TWI834703B - GaN層合基板的製造方法 - Google Patents

GaN層合基板的製造方法 Download PDF

Info

Publication number
TWI834703B
TWI834703B TW108128217A TW108128217A TWI834703B TW I834703 B TWI834703 B TW I834703B TW 108128217 A TW108128217 A TW 108128217A TW 108128217 A TW108128217 A TW 108128217A TW I834703 B TWI834703 B TW I834703B
Authority
TW
Taiwan
Prior art keywords
gan
film
substrate
epitaxial growth
manufacturing
Prior art date
Application number
TW108128217A
Other languages
English (en)
Other versions
TW202024406A (zh
Inventor
久保田芳宏
永田和寿
Original Assignee
日商信越化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越化學工業股份有限公司 filed Critical 日商信越化學工業股份有限公司
Publication of TW202024406A publication Critical patent/TW202024406A/zh
Application granted granted Critical
Publication of TWI834703B publication Critical patent/TWI834703B/zh

Links

Images

Abstract

本發明課題在於提供一種可簡便地製造具有Ga面之表面,且結晶性及平坦性良好的GaN層合基板之GaN層合基板的製造方法。 解決手段為,將偏角0.5~5度之C面藍寶石薄膜(1t)轉印於由800K下的熱膨脹率大於矽且小於C面藍寶石之陶瓷材料所構成的操作基板上而製作GaN磊晶成長用基板(11),並進行GaN磊晶成長用基板(11)的高溫氮化處理,使GaN磊晶成長於此經表面處理之C面藍寶石薄膜(1t)上而製作表面由N極性面所構成的GaN膜擔體,對GaN膜(13)進行離子注入,並將經離子注入之GaN膜擔體的GaN膜側表面與支持基板(12)貼合而予以接合,在GaN膜(13)中的離子注入區域(13ion) 予以剝離而將GaN薄膜(13a)轉印於支持基板(12)上,而得到在支持基板(12)上具有表面由Ga極性面所構成的GaN薄膜(13a)之GaN層合基板(10)。

