Verfahren und Vorrichtung zur Erkennung und Klassifizierung von Objekten
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erkennung und Klassifizierung von Objekten, wobei mittels eines Sensors elektromagnetische Strahlung ausgesandt wird und die an Objekten reflektierten Teilstrahlungen vom Sensor empfangen werden und die empfangenen Signale durch einen Vergleich mit hinterlegten, charakteristischen Mustern ausgewertet werden und aufgrund der Auswertung auf die Klasse des reflektierenden Objekts geschlossen wird. Hierzu ist ein Auswertemittel zur Auswertung der empfangenen Signale vorgesehen, ein Speicher zur Hinterlegung charakteristischer Muster vorgesehen, dessen hinterlegte Muster mit den ausgewerteten Signalen verglichen werden und aufgrund des Vergleichs somit auf die Klasse der reflektierenden Objekte geschlossen werden kann.
Stand der Technik
Aus der DE 102 31 558 Al ist ein Verfahren und eine Vorrichtung zum automatischen
Auslösen einer Verzögerung eines Fahrzeugs zur Verhinderung einer Kollision mit einem weiteren Objekt oder Verminderung der Folgen einer bevorstehenden Kollision mit einem weiteren Objekt bekannt, wobei mittels Signalen einer Einrichtung zum Aussenden und Empfangen von Radar- oder Lidarsignalen oder einer Einrichtung zum Empfangen von Videosignalen Objekte im Kursbereich des Fahrzeugs detektiert werden. In
Abhängigkeit der erkannten Objekte wird ein Gefährdungspotenzial bestimmt und in Abhängigkeit des Gefährdungspotenzials die Verzögerungsmittel in mindestens drei Zuständen angesteuert, von dem mindestens ein Zustand die Verzögerungsmittel des Fahrzeugs in einen bremsvorbereitenden Zustand versetzt.
Kern und Vorteile der Erfindung
Der Kern der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, mittels denen Sensorsignale, die durch Aussendung elektromagnetischer Strahlung und Reflexion dieser Sendestrahlung an Objekten innerhalb des
Objektdetektionsbereichs reflektiert werden, vom Sensor wieder empfangen werden und bezüglich vorbestimmter charakteristischer Muster untersucht werden, um durch einen Vergleich mit hinterlegten, charakteristischen Mustern auf die Art des Objektes schließen zu können und das detektierte Objekt einer Objektklasse zuordnen zu können.
Erfϊndungsgemäß wird dieses durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen ergeben sich aus den Unteransprüchen.
Vorteilhafter Weise erfolgt die Auswertung der Empfangssignale im Frequenzbereich, indem die Empfangssignale mittels einer Fouriertransformation transformiert werden und mit charakteristischen Frequenzmustern verglichen werden. Durch die Transformation im Frequenzbereich, die mittels einer Fouriertransformation oder einer diskreten Fouriertransformation durchführbar ist, können die einzelnen Reflexionssignale spektral im Frequenzbereich analysiert werden, wodurch ein Vergleich mit charakteristischen
Frequenzmustern ermöglicht wird.
Weiterhin ist es vorteilhaft, dass die Auswertung im Orthogonalraum erfolgt, in dem die relativen Positionen der Objektreflexionen zum eigenen Fahrzeug bestimmt werden und mit charakteristischen räumlichen Mustern verglichen werden. Als Orthogonalraum ist eine Auswertung in Abhängigkeit der Raumrichtungen vorgesehen, wobei in vorteilhafter Weise als Koordinatensystem vorgesehen ist, das bezüglich der Sensorvorrichtung definiert sein kann. Die Ausrichtung der Raumachsen kann hierbei derart erfolgen, dass diese parallel zu der Fahrzeuglängsachse, der Fahrzeughochachse sowie der Fahrzeugquerachse ausgerichtet sind. Die räumliche Auswertung der Empfangssignale geschieht dabei derart, dass die Abstände und Azimutwinkel der Reflexionspunkte bezüglich des Sensors in kartesische Koordinaten umgerechnet wird und somit die Reflexionspunkte im Orthogonalraum des kartesischen Koordinatensystems des Sensors vorliegen. Durch die räumliche Verteilung der Reflexionspunkte kann hierbei ein
räumliches Muster der Reflexionspunkte erzeugt werden, dass mit charakteristischen räumlichen Mustern verglichen werden.
Weiterhin ist es vorteilhaft, dass der Vergleich mit charakteristischen Mustern durch Auswertung der reflektierten Leistung des Reflexionspunktes, der spektralen
Frequenzbreite der vom Reflexionspunkt reflektierten Leistung, der Phase der vom Reflexionspunkt reflektierten Leistung, die Relativgeschwindigkeit der Reflexionspunkte oder einer Kombination hieraus, erfolgt. Durch eine Untersuchung der Empfangssignale hinsichtlich der beschriebenen Kriterien kann eine Art Fingerabdruck des reflektierenden Objekts erzeugt werden, wobei anhand der Kriterien und ein Vergleich mit hinterlegten charakteristischen Werten anhand dieses so genannten Fingerabdrucks des Objekts auf die Objektklasse geschlossen werden kann.
Weiterhin ist es vorteilhaft, dass vor dem Vergleich mit charakteristischen Mustern räumlich nah beieinander liegende Reflexionspunkte als nur ein Reflexionspunkt verarbeitet werden. Durch dieses so genannte Verschmelzen nah beieinander liegender Reflexionspunkte ist es möglich, den Rechenaufwand den Klassifizierungsalgorithmusses zu verringern, da bestimmte Objektbereiche wie beispielsweise Radkästen von Fahrzeugen oder große Ebenen an Fahrzeugen meist mehrere Reflexionspunkte liefern, die jedoch hinsichtlich ihrer Aussagekraft bezüglich der Objektklasse keine zusätzliche
Information liefern, sodass die Berücksichtigung dieser nah beieinander liegenden Reflexionspunkte durch Verarbeitung nur eines verschmolzenen Reflexionspunktes vorteilhaft ist.
