WO2006129561A1 - 走査型プローブ顕微鏡およびカンチレバー駆動装置 - Google Patents

走査型プローブ顕微鏡およびカンチレバー駆動装置 Download PDF

Info

Publication number
WO2006129561A1
WO2006129561A1 PCT/JP2006/310535 JP2006310535W WO2006129561A1 WO 2006129561 A1 WO2006129561 A1 WO 2006129561A1 JP 2006310535 W JP2006310535 W JP 2006310535W WO 2006129561 A1 WO2006129561 A1 WO 2006129561A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
light
light irradiation
displacement
control unit
Prior art date
Application number
PCT/JP2006/310535
Other languages
English (en)
French (fr)
Inventor
Toshio Ando
Takayuki Uchihashi
Noriyuki Kodera
Hayato Yamashita
Original Assignee
National University Corporation Kanazawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kanazawa University filed Critical National University Corporation Kanazawa University
Priority to US11/915,940 priority Critical patent/US7958565B2/en
Priority to JP2007518942A priority patent/JP5164147B2/ja
Priority to EP06756635.6A priority patent/EP1898204B1/en
Publication of WO2006129561A1 publication Critical patent/WO2006129561A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • G01Q10/065Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself

Definitions

  • the present invention relates to a scanning probe microscope including a cantilever and a cantilever driving device.
  • the AFM includes a cantilever having a probe at the free end, a sensor for detecting the displacement of the cantilever, and a sample stage scanner.
  • the sensor is typically an optical lever type sensor.
  • the sample stage scanner is generally composed of piezo elements, and the sample is moved in the X, ⁇ , and ⁇ directions relative to the cantilever.
  • AFM AFM
  • a sample and a cantilever are relatively scanned in the vertical direction.
  • the displacement in the heel direction is feedback controlled so that the force applied to the cantilever and the sample is kept constant.
  • This feedback control force for displacement in the ⁇ direction is called ⁇ scanning.
  • the fine shape of the sample surface can be obtained from the movement of the sample stage to keep the force applied to the cantilever and the sample constant.
  • an AC mode and a contact mode are typically known.
  • the cantilever In the AC mode, the cantilever is excited at the resonance frequency. The amplitude changes as the cantilever approaches the sample. Therefore, feedback control in the Z direction is performed so that the amplitude is constant, which keeps the distance between the cantilever and the sample constant.
  • AFM In conventional AFM, it takes a minute order to take a single image that is slow to measure. This is because feedback scanning is slow.
  • the feedback operation is to keep the force applied to the cantilever probe and the sample constant by moving the sample stage up and down to adjust the distance between the probe and the sample surface. For example, it is difficult to observe the movement of a sample because time is required for image acquisition.
  • Most AFM devices are involved in the feedback scanning loop. Related devices are cantilevers, sensors, sensor amplifiers, control circuits, piezo drive power supplies, sample stage scanners, and so on. Of these devices, the sample stage scanner is usually the slowest device. Therefore, in order to increase the AFM shooting speed, a high-speed scanner is essential.
  • the scanner is composed of a piezo element (piezoelectric element) having a macro size.
  • the sample stage is scanned in the 3D direction of XYZ by the scanner.
  • the feedback scan is a Z-direction scan, and is a faster scan than the XY-direction scan.
  • This Z-direction scanning needs to be performed in a region below the resonance frequency of the piezo element. Therefore, in order to increase the scanning speed, it is necessary to increase the resonance frequency of the Z-direction scanning piezo element.
  • the piezo elements have a macro size compared to cantilevers and so on, so the resonance frequency of the piezo elements is low. This is a factor that hinders high-speed scanner operation.
  • the cantilever In feedback scanning, the cantilever may be powered in the Z direction instead of moving the sample stage in the Z direction. Therefore, a cantilever with a self-actuation function has been developed by introducing a piezoelectric thin film into the cantilever using MEMS technology. In this case, since the cantilever is much smaller than the sample stage scanner, the resonance frequency can be easily increased. Therefore, high-speed feedback scanning is easy. However, since the self-actuation function is provided, the structure of the cantilever becomes complicated, and the cantilever becomes very hard. For this reason, self-actuation type cantilevers are fragile and soft, such as biopolymers and synthetic polymers! /, Difficult to use for measuring samples! /
  • the cantilever is a kind of resonance system.
  • the Q value (Quality factor) is a quantity that represents the sharpness of the resonance spectrum (the relationship between the displacement of the cantilever with the frequency of the excitation force).
  • the Q value increases as the viscous resistance acting on the resonance system decreases. Conversely, if the viscous resistance is large, the Q value decreases.
  • the response speed of the resonance system is represented by ⁇ fZQ. Where f is the resonance frequency. The larger the Q value, the slower the response speed.
  • Q value control for artificially changing the Q value of a cantilever has already been proposed.
  • the principle of Q value control is as follows. The equation of motion of the resonant system is shown below.
  • the viscous resistance decreases, and as a result, the Q value increases.
  • the viscous resistance increases and the Q value decreases. In this way, the Q value can be arbitrarily increased or decreased. Thereby, the response speed and the displacement sensitivity can be adjusted.
  • the Q value control of the cantilever is a control for applying an external force to the cantilever as shown in the above equation, and it is conceivable that the external force is applied to the cantilever via some medium. However, since a phase lag occurs, the phase is not exactly 90 degrees even though the phase should be changed 90 degrees by time differentiation. Therefore, control is not easy. When an external force is applied through the medium, surrounding mechanical elements also have a resonance frequency. For this reason, it becomes difficult to accurately match the frequency of the external force to the resonance frequency of the cantilever.
  • a related technique is disclosed in Japanese Patent Application Laid-Open No. 2004-212078.
  • the cantilever is irradiated with laser light, and the cantilever is excited by the laser light.
  • the scanning speed in the Z direction is slow, so the measurement speed is slow.
  • the conventional AFM has room for improvement in Q value control.
  • the present invention has been made under the above background.
  • One of the objects of the present invention is to provide a scanning probe microscope capable of improving the scanning speed.
  • Another object of the present invention is to provide a scanning probe microscope that can suitably control the Q value.
  • the scanning probe microscope of the present invention includes a cantilever, a sensor for detecting displacement of the cantilever, a light irradiation unit that irradiates light to the cantilever to cause thermal expansion deformation, and a light intensity of the light irradiation unit.
  • a light irradiation control unit that changes the displacement of the cantilever by controlling the cantilever feedback control by controlling the light intensity of the light irradiation unit based on the displacement detected by the sensor. I do.
  • the cantilever is irradiated with light, and the cantilever is displaced by thermal expansion deformation. Using this displacement, scanning in the Z direction is performed.
  • the cantilever has a very small and high resonance frequency. Therefore, the resonance frequency of the Z scanning configuration is increased, and the scanning speed can be increased. In addition, it can be avoided that the cantilever becomes stiff as seen in a conventional self-action type cantilever.
  • the light irradiation control unit may include a thermal response compensation unit that compensates for a delay in the thermal response of the cantilever with respect to light irradiation with the light irradiation unit force.
  • the thermal response compensator is the inverse transfer function of the heat transfer function of the cantilever (meaning the function that is the inverse of the heat transfer function, and so on). May have a reasonable configuration. Thermal response compensation can apparently eliminate (or significantly shorten) the slow process of heat conduction. The element that connects light irradiation as input and displacement as output becomes close to the original mechanical characteristics of the cantilever. Since the response speed of deformation due to thermal expansion increases, high-speed scanning and high-speed imaging become possible.
  • the light irradiation control unit may further vibrate the cantilever by controlling the light intensity of the light irradiation unit.
  • the light intensity may be controlled so as to fluctuate with a vibration waveform corresponding to the vibration to be generated by the cantilever (typically a vibration waveform according to the resonance frequency of the cantilever).
  • the light irradiation control unit may further include a Q value control unit that performs Q value control based on the displacement detected by the sensor.
  • the Q-value control unit has a configuration that obtains a value obtained by adding a gain to the derivative of the displacement detected by the sensor. (The gain corresponds to a coefficient that is multiplied by the displacement in Q-value control.) . With this configuration, Q value control can be performed using light irradiation.
  • a scanning probe microscope controls a cantilever, a light irradiation unit that irradiates light to the cantilever to cause thermal expansion deformation, and a light intensity of the light irradiation unit.
  • a light irradiation control unit that changes the displacement of the cantilever, and the light irradiation control unit is configured to oscillate the cantilever by controlling the light intensity of the light irradiation unit, and to irradiate light from the light irradiation unit.
  • a thermal response compensator that compensates for the delay in thermal response of the cantilever.
  • light irradiation is used for excitation of the cantilever.
  • This aspect includes a configuration in which light irradiation is applied to Z scanning and a configuration in which light irradiation is not applied.
  • the thermal response compensation can apparently eliminate (or significantly shorten) the heat conduction process, the mechanical characteristics of the cantilever remain, and the excitation can be suitably controlled.
  • the Q value control may be suitably performed based on the displacement of the cantilever.
  • various other features of the present invention are also applicable to this embodiment. This aspect also provides the advantages of the present invention.
  • Another aspect of the present invention is an observation method using a scanning probe microscope.
  • the cantilever and the sample are moved relative to each other in the XY direction, and the cantilever is irradiated with light.
  • the cantilever is feedback-controlled by causing thermal expansion and deformation, detecting the displacement of the cantilever, and controlling the light intensity based on the detected displacement of the cantilever.
  • Light intensity control may compensate for the delay in the thermal response of the cantilever to light irradiation.
  • Light intensity control may be utilized for cantilever vibration.
  • the light intensity control may be Q value control based on the displacement of the cantilever.
  • Another aspect of the present invention is an observation method using a scanning probe microscope.
  • the cantilever and the sample are relatively moved in the X and Y directions, light is irradiated to the cantilever to cause thermal expansion deformation, the cantilever is vibrated by controlling the light intensity, and the light is controlled by controlling the light intensity.
  • the light intensity control may be Q value control based on the displacement of the cantilever.
  • the expression of the present invention need not be limited to the above-described scanning probe microscope and observation method using the same.
  • Another embodiment of the present invention may be, for example, an atomic force microscope and an observation method using the same.
  • Another aspect of the present invention may be a driving apparatus or a driving method of a scanning probe microscope or an atomic force microscope.
  • Another aspect of the present invention may be a cantilever driving device or a cantilever driving method.
  • another aspect of the present invention may be a control device or a control method for the above-described device.
  • the scanning speed can be improved by making good use of light irradiation, and Q value control can be facilitated.
  • FIG. 1 is a diagram showing a configuration of an AFM according to the present embodiment.
  • FIG. 2 is a view showing deformation of the cantilever by light irradiation.
  • FIG. 3 is a diagram showing an example of a cantilever.
  • FIG. 4 is a diagram showing a process from light irradiation to lever displacement.
  • FIG. 5 is a diagram showing the thermal response characteristics of the cantilever.
  • FIG. 6 is a diagram showing a configuration of a thermal response compensation circuit.
  • FIG. 7 is a diagram showing the effect of thermal response compensation.
  • FIG. 8 is a diagram showing the effect of thermal response compensation.
  • FIG. 9 is a diagram illustrating the effect of thermal response compensation.
  • FIG. 10 is a diagram showing the effect of thermal response compensation.
  • FIG. 11 is a diagram showing the effect of thermal response compensation.
  • FIG. 12 is a diagram showing a configuration of an AFM according to another embodiment.
  • FIG. 13 is a diagram showing a configuration of an AFM according to another embodiment.
  • FIG. 14 is a diagram showing a configuration of a Q value control circuit.
  • FIG. 15 is a diagram showing the effect of Q value control.
  • FIG. 16 is a diagram showing the effect of Q value control.
  • FIG. 17 is a diagram showing the effect of Q value control.
  • FIG. 18 is a diagram showing the effect of Q value control.
  • FIG. 19 is a diagram showing another example of a thermal response compensation circuit.
  • the present invention is applied to an atomic force microscope (AFM).
  • AFM atomic force microscope
  • FIG. 1 shows the configuration of the AFM according to the present embodiment.
  • the overall configuration of the AFM 1 is a sample stage 3 that holds a sample, a cantilever 5, an XY scanner 7 that drives the sample stage 3 in the XY direction, a sensor 9 that detects the displacement of the cantilever 5, and a cantilever 5
