WO2020031829A1 - GaN積層基板の製造方法 - Google Patents

GaN積層基板の製造方法 Download PDF

Info

Publication number
WO2020031829A1
WO2020031829A1 PCT/JP2019/030164 JP2019030164W WO2020031829A1 WO 2020031829 A1 WO2020031829 A1 WO 2020031829A1 JP 2019030164 W JP2019030164 W JP 2019030164W WO 2020031829 A1 WO2020031829 A1 WO 2020031829A1
Authority
WO
WIPO (PCT)
Prior art keywords
gan
substrate
film
thin film
plane sapphire
Prior art date
Application number
PCT/JP2019/030164
Other languages
English (en)
French (fr)
Inventor
芳宏 久保田
永田 和寿
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to GB2102099.5A priority Critical patent/GB2591348B/en
Priority to KR1020217006426A priority patent/KR20210039438A/ko
Priority to DE112019003987.3T priority patent/DE112019003987T5/de
Priority to CN201980052719.0A priority patent/CN112585305B/zh
Priority to US17/266,178 priority patent/US11479876B2/en
Priority to JP2020535710A priority patent/JP7044161B2/ja
Publication of WO2020031829A1 publication Critical patent/WO2020031829A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te

Definitions

  • the present invention relates to a method for manufacturing a GaN laminated substrate having a Ga polar surface (Ga surface).
  • Crystalline GaN has a wider band gap than Si or GaAs, and is promising for high-speed and high-power device applications.
  • a bulk (GaN) GaN substrate having good crystallinity is a factor that hinders its spread because it has a small diameter and is very expensive.
  • GaN is heteroepitaxially grown on an AlN substrate or an Al 2 O 3 (sapphire) substrate by hydride vapor phase epitaxy (HVPE) or metal organic vapor phase epitaxy (MOCVD).
  • HVPE hydride vapor phase epitaxy
  • MOCVD metal organic vapor phase epitaxy
  • a laminated substrate in which a GaN thin film is formed on a Si substrate which is widely and widely used as a semiconductor material, can obtain excellent basic characteristics of GaN and apply advanced process technology of Si semiconductor devices. Therefore, it is very expected as a substrate for high-performance devices.
  • a method of manufacturing a GaN laminated substrate by transfer in the following procedure can be considered. That is, first, a first substrate is prepared, and a GaN film having a certain thickness or more is epitaxially grown on the surface. Next, ion implantation is performed on the substrate to form an embrittlement layer (ion implantation region) at a certain depth from the surface. After joining this substrate to the second substrate, the substrate is peeled from the embrittlement layer, and the GaN thin film is transferred to the second substrate to obtain a GaN laminated substrate.
  • embrittlement layer ion implantation region
  • the growth surface (front surface) side is a Ga polar surface (hereinafter, Ga surface). Therefore, the ion-implanted surface side becomes the Ga surface, and the surface after separation and transfer onto the second substrate becomes the N-polar surface (N surface).
  • Ga surface Ga polar surface
  • N surface N-polar surface
  • a Ga surface that provides high characteristics is used for a device manufacturing surface for use in electronic components, so the GaN thin film transferred to the second substrate is again bonded to the third substrate and transferred to form a Ga surface. Had to be done.
  • the epitaxial growth surface on the first substrate is an N surface.
  • the crystallinity and flatness of the GaN film are poor, and it has been difficult to use the GaN film as a device.
  • Patent Document 1 Japanese Patent Application Publication No. 2016-511934
  • the present invention has been made in view of the above circumstances, and is capable of easily manufacturing a GaN laminated substrate having a Ga-plane surface and having good crystallinity and flatness, and further capable of increasing the diameter to 150 mm or more. It is an object of the present invention to provide a method for producing the same.
  • the present invention provides the following method of manufacturing a GaN laminated substrate to achieve the above object.
  • a C-plane sapphire substrate with an off-angle of 0.5 to 5 degrees is formed on a handle substrate made of glass, ceramics or single-crystal material having a coefficient of thermal expansion larger than that of silicon but smaller than C-plane sapphire at 800K by ion implantation and peeling.
  • the substrate for GaN epi growth is subjected to a high-temperature nitriding treatment at 800 to 1000 ° C.
  • the ion implantation into the GaN film uses hydrogen ions (H + ) and / or hydrogen molecular ions (H 2 + ), and the implantation energy is 100 to 160 keV and the dose is 1.0 ⁇ 10 17 to 3.5 ⁇ 10 17.
  • 13. 13 The method for manufacturing a GaN laminated substrate according to 12, wherein the support substrate has a silicon oxide film formed on a bonding surface with a GaN film carrier (except when the support substrate is made of SiO 2 ).
  • a predetermined surface treatment is performed on a C-plane sapphire thin film having a predetermined off-angle in a GaN epi-growth substrate, and GaN is epitaxially grown on the thin film, whereby the surface has a good crystallinity having an N-polar surface. Since a GaN film can be formed, it is possible to obtain a GaN laminated substrate having a Ga-polar surface by a single GaN thin film transfer. By reducing the number of times of transfer as compared with the related art, the process cost can be reduced. Further, it is possible to reduce the GaN film which is lost by the transfer, and it is possible to reduce the material cost.
  • the number of times of transfer can be reduced as compared with the related art, so that it can be suppressed.
  • the difference in the coefficient of thermal expansion between the handle substrate of the GaN epi growth substrate and the GaN film it is possible to suppress the warpage of the GaN film carrier produced by forming the GaN film by epitaxial growth, and to achieve a large diameter.
  • a GaN film carrier a GaN film can be transferred, and a GaN laminated substrate having a Ga surface and having good crystallinity and flatness can be enlarged.
  • an epitaxially formed substrate that is easy to increase in diameter is used as a donor substrate for GaN thin film transfer, it is lower in cost and has a larger diameter than when an expensive and small-diameter bulk GaN substrate is used as a donor substrate. Is obtained.
  • the GaN laminated substrate having a Ga-polar surface as the surface obtained by the present invention can be used as a GaN template substrate, and a GaN substrate having a high withstand voltage, high characteristics, and low cost can be obtained by epitaxially depositing GaN.
  • FIG. 4 is a view showing a manufacturing process relating to the manufacture of a GaN epi-growth substrate among manufacturing processes in an embodiment of the method for manufacturing a GaN laminated substrate according to the present invention, wherein (a) shows preparation of a C-plane sapphire substrate and a handle substrate; (B) shows the formation of a thin film on a C-plane sapphire substrate, (c) shows the ion implantation process, (d) shows the bonding and bonding, and (e) shows the peeling transfer of the C-plane sapphire thin film.
  • FIG. 2A is a diagram illustrating a manufacturing process of a GaN multilayer substrate using the GaN epi-growth substrate manufactured in FIG.
  • FIG. 1 among manufacturing processes in an embodiment of a method of manufacturing a GaN multilayer substrate according to the present invention, and FIG. Preparation of epi-growth substrate and support substrate, (b) surface treatment of GaN epi-growth substrate, (c) GaN epitaxial growth, (d) ion implantation, (e) lamination bonding, (f) This is peeling transfer of a GaN thin film.
  • the numerical range “A to B” includes the numerical values at both ends thereof, and means a range from A to B.
  • the method for manufacturing a GaN laminated substrate according to the present invention is characterized in that the coefficient of thermal expansion at 800 K is larger than that of silicon and smaller than that of C-plane sapphire. Transferring a C-plane sapphire thin film peeled from the C-plane sapphire substrate at 0.5 to 5 degrees to produce a GaN epi-growth substrate; and high-temperature nitriding of the GaN epi-growth substrate at 800 to 1000 ° C.
  • Forming a GaN film carrier composed of: a step of performing ion implantation on the GaN film to form an ion implantation region; and bonding a GaN film-side surface of the ion-implanted GaN film carrier to a support substrate.
  • a step of transferring the GaN thin film onto the support substrate by separating the GaN film on the support substrate by peeling in the ion-implanted region of the GaN film to obtain a GaN laminated substrate having a GaN thin film having a Ga polar surface on the support substrate. It is characterized by having.
  • the method for manufacturing a GaN laminated substrate according to the present invention includes the steps of (a) preparing a C-plane sapphire substrate and a handle substrate (step 1-1); Thin film forming step (Step 1-2), (c) C-plane sapphire substrate ion implantation step (Step 1-3), (d) C-plane sapphire substrate and handle substrate bonding step (Step 1-4) , (E) a GaN epi-growth substrate is manufactured by performing the processing in the order of the peeling of the C-plane sapphire thin film and the transfer step (step 1-5).
  • Step 1-1 Preparation of C-plane sapphire substrate and handle substrate
  • a C-plane sapphire substrate 1 and a handle substrate 2 are prepared (FIG. 1A).
  • the C-plane sapphire substrate 1 is a substrate made of sapphire ( ⁇ -Al 2 O 3 ) having a C-plane ((0001) plane) as a substrate surface.
  • the c-axis off angle (hereinafter, off angle) of the C-plane sapphire substrate 1 is 0.5 to 5 degrees, and preferably 2 to 3 degrees.
  • the off angle is the angle when the substrate surface (the surface on which crystal growth is to be performed) is slightly inclined from the closest surface in a specific direction
  • the c-axis off angle is the c-axis of the C-plane sapphire substrate 1. It means the magnitude of the inclination of the axis (normal axis of the C plane) in the a-axis direction.
  • the handle substrate 2 is a substrate made of a glass, ceramics or single crystal material having a coefficient of thermal expansion larger than that of silicon at 800 K and smaller than C-plane sapphire, and is a base substrate of the GaN epi-growth substrate 11 manufactured in this manufacturing process. It is what becomes.
  • the handle substrate 2 has a substrate temperature during GaN epitaxial growth, for example, a difference ( ⁇ ⁇ ) between a coefficient of thermal expansion at 1000 ° C. and a coefficient of thermal expansion at room temperature (20 ° C.) is larger than silicon and smaller than C-plane sapphire.
  • a difference ( ⁇ ⁇ ) between a coefficient of thermal expansion at 1000 ° C. and a coefficient of thermal expansion at room temperature (20 ° C.) is larger than silicon and smaller than C-plane sapphire.
  • Glass, ceramics or a single crystal material and more preferably a material as close as possible to GaN.
  • the handle substrate 2 is made of borosilicate glass, GaN sintered body, AlN sintered body, or GaAs single crystal.
  • the borosilicate glass include borosilicate glass-1 (JR-1) and borosilicate glass-2 (JR-2) specified in JIS R3503: 2007.
  • the coefficient of thermal expansion is a coefficient of linear expansion of the material at a predetermined temperature. Since the coefficient of thermal expansion is a function of temperature, it is determined in the present invention by a value at an intermediate temperature between the temperature during epitaxial growth and room temperature.
  • An example of the coefficient of thermal expansion at 800 K of a typical material is shown below.
  • AlN 5.2 ⁇ 10 -6 / K (800K) Si: 4.1 ⁇ 10 ⁇ 6 / K (800K)
  • GaAs single crystal 6.9 ⁇ 10 ⁇ 6 / K (800K)
  • the arithmetic mean roughness Ra (JIS B0601: 2013, hereinafter the same) of the surface of the handle substrate 2 is preferably 0.5 nm or less. This enables stronger bonding at the time of bonding with the C-plane sapphire substrate 1.
  • Step 1-2 Thin film formation on C-plane sapphire substrate
  • a thin film 1a is formed on the surface of a C-plane sapphire substrate 1 (FIG. 1B).
  • the thin film 1a is provided between the C-plane sapphire substrate 1 (finally, the C-plane sapphire thin film 1t) and the handle substrate 2 to be bonded to improve the bonding strength between the two, and is formed of silicon oxide ( SiO 2 ), silicon nitride (Si 3 N 4 ) or silicon oxynitride (SiO x N y ). Further, the thickness of the thin film 1a is preferably 300 to 1000 nm.
  • the thin film 1a is preferably formed by a sputtering method, a plasma CVD method, or the like.
