み込まれた構造を有する支持基板と、
    前記支持基板の上面に設けられ、0.5μm以上3.0μm以下の厚みを有する第1平坦化層と、
    前記第1平坦化層の上面に設けられ、0.5μm以下の厚みを有する第2平坦化層と、
    前記第2平坦化層の上面に設けられ、0.1μm以上1.5μm以下の厚みを有するIII族窒化物の単結晶からなる種結晶層と
    を備えるIII族窒化物系エピタキシャル成長用基板。
  3. 前記第2平坦化層が、酸化ケイ素、酸窒化ケイ素、及びヒ化アルミニウムのいずれかを含むことを特徴とする請求項2に記載のIII族窒化物系エピタキシャル成長用基板。
  4. 前記支持基板の下面に応力調整層を更に備えることを特徴とする請求項1〜3のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板。
  5. 前記コアが、窒化アルミニウムセラミックスであることを特徴とする請求項1〜4のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板。
  6. 前記封止層が、窒化ケイ素を含むことを特徴とする請求項1〜5のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板。
  7. 前記第1平坦化層が、酸化ケイ素、酸窒化ケイ素、及びヒ化アルミニウムのいずれかを含むことを特徴とする請求項1〜6のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板。
  8. 前記種結晶層が、窒化アルミニウムまたは窒化アルミニウムガリウムであることを特徴とする請求項1〜7のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板。
  9. 前記種結晶層の波長230nmにおける光透過率が70%以上であることを特徴とする請求項1〜8のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板。
  10. 前記種結晶層の抵抗率が1×10Ω・cm以上であることを特徴とする請求項1〜9のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板。
  11. 前記応力調整層が、単体のシリコンを含むことを特徴とする請求項4に記載のIII族窒化物系エピタキシャル成長用基板。
  12. 窒化物セラミックスからなるコアを用意するステップと、
    前記コアを包み込むように厚み0.05μm以上1.5μm以下の封止層を成膜して支持基板とするステップと、
    前記支持基板の上面に厚み0.5μm以上3.0μm以下の第1平坦化層を成膜するステップと、
    前記第1平坦化層の上面に厚み0.1μm以上1.5μm以下のIII族窒化物の単結晶からなる種結晶層を設けるステップと
    を備えるIII族窒化物系エピタキシャル成長用基板の製造方法。
  13. 前記種結晶層を設けるステップは、
    1面をイオン注入面とするIII族窒化物の単結晶基板を用意するステップと、
    前記イオン注入面からイオン注入して前記単結晶基板に剥離位置を形成するステップと、
    前記イオン注入面と前記第1平坦化層とを接合して接合基板とするステップと、
    前記接合基板を前記剥離位置で種結晶層と単結晶基板残部とに分離するステップと
    を備えることを特徴とする請求項12に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  14. 窒化物セラミックスからなるコアを用意するステップと、
    前記コアを包み込むように厚み0.05μm以上1.5μm以下の封止層を成膜して支持基板とするステップと、
    前記支持基板の上面に厚み0.5μm以上3.0μm以下の第1平坦化層を成膜するステップと、
    1面をイオン注入面とするIII族窒化物の単結晶基板を用意するステップと、
    前記イオン注入面からイオン注入して前記単結晶基板に剥離位置を形成するステップと、
    前記剥離位置を形成するステップの前または後において、前記単結晶基板における前記イオン注入面の上面に厚み0.5μm以下の第2平坦化層を成膜するステップと、
    前記第2平坦化層と前記第1平坦化層とを接合して接合基板とするステップと、
    前記接合基板を前記剥離位置で分離して単結晶基板残部を取り除き、厚み0.1μm以上1.5μm以下のIII族窒化物の単結晶からなる種結晶層を形成するステップと
    を備えるIII族窒化物系エピタキシャル成長用基板の製造方法。
  15. 前記第2平坦化層をプラズマCVD法、LPCVD法、および低圧MOCVD法のいずれかで成膜することを特徴とする請求項14に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  16. 前記第2平坦化層が酸化ケイ素、酸窒化ケイ素、およびヒ化アルミニウムのいずれかを含むことを特徴とする請求項14または15に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  17. 前記単結晶基板を用意するステップにおいて、単結晶基板を、昇華法によって作製することを特徴とする請求項13〜16のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  18. 前記単結晶基板を用意するステップにおいて、MOCVD法、HVPE法、およびTHVPE法のいずれかによって、下地基板の上にエピタキシャル層をエピタキシャル成長したものを前記単結晶基板とすることを特徴とする請求項13〜17のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  19. 前記剥離位置を形成するステップにおいて、前記剥離位置を前記エピタキシャル層内に形成することを特徴とする請求項18に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  20. 前記下地基板が昇華法によって作製されたものであることを特徴とする請求項18または19に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  21. 前記単結晶基板残部を、前記下地基板として再利用することを特徴とする請求項18または19に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  22. 前記単結晶基板残部を、更に別のIII族窒化物系複合基板の製造における単結晶基板として再利用することを特徴とする請求項13〜21のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  23. 前記支持基板の下面に応力調整層を成膜するステップを更に備えることを特徴とする請求項12〜22のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  24. 前記封止層をLPCVD法で成膜することを特徴とする請求項12〜23のいずれか1項記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  25. 前記第1平坦化層をプラズマCVD法、LPCVD法、および低圧MOCVD法のいずれかで成膜することを特徴とする請求項12〜24のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  26. 前記コアが窒化アルミニウムセラミックスであることを特徴とする請求項12〜25のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  27. 前記封止層が窒化ケイ素を含むことを特徴とする請求項12〜26のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  28. 前記第1平坦化層が酸化ケイ素、酸窒化ケイ素、およびヒ化アルミニウムのいずれかを含むことを特徴とする請求項12〜27のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  29. 前記種結晶層が窒化アルミニウムまたは窒化アルミニウムガリウムであることを特徴とする請求項12〜28のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  30. 前記種結晶層の波長230nmにおける光透過率が70%以上であることを特徴とする請求項12〜29のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  31. 前記種結晶層の抵抗率が1×10Ω・cm以上であることを特徴とする請求項12〜30のいずれか1項に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。
  32. 前記応力調整層が単体のシリコンを含むことを特徴とする請求項23に記載のIII族窒化物系エピタキシャル成長用基板の製造方法。