Description

GaN層合基板的製造方法
本發明係有關於一種表面由Ga極性面(Ga面)所構成的GaN層合基板的製造方法。
結晶性GaN係具有比Si或GaAs更大的帶隙,而可望作為高速高功率裝置用途。然而,其中具有良好的結晶性之塊狀(Bulk)GaN基板,從口徑小且極為昂貴來看,成為阻礙其普及化的主要原因。
相對於此,藉由氫化物氣相成長法(HVPE法)或有機金屬氣相成長法(MOCVD法)等使GaN異質磊晶成長於AlN基板或Al2 O3 (藍寶石)基板上,藉此可獲得較大口徑的GaN薄膜,但仍無法獲得特性極高者。
再者,在作為半導體材料一般廣泛地普及的Si基板上形成GaN薄膜的層合基板,從可獲得GaN之優良的基本特性,同時可適用Si半導體裝置的先進製程技術看來,極可望作為高性能裝置用基板。
於此,作為在Si基板上形成GaN薄膜之手法,有人開發出在Si<111>面上直接以異質磊晶成長法將GaN成膜的手法,且直徑200mm的基板亦已實用化。
然而,就此手法而言,要獲得結晶性良好的GaN,在Si基板與GaN薄膜之間需有多層厚的緩衝層。其原因在於,由於GaN膜與Si基板的熱膨脹率大幅不同且構成兩者之結晶的晶格常數不一致,作為層合基板有容易產生翹曲的傾向,且GaN膜厚變愈厚,或者基板的口徑變愈大,此翹曲變愈大,而有產生且擴大各種結晶缺陷的問題。又,基層合基板的翹曲增大,則有最終層合基板斷裂的問題;縱使不至於斷裂,在半導體裝置製程中也會產生各種問題。尤其是在微細加工時的曝光製程中會成為嚴重問題。因此,須要在應緩和此翹曲之Si基板與GaN薄膜間插入經衡量此2種材料之中間線膨脹率與晶格常數的厚緩衝層。 然而,就此手法而言,亦不易在層合基板上使特性良好的GaN層增厚。
作為解決此種問題之手法,有人想出如下程序之轉印所致的GaN層合基板的製造方法。 亦即,首先準備第1基板,使大於一定膜厚的GaN膜磊晶成長於其表面。其次,對此基板進行離子注入,而於距表面一定深度處形成脆化層(離子注入區域)。使此基板接合於第2基板後,由脆化層進行剝離,使GaN薄膜轉印於第2基板上而得到GaN層合基板。
於此,一般的GaN之磊晶成長(即形成於上述第1基板上的GaN磊晶成長膜),其成長面(表面)側為Ga極性面(下稱Ga面)。從而,離子注入面側為Ga面,經剝離而轉印於第2基板上後的表面為N極性面(N面)。一般就電子零件用途而言,由於裝置製造面使用可獲得高特性的Ga面,而須將轉印於第2基板的GaN薄膜再度接合於第3基板進行轉印而使表面成為Ga面。因此,迄今已有多人嘗試各種研究,使經剝離而轉印於第2基板上後的表面成為Ga面(亦即使第1基板上的磊晶成長面成為N面);惟,一般就在N面的磊晶成長而言,GaN膜的結晶性或平坦性差,而不易作為裝置用途使用。
從上述GaN磊晶成長之特性來看,須使最終的GaN層合基板之成長面(表面)成為Ga面,因此至今皆為被迫特意實施2次GaN薄膜的轉印的狀況。從而製程變得繁瑣,而成為良率低、成本高的主要原因。 此外,作為本發明相關的先前技術可舉出日本特表2016-511934號公報(專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特表2016-511934號公報
[發明所欲解決之課題]
本發明係有鑑於上述實情而完成者,以提供一種可簡便地製造具有Ga面之表面,且結晶性及平坦性良好的GaN層合基板,甚而可達直徑150mm以上之大口徑的GaN層合基板的製造方法為目的。 [解決課題之手段]
本發明為達成上述目的,而提供下述之GaN層合基板的製造方法。 1. 一種GaN層合基板的製造方法,其具有: 將藉由離子注入剝離法而由偏角0.5~5度之C面藍寶石基板剝離的C面藍寶石薄膜轉印於由800K下的熱膨脹率大於矽且小於C面藍寶石之玻璃、陶瓷或單晶材料所構成的操作基板上,而製作GaN磊晶成長用基板之步驟; 進行上述GaN磊晶成長用基板在800~1000℃下的高溫氮化處理及/或結晶性AlN在該GaN磊晶成長用基板之C面藍寶石薄膜上的堆積處理而對上述GaN磊晶成長用基板進行表面處理,而將C面藍寶石薄膜表面以由AlN所構成的表面處理層被覆之步驟; 使GaN磊晶成長於經上述表面處理之GaN磊晶成長用基板的表面處理層上而製作表面由N極性面所構成的GaN膜擔體之步驟; 對上述GaN膜進行離子注入而形成離子注入區域之步驟; 將經上述離子注入之GaN膜擔體的GaN膜側表面與支持基板貼合而予以接合之步驟;及 在上述GaN膜的離子注入區域予以剝離而將GaN薄膜轉印於支持基板上,而得到在支持基板上具有表面由Ga極性面所構成的GaN薄膜之GaN層合基板之步驟。 2. 如1之GaN層合基板的製造方法,其中上述操作基板係由硼矽酸系玻璃、GaN燒結體、AlN燒結體或GaAs單晶所構成。 3. 如1或2之GaN層合基板的製造方法,其係使氧化矽、氮化矽或氧氮化矽之薄膜夾在上述操作基板與C面藍寶石薄膜之間而轉印該C面藍寶石薄膜。 4. 如1~3中任一項之GaN層合基板的製造方法,其係使GaN磊晶成長用基板的翹曲量成為300μm以下。 5. 如1~4中任一項之GaN層合基板的製造方法,其中上述GaN磊晶成長係在超過1000℃且1200℃以下進行。 6. 如1~5中任一項之GaN層合基板的製造方法,其係藉由MOCVD法來進行上述GaN的磊晶成長。 7. 如1~6中任一項之GaN層合基板的製造方法,其中在對上述C面藍寶石基板進行表面處理後,於700℃以下在表面處理層上形成GaN緩衝層,接著在該GaN緩衝層上進行上述GaN磊晶成長。 8. 如7之GaN層合基板的製造方法,其中上述GaN緩衝層的厚度為20~40nm。 9. 如1~8中任一項之GaN層合基板的製造方法,其中在藉由上述磊晶成長形成GaN膜後,進一步在該GaN膜上形成氧化矽膜而作成上述GaN膜擔體。 10. 如1~9中任一項之GaN層合基板的製造方法,其係進一步在上述離子注入前將GaN膜擔體的離子注入面平滑化成算術平均粗糙度Ra0.3nm以下。 11. 如1~10中任一項之GaN層合基板的製造方法,其中對上述GaN膜的離子注入係使用氫離子(H+ )及/或氫分子離子(H2 + )之注入能量100~160keV、劑量1.0×1017 ~3.5×1017 atom/cm2 的處理。 12. 如1~11中任一項之GaN層合基板的製造方法,其中上述支持基板係由Si、Al2 O3 、SiC、AlN或SiO2 所構成。 13. 如12之GaN層合基板的製造方法,其中上述支持基板係在與GaN膜擔體之接合面形成有氧化矽膜者(惟,支持基板由SiO2 構成之情況除外)。 [發明之效果]