  • a sputtering method a plasma CVD method, or the like.
  • Step 1-3 Step of ion implantation of C-plane sapphire substrate 1
  • ion implantation is performed on the surface of the C-plane sapphire substrate 1 on which the thin film 1a is formed to form a layered ion-implanted region 1 ion in the C-plane sapphire substrate 1 (FIG. 1C).
  • the implantation energy defines the ion implantation depth (that is, the thickness of the release film (C-plane sapphire thin film 1t)), and is preferably 110 to 160 keV.
  • the thickness of the C-plane sapphire thin film 1t can be made 500 nm or more.
  • it exceeds 160 keV there is a possibility that implantation damage is increased and crystallinity of the peeled thin film is deteriorated.
  • the dose is preferably 1.0 ⁇ 10 17 to 3.0 ⁇ 10 17 atom / cm 2 .
  • an ion-implanted region 1 ion serving as a release layer (brittle layer) can be formed in the C-plane sapphire substrate 1.
  • the ion implantation temperature is room temperature.
  • the ion implantation may be performed on the C-plane sapphire substrate 1 with the thin film 1a formed in the previous step 1-2, but the surface of the thin film 1a as formed (the thin film 1a is formed). If not, if the C-plane sapphire substrate 1 surface is rough, the ion implantation depth becomes non-uniform in accordance with the surface irregularities, and the unevenness of the peeled surface (surface) of the C-plane sapphire thin film 1t after peeling becomes large. I will.
  • the ion-implanted surface of the C-plane sapphire substrate 1 may be smoothed so that the arithmetic average roughness is preferably 0.3 nm or less.
  • the surface of the thin film 1a formed in the step 1-2 or the thin film 1a is not formed, the surface of the C-plane sapphire substrate 1 is polished and / or etched by CMP or the like, and the arithmetic average roughness Ra is preferably 0.3 nm or less. It is preferable to perform smoothing so that
  • the ion implantation depth in the next ion implantation process is performed.
  • a peel transfer layer C-plane sapphire thin film 1t having a smooth surface (small surface roughness) can be obtained.
  • Step 1-4 bonding step of bonding C-plane sapphire substrate 1 and handle substrate 2
  • Step 1-4 bonding step of bonding C-plane sapphire substrate 1 and handle substrate 2
  • the surface of the thin film 1a of the ion-implanted C-plane sapphire substrate 1 or the surface of the C-plane sapphire substrate 1 when the thin film 1a is not formed
  • the handle substrate 2 are bonded and joined (FIG. 1D).
  • the C-plane sapphire substrate 1 and the handle substrate 2 are joined via the thin film 1a.
  • the C-plane sapphire substrate 1 and the handle substrate 2 are joined so as to be in direct contact with each other.
  • a plasma treatment as a surface activation treatment on both or one of the ion implantation surface of the C-plane sapphire substrate 1 and the bonding surface of the handle substrate 2.
  • a C-plane sapphire substrate 1 and / or a handle substrate 2 to be subjected to a surface activation treatment are set in a general parallel plate type plasma chamber, a high frequency of about 13.56 MHz and 100 W is applied, and Ar and N are used as process gases. 2 , O 2 etc. may be introduced and processed.
  • the processing time is 5 to 30 seconds. Thereby, the surface of the target substrate is activated, and the bonding strength after bonding is increased. Further, by performing annealing at about 200 to 300 ° C. after bonding, stronger bonding is formed.
  • Step 1-5 C-plane sapphire thin film peeling and transferring step
  • the C-plane sapphire thin film 1t is transferred onto the handle substrate 2 by peeling at the ion implantation region 1 ion in the C-plane sapphire substrate 1 (FIG. 1E).
  • the peeling treatment may be any treatment that is generally performed by an ion implantation peeling method.
  • an ion implantation peeling method for example, in addition to mechanical peeling such as insertion of a blade, optical peeling such as laser beam irradiation, and other physical processes such as jet water flow and ultrasonic waves. Impact delamination is applicable.
  • a GaN epi-growth substrate 11 having an off-angle of 0.5 to 5 degrees, preferably 2 to 3 degrees, and a smooth C-plane sapphire thin film 1t on the handle substrate 2 is obtained.
  • the substrate size is assumed to be 150 mm (6 inches) or more in diameter (the upper limit is not particularly limited, but is usually 300 mm (12 inches) or less). Thereby, the subsequent processing steps can be easily performed.
  • the warpage of the GaN epi-growth substrate 11 is determined by measuring the center and the edge of the GaN epi-growth substrate 11 when the C-plane sapphire thin film 1t of the GaN epi-growth substrate 11 is arranged in the upper side (front side).
  • a Fizeau interferometer (Flat Master manufactured by Corning Tropel, Inc.) of a vertical incidence system may be used (same in the embodiments).
  • the method for manufacturing a GaN laminated substrate includes the steps of (a) preparing a GaN epi-growth substrate and a supporting substrate (step 2-1); Substrate surface treatment step (step 2-2), (c) GaN epitaxial growth step (step 2-3), (d) ion implantation step (step 2-4), (e) lamination bonding step (step 2- 5), (f) The processing is performed in the order of peeling and transferring the GaN thin film (step 2-6).
  • Step 2-1 Preparation of GaN epi-growth substrate and support substrate
  • a GaN epi-growth substrate 11 and a support substrate 12 are prepared (FIG. 2A).
  • the GaN epi-growth substrate 11 is manufactured by the above-described process, and the C-plane sapphire thin film 1t having an off angle of 0.5 to 5 degrees, preferably 2 to 3 degrees is formed on the handle substrate 2. Having. By setting the off angle within this range, the surface of the GaN film 13 subsequently formed on the C-plane sapphire thin film 1t becomes an N-polar plane (hereinafter, referred to as an N-plane), and has good smoothness and crystallinity. A good epitaxial growth film is obtained, and when a part of the film is separated by the ion implantation separation method and transferred to the support substrate 12, the transfer thin film 13a has excellent smoothness.
  • N-plane N-polar plane
  • the arithmetic average roughness Ra of the surface of the C-plane sapphire thin film 1t is preferably 0.5 nm or less.
  • the support substrate 12 is a substrate that finally supports the GaN thin film 13a, and is preferably made of Si, Al 2 O 3 , SiC, AlN or SiO 2 .
  • the constituent material may be appropriately selected according to the use of the semiconductor device manufactured using the obtained GaN laminated substrate.
  • the arithmetic mean roughness Ra of the surface of the support substrate 12 is preferably 0.5 nm or less. This enables stronger bonding at the time of bonding with the GaN layer carrier having the GaN layer 13 on the GaN epitaxial growth substrate 11.
  • a bond film made of silicon oxide (SiOx thin film, where 0 ⁇ x ⁇ 2) is formed on the outermost layer of the support substrate 12 by a sputtering method, a plasma CVD method, or a thermal oxidation method when the support substrate 12 is made of Si. (Except when the support substrate 12 is made of SiO 2 ).
  • the bond film is subjected to chemical mechanical polishing (CMP) or the like. It may be treated to smooth its surface. Thereby, the bonding strength between the GaN epitaxial growth substrate 11 and the GaN layer carrier having the GaN layer 13 can be further increased.
  • the thickness of this bond film is preferably about 300 to 1000 nm.
  • Step 2-2 Surface treatment of GaN epi-growth substrate
  • a surface treatment of the GaN epitaxial growth substrate is performed (FIG. 2B). That is, the GaN epi-growth substrate 11 is subjected to a high-temperature nitriding process at 800 to 1000 ° C. and / or a crystalline AlN deposition process on the C-plane sapphire thin film 1t of the GaN epi-growth substrate 11. 11 is surface-treated, and the surface of the C-plane sapphire thin film 1t is covered with a surface treatment layer 11a made of AlN.
  • the high-temperature nitriding treatment of the GaN epi-growth substrate 11 is performed at a temperature slightly lower than the film formation temperature of the GaN epitaxial growth to be performed subsequently in the nitrogen-containing atmosphere, specifically, 800 to 1000.
  • This is to form an AlN film as a surface treatment layer 11a on at least the surface of the C-plane sapphire thin film 1t by heating to C.
  • This processing is preferably performed in-situ in the same processing chamber of a MOCVD apparatus for epitaxially growing a GaN film, and is performed at a temperature slightly lower than the film formation temperature (1050 to 1100 ° C.) of GaN epitaxial growth (800 to 1100 ° C.). 1000 ° C.).
  • the processing temperature is lower than 800 ° C., the N pole growth of the GaN film does not occur, and if it exceeds 1000 ° C., the smoothness is deteriorated by the GaN generation in the epitaxial growth performed thereafter.
  • ammonia gas can also be used. By using the ammonia gas, more active N atoms are generated, and the surface morphology (crystal structure) of the GaN film can be improved.
  • the high-temperature nitriding time is preferably about 30 seconds to 30 minutes. By extending the treatment time, the surface morphology (crystal structure) of the GaN film can be improved.
  • the crystalline AlN is formed on the C-plane sapphire thin film 1t by nitriding sapphire, a chemical vapor deposition method (CVD method) or a physical vapor deposition method (PVD method).
  • a crystalline AlN film is formed as the processing layer 11a. This deposition process may be performed under the formation condition that at least the surface of the C-plane sapphire thin film 1t can be covered with the crystalline AlN film (the surface treatment layer 11a).
  • Step 2-3 GaN epitaxial growth step
  • GaN is epitaxially grown on the surface-treated layer 11a of the surface-treated C-plane sapphire thin film 1t to form a GaN film 13 having a N-polar surface, thereby producing a GaN film carrier.
  • MOCVD metalorganic vapor phase epitaxy
  • the epitaxial growth of the GaN film 13 by the MOCVD method is preferably performed at a temperature higher than 1000 ° C., and when the high-temperature nitriding treatment is performed in the step 2-2, it is preferably performed at a temperature higher than the processing temperature. It is preferable that the temperature of the GaN film 13 be higher than 1000 ° C. and not higher than 1200 ° C. in which the film quality and the film forming rate can be balanced. Further, it is preferable to use trimethyl gallium (TMG) and ammonia (NH 3 ) as a process gas, and to use hydrogen as a carrier gas.
  • TMG trimethyl gallium
  • NH 3 ammonia
  • the thickness of the GaN film 13 depends on the thickness of the GaN thin film 13a to be finally obtained, and is, for example, 1 to 30 ⁇ m.
  • a GaN buffer layer is formed on the surface treatment layer 11a at a low temperature, for example, 700 ° C. or lower, and then GaN is formed on the GaN buffer layer by the MOCVD method. It is preferable to form the GaN film 13 by performing epitaxial growth.
  • the GaN buffer layer when forming the GaN buffer layer, if the film formation temperature is higher than 700 ° C., the GaN film 13 on the buffer layer does not grow well on the N pole, and if the film formation temperature is lower than 400 ° C., the film formation itself may not proceed. Is preferably formed at 400 to 700 ° C., more preferably 400 to 600 ° C. Further, the thickness of the GaN buffer layer is preferably 20 to 40 nm, more preferably 20 to 25 nm, because if it is too thin, the buffer effect may not be obtained, and if it is too thick, the film quality may be deteriorated.
  • the GaN film 13 having extremely high crystallinity is formed on the C-plane sapphire thin film 1t (surface treatment layer 11a) of the GaN epi-growth substrate 11 on the surface thereof.
  • the surface of a compound semiconductor crystal such as GaN has a polarity.
  • a single-crystal GaN film composed of the constituent elements Ga and N necessarily includes (terminates) Ga atoms and does not include the Ga atoms.
  • GaN Ga polar surface
  • N-polar surface also referred to as N surface
  • the crystal structure of GaN is hexagonal, and its polar plane appears on the closest plane of the crystal lattice.
  • the closest-packed plane of the hexagonal compound semiconductor crystal is the ⁇ 0001 ⁇ plane, but the (0001) plane and the (000-1) plane are not equivalent.
  • the former is a plane where cation atoms are exposed, and the latter is an anion atom. Are exposed.
  • gallium nitride (GaN) the (0001) plane is the Ga plane and the (000-1) plane is the N plane.