JP2020207624A 2020-06-09 2020-12-15 Iii族窒化物系エピタキシャル成長用基板とその製造方法 Pending JP2021195299A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227041224A KR20230020968A (ko) 2020-06-09 2021-04-12 Iii족 질화물계 에피택셜 성장용 기판과 그 제조 방법
EP21822039.0A EP4163424A1 (en) 2020-06-09 2021-04-12 Substrate for group-iii nitride epitaxial growth and method for producing the same
PCT/JP2021/015123 WO2021250991A1 (ja) 2020-06-09 2021-04-12 Iii族窒化物系エピタキシャル成長用基板とその製造方法
US18/008,495 US20230340694A1 (en) 2020-06-09 2021-04-12 Substrate for group-iii nitride epitaxial growth and method for producing the same
CN202180041183.XA CN115698391A (zh) 2020-06-09 2021-04-12 Iii族氮化物系外延生长用基板及其制造方法
TW110120751A TW202212291A (zh) 2020-06-09 2021-06-08 Iii族氮化物系磊晶成長用基板及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020100528 2020-06-09
JP2020100528 2020-06-09

Publications (1)

Publication Number Publication Date
JP2021195299A true JP2021195299A (ja) 2021-12-27

Family

ID=79197179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020207624A Pending JP2021195299A (ja) 2020-06-09 2020-12-15 Iii族窒化物系エピタキシャル成長用基板とその製造方法

Country Status (1)

Country Link
JP (1) JP2021195299A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022120821A (ja) * 2021-02-05 2022-08-18 信越半導体株式会社 窒化物半導体基板及びその製造方法
WO2023127249A1 (ja) * 2021-12-28 2023-07-06 信越化学工業株式会社 高特性エピタキシャル成長用基板とその製造方法
WO2023233781A1 (ja) * 2022-06-03 2023-12-07 信越化学工業株式会社 Iii族窒化物単結晶基板の製造方法
JP7484773B2 (ja) 2021-03-04 2024-05-16 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法及び紫外線発光素子用エピタキシャルウェーハ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022120821A (ja) * 2021-02-05 2022-08-18 信越半導体株式会社 窒化物半導体基板及びその製造方法
JP7290182B2 (ja) 2021-02-05 2023-06-13 信越半導体株式会社 窒化物半導体基板及びその製造方法
JP7484773B2 (ja) 2021-03-04 2024-05-16 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法及び紫外線発光素子用エピタキシャルウェーハ
WO2023127249A1 (ja) * 2021-12-28 2023-07-06 信越化学工業株式会社 高特性エピタキシャル成長用基板とその製造方法
WO2023233781A1 (ja) * 2022-06-03 2023-12-07 信越化学工業株式会社 Iii族窒化物単結晶基板の製造方法

Similar Documents

Publication Publication Date Title
JP2021195299A (ja) Iii族窒化物系エピタキシャル成長用基板とその製造方法
WO2022004165A1 (ja) 大口径iii族窒化物系エピタキシャル成長用基板とその製造方法
US20240141552A1 (en) Seed substrate for epitaxial growth use and method for manufacturing same, and semiconductor substrate and method for manufacturing same
WO2021250991A1 (ja) Iii族窒化物系エピタキシャル成長用基板とその製造方法
WO2021140793A1 (ja) Iii族窒化物基板の製造方法及びiii族窒化物基板
WO2023127249A1 (ja) 高特性エピタキシャル成長用基板とその製造方法
WO2020031829A1 (ja) GaN積層基板の製造方法
WO2023233781A1 (ja) Iii族窒化物単結晶基板の製造方法
WO2023074045A1 (ja) エピタキシャル成長用種基板およびその製造方法、ならびに半導体基板およびその製造方法
JP7204625B2 (ja) Iii族化合物基板の製造方法及びその製造方法により製造した基板
WO2023176185A1 (ja) 高特性エピ用種基板、高特性エピ用種基板の製造方法、半導体基板、および半導体基板の製造方法
CN116940720A (zh) 外延生长用种子基板及其制造方法、和半导体基板及其制造方法
WO2024084836A1 (ja) 窒化物半導体エピタキシャルウエーハの製造方法及び窒化物半導体エピタキシャルウエーハ用複合基板
TW202331794A (zh) 氮化物半導體基板及氮化物半導體基板的製造方法
WO2021014834A1 (ja) Iii族化合物基板の製造方法及びその製造方法により製造した基板

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231010