  • the drive laser unit 11 for irradiating light to the Drive laser controller 13 and a computer 15 for controlling the entire apparatus.
  • the cantilever 5 is made of silicon nitride and has a probe at the free end.
  • the light-irradiated surface of the cantilever (bottom of the figure) is coated with gold.
  • the light irradiation surface is irradiated with sensor laser light for detecting displacement and drive laser light for driving the lever.
  • the cantilever 5 is held by a holder 21, and the holder 21 is excited by an oscillation circuit 23.
  • the vibrator of the holder 21 vibrates, whereby the cantilever 5 vibrates.
  • the oscillation circuit 23 is controlled by the computer 15 so that the cantilever 5 vibrates in the vicinity of the resonance frequency.
  • the XY scanner 7 includes a piezoelectric element (piezoelectric element).
  • the XY scanner 7 is controlled by an XY scan control circuit 25.
  • a control signal for XY scanning (raster scanning) is input from the computer 15 to the XY scanning control circuit 25.
  • the XY scanning control circuit 25 drives the XY scanner 7 according to the control signal. As a result, the sample stage 3 moves in the XY directions, and scanning in the XY directions is realized.
  • the sensor 9 and the sensor laser unit 27 constitute an optical lever type displacement sensor.
  • the sensor laser unit 27 irradiates the cantilever 5 with sensor laser light.
  • the sensor laser light is red laser light (wavelength 670 nm).
  • the sensor laser light is reflected by the gold coating surface of the cantilever 5 and reaches the sensor 9.
  • the sensor 9 is composed of a photodiode and outputs a signal indicating the displacement of the cantilever 5.
  • the configuration of an optical system such as a lens related to the sensor is omitted.
  • the drive laser unit 11 irradiates the cantilever 5 with drive laser light.
  • the drive laser light is a visible light laser in this embodiment.
  • the wavelength of the driving laser beam is set to a value that increases the light absorption capability of the gold coat.
  • the drive laser light is violet laser light and the wavelength is 405 nm.
  • the cantilever 5 is thermally expanded. Since the thermal expansion coefficient differs between silicon nitride and gold coat that make up cantilever 5, cantilever 5 functions as a bimetal. Then, as shown in FIG. 2, the stagnation deformation of the cantilever 5 occurs. As a result, the displacement of the cantilever 5 in the Z direction is obtained.
  • the configuration of an optical system such as a lens related to the drive laser is omitted.
  • the drive laser unit 11 is controlled by a drive laser control unit 13.
  • the drive laser controller 13 controls the drive laser unit n by supplying an irradiation control signal to the drive laser unit 11.
  • the irradiation control signal is a modulation input signal.
  • Intensity modulation is applied to the laser according to the modulation input signal.
  • the modulation intensity is used to control the displacement of cantilever 5.
  • the amount of deformation of the cantilever 5 changes according to the laser light intensity, and the displacement in the Z direction changes.
  • the drive laser control unit 13 controls the displacement of the cantilever 5 by controlling the modulation intensity of the drive laser beam, and thereby functions as a Z scan control unit as described below. .
  • the drive laser controller 13 receives signals of the reference displacement and the reference amplitude from the computer 15.
  • the reference displacement is the initial displacement of the cantilever 5 and can also be referred to as an offset displacement.
  • the reference amplitude is the amplitude of the cantilever 5 that is the target of feedback control.
  • the displacement of the cantilever 5 is input from the sensor 9 to the drive laser controller 13.
  • the drive laser controller 13 controls the laser light intensity according to the reference displacement, and performs feedback control of the laser light intensity so that the lever amplitude matches the reference amplitude based on the reference amplitude and the lever displacement. As a result, the amplitude of the cantilever 5 is kept constant.
  • the drive laser control unit 13 includes an amplitude detection circuit 31 and a feed knock circuit 33 for feedback control.
  • the amplitude detection circuit 31 obtains the amplitude of the cantilever 5 by processing the displacement signal of the cantilever 5 input from the sensor 9. Then, the amplitude detection circuit 31 outputs a signal having the detected amplitude to the feedback circuit 33.
  • the feedback circuit 33 includes a subtracter that generates a deviation signal by subtracting the detected amplitude signal from the reference amplitude signal, and a PID circuit that amplifies the deviation signal. With these configurations, a feedback signal is generated.
  • the feedback signal is added to the reference displacement signal input from the computer 15.
  • the irradiation control signal thus obtained is supplied to the thermal response compensation circuit 35.
  • the thermal response compensation circuit 35 is a circuit that compensates for a delay in thermal response of the cantilever 5 with respect to light irradiation.
  • the thermal response compensation circuit 35 will be described later.
  • the irradiation control signal that has passed through the thermal response compensation circuit 35 is supplied to the drive laser unit 11. Then, the intensity of the driving laser light varies according to the irradiation control signal, and the displacement of the cantilever 5 varies. Since the irradiation control signal is generated from the feedback control signal obtained by processing the amplitude signal obtained based on the lever displacement, the laser light intensity fluctuates according to the feedback signal. Directional displacement also varies according to the feedback signal. In this way, feedback control of the cantilever 5 is realized.
  • the computer 15 controls the entire AFM1.
  • the computer 15 also provides a user interface function.
  • Various user instructions are input to the computer 15, and the computer 15 controls the AFM 1 in accordance with the user input.
  • a feedback signal is input to the computer 15 from the feedback circuit 33 of the drive laser control unit 13.
  • the computer 15 generates a 3D image of the sample surface based on the XY scanning control data and the input feedback signal, and displays the 3D image on the monitor 41.
  • each part of the AFM 1 has been described above.
  • the above configuration may be modified as long as the same function can be obtained.
  • the drive laser controller 13 is built in the computer 15.
  • Software may be used to realize the functions of the drive laser controller 13.
  • the data processed in the computer 15 corresponds to the above signal! /.
  • the computer 15 sends an XY scanning control signal to the XY scanning control circuit 25 to drive the sample stage 3 in the XY direction. Further, the converter 15 generates an excitation signal in the oscillation circuit 23 and vibrates the cantilever 5 together with the holder 21. Further, the computer 15 supplies the drive laser control unit 13 with signals of reference displacement and reference amplitude.
  • the drive laser controller 13 functions as described above and performs feedback control of the cantilever 5 so as to deform the cantilever 5 in the Z direction to the reference displacement.
  • the sample is scanned in the XY direction, and the cantilever 5 is scanned in the Z direction to keep the amplitude constant.
  • the feedback signal from the drive laser controller 13 is supplied to the computer 15.
  • the computer 15 generates a three-dimensional image of the sample surface based on the control data of the XY carriage and the input feedback signal.
  • the generated three-dimensional image is displayed on the monitor 41.
  • FIG. 3 shows a cantilever 5 in a specific example of the present embodiment. It is made from an electron micrograph (15000 times).
  • the cantilever 5 has a substantially uniform cross section as a whole, and the cross-sectional shape in the width direction is a rectangle.
  • the lever tip has a tapered shape. The length of the lever is about 8 m, the width is about 2 m, and the thickness (including the gold coat) is about 0.1 ⁇ m. The gold coat is applied on the opposite side of the probe.
  • the resonance frequency of the cantilever is about 800 kHz in the liquid and about 2.2 MHz in the atmosphere, and the resonance frequency is very high.
  • Z scanning of the cantilever 5 is possible in a region below this resonance frequency. Therefore, the scanning speed can be greatly increased as compared with a conventional piezo element scanner (about 1 kHz).
  • the piezoelectric element is large, so the resonance frequency is low and high-speed driving is difficult.
  • the cantilever is small, so the resonance frequency is high and high-speed driving is easy.
  • the wavelength of the drive laser light is 405 nm.
  • the laser can be modulated in intensity from 0 to 20mW and can be used up to 50MHz.
  • the sensitivity was 5 to 8 nmppZmW.
  • the maximum movable displacement was 100 to 160 nmpp (when the modulation intensity was 20 mW). These values were obtained in a frequency band lower than the resonance frequency. Therefore, sufficient sensitivity and displacement can be obtained for AFM.
  • the activation function can be easily obtained by irradiating light to a normal cantilever.
  • the complex force required for conventional self-action type cantilevers is not required.
  • the increase in hardness seen in the conventional self-actuation type can be avoided (in the cantilever of this embodiment, the noise constant is about 150 pN / nm).
  • securing insulation is also a problem.
  • the problem of insulation can be easily avoided.
  • FIG. 4 shows the process from the input of light irradiation to the output of force-pinch lever displacement.
  • the upper part of Fig. 4 is the process when thermal response compensation is not performed.
  • Light is absorbed by the cantilever, heat conduction occurs, a thermal expansion force is generated, the cantilever is deformed, and displacement occurs.
  • This series of processes In the process, light absorption is a fast process (below nanoseconds). However, heat conduction is a slow process. Therefore, the response of lever displacement to light irradiation is delayed due to heat conduction. This delay in response is detrimental to the high speed of Z scanning. Therefore, in this embodiment, thermal response compensation is performed. More specifically, the principle of phase compensation was introduced
  • FIG. 5 shows the relationship between time and displacement when the cantilever is irradiated with laser light (thermal response compensation is not performed).
  • the example in Fig. 5 shows the measurement results when using the cantilever of the specific example described above. As shown in Fig. 5, the displacement of the cantilever gradually increases with time and the thermal response is slow. This delay is due to heat conduction.
  • the thermal response of FIG. 5 behaves like a low-pass filter of an electronic circuit.
  • the thermal response delay phenomenon is similar to the low-pass filter delay.
  • phase compensation is preferably applied in the electronic circuit.
  • the heat conduction process has two process forces.
  • the heat transfer process can be viewed as two parallel low-pass filters.
  • the transfer function G (s) is expressed as the sum of two low-pass filters as shown in the following equation.
  • the modified equation is the product of two low-pass filters and a (1 + derivative) term.
  • the inverse transfer function of the transfer function G (s) is used.
  • the inverse transfer function is the product of two kinds of (1 + derivative) terms and one low-pass filter.
  • the thermal response compensation circuit 35 in FIG. 1 is composed of a circuit equivalent to the above inverse transfer function.
  • FIG. 6 shows a configuration of the thermal response compensation circuit 35.
  • the thermal response compensation circuit 35 is composed of one low-pass filter 35a and two (1 + differentiation) circuits 35b and 35c, which are arranged in series.
  • the parameters of the circuits 35a, 35b, and 35c are set based on the measurement results of the thermal response of the cantilever 5 (Fig. 5). More specifically, the heat transfer function equivalent to the actual thermal response is obtained from the measurement result, and its inverse transfer function (a function that is the inverse of the heat transfer function) is obtained. And the circuit is configured to correspond to the inverse transfer function
  • the drive laser light irradiation control signal (a signal obtained by synthesizing the feedback signal) is input to the thermal response compensation circuit 35 and then supplied to the drive laser unit 11 as shown in FIG. Thereby, the phase compensation shown by the above-mentioned principle is suitably realized.
  • FIG. 7 shows the effect of phase compensation.
  • Fig. 7 shows changes in lever displacement when laser light is applied, as in Fig. 4.
  • FIG. 8 is another diagram showing the effect of phase compensation.
  • Figure 8 shows the vibration characteristics of the cantilever in water.
  • the horizontal axis is frequency and the vertical axis is amplitude.
  • the line L1 (dotted line) in the figure is the characteristic of the calculated model.
  • Line L2 shows the characteristics when piezo driving is performed.
  • Line L3 shows the characteristics when the lever is driven by laser light without phase compensation.
  • Line L4 is a characteristic of laser drive when phase compensation is performed.
  • the characteristics of the cantilever substantially match the calculated model. This means that the only element that connects light irradiation as input and displacement as output is the mechanical characteristics of the cantilever itself. Therefore, the response speed of lever displacement with respect to light irradiation is increased.
  • a cantilever in water is driven by laser light, and the resonance frequency is about 800 kHz, which is very high. Z scanning is possible in the region below the resonance frequency. This means that the scanning speed of Z-scan can be greatly increased than before.
  • FIG. 9 to FIG. 11 are still other diagrams showing the effect of phase compensation.
  • Figures 9 to 11 show the square wave response of the cantilever displacement.
  • Fig. 9 shows the measurement data
  • Fig. 10 and Fig. 11 show the simulation results.
  • the upper part of the figure is the input to the thermal response compensation circuit 35
  • the middle part is the output of the circuit 35
  • the lower part is the displacement of the cantilever.
  • step input is performed to the thermal response compensation circuit 35 at 10 / z s, and the laser intensity is changed in a rectangular wave.
  • the laser intensity is similarly changed at 20 s.