  • a silicon oxide (SiOx, where 0 ⁇ x ⁇ 2) film is bonded to the support substrate 12 on the GaN film 13 by a sputtering method, a plasma CVD method, or the like. May be formed as a bond layer for the GaN film carrier.
  • the thickness of the silicon oxide film (the thickness after CMP in the case of CMP polishing) is preferably 200 to 1000 nm.
  • Step 2-4 Step of Implanting Ions into GaN Film 13
  • ion implantation is performed from the surface of the GaN film 13 of the GaN film carrier to form a layered ion implantation region 13 ion in the GaN film 13 (FIG. 2D).
  • the implantation energy defines the ion implantation depth (that is, the thickness of the release film (GaN thin film 13a)), and is preferably 100 to 160 keV.
  • the thickness of the GaN thin film 13a can be 500 nm or more.
  • it exceeds 160 keV there is a possibility that implantation damage is increased and crystallinity of the peeled thin film is deteriorated.
  • the dose is preferably 1.0 ⁇ 10 17 to 3.5 ⁇ 10 17 atom / cm 2 .
  • the ion-implanted region 13 ion serving as a peeling layer (brittle layer) can be formed in the GaN film 13 and the temperature rise of the GaN film carrier can be suppressed.
  • the ion implantation temperature is room temperature, and the GaN film carrier may be broken at a high temperature, so the GaN film carrier may be cooled.
  • the above-described ion implantation process may be performed on the GaN film carrier in which the GaN film 13 is formed in the step 2-3.
  • the surface of the GaN film 13 as formed is rough, The ion implantation depth becomes non-uniform in accordance with the irregularities, and the irregularities on the peeled surface (surface) of the GaN thin film 13a after the peeling increase.
  • the ion-implanted surface of the GaN film carrier is preferably smoothed so that the arithmetic average roughness is preferably 0.3 nm or less, more preferably 0.2 nm or less.
  • the surface of the GaN film 13 formed in the step 2-3 is polished and / or etched by CMP or the like to smooth the arithmetic average roughness Ra so as to be preferably 0.3 nm or less, more preferably 0.2 nm or less. Good to do.
  • the silicon oxide film when a silicon oxide film is formed as a bond layer on the GaN film 13 (that is, the GaN film 13 which has been formed or smoothed by polishing and / or etching), the silicon oxide film
  • the surface may be polished and / or etched by CMP or the like to smooth the surface so that the arithmetic average roughness Ra is preferably 0.3 nm or less. This is particularly effective when the thickness of the GaN film 13 is small and planarization by polishing or the like is difficult.
  • the ion implantation in the next ion implantation process is performed.
  • the depth can be made constant, and a peel transfer layer (GaN thin film 13a) having a smooth surface (small surface roughness) can be obtained when peeled after being bonded to the support substrate 12.
  • Step 2-5 bonding step of bonding GaN film carrier and support substrate 12
  • Step 2E bonding step of bonding GaN film carrier and support substrate 12
  • the surface (N surface) of the GaN film 13 of the GaN film carrier and the surface of the support substrate 12 are bonded.
  • a laminated structure of the GaN epi-growth substrate 11 (handle substrate 2 / thin film 1a / C-plane sapphire thin film 1t) / surface treatment layer 11a / (GaN buffer layer) / GaN film 13 (N-plane) / support substrate 12 is obtained. .
  • the surface (N-plane) of the GaN film 13 of the GaN film carrier and the support substrate is bonded with a bond layer (silicon oxide film) interposed therebetween. That is, GaN epi-growth substrate 11 (handle substrate 2 / thin film 1a / C-plane sapphire thin film 1t) / surface treatment layer 11a / (GaN buffer layer) / GaN film 13 (N-plane) / bond layer (silicon oxide film) /
  • the support substrate 12 has a laminated structure.
  • a plasma treatment as a surface activation treatment on both or one of the ion implantation surface of the GaN film carrier and the bonding surface of the support substrate 12.
  • a GaN film carrier and / or a support substrate 12 to be subjected to a surface activation treatment are set in a general parallel plate type plasma chamber, a high frequency of about 13.56 MHz and 100 W is applied, and Ar and N 2 are used as process gases. , O 2 or the like may be introduced for processing.
  • the processing time is 5 to 30 seconds. Thereby, the surface of the target substrate is activated, and the bonding strength after bonding is increased. After bonding, annealing at 200 to 300 ° C. for about 5 to 24 hours is preferable because a stronger bond is formed.
  • Step 2-6 Step of peeling and transferring GaN thin film
  • the GaN thin film 13a is transferred onto the support substrate 12 by peeling at the ion implantation region 13 ion in the GaN film 13 (FIG. 2 (f)).
  • the peeling treatment may be any treatment that is generally performed by an ion implantation peeling method.
  • an ion implantation peeling method for example, in addition to mechanical peeling such as insertion of a blade, optical peeling such as laser beam irradiation, and other physical processes such as jet water flow and ultrasonic waves. Impact delamination is applicable.
  • a GaN laminated substrate 10 having a GaN thin film 13a having good crystallinity and a smooth surface on the support substrate 12 having a Ga-polar surface is obtained.
  • the surface of the transferred GaN thin film 13a after peeling is sufficiently smooth, it may be further smoothed by polishing or the like depending on the required characteristics of a device using the GaN laminated substrate 10. Further, by growing a GaN film epitaxially on the GaN laminated substrate 10, a GaN substrate having a low defect and a large thickness can be manufactured.
  • the method of confirming the polar surface of the surface of the GaN thin film 13a of the GaN laminated substrate 10 may be determined by, for example, looking at a difference in etching rate due to a KOH aqueous solution. That is, the etching rate of the N surface is higher than that of the Ga surface. For example, when immersed in a 2 mol / L KOH aqueous solution at 40 ° C. for 45 minutes, the Ga surface is not etched, but the N surface is etched.
  • Example 1 A GaN laminated substrate was manufactured under the following conditions.
  • Handle substrate made of AlN sintered body (ceramics) having a diameter of 12 inches, a thickness of 750 ⁇ m, and a coefficient of thermal expansion of 5.2 ⁇ 10 ⁇ 6 / k (800 K), a diameter of 12 inches, a thickness of 750 ⁇ m, and an arithmetic mean roughness Ra of 0.3 nm
  • a C-plane sapphire substrate having a thermal expansion coefficient of 8.0 ⁇ 10 ⁇ 6 / k (800 K) and a c-axis off angle of 1.5 degrees was prepared.
  • the difference in the coefficient of thermal expansion between the handle substrate and GaN (coefficient of thermal expansion 6.0 ⁇ 10 ⁇ 6 / k (800 K)) is ⁇ 0.8 ⁇ 10 ⁇ 6 / k.
  • a 150 nm thick SiO 2 thin film is formed on the surface of the C-plane sapphire substrate by sputtering, and hydrogen molecule ions H 2 + are implanted from the surface of the SiO 2 thin film with an implantation energy of 150 keV and a dose of 2 ⁇ 10 17 atom / cm. 2 was used for ion implantation.
  • a high temperature nitriding treatment (process gas: pure nitrogen) at a substrate temperature of 900 ° C. is performed by a MOCVD apparatus for 30 minutes, and then a GaN buffer layer having a thickness of 20 nm is formed at a substrate temperature of 400 ° C.
  • a 10 ⁇ m GaN film was formed by epitaxial growth at a substrate temperature of 1050 ° C. using a process gas: TMG and NH 3 .
  • the arithmetic average roughness Ra of the GaN film was 8 nm.
  • the silicon oxide film was polished to 300 nm by a CMP apparatus.
  • the arithmetic average roughness Ra of the obtained GaN film carrier was 0.3 nm.
  • hydrogen molecular ions H 2 + were implanted from the surface of the silicon oxide film of the GaN film carrier at an implantation energy of 160 keV and a dose of 3.1 ⁇ 10 +17 atoms / cm 2 .
  • a Si substrate having a diameter of 12 inches and a thickness of 750 ⁇ m was prepared as a support substrate, and a 300-nm-thick thermal oxide film was formed on the Si substrate.
  • ArAr plasma treatment was performed on the surface of the Si substrate, the thermal oxide film of the GaN film carrier, and the surface of the silicon oxide film (ion-implanted surface).
  • annealing was performed at 200 ° C. for 12 hours in a nitrogen atmosphere.
  • a metal blade was inserted into the ion-implanted region of the GaN film to perform separation, and the GaN thin film was transferred onto a Si substrate to obtain a GaN laminated substrate.
  • the arithmetic average roughness Ra of the GaN thin film surface of the obtained GaN laminated substrate was 10 nm.
  • the crystallinity of the obtained GaN thin film of the GaN laminated substrate was evaluated by the X-ray rocking curve method. More specifically, when the tilt distribution (half width) of the rocking curve ( ⁇ scan) of the GaN (0002) plane reflection of the GaN thin film was determined by X-ray diffraction, it showed good crystallinity of 310 arcsec. Further, as a confirmation of the polar surface of the surface of the GaN thin film, the sample was immersed in a 2 mol / L KOH aqueous solution at 40 ° C. for 45 minutes, and the surface was observed. Was found to be a Ga surface.
  • Example 1-1 the handle substrate was made of borosilicate glass (thermal expansion coefficient: 6.8 ⁇ 10 ⁇ 6 / k (800 K)), and the off-angle of the C-plane sapphire substrate was set to 3 degrees (arithmetic mean roughness). Ra: 0.3 nm), and the others were the same as in Example 1-1, to produce a GaN epi-growth substrate.
  • the warp amount of the GaN epi-growth substrate was 150 ⁇ m.
  • the surface of the GaN film (the arithmetic average roughness Ra: 6 nm of the GaN film) is polished by CMP to obtain the arithmetic average roughness of the surface.
  • Ra was set to 0.2 nm and transferred directly to a support substrate (quartz substrate) made of quartz without forming a bond layer. Otherwise, a GaN laminated substrate was obtained in the same manner as in Example 1-1.
  • the arithmetic average roughness Ra of the GaN thin film surface of the obtained GaN laminated substrate was 0.3 nm.
  • Example 1-1 When the crystallinity of the obtained GaN thin film of the GaN laminated substrate was evaluated by the X-ray rocking curve method in the same manner as in Example 1-1, the result was FWHM280 arcsec, which was the same as that of Example 1-1.
  • the polar face of the surface of the GaN thin film was confirmed in the same manner as in Example 1-1, it was found to be a Ga face.
  • Example 1-1 a C-plane sapphire substrate having a c-axis off angle of 0.05 degrees (arithmetic mean roughness Ra: 0.3 nm) was used, and the other conditions were the same as in Example 1-1.
  • a GaN laminated substrate was obtained.
  • the arithmetic average roughness Ra of the GaN film after forming the GaN film was 135 nm, and the arithmetic average roughness Ra of the GaN film carrier after polishing the silicon oxide film CMP was 0.2 nm.
  • the arithmetic average roughness Ra of the GaN thin film surface of the obtained GaN laminated substrate was 150 nm, and the smoothness was poor.
  • Example 1-1 a C-plane sapphire substrate having a c-axis off angle of 6 degrees (arithmetic average roughness Ra: 0.3 nm) was used, and the other conditions were the same as in Example 1-1. A substrate was obtained.
  • the arithmetic average roughness Ra of the GaN film after forming the GaN film was 80 nm, and the arithmetic average roughness Ra of the GaN film carrier after polishing the silicon oxide film CMP was 0.3 nm.
  • the arithmetic average roughness Ra of the GaN thin film surface of the obtained GaN laminated substrate was 120 m.
  • the crystallinity of the obtained GaN thin film of the GaN laminated substrate was evaluated by the X-ray rocking curve method in the same manner as in Example 1-1, the crystallinity was FWHM960 arcsec, and the crystallinity was deteriorated.
  • the polar face of the surface of the GaN thin film was confirmed in the same manner as in Example 1-1, it was found to be a Ga face.
  • Example 1-3 The C-plane sapphire substrate used in Example 1-1 was directly used as a GaN epi-growth substrate, and a GaN film was formed on the GaN epi-growth substrate in the same manner as in Example 1-1. Subsequent steps were stopped because the warpage of the substrate was extremely large, about 3 mm, and bonding with the supporting substrate was not possible.
  • Table 1 The above results are shown in Table 1. According to the present invention, it has been found that a GaN laminated substrate having excellent smoothness and crystallinity can be obtained even with a large-diameter substrate having a diameter of 12 inches.
  • the surface roughness Ra in the table is the arithmetic average roughness Ra.