Weiterhin ist es vorteilhaft, dass die hinterlegten, charakteristischen Muster durch
Auswertungen früherer Messzyklen erzeugt werden. Hierdurch ist es möglich, die ursprünglich hinterlegten charakteristischen Muster zu aktualisieren, indem die charakteristischen Muster durch erfolgreiche Objektklassifikationen während dem Betrieb immer stärker verfeinert werden.
Besonders vorteilhaft ist es, dass die hinterlegten charakteristischen Muster aus einer ersten Tabelle mit fest vorbestimmten Mustern und einer zweiten Tabelle mit Abweichungen bestehen, wobei die Abweichungen Differenzmuster zwischen den fest vorbestimmten Mustern und den in früheren Messzyklen erkannten Mustern sind. Vor der ersten Inbetriebnahme der Vorrichtung und des Verfahrens werden in der ersten Tabelle
- A -
mit fest vorbestimmten Mustern feste Werte vorgegeben und durch erfolgreiche Objektklassifikationen mit leicht unterschiedlichen, charakteristischen Mustern Differenzen zu den vorbestimmten, werkseitig eingestellten Mustern erzeugt, wobei diese Differenzen in der zweiten Tabelle abgelegt werden, um die ersten, werkseitig vorbestimmten Muster nicht zu überschreiben und im Fall von häufigen
Klassifizierungsfehlern die zweite Tabelle mit den Differenzmustern zurückgesetzt werden kann, sodass ausgehend von den werkseitigen Einstellungen eine neue Verfeinerung der charakteristischen Muster erfolgen kann. Durch diese Ausgestaltung ist es möglich, jederzeit auf werkseitig vorbestimmte charakteristische Muster zugreifen zu können, diese während dem Betrieb weiter verfeinern zu können, jedoch im Falle von
Fehlfunktionen jederzeit auf die werkseitigen Einstellungen zurückkehren zu können.
Vorteilhafter Weise werden die erkannten Objekte durch die Auswertung einer der Objektklassen Personenkraftwagen, Lastkraftwagen, Zweirad, Leitplanke, Kanaldeckel, Straßenbrücke, Schilderbrücke, Getränkedose, Straßenschild oder sonstige Objekte, beispielsweise in Form von Bäumen am Fahrbahnrand oder Brückenpfeilern, zugeordnet. Weiterhin ist es vorteilhaft, die Objekte in Klassen einzuteilen, wobei als Eigenschaft dieser Klassen vorgesehen ist, dass die Objekte passierbar sind (beispielsweise überfahrbarer Kanaldeckel, überfahrbare Getränkedose, unterfahrbare Straßenbrücke) beziehungsweise nicht passierbar sind und nicht überfahren werden können
(beispielsweise Personen kraftwagen, Lastkraftwagen, Zweiräder, Leitplanken, Straßenschilder).
Vorteilhafter Weise wird das Verfahren zur adaptiven Abstands- und Geschwindigkeitsreglung eines Kraftfahrzeugs und/oder zur Auslösung einer
Notbremsung verwendet. Bei einer adaptiven Abstands- und Geschwindigkeitsregelung wird das ausgerüstete Fahrzeug, bei nicht Vorhandensein eines vorherfahrenden Objekts im Sinne einer Geschwindigkeitskonstantregelung auf eine vom Fahrer vorgegebene Sollgeschwindigkeit geschwindigkeitsgeregelt und im Falle eines erkannten vorherfahrenden Objekts im Sinne einer Abstandskonstantregelung auf das vorher fahrende erkannte Objekt geschwindigkeitsgeregelt. Zur Verfeinerung von Regelalgorithmen ist es hierbei vorteilhaft, bei einem erkannten Objekt die Information über die Objektart zu ermitteln, so dass bei einer Folgefahrt hinter einem Lastkraftwagen anders reagiert werden kann als bei einer Folgefahrt auf einen Personenkraftwagen, oder dass stark reflektierende Objekte wie beispielsweise Kanaldeckel in der Fahrbahndecke
nicht als relevante Objekte zur Geschwindigkeitsregelung berücksichtigt werden. Bei einer Anwendung des erfindungsgemäßen Verfahrens zur Auslösung einer Notbremsung oder zur Vorbereitung einer Auslösung einer Notbremsung ist es ebenfalls von entscheidender Wichtigkeit, die Objektklassen der erkannten Objekte zu kennen, um auf kritische Situationen, die auf eine bevorstehende Kollision schließen lassen, besser reagieren zu könne. Vollzieht beispielsweise ein Lastkraftwagen eine Vollbremsung, so führt dieser eine Fahrzeugverzögerung mit einer geringeren Absolutverzögerung durch, als dies beispielsweise bei der Vollbremsung eines Personenkraftwagens geschieht, sodass im Falle einer Notbremsung hinter einem Lastkraftwagen andere Ausweich- oder Bremsstrategien eingesetzt werden können als bei einer Notbremsung hinter einem vorherfahrenden Personenkraftwagen oder Zweirad.
Weiterhin ist es vorteilhaft, dass die Auswertemittel eine Transformation der empfangenen Signale in den Frequenzraum und/ oder in den Orthogonal-Raum durchführen und eine spektrale Auswertung der empfangenen Signale und/oder eine räumliche Auswertung der empfangenen Signale durchführen. Insbesondere durch das Vorsehen beider Transformationen und Auswertungen sowohl im Orthogonal-Raum als auch im Frequenzraum ist es möglich eine große Anzahl an Mustern zu erzeugen, mittels denen durch Vergleich mit hinterlegten Mustern eine sichere Objektklassifikation durchgeführt werden kann.
Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Steuerelements, das für ein Steuergerät einer adaptiven Abstands- bzw. Geschwindigkeitsregelung bzw. einer Notbremsauslösung eines Kraftfahrzeugs vorgesehen ist. Dabei ist auf dem Steuerelement eine Programm gespeichert, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor oder Signalprozessor, ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet ist. In diesem Fall wird also die Erfindung durch ein auf dem Steuerelement abgespeichertes Programm realisiert, so dass dieses m,it dem Programm versehene Steuerelement in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das
Programm geeignet ist. Als Steuerelement kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in
den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in den Zeichnungen.
Zeichnungen
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen erläutert. Es zeigen
Figur 1 ein schematisches Blockschaltbild einer Ausführungsform der erfindungsgemäßen Vorrichtung, Figur 2 ein Ablaufdiagramm einer ersten Ausführungsform des erfindungsgemäßen
Verfahrens, Figur 3 ein Ablaufdiagramm einer weiteren Ausführungsform des erfindungsgemäßen
Verfahrens, Figur 4 ein Ablaufdiagramm einer weiteren Ausführungsform des erfindungsgemäßen
Verfahrens,
Figur 5 eine erste Verkehrssituation, in der die einzelnen Reflexionspunkte der reflektierten elektromagnetischen Strahlung eingezeichnet sind,
Figur 6 eine weitere Verkehrssituation, in der die Reflexionspunkte teilweise verschmolzen wurden, Figur 7 eine weitere Verkehrssituation in der die erkannten Objekte klassifiziert wurden und Figur 8 eine Übersicht einiger repräsentativer, vorbestimmter, charakteristischer Muster, die zum Vergleich mit Mustern, die aus den Empfangssignalen erzeugt wurden, dienen.
Beschreibung von Ausführungsbeispielen
In Figur 1 ist ein schematisches Blockschaltbild eine Ausführungsform der erfindungsgemäßen Vorrichtung dargestellt. Zu erkennen ist eine Klassifizierungseinrichtung 1, die über eine Eingangsschaltung 2 verfügt. Mittels der Eingangsschaltung 2 sind der Klassifizierungseinrichtung 1 Eingangssignale zuführbar, die beispielsweise von einem Objektdetektionssensor 3 und einem optional vorsehbaren
Bedienelement 4 stammen. Der Objektdetektionssensor 3 ist als Sensor ausgestaltet, der elektromagnetische Strahlung in das vor dem Fahrzeug gelegene Umfeld abstrahlt und bei Vorhandensein von Objekten 40, 41, 42, 43, 44 im Sensorerfassungsbereich 39 reflektierte Teilwellen empfängt die an den Objekten reflektiert wurden. Vorteilhafter Weise kann der Objektdetektionssensor 3 als Radarsensor oder Lidarsensor ausgestaltet sein, wobei mittels dieses Sensors, der Abstand, der Azimutwinkel des reflektierenden Objekts 40, 41, 42, 43, 44 bezüglich der Sensorzentralachse sowie optional die Relativgeschwindigkeit des detektierten Objekts bezüglich des eigenen Fahrzeugs 37 ermittelbar sind. Die Empfangssignale der Objektdetektionseinrichtung 3 werden der Eingangsschaltung 2 der Klassifizierungseinrichtung 1 zugeführt. Im Fall, dass die
Klassifizierungseinrichtung 1 zusätzlich als adaptive Abstands- und Geschwindigkeitsregeleinrichtung oder als Steuereinrichtung zur Auslösung einer Notbremsung eines Fahrzeugs ausgestaltet ist, kann es vorgesehen sein, eine Bedieneinrichtung 4 vorzusehen, mittels der der adaptive Abstands- und Geschwindigkeitsregler aktivierbar, deaktivierbar oder in seinen Regelparametern verstellbar ist. Die der Eingangsschaltung 2 zugeführten Eingangssignale werden mittels einer Datenaustauscheinrichtung 5 einer Berechnungseinrichtung 6 zugeführt, die beispielsweise als Mikroprozessor ausgeführt sein kann. In der Berechnungseinrichtung 6 werden die Empfangssignale des Objektdetektionssensors 3 ausgewertet, die erkannten Objekte klassifiziert und Stellsignale berechnet. Im Fall, dass die
Klassifizierungsvorrichtung 1 zur adaptiven Abstands- und Geschwindigkeitsregelung eines Fahrzeugs 37 verwendet wird, werden in Abhängigkeit der Empfangssignale des Objektdetektionssensor 3 sowie der hieraus ermittelten Objektklassen Stellsignale zur Ansteuerung des Triebstrangs und der Verzögerungseinrichtungen eingestellt. Diese Stellsignale werden mittels der Datenaustauscheinrichtung 5 an eine Ausgangsschaltung
9 ausgegeben, die im Fall eines Beschleunigungswunsches ein leistungsbestimmendes Stellelement einer Brennkraftmaschine ansteuert oder im Fall einer Verzögerungsanforderung die Verzögerungseinrichtungen 11 des Fahrzeugs 37 ansteuert. Im Fall, dass die Klassifizierungsvorrichtung 1 eine automatische Notbremsung des Fahrzeugs 37 auslösen und durchführen kann, werden Stellsignale mittels der
Datenaustauscheinrichtung 5 von der Berechnungseinrichtung 6 über die Ausgangsschaltung 9 an die Verzögerungseinrichtung 11 geleitet, die eine Notbremsung des Fahrzeugs einleiten und durchführen kann. Zur Berechnung der Beschleunigungsbzw. Verzögerungsanforderungen ist es vorteilhaft, wenn der Berechnungseinrichtung 6 die Art des Objektes bekannt ist. Hierzu wird eine Objektklassifizierung gemäß der
nachfolgenden Verfahren durchgeführt, wobei in der Berechnungseinrichtung 6 die Empfangssignale des Objektdetektionssensors 3 ausgewertet werden und mit charakteristischen Mustern, die in einem Speicher 7 hinterlegt sind, verglichen werden und durch den Vergleich auf die Art des Objekts geschlossen werden kann. Hierzu ist die Speichereinrichtung 7 mittels einer weiteren Datenaustauscheinrichtung 8 mit der
Berechnungseinrichtung 6 verbunden. Alternativ kann der Speicher 7 auch über die Datenaustauscheinrichtung 5 an die Berechnungseinrichtung 6 angeschlossen werden.