  • the response speed increases due to phase compensation.
  • the drive laser controller 13 is a form of the light irradiation controller, and in particular, the feedback circuit 33 functions as a Z travel controller.
  • the thermal response compensation circuit 35 is one form of the thermal response compensation unit.
  • the cantilever is irradiated with light, and the cantilever is displaced by thermal expansion deformation. Using this displacement, scanning in the Z direction is performed. Therefore, the scanning frequency can be increased by increasing the operating frequency of the Z-scan configuration.
  • the cantilever is hardened as seen in conventional self-archiving type cantilevers. Can be avoided.
  • the cantilever has a plurality of layers having different thermal expansion coefficients. Depending on the difference in the coefficient of thermal expansion of the layers, it stagnates and deforms in the Z direction.
  • the cantilever has a configuration in which silicon nitride is coated with gold.
  • the gold coating is irradiated with light.
  • Gold absorbs light in the visible light region and has a high coefficient of thermal expansion. Therefore, the cantilever displacement can be suitably obtained by using the gold coating.
  • the cantilever has been conventionally coated with gold.
  • the present invention is also advantageous in that this gold coating can be utilized.
  • the present embodiment includes a thermal response compensation unit. More specifically, phase compensation is performed focusing on the fact that the thermal response shows the behavior of a low-pass filter.
  • the thermal response compensation unit has a configuration equivalent to the inverse transfer function of the heat transfer function of the cantilever, and can thereby perform phase compensation. Thermal response compensation can apparently eliminate the slow process of heat conduction (yes, it can be significantly shortened).
  • the elemental force linking the light irradiation as input and the displacement as output becomes close to the mechanical characteristics of the cantilever itself. That is, the deformation response speed due to thermal expansion can be made substantially the same as the deformation response speed according to the original mechanical characteristics of the lever structure. As a result, the response speed of deformation due to thermal expansion is increased, and high-speed scanning and high-speed imaging are possible.
  • FIG. 12 shows another embodiment.
  • Z scanning is performed by light irradiation.
  • the cantilever is excited by light irradiation.
  • the description of the same matters as the above-described embodiment will be omitted.
  • the oscillation circuit of the holder 21 is deleted.
  • the drive laser control unit 13 includes an oscillation circuit 51.
  • the oscillation circuit 51 is controlled by the computer 15 to generate an excitation signal.
  • This excitation signal is the resonant frequency of the cantilever This signal has a vibration waveform of.
  • This excitation signal is added to the irradiation control signal of the drive laser controller 13.
  • the AC component signal is added to the original DC component irradiation control signal.
  • Such an irradiation control signal is supplied to the drive laser unit 11 via the thermal response compensation circuit 35. Therefore, the laser light intensity is modulated at the same frequency as the resonance frequency of the cantilever 5. At the same time, the DC component of the laser light intensity becomes a value corresponding to the reference displacement of the cantilever 5 and is adjusted by feedback control.
  • the displacement of the cantilever 15 also changes according to the laser beam intensity.
  • the average displacement center of displacement of the vibrating cantilever
  • the excitation of the cantilever 5 and the Z scanning can be performed by one laser unit.
  • the oscillation circuit 51 functions as the oscillation control unit of the present invention.
  • both cantilever excitation and Z scanning are performed by light irradiation. As a result, high-speed scanning becomes possible.
  • mechanical excitation of the cantilever is not necessary, and the structure can be simplified.
  • FIG. 13 shows still another embodiment.
  • a configuration for Q value control is added.
  • the description of the same matters as the above-described embodiment is omitted.
  • the Q value (quality factor) is a dimensionless number representing the state of vibration, and is a parameter representing the sharpness of the resonance spectrum (relationship between vibration frequency and displacement).
  • the Q value is expressed as ⁇ 0 / ( ⁇ 2 ⁇ ⁇ 1).
  • ⁇ ⁇ is the resonance frequency at the resonance peak.
  • ⁇ 1 and ⁇ 2 are frequencies at which the vibration energy becomes half value on the left and right sides of the resonance peak.
  • Increasing the response speed of the cantilever contributes to increasing the scanning speed of the AFM.
  • the response speed of all mechanical devices including cantilevers is described by the following equation using the resonance frequency (f) and Q value of the device resonance. It can be seen that increasing the resonance frequency or decreasing the Q value is effective in increasing the response speed. However, the resonance frequency The number and Q value are determined by the shape of the cantilever and the measurement environment. It is not easy to make a cantilever whose resonance frequency and Q value change greatly.
  • Equation 5 m is mass, y is a viscosity coefficient, k is a panel constant, and F (t) represents an external force.
  • the effective value of the Q value can be changed.
  • the Q value control is a control that vibrates the cantilever with the energy of the driving body, detects the displacement of the cantilever, and applies an external force according to the displacement.
  • the vibrator is composed of a piezoelectric element.
  • the resonator other than the cantilever also vibrates. Therefore, Q value control cannot be calculated and Q value control is difficult.
  • the difficulty in controlling the Q value of a piezo element is also separated from the peak forest in the vibration characteristics of the piezo element shown in Fig. 8. )
  • the AFM of this embodiment directly drives the cantilever with the drive laser light. Since the thermal response compensation circuit is inserted, the delay of the thermal response is compensated. Since the slow process of heat conduction is apparently gone, the original mechanical properties of the cantilever remain. In other words, it can be considered that an external force is directly exerted on the cantilever (without passing through heat conduction).
  • the AFM of the present embodiment is configured to perform Q value control as described below.
  • drive laser control unit 13 is provided with a Q value control circuit 61.
  • the Q value control circuit 61 receives a displacement signal of the cantilever 5 from the sensor 9.
  • the Q value control circuit 61 processes the displacement signal of the cantilever 5 and generates a Q value control signal.
  • the Q value control signal is added to the irradiation control signal and input to the thermal response compensation circuit 35.
  • FIG. 14 shows a configuration of the Q value control circuit 61.
  • the Q value control circuit 61 includes a differential circuit (Differential Amplifier) 63 and a gain circuit (Gain Amplifier) 65.
  • the displacement of cantilever 5 is differentiated by differentiation circuit 63.
  • the gain is given to the differential value by the gain circuit 65.
  • the signal thus generated is added to the irradiation control signal by the adder 67 as a Q value control signal. Therefore, the Q value control is reflected in the laser light intensity of the drive laser unit 11, and the Q value control is also reflected in the force generated by thermal expansion in the cantilever 5. In this way, Q value control of the cantilever 5 is realized.
  • the Q value control circuit 61 is controlled by a computer 15.
  • the computer 15 controls the coefficient (gain) value in the Q value control circuit 61.
  • the response speed decreases.
  • the sensitivity to the interaction between the probe and the sample increases, and the sensitivity of detection increases. Therefore, the spatial resolution of AFM can be increased.
  • FIG. 15 to FIG. 18 show simulation results showing the effect of Q value control.
  • Figures 15 and 16 show the simulation results of the frequency characteristics.
  • FIG. 15 is a graph of the displacement of the output amplitude with respect to the input amplitude
  • FIG. 16 is a graph of the phase.
  • the Q value is about 2
  • the resonance frequency is 804 kHz.
  • FIG. 17 and Fig. 18 show the transient response characteristics.
  • a signal with a frequency of 804 kHz is input from the 20 s point. At 70 s, the signal input is stopped. As shown in the figure, the response slows as the Q value increases. On the other hand, the response becomes faster as the Q value becomes smaller.
  • the Q value control circuit 61 corresponds to the Q value control unit of the present invention.
  • Q value control can be performed using light irradiation, and the response speed and sensitivity can be adjusted.
  • Q value control is suitably combined with thermal response compensation.
  • the slow process of heat conduction can be apparently eliminated by thermal response compensation (or significantly The original mechanical properties of the cantilever itself remain.
  • thermal response compensation or significantly The original mechanical properties of the cantilever itself remain.
  • Q value control similar to the case of applying external force directly is performed on the intensity of light irradiation, and this realizes Q value control. Therefore, Q value control can be easily performed.
  • the response speed can be increased and the scanning speed can be improved by decreasing the Q value.
  • the displacement sensitivity can be increased by increasing the Q value, and the spatial resolution can be improved.
  • FIG. 19 shows a modification of the thermal response compensation circuit 35.
  • the thermal response compensation circuit is configured by a circuit equivalent to the inverse transfer function of the heat transfer function.
  • the thermal response compensation circuit is configured using a pseudo circuit, and the thermal response is compensated by a feed knock.
  • the irradiation control signal is input to the adder 71 and the subtractor 73.
  • the output of the adder 71 becomes the output of the thermal response compensation circuit.
  • the output of the adder 71 is input to the subtractor 73 via the pseudo heat response circuit 75 and the pseudo cantilever circuit 77.
  • the pseudo heat response circuit 75 is a circuit equivalent to the heat transfer of the cantilever 5. In the present embodiment, heat transfer is represented by two low-pass filters in parallel. Therefore, the pseudo thermal response circuit 75 is also composed of two low-pass filters in parallel (may be two LPFs in series and one (1 + differential) circuit).
  • the pseudo-cantilever circuit 77 is a circuit equivalent to the cantilever (Q value, frequency) and is composed of an LCR circuit.
  • the output signal of the pseudo circuit is subtracted from the input irradiation control signal.
  • This difference signal is input to the adder 71 via the PID feedback circuit 79 and added to the irradiation control signal.
  • the added irradiation control signal is output to the drive laser unit.
  • the delay in heat conduction can also be compensated for by the configuration using the pseudo circuit as described above. And the response speed of the cantilever 5 can be improved, and the scanning speed of AFM can be improved.
  • a gold coat was applied to the light irradiation surface of the cantilever.
  • materials other than gold May be applied. It is preferable to set the wavelength of the driving laser beam according to the material of the light irradiation surface. That is, based on the relationship between the wavelength of the laser beam and the light absorption capability, the wavelength is set so that the light absorption capability is increased.
  • the material of the light irradiation surface is preferably set in consideration of the reflectance of the sensor laser light.
  • the configuration of the thermal response compensation circuit may be changed according to the specifications of the cantilever and the like.
  • the heat transfer function of the cantilever is expressed by two low-pass filters, and the thermal response compensation circuit is configured to realize the inverse transfer function of this heat transfer function.
  • the heat transfer function can vary depending on the configuration of the cantilever and the like.
  • the heat transfer function can vary depending on the shape of the cantilever. Therefore, the configuration of the thermal response compensation circuit may be changed according to the heat transfer function. It is preferable to configure the thermal response compensation circuit so as to realize the inverse transfer function of the actual heat transfer function.
  • the heat transfer function may be represented by one low-pass filter.
  • the inverse transfer function (1 + derivative) of this heat transfer function may be realized by the thermal response compensation circuit.
  • the light irradiation power is used for scanning, or the light irradiation is used for Z scanning and excitation.
  • the present invention also includes a configuration in which light irradiation is used only for excitation. Also in this case, Q value control is suitably performed.
  • the present invention is applied to the AC mode AFM.
  • the present invention is not limited to this.
  • the present invention may be applied to contact mode AFM.
  • the cantilever does not have to vibrate.
  • Z scanning is realized by light irradiation.
  • no piezoelectric element for Z driving (scanning) is provided.
  • a piezoelectric element for driving Z may be additionally provided.
  • a conventional AFM XYZ scanner may be provided as the XY scanner.
  • a scanning function only in the XY directions may be used.
  • the scanning function in the Z direction may be used in combination with laser light irradiation.
  • a piezoelectric element can be used to move the cantilever 5 to an appropriate position in the initial stages of operation! /.
  • the present invention is applicable to other than AFM.
  • Another aspect of the present invention provides a force A driving device and a driving method of the inching lever. This aspect may be applied to apparatuses other than the scanning probe microscope.
  • the scanning probe microscope according to the present invention can increase the scanning speed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 駆動レーザユニット(11)は、カンチレバー(5)にレーザ光を照射して熱膨張変形を生じさせる。駆動レーザ制御部(13)は、センサ(9)により検出されたカンチレバー(5)の変位に基づき、レーザ光の強度を制御することによってカンチレバー(5)のフィードバック制御を行う。熱応答補償回路(35)は、カンチレバー(5)の熱伝達関数の逆伝達関数に等価な構成を有しており、光照射に対するカンチレバー(5)の熱応答の遅れを補償する。さらに、レーザ光強度の制御によってカンチレバー(5)が励振されてよい。光強度の制御によって、レバー共振系のQ値も制御される。原子間力顕微鏡の走査速度を増大することができる。