Abstract

800Kにおける熱膨張率がシリコンより大きく、C面サファイアより小さいセラミック材料からなるハンドル基板上にオフ角度0.5~5度のC面サファイア薄膜1tを転写してGaNエピ成長用基板11を作製し、GaNエピ成長用基板11の高温窒化処理を行ってC面サファイア薄膜1t表面をAlNからなる表面処理層11aで被覆し、この表面処理層11a上にGaNをエピ成長させて表面がN極性面からなるGaN膜担持体を作製し、GaN膜13にイオン注入し、イオン注入したGaN膜担持体のGaN膜側表面と支持基板12とを貼り合わせて接合し、GaN膜13中のイオン注入領域13ionで剥離させてGaN薄膜13aを支持基板12上に転写し、表面がGa極性面からなる結晶性及び平坦性のよいGaN薄膜13aを支持基板12上に有するGaN積層基板10を得る。

Description

GaN積層基板の製造方法
 本発明は、表面がGa極性面(Ga面)からなるGaN積層基板の製造方法に関する。
 結晶性GaNはSiやGaAsに比べ広いバンドギャップを有し、高速高パワーデバイス用途として有望である。しかしながら、中でも良好な結晶性を有するバルク(Bulk)GaN基板は、口径が小さくかつ非常に高価であることからその普及を阻害する要因となっている。
 これに対し、ハイドライド気相成長法(HVPE法)や有機金属気相成長法(MOCVD法)などによりAlN基板やAl23(サファイア)基板上にGaNをヘテロエピタキシャル成長させることによって、比較的大口径のGaN薄膜が得られているが、特性の余り高いものは得られていない。
 また、半導体材料として広く一般的に普及しているSi基板上に、GaN薄膜を形成した積層基板は、GaNの優れた基本特性が得られると共にSi半導体デバイスの進歩的なプロセス技術を適用することができることから高性能デバイス用基板として非常に期待される。
 ここで、Si基板上にGaN薄膜を形成する手法としては、Si<111>面上に直接ヘテロエピタキシャル成長法でGaNを成膜する手法が開発されており、既に直径200mmの基板も実用化されている。
 しかしながら、この手法では、結晶性の良好なGaNを得るには、Si基板とGaN薄膜の間に多重の厚いバッファー層が不可欠である。何故ならば、GaN膜とSi基板の熱膨張率が大きく異なると共に両者を構成する結晶の格子定数が一致していないことによって、積層基板として反りが発生しやすい傾向にあり、その反りはGaN膜厚が厚くなるほど、あるいは基板の口径が大きくなるほど増大し、種々の結晶欠陥が発生し拡大するという問題があったからである。また、積層基板の反りが増大すると、最終的には積層基板が破断するという問題があるが、破断に至らなくとも、半導体デバイスプロセスでは色々と問題が発生する。特に微細加工時の露光プロセスでは重大な問題となる。そこでこの反りを緩和すべくSi基板とGaN薄膜間に、これら2つの材料の中間の線膨張率と格子定数を考慮した厚いバッファー層を挿入する必要があった。
 しかしながら、この手法でも積層基板上で特性のよいGaN層を厚くすることは困難であった。
 このような問題を解決する手法として、次のような手順の転写によるGaN積層基板の製造方法が考えられる。
 即ち、まず第1の基板を準備し、表面に一定膜厚以上のGaN膜をエピタキシャル成長させる。次に、この基板にイオン注入を行い、表面から一定深さのところに脆化層(イオン注入領域)を形成する。この基板を第2の基板に接合させた後、脆化層から剥離を行い、GaN薄膜を第2の基板に転写させてGaN積層基板を得る。
 ここで、一般的なGaNのエピタキシャル成長(即ち、上記第1の基板上に形成したGaNエピタキシャル成長膜)では成長面(表面)側がGa極性面(以下、Ga面)となる。よって、イオン注入面側がGa面となり、剥離して第2の基板上に転写した後の表面はN極性面(N面)となる。通常、電子部品用途としてはデバイス製造面に高特性が得られるGa面が使用されるため、第2の基板に転写されたGaN薄膜を再度第3の基板へ接合し転写して表面がGa面とする必要があった。そこで、剥離して第2の基板上に転写した後の表面がGa面となる(つまり、第1の基板上のエピタキシャル成長面をN面とする)様な試みもこれまで多く検討されたが、通常N面でのエピタキシャル成長ではGaN膜の結晶性や平坦性が悪く、デバイス用途としての使用は困難であった。
 上記のGaNエピタキシャル成長の特性から、最終的なGaN積層基板の成長面(表面)をGa面とする必要があるため、これまでわざわざGaN薄膜の転写を2回実施せざるを得ない状況であった。このため、プロセスが繁雑となり、低歩留り、高コストの要因となっていた。
 なお、本発明に関連する先行技術として特表2016-511934号公報(特許文献1)が挙げられる。
特表2016-511934号公報
 本発明は、上記事情に鑑みなされたもので、Ga面の表面を持ち、結晶性及び平坦性のよいGaN積層基板を簡便に製造でき、更に直径150mm以上の大口径化が可能なGaN積層基板の製造方法を提供することを目的とする。
 本発明は、上記目的を達成するため、下記のGaN積層基板の製造方法を提供する。
1.
 800Kにおける熱膨張率がシリコンより大きく、C面サファイアより小さい、ガラス、セラミックス又は単結晶の材料からなるハンドル基板上に、イオン注入剥離法によりオフ角度0.5~5度のC面サファイア基板から剥離させたC面サファイア薄膜を転写してGaNエピ成長用基板を作製する工程と、
 上記GaNエピ成長用基板の800~1000℃での高温窒化処理及び/又は該GaNエピ成長用基板のC面サファイア薄膜上への結晶性AlNの堆積処理を行って上記GaNエピ成長用基板を表面処理し、C面サファイア薄膜表面をAlNからなる表面処理層で被覆する工程と、
 上記表面処理されたGaNエピ成長用基板の表面処理層上にGaNをエピタキシャル成長させて表面がN極性面からなるGaN膜担持体を作製する工程と、
 上記GaN膜にイオン注入を行ってイオン注入領域を形成する工程と、
 上記イオン注入したGaN膜担持体のGaN膜側表面と支持基板とを貼り合わせて接合する工程と、
 上記GaN膜におけるイオン注入領域で剥離させてGaN薄膜を支持基板上に転写して、表面がGa極性面からなるGaN薄膜を支持基板上に有するGaN積層基板を得る工程と
を有するGaN積層基板の製造方法。
2.
 上記ハンドル基板が硼ケイ酸系ガラス、GaN焼結体、AlN焼結体又はGaAs単結晶からなる1記載のGaN積層基板の製造方法。
3.
 上記ハンドル基板とC面サファイア薄膜との間に酸化シリコン、窒化シリコン又は酸窒化シリコンの薄膜を介在させて該C面サファイア薄膜を転写する1又は2記載のGaN積層基板の製造方法。
4.
 GaNエピ成長用基板の反り量を300μm以下とすることを特徴とする1~3のいずれかに記載のGaN積層基板の製造方法。
5.
 上記GaNエピタキシャル成長が1000℃超1200℃以下で行われる1~4のいずれかに記載のGaN積層基板の製造方法。
6.
 MOCVD法により上記GaNのエピタキシャル成長を行う1~5のいずれかに記載のGaN積層基板の製造方法。
7.
 上記C面サファイア基板を表面処理した後、700℃以下で表面処理層上にGaNバッファー層を形成し、次いで該GaNバッファー層上に上記GaNエピタキシャル成長を行う1~6のいずれかに記載のGaN積層基板の製造方法。
8.
 上記GaNバッファー層の厚みが20~40nmである7記載のGaN積層基板の製造方法。
9.
 上記エピタキシャル成長によりGaN膜を形成した後、更に該GaN膜上に酸化シリコン膜を形成して上記GaN膜担持体とする1~8のいずれかに記載のGaN積層基板の製造方法。
10.
 更に、上記イオン注入前にGaN膜担持体のイオン注入面を算術平均粗さRa0.3nm以下に平滑化する1~9のいずれかに記載のGaN積層基板の製造方法。
11.
 上記GaN膜へのイオン注入が水素イオン(H+)及び/又は水素分子イオン(H2 +)を用いた、注入エネルギー100~160keV、ドーズ量1.0×1017~3.5×1017atom/cm2の処理である1~10のいずれかに記載のGaN積層基板の製造方法。
12.
 上記支持基板が、Si、Al23、SiC、AlN又はSiO2からなる1~11のいずれかに記載のGaN積層基板の製造方法。
13.
 上記支持基板は、GaN膜担持体との接合面に酸化シリコン膜を形成したものである(ただし、支持基板がSiO2からなる場合を除く)12記載のGaN積層基板の製造方法。
 本発明によれば、GaNエピ成長用基板における所定のオフ角度を有するC面サファイア薄膜について所定の表面処理を行い、その薄膜上にGaNエピタキシャル成長させることにより表面がN極性面からなる結晶性のよいGaN膜を形成することができるため、1回のGaN薄膜転写で表面がGa極性面からなるGaN積層基板を得ることが可能となる。従来よりも転写回数を減らせることにより、プロセスコスト低減が可能となる。更に、転写で消失するGaN膜を減らすことが可能となり、材料コストを低減させることが可能となる。また、膜厚の面内ばらつきや表面粗さが転写回数に応じて増大するところ、従来よりも転写回数を減らせるため、それを抑制することが可能となる。
 更に、GaNエピ成長用基板のハンドル基板とGaN膜との熱膨張率の差を小さく抑えることによりGaN膜をエピタキシャル成長により形成して作製したGaN膜担持体の反りを抑制することができ、大口径のGaN膜担持体としてGaN膜転写ができ、Ga面の表面を持ち、結晶性及び平坦性のよいGaN積層基板の大口径化が可能となる。
 また本発明によれば、GaN薄膜転写のドナー基板として大口径化し易いエピタキシャル成膜した基板を使用するため、高価で小口径なバルクGaN基板をドナー基板として使用する場合に比べて低コストかつ大口径のGaN積層基板が得られる。本発明で得られた表面がGa極性面からなるGaN積層基板はGaNテンプレート基板として、更にGaNのエピタキシャル成膜をすることにより高耐圧、高特性、低コストのGaN基板を得ることができる。
本発明に係るGaN積層基板の製造方法の一実施形態における製造工程のうち、GaNエピ成長用基板の作製に関する製造工程を示す図であり、(a)はC面サファイア基板及びハンドル基板の準備、(b)はC面サファイア基板上への薄膜形成、(c)はイオン注入処理、(d)は貼り合わせ接合、(e)はC面サファイア薄膜の剥離転写である。 本発明に係るGaN積層基板の製造方法の一実施形態における製造工程のうち、図1で作製したGaNエピ成長用基板を用いたGaN積層基板の製造工程を示す図であり、(a)はGaNエピ成長用基板及び支持基板の準備、(b)はGaNエピ成長用基板の表面処理、(c)はGaNエピタキシャル成長、(d)はイオン注入処理、(e)は貼り合わせ接合、(f)はGaN薄膜の剥離転写である。