若根據本發明,則由於可藉由對於GaN磊晶成長用基板中的具有既定的偏角之C面藍寶石薄膜進行既定的表面處理,使GaN磊晶成長於該薄膜上而形成表面由N極性面所構成之結晶性良好的GaN膜,而能夠以1次之GaN薄膜轉印獲得表面由Ga極性面所構成的GaN層合基板。藉由比起以往可減少轉印次數,而能夠降低製程成本。再者,可減少因轉印而消失的GaN膜,而能夠降低材料成本。又,膜厚的面內不均度或表面粗糙度會因應轉印次數增大,由於比起以往可減少轉印次數,而能夠抑制此種情事。 再者,因可壓低GaN磊晶成長用基板之操作基板與GaN膜的熱膨脹率的差,而能夠抑制藉由磊晶成長形成GaN膜而製作之GaN膜擔體的翹曲,可作為大口徑的GaN膜擔體進行GaN膜轉印,而能夠使具有Ga面之表面且結晶性及平坦性良好的GaN層合基板成為大口徑化。 又,若根據本發明,則由於使用作為GaN薄膜轉印之施體基板之容易大口徑化之經磊晶成膜之基板,與使用昂貴且小口徑的塊狀GaN基板作為施體基板時相比,可獲得低成本且大口徑的GaN層合基板。本發明中獲得之表面由Ga極性面所構成的GaN層合基板,藉由作為GaN模板基板進一步進行GaN的磊晶成膜,可獲得高耐壓、高特性、低成本的GaN基板。
[實施發明之形態]
以下對於本發明之GaN層合基板的製造方法加以說明。此外,此處數值範圍「A~B」係包含其兩端的數值,意指A以上B以下。 本發明之GaN層合基板的製造方法,其特徵為具有:將藉由離子注入剝離法而由偏角0.5~5度之C面藍寶石基板剝離的C面藍寶石薄膜轉印於由800K下的熱膨脹率大於矽且小於C面藍寶石之玻璃、陶瓷或單晶材料所構成的操作基板上,而製作GaN磊晶成長用基板之步驟;進行上述GaN磊晶成長用基板在800~1000℃下的高溫氮化處理及/或結晶性AlN在該GaN磊晶成長用基板之C面藍寶石薄膜上的堆積處理而對上述GaN磊晶成長用基板進行表面處理,而將C面藍寶石薄膜表面以由AlN所構成的表面處理層被覆之步驟;使GaN磊晶成長於經上述表面處理之GaN磊晶成長用基板的表面處理層上而製作表面由N極性面所構成的GaN膜擔體之步驟;對上述GaN膜進行離子注入而形成離子注入區域之步驟;將經上述離子注入之GaN膜擔體的GaN膜側表面與支持基板貼合而予以接合之步驟;及在上述GaN膜的離子注入區域予以剝離而將GaN薄膜轉印於支持基板上,而得到在支持基板上具有表面由Ga極性面所構成的GaN薄膜之GaN層合基板之步驟。
以下基於圖1及圖2詳細地說明本發明之GaN層合基板的製造方法。 本發明之GaN層合基板的製造方法係首先如圖1所示,依(a)C面藍寶石基板及操作基板之準備步驟(步驟1-1);(b)在C面藍寶石基板上形成薄膜之步驟(步驟1-2);(c)C面藍寶石基板之離子注入處理步驟(步驟1-3);(d)C面藍寶石基板與操作基板之貼合接合步驟(步驟1-4);(e)C面藍寶石薄膜之剝離、轉印步驟(步驟1-5)之順序進行處理,而製作GaN磊晶成長用基板者。
(步驟1-1:C面藍寶石基板及操作基板的準備) 首先準備C面藍寶石基板1與操作基板2(圖1(a))。 於此,C面藍寶石基板1係以C面((0001)面)作為基板面之藍寶石(α-Al2 O3 )所構成的基板。又,C面藍寶石基板1的c軸偏角(下稱偏角)為0.5~5度,較佳為2~3度。藉由使偏角成為此範圍內,其後在由該C面藍寶石基板1剝離、轉印而形成之C面藍寶石薄膜1t上所形成的GaN膜13,成為其表面為N極性面(下稱N面)、平滑性良好且結晶性佳的磊晶成長膜,在進一步藉由離子注入剝離法剝離GaN膜13的一部分而轉印於支持基板12時,該轉印薄膜13a成為平滑性優良者。此外,偏角係使基板表面(欲進行結晶成長的面)由最密面朝特定方向些微傾斜時的該角度;c軸偏角係指C面藍寶石基板1之c軸(C面的法線軸)朝a軸方向之斜率的大小。
操作基板2係由800K下的熱膨脹率大於矽且小於C面藍寶石之玻璃、陶瓷或單晶材料所構成的基板,係作為本製造步驟中製作之GaN磊晶成長用基板11的基底基板。
又,操作基板2較佳由GaN磊晶成長時的基板溫度,例如1000℃之熱膨脹率與室溫(20℃)之熱膨脹率的差(△α)大於矽且小於C面藍寶石之玻璃、陶瓷或單晶材料所構成,更佳由儘可能近似GaN之材料所構成。操作基板2特佳由硼矽酸系玻璃、GaN燒結體、AlN燒結體或GaAs單晶所構成。此外,硼矽酸系玻璃可舉出例如JIS R3503:2007所規定之硼矽酸玻璃-1(JR-1)、硼矽酸玻璃-2(JR-2)。
此處所稱熱膨脹率,係指該材料於既定溫度下的線膨脹率。此外,由於熱膨脹率為溫度的函數,於本發明中係以磊晶成長時的溫度與室溫之中間溫度下的值來判斷。 以下表示代表性材料在800K下的熱膨脹率之實例。 GaN:6.0×10-6 /K(800K) C面藍寶石:8.0×10-6 /K(800K) AlN:5.2×10-6 /K(800K) Si:4.1×10-6 /K(800K) GaAs單晶:6.9×10-6 /K(800K)
操作基板2表面的算術平均粗糙度Ra(JIS B0601:2013,下同)較佳為0.5nm以下。由此,在與C面藍寶石基板1接合時可達更強固的接合。