Description

明 細 書
走査型プローブ顕微鏡およびカンチレバー駆動装置
技術分野
[0001] 本発明は、カンチレバーを備えた走査型プローブ顕微鏡、および、カンチレバーの 駆動装置に関する。
背景技術
[0002] 従来、典型的な走査型プローブ顕微鏡 (SPM)としては、走査型トンネル顕微鏡 (S TM)および原子間力顕微鏡 (AFM)が知られている。これらのうち、 AFMは、探針 を自由端に持つカンチレバーと、カンチレバーの変位を検出するセンサと、試料ステ ージスキャナとを備えている。センサは典型的には光てこ式のセンサである。また、試 料ステージスキャナは一般にピエゾ素子で構成されており、カンチレバーに対して試 料を X、 Υ、 Ζ方向に移動させる。
[0003] AFMでは、試料とカンチレバーが相対的に ΧΥ方向に走査される。このとき、カン チレバーと試料に力かる力が一定に保たれるように、 Ζ方向の変位がフィードバック制 御される。この Ζ方向の変位のフィードバック制御力 Ζ走査といわれる。カンチレバー と試料に力かる力を一定に保っための試料ステージの動きから、試料表面の微細形 状を得ることができる。
[0004] AFMの測定モードとしては、典型的には ACモードおよびコンタクトモードが知られ ている。 ACモードでは、カンチレバーが共振周波数で励振される。カンチレバーが 試料に近づくと振幅が変化する。そこで、振幅が一定になるように Z方向のフィードバ ック制御が行われ、これによりカンチレバーと試料の距離が一定に保たれる。
[0005] 「AFMの走査速度について」
従来の AFMでは、測定が遅ぐ 1枚の画像を撮るのに分のオーダーの時間がかか る。この理由は、フィードバック走査が遅いからである。フィードバック操作は、試料ス テージを上下に動力して探針と試料表面との距離を調節し、カンチレバー探針と試 料とにかかる力を一定に保つことである。画像取得に時間が力かるために、例えば、 試料の動きを観察することは困難である。 [0006] フィードバック走査のループには、 AFMのほとんどのデバイスが関与している。関 係するデバイスは、カンチレバー、センサ、センサアンプ、制御回路、ピエゾドライブ 電源、試料ステージスキャナなどである。これらのデバイスの内で、通常は試料ステ ージスキャナが最も遅いデバイスである。したがって、 AFMの撮影速度を上げるため には、スキャナの高速ィ匕が必須となる。
[0007] し力しながら、従来の AFMでは、スキャナの高速ィ匕の限界は低い。より詳細には、 従来の AFMでは、スキャナが、マクロな大きさをもつピエゾ素子(圧電素子)によって 構成されている。試料ステージはスキャナによって XYZの 3次元方向に走査される。 フィードバック走査は、 Z方向走査であり、 XY方向走査に比べて高速な走査である。 この Z方向走査が、ピエゾ素子の共振周波数より下の領域で行われる必要がある。し たがって、走査速度を上げるためには、 Z方向走査のピエゾ素子の共振周波数を上 げる必要がある。しかし、ピエゾ素子はカンチレバーなどと比べてマクロな大きさをも つているために、ピエゾ素子の共振周波数は低い。このことがスキャナの高速ィ匕を妨 げる要因になる。
[0008] フィードバック走査では、試料ステージを Z方向に動かす代わりにカンチレバーが Z 方向に動力されてもよい。そこで、 MEMS技術を用いてカンチレバーに圧電薄膜を 導入することにより、自己ァクチユエーシヨン機能を持ったカンチレバーが開発されて いる。この場合、カンチレバーは試料ステージスキャナに比べて非常に小さいので、 共振周波数を容易に上げることができる。したがって、フィードバック走査の高速ィ匕が 容易である。しかしながら、 自己ァクチユエーシヨン機能を備えるために、カンチレバ 一の構造が複雑になり、また、カンチレバーが非常に硬くなつてしまう。そのため、自 己ァクチユエーシヨンタイプのカンチレバーは、生体高分子や合成高分子などの脆く 柔らか!/、試料の測定に使いにく!、と!/、う限界をもって!/、る。
[0009] 「カンチレバーの Q値制御について」
ところで、カンチレバーは一種の共振系である。共振スペクトル (励振力の周波数に 対するカンチレバーの変位の関係)の鋭さを表す量として、 Q値(Quality factor)が ある。共振系に力かる粘性抵抗が小さいほど Q値は大きくなる。逆に、粘性抵抗が大 きいと Q値は小さくなる。 [0010] 共振系の応答速度は π fZQで表される。ここで、 fは共振周波数である。 Q値が大 きいほど応答速度が遅くなる。一方、外力に対する共振系の変位感度については、
Q値が大きいほど変位感度が高くなる。
[0011] カンチレバーの Q値を人工的に変化させる Q値制御は、既に提案されている。 Q値 制御の原理は以下の通りである。共振系の運動方程式が、下記に示される。
[数 1] mx + yx + kx = ρ{ί)
[0012] 変位 χが検出され、変位 Xが時間微分され、さらに時間微分に係数 (Xが掛けられる 。この値が励振力 F (t)に加算または減算されて、下式が得られる。
[数 2] ηύ "X + - p{t)土 i
[0013] ここで、加算(+)の場合、粘性抵抗が小さくなり、その結果、 Q値が大きくなる。減 算(一)の場合、粘性抵抗が大きくなり、 Q値は小さくなる。このようにして任意に Q値 を大きくしたり、小さくしたりすることができる。これにより、応答速度および変位感度を 調整することができる。
[0014] カンチレバーの Q値制御は、上記の式に示されるように、カンチレバーに外力を加 える制御であり、何らかの媒体を介してカンチレバーに外力をカ卩えることが考えられる 。しかし、位相の遅れが生じてしまうので、時間微分によって位相が 90度変わるべき であるにもかかわらず、位相が正確に 90度にならない。そのため、制御が容易でな い。また、媒体を介して外力を与える場合、周囲の力学要素も共振周波数をもつ。そ のため、カンチレバーの共振周波数に外力の周波数を正確に合わせることが難しく なる。
[0015] このような事項を考慮すると、 Q値制御では、カンチレバーに直接外力をカ卩えること が望まれる。そこで、従来は、カンチレバーに強磁性体が取り付けられている。あるい は、カンチレバーが強磁性体薄膜でコートされる。そして、電磁石によって外力が力 ンチレバーに加えられる。また、自己ァクチユエーシヨン機能を備えたカンチレバーに おいても、カンチレバーに直接外力を及ぼすことができる。し力しながら、このような構 成では、カンチレバーの特殊加工が必要であり、また、カンチレバーの力学特性 (共 振周波数およびばね定数)が変わってしまう。
[0016] また、関連技術が特開 2004— 212078号公報に開示されている。この関連技術で は、カンチレバーにレーザー光が照射されて、レーザー光によってカンチレバーが励 振される。
発明の開示
発明が解決しょうとする課題
[0017] 上述したように、従来の AFMでは、 Z方向の走査速度が遅ぐそのために測定速度 も遅かった。また、従来の AFMでは、 Q値制御に改善の余地があった。
[0018] 本発明は上記背景の下でなされたものである。本発明の目的の一つは、走査速度 を向上できる走査型プローブ顕微鏡を提供することにある。
[0019] また、本発明の目的の一つは、 Q値制御を好適に行える走査型プローブ顕微鏡を 提供することにある。
課題を解決するための手段
[0020] 本発明の走査型プローブ顕微鏡は、カンチレバーと、カンチレバーの変位を検出 するセンサと、カンチレバーに光を照射して熱膨張変形を生じさせる光照射部と、光 照射部の光の強度を制御してカンチレバーの変位を変化させる光照射制御部と、を 備え、光照射制御部は、センサにより検出された変位に基づいて光照射部の光の強 度を制御することによってカンチレバーのフィードバック制御を行う。
[0021] この構成により、カンチレバーに光が照射されて、熱膨張変形によってカンチレバ 一が変位する。この変位を利用して Z方向の走査が行われる。カンチレバーは非常 に小さぐ高い共振周波数を持つ。したがって、 Z走査の構成の共振周波数が高くな り、走査速度を増大できる。また、従来の自己ァクチユエーシヨンタイプのカンチレバ 一に見られるようにカンチレバーが硬くなるのを回避することができる。
[0022] また、光照射制御部は、光照射部力 の光の照射に対するカンチレバーの熱応答 の遅れを補償する熱応答補償部を備えてよい。熱応答補償部は、カンチレバーの熱 伝達関数の逆伝達関数 (熱伝達関数の逆数となる関数を意味する、以下同じ)と等 価な構成を有してよい。熱応答補償により、熱伝導過程という遅いプロセスを見かけ 上はなくすことができる(あるいは大幅に短くできる)。入力である光照射と出力である 変位を結びつける要素が、カンチレバーのもともとの力学特性に近くなる。熱膨張に よる変形の応答速度が高くなるので、高速走査と高速イメージングが可能になる。
[0023] また、光照射制御部は、さらに、光照射部の光の強度の制御によってカンチレバー を振動させてよい。カンチレバーの発生すべき振動に応じた振動波形 (典型的には カンチレバーの共振周波数に応じた振動波形)でもって変動するように、光の強度が 制御されてよい。光照射によって、カンチレバーの励振と Z走査の両方が行われる。 したがって、構造を簡単にすることができる。
[0024] また、光照射制御部は、さらに、センサにより検出された変位に基づいて Q値制御 を行う Q値制御部を備えてよい。 Q値制御部は、センサにより検出された変位の微分 にゲインを付与した値を求める構成を有してょ ヽ (ゲインは、 Q値制御にて変位の微 分に掛けられる係数に相当する)。この構成により、光照射を利用して Q値制御を行う ことができる。
[0025] 本発明の別の態様において、走査型プローブ顕微鏡は、カンチレバーと、カンチレ バーに光を照射して熱膨張変形を生じさせる光照射部と、光照射部の光の強度を制 御してカンチレバーの変位を変化させる光照射制御部と、を備え、光照射制御部は、 光照射部の光の強度の制御によってカンチレバーを振動させる発振制御部と、光照 射部からの光の照射に対するカンチレバーの熱応答の遅れを補償する熱応答補償 部とを備えている。
[0026] この態様では、光照射がカンチレバーの励振に使用される。この態様は、光照射を Z走査に適用する構成と、適用しない構成を含む。この態様でも、熱応答補償により 、熱伝導過程を見かけ上はなくすことができ (または大幅に短くでき)、カンチレバー の力学的特性が残り、励振を好適に制御できる。この態様でも、カンチレバーの変位 に基づいて Q値制御が好適に行われてよい。さらに、本発明のその他の各種特徴が 、この態様にも適用可能である。この態様でも本発明の利点が得られる。
[0027] 本発明の別の態様は、走査型プローブ顕微鏡による観察方法である。この方法は 、カンチレバーと試料を相対的に XY方向に移動させ、カンチレバーに光を照射して 熱膨張変形を生じさせ、カンチレバーの変位を検出し、検出されたカンチレバーの変 位に基づいて光の強度を制御することによってカンチレバーのフィードバック制御を 行う。光強度制御は、光の照射に対するカンチレバーの熱応答の遅れを補償してよ い。光強度制御は、カンチレバーの振動に利用されてよい。光強度制御は、カンチレ バーの変位に基づいた Q値制御を行ってよい。さらに、本発明のその他の各種特徴 1S この態様にも適用可能である。この態様でも本発明の利点が得られる。
[0028] 本発明の別の態様は、走査型プローブ顕微鏡による観察方法である。この方法は 、カンチレバーと試料を相対的に XY方向に移動させ、カンチレバーに光を照射して 熱膨張変形を生じさせ、光の強度制御によってカンチレバーを振動させ、かつ、光の 強度制御によって光の照射に対するカンチレバーの熱応答の遅れを補償する。光強 度制御は、カンチレバーの変位に基づいた Q値制御を行ってよい。さらに、本発明の その他の各種特徴が、この態様にも適用可能である。この態様でも本発明の利点が 得られる。
[0029] 本発明の範囲内で、本発明の表現は、上述の走査型プローブ顕微鏡およびそれ を用いた観察方法に限定されなくてよい。本発明の別の態様は、例えば、原子間力 顕微鏡およびそれを用いた観察方法でよい。本発明の別の態様は、走査型プローブ 顕微鏡または原子力間顕微鏡の、駆動装置または駆動方法でよい。また、本発明の 別の態様は、カンチレバー駆動装置またはカンチレバー駆動方法でよい。さらに、本 発明の別の態様は、上述の装置の制御装置または制御方法でよい。これらの態様は 、上述のカンチレバーの駆動のための構成を備えてよい。さらに、本発明のその他の 各種特徴が、これらの態様にも適用可能である。これらの態様でも本発明の利点が 得られる。
[0030] 上述した本発明によれば、光照射を上手く利用することによって走査速度の向上を 可能とすることができ、また、 Q値制御を容易にすることができる。
[0031] 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の 開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発 明の範囲を制限することは意図していない。
図面の簡単な説明 [0032] [図 1]図 1は、本実施の形態に係る AFMの構成を示す図である。
[図 2]図 2は、光照射によるカンチレバーの変形を示す図である。
[図 3]図 3は、カンチレバーの例を示す図である。
[図 4]図 4は、光照射からレバー変位までのプロセスを示す図である。
[図 5]図 5は、カンチレバーの熱応答特性を示す図である。
[図 6]図 6は、熱応答補償回路の構成を示す図である。
[図 7]図 7は、熱応答補償の効果を示す図である。
[図 8]図 8は、熱応答補償の効果を示す図である。
[図 9]図 9は、熱応答補償の効果を示す図である。
[図 10]図 10は、熱応答補償の効果を示す図である。
[図 11]図 11は、熱応答補償の効果を示す図である。
[図 12]図 12は、別の実施の形態に係る AFMの構成を示す図である。
[図 13]図 13は、別の実施の形態に係る AFMの構成を示す図である。
[図 14]図 14は、 Q値制御回路の構成を示す図である。
[図 15]図 15は、 Q値制御の効果を示す図である。
[図 16]図 16は、 Q値制御の効果を示す図である。
[図 17]図 17は、 Q値制御の効果を示す図である。
[図 18]図 18は、 Q値制御の効果を示す図である。
[図 19]図 19は、熱応答補償回路の別の例を示す図である。
発明を実施するための最良の形態
[0033] 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は 発明を限定するものではない。代わりに、発明の範囲は添付の請求の範囲により規 定される。
[0034] 本実施の形態では、本発明が原子間力顕微鏡 (AFM)に適用される。
[0035] 図 1は、本実施の形態に係る AFMの構成を示している。 AFM1は、全体構成とし ては、試料を保持する試料ステージ 3と、カンチレバー 5と、試料ステージ 3を XY方向 に駆動する XYスキャナ 7と、カンチレバー 5の変位を検出するセンサ 9と、カンチレバ 一 5に対して光照射を行う駆動レーザユニット 11と、駆動レーザユニット 11を制御す る駆動レーザ制御部 13と、装置全体を制御するコンピュータ 15とを備えている。
[0036] カンチレバー 5は、窒化シリコン製であり、自由端に探針を有している。カンチレバ 一 5の光照射面(図の下側)には金がコーティングされている。光照射面には、変位 検知用のセンサレーザ光と、レバー駆動用の駆動レーザ光が照射される。
[0037] カンチレバー 5はホルダ 21に保持されており、ホルダ 21は発振回路 23によって励 振される。発振回路 23から供給される励振信号に応じて、ホルダ 21の振動子が振動 し、これによりカンチレバー 5が振動する。カンチレバー 5が共振周波数近傍で振動 するように、発振回路 23がコンピュータ 15により制御される。