 以下に、本発明に係るGaN積層基板の製造方法について説明する。なお、ここでは数値範囲「A~B」はその両端の数値を含むものであり、A以上B以下を意味する。
 本発明に係るGaN積層基板の製造方法は、800Kにおける熱膨張率がシリコンより大きく、C面サファイアより小さい、ガラス、セラミックス又は単結晶の材料からなるハンドル基板上に、イオン注入剥離法によりオフ角度0.5~5度のC面サファイア基板から剥離させたC面サファイア薄膜を転写してGaNエピ成長用基板を作製する工程と、上記GaNエピ成長用基板の800~1000℃での高温窒化処理及び/又は該GaNエピ成長用基板のC面サファイア薄膜上への結晶性AlNの堆積処理を行って上記GaNエピ成長用基板を表面処理し、C面サファイア薄膜表面をAlNからなる表面処理層で被覆する工程と、上記表面処理されたGaNエピ成長用基板の表面処理層上にGaNをエピタキシャル成長させて表面がN極性面からなるGaN膜担持体を作製する工程と、上記GaN膜にイオン注入を行ってイオン注入領域を形成する工程と、上記イオン注入したGaN膜担持体のGaN膜側表面と支持基板とを貼り合わせて接合する工程と、上記GaN膜におけるイオン注入領域で剥離させてGaN薄膜を支持基板上に転写して、表面がGa極性面からなるGaN薄膜を支持基板上に有するGaN積層基板を得る工程とを有することを特徴とするものである。
 以下、本発明に係るGaN積層基板の製造方法を図1及び図2に基づき詳細に説明する。
 本発明に係るGaN積層基板の製造方法は、まず図1に示すように、(a)C面サファイア基板及びハンドル基板の準備工程(工程1-1)、(b)C面サファイア基板上への薄膜形成工程(工程1-2)、(c)C面サファイア基板のイオン注入処理工程(工程1-3)、(d)C面サファイア基板とハンドル基板の貼り合わせ接合工程(工程1-4)、(e)C面サファイア薄膜の剥離、転写工程(工程1-5)の順に処理を行い、GaNエピ成長用基板を作製するものである。
(工程1-1:C面サファイア基板及びハンドル基板の準備)
 まずC面サファイア基板1とハンドル基板2を準備する(図1(a))。
 ここで、C面サファイア基板1は、C面((0001)面)を基板面とするサファイア(α-Al23)からなる基板である。また、C面サファイア基板1のc軸オフ角度(以下、オフ角度)は、0.5~5度であり、2~3度であることが好ましい。オフ角度をこの範囲内とすることにより、この後に該C面サファイア基板1から剥離・転写して形成するC面サファイア薄膜1t上に形成されるGaN膜13においてその表面がN極性面(以下、N面)となると共に平滑性が良好で結晶性がよいエピタキシャル成長膜となり、更にイオン注入剥離法によりGaN膜13の一部を剥離して支持基板12に転写した場合にその転写薄膜13aが平滑性に優れたものとなる。なお、オフ角度とは基板表面(結晶成長させようとする面)を最密面から特定方向に微傾斜させた場合のその角度であり、c軸オフ角度とは、C面サファイア基板1のc軸(C面の法線軸)のa軸方向への傾きの大きさをいう。
 ハンドル基板2は、800Kにおける熱膨張率がシリコンより大きく、C面サファイアより小さい、ガラス、セラミックス又は単結晶の材料からなる基板であり、本製造工程で作製するGaNエピ成長用基板11のベース基板となるものである。
 また、ハンドル基板2は、GaNエピタキシャル成長時の基板温度、例えば1000℃の熱膨張率と室温(20℃)の熱膨張率との差分(△α)がシリコンよりも大きく、C面サファイアよりも小さい、ガラス、セラミックス又は単結晶の材料からなることが好ましく、GaNにできるだけ近い材料からなることがより好ましい。ハンドル基板2が硼ケイ酸系ガラス、GaN焼結体、AlN焼結体又はGaAs単結晶からなることが特に好ましい。なお、硼ケイ酸系ガラスとしては、例えば、JIS R3503:2007で規定される、ほうけい酸ガラス-1(JR-1)、ほうけい酸ガラス-2(JR-2)が挙げられる。
 ここでいう熱膨張率とは、所定の温度におけるその材料の線膨張率のことである。なお、熱膨張率は温度の関数になるので、本発明においてはエピタキシャル成長時の温度と室温との中間温度における値で判断したものである。
 代表的な材料の800Kにおける熱膨張率の例を以下に示す。
 GaN:6.0×10-6/K(800K)
 C面サファイア:8.0×10-6/K(800K)
 AlN:5.2×10-6/K(800K)
 Si:4.1×10-6/K(800K)
 GaAs単結晶:6.9×10-6/K(800K)
 ハンドル基板2表面の算術平均粗さRa(JIS B0601:2013、以下同じ)が0.5nm以下であることが好ましい。これによりC面サファイア基板1との接合時により強固な接合が可能となる。
(工程1-2:C面サファイア基板上への薄膜形成)
 C面サファイア基板1の表面に薄膜1aを形成する(図1(b))。
 薄膜1aは、C面サファイア基板1(最終的にC面サファイア薄膜1t)と貼り合わせ相手のハンドル基板2との間に介在して両者の接合強度を向上させるためのものであり、酸化シリコン(SiO2)、窒化シリコン(Si34)又は酸窒化シリコン(SiOxy)からなることが好ましい。また、この薄膜1aの膜厚は300~1000nmであることが好ましい。
 薄膜1aは、スパッタリング法、プラズマCVD法などにより形成するとよい。
 なお、薄膜1aを介在させなくてもC面サファイア基板1とハンドル基板2との間で十分な接合強度が得られる場合(即ち、C面サファイア薄膜1tが剥離することなくハンドル基板2に転写される場合)にはこの工程を省略してもよい。
(工程1-3:C面サファイア基板1のイオン注入処理工程)
 次に、上記C面サファイア基板1の薄膜1a形成面にイオン注入を行ってC面サファイア基板1中に層状のイオン注入領域1ionを形成する(図1(c))。
 このとき、注入イオンとして水素イオン(H+)及び/又は水素分子イオン(H2 +)を用いることが好ましい。
 また、注入エネルギーはイオン注入深さ(つまり剥離膜(C面サファイア薄膜1t)の膜厚)を規定するものであり、110~160keVが好ましい。注入エネルギー110keV以上とすると、C面サファイア薄膜1tの膜厚を500nm以上とすることができる。一方、160keV超とすると、注入ダメージが大きくなり剥離された薄膜の結晶性の劣化を招くおそれがある。
 また、ドーズ量は1.0×1017~3.0×1017atom/cm2であることが好ましい。これにより、C面サファイア基板1中に剥離層(脆化層)となるイオン注入領域1ionを形成することができる。なお、イオン注入温度は室温である。
 ここで、上記イオン注入処理は、前工程1-2で薄膜1aを形成したままのC面サファイア基板1に対して実施してもよいが、形成したままの薄膜1aの表面(薄膜1aを形成しない場合にはC面サファイア基板1表面)が粗いとその表面凹凸に対応してイオン注入深さが不均一となり、剥離後のC面サファイア薄膜1tの剥離面(表面)の凹凸が大きくなってしまう。
 そこで、上記イオン注入前にC面サファイア基板1のイオン注入面(つまり、薄膜1a表面又はC面サファイア基板1表面)を算術平均粗さが好ましくは0.3nm以下となるように平滑化するとよい。例えば、工程1-2で形成した薄膜1a表面又は薄膜1aを形成しない場合にはC面サファイア基板1表面をCMP等による研磨及び/又はエッチングして算術平均粗さRaが好ましくは0.3nm以下となるように平滑化するとよい。
 以上のようにC面サファイア基板1のイオン注入を予定している面(つまり、薄膜1a表面又はC面サファイア基板1表面)を平滑化することにより、次に行うイオン注入処理におけるイオン注入深さを一定にすることができ、引いてはハンドル基板2と貼り合わせた後に剥離させた場合に表面が平滑な(表面粗さの小さな)剥離転写層(C面サファイア薄膜1t)を得ることができる。
(工程1-4:C面サファイア基板1とハンドル基板2の貼り合わせ接合工程)
 次に、上記イオン注入したC面サファイア基板1の薄膜1a表面(薄膜1aを形成しない場合にはC面サファイア基板1表面)とハンドル基板2とを貼り合わせて接合する(図1(d))。
 ここで、C面サファイア基板1とハンドル基板2とが薄膜1aを介して接合されるようになる。あるいは、薄膜1aを形成しない場合にはC面サファイア基板1とハンドル基板2とが直接接する形で接合されるようになる。
 なお、この貼り合わせの前に、C面サファイア基板1のイオン注入面、ハンドル基板2の接合面の双方もしくは片方に表面活性化処理としてプラズマ処理を施すことが好ましい。
 例えば、一般的な平行平板型プラズマチャンバーに、表面活性化処理するC面サファイア基板1及び/又はハンドル基板2をセットし、13.56MHz、100W程度の高周波を印加し、プロセスガスとしてAr、N2、O2等を導入して処理すればよい。処理時間は5~30秒とする。これにより、対象の基板表面が活性化され、貼り合わせ後の接合強度が増大する。
 また、貼り合せ後は200~300℃程度のアニールを実施することで、より強固な接合が形成される。
(工程1-5:C面サファイア薄膜の剥離、転写工程)
 次に、上記C面サファイア基板1におけるイオン注入領域1ionで剥離させてC面サファイア薄膜1tをハンドル基板2上に転写する(図1(e))。
 剥離処理は、イオン注入剥離法で一般的に行われる処理であればよく、例えばブレードを挿入するなどの機械剥離の他、レーザー光照射等の光剥離、その他ジェット水流や超音波等の物理的衝撃剥離が適用可能である。
 これにより、オフ角度が0.5~5度、好ましくは2~3度で表面が平滑なC面サファイア薄膜1tをハンドル基板2上に有するGaNエピ成長用基板11が得られる。
 このとき、GaNエピ成長用基板11の反り量は小さければ小さい程よいが実用的には300μm以下とすることが好ましく、200μm以下がより好ましく、150μm以下が更に好ましい。なお、この場合の基板サイズは直径150mm(6インチ)以上(上限は特に制限はないが、通常直径300mm(12インチ)以下)を前提としている。これにより、以降の処理工程を容易に行うことができる。
 なお、GaNエピ成長用基板11の反り量は、GaNエピ成長用基板11のC面サファイア薄膜1tが上側(表面側)となる向きに配置したときのGaNエピ成長用基板11の中央部と端部との高低差であり、基板の中央部が下方向に凸の場合をマイナスの値、上方向に凸の場合をプラスの値とする。また、反り量の測定には、例えば垂直入射方式のフィゾー干渉計(Corning Tropel社製、Flat Master)を用いるとよい(実施例において同じ)。