(步驟1-2:在C面藍寶石基板上形成薄膜) 在C面藍寶石基板1的表面形成薄膜1a(圖1(b))。 薄膜1a係夾在C面藍寶石基板1(最終為C面藍寶石薄膜1t)與貼合對象之操作基板2之間而用來提升兩者之接合強度者,較佳由氧化矽(SiO2 )、氮化矽(Si3 N4 )或氧氮化矽(SiOx Ny )所構成。又,此薄膜1a的膜厚較佳為300~1000nm。 薄膜1a宜藉由濺鍍法、電漿CVD法等形成。 此外,即使未夾著薄膜1a,在C面藍寶石基板1與操作基板2之間仍可獲得充分的接合強度時(即C面藍寶石薄膜1t未經剝離而轉印於操作基板2時),亦可省略此步驟。
(步驟1-3:C面藍寶石基板1的離子注入處理步驟) 其次,對上述C面藍寶石基板1的薄膜1a形成面進行離子注入而於C面藍寶石基板1中形成層狀的離子注入區域1ion (圖1(c))。
此時,作為注入離子,較佳使用氫離子(H+ )及/或氫分子離子(H2 + )。
又,注入能量係供規範離子注入深度(即剝離膜(C面藍寶石薄膜1t)的膜厚)者,較佳為110~160keV。若注入能量成為110keV以上,則可使C面藍寶石薄膜1t的膜厚成為500nm以上。另一方面,若取超過160keV,則注入損傷會變大而有招致剝離之薄膜的結晶性劣化之虞。
又,劑量較佳為1.0×1017 ~3.0×1017 atom /cm2 。藉此,在C面藍寶石基板1中可形成作為剝離層(脆化層)的離子注入區域1ion 。此外,離子注入溫度為室溫。
於此,上述離子注入處理亦可對在前步驟1-2中直接形成薄膜1a的C面藍寶石基板1實施;若直接形成之薄膜1a的表面(未形成薄膜1a時為C面藍寶石基板1表面)較粗糙,則對應其表面凹凸,離子注入深度成為不均勻,而使得剝離後之C面藍寶石薄膜1t之剝離面(表面)的凹凸變大。
因此,宜在上述離子注入前將C面藍寶石基板1的離子注入面(即薄膜1a表面或C面藍寶石基板1表面)平滑化成算術平均粗糙度較佳為0.3nm以下。例如,在步驟1-2中形成之薄膜1a表面或未形成薄膜1a時,宜將C面藍寶石基板1表面進行藉由CMP等所致之研磨及/或蝕刻而予以平滑化成算術平均粗糙度Ra較佳為0.3nm以下,更佳為0.2nm以下。
如以上所述藉由將C面藍寶石基板1之待進行離子注入的面(即薄膜1a表面或C面藍寶石基板1表面)平滑化,可使其次所進行之離子注入處理中的離子注入深度固定,而且在與操作基板2貼合後予以剝離時可獲得表面平滑(表面粗糙度小)的剝離轉印層(C面藍寶石薄膜1t)。
(步驟1-4:C面藍寶石基板1與操作基板2之貼合接合步驟) 其次,將經上述離子注入之C面藍寶石基板1的薄膜1a表面(未形成薄膜1a時則為C面藍寶石基板1表面)與操作基板2貼合而予以接合(圖1(d))。
於此,C面藍寶石基板1與操作基板2便夾著薄膜1a而接合。或者,未形成薄膜1a時,C面藍寶石基板1與操作基板2便以直接相接的形式接合而成。
此外,於此貼合前,較佳對C面藍寶石基板1的離子注入面、操作基板2的接合面此兩者或一者實施作為表面活化處理之電漿處理。 例如,若要在一般的平行平板型電漿室中裝設待進行表面活化處理的C面藍寶石基板1及/或操作基板2,施加13.56MHz、100W左右的高頻率,導入作為製程氣體之Ar、N2 、O2 等進行處理即可。處理時間係定為5~30秒。藉此,對象基板表面經活化,而使貼合後的接合強度增大。 又,貼合後藉由實施200~300℃左右的退火,而形成更強固的接合。
(步驟1-5:C面藍寶石薄膜的剝離、轉印步驟) 其次,在上述C面藍寶石基板1的離子注入區域1ion 予以剝離而將C面藍寶石薄膜1t轉印於操作基板2上(圖1(e))。
剝離處理若為在離子注入剝離法中一般進行之處理即可,例如除插入刀片等的機械剝離外,尚可應用雷射光照射等的光剝離、其他噴射水流或超音波等的物理衝擊剝離。
藉此,可獲得在操作基板2上具有偏角為0.5~5度,較佳為2~3度且表面呈平滑的C面藍寶石薄膜1t之GaN磊晶成長用基板11。
此時,GaN磊晶成長用基板11的翹曲量係愈小愈佳,惟就實用上而言較佳成為300μm以下,更佳為200μm以下,再更佳為150μm以下。此外,此時的基板大小係以直徑150mm(6吋)以上(上限不特別限制,惟通常為直徑300mm(12吋)以下)為前提。藉此,可容易地進行以後之處理步驟。 此外,GaN磊晶成長用基板11的翹曲量係配置成GaN磊晶成長用基板11之C面藍寶石薄膜1t成為上側(表面側)之位向時之GaN磊晶成長用基板11的中央部與端部的高低差,且基板的中央部凸向下方時為負值、凸向上方時為正值。又,翹曲量的測定宜使用例如垂直入射方式之斐左干涉儀(Corning Tropel公司製,Flat Master)(於實施例中相同)。
其次,本發明之GaN層合基板的製造方法係如圖2所示,依(a)GaN磊晶成長用基板及支持基板之準備步驟(步驟2-1);(b)GaN磊晶成長用基板之表面處理步驟(步驟2-2);(c)GaN磊晶成長步驟(步驟2-3);(d)離子注入處理步驟(步驟2-4);(e)貼合接合步驟(步驟2-5);(f)GaN薄膜之剝離、轉印步驟(步驟2-6)之順序進行處理者。
(步驟2-1:GaN磊晶成長用基板及支持基板的準備) 首先準備GaN磊晶成長用基板11與支持基板12(圖2(a))。 於此,GaN磊晶成長用基板11係以如上述之步驟所製作者,在操作基板2上具有偏角為0.5~5度,較佳為2~3度之C面藍寶石薄膜1t而成。 藉由使偏角成為此範圍內,其後在C面藍寶石薄膜1t上所形成的GaN膜13,成為其表面為N極性面(下稱N面)、平滑性良好且結晶性佳的磊晶成長膜,在進一步藉由離子注入剝離法剝離其一部分而轉印於支持基板12時,該轉印薄膜13a成為平滑性優良者。
又,C面藍寶石薄膜1t表面的算術平均粗糙度Ra較佳為0.5nm以下。藉此,經磊晶成膜之GaN膜13的表面更為平滑,與支持基板12貼合接合時可達更強固的接合。
支持基板12為最終支持GaN薄膜13a的基板,較佳由Si、Al2 O3 、SiC、AlN或SiO2 所構成。其構成材料宜因應使用所得之GaN層合基板所製作之半導體裝置的用途適宜選定。
支持基板12表面的算術平均粗糙度Ra較佳為0.5nm以下。藉此,在與GaN磊晶成長用基板11上具有GaN層13之GaN層擔體接合時可達更強固的接合。
再者,亦可藉由濺鍍法、電漿CVD法等,或當支持基板12由Si構成時藉由熱氧化法,在支持基板12的最表層設置由氧化矽(SiOx薄膜,惟0<x≦2)所構成的黏合膜(惟,支持基板12由SiO2 構成之情況除外)。而且,當支持基板12本身的表面粗糙度極小時(例如支持基板12表面的算術平均粗糙度Ra超過0.5nm時),亦可對此黏合膜藉由化學機械研磨(CMP)等進行處理而將其表面平滑化。藉此,可進一步增大與具有GaN磊晶成長用基板11及GaN層13之GaN層擔體的接合強度。 此外,此黏合膜的膜厚約較佳為300~1000nm。
(步驟2-2:GaN磊晶成長用基板的表面處理) 其次,進行GaN磊晶成長用基板的表面處理(圖2(b))。 亦即,進行GaN磊晶成長用基板11在800~1000℃下的高溫氮化處理及/或結晶性AlN在GaN磊晶成長用基板11之C面藍寶石薄膜1t上的堆積處理而對GaN磊晶成長用基板11進行表面處理,而將C面藍寶石薄膜1t表面以由AlN所構成的表面處理層11a被覆。
其中,GaN磊晶成長用基板11的高溫氮化處理係將GaN磊晶成長用基板11於含氮環境中加熱至略低於其後所進行之GaN磊晶成長之成膜溫度的溫度,具體而言為800~1000℃而在至少C面藍寶石薄膜1t的表面形成作為表面處理層11a之AlN膜者。此處理較佳在使GaN膜磊晶成長之MOCVD裝置的同一處理室中以原位(in situ)狀態實施,以略低於GaN磊晶成長之成膜溫度(1050~1100℃)的溫度(800~1000℃)施行。此時,若處理溫度未達800℃,則不會產生GaN膜的N極成長;而且超過1000℃時,在其後所進行之磊晶成長的GaN生成中平滑性變差。又,作為製程氣體係使用純氮氣,亦可使用氨氣。藉由使用氨氣,會產生活性更高的N原子,而能夠改善GaN膜的表面形態(結晶構造)。又,高溫氮化處理時間宜定為30秒~30分鐘左右。藉由延長處理時間,可改善GaN膜的表面形態(結晶構造)。
結晶性AlN在C面藍寶石薄膜1t上形成之處理係藉由藍寶石的氮化、化學氣相沉積法(CVD法)或物理氣相沉積法(PVD法)而在C面藍寶石薄膜1t上形成作為表面處理層11a之結晶性AlN膜者。此堆積處理若能以可將至少C面藍寶石薄膜1t表面以結晶性AlN膜(表面處理層11a)被覆之形成條件進行即可。
此外,如上述在C面藍寶石薄膜1t上形成作為表面處理層11a之結晶性AlN膜後,較佳在GaN磊晶成長前進行熱處理而使結晶性AlN膜穩定化。
(步驟2-3:GaN磊晶成長步驟) 其次,使GaN磊晶成長於經上述表面處理之C面藍寶石薄膜1t的表面處理層11a上而形成表面由N極性面所構成的GaN膜13,而製作GaN膜擔體。
作為GaN膜之磊晶成長法,已知有分子束磊晶(MBE)法、氫化物氣相成長(HVPE)法或有機金屬氣相成長(MOCVD)法;要使低缺陷的GaN薄膜直接成長於C面藍寶石薄膜1t上,最佳為MOCVD法。
此時,較佳以超過1000℃進行藉由MOCVD法所致之GaN膜13的磊晶成長,在上述步驟2-2中進行高溫氮化處理時,較佳以高於其處理溫度的溫度進行,宜為可取得GaN膜13之膜質與成膜速度之平衡的超過1000℃且1200℃以下。又,製程氣體係使用三甲基鎵(TMG)及氨(NH3 ),作為載流氣體宜使用氫氣。 又,GaN膜13的厚度係因應最終所欲獲得之GaN薄膜13a的厚度,為例如1~30μm。
此外,較佳在步驟2-2中對C面藍寶石薄膜1t進行表面處理後,在表面處理層11a上以低溫,例如700℃以下形成GaN緩衝層,接著在此GaN緩衝層上進行上述藉由MOCVD法所致之GaN磊晶成長,而形成GaN膜13。
此時,於GaN緩衝層的成膜之際,成膜溫度超過700℃時,緩衝層上的GaN膜13無法順利地進行N極成長;未達400℃時有無法進行成膜本身的情況,因此較佳以400~700℃,更佳以400~600℃進行成膜。又,GaN緩衝層的厚度若過薄,則有無法獲得緩衝效應的情況;若過厚則有招致膜質變差之虞,故較佳定為20~40nm,更佳定為20~25nm。
根據以上一系列GaN膜13之形成步驟,即於GaN磊晶成長用基板11的C面藍寶石薄膜1t(表面處理層11a)上形成表面由N面所構成且結晶性極佳的GaN膜13(至此為圖2(c))。 於此,GaN等化合物半導體結晶表面係具有極性,例如由構成元素Ga與N所構成的單晶GaN膜係必然具有由Ga原子構成(終端),且該Ga原子的懸鍵露出之極性面(Ga極性面(亦稱Ga面)),與由N原子構成(終端),且該N原子的懸鍵露出之極性面(N極性面(亦稱N面))。 又,GaN的結晶構造為六方晶系,其極性面係顯現於晶格的最密面。此外,六方晶系化合物半導體結晶的最密面為{0001}面,惟(0001)面與(000-1)面非等效,前者係陽離子原子露出的面、後者則為陰離子原子露出的面;於氮化鎵(GaN)中,(0001)面為Ga面、(000-1)面為N面。
此外,藉由上述磊晶成長形成GaN膜13後,亦可進一步藉由濺鍍法、電漿CVD法等,在該GaN膜13上形成氧化矽(SiOx,惟0<x≦2)膜作為用來與支持基板12貼合之黏合層而作成上述GaN膜擔體。此時之氧化矽膜的厚度(進行CMP研磨時為CMP研磨後的厚度)較佳為200~1000nm。
(步驟2-4:對GaN膜13之離子注入步驟) 其次,由上述GaN膜擔體之GaN膜13的表面進行離子注入而在GaN膜13中形成層狀的離子注入區域13ion (圖2(d))。
此時,作為注入離子,較佳使用氫離子(H+ )及/或氫分子離子(H2 + )。
又,注入能量係供規範離子注入深度(即剝離膜(GaN薄膜13a)的膜厚)者,較佳為100~160keV。若注入能量成為100keV以上,則可使GaN薄膜13a的膜厚成為500nm以上。另一方面,若成為超過160keV,則注入損傷會變大而有招致剝離之薄膜的結晶性劣化之虞。
又,劑量較佳為1.0×1017 ~3.5×1017 atom /cm2 。藉此,可在GaN膜13中形成作為剝離層(脆化層)的離子注入區域13ion ,且可抑制GaN膜擔體的溫度上升。此外,離子注入溫度為室溫,若為高溫則有GaN膜擔體斷裂之虞,因此,亦可將GaN膜擔體冷卻。
於此,上述離子注入處理亦可對在步驟2-3中直接形成GaN膜13的GaN膜擔體實施;若直接形成之GaN膜13的表面較粗糙,則對應其表面凹凸,離子注入深度成為不均勻,而使得剝離後之GaN薄膜13a之剝離面(表面)的凹凸變大。
因此,宜在上述離子注入前將GaN膜擔體的離子注入面平滑化成算術平均粗糙度較佳為0.3nm以下,更佳為0.2nm以下。 例如,宜將步驟2-3中形成之GaN膜13表面進行藉由CMP等所致研磨及/或蝕刻而予以平滑化成算術平均粗糙度Ra較佳為0.3nm以下,更佳為0.2nm以下。
或者,在上述GaN膜13(即直接成膜或者經研磨及/或蝕刻而平滑化的GaN膜13)上形成作為黏合層之氧化矽膜時,宜將此氧化矽膜表面進行藉由CMP等所致之研磨及/或蝕刻而予以平滑化成算術平均粗糙度Ra較佳為0.3nm以下。GaN膜13的厚度較薄,不易以研磨等平坦化時特別有效。
如以上所述藉由將GaN膜擔體之欲進行離子注入的面(亦即GaN膜13或作為上述黏合層的氧化矽膜表面)平滑化,可使其次所進行之離子注入處理中的離子注入深度固定,而且在與支持基板12貼合後予以剝離時可獲得表面平滑(表面粗糙度小)的剝離轉印層(GaN薄膜13a)。
(步驟2-5:GaN膜擔體與支持基板12之貼合接合步驟) 其次,將經上述離子注入之GaN膜擔體的GaN膜13側表面與支持基板12貼合而予以接合(圖2(e))。
於此,若為未形成黏合層(氧化矽膜)之GaN膜擔體與支持基板12的貼合時,GaN膜擔體的GaN膜13表面(N面)與支持基板12表面便相接合。亦即,成為GaN磊晶成長用基板11(操作基板2/薄膜1a/C面藍寶石薄膜1t)/表面處理層11a/(GaN緩衝層)/GaN膜13(N面)/支持基板12之層合構造。
又,若為將黏合層(氧化矽膜)形成於至少任一表面之GaN膜擔體與支持基板12的貼合時,GaN膜擔體的GaN膜13表面(N面)與支持基板12表面便於彼等之間夾著黏合層(氧化矽膜)而相接合。亦即,成為GaN磊晶成長用基板11(操作基板2/薄膜1a/C面藍寶石薄膜1t)/表面處理層11a/(GaN緩衝層)/GaN膜13(N面)/黏合層(氧化矽膜)/支持基板12之層合構造。
此外,於此貼合前,較佳對GaN膜擔體的離子注入面、支持基板12的接合面此兩者或一者實施作為表面活化處理之電漿處理。 例如,若在一般的平行平板型電漿室中裝設待進行表面活化處理的GaN膜擔體及/或支持基板12,施加13.56MHz、100W左右的高頻率,導入作為製程氣體之Ar、N2 、O2 等進行處理即可。處理時間係定為5~30秒。藉此,對象基板表面經活化,而使貼合後的接合強度增大。 又,貼合後藉由實施200~300℃、5~24小時左右的退火,而形成更強固的接合而較佳。
(步驟2-6:GaN薄膜之剝離、轉印步驟) 其次,在上述GaN膜13的離子注入區域13ion 予以剝離而將GaN薄膜13a轉印於支持基板12上(圖2(f))。
剝離處理若為在離子注入剝離法中一般進行之處理即可,例如除插入刀片等的機械剝離外,尚可應用雷射光照射等的光剝離、其他噴射水流或超音波等的物理衝擊剝離。
藉此,可獲得在支持基板12上具有表面由Ga極性面所構成、結晶性良好且表面平滑的GaN薄膜13a之GaN層合基板10。 此外,剝離後之經轉印的GaN薄膜13a的表面係極為平滑,惟亦能根據使用此GaN層合基板10之裝置的要求特性,而以研磨等進一步平滑化。又,藉由進一步使GaN膜磊晶成長於此GaN層合基板10上,亦可製造低缺陷且為厚膜的GaN基板。
此外,確認GaN層合基板10之GaN薄膜13a表面的極性面之方法,例如若要觀察根據KOH水溶液所產生之蝕刻速率的差異來判斷即可。亦即,N面的蝕刻速率係大於Ga面。例如,可由浸漬於40℃、2mol/L的KOH水溶液45分鐘時,Ga面未經蝕刻而N面經蝕刻一事來確認。 [實施例]
以下舉出實施例及比較例更具體地說明本發明,惟本發明非限定於此等實施例者。
[實施例1] 依以下條件製作GaN層合基板。
(實施例1-1) 準備直徑12吋、厚度750μm、由熱膨脹率5.2×10-6 /k (800K)之AlN燒結體(陶瓷)所構成的操作基板與直徑12吋、厚度750μm、算術平均粗糙度Ra0.3nm、熱膨脹率8.0×10-6 /k(800K)、c軸偏角1.5度之C面藍寶石基板。此外,此操作基板之與GaN(熱膨脹率6.0×10-6 /k(800K))的熱膨脹率差為-0.8×10-6 /k。 其次,於此C面藍寶石基板表面藉由濺鍍法形成厚度150nm的SiO2 薄膜,並由此SiO2 薄膜表面以注入能量150keV、劑量2×1017 atom/cm2 離子注入氫分子離子H2 + 。 其次,對於C面藍寶石基板的離子注入面(SiO2 薄膜形成面)與操作基板表面實施Ar電漿處理。其次,將兩者的Ar電漿處理面彼此貼合而予以接合後,自貼合體於離子注入區域機械地剝離C面藍寶石基板,將C面藍寶石薄膜轉印於操作基板上而得到GaN磊晶成長用基板。此GaN磊晶成長用基板的翹曲量為100μm。
將此基板以RCA洗淨清洗後,在MOCVD裝置中實施30分鐘基板溫度900℃的高溫氮化處理(製程氣體:純氮氣),接著在基板溫度400℃下形成厚度20nm的GaN緩衝層後,進一步以基板溫度1050℃,使用製程氣體:TMG及NH3 進行磊晶成長而形成10μm的GaN膜。此GaN膜的算術平均粗糙度Ra為8nm。 其次,於此GaN膜上藉由電漿CVD法形成作為黏合層之厚度2μm的氧化矽膜後,以CMP裝置將此氧化矽膜研磨至300nm。所得GaN膜擔體的算術平均粗糙度Ra為0.3nm。 其次,由此GaN膜擔體的氧化矽膜表面以注入能量160keV、劑量3.1×10+17 atom/cm2 離子注入氫分子離子H2 +
其次,作為支持基板準備直徑12吋、厚度750μm的Si基板,於Si基板上形成厚度300nm的熱氧化膜。熱氧化膜形成後之Si基板的算術平均粗糙度Ra=0.5nm。
對於此Si基板、上述GaN膜擔體各者的熱氧化膜、氧化矽膜(離子注入面)表面實施Ar電漿處理。其次,將Ar電漿處理面彼此貼合後,於氮氣環境下以200℃進行12小時退火。退火後,對GaN膜的離子注入區域插入金屬刀片進行剝離,將GaN薄膜轉印於Si基板上而得到GaN層合基板。
所得GaN層合基板之GaN薄膜表面的算術平均粗糙度Ra為10nm。又,對於所得GaN層合基板的GaN薄膜藉由X線搖擺曲線法評估其結晶性。詳言之,藉由X光繞射求出上述GaN薄膜之GaN(0002)面反射的搖擺曲線(ω掃描)中的傾斜分布(半高寬),結果為310arcsec而顯示良好的結晶性。 又,作為確認GaN薄膜之表面的極性面,將試樣浸漬於40℃、2mol/L的KOH水溶液45分鐘後觀察其表面,結果GaN薄膜表面未經蝕刻,可知GaN薄膜表面成為Ga面。
(實施例1-2) 實施例1-1中,將操作基板定為由硼矽酸玻璃(熱膨脹率6.8×10-6 /k(800K))所構成者,且將C面藍寶石基板的偏角定為3度(算術平均粗糙度Ra:0.3nm),除此之外係以與實施例1-1同樣的方式製作GaN磊晶成長用基板。此GaN磊晶成長用基板的翹曲量為150μm。 其次,使用此GaN磊晶成長用基板磊晶成長厚度5μm的GaN膜後,對此GaN膜表面(該GaN膜算術平均粗糙度Ra:6nm)進行CMP研磨而使其表面的算術平均粗糙度Ra成為0.2nm,且未形成黏合層而直接轉印於由石英所構成的支持基板(石英基板)。除此之外係以與實施例1-1同樣的方式得到GaN層合基板。 所得GaN層合基板之GaN薄膜表面的算術平均粗糙度Ra為0.3nm。又,對於所得GaN層合基板之GaN薄膜與實施例1-1同樣地藉由X光搖擺曲線法評估結晶性,結果為FWHM280arcsec,顯示與實施例1-1同等的結晶性。 又,以與實施例1-1同樣的方式確認GaN薄膜之表面的極性面,結果為Ga面。
(比較例1-1) 使用實施例1-1中,將C面藍寶石基板的c軸偏角定為0.05度(算術平均粗糙度Ra:0.3nm)者,除此之外係以與實施例1-1同樣的方式得到GaN層合基板。此外,GaN膜成膜後之該GaN膜的算術平均粗糙度Ra為135nm,氧化矽膜CMP研磨後之GaN膜擔體的算術平均粗糙度Ra為0.2nm。 所得GaN層合基板之GaN薄膜表面的算術平均粗糙度Ra為150nm,平滑性較差。又,對於所得GaN層合基板之GaN薄膜與實施例1-1同樣地藉由X光搖擺曲線法評估結晶性,結果為FWHM850arcsec,結晶性惡化。 又,以與實施例1-1同樣的方式確認GaN薄膜之表面的極性面,結果為Ga面。
(比較例1-2) 使改用實施例1-1中,將C面藍寶石基板的c軸偏角定為6度(算術平均粗糙度Ra:0.3nm)者,除此之外係以與實施例1-1同樣的方式得到GaN層合基板。此外,GaN膜成膜後之該GaN膜的算術平均粗糙度Ra為80nm,氧化矽膜CMP研磨後之GaN膜擔體的算術平均粗糙度Ra為0.3nm。 所得GaN層合基板之GaN薄膜表面的算術平均粗糙度Ra為120nm。又,對於所得GaN層合基板之GaN薄膜與實施例1-1同樣地藉由X光搖擺曲線法評估結晶性,結果為FWHM960arcsec,結晶性惡化。 又,以與實施例1-1同樣的方式確認GaN薄膜之表面的極性面,結果為Ga面。
(比較例1-3) 直接將實施例1-1中使用之C面藍寶石基板作為GaN磊晶成長用基板使用,並在該GaN磊晶成長用基板以與實施例1-1同樣的方式形成GaN膜,結果GaN成膜後之基板的翹曲為極大至約3mm,無法與支持基板貼合,故中止以後之步驟。
將以上結果示於表1。若根據本發明,則可知縱為直徑12吋的大口徑基板,但仍可獲得具有優良之平滑性與結晶性的GaN層合基板。此外,表中的表面粗糙度Ra為算術平均粗糙度Ra。
此外,至此已以上述實施形態說明本發明,惟本發明不受此實施形態所限定,其他實施形態、追加、變更、刪除等,可於本業者可思及之範圍內進行變更,於任何樣態只要可發揮本發明之作用效果,皆包含於本發明範圍內。
1、1’:C面藍寶石基板 1a:薄膜 1ion、13ion:離子注入區域 1t:C面藍寶石薄膜 2:操作基板 10:GaN層合基板 11:GaN磊晶成長用基板 11a:表面處理層 12:支持基板 13:GaN膜 13a:GaN薄膜
圖1為表示本發明之GaN層合基板的製造方法之一實施形態的製造步驟當中,與GaN磊晶成長用基板的製作有關之製造步驟的圖,(a)為準備C面藍寶石基板及操作基板;(b)為在C面藍寶石基板上形成薄膜;(c)為離子注入處理;(d)為貼合接合;(e)為C面藍寶石薄膜的剝離轉印。 圖2為表示本發明之GaN層合基板的製造方法之一實施形態的製造步驟當中,使用圖1中製作之GaN磊晶成長用基板之GaN層合基板的製造步驟的圖,(a)為準備GaN磊晶成長用基板及支持基板;(b)為GaN磊晶成長用基板的表面處理;(c)為GaN磊晶成長;(d)為離子注入處理;(e)為貼合接合;(f)為GaN薄膜的剝離轉印。
1a:薄膜
1t:C面藍寶石薄膜
2:操作基板
10:GaN層合基板
11:GaN磊晶成長用基板
11a:表面處理層
12:支持基板
13:GaN膜
13a:GaN薄膜
13ion:離子注入區域

Claims (13)

  1. 一種GaN層合基板的製造方法,其具有:將藉由離子注入剝離法而由偏角0.5~5度之C面藍寶石基板剝離的C面藍寶石薄膜轉印於由800K下的熱膨脹率大於矽且小於C面藍寶石之玻璃、陶瓷或單晶材料所構成的操作基板上,而製作GaN磊晶成長用基板之步驟;進行上述GaN磊晶成長用基板在800~1000℃下的高溫氮化處理及/或結晶性AlN在該GaN磊晶成長用基板之C面藍寶石薄膜上的堆積處理而對上述GaN磊晶成長用基板進行表面處理,而將C面藍寶石薄膜表面以由AlN所構成的表面處理層被覆之步驟;使GaN磊晶成長於經上述表面處理之GaN磊晶成長用基板的表面處理層上而製作表面由N極性面所構成的GaN膜擔體之步驟;對上述GaN膜進行離子注入而形成離子注入區域之步驟;將經上述離子注入之GaN膜擔體的GaN膜側表面與支持基板貼合而予以接合之步驟;及在上述GaN膜中的離子注入區域予以剝離而將GaN薄膜轉印於支持基板上,而得到在支持基板上具有表面由Ga極性面所構成的GaN薄膜之GaN層合基板之步驟。
  2. 如請求項1之GaN層合基板的製造方法,其中上述操 作基板係由硼矽酸系玻璃、GaN燒結體、AlN燒結體或GaAs單晶所構成。
  3. 如請求項1或2之GaN層合基板的製造方法,其係使氧化矽、氮化矽或氧氮化矽之薄膜夾在上述操作基板與C面藍寶石薄膜之間而轉印該C面藍寶石薄膜。
  4. 如請求項1或2之GaN層合基板的製造方法,其係使GaN磊晶成長用基板的翹曲量成為300μm以下。
  5. 如請求項1或2之GaN層合基板的製造方法,其中上述GaN磊晶成長係在超過1000℃且1200℃以下進行。
  6. 如請求項1或2之GaN層合基板的製造方法,其係藉由MOCVD法來進行上述GaN的磊晶成長。
  7. 如請求項1或2之GaN層合基板的製造方法,其中在對上述C面藍寶石基板進行表面處理後,於700℃以下在表面處理層上形成GaN緩衝層,接著在該GaN緩衝層上進行上述GaN磊晶成長。
  8. 如請求項7之GaN層合基板的製造方法,其中上述GaN緩衝層的厚度為20~40nm。
  9. 如請求項1或2之GaN層合基板的製造方法,其中在藉由上述磊晶成長形成GaN膜後,進一步在該GaN膜上形成氧化矽膜而作成上述GaN膜擔體。
  10. 如請求項1或2之GaN層合基板的製造方法,其係進一步在上述離子注入前將GaN膜擔體的離子注入面平滑化成算術平均粗糙度Ra0.3nm以下。
  11. 如請求項1或2之GaN層合基板的製造方法,其中對上述GaN膜的離子注入係使用氫離子(H+)及/或氫分子離子(H2 +)之注入能量100~160keV、劑量1.0×1017~3.5×1017atom/cm2的處理。
  12. 如請求項1或2之GaN層合基板的製造方法,其中上述支持基板係由Si、Al2O3、SiC、AlN或SiO2所構成。
  13. 如請求項12之GaN層合基板的製造方法,其中上述支持基板係在與GaN膜擔體之接合面形成有氧化矽膜者(惟,支持基板由SiO2構成之情況除外)。
TW108128217A 2018-08-09 2019-08-08 GaN層合基板的製造方法 TWI834703B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-149939 2018-08-09
JP2018149939 2018-08-09

Publications (2)

Publication Number Publication Date
TW202024406A TW202024406A (zh) 2020-07-01
TWI834703B true TWI834703B (zh) 2024-03-11

Family

ID=

Similar Documents

Publication Publication Date Title
TWI829709B (zh) 氮化鎵層積基板之製造方法
TWI709197B (zh) 製造具有電荷捕捉層之高電阻率絕緣體上半導體晶圓之方法
TWI482203B (zh) And a method for producing a substrate having a single crystal thin film
US10829868B2 (en) Manufacturing method of SiC composite substrate
JP5468528B2 (ja) 単結晶ダイヤモンド成長用基材及びその製造方法並びに単結晶ダイヤモンド基板の製造方法
TWI738665B (zh) SiC複合基板之製造方法
CN112585305B (zh) GaN层叠基板的制造方法
TWI834703B (zh) GaN層合基板的製造方法
US10672608B2 (en) Fabrication of a device on a carrier substrate
WO2024084836A1 (ja) 窒化物半導体エピタキシャルウエーハの製造方法及び窒化物半導体エピタキシャルウエーハ用複合基板
JP7290156B2 (ja) 窒化物半導体基板及びその製造方法
TW202331794A (zh) 氮化物半導體基板及氮化物半導體基板的製造方法