[0038] XYスキャナ 7はピエゾ素子(圧電素子)で構成されて 、る。 XYスキャナ 7は XY走査 制御回路 25によって制御される。 XY走査制御回路 25には、コンピュータ 15から XY 走査 (ラスター走査)の制御信号が入力される。 XY走査制御回路 25は、制御信号に 従って XYスキャナ 7を駆動する。これにより、試料ステージ 3が XY方向に移動し、 X Y方向の走査が実現される。
[0039] センサ 9は、センサレーザユニット 27と共に、光てこ式の変位センサを構成している 。センサレーザユニット 27は、センサレーザ光をカンチレバー 5に照射する。センサレ 一ザ光は赤色レーザ光(波長 670nm)である。センサレーザ光は、カンチレバー 5の 金コーティング面で反射してセンサ 9に届く。センサ 9はフォトダイオードで構成されて おり、カンチレバー 5の変位を表す信号を出力する。図では、センサに関連したレン ズ等の光学系の構成は省略されている。
[0040] 駆動レーザユニット 11は、駆動レーザ光をカンチレバー 5に照射する。駆動レーザ 光は、本実施の形態では可視光レーザである。駆動レーザ光の波長は、金コートの 光吸収能力が高くなる値に設定されている。具体的には、駆動レーザ光は紫色レー ザ光であり、波長は 405nmである。駆動レーザ光が照射されると、カンチレバー 5に 熱膨張が生じる。カンチレバー 5を構成する窒化シリコンと金コートでは熱膨張率が 異なるので、カンチレバー 5がバイメタルの機能を果たす。そして、図 2に示されるよう に、カンチレバー 5の橈み変形が生じる。これにより、カンチレバー 5の Z方向の変位 が得られる。図では、駆動レーザに関連したレンズ等の光学系の構成が省略されて いる。 [0041] 駆動レーザユニット 11は駆動レーザ制御部 13によって制御されている。駆動レー ザ制御部 13は、駆動レーザユニット 11に照射制御信号を供給することにより、駆動 レーザユニット nを制御する。照射制御信号は、変調入力信号である。変調入力信 号に応じて、レーザに強度変調をかける。変調強度がカンチレバー 5の変位の制御 に利用される。レーザ光強度に応じてカンチレバー 5の変形量が変わり、そして、 Z方 向の変位が変化する。
[0042] 本実施の形態では、駆動レーザ制御部 13が、駆動レーザ光の変調強度の制御に よってカンチレバー 5の変位を制御し、これにより、下記のようにして Z走査制御部とし て機能する。
[0043] 駆動レーザ制御部 13には、コンピュータ 15から基準変位および基準振幅の信号 が入力される。基準変位は、カンチレバー 5の初期変位であり、オフセット変位という こともできる。基準振幅は、フィードバック制御の目標になるカンチレバー 5の振幅で ある。駆動レーザ制御部 13には、さらに、センサ 9からカンチレバー 5の変位が入力さ れる。駆動レーザ制御部 13は、基準変位に従ってレーザ光強度を制御すると共に、 基準振幅とレバー変位に基づ 、てレバー振幅が基準振幅と一致するようにレーザ光 強度のフィードバック制御を行う。これにより、カンチレバー 5の振幅が一定に保たれ る。
[0044] 駆動レーザ制御部 13は、フィードバック制御のために、振幅検出回路 31とフィード ノ ック回路 33を含む。振幅検出回路 31は、センサ 9から入力されるカンチレバー 5の 変位の信号を処理してカンチレバー 5の振幅を求める。そして、振幅検出回路 31は 、検出された振幅の信号をフィードバック回路 33に出力する。
[0045] フィードバック回路 33は、基準振幅信号から検出振幅信号を減算して偏差信号を 生成する減算器と、偏差信号を増幅する PID回路とを備えている。これら構成によつ てフィードバック信号が生成される。
[0046] フィードバック信号は、コンピュータ 15から入力される基準変位の信号と加算される 。こうして得られる照射制御信号が、熱応答補償回路 35に供給される。熱応答補償 回路 35は、光照射に対するカンチレバー 5の熱応答の遅れを補償する回路である。 熱応答補償回路 35については後述する。 [0047] 熱応答補償回路 35を経た照射制御信号は、駆動レーザユニット 11に供給される。 そして、この照射制御信号に従って駆動レーザ光の強度が変動し、カンチレバー 5の 変位が変動する。照射制御信号が、レバー変位に基づいて求められた振幅の信号 を処理したフィードバック制御信号から作られて!/ヽるので、レーザ光強度がフィードバ ック信号に応じて変動し、カンチレバー 5の Z方向の変位もフィードバック信号に応じ て変動する。このようにして、カンチレバー 5のフィードバック制御が実現される。
[0048] コンピュータ 15は、 AFM1の全体を制御している。コンピュータ 15は、ユーザインタ 一フェース機能も提供する。ユーザの各種の指示がコンピュータ 15に入力され、コン ピュータ 15はユーザの入力に従って AFM1を制御する。また、コンピュータ 15には、 駆動レーザ制御部 13のフィードバック回路 33からフィードバック信号が入力される。 コンピュータ 15は、 XY走査の制御データと、入力されるフィードバック信号とに基づ いて、試料表面の 3次元画像を生成し、 3次元画像をモニタ 41に表示する。
[0049] 以上に AFM1の各部の構成について説明した。上記構成は、同様の機能が得ら れる範囲で変形されてよい。例えば、駆動レーザ制御部 13がコンピュータ 15に内蔵 されてょ 、。駆動レーザ制御部 13の機能を実現するのにソフトウェアが利用されても よ 、。コンピュータ 15内で処理されるデータが上述の信号に相当してよ!/、。
[0050] 次に、 AFM1の全体的な動作を説明する。コンピュータ 15は、 XY走査制御回路 2 5に XY走査の制御信号を送り、試料ステージ 3を XY方向に駆動する。また、コンビュ ータ 15は発振回路 23に励振信号を生じさせ、ホルダ 21と共にカンチレバー 5を振動 させる。さらに、コンピュータ 15は、駆動レーザ制御部 13に基準変位と基準振幅の信 号を供給する。駆動レーザ制御部 13は、上述したように機能して、カンチレバー 5を 基準変位まで Z方向に変形させるようにカンチレバー 5のフィードバック制御を行う。
[0051] このようにして、カンチレバー 5が振動した状態で、試料が XY方向に走査され、力 つ、カンチレバー 5が振幅を一定に保つように Z方向に走査される。駆動レーザ制御 部 13のフィードバック信号がコンピュータ 15に供給される。コンピュータ 15は、 XY走 查の制御データと、入力されるフィードバック信号とに基づいて、試料表面の 3次元 画像を生成する。生成された 3次元画像は、モニタ 41に表示される。
[0052] 図 3は、本実施の形態の具体例におけるカンチレバー 5を示しており、カンチレバー の電子顕微鏡写真(15000倍)から作られている。この例では、カンチレバー 5が全 体的には概ね一様断面を有しており、幅方向の断面形状は長方形である。また、レ バーの先端はテーパ形状を有している。レバーの長さは約 8 mであり、幅は約 2 mであり、厚さ (金コートを含む)は約 0. 1 μ mである。金コートは、探針と逆側に施さ れている。
[0053] この例の場合、カンチレバーの共振周波数は、液中で約 800kHzであり、大気中で 約 2. 2MHzであり、共振周波数が非常に高い。この共振周波数より低い領域におい てカンチレバー 5の Z走査が可能である。したがって、従来のピエゾ素子のスキャナ( 約 1kHz)と比べて走査速度を大幅に増大できる。この例に見られるように、ピエゾ素 子は大きいために共振周波数が低く高速駆動が困難なのに対して、カンチレバーは 小さいので共振周波数が高く高速駆動が容易である。
[0054] また、本実施の形態の具体例では、駆動レーザ光の波長は 405nmである。レーザ は 0〜20mWで強度変調可能であり、最大 50MHzで使用可能である。この場合、感 度は 5〜8nmppZmWであった。そして最大可動変位は、 100〜160nmpp (変調 強度 20mW時)であった。これらの値が、共振周波数より低い周波数帯域で得られた 。したがって、 AFMとしては十分な感度と変位を得ることができる。
[0055] また、本実施の形態では、通常のカンチレバーに光を照射することによって容易に ァクチユエーシヨン機能が得られる。すなわち従来の自己ァクチユエーシヨンタイプの カンチレバーに見られる複雑な力卩ェが不要である。また、従来の自己ァクチユエーシ ヨンタイプに見られる硬度増大も回避できる(本実施の形態のカンチレバーでは、ノ ネ定数は約 150pN/nmである)。さらに、自己ァクチユエーシヨンタイプのカンチレ バーでは、絶縁の確保も問題になる。しかし、本実施の形態によれば、絶縁の問題も 容易に回避される。
[0056] 「熱応答補償」
次に、熱応答補償回路 35について詳細に説明する。図 4は、光照射の入力から力 ンチレバー変位の出力までのプロセスを示している。図 4の上段のプロセスは、熱応 答補償が行われない場合のプロセスである。光がカンチレバーに吸収され、熱伝導 が生じ、熱膨張力が発生し、カンチレバーが変形し、変位が発生する。この一連のプ ロセスにおいて、光吸収は速いプロセスである(ナノ秒以下)。しかし、熱伝導は遅い プロセスである。そのため、熱伝導が原因で、光照射に対するレバー変位の応答が 遅くなる。この応答の遅れは、 Z走査の高速ィ匕にとって不利である。そこで、本実施の 形態では、熱応答補償が行われる。より具体的には、位相補償の原理が導入されて
、熱応答補償が実現される。これにより、図 4の下段に示されるように、熱伝導のプロ セスが見かけ上はなくなり、応答速度が速くなる。
[0057] 図 5は、カンチレバーにレーザ光を照射したときの時間と変位の関係を示している( 熱応答補償は行われていない)。図 5の例は、上述の具体例のカンチレバーを用い たときの測定結果を示している。図 5に示されるように、カンチレバーの変位は、時間 経過に応じて徐々に大きくなつており、熱応答が遅い。この遅れは、熱伝導に起因し ている。
[0058] ここで、図 5の熱応答は、電子回路のローパスフィルタのように振る舞つている。すな わち、熱応答の遅れ現象が、ローパスフィルタの遅れと似ている。このような場合、電 子回路では、位相補償が好適に適用される。本実施の形態はこの点に着目し、下記 に説明するように、電子回路で見られるような位相補償の原理を熱伝導過程に導入 して 、る。このような新たな手法によってカンチレバーの熱応答補償を実現して 、る。
[0059] 図 5の例では、熱伝導過程が 2つの過程力もなると考えることができる。熱伝導過程 を、 2つの並列なローパスフィルタとみなすことができる。この場合、伝達関数 G (s)は 、下式で示される通り、 2つのローパスフィルタの和で表される。
[数 3]
Gis) = )
Figure imgf000014_0001
( L P F ) ( L P F ) 伝達関数 G (s)は、さらに、以下のように変形される
[数 4] ヽ
s
Figure imgf000015_0001
j + とすると
ω3 ω〗 ω2
Figure imgf000015_0002
(し Ρ F ) ( L Ρ F ) ( 1 + D)
[0060] 上記の変形後の式は、 2つのローパスフィルタと、(1 +微分)項、の積である。このこ とは、伝達関数 G (s)が、直列な、 2種類のローパスフィルタと 1つの(1 +微分)項、と 等価であることを意味する。位相補償では、伝達関数 G (s)の逆伝達関数が用いられ る。逆伝達関数は、 2種類の(1 +微分)項と 1つのローパスフィルタの積になる。図 1 の熱応答補償回路 35は、上記のような逆伝達関数と等価な回路で構成されている。
[0061] 図 6は、熱応答補償回路 35の構成を示している。図示のように、熱応答補償回路 3 5は、 1つのローパスフィルタ 35aと、 2つの(1 +微分)回路 35b、 35cで構成されてお り、これらは直列に配置されている。回路 35a、 35b、 35cのパラメータは、カンチレバ 一 5の熱応答の測定結果(図 5)に基づいて設定される。より詳細には、測定結果から 、実際の熱応答と等価な熱伝達関数が求められ、その逆伝達関数 (熱伝達関数の逆 数となる関数)が求められる。そして、逆伝達関数に対応するように回路が構成される
[0062] 駆動レーザ光の照射制御信号 (フィードバック信号が合成された信号)は、図 1に示 されるように、熱応答補償回路 35に入力され、それから駆動レーザユニット 11に供給 される。これにより、上述の原理に示される位相補償が好適に実現される。
[0063] 図 7は、位相補償の効果を示している。図 7は、図 4と同様に、レーザ光が照射され たときのレバー変位の変化を示している。位相補償が行われた結果、レバーの変位 が短時間で一定値に達しており、応答速度が速くなつている。 [0064] 図 8は、位相補償の効果を示すもう一つの図である。図 8は、カンチレバーの水中 での振動特性を示している。横軸は周波数であり、縦軸は振幅である。図中のライン L1 (点線)は、計算上のモデルの特性である。ライン L2は、ピエゾ駆動を行った時の 特性である。ライン L3は、位相補償無しでレーザー光によりレバーを駆動したときの 特性である。ライン L4は、位相補償を行ったときのレーザ駆動の特性である。
[0065] 図示のように、位相補償を適用することにより、カンチレバーの特性が計算上のモ デルとほぼ一致する。このことは、入力である光照射と出力である変位を結びつける 要素が、カンチレバー自身の力学特性だけになることを意味している。したがって、 光照射に対するレバー変位の応答速度が速くなる。
[0066] また、図 8に示されるように、本実施の形態では、水中にあるカンチレバーをレーザ 光で駆動しており、共振周波数が 800kHz程度であり、非常に高い。共振周波数より 下の領域では、 Z走査を行うことが可能である。このことは、 Z走査の走査速度を従来 よりも大幅に増大できることを意味する。
[0067] 図 9〜図 11は、位相補償の効果を示すさらに別の図である。図 9〜図 11は、カンチ レバー変位の矩形波応答を示している。図 9は測定データであり、図 10、図 11はシミ ユレーシヨン結果である。図中の上段は熱応答補償回路 35への入力であり、中段は 同回路 35の出力であり、下段はカンチレバーの変位である。図 9、図 10では、 10 /z s 時にて熱応答補償回路 35にステップ入力が行われ、レーザ強度が矩形波的に変え られている。図 11では、同様に 20 s時にてレーザ強度が変えられている。これらの 図でも、位相補償による応答速度の増大が現れている。
[0068] 以上に本発明の好適な実施の形態にっ 、て説明した。本実施の形態では、駆動レ 一ザ制御部 13が光照射制御部の一形態であり、特に、フィードバック回路 33が Z走 查制御部として機能している。また、熱応答補償回路 35が熱応答補償部の一形態で ある。
[0069] 本実施の形態によれば、カンチレバーに光が照射されて、熱膨張変形によってカン チレバーが変位する。この変位を利用して Z方向の走査が行われる。したがって、 Z 走査の構成の動作周波数を高くして、走査速度を増大できる。また、従来の自己ァク チユエーシヨンタイプのカンチレバーに見られるようにカンチレバーを硬くするのを回 避することができる。
[0070] カンチレバーは、熱膨張率が異なる複数の層を有している。複数の層の熱膨張率 の差に応じて Z方向に橈み変形し、これにより Z方向の変位が得られる。
[0071] より詳細には、カンチレバーは、窒化シリコンに金がコーティングされた構成を有し ている。この金コーティングに光が照射される。金は、可視光領域の光を吸収し、また 、高い熱膨張率を有する。したがって、金コーティングを使うことによってカンチレバ 一の変位が好適に得られる。