 次に、本発明に係るGaN積層基板の製造方法は、図2に示すように、(a)GaNエピ成長用基板及び支持基板の準備工程(工程2-1)、(b)GaNエピ成長用基板の表面処理工程(工程2-2)、(c)GaNエピタキシャル成長工程(工程2-3)、(d)イオン注入処理工程(工程2-4)、(e)貼り合わせ接合工程(工程2-5)、(f)GaN薄膜の剥離、転写工程(工程2-6)の順に処理を行うものである。
(工程2-1:GaNエピ成長用基板及び支持基板の準備)
 まずGaNエピ成長用基板11と支持基板12を準備する(図2(a))。
 ここで、GaNエピ成長用基板11は、上述した通りの工程で作製したものであり、ハンドル基板2上にオフ角度が0.5~5度、好ましくは2~3度のC面サファイア薄膜1tを有してなる。
 オフ角度をこの範囲内とすることにより、この後にC面サファイア薄膜1t上に形成されるGaN膜13においてその表面がN極性面(以下、N面)となると共に平滑性が良好で結晶性がよいエピタキシャル成長膜となり、更にイオン注入剥離法によりこれの一部を剥離して支持基板12に転写した場合にその転写薄膜13aが平滑性に優れたものとなる。
 また、C面サファイア薄膜1t表面の算術平均粗さRaが0.5nm以下であることが好ましい。これにより、エピタキシャル成膜されるGaN膜13の表面が更に平滑になり、支持基板12との貼り合わせ接合時により強固な接合が可能となる。
 支持基板12は、最終的にGaN薄膜13aを支持する基板であり、Si、Al23、SiC、AlN又はSiO2からなることが好ましい。その構成材料は、得られたGaN積層基板を用いて作製する半導体デバイスの用途に応じて適宜選定するとよい。
 支持基板12表面の算術平均粗さRaが0.5nm以下であることが好ましい。これによりGaNエピ成長用基板11上にGaN層13を有するGaN層担持体との接合時により強固な接合が可能となる。
 また、スパッタリング法、プラズマCVD法などや支持基板12がSiからなる場合には熱酸化法により、支持基板12の最表層に酸化シリコン(SiOx薄膜、但し、0<x≦2)からなるボンド膜を設けてもよい(ただし、支持基板12がSiO2からなる場合を除く)。更に、支持基板12自体の表面粗さが十分に小さくない場合(例えば、支持基板12表面の算術平均粗さRaが0.5nm超の場合)、このボンド膜を化学機械研磨(CMP)等により処理してその表面を平滑化してもよい。これにより、GaNエピ成長用基板11及びGaN層13を有するGaN層担持体との接合強度をより一層大きくすることができる。
 なお、このボンド膜の膜厚は、概ね300~1000nmが好ましい。
(工程2-2:GaNエピ成長用基板の表面処理)
 次に、GaNエピ成長用基板の表面処理を行う(図2(b))。
 即ち、GaNエピ成長用基板11の800~1000℃での高温窒化処理及び/又はGaNエピ成長用基板11のC面サファイア薄膜1t上への結晶性AlNの堆積処理を行ってGaNエピ成長用基板11を表面処理し、C面サファイア薄膜1t表面をAlNからなる表面処理層11aで被覆する。
 このうち、GaNエピ成長用基板11の高温窒化処理は、GaNエピ成長用基板11を窒素含有雰囲気中でこの後行われるGaNエピタキシャル成長の成膜温度よりもやや低い温度、具体的には800~1000℃に加熱して少なくともC面サファイア薄膜1tの表面に表面処理層11aとしてAlN膜を形成するものである。この処理は、好ましくはGaN膜をエピタキシャル成長させるMOCVD装置の同一の処理室でインサイチュー(in situ)の状態で実施され、GaNエピタキシャル成長の成膜温度(1050~1100℃)よりやや低い温度(800~1000℃)で実行される。このとき、処理温度が800℃未満となるとGaN膜のN極成長が発生せず、更には1000℃超ではこの後に行われるエピタキシャル成長のGaN生成で平滑性が劣化する。また、プロセスガスとしては純窒素を使用するが、アンモニアガスを使用することもできる。アンモニアガスを使用することにより、より活性なN原子が発生し、GaN膜の表面形態(結晶構造)を改善できる。また、高温窒化処理時間は30秒~30分程度とするとよい。処理時間を長くすることで、GaN膜の表面形態(結晶構造)を改善可能である。
 C面サファイア薄膜1t上への結晶性AlNの形成処理は、サファイアの窒化、化学的気相成長法(CVD法)又は物理的気相成長法(PVD法)によりC面サファイア薄膜1t上に表面処理層11aとして結晶性AlN膜を形成するものである。この堆積処理は少なくともC面サファイア薄膜1t表面を結晶性AlN膜(表面処理層11a)で被覆できる形成条件で行えばよい。
 なお、上記のようにC面サファイア薄膜1t上に表面処理層11aとして結晶性AlN膜を形成した後、GaNエピタキシャル成長前に熱処理して結晶性AlN膜を安定化させることが好ましい。
(工程2-3:GaNエピタキシャル成長工程)
 次に、上記表面処理されたC面サファイア薄膜1tの表面処理層11a上にGaNをエピタキシャル成長させて表面がN極性面からなるGaN膜13を形成し、GaN膜担持体を作製する。
 GaN膜のエピタキシャル成長法としては、分子線エピタキシャル(MBE)法や、ハイドライド気相成長(HVPE)法、有機金属気相成長(MOCVD)法が知られているが、C面サファイア薄膜1t上に直接低欠陥のGaN薄膜を成長させるにはMOCVD法が最適であり好ましい。
 このとき、MOCVD法によるGaN膜13のエピタキシャル成長が1000℃超で行われることが好ましく、上記工程2-2において高温窒化処理が行われる場合にはその処理温度よりも高温で行われることが好ましく、GaN膜13の膜質と成膜速度のバランスがとれる1000℃超1200℃以下が好適である。また、プロセスガスはトリメチルガリウム(TMG)及びアンモニア(NH3)を使用し、キャリアガスとして水素を使用するとよい。
 また、GaN膜13の厚みは、最終的に得ようとするGaN薄膜13aの厚さに応じるものであり、例えば1~30μmである。
 なお、工程2-2においてC面サファイア薄膜1tを表面処理した後、表面処理層11a上に低温、例えば700℃以下でGaNバッファー層を形成し、次いでこのGaNバッファー層上に上記MOCVD法によるGaNエピタキシャル成長を行い、GaN膜13を形成することが好ましい。
 このとき、GaNバッファー層の成膜に際して、成膜温度が700℃超ではバッファー層上のGaN膜13がうまくN極成長せず、400℃未満では成膜自体が進行しない場合があるため、好ましくは400~700℃、より好ましくは400~600℃で成膜することが好ましい。また、GaNバッファー層の厚みは、薄過ぎるとバッファー効果が得られない場合があり、厚過ぎると膜質低下を招くおそれがあるため、好ましくは20~40nm、より好ましくは20~25nmとする。
 以上の一連のGaN膜13の形成工程により、GaNエピ成長用基板11のC面サファイア薄膜1t(表面処理層11a)上に表面がN面からなり、極めて結晶性のよいGaN膜13が成膜される(ここまで、図2(c))。
 ここで、GaNなどの化合物半導体結晶表面は極性を有しており、例えば構成元素GaとNからなる単結晶のGaN膜は、必然的に、Ga原子からなり(終端され)該Ga原子の未結合手が露出した極性面(Ga極性面(Ga面ともいう))と、N原子からなり(終端され)該N原子の未結合手が露出した極性面(N極性面(N面ともいう))を有する。
 また、GaNの結晶構造は六方晶系であり、その極性面は結晶格子の最密面に現れる。なお、六方晶系化合物半導体結晶の最密面は{0001}面であるが、(0001)面と(000-1)面は等価ではなく、前者はカチオン原子が露出する面、後者はアニオン原子が露出する面であり、窒化ガリウム(GaN)においては(0001)面がGa面、(000-1)面がN面となる。
 なお、上記エピタキシャル成長によりGaN膜13を形成した後、更にスパッタリング法、プラズマCVD法などにより、該GaN膜13上に酸化シリコン(SiOx、但し、0<x≦2)膜を支持基板12と貼り合わせるためのボンド層として形成して上記GaN膜担持体としてもよい。この場合の酸化シリコン膜の厚み(CMP研磨する場合にはCMP研磨後の厚み)は200~1000nmが好ましい。
(工程2-4:GaN膜13へのイオン注入工程)
 次に、上記GaN膜担持体のGaN膜13の表面からイオン注入を行ってGaN膜13中に層状のイオン注入領域13ionを形成する(図2(d))。
 このとき、注入イオンとして水素イオン(H+)及び/又は水素分子イオン(H2 +)を用いることが好ましい。
 また、注入エネルギーはイオン注入深さ(つまり剥離膜(GaN薄膜13a)の膜厚)を規定するものであり、100~160keVが好ましい。注入エネルギー100keV以上とすると、GaN薄膜13aの膜厚を500nm以上とすることができる。一方、160keV超とすると、注入ダメージが大きくなり剥離された薄膜の結晶性の劣化を招くおそれがある。
 また、ドーズ量は1.0×1017~3.5×1017atom/cm2であることが好ましい。これにより、GaN膜13中に剥離層(脆化層)となるイオン注入領域13ionを形成することができ、且つGaN膜担持体の温度上昇を抑制することができる。なお、イオン注入温度は室温であり、高温となるとGaN膜担持体が破断するおそれがあるため、GaN膜担持体を冷却してもよい。
 ここで、上記イオン注入処理は、工程2-3でGaN膜13を形成したままのGaN膜担持体に対して実施してもよいが、形成したままのGaN膜13の表面が粗いとその表面凹凸に対応してイオン注入深さが不均一となり、剥離後のGaN薄膜13aの剥離面(表面)の凹凸が大きくなってしまう。
 そこで、上記イオン注入前にGaN膜担持体のイオン注入面を算術平均粗さが好ましくは0.3nm以下、より好ましくは0.2nm以下となるように平滑化するとよい。
 例えば、工程2-3で形成したGaN膜13表面をCMP等による研磨及び/又はエッチングして算術平均粗さRaが好ましくは0.3nm以下、より好ましくは0.2nm以下となるように平滑化するとよい。
 あるいは、上記GaN膜13(即ち、成膜したままの、あるいは研磨及び/又はエッチングして平滑化したGaN膜13)の上にボンド層として酸化シリコン膜を形成した場合には、この酸化シリコン膜表面をCMP等による研磨及び/又はエッチングして算術平均粗さRaが好ましくは0.3nm以下となるように平滑化するとよい。GaN膜13の厚みが薄く、研磨等での平坦化が困難な場合に特に有効である。
 以上のようにGaN膜担持体のイオン注入を予定している面(つまり、GaN膜13又は上記ボンド層としての酸化シリコン膜表面)を平滑化することにより、次に行うイオン注入処理におけるイオン注入深さを一定にすることができ、ひいては支持基板12と貼り合わせた後に剥離させた場合に表面が平滑な(表面粗さの小さな)剥離転写層(GaN薄膜13a)を得ることができる。