In Figur 2 ist eine Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Das Verfahren startet in Schritt S 12, das beispielsweise beim Starten des Fahrzeugs 37 begonnen wird. Im darauffolgenden Schritt S13 werden Empfangssignale des Objektdetektionssensors 3 in die Berechnungseinrichtung 6, in der das erfindungsgemäße Verfahren abläuft, eingelesen. Im nachfolgenden Schritt S 14 werden die Eingangssignale, die beispielsweise als zeitlich veränderliche Signale ankommen, in einen Orthogonalraum transformiert. Hierzu wird der Abstand und der Azimutwinkel der erkannten
Reflexionspunkte in kartesische Koordinaten umgerechnet, wobei das Koordinatensystem beispielsweise ein sensorfestes Koordinatensystem sein kann. Im darauffolgenden Schritt Sl 5 werden erkannte Reflexionspunkte, die sehr nah beieinander liegen zu einem einzelnen Reflexionspunkt verschmolzen, da an Fahrzeugen beispielsweise im Bereich der Radkästen Strukturen bestehen, die ausgesandte Radarstrahlung mehrfach reflektieren oder im Fall eines mehrstrahligen Radarsensors die Radarstrahlen so zurücksenden, dass diese als getrennte Radarreflexionen erkannt werden. Durch das Verschmelzen der Refelxionspunkte wird die notwendige Rechenleistung reduziert, da weniger Punkte ausgewertet werden müssen, jedoch die Eigenart des charakteristischen Musters nicht wesentlich verändert wird. Im darauffolgenden Schritt S16 werden die Reflexionspunkte hinsichtlich bestimmter Kriterien ausgewertet. So ist es möglich, beispielsweise die Leistung der einzelnen Reflexionspunkte zu bestimmen, die spektrale Frequenzbreite der Empfangssignale der einzelnen Reflexionspunkte zu bestimmen indem sowohl die Bandbreite des Reflexionssignals als auch die frequenzabhängige Amplitude der Reflexionen bestimmt werden. Weiterhin ist es möglich die Phase des Reflexionssignals zu bestimmen sowie weitere charakteristische physikalische Werte der Empfangssignale auszuwerten. Durch die Bestimmung dieser vorbestimmten Kriterien und Muster, beispielsweise der frequenzabhängigen Leistung über dem Frequenzspektrum sowie durch die räumliche Verteilung der Reflexionspunkte, die je nach Objekt unterschiedlich sind, entsteht ein charakteristisches Muster des detektierten Objekts, so dass im folgenden
Schritt S17 ein Vergleich mit abgespeicherten, charakteristischen Mustern durchgeführt wird. Das abgespeicherte charakteristische Muster, dass am besten mit dem aus der Objektreflexion generierten charakteristischen Muster übereinstimmt, wird hierbei ausgewählt und anhand des ausgewählten charakteristischen abgespeicherten Musters kann auf die Objektart geschlossen werden, was in Schritt S18 durchgeführt wird. Der
Vergleich gemäß Schritt S17 kann beispielsweise mittels Korrelation rechnerisch durchgeführt werden. Nach Schritt S18 steht die Klasse des Objekts, an dem der jeweilige Reflexionspunkt reflektiert wurde, fest und das Objekt kann einer der Klassen Lastkraftwagen, Personenkraftwagen, Zweiräder, Kanaldeckel, Leitplanke oder sonstigen Objekten zugeordnet werden. Anschließend ist es möglich, einen optionalen Schritt S 19 vorzusehen, bei dem das abgespeicherte charakteristische Muster upgedatet wird. So kann es vorgesehen sein zur schrittweisen Verbesserung der Erkennung der jeweiligen Objektklassen bei einer durchgeführten erfolgreichen Objektklassifikation die jeweiligen charakteristischen Muster beispielsweise mittels Wichtungsfaktoren mit den abgespeicherten charakteristischen Mustern zu verarbeiten, so dass schrittweise die charakteristischen, abgespeicherten Muster verfeinert werden können. Nach Abarbeitung des Schritts Sl 8 oder des optional vorsehbaren Schritts S19 springt das Verfahren wieder zu Schritt S13 zurück, so dass in einem neuen Messzyklus wiederum Empfangssignale des Objektdetektionssensor 3 eingelesen werden und eine Schleife entsteht.
In Figur 3 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens dargestellt. So startet auch dieses Verfahren wiederum bei Schritt S20 beispielsweise wenn das Fahrzeug gestartet wird. Im folgenden Schritt S21 werden wiederum die Empfangssignale des Objektdetektionssensor 3 eingelesen und der Auswertung zugeführt. Im folgenden Schritt S22 werden die Empfangssignale beispielsweise mittels einer Fouriertransformationstechnik die als Fast-Fourier-Transformation oder als Diskrete Fourier-Transformation ausgeführt sein kann, in einen Frequenzraum transformiert. Im Frequenzraum entstehen aus den Empfangssignalen des Objektdetektionssensor 3 charakteristische Frequenzverläufe, die in Schritt S23 hinsichtlich vorbestimmter Kriterien ausgewertet werden. Im Rahmen der Auswertung des Schritts S23 wird beispielsweise die Leistung der Empfangssignale eines jeden Reflexionspunkts bestimmt, der frequenzabhängige spektrale Verlauf der Frequenzmuster, die Leistungsdichte sowie die Phase bestimmt und im folgenden Schritt S24 mit abgespeicherten charakteristischen Mustern die im Speicher 7 hinterlegt sind, verglichen. Der Vergleich kann beispielsweise mittels Korrelation rechnerisch erfolgen. Das abgespeicherte charakteristische
Frequenzmuster, das am ehesten mit dem aus den Empfangssignalen des Objektdetektionssensor 3 ausgewerteten, charakteristischen Muster übereinstimmt, wird als übereinstimmend angenommen, worauf in Schritt S25 eine Objektklassifϊzierung durchgeführt werden kann, indem durch die bestmöglichste Übereinstimmung das detektierte Objekt einer der Objektklassen Lastkraftwagen, Personenkraftwagen,
Zweiräder, Leitplanken, Kanaldeckel oder sonstige Objekte zugeordnet werden kann. Daran schließt sich der optionale Schritt S26 an, bei dem die abgespeicherten charakteristischen Muster bei einer erfolgreich durchgeführten Objektklassifikation aktualisiert werden können, indem beispielsweise die charakteristischen Muster des detektierten Objekts beispielsweise mittels Wichtungsfaktoren den im Speicher 7 hinterlegten, abgespeicherten charakteristischen Mustern verarbeitet wird, sodass die abgespeicherten charakteristischen Muster durch erfolgreiche Objektklassifikationen im Laufe des Betriebs immer weiter verfeinert werden können. Nach Abarbeitung des Schritts S25 oder des optional vorsehbaren Schritts S26 springt das Verfahren wieder zu Schritt S21 zurück, so dass in einem neuen Messzyklus wiederum Empfangssignale des
Objektdetektionssensor 3 eingelesen werden und eine Schleife entsteht.
In Figur 4 ist eine weitere Ausführungsform des erfindungsgemäßen Verfahrens dargestellt, bei dem die Auswertung mittels charakteristischer Muster sowohl im Orthogonalraum als auch im Frequenzraum erfolgt. Das Verfahren beginnt im Schritt
S27, indem dieses beispielsweise mit Starten des Fahrzeugs aktiviert wird. Im darauffolgenden Schritt S28 werden wiederum die Empfangsignale des Objektdetektionssensors 3 der Berechnungseinrichtung 6 zugeführt. Im folgenden Schritt S29 werden die Eingangssignale des Objektdetektionssensors 3, die als zeitlich veränderliche Signale vorliegen in den Orthogonalraum transformiert, sodass die räumlichen Positionen der Reflexionspunkte vorliegen. Im folgenden Schritt S30 werden nah beieinander liegende Reflexionspunkte verschmolzen, so dass der Rechenaufwand zur Auswertung verringert werden kann, da nah beieinander liegende Reflexionspunkt, beispielsweise in Folge von stark reflektierenden Strukturen an Fahrzeugen oder infolge der Mehrstrahligkeit des Objektdetektionssensors 3 mehrere Reflexionspunkte erkannt werden. Die Ausgangsdaten des Schritts S30, bei denen nah beieinander liegende Reflexionspunkte verschmolzen wurden, werden danach in Schritt S31 bezüglich charakteristischer räumlicher Muster im Orthogonalraum ausgewertet und eventuell vorhandene charakteristische Muster ermittelt. Parallel zu Schritt S31 werden die Ausgangsdaten des Schrittes S30 Schritt S32 zugeführt, in dem die Reflexionspunktdaten
in den Frequenzraum transformiert werden. Die Reflexionspunktdaten, die nun im Frequenzbereich vorliegen, werden nun im folgenden Schritt S33 hinsichtlich charakteristischer Muster im Frequenzbereich untersucht und Übereinstimmungen mit abgespeicherten, charakteristischen Mustern ermittelt. Im folgenden Schritt S34 werden die in Schritt S31 ermittelten räumlichen charakteristischen Muster im Orthogonalraum sowie die in Schritt S33 im Frequenzraum ermittelten charakteristischen Muster der Reflexionspunkte mit abgespeicherten charakteristischen Mustern verglichen, die beispielsweise in der Speichereinrichtung 7 hinterlegt sind. Hierbei wird beispielsweise mittels Korrelation festgestellt, welches hinterlegte, charakteristische Muster die größte Ähnlichkeit mit den in Schritt S31 bzw. in Schritt S33 ermittelten charakteristischen
Mustern im Orthogonalraum bzw. im Frequenzraum haben. Aufgrund der Auswahl der abgespeicherten charakteristischen Muster, die die größte Ähnlichkeit mit den ermittelten charakteristischen Mustern aufweisen, wird in Schritt S35 die Objektklassifϊkation durchgeführt indem anhand des abgespeicherten charakteristischen Musters auf die entsprechende Objektklasse gefolgert werden kann, sodass die Reflexionspunkte eines
Objektes einem Personenkraftwagen, einem Lastkraftwagen, einem Zweirad, einer Leitplanke, einem Kanaldeckel oder sonstigen Objekten zugeordnet werden kann. An Schritt S35 schließt sich ein optional vorsehbarer Schritt S36 an, in dem die abgespeicherten charakteristischen Muster durch ein Update aktualisiert werden können, da durch eine erfolgreiche Objektklassifikation mit einem eigenständigen charakteristischen Muster die hinterlegten charakteristischen Muster weiter verfeinert werden können, sodass mit fortlaufendem Betrieb die Objektklassifikation immer weiter verfeinert werden kann. Nach dem optionalen Schritt S36 wird das Verfahren wieder in Schritt S28 fortgeführt indem in einem neuen Messzyklus wiederum Empfangssignale des Objektdetektionssensor 3 eingelesen werden.
Wahlweise kann das Update der gespeicherten charakteristischen Muster gemäß der Schritte S 19, S26 und S36 auch derart ausgestaltet sein, dass die charakteristischen Muster nicht in einer einzigen Tabelle gespeichert sind, sondern das zwei getrennte Tabellen vorgesehen sind, wobei in einer ersten Tabelle, fest vorgegebene, charakteristische Muster bereits werkseitig gespeichert wurden und durch erfolgreiche Objektklassifϊkationen, die jedoch geringe Differenzen in den charakteristischen Mustern bezüglich der vorgegebenen, werksseitigen charakteristischen Muster aufweisen, und diese Differenzen in Abhängigkeit der Objektklassen in einer zweiten Differenztabelle abgespeichert werden. Durch die Updates kann das in der ersten Tabelle fest vorgegebene
charakteristische Muster weiter verfeinert werden, indem in einer Differenztabelle Zusatzdaten aufgrund der bereits erfolgten erfolgreichen Objektklassifikationen ermittelt wurden. Hierdurch ist es möglich, bei einer Häufung von Fehlklassifikationen die Differenztabelle beispielsweise automatisch zu löschen und mittels werksseitig vorgegebener, vorbestimmter charakteristischer Muster weiterzuarbeiten um eine
Degradation des Objektklassifizierungsverfahrens zu vermeiden.
In Figur 5 ist eine typische Verkehrssituation dargestellt, die mit dem erfindungsgemäßen Verfahren verarbeitet wird. Zu erkennen ist ein eigenes Fahrzeug 37, das sich auf einer mehrspurigen Straße 38 bewegt. Das eigene Fahrzeug 37 ist mit einem
Objektdetektionssensor 3 ausgestattet, der das Fahrzeugumfeld vor dem Fahrzeug erfasst und Objekte innerhalb der Grenzen des Detektionsbereichs 39 erkennt. Hierzu sendet der Objektdetektionssensor 3 elektromagnetische Strahlung aus, die teilweise an Objekten innerhalb des Detektionsbereichs 39 reflektiert werden und zum Objektdetektionssensor 3 zurückgestrahlt werden, der diese empfängt und auswertet. Vor dem eigenen Fahrzeug 37 fährt auf der linken Fahrspur ein Personenkraftwagen 40 sowie auf der rechten Fahrspur ein Lastkraftwagen 41. Weiterhin ist auf der Fahrbahn ein Kanaldeckel 42 dargestellt, der aufgrund seiner metallischen Oberfläche für elektromagnetische Strahlung einen guten Reflektor darstellt. Weiterhin ist am linken Fahrbahnrand eine Leitplanke 43 dargestellt sowie sonstige Objekte 44 dargestellt, die in dieser Zeichnung als regelmäßig positionierte Objekte, beispielsweise in Form von Bäumen am Fahrbahnrand vorhanden sind. Die vom Objektdetektionssensor 3 ausgestrahlte elektromagnetische Strahlung, insbesondere in Form von Mikrowellenstrahlung, wird hierbei von den beschriebenen Objekten reflektiert, wobei es möglich ist, dass an einem Objekt die vom Objektdetektionssensor 3 abgestrahlte Strahlung mehrfach reflektiert wird. In Figur 5 sind die Punkte, an denen die vom Objektdetektionssensor 3 abgestrahlte elektromagnetische Leistung an den Objekten 40, 41, 42, 43, 44 reflektiert wird mittels kleinen Kreuzen gekennzeichnet. So weist beispielsweise der Personenkraftwagen 40 an der hinteren linken Ecke einen Reflexionspunkt auf, an der hinteren rechten Ecke zwei Reflexionspunkte sowie am vorderen rechten und am hinteren rechten Rad jeweils einen
Reflexionspunkt auf. Der auf der benachbarten Fahrspur fahrende Lastkraftwagen 41 weist an der hinteren rechten Ecke einen Reflexionspunkt auf, an der hinteren linken Ecke insgesamt drei Reflexionspunkte, am hinteren linken Rad des Aufliegers zwei Reflexionspunkte sowie am hinteren linken Rad der Zugmaschine ebenfalls einen Reflexionspunkt auf. Der Kanaldeckel 42 weist ebenfalls drei Reflexionspunkte auf, die
wiederum mit kleinen Kreuzen markiert sind. Die Leitplanke 43 weist drei Reflexionspunkte auf, die entlang der rechten Seite der Leitplanke 43 angeordnet sind. Auch die sonstigen Objekte 44, die in dieser Darstellung beispielsweise Bäume am Fahrbahnrand verkörpern, weisen ebenfalls teilweise Reflexionspunkte auf, sofern sich diese innerhalb des Detektionsbereichs 39 befinden, wobei diese ebenfalls mittels kleinen
Kreuzen skizziert sind. Die vom Objektdetektionssensor 3 empfangenen Eingangssignale werden nun über die Eingangsschaltung 2 und die Datenaustauscheinrichtung 5 an die Berechnungseinrichtung 6 weitergeleitet, in der diese in räumliche Relativpositionen bezüglich eines sensorfesten Koordinatensystems umgerechnet werden und damit im Orthogonalraum ausgewertet werden können. Zur Auswertung wird in einem optionalen ersten Schritt eine Verschmelzung nah beieinanderliegender Reflexionspunkte durchgeführt. Hierzu werden die ermittelten Positionen der in Figur 5 mittels Kreuzen dargestellten Reflexionspunkte dahingehend untersucht, ob diese sehr nah beieinander liegen. Nah beieinanderliegende Reflexionspunkte werden zur Verringerung der Rechenleistung in einen einzigen Reflexionspunkt verschmolzen. Zur Veranschaulichung der danach vorliegenden Reflexionspunkte ist in Figur 6 die gleiche Verkehrssituation dargestellt, wobei jedoch die Kreuze der Reflexionspunkte nicht eingetragen wurden, stattdessen jedoch die Reflexionspunkte nach Verschmelzung nah beieinander liegender Reflexionspunkte wiederum mittels Kreuzen dargestellt wurde. So weist in Figur 6 der Personenkraftwagen 40 an der hinteren rechten Ecke, die in Figur 5 zwei
Reflexionspunkte aufwies, gemäß Figur 6 nur noch einen einzigen Reflexionspunkt auf, da die beiden in Figur 5 dargestellten Reflexionspunkte zu einem einzigen Reflexionspunkt verschmolzen wurden. Ebenfalls wurden bezüglich des Lastkraftwagens 41 die drei nah beieinander liegenden rechten Reflexionspunkte an der hinteren linken Ecke in einen einzigen Reflexionspunkt verschmolzen sowie die beiden Reflexionspunkte am hinteren linken Rad des Aufliegers ebenfalls in einen einzigen Reflexionspunkt verschmolzen. Bezüglich des Kanaldeckels 42 wurden die drei einzelnen Reflexionspunkte, die sehr nah beieinander lagen, in einen einzelnen Reflexionspunkt verschmolzen, der in Figur 6 mittels eines einzigen Kreuzes dargestellt wurde. Die drei Reflexionspunkte, die in Figur 5 mittels Kreuzen an der rechten Grenze der Leitplanke 43 eingezeichnet sind blieben dagegen als drei einzelne Reflexionspunkte erhalten, da deren Abstand ausreichend groß war, so dass diese nicht zu einem einzelnen Punkt verschmolzen wurden. Die sonstigen Objekte 44 am linken Fahrbahnrand, die ebenfalls Reflexionspunkte gemäß Figur 5 aufweisen blieben ebenfalls als eigene Reflexionspunkte erhalten, da diese aufgrund ihrer räumlichen Entfernung nicht verschmolzen werden
konnten. Hierdurch hat man gemäß Figur 6 eine Verringerung der auszuwertenden Reflexionspunkte gegenüber der in Figur 5 dargestellten Reflexionspunkte erhalten, sodass hierdurch eine Verringerung der Rechenleistung erzielt wurde. Diese Reflexionspunkte werden nun im Orthogonalraum und/oder im Frequenzraum ausgewertet, wobei zur Auswertung im Frequenzraum die Reflexionspunkte der Figur 6 beispielsweise mittels einer Fouriertransformationstechnik in den Frequenzraum umgerechnet werden müssen. Die Verschmelzung nah beieinanderliegender Reflexionspunkte, sowie die eventuell notwendige Transformation in den Frequenzbereich wurde hierbei im Berechnungsmittel 6 der Figur 1 durchgeführt. Die im Orthogonalbereich oder im Frequenzbereich vorliegenden Reflexionspunktdaten werden nun hinsichtlich charakteristischer Muster ausgewertet, indem beispielsweise die reflektierte Leistung eines jeden Reflexionspunktes analysiert wird. Beispielsweise reflektiert die große Rückfläche eines Lastkraftwagens 41 mit Kastenaufbau wesentlich mehr Leistung, als dies durch die Heckpartie eines Personenkraftwagens 40 oder durch die rauhe Oberfläche des Kanaldeckels 42 geschehen könnte. Weiterhin weist beispielsweise ein Lastkraftwagen 41 im Bereich des Fahrwerks stärkere Zerklüftungen auf, so dass die Wahrscheinlichkeit für mehrere Radarreflexionen bei einem Lastkraftwagen 41 wahrscheinlicher ist, als bei einem Personenkraftwagen 40, der eine im Wesentlichen geschlossene Karosserieaußenform aufweist. Durch die Auswertung beispielsweise der spektralen Frequenzbreite der Reflexionspunkte ist es weiterhin möglich, charakteristische Frequenzgänge festzustellen, die ebenfalls auf die Objektklasse des detektierten Objekts schließen lassen. Hierbei ist zu erwähnen, dass möglichst viele unterschiedliche physikalische Eigenschaften der Reflexionspunkte ausgewertet werden sollten, da durch die Auswertung der einzelnen Kriterien eine Art Fingerabdruck des Reflexionspunkts entsteht, und somit eine Zuordnung des
Reflexionspunktes zu einem Objekt einer vorbestimmten Objektklasse mit möglichst großer Wahrscheinlichkeit vorgenommen werden kann. Beispielsweise ist es auch möglich, Reflexionspunkte mit der gleichen Relativgeschwindigkeit, die innerhalb eines gewissen Bereichs auseinander liegen, einem einzigen Objekt zuzuordnen und somit auch die Größe des Objekts schließen, wodurch beispielsweise ein Lastkraftwagen 41 von einem Personenkraftwagen 40, einem Zweirad oder einem Kanaldeckel 42 unterschieden werden kann. Durch die Auswertung der Relativgeschwindigkeit ist es ebenso möglich, Leitplanken oder sonstige Objekte am Fahrbahnrand als stehende Objekte zu detektieren, da diese in etwa die gleiche Relativgeschwindigkeit zum Sensor aufweisen, wie die Geschwindigkeit, mit der sich das Fahrzeug bewegt. Durch die Ermittlung
charakteristischer Muster der Reflexionspunkte, die beispielsweise aufgrund der Relativgeschwindigkeit, der Leistung der vom Reflexionspunkt reflektierten Leistung, der spektralen Breite der reflektierten Strahlung des Reflexionspunktes sowie der Phase der reflektierten Leistung des Reflexionspunktes ist ein Vergleich dieser Muster mittels der in einem Speicher 7 hinterlegten, charakteristischen Muster möglich, wobei dieser
Vergleich beispielsweise mittels Korrelation rechnerisch erfolgen kann. Im Zuge der Objektklassifikation wird das Muster, das im Speicher 7 als charakteristisches vorbestimmtes Muster hinterlegt ist, als das ähnlichste mit dem aus den Reflexionspunkten ermittelten Muster erkannt, das die größte positive Korrelation aufweist. Hierdurch ist es möglich, auf die Objektart zu schließen, da für jede
Objektklasse ein oder mehrere charakteristische Muster im Speicher 7 hinterlegt wurden. So wurden in Figur 4 die Reflexionspunkte des Personenkraftwagens 40 als zu einem Objekt gehörig erkannt, und aufgrund der reflektierten Leistung der Reflexionspunkte, deren spektraler Frequenzmuster und der Phase der Empfangssignale konnten diese Reflexionssignale einem Objekt der Klasse Personenkraftwagen zugeordnet werden.
Durch die Objektklassifikation ist es möglich, gemäß Figur 7 auf die räumliche Ausdehnung des Kraftfahrzeugs zu schließen, was hier durch eine Strichlierung des Objekts 40 dargestellt ist. Ebenfalls konnten die Reflexionspunkte des Lastkraftwagens 41 als zu einem Objekt zugehörig ausgewertet werden und aufgrund derer charakteristischer Muster auf ein Objekt der Klasse Lastkraftwagen geschlossen werden.
Aufgrund der räumlichen Verteilung dieser Reflexionspunkte kann auch auf die räumliche Größe und Ausrichtung des Lastkraftwagens 41 geschlossen werden, was durch eine Schattierung in Figur 7 angedeutet ist. Durch die Reflexionen des Kanaldeckels 42 und deren charakteristische Muster konnte auf ein Objekt der Klasse Kanaldeckel geschlossen werden, so dass der Kanaldeckel 42 als unrelevantes Objekt bezüglich einer adaptiven Abstands- und Geschwindigkeitsregelung oder bezüglich einer Notbremsung erkannt wird und beispielsweise vom Fahrzeug 37 gefahrlos überfahren werden kann. Die stehenden Objekte am Fahrbahnrand, beispielsweise die Leitplanke 43 konnte aufgrund der räumlichen Anordnung der Reflexionspunkte, der spektralen Charakteristik der Reflexionspunkte sowie durch die Relativgeschwindigkeit dieser
Objekte als eine Leitplanke klassifiziert werden, so dass beispielsweise diese zur Plausibilisierung des zukünftigen Fahrkorridors herangezogen werden kann, da die Leitplanke als ein unmittelbar am Fahrbahnrand der mehrspurigen Straße 38 befindliches Objekt erkannt wurde.
In Figur 8 ist eine Übersicht über mehrere, charakteristische Frequenzverläufe von Objektreflexionen dargestellt. Zuoberst ist ein charakteristisches Muster eines Lastkraftwagens dargestellt, bei dem entlang einer Frequenzachse f ein Spektrum einer Objektreflexion eines Lastkraftwagens aufgezeichnet ist. Zu erkennen ist die Hüllkurve 45, die in etwa symmetrisch zu einer Mittenfrequenz f0 gestaltet ist. Die Hüllkurve 45 weist hierbei eine relativ hohe Amplitude der einzelnen spektralen Komponenten auf, da das Heck eines Lastkraftwagens üblicherweise stark reflektierend ist. Weiterhin weist die Hüllkurve des Lastkraftwagens eine große Breite über der Frequenz f auf, was ebenfalls ein wichtiges Kriterium für das charakteristische Muster ist. Rechts neben dem spektralen Muster ist ein Phasendiagramm des Lastkraftwagenreflexionspunktes aufgezeichnet, das auf der Abszisse den Realteil und auf der Ordinate den Imaginärteil aufweist. Zur Veranschaulichung ist ein Phasenzeiger 49 eingetragen, der für die Reflexion am Lastkraftwagen eine gewisse Phase 50 aufweist. Unterhalb des Diagramms für den Lastkraftwagen ist ein charakteristisches Diagramm für Personenkraftwagen aufgetragen, dass eine Hüllkurve 46 aufweist, die einerseits eine geringere Frequenzbreite aufweist als die Hüllkurve 45 für den Lastkraftwagen sowie in der Amplitude geringer ausfällt als die Hüllkurve für den Lastkraftwagen. Bezüglich der Phaseninformation für das charakteristische Muster des Personenkraftwagens ist zu bemerken, dass dieses üblicherweise für Objekte der Klasse Personenkraftwagen eine größere Phase aufweist als für Lastkraftwagen. Das charakteristische Muster für einen Kanaldeckel ist hierbei durch die Hüllkurve 47 aufgezeigt, die eine sehr geringe Frequenzbreite aufweist, jedoch in der Amplitude dennoch relativ hoch ist, wodurch sich die guten Reflexionseigenschaften eines Kanaldeckels erklären lassen. Zuunterst ist das charakteristische Muster einer Leitplanke aufgetragen die meistens mehrere Reflexionspunkte aufweist. So ist in Hüllkurve 48 auch ein Kurvenverlauf dargestellt, der mehrere Spitzen aufweist und eine sehr große Phase gemäß dem nebenstehenden Phasendiagramm aufweist. Für jede der vorgesehenen Objektklassen ist ein derartiges charakteristisches Frequenzmuster, ein derartiges charakteristisches Phasenmuster sowie weitere charakteristische Werte gespeichert, mit denen die aus den Empfangssignalen des Objektdetektionssensors 3 gewonnenen charakteristischen Muster verglichen werden.