[0072] また、光てこ式センサの光を反射するために、カンチレバーに従来力も金コーティン グが施されている。この金コーティングを活用することができる点でも本発明は有利で ある。
[0073] また、本実施の形態は熱応答補償部を備えている。より詳細には、熱応答がローバ スフィルタの振る舞いを見せることに着目して、位相補償が行われている。熱応答補 償部が、カンチレバーの熱伝達関数の逆伝達関数と等価な構成を有し、これにより 位相補償を行うことができる。熱応答補償により、熱伝導過程という遅いプロセスを見 かけ上はなくすことができる(ある 、は大幅に短くできる)。
[0074] したがって、入力である光照射と出力である変位を結びつける要素力 カンチレバ 一自身の力学特性に近くなる。すなわち、熱膨張に伴う変形の応答速度を、レバー 構造体が持つもともとの力学特性に従った変形の応答速度とほぼ同じにできる。その 結果、熱膨張による変形の応答速度が高くなり、高速走査とそれによる高速イメージ ングが可能になる。
[0075] 「レバー振動制御」
次に、図 12は、別の実施の形態を示している。上述の実施の形態では、 Z走査が 光照射によって行われた。本実施の形態では、 Z走査に加えて、カンチレバーの励 振が、光照射によって行われる。以下、上述の実施の形態と同様の事項の説明は省 略する。
[0076] 図 12の AFM101では、ホルダー 21の発振回路が削除されている。その代わりに、 駆動レーザ制御部 13が発振回路 51を備えている。発振回路 51は、コンピュータ 15 に制御されて、励振信号を生成する。この励振信号は、カンチレバーの共振周波数 の振動波形をもつ信号である。この励振信号が、駆動レーザ制御部 13の照射制御 信号に加算される。元々の DC成分の照射制御信号に、 AC成分の信号が加えられ ることになる。
[0077] このような照射制御信号が、熱応答補償回路 35を経て、駆動レーザユニット 11に 供給されることになる。したがって、レーザ光強度は、カンチレバー 5の共振周波数と 同じ周波数で変調される。同時に、レーザ光強度の DC成分は、カンチレバー 5の基 準変位に応じた値になり、かつ、フィードバック制御によって調節される。カンチレバ 一 5の変位も、レーザ光強度に応じて変化する。こうして、光照射によって、カンチレ バー 5を共振周波数で振動させながら、平均の変位 (振動するカンチレバーの変位 の中心)をフィードバック制御できる。すなわち、カンチレバー 5の励振と Z走査を一つ のレーザユニットで行うことができる。
[0078] 以上に図 12の実施の形態に係る AFMについて説明した。本実施の形態では、発 振回路 51が本発明の発振制御部として機能する。本実施の形態によれば、光照射 によってカンチレバーの励振と Z走査の両方が行われる。これにより、高速走査が可 能になる。また、カンチレバーの機械的な励振が不要になり、構造を簡単にすること ができる。
[0079] 「Q値制御」
図 13は、さらに別の実施の形態を示している。図 13では、さらに、 Q値制御のため の構成が追加されている。以下、上述の実施の形態と同様の事項の説明は省略する
[0080] Q値 (quality factor)は、振動の状態を現す無次元数であり、共振スペクトル (振動 の周波数と変位の関係)の鋭さを現すパラメータである。 Q値は、 ω 0/ ( ω 2- ω 1) で現される。 ω θは、共振ピークでの共振周波数である。 ω 1、 ω 2は、共振ピークの 左側および右側において振動エネルギーが半値になる周波数である。
[0081] カンチレバーの応答速度を上げることは、 AFMの走査速度の高速化に寄与する。
カンチレバーを含むすべての機械デバイスの応答速度は、デバイスの共振の共振周 波数 (f)と Q値を用いて、 という式で記述される。応答速度を上げるには、共 振周波数を上げるか、 Q値を下げることが有効であることが分かる。しかし、共振周波 数および Q値は、カンチレバーの形状および測定環境によって決まる値である。共振 周波数および Q値が大きく変わるようなカンチレバーを製作することは容易ではない
[0082] これら特性のうちで、 Q値については、共振体の Q値を実効的に制御する方法が知 られている。共振体の運動方程式は次のように書かれる。
[数 5]
Figure imgf000019_0001
mは質量であり、 yは粘性係数であり、 kはパネ定数であり、 F(t)は外力を表す。一 般解は、下記の通りである。
[数 6]
Ζ(ί) = βί{ωί + ) ■ ■ ■ (2)
[0083] ここで、一般解の信号 (変位信号)の微分値に、ある増幅率( a )を掛けて、外力に加 算 (もしくは減算)すると、運動方程式は次のように書かれる。
[数 7] mz + γζ -i-kz = F(t) + of -■ - (3)
[0084] この式は、さらに下記のように変形される。「eff」は、実行値を意味する。
[数 8] mz + yeffz +kz = F(t) "-(4) yeff -γ ±α ·--(5) Qeff = (6)
[0085] 上記の演算から、 Q値の実効値を変化させることが可能であることが分かる。このよ うな Q値制御をカンチレバーに適用しょうとしたとする。この場合の Q値制御は、駆動 体のエネルギーでカンチレバーを振動させ、カンチレバーの変位を検出し、変位に 応じた外力を付加する制御になる。
[0086] しかし、従来の AFMでは、振動子が圧電素子で構成されて!ヽる。圧電素子を用い た駆動方法では、カンチレバー以外の共振体も振動を起こしてしまう。そのため、 Q 値制御の演算を行うことができず、 Q値制御が困難である(ピエゾ素子の Q値制御の 困難さは、図 8に示されたピエゾ素子の振動特性におけるピークフォレストからも分か る)。
[0087] そこで、 Q値制御の演算を行うためには、従来の圧電素子とは異なる構成によって カンチレバーのみを直接駆動することが望まれる。直接駆動が可能で有れば、 Q値 制御が容易になるといえる。このような要求が、本実施の形態の AFMでは満たされ ている。すなわち、本実施の形態の AFMは、駆動レーザ光によってカンチレバーを 直接駆動している。し力も、熱応答補償回路が挿入されているので、熱応答の遅れ が補償されている。熱伝導という遅いプロセスが見かけ上はなくなるので、カンチレバ 一の元々の力学特性が残っている。すなわち、(熱伝導を経ることなく)カンチレバー に直接外力を及ぼしているとみなすことができる。このことを利用して、本実施の形態 の AFMは、下記の通り、 Q値制御を行うように構成されている。
[0088] 図 13を参照すると、本実施の形態の AFM201では、駆動レーザ制御部 13に Q値 制御回路 61が設けられている。 Q値制御回路 61には、センサ 9からカンチレバー 5 の変位の信号が入力される。 Q値制御回路 61は、カンチレバー 5の変位の信号を処 理して、 Q値制御信号を生成する。 Q値制御信号は、照射制御信号に加算されて、 熱応答補償回路 35に入力される。
[0089] 図 14は、 Q値制御回路 61の構成を示している。 Q値制御回路 61は、微分回路 (Dif ferential Amplifier) 63とゲイン回路(Gain Amplifier) 65で構成されている。カンチレ バー 5の変位が微分回路 63で微分される。そして、微分値にゲイン回路 65でゲイン が与えられる。こうして生成される信号が、 Q値制御信号として、加算器 67にて照射 制御信号に加算される。したがって、駆動レーザユニット 11のレーザ光強度に Q値制 御が反映され、そして、カンチレバー 5で熱膨張により発生する力にも Q値制御が反 映される。こうして、カンチレバー 5の Q値制御が実現される。
[0090] また、図 13に示すように、 Q値制御回路 61は、コンピュータ 15によって制御される 。コンピュータ 15は、 Q値制御回路 61における係数 (ゲイン)の値を制御する。
[0091] 次に、カンチレバーにおける Q値制御の効果について説明する。図 14の構成では 、ゲインが正であれば、 Q値制御の原理の説明に示されるように、粘性係数(γ )の実 効値が小さくなり、 Q値が大きくなる。ゲインが負であれば、逆に Q値力 、さくなる。
[0092] Q値を小さく(低く)すると、応答速度が向上し、 AFMを高速ィ匕できる。制御が速く なるので、試料に与えるダメージが減るという利点も得られる。ただし、カンチレバー 探針 試料間の相互作用に対する敏感さは減る。
[0093] 一方、 Q値を大きく(高く)すると、応答速度は下がる。しかし、探針 試料間の相互 作用に対する敏感さが増し、検出の敏感さが向上する。したがって、 AFMの空間分 解能を高くできる。
[0094] 図 15〜図 18は、 Q値制御の効果を示すシミュレーション結果を示している。図 15、 図 16は、周波数特性のシミュレーション結果である。図 15は、入力振幅に対する出 力振幅の変位のグラフであり、図 16は、位相のグラフである。 Q値制御を行わない場 合の Q値は約 2であり、共振周波数は 804kHzである。図 15、図 16は、 Q値 =0. 5、 2、 10の 3つの周波数特性を示している。図示のように、 Q値 = 10では、共振周波数 での振幅が大きくなり、位相が急峻に変化する。これらより、 Q値を大きくすると、敏感 さが増すことが分かる。
[0095] 図 17、図 18、過渡応答特性を示している。図 17は、入力信号 (上段)と、 Q値を大 きくした場合の特性(中段、 Q値 = 10)と、 Q値制御を行わない場合の特性 (下段、 Q 値 = 2)である。図 18は、入力信号 (上段)と、 Q値を小さくした場合の特性(中段、 Q 値 =0. 5)と、 Q値制御を行わない場合の特性(下段、 Q値 = 2)である。 20 sの時 点から、周波数 804kHzの信号が入力されている。そして、 70 sの時点で信号の入 力が止められている。図示のように、 Q値が大きくなると、応答が遅くなる。これに対し て、 Q値が小さくなると、応答が速くなる。
[0096] 以上に、 Q値制御を行う実施の形態にっ 、て説明した。本実施の形態では、 Q値 制御回路 61が本発明の Q値制御部に相当している。
[0097] 本実施の形態によれば、 Q値制御部を備えたことにより、光照射を利用して Q値制 御を行うことができ、応答速度と感度を調節できる。
[0098] 上記の構成では、 Q値制御が、熱応答補償と好適に組み合わされて 、る。熱伝導 という遅いプロセスが熱応答補償によって見かけ上はなくすことができる(または大幅 に短くできる)ので、カンチレバー自身の元々の力学的特性が残る。その結果、光照 射力 直接カンチレバーに力を及ぼすのと同様の効果を生じさせることができる。直 接外力を加える場合と同様な Q値制御が、光照射の強度に対して行われて、これに より Q値制御が実現される。したがって、 Q値制御を容易に行うことができる。
[0099] また、本実施の形態によれば、 Q値を減少させることにより、応答速度を増大でき、 走査速度を向上できる。また、 Q値を増大させてよぐ変位感度を増大でき、空間分 解能を向上できる。
[0100] 「熱応答補償回路の変形例」
次に、図 19は、熱応答補償回路 35の変形例を示している。上述の実施の形態で は、熱応答補償回路が、熱伝達関数の逆伝達関数に等価な回路で構成された。本 実施の形態では、熱応答補償回路が、疑似回路を用いて構成されており、フィード ノ ックによって熱応答を補償する。
[0101] 図 19において、照射制御信号は加算器 71と減算器 73に入力される。加算器 71の 出力は、熱応答補償回路の出力となる。また、加算器 71の出力は、疑似熱応答回路 75、疑似カンチレバー回路 77を経て、減算器 73に入力される。疑似熱応答回路 75 は、カンチレバー 5の熱伝達と等価な回路である。本実施の形態では、熱伝達が並 列の 2つのローパスフィルタで表される。したがって、疑似熱応答回路 75も並列の 2 つのローパスフィルタで構成される(直列の 2つの LPFと 1つの(1 +微分)回路でもよ い)。疑似カンチレバー回路 77はカンチレバーと等価 (Q値、周波数)な回路であり、 LCR回路にて構成される。
[0102] 減算器 73では、入力された照射制御信号から、疑似回路の出力信号が引かれる。
この差分信号が、 PIDフィードバック回路 79を経て加算器 71に入力され、照射制御 信号に加算される。加算後の照射制御信号が駆動レーザユニットへと出力される。
[0103] 上記のような疑似回路を用いた構成によっても、熱伝導の遅れを補償することがで きる。そして、カンチレバー 5の応答速度を向上し、 AFMの走査速度を向上できる。
[0104] 「その他の変形例」
その他、上述の実施の形態は、当業者により変形可能である。例えば、本実施の形 態では、カンチレバーの光照射面に金コートが施されていた。しかし、金以外の材質 が適用されてもよい。光照射面の材質に応じて駆動レーザ光の波長を設定すること が好ましい。すなわち、レーザ光の波長と光吸収能力の関係に基づいて、光吸収能 力が高くなるように波長が設定される。また、光照射面の材質は、センサレーザ光の 反射率も考慮して設定されることが好まし ヽ。
[0105] 本実施の形態における位相補償に関し、熱応答補償回路の構成は、カンチレバー 等の仕様に応じて変更されてよい。本実施の形態では、カンチレバーの熱伝達関数 力 つのローパスフィルタで現され、そして、この熱伝達関数の逆伝達関数を実現す るように熱応答補償回路が構成された。しかし、熱伝達関数は、カンチレバー等の構 成によって異なり得る。例えば、熱伝達関数は、カンチレバーの形状によって異なり 得る。そこで、熱伝達関数に応じて熱応答補償回路の構成が変更されてよい。実際 の熱伝達関数の逆伝達関数を実現するように熱応答補償回路を構成することが好適 である。
[0106] 例えば、熱伝達関数が 1つのローパスフィルタで現されてよい。そして、この熱伝達 関数の逆伝達関数 (1 +微分)が、熱応答補償回路で実現されてよい。
[0107] また、上述の実施の形態では、光照射力 ¾走査に利用され、あるいは、光照射が Z 走査と励振に利用された。本発明は、光照射を励振のみに用いる構成も含む。この 場合も、 Q値制御が好適に行われる。
[0108] また、上述の実施の形態では、本発明が ACモードの AFMに適用された。しかし、 本発明はこれに限定されない。本発明はコンタクトモードの AFMに適用されてもよい 。この場合には、カンチレバーが振動しなくてよい。そして、 Z走査が光照射によって 実現される。
[0109] また、本実施の形態では、 Z駆動(走査)用の圧電素子が設けられていない。しかし 、 Z駆動用の圧電素子が付加的に設けられてもよい。この点に関し、本実施の形態で は、 XYスキャナとして、従来の AFMの XYZスキャナが備えられてもよい。この場合、 XY方向のみの走査機能が利用されてもよい。あるいは、 Z方向の走査機能が、レー ザ光照射と併用されてもよい。例えば、圧電素子が、操作の初期段階で適当な位置 までカンチレバー 5を動かすために用いられてよ!/、。
[0110] さらに、本発明は、 AFM以外にも適用可能である。また、本発明の別の態様は、力 ンチレバーの駆動装置および駆動方法などである。この態様は、走査型プローブ顕 微鏡以外の装置にも適用されてよい。
[0111] 以上に現時点で考えられる本発明の好適な実施の形態を説明した力 本実施の形 態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範 囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されてい る。
産業上の利用可能性
[0112] 本発明にかかる走査型プローブ顕微鏡は、走査速度を増大することができる。