(工程2-5:GaN膜担持体と支持基板12の貼り合わせ接合工程)
 次に、上記イオン注入したGaN膜担持体のGaN膜13側表面と支持基板12とを貼り合わせて接合する(図2(e))。
 ここで、ボンド層(酸化シリコン膜)を形成していないGaN膜担持体と支持基板12の貼り合わせの場合、GaN膜担持体のGaN膜13表面(N面)と支持基板12表面とが接合するようになる。即ち、GaNエピ成長用基板11(ハンドル基板2/薄膜1a/C面サファイア薄膜1t)/表面処理層11a/(GaNバッファー層)/GaN膜13(N面)/支持基板12の積層構造となる。
 また、ボンド層(酸化シリコン膜)を少なくともいずれかの表面に形成しているGaN膜担持体と支持基板12の貼り合わせの場合、GaN膜担持体のGaN膜13表面(N面)と支持基板12表面とがそれらの間にボンド層(酸化シリコン膜)が介在して接合するようになる。即ち、GaNエピ成長用基板11(ハンドル基板2/薄膜1a/C面サファイア薄膜1t)/表面処理層11a/(GaNバッファー層)/GaN膜13(N面)/ボンド層(酸化シリコン膜)/支持基板12の積層構造となる。
 なお、この貼り合わせの前に、GaN膜担持体のイオン注入面、支持基板12の接合面の双方もしくは片方に表面活性化処理としてプラズマ処理を施すことが好ましい。
 例えば、一般的な平行平板型プラズマチャンバーに、表面活性化処理するGaN膜担持体及び/又は支持基板12をセットし、13.56MHz、100W程度の高周波を印加し、プロセスガスとしてAr、N2、O2等を導入して処理すればよい。処理時間は5~30秒とする。これにより、対象の基板表面が活性化され、貼り合わせ後の接合強度が増大する。
 また、貼り合せ後は200~300℃、5~24時間程度のアニールを実施することで、より強固な接合が形成されるため好ましい。
(工程2-6:GaN薄膜の剥離、転写工程)
 次に、上記GaN膜13におけるイオン注入領域13ionで剥離させてGaN薄膜13aを支持基板12上に転写する(図2(f))。
 剥離処理は、イオン注入剥離法で一般的に行われる処理であればよく、例えばブレードを挿入するなどの機械剥離の他、レーザー光照射等の光剥離、その他ジェット水流や超音波等の物理的衝撃剥離が適用可能である。
 これにより、表面がGa極性面からなり結晶性の良好で表面が平滑なGaN薄膜13aを支持基板12上に有するGaN積層基板10が得られる。
 なお、剥離後の転写したGaN薄膜13aの表面は十分に平滑であるが、このGaN積層基板10を使用するデバイスの要求特性の如何によっては研磨等でより平滑化してもよい。また、このGaN積層基板10に更にGaN膜をエピタキシャル成長させることで、低欠陥で厚膜のGaN基板を製造することも可能である。
 なお、GaN積層基板10のGaN薄膜13a表面の極性面を確認する方法は、例えばKOH水溶液によるエッチングレートの違いをみて判断すればよい。即ち、N面の方がGa面よりもエッチングレートが大きい。例えば、40℃、2mol/LのKOH水溶液に45分浸した場合、Ga面はエッチングされないが、N面はエッチングされることから確認できる。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
 以下の条件でGaN積層基板を作製した。
(実施例1-1)
 直径12インチ、厚み750μm、熱膨張率5.2×10-6/k(800K)のAlN焼結体(セラミックス)からなるハンドル基板と、直径12インチ、厚み750μm、算術平均粗さRa0.3nm、熱膨張率8.0×10-6/k(800K)、c軸オフ角1.5度のC面サファイア基板を準備した。なお、このハンドル基板のGaN(熱膨張率6.0×10-6/k(800K))との熱膨張率の差は-0.8×10-6/kである。
 次に、このC面サファイア基板表面にスパッタリング法により厚み150nmのSiO2薄膜を形成し、このSiO2薄膜表面から水素分子イオンH2 +を、注入エネルギー150keV、ドーズ量2×1017atom/cm2でイオン注入した。
 次いで、C面サファイア基板のイオン注入面(SiO2薄膜形成面)とハンドル基板表面についてArプラズマ処理を実施した。次いで、両者のArプラズマ処理面同士を貼り合せて接合した後、貼り合わせたものからイオン注入領域において機械的にC面サファイア基板を剥離させ、ハンドル基板上にC面サファイア薄膜を転写してGaNエピ成長用基板を得た。このGaNエピ成長用基板の反り量は100μmであった。
 この基板をRCA洗浄にて洗浄した後、MOCVD装置にて、基板温度900℃の高温窒化処理(プロセスガス:純窒素)を30分実施し、続いて基板温度400℃でGaNバッファー層を厚み20nm成膜した後に、更に基板温度1050℃にて、プロセスガス:TMG及びNH3を用いてエピタキシャル成長させてGaN膜を10μm成膜した。そのGaN膜の算術平均粗さRaは8nmであった。
 次いで、このGaN膜上にボンド層としてプラズマCVD法により厚み2μmの酸化シリコン膜を成膜した後、CMP装置でこの酸化シリコン膜を300nmまで研磨した。得られたGaN膜担持体の算術平均粗さRaは0.3nmであった。
 次に、このGaN膜担持体の酸化シリコン膜表面から水素分子イオンH2 +を、注入エネルギー160keV、ドーズ量3.1×10+17atom/cm2でイオン注入した。
 次に、支持基板として、直径12インチ、厚み750μmのSi基板を準備し、Si基板上に厚み300nmの熱酸化膜を形成した。熱酸化膜形成後のSi基板の算術平均粗さはRa=0.5nmであった。
 このSi基板、上記GaN膜担持体それぞれの熱酸化膜、酸化シリコン膜(イオン注入面)表面についてArプラズマ処理を実施した。次いで、Arプラズマ処理面同士を貼り合せた後、窒素雰囲気下で200℃にて12時間アニールした。アニール後、GaN膜のイオン注入領域に金属ブレードを差し込んで剥離を行い、Si基板上にGaN薄膜を転写してGaN積層基板を得た。
 得られたGaN積層基板のGaN薄膜表面の算術平均粗さRaは10nmであった。また、得られたGaN積層基板のGaN薄膜についてX線ロッキングカーブ法により結晶性を評価した。詳しくは、X線回折により上記GaN薄膜のGaN(0002)面反射のロッキングカーブ(ωスキャン)におけるチルト分布(半価幅)を求めたところ、310arcsecと良好な結晶性を示した。
 また、GaN薄膜の表面の極性面の確認として、サンプルを40℃、2mol/LのKOH水溶液に45分浸した後、表面を観察したところ、GaN薄膜表面はエッチングされておらず、GaN薄膜表面がGa面となっていることが分かった。
(実施例1-2)
 実施例1-1において、ハンドル基板をほうけい酸ガラス(熱膨張率6.8×10-6/k(800K))からなるものとし、C面サファイア基板のオフ角度を3度(算術平均粗さRa:0.3nm)とし、それ以外は実施例1-1と同様にしてGaNエピ成長用基板を作製した。このGaNエピ成長用基板の反り量は150μmであった。
 次いで、このGaNエピ成長用基板を用いて厚み5μmのGaN膜をエピタキシャル成長させた後、このGaN膜表面(該GaN膜算術平均粗さRa:6nm)をCMP研磨してその表面の算術平均粗さRaを0.2nmとし、ボンド層を形成することなくそのまま、石英からなる支持基板(石英基板)に転写した。それ以外は実施例1-1と同様にしてGaN積層基板を得た。
 得られたGaN積層基板のGaN薄膜表面の算術平均粗さRaは0.3nmであった。また、得られたGaN積層基板のGaN薄膜について実施例1-1と同様にX線ロッキングカーブ法により結晶性を評価したところ、FWHM280arcsecとなり、実施例1-1と同等の結晶性を示した。
 また、実施例1-1と同様にしてGaN薄膜の表面の極性面を確認したところ、Ga面となっていた。
(比較例1-1)
 実施例1-1において、C面サファイア基板のc軸オフ角度を0.05度(算術平均粗さRa:0.3nm)としたものを用い、それ以外は実施例1-1と同様にしてGaN積層基板を得た。なお、GaN膜成膜後の該GaN膜算術平均粗さRaは135nmであり、酸化シリコン膜CMP研磨後のGaN膜担持体の算術平均粗さRaは0.2nmであった。
 得られたGaN積層基板のGaN薄膜表面の算術平均粗さRaは150nmとなり平滑性が悪いものであった。また、得られたGaN積層基板のGaN薄膜について実施例1-1と同様にX線ロッキングカーブ法により結晶性を評価したところ、FWHM850arcsecとなり、結晶性が悪化した。
 また、実施例1-1と同様にしてGaN薄膜の表面の極性面を確認したところ、Ga面となっていた。
(比較例1-2)
 実施例1-1において、C面サファイア基板のc軸オフ角度を6度(算術平均粗さRa:0.3nm)としたものを用い、それ以外は実施例1-1と同様にしてGaN積層基板を得た。なお、GaN膜成膜後の該GaN膜算術平均粗さRaは80nmであり、酸化シリコン膜CMP研磨後のGaN膜担持体の算術平均粗さRaは0.3nmであった。
 得られたGaN積層基板のGaN薄膜表面の算術平均粗さRaは120mであった。また、得られたGaN積層基板のGaN薄膜について実施例1-1と同様にX線ロッキングカーブ法により結晶性を評価したところ、FWHM960arcsecとなり、結晶性が悪化した。
 また、実施例1-1と同様にしてGaN薄膜の表面の極性面を確認したところ、Ga面となっていた。
(比較例1-3)
 実施例1-1で用いたC面サファイア基板をそのままGaNエピ成長用基板として用い、該GaNエピ成長用基板に実施例1-1と同様にしてGaN膜を形成したところ、GaN成膜後の基板の反りが約3mmと極めて大きくなり、支持基板との貼り合せができないため、以降の工程を中止した。
 以上の結果を表1に示す。本発明によれば、直径12インチの大口径の基板であっても優れた平滑性と結晶性を持つGaN積層基板が得られることが明らかとなった。なお、表中の表面粗さRaは算術平均粗さRaのことである。
Figure JPOXMLDOC01-appb-T000001
 なお、これまで本発明を上記実施形態をもって説明してきたが、本発明はこの実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
1、1’ C面サファイア基板
1a 薄膜
ion、13ion イオン注入領域
1t C面サファイア薄膜
2 ハンドル基板
10 GaN積層基板
11 GaNエピ成長用基板
11a 表面処理層
12 支持基板
13 GaN膜
13a GaN薄膜

Claims (13)

  1.  800Kにおける熱膨張率がシリコンより大きく、C面サファイアより小さい、ガラス、セラミックス又は単結晶の材料からなるハンドル基板上に、イオン注入剥離法によりオフ角度0.5~5度のC面サファイア基板から剥離させたC面サファイア薄膜を転写してGaNエピ成長用基板を作製する工程と、
     上記GaNエピ成長用基板の800~1000℃での高温窒化処理及び/又は該GaNエピ成長用基板のC面サファイア薄膜上への結晶性AlNの堆積処理を行って上記GaNエピ成長用基板を表面処理し、C面サファイア薄膜表面をAlNからなる表面処理層で被覆する工程と、
     上記表面処理されたGaNエピ成長用基板の表面処理層上にGaNをエピタキシャル成長させて表面がN極性面からなるGaN膜担持体を作製する工程と、
     上記GaN膜にイオン注入を行ってイオン注入領域を形成する工程と、
     上記イオン注入したGaN膜担持体のGaN膜側表面と支持基板とを貼り合わせて接合する工程と、
     上記GaN膜におけるイオン注入領域で剥離させてGaN薄膜を支持基板上に転写して、表面がGa極性面からなるGaN薄膜を支持基板上に有するGaN積層基板を得る工程と
    を有するGaN積層基板の製造方法。
  2.  上記ハンドル基板が硼ケイ酸系ガラス、GaN焼結体、AlN焼結体又はGaAs単結晶からなる請求項1記載のGaN積層基板の製造方法。
  3.  上記ハンドル基板とC面サファイア薄膜との間に酸化シリコン、窒化シリコン又は酸窒化シリコンの薄膜を介在させて該C面サファイア薄膜を転写する請求項1又は2記載のGaN積層基板の製造方法。
  4.  GaNエピ成長用基板の反り量を300μm以下とすることを特徴とする請求項1~3のいずれか1項記載のGaN積層基板の製造方法。
  5.  上記GaNエピタキシャル成長が1000℃超1200℃以下で行われる請求項1~4のいずれか1項記載のGaN積層基板の製造方法。
  6.  MOCVD法により上記GaNのエピタキシャル成長を行う請求項1~5のいずれか1項記載のGaN積層基板の製造方法。
  7.  上記C面サファイア基板を表面処理した後、700℃以下で表面処理層上にGaNバッファー層を形成し、次いで該GaNバッファー層上に上記GaNエピタキシャル成長を行う請求項1~6のいずれか1項記載のGaN積層基板の製造方法。
  8.  上記GaNバッファー層の厚みが20~40nmである請求項7記載のGaN積層基板の製造方法。
  9.  上記エピタキシャル成長によりGaN膜を形成した後、更に該GaN膜上に酸化シリコン膜を形成して上記GaN膜担持体とする請求項1~8のいずれか1項記載のGaN積層基板の製造方法。
  10.  更に、上記イオン注入前にGaN膜担持体のイオン注入面を算術平均粗さRa0.3nm以下に平滑化する請求項1~9のいずれか1項記載のGaN積層基板の製造方法。
  11.  上記GaN膜へのイオン注入が水素イオン(H+)及び/又は水素分子イオン(H2 +)を用いた、注入エネルギー100~160keV、ドーズ量1.0×1017~3.5×1017atom/cm2の処理である請求項1~10のいずれか1項記載のGaN積層基板の製造方法。
  12.  上記支持基板が、Si、Al23、SiC、AlN又はSiO2からなる請求項1~11のいずれか1項記載のGaN積層基板の製造方法。
  13.  上記支持基板は、GaN膜担持体との接合面に酸化シリコン膜を形成したものである(ただし、支持基板がSiO2からなる場合を除く)請求項12記載のGaN積層基板の製造方法。
PCT/JP2019/030164 2018-08-09 2019-08-01 GaN積層基板の製造方法 WO2020031829A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
GB2102099.5A GB2591348B (en) 2018-08-09 2019-08-01 Method for producing GaN laminate substrate
KR1020217006426A KR20210039438A (ko) 2018-08-09 2019-08-01 GaN 적층 기판의 제조 방법
DE112019003987.3T DE112019003987T5 (de) 2018-08-09 2019-08-01 VERFAHREN ZUR HERSTELLUNG EINES GaN-LAMINATSUBSTRATS
CN201980052719.0A CN112585305B (zh) 2018-08-09 2019-08-01 GaN层叠基板的制造方法
US17/266,178 US11479876B2 (en) 2018-08-09 2019-08-01 Method for producing GaN laminate substrate having front surface which is Ga polarity surface
JP2020535710A JP7044161B2 (ja) 2018-08-09 2019-08-01 GaN積層基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018149939 2018-08-09
JP2018-149939 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020031829A1 true WO2020031829A1 (ja) 2020-02-13

Family

ID=69414175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030164 WO2020031829A1 (ja) 2018-08-09 2019-08-01 GaN積層基板の製造方法

Country Status (7)

Country Link
US (1) US11479876B2 (ja)
JP (1) JP7044161B2 (ja)
KR (1) KR20210039438A (ja)
CN (1) CN112585305B (ja)
DE (1) DE112019003987T5 (ja)
GB (1) GB2591348B (ja)
WO (1) WO2020031829A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115867107B (zh) * 2023-02-27 2023-12-08 青禾晶元(天津)半导体材料有限公司 一种利用键合技术同步制备两片复合压电衬底的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231816A (ja) * 2008-02-29 2009-10-08 Shin Etsu Chem Co Ltd 単結晶薄膜を有する基板の製造方法
JP2017193486A (ja) * 2011-09-12 2017-10-26 住友化学株式会社 窒化物半導体結晶の製造方法、窒化物半導体エピタキシヤルウエハ、および窒化物半導体自立基板
JP2018024538A (ja) * 2016-08-08 2018-02-15 三菱ケミカル株式会社 GaN単結晶およびGaN単結晶製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174562A (ja) * 1997-06-30 1999-03-16 Nichia Chem Ind Ltd 窒化物半導体素子
WO2006124067A1 (en) 2005-05-11 2006-11-23 North Carolina State University Controlled polarity group iii-nitride films and methods of preparing such films
EP2087507A4 (en) 2006-11-15 2010-07-07 Univ California METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE
US20090278233A1 (en) * 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
JP2012513113A (ja) * 2008-12-19 2012-06-07 ソイテック 歪み処理複合半導体基板及びそれを形成する方法
JP6026188B2 (ja) 2011-09-12 2016-11-16 住友化学株式会社 窒化物半導体結晶の製造方法
US9646873B2 (en) * 2012-07-25 2017-05-09 Shin-Etsu Chemical Co., Ltd. Method for producing SOS substrates, and SOS substrate
WO2014113503A1 (en) 2013-01-16 2014-07-24 QMAT, Inc. Techniques for forming optoelectronic devices
CN107750400A (zh) * 2015-06-19 2018-03-02 Qmat股份有限公司 接合和释放层转移工艺
TWI751127B (zh) * 2015-12-17 2022-01-01 日商信越化學工業股份有限公司 藍寶石複合基材與其製造方法
JP6232150B1 (ja) 2017-01-10 2017-11-15 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6915591B2 (ja) * 2018-06-13 2021-08-04 信越化学工業株式会社 GaN積層基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231816A (ja) * 2008-02-29 2009-10-08 Shin Etsu Chem Co Ltd 単結晶薄膜を有する基板の製造方法
JP2017193486A (ja) * 2011-09-12 2017-10-26 住友化学株式会社 窒化物半導体結晶の製造方法、窒化物半導体エピタキシヤルウエハ、および窒化物半導体自立基板
JP2018024538A (ja) * 2016-08-08 2018-02-15 三菱ケミカル株式会社 GaN単結晶およびGaN単結晶製造方法

Also Published As

Publication number Publication date
TW202024406A (zh) 2020-07-01
KR20210039438A (ko) 2021-04-09
GB202102099D0 (en) 2021-03-31
JP7044161B2 (ja) 2022-03-30
GB2591348A (en) 2021-07-28
CN112585305B (zh) 2023-03-28
CN112585305A (zh) 2021-03-30
JPWO2020031829A1 (ja) 2021-08-26
US20210301419A1 (en) 2021-09-30
US11479876B2 (en) 2022-10-25
GB2591348B (en) 2023-02-08
DE112019003987T5 (de) 2021-04-22

Similar Documents

Publication Publication Date Title
US11208719B2 (en) SiC composite substrate and method for manufacturing same
JP6915591B2 (ja) GaN積層基板の製造方法
JP5468528B2 (ja) 単結晶ダイヤモンド成長用基材及びその製造方法並びに単結晶ダイヤモンド基板の製造方法
TWI482203B (zh) And a method for producing a substrate having a single crystal thin film
JP5297219B2 (ja) 単結晶薄膜を有する基板の製造方法
US10829868B2 (en) Manufacturing method of SiC composite substrate
US10431460B2 (en) Method for producing SiC composite substrate
WO2020031829A1 (ja) GaN積層基板の製造方法
JP2013098572A (ja) 薄膜接合基板の製造方法
TWI834703B (zh) GaN層合基板的製造方法
WO2023119916A1 (ja) 窒化物半導体基板および窒化物半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535710

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202102099

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190801

ENP Entry into the national phase

Ref document number: 20217006426

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19847599

Country of ref document: EP

Kind code of ref document: A1