Claims

請求の範囲
[1] カンチレバーと、
前記カンチレバーの変位を検出するセンサと、
前記カンチレバーに光を照射して熱膨張変形を生じさせる光照射部と、 前記光照射部の光の強度を制御して前記カンチレバーの変位を変化させる光照射 制御部と、
を備え、前記光照射制御部は、前記センサにより検出された変位に基づいて前記 光照射部の光の強度を制御することによって前記カンチレバーのフィードバック制御 を行うことを特徴とする走査型プローブ顕微鏡。
[2] 前記カンチレバーは、熱膨張率が異なる複数の層を有しており、前記複数の層の 熱膨張率の差に応じて Z方向に橈み変形することを特徴とする請求項 1に記載の走 查型プローブ顕微鏡。
[3] 前記カンチレバーは、窒化シリコンに金がコーティングされた構成を有しており、金 コーティングに光が照射されることを特徴とする請求項 2に記載の走査型プローブ顕 微鏡。
[4] 前記光照射制御部は、前記光照射部からの光の照射に対する前記カンチレバー の熱応答の遅れを補償する熱応答補償部を備えて!/ヽることを特徴とする請求項 1に 記載の走査型プローブ顕微鏡。
[5] 前記熱応答補償部は、前記カンチレバーの熱伝達関数の逆伝達関数と等価な構 成を有することを特徴とする請求項 4に記載の走査型プローブ顕微鏡。
[6] 前記光照射制御部は、さらに、前記光照射部の光の強度の制御によって前記カン チレバーを振動させることを特徴とする請求項 1に記載の走査型プローブ顕微鏡。
[7] 前記光照射制御部は、さらに、前記センサにより検出された変位に基づいて Q値制 御を行う Q値制御部を備えていることを特徴とする請求項 6に記載の走査型プローブ 顕微鏡。
[8] 前記 Q値制御部は、前記センサにより検出された変位の微分にゲインを付与した値 を求める構成を有することを特徴とする請求項 7に記載の走査型プローブ顕微鏡。
[9] 前記 Q値制御部は Q値を減少させることを特徴とする請求項 7に記載の走査型プロ ーブ顕微鏡。
[10] 前記 Q値制御部は Q値を増大させることを特徴とする請求項 7に記載の走査型プロ ーブ顕微鏡。
[11] カンチレバーと、
前記カンチレバーに光を照射して熱膨張変形を生じさせる光照射部と、 前記光照射部の光の強度を制御して前記カンチレバーの変位を変化させる光照射 制御部と、
を備え、前記光照射制御部は、前記光照射部の光の強度の制御によって前記カン チレバーを振動させる発振制御部と、前記光照射部からの光の照射に対する前記力 ンチレバーの熱応答の遅れを補償する熱応答補償部とを備えていることを特徴とす る走査型プローブ顕微鏡。
[12] 前記熱応答補償部は、前記カンチレバーの熱伝達関数の逆伝達関数と等価な構 成を有することを特徴とする請求項 11に記載の走査型プローブ顕微鏡。
[13] 前記カンチレバーの変位を検出するセンサを備えており、
前記光照射制御部は、前記センサにより検出された変位に基づ 、て Q値制御を行 う Q値制御部を備えて 、ることを特徴とする請求項 11に記載の走査型プローブ顕微 鏡。
[14] 前記 Q値制御部は、前記センサにより検出された変位の微分にゲインを付与した値 を求める構成を有することを特徴とする請求項 13に記載の走査型プローブ顕微鏡。
[15] 前記 Q値制御部は Q値を減少させることを特徴とする請求項 13に記載の走査型プ ローブ顕微鏡。
[16] 前記 Q値制御部は Q値を増大させることを特徴とする請求項 13に記載の走査型プ ローブ顕微鏡。
[17] カンチレバーと試料を相対的に XY方向に移動させ、
カンチレバーに光を照射して熱膨張変形を生じさせ、
前記カンチレバーの変位を検出し、
検出された前記カンチレバーの変位に基づいて前記光の強度を制御することによ つて前記カンチレバーのフィードバック制御を行う ことを特徴とする走査型プローブ顕微鏡による観察方法。
[18] 前記光の強度制御によって前記光の照射に対する前記カンチレバーの熱応答の 遅れを補償することを特徴とする請求項 17に記載の走査型プローブ顕微鏡による観 察方法。
[19] さらに、前記光の強度制御によって前記カンチレバーを振動させることを特徴とする 請求項 17に記載の走査型プローブ顕微鏡による観察方法。
[20] さらに、検出された前記カンチレバーの変位に基づいた Q値制御を前記光の強度 制御によって行うことを特徴とする請求項 19に記載の走査型プローブ顕微鏡による 観察方法。
[21] カンチレバーと試料を相対的に XY方向に移動させ、
カンチレバーに光を照射して熱膨張変形を生じさせ、
前記光の強度制御によって前記カンチレバーを振動させ、かつ、前記光の強度制 御によって前記光の照射に対する前記カンチレバーの熱応答の遅れを補償する ことを特徴とする走査型プローブ顕微鏡による観察方法。
[22] 前記カンチレバーの変位を検出し、
検出された前記カンチレバーの変位に基づいた Q値制御を前記光の強度制御によ つて行うことを特徴とする請求項 21に記載の走査型プローブ顕微鏡による観察方法
[23] カンチレバーの変位を検出するセンサと、
前記カンチレバーに光を照射して熱膨張変形を生じさせる光照射部と、 前記光照射部の光の強度を制御して前記カンチレバーの変位を変化させる光照射 制御部と、
を備え、前記光照射制御部は、前記センサにより検出された変位に基づいて前記 光照射部の光の強度を制御することによって前記カンチレバーのフィードバック制御 を行うことを特徴とするカンチレバー駆動装置。
[24] 前記光照射制御部は、前記光照射部からの光の照射に対する前記カンチレバー の熱応答の遅れを補償する熱応答補償部を備えていることを特徴とする請求項 23に 記載のカンチレバー駆動装置。
[25] 前記光照射制御部は、さらに、前記光照射部の光の強度の制御によって前記カン チレバーを振動させることを特徴とする請求項 23に記載のカンチレバー駆動装置。
[26] 前記光照射制御部は、さらに、前記センサにより検出された変位に基づいて Q値制 御を行う Q値制御部を備えていることを特徴とする請求項 25に記載のカンチレバー 駆動装置。
[27] カンチレバーに光を照射して熱膨張変形を生じさせる光照射部と、
前記光照射部の光の強度を制御して前記カンチレバーの変位を変化させる光照射 制御部と、
を備え、前記光照射制御部は、前記光照射部の光の強度の制御によって前記カン チレバーを振動させる発振制御部と、前記光照射部からの光の照射に対する前記力 ンチレバーの熱応答の遅れを補償する熱応答補償部とを備えていることを特徴とす るカンチレバー駆動装置。
[28] 前記光照射制御部は、さらに、センサにより検出された前記カンチレバーの変位に 基づ 、て Q値制御を行う Q値制御部を備えて 、ることを特徴とする請求項 27に記載 のカンチレバー駆動装置。
[29] カンチレバーと試料を相対的に XY方向に移動させ、
カンチレバーに光を照射して熱膨張変形を生じさせ、
前記カンチレバーの変位を検出し、
検出された前記カンチレバーの変位に基づいて前記光の強度を制御することによ つて前記カンチレバーのフィードバック制御を行う
ことを特徴とするカンチレバー駆動方法。
[30] 前記光の強度制御によって前記光の照射に対する前記カンチレバーの熱応答の 遅れを補償することを特徴とする請求項 29に記載のカンチレバー駆動方法。
[31] さらに、前記光の強度制御によって前記カンチレバーを振動させることを特徴とする 請求項 29に記載のカンチレバー駆動方法。
[32] さらに、検出された前記カンチレバーの変位に基づいた Q値制御を前記光の強度 制御によって行うことを特徴とする請求項 31に記載のカンチレバー駆動方法。
[33] カンチレバーと試料を相対的に XY方向に移動させ、 カンチレバーに光を照射して熱膨張変形を生じさせ、
前記光の強度制御によって前記カンチレバーを振動させ、かつ、前記光の強度制 御によって前記光の照射に対する前記カンチレバーの熱応答の遅れを補償する ことを特徴とするカンチレバー駆動方法。
前記カンチレバーの変位を検出し、
検出された前記カンチレバーの変位に基づいた Q値制御を前記光の強度制御によ つて行うことを特徴とする請求項 33に記載のカンチレバー駆動方法。
PCT/JP2006/310535 2005-05-31 2006-05-26 走査型プローブ顕微鏡およびカンチレバー駆動装置 WO2006129561A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/915,940 US7958565B2 (en) 2005-05-31 2006-05-26 Scan type probe microscope and cantilever drive device
JP2007518942A JP5164147B2 (ja) 2005-05-31 2006-05-26 走査型プローブ顕微鏡およびカンチレバー駆動装置
EP06756635.6A EP1898204B1 (en) 2005-05-31 2006-05-26 Scanning probe microscope and cantilever drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005159910 2005-05-31
JP2005-159910 2005-05-31

Publications (1)

Publication Number Publication Date
WO2006129561A1 true WO2006129561A1 (ja) 2006-12-07

Family

ID=37481490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310535 WO2006129561A1 (ja) 2005-05-31 2006-05-26 走査型プローブ顕微鏡およびカンチレバー駆動装置

Country Status (4)

Country Link
US (1) US7958565B2 (ja)
EP (1) EP1898204B1 (ja)
JP (1) JP5164147B2 (ja)
WO (1) WO2006129561A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508502A (ja) * 2006-10-31 2010-03-18 インフィニティシマ エルティーディー 走査プローブ顕微鏡用プローブアセンブリ
JP2015505617A (ja) * 2012-01-31 2015-02-23 インフィニテシマ リミテッド ビーム走査システム
WO2015045997A1 (ja) * 2013-09-24 2015-04-02 東レエンジニアリング株式会社 実装装置および実装方法
JP2016065800A (ja) * 2014-09-25 2016-04-28 国立大学法人金沢大学 走査型プローブ顕微鏡
JP2018517144A (ja) * 2015-06-12 2018-06-28 インフィニテシマ リミテッド 走査型プローブシステム
WO2018131343A1 (ja) 2017-01-10 2018-07-19 国立大学法人大阪大学 スキャナ及び走査型プローブ顕微鏡
JP2019168400A (ja) * 2018-03-26 2019-10-03 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡及びその走査方法
JP2021001905A (ja) * 2012-08-31 2021-01-07 インフィニテシマ リミテッド 複数プローブの検出及び作動

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8448261B2 (en) * 2010-03-17 2013-05-21 University Of Tennessee Research Foundation Mode synthesizing atomic force microscopy and mode-synthesizing sensing
US20110231966A1 (en) * 2010-03-17 2011-09-22 Ali Passian Scanning probe microscopy with spectroscopic molecular recognition
GB201215547D0 (en) * 2012-08-31 2012-10-17 Infinitesima Ltd Multiple probe actuation
WO2014033430A1 (en) * 2012-08-31 2014-03-06 Infinitesima Limited Photothermal actuation of a probe for scanning probe microscopy
CN103412149A (zh) * 2013-08-30 2013-11-27 哈尔滨工业大学 一种适用于原子力显微镜激光测力系统的测力灵敏度标定装置及基于该标定装置的标定方法
EP2913682A1 (en) 2014-02-28 2015-09-02 Infinitesima Limited Probe actuation system with feedback controller
EP2913681A1 (en) * 2014-02-28 2015-09-02 Infinitesima Limited Probe system with multiple actuation locations
GB201610128D0 (en) 2016-06-10 2016-07-27 Infinitesima Ltd Scanning probe system with multiple probes
EP3339956A1 (en) * 2016-12-23 2018-06-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Thermal nanolithography method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159465A (ja) * 1993-12-10 1995-06-23 Dainippon Printing Co Ltd 表面電位読み取り装置
JPH11512830A (ja) * 1996-03-13 1999-11-02 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 新規なカンチレバー構造
JP2001228074A (ja) * 2000-02-17 2001-08-24 Seiko Instruments Inc マイクロプローブおよび試料表面測定装置
JP2002540436A (ja) * 1999-03-29 2002-11-26 ナノデバイシィズ インコーポレイテッド 原子間力顕微鏡用能動型探針及びその使用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010013574A1 (en) * 1998-11-10 2001-08-16 Oden L. Warren Intermittent contact imaging under force-feedback control
US6330824B1 (en) * 1999-02-19 2001-12-18 The University Of North Carolina At Chapel Hill Photothermal modulation for oscillating mode atomic force microscopy in solution
JP4076792B2 (ja) * 2001-06-19 2008-04-16 独立行政法人科学技術振興機構 カンチレバーアレイ、その製造方法及びその装置
JP4190936B2 (ja) * 2002-09-17 2008-12-03 エスアイアイ・ナノテクノロジー株式会社 走査型プローブ顕微鏡およびその操作法
JP3958206B2 (ja) 2002-12-27 2007-08-15 独立行政法人科学技術振興機構 マルチカンチレバーの振動周波数の計測方法及び装置
US7262066B2 (en) * 2004-09-03 2007-08-28 Picocal, Inc. Systems and methods for thin film thermal diagnostics with scanning thermal microstructures
WO2006062048A1 (ja) * 2004-12-06 2006-06-15 Japan Science And Technology Agency 機械的振動子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159465A (ja) * 1993-12-10 1995-06-23 Dainippon Printing Co Ltd 表面電位読み取り装置
JPH11512830A (ja) * 1996-03-13 1999-11-02 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 新規なカンチレバー構造
JP2002540436A (ja) * 1999-03-29 2002-11-26 ナノデバイシィズ インコーポレイテッド 原子間力顕微鏡用能動型探針及びその使用方法
JP2001228074A (ja) * 2000-02-17 2001-08-24 Seiko Instruments Inc マイクロプローブおよび試料表面測定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MERTZ J. ET AL.: "Regulation of a microcantiliver response by force feedback", APPL. PHYS. LETT., vol. 62, no. 19, 1993, pages 2344 - 2346, XP000367427 *
See also references of EP1898204A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508502A (ja) * 2006-10-31 2010-03-18 インフィニティシマ エルティーディー 走査プローブ顕微鏡用プローブアセンブリ
US20100186132A1 (en) * 2006-10-31 2010-07-22 Infinitesima Ltd Probe assembly for a scanning probe microscope
US8910311B2 (en) * 2006-10-31 2014-12-09 Infinitesima Ltd. Probe assembly for a scanning probe microscope
JP2015505617A (ja) * 2012-01-31 2015-02-23 インフィニテシマ リミテッド ビーム走査システム
JP2021001905A (ja) * 2012-08-31 2021-01-07 インフィニテシマ リミテッド 複数プローブの検出及び作動
WO2015045997A1 (ja) * 2013-09-24 2015-04-02 東レエンジニアリング株式会社 実装装置および実装方法
JP2016065800A (ja) * 2014-09-25 2016-04-28 国立大学法人金沢大学 走査型プローブ顕微鏡
JP2018517144A (ja) * 2015-06-12 2018-06-28 インフィニテシマ リミテッド 走査型プローブシステム
WO2018131343A1 (ja) 2017-01-10 2018-07-19 国立大学法人大阪大学 スキャナ及び走査型プローブ顕微鏡
US10884022B2 (en) 2017-01-10 2021-01-05 Osaka University Scanner and scanning probe microscope
JP2019168400A (ja) * 2018-03-26 2019-10-03 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡及びその走査方法
JP7048964B2 (ja) 2018-03-26 2022-04-06 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡及びその走査方法

Also Published As

Publication number Publication date
JPWO2006129561A1 (ja) 2008-12-25
US20090313729A1 (en) 2009-12-17
EP1898204A1 (en) 2008-03-12
EP1898204A4 (en) 2011-12-21
EP1898204B1 (en) 2018-09-12
US7958565B2 (en) 2011-06-07
JP5164147B2 (ja) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5164147B2 (ja) 走査型プローブ顕微鏡およびカンチレバー駆動装置
JP4496350B2 (ja) 原子間力顕微鏡
JP2010527011A5 (ja)
WO2010087114A1 (ja) 走査型プローブ顕微鏡
EP1972920B1 (en) Scanning Probe Microscope
JP5277378B2 (ja) 走査型プローブ顕微鏡
JP4474556B2 (ja) 走査型プローブ顕微鏡
US8151368B2 (en) Dynamic mode AFM apparatus
JP4931088B2 (ja) 走査型プローブ顕微鏡およびアクティブダンピング駆動制御装置
JP2000346784A (ja) 粘弾性分布測定方法
JP2018091695A (ja) 走査型プローブ顕微鏡
JP2004340772A (ja) 走査形プローブ顕微鏡
JP2003185555A (ja) 周波数検出方法およびそれを用いた走査型プローブ顕微鏡
Fairbairn et al. Improving the scan rate and image quality in tapping mode atomic force microscopy with piezoelectric shunt control
JPH10267950A (ja) 横励振摩擦力顕微鏡
KR102093989B1 (ko) 고주파 박막 물성 측정장치
JP2024036983A (ja) 信号処理装置、駆動制御装置、及び、走査型プローブ顕微鏡
JPH09119938A (ja) 走査型プローブ顕微鏡
JP2004156958A (ja) 走査型プローブ顕微鏡
JP2009281904A (ja) 走査型プローブ顕微鏡
JP2001021477A (ja) 動吸振器付き走査型プローブ顕微鏡及びその測定方法
JP2010071674A (ja) 走査型プローブ顕微鏡
JP2007147421A (ja) 走査型近接場光顕微鏡用スキャナ構造
JPH08285863A (ja) 走査型プローブ顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11915940

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007518942

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006756635

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU