WO2006126407A1 - 発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス - Google Patents

発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス Download PDF

Info

Publication number
WO2006126407A1
WO2006126407A1 PCT/JP2006/309629 JP2006309629W WO2006126407A1 WO 2006126407 A1 WO2006126407 A1 WO 2006126407A1 JP 2006309629 W JP2006309629 W JP 2006309629W WO 2006126407 A1 WO2006126407 A1 WO 2006126407A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting device
zinc
acid
zinc oxide
ligand
Prior art date
Application number
PCT/JP2006/309629
Other languages
English (en)
French (fr)
Inventor
Tsukasa Yoshida
Hideki Minoura
Daisuke Komatsu
Thierry Pauporte
Daniel Lincot
Original Assignee
Gifu University
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University, Centre National De La Recherche Scientifique (Cnrs) filed Critical Gifu University
Priority to JP2007517773A priority Critical patent/JP5170638B2/ja
Priority to EP06746376A priority patent/EP1901363A4/en
Publication of WO2006126407A1 publication Critical patent/WO2006126407A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers

Definitions

  • the present invention relates to a light emitting device having a metal complex strength obtained by modifying a crystalline porous acid zinc salt with a bridge ligand and a rare earth metal, and an electroluminescent device using the light emitting device.
  • organic EL still has many problems to be realized as a product. Particularly, in the current organic EL, an urgent problem is a problem of extending the life. The following points are particularly problematic as factors that hinder the longevity of organic EL.
  • An electron transport layer using an organic material is a hole transport layer, and when an oxygen is present in the system, the electron transport layer is a hole transport layer. May be oxidized and cause deterioration of the performance of the organic EL layer.
  • an organic EL element in which a buffer layer is provided between an organic EL layer and an electrode for the purpose of reducing damage to the organic EL layer during electrode formation is disclosed.
  • Patent Literature 1 an organic EL element in which a buffer layer is provided between an organic EL layer and an electrode for the purpose of reducing damage to the organic EL layer during electrode formation is disclosed.
  • Patent Document 1 JP-A-10-162959
  • Patent Document 2 Japanese Patent Laid-Open No. 09-148066
  • the present invention provides a novel light emitting device having a novel structure when a rare earth metal complex molecule is used as the emission center and an inorganic compound other than an organic compound is used for the electron transport layer or the hole transport layer.
  • a rare earth metal complex molecule is used as the emission center and an inorganic compound other than an organic compound is used for the electron transport layer or the hole transport layer.
  • the present inventors have arranged a crystalline porous zinc oxide thin film from a zinc salt solution on a surface of an acid zinc salt by force sword electrodeposition.
  • a ligand having a position and a site used for complex formation with a rare earth ion by a subsequent treatment (referred to as a “bridge ligand” in the present specification and claims) is electrically charged.
  • the light emitting device of the present invention includes a light emitting part comprising a base composed mainly of crystalline porous zinc oxide, a metal complex formed of a bridge ligand modified on the surface of the base and a rare earth metal. It is characterized by comprising. That is, the crystalline porous zinc oxide, which is an inorganic compound, functions as an electron transport layer, and the rare earth metal complex functions as a light emitting layer. is there.
  • crystalline porous acid zinc oxide is used as a base.
  • crystalline porous zinc oxide an electrolytic solution in which zinc halide such as salty zinc is dissolved in water and oxygen is dissolved, or electrochemically reducing zinc nitrate and zinc perchlorate are dissolved in water.
  • zinc oxide which is electrolytically deposited on the conductive substrate by subjecting the conductive substrate to force sword polarization in an electrolytic solution containing a dissolved zinc salt. Utilization of zinc oxide production by reaction of OH- ions and zinc ions, which are generated by reduction of dissolved oxygen, nitrate ion, and perchlorate ion.
  • the conductive substrate is force-sword-polarized in an electrolytic solution containing a zinc salt mixed with a zinc oxide adsorptive template compound to deposit a zinc oxide Z template molecular complex on the conductive substrate.
  • the zinc oxide Z template molecule complex strength crystalline porous zinc oxide obtained by removing the template molecule may be used.
  • wire-like acid zinc is regularly connected to each other to form an acid zinc crystal having a size of several micrometers as a whole.
  • both the ligand adsorbability and the functionality as an electron transport layer are excellent.
  • a bridge ligand is modified on the surface of the crystalline porous acid zinc salt.
  • the bridge ligand has a bridging effect between the rare earth metal and the zinc oxide and plays a role of forming a light emitting material by forming a metal complex with the rare earth metal.
  • As the bridge ligand an organic molecule having two or more sites showing coordination properties to metal ions in one molecule is used, and a regioselective coordination compound is formed depending on the type of partner rare earth metal ion. It is preferable that it can be formed.
  • a regioselective coordination compound is formed depending on the type of partner rare earth metal ion. It is preferable that it can be formed.
  • R 1 or R 3 contains an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or one heteroatom. 5 or 6-membered heterocyclic group or carboxyl group.
  • R 2 represents a hydrogen atom, a halogen atom, a cyan group, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or one hetero atom.
  • 2,2 , -Biviridine 4,4-dicarboxylic acid (hereinafter referred to as “dcbpy”), phenantorin, 1,10-phenanthroline-4,7-dicarboxylic acid, 2,2 ';6', 2 "-terpyridine-4 Carboxylic acid, 2,2 ';6', 2 "-tripyridine-4,4 ', 4" -tricarboxylic acid, 2,2'-biquinoline-4,4'dicarboxylic acid, 4-quinolinecarboxylic acid, 2- (4-carboxy-2-pyridyl), dibenzo [b, j] [l, 10] phenantorin-5,8-dicarboxylic acid power Any one or more selected .
  • dcbpy 2,2 , -Biviridine 4,4-dicarboxylic acid
  • rare earth metal examples include lanthanoid series elements of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Eu, Tb, Tm, and Ce that emit red, green, and blue light, respectively, are used.
  • the light-emitting device of the present invention exhibits photoluminescence by ligand energy, energy transfer to rare earth ions, and adsorbs moisture in the air to easily decompose V and rare earth metal complexes in a bridge configuration. It is possible to provide a light emitting device such as photoluminescence which is stabilized by a ligand and has little deterioration.
  • the surface of the rare earth complex can be subjected to a cabbing with a ligand that forms a complex with the rare earth.
  • a cabbing ligand refers to a ligand that forms a complex with a rare earth metal adsorbed on a bridge ligand and brings about stabilization of the rare earth complex.
  • the cabbing ligand may be a ligand having one or more coordination properties.
  • j8-diketones [R 1 R 3 is a 5-membered alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and one heteroatom. Or a 6-membered heterocyclic group.
  • R 2 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or one hetero atom.
  • 4,4,4-trifluoro-1- (2-cell) -1,3-butanedione, 1,10-phenantorin and its derivatives, 2,2'_biviridine and its derivatives, 2, 2 ';6', 2 "-terpyridine and its inductive strength are selected from one or more selected.
  • the light-emitting device having the above structure can be applied to an EL.
  • An N-type semiconductor composed mainly of a crystalline porous zinc thin film is fabricated, this N-type semiconductor is used as an electron transport layer called EL, and a metal complex formed of a bridge ligand and a rare earth metal is used as a light-emitting layer.
  • a P-type semiconductor made of an inorganic compound is used as an EL hole transport layer, and these layers are stacked, and electrode layers are provided on both outer layers to form an EL.
  • a hole transport layer is provided in the above-described light emitting device.
  • a substance inorganic compound that functions as a P-type semiconductor is selected.
  • the EL layer of the present invention is provided with a caving layer, but if caving is performed with a cabbing ligand that forms a complex with a rare earth between the light emitting layer and the hole transport layer, A more stable EL can be formed.
  • the cabbing ligand the same ligand as that used in the light emitting device can be used.
  • the material of the electrode layer is not particularly limited, and various conventionally proposed electrodes can be used.
  • electrodes include, but are not limited to, ITO, FTO, Au, Pt, Ag, Al, C, and ITO.
  • ITO Indium Tin Oxide
  • FTO Fluoride-Coupled Device
  • a substrate can be provided on the outer layer of at least one of the electrodes.
  • the substrate is made of glass or transparent thermoplastic resin. Since the EL of the present invention is resistant to oxygen and moisture, it does not require a normality comparable to glass against the outside air. In addition, since all materials can be formed at a low temperature of 100 ° C or less according to chemical and electrochemical principles, the substrate may be non-heat resistant. Therefore, in the present invention, there is no problem even if the substrate is made of a plastic such as a thermoplastic resin that has a low barrier property and does not endure a high temperature if it simply serves as a support for the light emitting device.
  • a light emitting device using a complex of rare earth metal as a light emitting layer can be manufactured by laminating on an inorganic compound. Moreover, since it can be produced by dipping or electrodeposition without vapor deposition using a low-molecular light emitting substance, the temperature can be as low as 100 ° C or lower. A light-emitting device can be provided at a temperature. Therefore, it is possible to provide a light-emitting device that is lightweight, flexible, and difficult to break.
  • EL is produced mainly by soaking or electrodeposition of the solution, so that a strong compound that is not used for thin film formation does not evaporate unlike the vacuum process. According to the present invention, since waste liquid treatment is basically required, the disposal cost can be reduced, and from this viewpoint, the production cost can be reduced.
  • the rare earth metal complex is used for the emission center, multicolor emission can be exhibited by changing and mixing the rare earth. Further, since these rare earth complexes and zinc oxide as a substrate do not absorb visible light, they are colorless and can provide a light emitting device excellent in color rendering.
  • an N-type semiconductor composed mainly of a crystalline porous zinc thin film is produced as an electron transport layer, and a metal formed of a bridge ligand and a rare earth metal
  • a P-type semiconductor made of an inorganic compound as a light-emitting layer and EL can be used as a hole transport layer, and these layers can be stacked and electrode layers can be provided on both outer layers to easily produce an EL. It ’s a little tricky.
  • the conductive substrate As the conductive substrate, a transparent conductive substrate in which a transparent conductive ceramic thin film such as tin oxide-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) is formed on a transparent glass plate is used. .
  • a transparent conductive ceramic thin film such as tin oxide-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) is formed on a transparent glass plate
  • crystalline porous zinc oxide does not need to be fired at high temperatures and does not use highly reactive chemicals such as strong acids and strong bases, so transparent plastics such as PET resin with an ITO film formed on the surface can be used. May be used as a substrate.
  • the conductive substrate Prior to use, is preferably degreased and cleaned and subjected to surface activation treatment.
  • the activation treatment for example, a method of immersing in a 45% nitric acid aqueous solution for 2 to 3 minutes to make the surface hydrophilic and activating against oxygen reduction, in a KC1 aqueous solution containing no zinc salt, Pt as the counter electrode
  • a noble metal such as the above
  • there is a method of activating the substrate by subjecting the substrate to force sword polarization at about OV (vs. SCE saturated calomel electrode) and then continuously performing an acid reduction reaction.
  • the activation method is not limited to these.
  • This conductive substrate is bathed by flowing oxygen gas in a zinc salt solution at a temperature of 30 ° C or higher, preferably 50 ° C or higher, more preferably 60 ° C to 80 ° C.
  • a crystalline acid-zinc zinc thin film can be obtained by force sword polarization in a state where oxygen is dissolved therein.
  • the zinc salt halogen zinc such as salt or zinc, zinc nitrate or zinc perchlorate can be used.
  • a protic solvent such as alcohol mainly using water, an aprotic polar solvent such as dimethyl sulfoxide, dimethylformamide, acetonitrile, propylene carbonate, or a mixed solvent can be used.
  • the raw material When the concentration of zinc salt is sufficiently high (approximately 50 mM or more), the raw material may be only zinc salt, but when it is low, the conductivity of the solution is supplemented by adding a supporting electrolyte as appropriate.
  • halogenated zinc When halogenated zinc is used as a raw material, oxygen is dissolved by circulating oxygen in the solution. In the case of other salts, it may be under deaeration, but it may be under conditions where oxygen is present such as under air.
  • a crystalline porous acid-zinc-thin film is formed in an electrolytic solution containing a zinc salt mixed with a template compound having an adsorptivity to zinc oxide to form a conductive substrate.
  • Zinc oxide Z template molecule complex is deposited on the conductive substrate by force sword polarization, and then the acid zinc Z template molecular complex force template molecule is used. it can.
  • a method for forming this zinc oxide zinc thin film explain.
  • the template compound here refers to a compound adsorbed on the inner surface of zinc oxide formed by force sword electrodeposition.
  • the template compound may be a compound that does not exist inside the zinc oxide zinc bulk by chemical adsorption but forms a complex with zinc ions and is adsorbed on the inner surface of zinc oxide. These are electrochemically reducing, and these are reduced during the growth process of the zinc oxide thin film, forming complexes with zinc ions by increasing nucleophilicity. It is a compound that suppresses further crystal growth because it is adsorbed on the inner surface of the glass, and forms three-dimensionally linked nanopores in the crystal grains with the molecular size of the template compound + ⁇ . Those having an anchor group such as a carboxyl group, a sulfonic acid group or a phosphoric acid group and having an ⁇ -electron such as an electrochemically reducing aromatic compound are suitable. Street.
  • Xanthene dyes such as EosinY, fluorescein, erythine synthin B, phloxine B, rose bengal, funorelexon, mercurochrome, dibromofunolethein, pyrogallol red, etc.
  • coumarin dyes such as coumarin 343, triphenol-noremethane Examples include bromophenol blue, bromothymol blue, and phenolphthalein.
  • cyanine dyes In addition to these, cyanine dyes, merocyanine dyes, ponorphyrin, phthalocyanine, perylene tetracarboxylic acid derivatives, indigo dyes, oxonol dyes and natural dyes anthocyanins, gardenia dyes, tucon dyes, bevana dyes, carotenoid dyes, cochineal dyes. And dyes, papori dyes, and polypyridine complexes such as Ru and Os.
  • surfactants such as sodium dodecyl sulfonate, sodium hexyl sulfonate, sodium dodecyl phosphate, and sodium hexyl phosphate.
  • the force sword electrodeposition for forming a zinc oxide thin film is performed in an electrolytic bath containing a zinc salt in the presence of a desired substrate.
  • a zinc salt zinc halides such as zinc chloride, zinc bromide and zinc iodide, zinc nitrate and zinc perchlorate can be used.
  • oxygen is supplied (publishing), but oxygen
  • the dye will oxidize and cannot be detached. Therefore, it is necessary to devise measures to prevent the bubble from coming into contact with the electrode.
  • the counter electrode when using zinc salt is the power of zinc, gold, platinum, carbon, etc. In particular, when zinc is used, it is possible to supply zinc that is consumed by the formation of acid zinc.
  • the pH drop of the solution can be suppressed, which is convenient.
  • Forced sword polarization provides a regular thin film structure of zinc oxide and widens the selectivity of the substrate by eliminating the need for heat treatment such as titanium oxide.
  • the porous acidic zinc thin film is preliminarily mixed with the above-mentioned electrolytic bath in the electrolytic bath, and is subjected to cathodic polarization to obtain a composite thin film of acidic dumbbell and template molecules.
  • the template compound adsorbed on the inner surface of the zinc oxide thin film can be obtained by taking a desorption means.
  • an oxyzinc coating having a large number of voids and extremely increased specific surface area can be obtained.
  • the template compound is desorbed by using an aqueous solution of a base such as sodium hydroxide or potassium hydroxide if the template compound is a compound having an anchor group such as a carboxyl group, a sulfonic acid group or a phosphoric acid group.
  • a base such as sodium hydroxide or potassium hydroxide
  • the force that can be obtained by washing is not limited to this, and can be appropriately determined according to the type of template compound. Washing with alkali is preferably performed at pH 9-13.
  • FIG. 1 shows a photomicrograph of a crystalline porous acid-zinc thin film obtained by immersing in a dilute KOH aqueous solution of ⁇ OH.5 to remove EosinY molecules.
  • the zinc oxide thin film thus prepared is not formed by the aggregation of fine particles to form a porous material, but wire-like zinc oxide is regularly connected to each other as a whole.
  • a zinc oxide crystal having a size of several meters is formed, and it is possible to provide a crystalline porous zinc oxide thin film that has a high emergency area and at the same time has high crystallinity necessary for fast charge transport.
  • a bridge ligand is modified on the surface of the crystalline porous acid zinc salt thin film.
  • the bridge ligand an organic molecule having two or more types of sites exhibiting coordination properties to rare earth metal ions in one molecule is used, and position selective coordination is performed depending on the type of the partner rare earth metal ion.
  • the one that can form a complex is desirable.
  • An example of a suitable bridge ligand is dcbpy.
  • dcbpy is a chelating ligand, biviridine, forms a complex complex with rare earth ions, but the bond stability with zinc ions is relatively small, and dcbpy has a carboxyl group. Due to its high affinity with zinc ions, dcbpy can be selectively adsorbed on the surface of zinc oxide via a carboxyl group.
  • the bridge ligand on the surface of the porous acid / zinc / zinc thin film it may be immersed in a solution in which the bridge ligand is dissolved.
  • a solution in which the bridge ligand is dissolved For example, it can be adsorbed by immersing the above-mentioned porous zinc oxide thin film substrate in an ethanol solution of dcbpy.
  • a zinc oxide thin film Z bridge ligand composite thin film can also be prepared by mixing a bridge ligand in a zinc oxide electrodeposition bath and subjecting it to force sword polarization.
  • dcbpy was modified by using a triode integrated cell with an FTO substrate, zinc wire as the counter electrode, and SCE (saturated calomel electrode) as the reference electrode.
  • KC1, 5mMZnCl, 200 M dcbpy in aqueous solution, potential is 1.
  • a ZnOZdcbpy composite thin film can be fabricated by performing constant-potential electrolysis with s.SCE for 20 minutes.
  • a thin film with a porous structure as shown in Fig. 2 is obtained by surface adsorption of dcbpy molecules.
  • the porous thin film of acid-zinc zinc or zinc-zinc thin film adsorbed with dcbpy as described above is immersed in a rare earth ion solution, the dcbpy molecule is a rare earth via an N atom.
  • Rare earth ions are adsorbed by chelate coordination with ions, and a light-emitting complex is formed on the surface to form a light-emitting layer. For example, soak in EuCl, TbCl, TmCl ethanol solution.
  • the light-emitting device of the present invention is manufactured as described above. [0051] (4) Caving process
  • a cabbing ligand can be adsorbed to stabilize the complex of the light emitting device.
  • the cabbing ligand is used to coordinate with a rare earth metal, cover the rare earth complex, and stabilize the complex, and may be a ligand having at least one coordination property.
  • a rare earth metal for example, 4,4,4-trifluoro-1- (2-chael) -1,3-butanedione (TTA)
  • TTA 4,4,4-trifluoro-1- (2-chael) -1,3-butanedione
  • the ethanol solution in 200 ⁇ 80 ° C TTA can be adsorbed suitably by immersion for 1 hour.
  • the emission intensity can be enhanced and the deterioration of the emission characteristics due to moisture in the atmosphere can be suppressed, thereby providing a stable emission device for a long period of time.
  • the light emitting device manufactured as described above can be used as an EL.
  • a light emitting device as described above that is, a porous acid / zinc / zinc thin film modified with dcbpy and adsorbed with a rare earth metal to form a metal complex, or further with a cabbing ligand adsorbed thereon.
  • EL can be achieved by depositing a p-type semiconductor on the surface. For example, a layer of Cul, CuSCN, NiO, CuO, etc. is deposited as a p-type semiconductor.
  • FIG. 3 shows a structural reference diagram of an EL composed of an FTO electrode, a crystalline porous zinc oxide thin film, dcbpy, Eu, TTA, and CuSCN as one example of the EL of the present invention.
  • this is a theoretical model diagram.
  • the constituent material is not limited to this.
  • a crystalline porous acid zinc oxide thin film which is an N-type semiconductor, functions as an electron transport layer, and a P-type semiconductor such as Cul, CuSCN, NiO, or CuO is used.
  • Appropriate electrodes are provided on the outer layers of the hole transport layer of the EL element to form an EL.
  • the material of the electrode various materials that have been developed in the past can be used without limitation.
  • FIG. 4 shows a manufacturing flow of the light emitting device in this example.
  • the substrate used was an FTO substrate that was ultrasonically cleaned in acetone, 2-propanol, 0.5% vista solution, and distilled water for 15 minutes each and then etched with 45% nitric acid for 2 minutes. Then, using this FTO substrate as the working electrode, using a triode-integrated cell with the counter electrode as zinc wire and the reference electrode as SCE, oxygen-saturated 0.1 KCl, 5 mM ZnCl, in 200 ⁇ dcbpy aqueous solution so
  • Table 2 shows an excitation spectrum and an emission spectrum of the light-emitting device of Example 1.
  • Example 1 red light emission, which was the strongest at 613 nm, was confirmed by excitation with UV light at 330 °. Luminescence had an intensity that could be clearly seen with the naked eye. In the excitation spectrum measured at a monitor wavelength of 613 nm, the peak at 330 nm reflects the absorption band of dcbpy, and the energy transfer from dcbpy to Eu and the accompanying light emission occur due to the complex formation of dcbpy and Eu. That is confirmed.
  • Example 1 Furthermore, the light-emitting device of Example 1 was immersed in 200 TTA ethanol solution at 80 ° C for 1 hour to perform adsorption treatment of TTA, which is a cabling ligand, to improve the cabbing effect. Measurement was performed. Table 3 shows the fluorescence spectra of the light-emitting devices that had been treated with TTA, the untreated light-emitting devices, and the fluorescence spectra of both samples after one month.
  • Table 4 shows the excitation spectrum and emission spectrum of the light-emitting device of Example 2 obtained.
  • Example 2 When Example 2 was excited with 270 ultraviolet light, green light emission with the strongest intensity at 543 nm was confirmed.
  • FIG. 5 shows a manufacturing flow of the light emitting device in this example.
  • the light emitting device of this example is different from Example 1 in that ImM EuCl ethanol solution is used for adsorption of rare earth ions.
  • the sample was further immersed in 3mM TbCl ethanol solution at 80 ° C for 1 hour to adsorb Tb 3+ .
  • a light emitting device was obtained.
  • the light-emitting device thus obtained was further immersed in an ImM phenant mouth phosphorus solution for 1 hour to obtain a light-emitting device subjected to a cabbing treatment. Then, the light emitting device that has been subjected to the cabbing process and the light emitting device that has not been subjected to the cabbing process! The spectrum was measured. The results are shown in Table 5.
  • FIG. 6 shows a manufacturing flow of the light emitting device in this example.
  • the crystalline porous acid-zinc thin film of the light emitting device of this example is obtained by force-sword polarization of a substrate in an electrolyte containing a zinc salt and a template molecule.
  • As the substrate an FTO substrate that was ultrasonically cleaned in acetone, 2-propanol, 0.5% Vista solution, and distilled water for 15 minutes each and then etched with 45% nitric acid for 2 minutes was used.
  • the bath temperature was kept at 70 ° C, the working electrode was a rotating disk, and the rotation speed was 500 rpm.
  • the prepared ZnOZEosinY composite thin film was adjusted to ⁇ .
  • Dye desorption was performed by immersing in KOH aqueous solution to obtain a crystalline porous zinc oxide thin film.
  • the crystalline porous zinc oxide thin film thus obtained is immersed in a 200 M dcbpy ethanol solution to adsorb bridge ligands, and then to ImM EuCl ethanol solution to adsorb rare earth ions.
  • the light emitting device of Example 4 was obtained by immersing at 3 ° C. for 1 hour to adsorb Eu 3+ .
  • Example 5 The emission spectrum of Example 5 is shown in Table 8.
  • Table 8 confirms that the light-emitting device that adsorbed Eu 3+ and Tb 3+ emits light.
  • Examples 4 and 5 show three peaks, which are specific to the dcbpy complex. Therefore, the crystalline porous acid-zinc thin film in which dcbpy is adsorbed in an ethanol solution of a rare earth metal is shown. It was confirmed that a complex was formed on the thin film by dipping. In addition, the sample in which the porous zinc oxide thin film was immersed in the EuCl solution without the dcbpy treatment did not emit light.
  • the working electrode used was the light-emitting device of Example 1, and the rotation speed was 500 rpm with a rotating electrode.
  • the counter electrode was Pt wire and the bath temperature was 15 ° C.
  • Au was evaporated on the surface. When a voltage of 10 V was applied using the FTO substrate as the cathode and Au as the anode, light emission similar to that of the light emitting device of Example 1 was confirmed.
  • a light-emitting device including a light-emitting portion to which a metal complex formed of a bridge ligand and a rare earth metal is applied has been described. It is also possible to apply a transition metal or a complex with a typical metal such as Be, A 1 and Ir. It is also possible to apply a light emitting organic molecule to the light emitting portion.
  • the light-emitting device of the present invention can be used for photoluminescence (PL) excited by light, electoluminescence (EL) excited by an electric field, force-sword luminescence (CL) by an electron beam, etc. It can be applied as a self-luminous display, lighting equipment, etc.
  • FIG. 1 Crystalline porous acidic zinc oxide Z template molecule complex force A micrograph of crystalline porous acidic zinc oxide obtained by removing template molecules.
  • FIG. 2 is a microscopic photograph showing a state in which dcbpy molecules are adsorbed on the surface by a ZnOZdcbpy composite thin film.
  • FIG. IV 4 A diagram showing a manufacturing flow of the light-emitting device of Example 1.
  • FIG. 5 is a view showing a manufacturing flow of the light-emitting device of Example 3. ⁇ 6] A diagram showing the manufacturing flow of the light emitting device of Example 4.

Abstract

【課題】発光層に希土類金属錯体を用い、電子輸送層又は正孔輸送層に有機化合物ではなく、無機化合物を用いるという新たな構成のハイブリッド型発光デバイスを提供すること。 【解決手段】亜鉛塩溶液からの結晶性多孔質酸化亜鉛薄膜のカソード分極において、酸化亜鉛表面への配位性を有する部位と後の処理によって希土類イオンとの錯形成に用いられる部位を有する配位子を電析浴中に混合し、カソード分極して結晶性多孔質酸化亜鉛/配位子の複合膜を得て、若しくは、多孔質構造を形成するためのテンプレート分子を亜鉛塩溶液から成る電析浴に混合し、カソード分極して結晶性多孔質酸化亜鉛薄膜を得た後に、これを前記ブリッジ配位子の溶液に浸漬して、同様にブリッジ配位子で表面修飾された結晶性多孔質酸化亜鉛を作成し、これら薄膜を希土類金属イオンを溶解させた溶液に浸漬させて錯体を形成し発光デバイスを得た。

Description

明 細 書
発光デバイス及びこの発光デバイスを用いたエレクト口ルミネッセンス 技術分野
[0001] 本発明は、結晶性多孔質酸ィ匕亜鉛にブリッジ配位子と希土類金属を修飾させた金 属錯体力ゝらなる発光デバイス及びこの発光デバイスを用いたエレクト口ルミネッセンス
(以下、「EL」ともいう。)に関する。
背景技術
[0002] 表示装置等に使用される発光デバイスとして、イーストマン 'コダック社の C. W. Tan gらグループによって、有機化合物の積層構造を有する有機 EL素子が開発されて以 来、有機 EL素子の実現ィ匕に向けて様々な研究がなされている。
[0003] しかし、いまだ有機 ELには製品として実現するには課題も多ぐ特に、現在の有機 E Lにおいて、緊急の課題とされているのは、長寿命化の問題である。有機 ELの長寿 命化を妨げる要因として、特に以下の点が問題となっている。
[0004] まず、酸素による有機 EL層の劣化の問題がある。有機材料が用いられた電子輸送 層ゃ正孔輸送層は、これらの層の成膜工程自体や電極の成膜工程にぉ 、て系に酸 素が存在すると、電子輸送層ゃ正孔輸送層が酸化されて有機 EL層としての性能の 劣化を引き起こす可能性がある。
[0005] この点につ!、ては、例えば、電極形成時の有機 EL層へのダメージの緩和を目的とし て、有機 EL層と電極との間にバッファ層を設けた有機 EL素子が開示されている (特 許文献 1)。
[0006] 次に、水分の問題がある。これは、有機 EL素子の構成部分の表面に吸着している水 分や有機 EL内に侵入した水分が、電極界面における電子輸送層又は正孔輸送層 の有機分子が活性ィ匕状態で水と反応し変性したり、電極と有機層との積層体中に水 分が侵入して、電極と有機層との間で剥離を起こし通電しなくなりダークスポットを発 生させたりする場合がある。
[0007] この点を改善する技術として、例えば、有機 EL素子の内部の湿度を下げるため、有 機 EL素子を封止部材で封止するとともに、封止部材内部に吸湿剤を配設する技術 等が開発されて!ヽる (特許文献 2等)。
[0008] しかし、これら解決技術は、有機 EL素子自体の耐酸ィ匕性及び耐水分性を確保したも のではなぐ有機 EL素子そのものの欠点を解決することなぐこれら原因となる酸素 及び水の遮断したにすぎな 、ものであり、根本的な解決手段を提供するものではな かった。
特許文献 1 :特開平 10— 162959号公報
特許文献 2:特開平 09 - 148066号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、発光中心として希土類金属錯体分子を用い、電子輸送層又は正孔輸送 層に有機化合物ではなぐ無機化合物を用いると 、う新たな構成のノ、イブリツド型発 光デバイスを提供するものであり、この構成によって酸ィ匕及び水分に強い発光デバィ ス及びこの発光デバイスを応用した ELを提供することにある。
課題を解決するための手段
[0010] 以上のような課題を解決するために、本発明者らは、亜鉛塩溶液からの結晶性多孔 質酸化亜鉛薄膜の力ソード電析にお ヽて、酸ィ匕亜鉛表面への配位性を有する部位 と後の処理によって希土類イオンとの錯形成に用いられる部位を有する配位子 (本 明細書及び特許請求の範囲にぉ ヽて「ブリッジ配位子」と呼ぶ。)を電析浴中に混合 し、力ソード分極して結晶性多孔質酸ィ匕亜鉛 Z配位子の複合膜を得て、若しくは、多 孔質構造を形成するためのテンプレート分子を亜鉛塩溶液から成る電析浴に混合し 、力ソード分極して結晶性多孔質酸ィ匕亜鉛薄膜を得た後に、これを前記ブリッジ配位 子の溶液に浸漬して、同様にブリッジ配位子で表面修飾された結晶性多孔質酸ィ匕 亜鉛を作成し、これら薄膜を希土類金属イオンを溶解させた溶液に浸漬させることで 容易に錯体が形成されて発光を示すことを見出し、本発明を完成するに至った。
[0011] 本発明の発光デバイスは、結晶性多孔質酸化亜鉛を主成分とする基部と、前記基部 表面に修飾されたブリッジ配位子と希土類金属とで形成された金属錯体からなる発 光部と、で構成したことを特徴とする。すなわち、無機化合物である結晶性多孔質酸 化亜鉛が電子輸送層として機能し、希土類金属錯体が発光層として機能するもので ある。
[0012] 本発明は、基部として結晶性多孔質酸ィ匕亜鉛が用いられる。結晶性多孔質酸化亜 鉛としては、塩ィ匕亜鉛等のハロゲン化物亜鉛を水に溶解させ酸素を溶解した電解液 、又は電気化学的還元性を有する硝酸亜鉛及び過塩素酸亜鉛等を水に溶解させた 亜鉛塩を含む電解液中にぉ ヽて、導電性基板を力ソード分極することで当該導電性 基板上に電解析出させた酸化亜鉛が挙げられる。溶存酸素の還元や硝酸イオン、過 塩素酸イオンの還元に伴って生成する OH—イオンと亜鉛イオンが反応することによる 酸化亜鉛生成を利用する。好ましくは、酸化亜鉛に対する吸着性を有するテンプレ ート化合物を混合した亜鉛塩を含む電解液中で、導電性基板を力ソード分極して、 導電性基板上に酸化亜鉛 Zテンプレート分子複合体を析出させた後、この酸化亜鉛 Zテンプレート分子複合体力 テンプレート分子を除去してなる結晶性多孔質酸ィ匕 亜鉛を用いるとよい。こうして作製された酸ィ匕亜鉛は、ワイヤー状の酸ィ匕亜鉛が相互 に規則的に連結して全体として数マイクロメートルサイズの酸ィ匕亜鉛結晶が形成され ており、 3次元的にナノポアを有して高い比表面積を有するとともに、電子輸送に必 要な高い結晶が両立されており、配位子の吸着性、電子輸送層としての機能性に優 れるカゝらである。
[0013] この結晶性多孔質酸ィ匕亜鉛の表面にブリッジ配位子が修飾されて 、る。ブリッジ配 位子は、希土類金属と酸ィ匕亜鉛との間で橋渡しの効果を有すると同時に、希土類金 属と金属錯体を形成して、発光材料を形成する役割を果たすものである。ブリッジ配 位子には、 1分子中に金属イオンに対する配位性を示す部位を 2種以上有する有機 分子が用いられ、相手となる希土類金属イオンの種類によって位置選択的な配位ィ匕 合物を形成しうるものであることが好ましい。好適には、
Figure imgf000005_0001
される j8 -ジケトン類 [R1又は R3は、炭素数 1〜20のアルキル基、ハロゲンィ匕した炭素 数 1〜20のアルキル基、炭素原子 6〜20のァリール基、ヘテロ原子 1個を含む 5員又 は 6員の複素環式基、カルボキシル基を示す。 R2は、水素原子、ハロゲン原子、シァ ノ基、炭素数 1〜20のアルキル基、ハロゲンィ匕した炭素数 1〜20のアルキル基、炭 素原子 6〜20のァリール基、ヘテロ原子 1個を含む 5員又は 6員の複素環式基を示 す。 ]から選ばれるいずれ力 1種若しくは 2種以上が挙げられる。さらに好適には、 2,2 ,-ビビリジン 4,4-ジカルボン酸(以下「dcbpy」という。)、フエナント口リン、 1,10-フエナ ントロリン- 4,7-ジカルボン酸、 2,2';6',2"-ターピリジン- 4しカルボン酸、 2,2';6',2"-タ 一ピリジン- 4,4',4"-トリカルボン酸、 2,2'-ビキノリン- 4,4'ジカルボン酸、 4-キノリンカル ボン酸, 2- (4-カルボキシ- 2-ピリジ-ル)、ジベンゾ [b,j][l, 10]フエナント口リン- 5,8-ジ カルボン酸力 選ばれるいずれか 1種若しくは 2種以上が挙げられる。
[0014] 希土類金属としては、 Sc、 Y、 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Luのランタノイド系列元素が挙げられる。好ましくは、それぞれ赤、緑 、青の発光を示す Eu、 Tb、 Tm及び Ceが挙げられる。
[0015] 本発明の発光デバイスは、配位子力 希土類イオンへのエネルギー移動によってフ オトルミネッセンスを発現させると共に、空気中の水分を吸着して容易に分解しやす V、希土類金属錯体をブリッジ配位子によって安定ィ匕させ、劣化の少な 、フォトルミネ ッセンス等の発光デバイスを提供することができる。
[0016] さら〖こ、本発明の発光デバイスには、希土類錯体の表面に、希土類と錯体を形成す る配位子によるキヤッビングを施すことができる。キヤッビング配位子とは、ブリッジ配 位子に吸着させた希土類金属と錯体を形成し、希土類錯体の安定化をもたらす配位 子を指す。キヤッビング処理を施すことよって希土類金属の錯体の安定化が図られ、 発光強度が深まる。また、水分による耐性を向上させることができる。
[0017] キヤッビング配位子としては、配位性を 1箇所以上有する配位子であればよい。たと えば、
Figure imgf000006_0001
j8 -ジケトン類 [R1 R3は、炭素数 1〜20のァ ルキル基、ハロゲン化した炭素数 1〜20のアルキル基、炭素原子 6〜20のァリール 基、ヘテロ原子 1個を含む 5員又は 6員の複素環式基を示す。 R2は、水素原子、ハロ ゲン原子、シァノ基、炭素数 1〜20のアルキル基、ハロゲン化した炭素数 1〜20のァ ルキル基、炭素原子 6〜20のァリール基、ヘテロ原子 1個を含む 5員又は 6員の複素 環式基を示す。 ]から選ばれるいずれか 1種若しくは 2種以上が挙げられる。好ましく は、 4,4,4-トリフルォロ- 1- (2-チェ-ル)- 1,3-ブタンジオン、 1,10-フヱナント口リン及 びその誘導体、 2,2'_ビビリジン及びその誘導体、 2,2';6',2"-ターピリジン及びその誘 導体力 選ばれるいずれか 1種若しくは 2種以上が挙げられる。
[0018] 以上の構成を有する発光デバイスを応用し、 ELとすることができる。具体的には、結 晶性多孔質亜鉛薄膜を主成分とした N型半導体を作製し、この N型半導体を ELで いう電子輸送層とし、ブリッジ配位子と希土類金属とで形成された金属錯体を発光層 とし、無機化合物により作製された P型半導体を ELでいぅ正孔輸送層として、これら を積層し、その両外層に電極層を設けて ELとする。
[0019] ELとするには、前述した発光デバイスに正孔輸送層を設ける。正孔輸送層としては、 P型半導体として機能する物質無機化合物が選択される。たとえば、 Cul、 CuSCN、 NiO、 Cu O力 選ばれるいずれか 1種若しくは 2種以上が挙げられる。
2
[0020] さらに、本発明の ELにキヤッビング層を設ける力否かは問わないが、発光層と、正孔 輸送層の間に希土類と錯体を形成するキヤッビング配位子によってキヤッビングを施 せば、より安定した ELを形成することができる。キヤッビング配位子としては、上記発 光デバイスに用いた配位子と同様のものを用いることができる。
[0021] 電極層の材料は、特に限定するものではなぐ従来力 提案されている種々の電極 を用いることができる。例えば、電極としては、 ITO、 FTO、 Au、 Pt、 Ag、 Al、 C、 IT O等が例として挙げられるがこれに限定するものではない。陰極、陽極の材料の選択 としては、トップェミッション型、ボトムェミッション型にするかによつて陽極又は陰極の V、ずれかが透明電極であれば、仕事関数等の条件を考慮して適宜設定すればよ!、 。好ましくは、陰極に ITO、若しくは FTOを採用するとよい。
[0022] さら〖こ、電極の少なくとも一方の外層に、基板を設けることができる。基板は、ガラスや 透明な熱可塑性榭脂が用いられる。本発明の ELは酸素、水分に強いため、外気に 対して、ガラス並みのノ リヤー性を必要としない。また、全ての材料は化学的、電気 化学的原理によって 100°C以下の低温で形成し得るため、基材は非耐熱性であって も良い。そのため本発明において基板は、単に発光デバイスの支えとしての役割を 果たせばよぐバリヤ一性が低ぐ高温に耐えない熱可塑性榭脂等のプラスチックを 採用しても問題はない。
発明の効果
[0023] 本発明によれば、発光層として希土類金属の錯体を用いた発光デバイスを、無機化 合物に積層させることで作製することができる。しかも、低分子発光物質を用いながら 、蒸着ではなぐ浸漬又は電析によって作製することができるため、 100°C以下の低 温で発光デバイスを提供することができる。よって軽量且つ柔軟で割れにくい発光デ バイスを提供できる。
[0024] また、真空プロセスを採用することなく作製することが可能であるので、作製コストの 低減に貢献することができる。さらに、溶液の浸漬又は電析を中心に ELを作製する ことになるため、真空プロセスの様に薄膜形成に利用されな力つたィ匕合物が蒸散す ることがない。本発明によっては、基本的に廃液処理ですむので、廃棄コストを低減 することができて、この観点からも作製コストの低減に貢献することができる。
[0025] また、本発明は、希土類金属錯体を発光中心に用いているので、希土類を変更する こと及び混合することで、多色の発光を発現することができる。また、これら希土類錯 体及び基体である酸化亜鉛は可視光線を吸収しな 、ために無色であり、演色性に優 れた発光デバイスを提供出来る。
[0026] また、発光層に希土類錯体を用いながら、水分や酸化に強!ヽ発光デバイスを提供す ることがでさる。
[0027] さらに、発光デバイスを応用して、結晶性多孔質亜鉛薄膜を主成分とした N型半導 体を作製して電子輸送層とし、ブリッジ配位子と希土類金属とで形成された金属錯体 を発光層とし、無機化合物により作製された P型半導体を ELでいぅ正孔輸送層として 、これらを積層し、その両外層に電極層を設けることで、容易に ELを作製することが でさるよう〖こなる。
発明を実施するための最良の形態
[0028] 次に、本発明の発光デバイス及びこの発光デバイスを応用した ELの実施の最良の 形態を示すが、本発明は、以下の実施の形態に限定されるものではない。
[0029] (1)結晶性多孔質酸化亜鉛薄膜の電気化学的作成
[0030] (a)方法 1
[0031] 導電性基板として、酸化スズドープ酸化インジウム (ITO)やフッ素ドープ酸化スズ (F TO)などの透明導電性セラミックスの薄 、皮膜を透明ガラス板上に形成した透明導 電性基板が用いられる。また、結晶性多孔質酸化亜鉛は高温で焼成する必要が無く 、強酸、強塩基などの反応性の高い薬品も用いないので、 ITO皮膜を表面に形成し た PET榭脂などの透明なプラスチックを基板として用いても構わな 、。 [0032] 導電性基板を使用前に、脱脂洗浄し、表面の活性ィ匕処理を行うことが好ましい。活性 化処理としては、例えば、 45%程度の硝酸水溶液に 2〜3分間浸漬させて、表面を 親水化し、酸素還元に対する活性化を行う方法、亜鉛塩を含まない KC1水溶液中で 、対極に Pt等の貴金属を用いて、基板を— 1. OV (vs.SCE=飽和カロメル電極)程度 で力ソード分極し継続して酸ィ匕還元反応を行って、基板を活性化させる方法が挙げ られる。勿論活性化方法は、これらに限定されるものではない。
[0033] この導電性基板を、亜鉛塩溶液中で温度、 30°C以上、好ましくは 50°C以上、より好 ましくは 60°Cから 80°Cの間で、酸素ガスを流通させ浴中に酸素を溶存させた状態で 、力ソード分極することにより、結晶性の酸ィ匕亜鉛薄膜を得ることができる。亜鉛塩に は、塩ィ匕亜鉛などのハロゲンィ匕亜鉛、あるいは硝酸亜鉛、過塩素亜鉛等を用いること ができる。溶媒としては、主として水を用いる力 アルコールなどのプロトン性溶媒、ジ メチルスルホキシド、ジメチルホルムアミド、ァセトニトリル、プロピレンカーボネートな どの非プロトン性極性溶媒、あるいは混合溶媒を用いることができる。なお、亜鉛塩の 濃度が充分高い場合 (概ね 50mM以上)は、原料は亜鉛塩のみでよいが、低い時は 、支持電解質を適宜加えることで溶液の導電性を補う。ハロゲンィ匕亜鉛を原料に用 いる場合は、溶液中酸素を流通することで、酸素を溶解させる。これ以外の塩の場合 は、脱気下でも構わないが、空気下など酸素が存在する条件であってもよい。
[0034] 溶存酸素の還元や硝酸イオン、過塩素酸イオンの還元により、 OH—イオンが電極近 傍に生成し、生じた OH—イオンが亜鉛イオンと反応し、脱水することで結晶性多孔質 酸ィ匕亜鉛が生じる。なお、この他過酸化水素、ベンゾキノン、亜硝酸、塩素酸、臭素 酸、ヨウ素酸などの電気化学的に還元されて水酸ィ匕物イオンを生じるもの、若しくは 還元反応にプロトン消費が伴うもの)を用いることができる。
[0035] (b)方法 2
[0036] 結晶性多孔質酸ィ匕亜鉛薄膜として、本発明にお ヽては、酸化亜鉛に対する吸着性 を有するテンプレート化合物を混合した亜鉛塩を含む電解液中にぉ ヽて導電性基 板を力ソード分極して、当該導電性基板上に酸化亜鉛 Zテンプレート分子複合体を 析出させた後、該酸ィ匕亜鉛 Zテンプレート分子複合体力 テンプレート分子を除去し てなる酸ィ匕亜鉛を用いることもできる。以下、この酸ィ匕亜鉛薄膜の形成方法について 説明する。
[0037] ここでいうテンプレート化合物とは、力ソード電析により形成される酸化亜鉛の内部表 面に吸着される化合物をいう。テンプレートイ匕合物は、化学吸着により酸ィ匕亜鉛のバ ルク内部に存在するのではなく、亜鉛イオンと錯体を形成して酸化亜鉛の内部表面 に吸着される化合物であれば良い。このようなものは電気化学的に還元性を有し、こ れらが酸化亜鉛薄膜成長過程で還元され、求核性が増すことにより亜鉛イオンと錯 体を形成し、これが酸ィ匕亜鉛結晶の内部表面に吸着されるためにそれ以上の結晶 成長を抑制し、テンプレートイ匕合物の分子サイズ + αの 3次元的に連結したナノポア を結晶粒内に形成する化合物である。カルボキシル基、スルホン酸基あるいはリン酸 基などのアンカー基を有し、電気化学的に還元性を有する芳香族化合物などの π— 電子を有するものが好適であり、具体的に例示すれば以下の通りである。
[0038] キサンテン系色素の EosinY、フルォレセイン、エリス口シン B、フロキシン B、ローズべ ンガル、フノレォレクソン、マーキュロクロム、ジブロモフノレォレセイン、ピロガロールレツ ドなど、クマリン系色素のクマリン 343など、トリフエ-ノレメタン系色素のブロモフエノー ルブルー、ブロモチモールブルー、フエノールフタレインなどがある。又、これら以外 にシァニン系色素、メロシアニン系色素、ポノレフィリン、フタロシアニン、ペリレンテトラ カルボン酸誘導体、インジゴ色素、ォキソノール色素や天然色素のアントシァニン、ク チナシ色素、ゥコン色素、ベ-バナ色素、カロテノイド色素、コチニール色素、パプリ 力色素、 Ru、 Osなどのポリピリジン錯体などを挙げることができる。その他、ドデシル スルホン酸ナトリウム、へキデシルスルホン酸ナトリウム、ドデシルリン酸ナトリウム、へ キデシルリン酸ナトリウム等の他の界面活性剤を用いることも可能である。
[0039] 酸化亜鉛薄膜を形成する力ソード電析は、所望の基板の存在下、亜鉛塩を含む電 解浴中で行う。亜鉛塩は、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛などのハロゲン化亜鉛、 硝酸亜鉛、過塩素酸亜鉛などを用いることができ、ハロゲンィ匕亜鉛の場合は酸素を 供給する(パブリング)が、酸素のバブルが電極に接触すると色素は酸ィ匕してしまい 脱着不能となるので、電極にバブルが接触しないようにする工夫が必要である。亜鉛 塩を用いる場合の対極としては、亜鉛、金、白金、カーボンなどが挙げられる力 特 に亜鉛を用いると酸ィ匕亜鉛形成によって消費される分の亜鉛を供給する事ことがで き、同時に溶液の PH低下を抑制出来できるので都合が良い。力ソード分極により、 酸化亜鉛の規則的薄膜構造が得られ、また酸ィ匕チタンのような熱処理が不要なこと により基板の選択性が広まる。多孔質酸ィ匕亜鉛薄膜は、テンプレートイ匕合物を前記 の電解浴に予め混合しておいて力ゝらカソード分極して酸ィ匕亜鈴とテンプレート分子の 複合体薄膜を得る。さらに酸ィ匕亜鉛薄膜の内部表面に吸着されたテンプレートイ匕合 物を脱着手段を講じることにより得ることができる。これにより、酸化亜鉛薄膜の表面 力 テンプレートイ匕合物を除去することにより、多数の空隙が形成され極めてポーラ スで比表面積が増大した酸ィヒ亜鉛被膜が得られる。テンプレート化合物の脱着手段 は、テンプレートイ匕合物がカルボキシル基、スルホン酸基あるいはリン酸基などのァ ンカ一基を有する化合物であれば、水酸化ナトリウム、水酸化カリウムなどの塩基の 水溶液を用いて洗浄することで行える力 これに限定されるものではなぐテンプレー ト化合物の種類に応じて適宜行うことができる。アルカリによる洗浄は、 pH9〜13で 行うことが好ましい。
[0040] 具体的な例として、 5mM ZnCl + 0. 1M KC1 + 50 /z M EosinYを含み、酸
2
素飽和された水溶液(70°C)中、—1. 0V (vs. SCE) , 20min, 500rpmの定電位力 ソード分極によって、 FTOガラス基板上酸化亜鉛 ZEosinY複合体薄膜を形成した後 、膜を ρΗΙΟ. 5の希 KOH水溶液に浸漬して EosinY分子を除去することで得られた 結晶性多孔質酸ィ匕亜鉛薄膜の顕微鏡写真を図 1に示す。この写真より明らかなよう に、作製された酸化亜鉛薄膜は、微粒子が集合して多孔質を形成しているのではな ぐワイヤー状の酸ィ匕亜鉛が相互に規則的に連結して全体として数 mサイズの酸 化亜鉛結晶を形成しており、高い非常面積を得ると同時に速い電荷輸送に必要な高 い結晶性を両立した結晶性多孔質酸ィ匕亜鉛薄膜を提供することができる。
[0041] (2)結晶性多孔質酸ィ匕亜鉛薄膜の表面へのブリッジ配位子の修飾
[0042] 次いで、この結晶性多孔質酸ィ匕亜鉛薄膜の表面にブリッジ配位子を修飾する。ブリツ ジ配位子を結晶性多孔質酸ィ匕亜鉛薄膜に修飾するには、 2通りの方法がある。 1つ は、結晶性多孔質酸ィ匕亜鉛薄膜をブリッジ配位子溶液に浸漬して吸着させる方法で あり、もう一つは、酸化亜鉛薄膜作製する際に、酸化亜鉛電析浴にブリッジ配位子を 混合しておき、力ソード電析して複合薄膜を作製する方法である。 [0043] (a)ブリッジ配位子溶液に浸漬して吸着させる方法
[0044] ブリッジ配位子には、 1分子中に希土類金属イオンに対する配位性を示す部位を 2 種以上有する有機分子が用いられ、相手となる希土類金属イオンの種類によって位 置選択的な配位ィ匕合物を形成しうるものが望ま 、。好適なブリッジ配位子の例とし ては、 dcbpyが挙げられる。 dcbpyは、キレート配位子であるビビリジンは、希土類ィ オンと安定な錯ィ匕合物を形成するが、亜鉛のイオンとの結合安定は比較的小さぐ一 方で、 dcbpyが有するカルボキシル基は亜鉛イオンとの親和性が高いため、 dcbpy は、選択的にカルボキシル基を介して酸ィ匕亜鉛表面に吸着することができる。
[0045] 多孔質酸ィ匕亜鉛薄膜の表面にブリッジ配位子を修飾するには、ブリッジ配位子を溶 解した溶液に浸漬すればよい。例えば、上述の多孔質酸ィ匕亜鉛薄膜基板を dcbpy のエタノール溶液に浸漬することで、吸着させることができる。
[0046] (b)力ソード分極して複合薄膜を作製する方法
[0047] 多孔質酸化亜鉛薄膜作製時に、酸化亜鉛電析浴にブリッジ配位子を混合しておき、 力ソード分極することによつても酸化亜鉛薄膜 Zブリッジ配位子の複合薄膜を作製す ることができる。具体的な例として、 dcbpyを修飾する場合を示すと、 FTO基板、対極 に亜鉛線、参照極に SCE (飽和カロメル電極)とした三極一体型セルを用い、酸素飽 和させた 0. 1M KC1、 5mMZnCl、 200 M dcbpy水溶液中で、電位一 1. OV v
2
s.SCEにて 20分間定電位電解を行うことによって ZnOZdcbpy複合薄膜を作製する ことができる。 dcbpy分子の表面吸着によって図 2に示すような多孔質構造の薄膜が 得られる。
[0048] (3)希土類イオンの吸着
[0049] 以上の dcbpyを吸着させた多孔質酸ィ匕亜鉛薄膜又は酸ィ匕亜鉛薄膜 Zブリッジ配位 子の複合薄膜を希土類イオン溶液に浸漬すると、 dcbpy分子が N原子を介して希土 類イオンにキレート配位することで希土類イオンが吸着されて、発光性錯体が表面に 形成されて発光層を形成する。例えば、 EuCl、 TbCl、 TmClエタノール溶液に浸
3 3 3
漬して吸着することで、 Eu3+、 Tb3+、 Tm3+イオンが吸着されて、発光層をなすと考えら れる。
[0050] 以上により、本発明の発光デバイスが作製される。 [0051] (4)キヤッビング処理
[0052] さらに、発光デバイスの錯体の安定ィ匕を図るためにキヤッビング配位子を吸着させる ことができる。キヤッビング配位子は、希土類金属と配位して、希土類錯体を覆い、か っ錯体の安定ィ匕を図るためのものであり、配位性を 1箇所以上有する配位子であれ ばよい。例えば、フエナント口リン、 4,4,4-トリフルォロ- 1- (2—チェ-ル)一 1,3—ブタ ンジオン (TTA)を用いた場合には、 200 μ Μ ΤΤΑエタノール溶液に 80°C、 1時間 浸漬することで好適に TTAを吸着させることができる。これにより、発光強度を増強さ せると共に、大気中の水分等による発光特性の劣化を抑制し、長期間安定な発光デ バイスを提供できる。
[0053] 以上の如く作製された発光デバイスを用いて ELとして応用することができる。前述し た発光デバイス、すなわち、多孔質酸ィ匕亜鉛薄膜に dcbpyを修飾し、希土類金属を 吸着させて金属錯体を形成させたもの、又はこれにさらにキヤッビング配位子を吸着 させたもの、の表層に p型半導体の析出を行うことによって ELとすることができる。例 えば、 p型半導体として Cul、 CuSCN、 NiO、 Cu O等の層を電析ゃ溶液のキャスト
2
及び乾固によって形成することによって、好適な EL素子を作製することができる。図 3に、本発明の ELのうち、 1つの例として、 FTO電極、結晶性多孔質酸化亜鉛薄膜、 dcbpy, Eu、 TTA, CuSCNからなる ELの構造参考図が示した。勿論、これは一つ の理論上のモデル図である。また、構成材料はこれに限定されるものではないことは 当然である。
[0054] こうして作製された EL素子は、 N型半導体である結晶性多孔質酸ィ匕亜鉛薄膜が電 子輸送層として機能し、 Cul、 CuSCN, NiO、 Cu O等の P型半導体を用いた正孔
2
輸送層として機能し、電子輸送層に修飾されたブリッジ配位子と希土類金属とで形成 された金属錯体が発光層として機能することになる。
[0055] この EL素子の正孔輸送層の外層にそれぞれ適当な電極を配設して、 ELとされる。
電極の素材としては、限定するものではなぐ従来より開発されている種々のものを用 いることがでさる。
[0056] (実施例)以下、本発明の発光デバイスの実施例とともに、実験結果を示す。
実施例 1 [0057] 本実施例における発光デバイスの製造フローを、図 4に示す。基板として、アセトン、 2—プロパノール、 0. 5%ビスタ溶液、蒸留水中でそれぞれ 15分間超音波洗浄し、 その後 45%硝酸により 2分間エッチング処理を行った FTO基板を用いた。そして、こ の FTO基板を作用極として用い、対極を亜鉛線、参照極を SCEとした三極一体型セ ルを用い、酸素飽和させた 0. 1 KCl、5mM ZnCl , 200 μ Μ dcbpy水溶液中で
2
電位 E=— 1. OVvsSCEにて 20分間定電位電解を行い ZnOZdcbpy複合薄膜を 作製した。なお、浴温は 70°Cに保ち、作用極は、回転ディスクとし、回転数を 500rp mで行った。その後希土類イオンを吸着するために、 ImM EuClエタノール溶液
3
に 80°Cで 1時間浸漬して Eu3+の吸着を行 、、発光デバイスを得た。
[0058] 実施例 1の発光デバイスに電着された dcbpyの存在及び酸化亜鉛薄膜に対する吸 着を確認するための、 Euの dcbpy金属錯体及び実施例 1について、それぞれ FTIR にて、スペクトルを測定した。その結果を表 1に示す。
[0059] [表 1]
Eu/dcbpy錯体の F T I R測定データ /¾!lllnB 0ocro-EWC2一 n e① oueujwuej -.
Figure imgf000015_0001
3000 2000 1000 600 500 400 wavenumber / cm 実施例 1の F T I R測定データ
Figure imgf000015_0002
3000 2000 1000 600 500 400
-1
wavenumber / cm
[0060] 表 1により、 Eu の dcbpy金属錯体と実施例 1のスペクトル力 類似する A、 B、 Cの明 確なエネルギーピークを示しており、 dcbpyは、結晶性多孔質酸ィ匕亜鉛薄膜に吸着 していることを示している。なお、領域 Bの約 1600、 1560、 ^OOcm—1の 3つのバン ドは、 C=C,C=N及び、 dcbpyにおけるカルボン酸グループ (-CO -)の伸縮振動によ
2
るものである /!¾μΒυθΠ/。 ■,
[0061] 表 2に、実施例 1の発光デバイスの励起スペクトル及び発光スペクトルを示す。
[0062] [表 2]
実施例 1の発光デバイスの励起スぺクトル及び発光スぺクトル
Figure imgf000016_0001
200 300 400 500 600 700 800
wavelength I nm
実施例 1においては、 330應の紫外光励起により、 613nmで最強となる赤色の発光 が確認された。発光は肉眼ではっきりと確認出来る強度を有していた。モニター波長 を 613nmとして測定される励起スペクトルにおいて 330nmに見られるピークは dcbpy の吸収帯を反映しており、 dcbpyと Eu の錯形成によって dcbpyから Eu へのエネル ギー移動とそれに伴う発光が生じていることが確認される。
さらに、実施例 1の発光デバイスに対し、 200 TTAエタノール溶液 80°Cに 1時 間浸漬し、キヤッビング配位子である TTAの吸着処理を行い、キヤッビングの効果を みる測定を行った。表 3に、 TTAでキヤッビング処理した発光デバイスと、未処理の 発光デバイスの蛍光スペクトル及び 1ヶ月後の両サンプルの蛍光スペクトルを示す。
[表 3] 実施例 1の発光デバイスに TTAキヤッビング処理及び未処理の各サンプルの発光スぺクトル
Figure imgf000017_0001
wave length / nm
(a) TTA吸着未処理の実施例 1の発光デバイスの蛍光スぺクトル
(b) TTA吸着未処理の実旃例 1の発光デバイスの 1力月後の蛍光スぺクトル
(C) TTA吸着処理を行った実旃例 1の発光デバイスの蛍光スぺクトル
(d) TTA吸着処理を行った実施例 1の発光デバイスの 1力月後の蛍光スぺクトル
[0066] 表 3により、 TTAによるキヤッビング処理によって発光スペクトルの強度の増大が確認 された。これは TTAの配位によって Eu3+錯体の配位子場が安定ィヒされて発光量子 収率が向上したことによる効果であると考えられ、 TTAによる錯体キヤッビングが確認 できた。さらに試料を大気中に 1ヶ月放置した後の発光スペクトルを比較すると、未処 理のものでは発光強度が若干低下するのに対して TTA吸着処理を行ったものは蛍 光強度が強くなるとレ、う結果を得た。これによりキヤッビング配位子が錯体の安定ィ匕に 寄与して!/ヽることが確認された。
実施例 2
[0067] 実施例 1に対して、希土類イオンの吸着として、 ImM EuClエタノール溶液に代わ
3
つて、 ImM TbClエタノール溶液に 80°Cで 1時間浸漬して Tb3+の吸着を行い、実 施例 2の発光デバイスを得た。
[0068] 得られた実施例 2の発光デバイスの励起スペクトル及び発光スペクトルを表 4に示す
[0069] [表 4] 一ne ■.
実施例 2の発光デバイスの ®起スぺクトル及び発光スぺクトル
Figure imgf000018_0001
wavelength I nm
[0070] 実施例 2を 270應の紫外光で励起したところ、 543nmで強度が最強となる緑色の発 光が確認された。
実施例 3
[0071] 本実施例における発光デバイスの製造フローを図 5に示す。本実施例の発光デバィ スは、実施例 1に対して、希土類イオンの吸着として、 ImM EuClエタノール溶液
3
に加えて、さらに 3mM TbClエタノール溶液に 80°Cで 1時間浸漬して Tb3+の吸着
3
を行い、発光デバイスを得た。
[0072] このようにして得られた発光デバイスを、さらに ImM フエナント口リン溶液に 1時間 浸漬し、キヤッビング処理を施した発光デバイスを得た。そして、キヤッビング処理を 行った発光デバイスと、キヤッビング処理を行わな力 た発光デバイスにつ!/、て発光 スペクトルを測定した。その結果を表 5に示す。
[表 5] 実施例 3及び実施例 3に 7ιナント口リンのキヤッビングを施した発光デバイスの発光スぺクトル 一lさsune su -.
Figure imgf000019_0001
350 400 450 500 550 600 650 700 750
wavelenath I nm
[0074] 表 5により、 Euと Tbに由来する発光ピークが同時に確認され、希土類金属イオンの 混合によって発光の色調を変化させ得ることが確認された。フエナント口リンによるキ ャッビング処理によっては、発光スペクトルに対して、大きな改善は確認できな力つた
[0075] その後、実施例 3の発光デバイスについて、キヤッビング処理を施した発光デバイスと キヤッビング処理を施さなかった発光デバイスの両方を空気中に放置し、 Eu錯体の 6 13應の発光ピークにつ 、て相対強度の経時変化を測定した。その結果を表 6に示 す。
[0076] [表 6] 実施例 3の発光デバイスと、 実施例 3にキヤッビング処理を施した発光デバイスを空気中 に放置し、 Eu銪体の 6 1 3 nmの発光ピークについて相対強度の経時変化を示すグラフ 1.2
▲ — 一 一 i—
1 _Νϊζ」0
0.8 ■ 0.6 0.4
0.2 non-caped (GIF29)
non caped (GIF3310)
caped with phenanthroline. (GI31tep)
0
0 5 10 15 20
number of days
[0077] 表 6より、キヤッビング処理を施していない発光デバイスは、 10日後には、元の発光 強度の約 90%程度、 16日後には、 40%強にまで減少が確認できるのに対し、キヤッ ビング処理を施した発光デバイスは、発光強度は安定しているのが確認された。すな わち、キヤッビング処理が酸素や水分による発光特性の劣化防止に寄与することが 分かった。
実施例 4
[0078] 本実施例における発光デバイスの製造フローを、図 6に示す。本実施例の発光デバ イスの結晶性多孔質酸ィ匕亜鉛薄膜は、亜鉛塩とテンプレート分子を含む電解液中で 、基板を力ソード分極することにより、得られている。基板として、アセトン、 2—プロパ ノール、 0. 5%ビスタ溶液、蒸留水中でそれぞれ 15分間超音波洗浄し、その後 45% 硝酸により 2分間エッチング処理を行った FTO基板を用いた。そして、この FTO基板 を作用極として用い、対極を亜鉛線、参照極を SCEとした三極一体型セルを用い、 酸素飽和させた 0. 1 KCl、 5mM ZnCl、テンプレート分子である 200 M Eosi
2
nY水溶液中で電位 E=— 1. OVvs.SCEにて 20分間定電位電解を行 ヽ ZnOZEosi ηγ複合薄膜を作製した。なお、浴温は 70°Cに保ち、作用極は、回転ディスクとし、回 転数を 500rpmで行った。作製した ZnOZEosinY複合薄膜を ρΗΙΟ. 5に調整した KOH水溶 に浸漬させて色素脱着を行い、結晶性多孔質酸ィ匕亜鉛薄膜を得た。こ うして得られた結晶性多孔質酸ィ匕亜鉛薄膜を 200 M dcbpyエタノール溶液に浸 漬してブリッジ配位子の吸着を行い、その後希土類イオンを吸着するために、 ImM EuClエタノール溶液に 80°Cで 1時間浸漬して Eu3+の吸着を行い、実施例 4の発 光デバイスを得た。
[0079] 得られた実施例 4の発光デバイスに電着された dcbpyの存在及び結晶性多孔質酸 化亜鉛薄膜に対する吸着を確認するため、結晶性多孔質酸化亜鉛薄膜、 200 M dcbpyエタノール溶液に浸漬してブリッジ配位子の吸着を行った結晶性多孔質酸 化亜鉛薄膜及び実施例 4の各サンプルについて、 FTIRでスペクトルを測定した。そ の結果を表 7に示す。
[0080] [表 7] 結晶性多孔: R酸化亜 ¾薄膜. d e b p y吸着結晶性多孔 化亜》薄《及び実施例 4の F T I Rスぺクト ル
Figure imgf000021_0001
wave number / cm"
(a) d c b p y吸着結晶性多孔質酸化亜 ¾*K (E u吸着なし)
(b) 実
(c) 結晶性多孔質酸化亜鉛薄膜 約 1400〜1600cm の 3つのバンドは、 C=C、 C=N及び、 dcbpyにおけるカルボン 酸グループ(-CO -)の伸縮振動によるものである。 200 μ M dcbpyエタノール溶液 に浸漬してブリッジ配位子の吸着を行った結晶性多孔質酸ィ匕亜鉛薄膜及び実施例 4の各サンプルにお!/、てピークが確認できることから、 dcbpyエタノール溶液に多孔 質酸化亜鉛薄膜を浸漬することで、 dcbpyの吸着が可能であることが確認された。ま た、 Eu3+の吸着処理後にお ヽても dcbpyが脱離して 、な 、ことが確認された。
[0082] 次に、実施例 4の発光スペクトルを表 8に示す。
[0083] [表 8] 実施例 4及ぴ実施例 5の発光スぺク トル
Figure imgf000022_0001
wave length / nm
(a) 実施例 4
(b) 実施例 5
(c) (参考) 1 mM EuCl3 EtOH溶液に 80° (:、 1時間浸溃した多孔質 ZnO薄膜 (dcbpy修飾なし) 実施例 5
[0084] 実施例 4に対して、希土類イオンの吸着として、 ImM TbClエタノール溶液に 80°C
3
で 1時間浸漬して Tb3+の吸着を行い、実施例 5の発光デバイスを得た。
[0085] 実施例 5の発光スペクトルを表 8に示してある。表 8によって、 Eu3+、 Tb3+を吸着させた 発光デバイスが、発光を示すことが確認された。また、実施例 4、 5ともに 3つのピーク を示し、これは dcbpy錯体に特異的なスペクトルであることから、希土類金属のェタノ ール溶液に dcbpyを吸着させた結晶性多孔質酸ィ匕亜鉛薄膜を浸漬することで薄膜 上に錯体が形成されていることが確認された。また、 dcbpy処理を省略して多孔質酸 化亜鉛薄膜を EuCl溶液に浸漬した試料は発光を示さなかった。発光性希土類錯
3
体の形成にブリッジ配位子を用いることが必須であることが確認された。 実施例 6
[0086] 次に実施例 1の発光デバイスを用い、三極一体型セルを用いて 0. 1M Cu (ClO )
4 2
、0. 025M LiSCNエタノール溶液中で電析電位 E= +0. 2Vvs.AgZAgClにて 2 0分間電位電解を行うことで発光デバイス上に正孔輸送層としての p型半導体である CuSCNを析出した。作用極は実施例 1の発光デバイスを用い回転電極によって回 転数を 500rpmとした。対極は Pt線を用い、浴温は 15°Cで行った。 CuSCNの電析 後、その表面に Auを蒸着した。 FTO基板を陰極とし、 Auを陽極として、 10Vの電圧 を与えたところ、実施例 1の発光デバイスと同様の発光が確認された。
[0087] 以上、実施例において本発明の具体例を詳細に説明したが、これらは例示にすぎず 、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以 上に例示した具体例を様々に変形、変更したものが含まれる。たとえば、実施例にお いては、ブリッジ配位子と希土類金属とで形成された金属錯体を適用した発光部を 備えた発光デバイスについて説明したが、発光部には、ブリッジ配位子と、 Zn, Be, A 1, Ir等の遷移金属若しくは典型金属との錯体を適用することも可能である。又、発光 部に、発光性の有機分子を適用することも可能である。
産業上の利用可能性
[0088] 本発明の発光デバイスは、光によって励起するフォトルミネッセンス (PL),電界によ つて励起するエレクト口ルミネッセンス (EL)、電子線による力ソードルミネッセンス (C L)等に利用することができ、自発光型のディスプレイ、照明器具等としての応用が可 能である。
図面の簡単な説明
[0089] [図 1]結晶性多孔質酸ィ匕亜鉛 Zテンプレート分子複合体力 テンプレート分子を除 去してなる結晶性多孔質酸ィ匕亜鉛の顕微鏡写真である。
[図 2]ZnOZdcbpy複合薄膜によって dcbpy分子が表面に吸着された状態を示す顕 微鏡写真である。
[図 3]多孔質酸ィ匕亜鉛薄膜、ブリッジ配位子として dcbpy、希土類金属として Eu3+を、 正孔輸送層として CuSCNを用いた場合の本発明の発光デバイスの基本構造を示 す参考図である。 圆 4]実施例 1の発光デバイスの製造フローを示す図である。 圆 5]実施例 3の発光デバイスの製造フローを示す図である。 圆 6]実施例 4の発光デバイスの製造フローを示す図である。

Claims

請求の範囲
[1] 結晶性多孔質酸ィ匕亜鉛を主成分とする基部と、前記基部表面に修飾されたブリッジ 配位子と希土類金属とで形成された金属錯体力ゝらなる発光部と、を備えてなることを 特徴とする発光デバイス。
[2] 前記結晶性多孔質酸化亜鉛が、亜鉛塩を含む電解液中にお!ヽて導電性基板をカソ ード分極することで、当該導電性基板上に電解析出させた酸ィ匕亜鉛カゝらなることを特 徴とする請求項 1記載の発光デバイス。
[3] 前記結晶性多孔質酸ィ匕亜鉛が、酸ィ匕亜鉛に対する吸着性を有するテンプレートイ匕 合物を混合した亜鉛塩を含む電解液中にぉ ヽて導電性基板を力ソード分極して、当 該導電性基板上に酸化亜鉛 Zテンプレート分子複合体を析出させた後、該酸化亜 鉛 Zテンプレート分子複合体力 テンプレート分子を除去してなる酸ィ匕亜鉛力 なる ことを特徴とする請求項 1記載の発光デバイス。
[4] 前記ブリッジ配位子は、 1分子中に金属イオンに対する配位性を示す部位を 2種以 上有し、かつ希土類金属イオンの種類によって位置選択的な配位ィ匕合物を形成しう る有機分子からなることを特徴とする請求項 1記載の発光デバイス。
[5] 前記ブリッジ配位子が、 2,2,-ビビリジン 4,4-ジカノレボン酸、フエナント口リン、 1,10-フ ェナント口リン- 4,7-ジカルボン酸、 2,2';6',2"-ターピリジン- 4しカルボン酸、 2,2';6',2" -ターピリジン- 4,4',4"-トリカルボン酸、 2,2'-ビキノリン- 4,4'ジカルボン酸、 4-キノリン カルボン酸, 2- (4-カルボキシ- 2-ピリジ-ル)、ジベンゾ [b,j][l, 10]フエナント口リン- 5,8 -ジカルボン酸力も選ばれる 、ずれか 1種若しくは 2種以上であることを特徴とする請 求項 1記載の発光デバイス。
[6] 前記希土類金属が Eu、 Tb、 Tm、 Ceから選ばれる 、ずれか 1種若しくは 2種以上で あることを特徴とする請求項 1記載の発光デバイス。
[7] 金属錯体力もなる発光部の表面に、希土類金属と錯体を形成する配位子によるキヤ ッビングが施されてなることを特徴とする請求項 1から 6のいずれかに記載の発光デ バイス。
[8] 請求項 7記載の配位子力 R^OC^COR3の一般式で表される β -ジケトン類 [R1又は R3は、炭素数 1〜20のアルキル基、ハロゲン化した炭素数 1〜20のアルキル基、炭 素原子 6〜20のァリール基、ヘテロ原子 1個を含む 5員又は 6員の複素環式基、カル ボキシル基を示す。 R2は、水素原子、ハロゲン原子、シァノ基、炭素数 1〜20のアル キル基、ハロゲンィ匕した炭素数 1〜20のアルキル基、炭素原子 6〜20のァリール基、 ヘテロ原子 1個を含む 5員又は 6員の複素環式基を示す。 ] から選ばれるいずれか 1種若しくは 2種以上であることを特徴とする発光デバイス。
[9] 請求項 7記載の配位子力 4,4,4-トリフルォ口- 1- (2-チェ-ル) -1,3-ブタンジオン、 1, 10-フエナント口リン及びその誘導体、 2,2'-ビビリジン及びその誘導体、 2,2';6',2"-タ 一ピリジン及びその誘導体から選ばれる 、ずれか 1種若しくは 2種以上であることを 特徴とする発光デバイス。
[10] 結晶性多孔質酸化亜鉛薄膜を主成分とする N型半導体を用いた電子輸送層と、前 記電子輸送層に修飾された、ブリッジ配位子と希土類金属とで形成された金属錯体 力 なる発光層と、無機化合物力 なる P型半導体を用いた正孔輸送層と、該正孔輸 送層と前記電子輸送層の外層に設けた電極層と、からなることを特徴とするエレクト口 ノレミネッセンス。
[11] 前記結晶性多孔質酸化亜鉛が、亜鉛塩を含む電解液中にぉ ヽて導電性基板をカソ 一ド電析することで、前記亜鉛塩溶液中に溶存する酸素を還元させて、当該導電性 基板上に電解析出させた酸ィ匕亜鉛カゝらなることを特徴とする請求項 10記載のエレク トロルミネッセンス。
[12] 前記結晶性多孔質酸ィ匕亜鉛が、酸ィ匕亜鉛に対する吸着性を有するテンプレートイ匕 合物を混合した亜鉛塩を含む電解液中にぉ ヽて導電性基板を力ソード電析して、当 該導電性基板上に酸ィ匕亜鉛 Zテンプレート分子複合体を析出させた後、テンプレー ト分子を除去してなる酸ィ匕亜鉛力もなることを特徴とする請求項 10記載のエレクト口 ノレミネッセンス。
[13] 前記ブリッジ配位子は、 1分子中に金属イオンに対する配位性を示す部位を 2種以 上有し、かつ希土類金属イオンの種類によって位置選択的な配位ィ匕合物を形成しう る有機分子力もなることを特徴とする請求項 10記載のエレクト口ルミネッセンス。
[14] 前記ブリッジ配位子が、 2,2,-ビビリジン 4,4-ジカノレボン酸、フエナント口リン、 1,10-フ ェナント口リン- 4,7-ジカルボン酸、 2,2';6',2"-ターピリジン- 4しカルボン酸、 2,2';6',2" -ターピリジン- 4,4',4"-トリカルボン酸、 2,2'-ビキノリン- 4,4'ジカルボン酸、 4-キノリン カルボン酸, 2- (4-カルボキシ- 2-ピリジ-ル)、ジベンゾ [b,j][l, 10]フエナント口リン- 5,8
-ジカルボン酸力も選ばれる 、ずれか 1種若しくは 2種以上であることを特徴とする請 求項 10記載のエレクト口ルミネッセンス。
[15] 前記希土類金属が Eu、 Tb、 Tm、 Ceから選ばれるいずれか 1種若しくは 2種以上で あることを特徴とする請求項 10記載のエレクト口ルミネッセンス。
[16] 金属錯体力もなる発光層の表面に、希土類金属と錯体を形成する配位子によるキヤ ッビングが施されてなることを特徴とする請求項 10から 15のいずれかに記載のエレク トロルミネッセンス。
[17] 請求項 15記載の配位子力 R^OC^COR3の一般式で表される β -ジケトン類 [R1又 は R3は、炭素数 1〜20のアルキル基、ハロゲン化した炭素数 1〜20のアルキル基、 炭素原子 6〜20のァリール基、ヘテロ原子 1個を含む 5員又は 6員の複素環式基、力 ルポキシル基を示す。 R2は、水素原子、ハロゲン原子、シァノ基、炭素数 1〜20のァ ルキル基、ハロゲン化した炭素数 1〜20のアルキル基、炭素原子 6〜20のァリール 基、ヘテロ原子 1個を含む 5員又は 6員の複素環式基を示す。 ]から選ばれるいずれ 力 1種若しくは 2種以上であることを特徴とするエレクト口ルミネッセンス。
[18] 請求項 15記載の配位子力 4,4,4-トリフルォ口- 1- (2-チェ-ル) -1,3-ブタンジオン、 1,10-フエナント口リン及びその誘導体、 2,2'-ビビリジン及びその誘導体、 2,2';6',2"- ターピリジン及びその誘導体力も選ばれるいずれか 1種若しくは 2種以上であることを 特徴とするエレクト口ルミネッセンス。
[19] 正孔輸送層が、 Cul、 CuSCN、 NiO、 Cu Oから選ばれるいずれ力 1種若しくは 2種
2
以上であることを特徴とする請求項 10記載のエレクト口ルミネッセンス。
PCT/JP2006/309629 2005-05-27 2006-05-15 発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス WO2006126407A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007517773A JP5170638B2 (ja) 2005-05-27 2006-05-15 発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス
EP06746376A EP1901363A4 (en) 2005-05-27 2006-05-15 LUMINESCENT DEVICE AND ELECTROLUMINESCENCE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005155911 2005-05-27
JP2005-155911 2005-05-27

Publications (1)

Publication Number Publication Date
WO2006126407A1 true WO2006126407A1 (ja) 2006-11-30

Family

ID=37451833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309629 WO2006126407A1 (ja) 2005-05-27 2006-05-15 発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス

Country Status (3)

Country Link
EP (1) EP1901363A4 (ja)
JP (1) JP5170638B2 (ja)
WO (1) WO2006126407A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344853A (ja) * 2005-06-10 2006-12-21 Seiko Epson Corp 発光素子、発光素子の製造方法、電子デバイスおよび電子機器
KR20110050431A (ko) * 2008-06-18 2011-05-13 캠브리지 엔터프라이즈 리미티드 전기광학 다이오드 디바이스
KR101064166B1 (ko) * 2009-08-24 2011-09-15 한국산업기술대학교산학협력단 무기전계발광소자 및 그 제조방법
WO2012160714A1 (ja) * 2011-05-20 2012-11-29 国立大学法人山形大学 有機電子デバイス及びその製造方法
WO2013066101A1 (ko) * 2011-11-04 2013-05-10 주식회사 동진쎄미켐 발광소자
CN111116927A (zh) * 2019-06-19 2020-05-08 江阴市永乐印务有限公司 一种稀土铽荧光配合物Tb-CPs的制备方法及在包装纸类的防伪应用
CN114316955A (zh) * 2021-12-29 2022-04-12 安徽科技学院 一种多孔硅与硫氰酸亚铜复合的光学材料制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855309A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 有机电致发光装置及其制备方法
US20160024688A1 (en) * 2014-07-25 2016-01-28 Seoul Semiconductor Co., Ltd. Fabrication and/or application of zinc oxide crystals with internal (intra-crystalline) porosity
US10727374B2 (en) 2015-09-04 2020-07-28 Seoul Semiconductor Co., Ltd. Transparent conductive structure and formation thereof
US10741724B2 (en) 2015-10-02 2020-08-11 Seoul Viosys Co., Ltd. Light emitting diode devices with zinc oxide layer
US10981801B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Fluid handling system for synthesis of zinc oxide
US10407315B2 (en) 2016-04-14 2019-09-10 Seoul Semiconductor Co., Ltd. Method and/or system for synthesis of zinc oxide (ZnO)
US10981800B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Chamber enclosure and/or wafer holder for synthesis of zinc oxide
KR20180094535A (ko) 2017-02-15 2018-08-24 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치
CN106832326B (zh) * 2017-03-28 2019-11-05 河北医科大学 一种高热稳定性铈配位聚合物及其制备方法和应用
US10242885B2 (en) * 2017-05-26 2019-03-26 Applied Materials, Inc. Selective dry etching of metal films comprising multiple metal oxides
CN109962179B (zh) * 2017-12-26 2021-02-19 Tcl科技集团股份有限公司 一种薄膜及其制备方法与qled器件
CN110098341B (zh) * 2019-05-16 2022-04-12 京东方科技集团股份有限公司 一种量子点电致发光二极管、显示面板和制作方法
KR20220125082A (ko) * 2021-03-04 2022-09-14 삼성전자주식회사 발광 소자, 상기 발광 소자의 제조 방법 및 상기 발광 소자의 구동 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148066A (ja) 1995-11-24 1997-06-06 Pioneer Electron Corp 有機el素子
JPH10162959A (ja) 1996-11-29 1998-06-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2003045661A (ja) * 2001-08-02 2003-02-14 Fuji Photo Film Co Ltd 発光性ナノ構造体およびこれを用いた発光素子
JP2005100702A (ja) * 2003-09-22 2005-04-14 Fuji Photo Film Co Ltd 発光素子
JP2005108441A (ja) * 2003-08-28 2005-04-21 Nippon Kayaku Co Ltd 発光素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003296900A1 (en) * 2002-09-03 2004-05-04 Coled Technologies, Inc. Light emitting molecules and organic light emitting devices including light emitting molecules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148066A (ja) 1995-11-24 1997-06-06 Pioneer Electron Corp 有機el素子
JPH10162959A (ja) 1996-11-29 1998-06-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2003045661A (ja) * 2001-08-02 2003-02-14 Fuji Photo Film Co Ltd 発光性ナノ構造体およびこれを用いた発光素子
JP2005108441A (ja) * 2003-08-28 2005-04-21 Nippon Kayaku Co Ltd 発光素子
JP2005100702A (ja) * 2003-09-22 2005-04-14 Fuji Photo Film Co Ltd 発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI ZHANG ET AL.: "Fabrication and characterization of luminescent self-assembled thin films of europium complex", COLLOIDS AND SURFACES A : PHYSICOCHEM. ENG. ASPECTS, vol. 257-258, 15 December 2004 (2004-12-15), pages 401 - 404
See also references of EP1901363A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344853A (ja) * 2005-06-10 2006-12-21 Seiko Epson Corp 発光素子、発光素子の製造方法、電子デバイスおよび電子機器
KR20110050431A (ko) * 2008-06-18 2011-05-13 캠브리지 엔터프라이즈 리미티드 전기광학 다이오드 디바이스
JP2011525049A (ja) * 2008-06-18 2011-09-08 ケンブリッジ エンタープライズ リミティド 電気光学ダイオードデバイス
KR101695907B1 (ko) 2008-06-18 2017-01-13 캠브리지 엔터프라이즈 리미티드 전기광학 다이오드 디바이스
KR101064166B1 (ko) * 2009-08-24 2011-09-15 한국산업기술대학교산학협력단 무기전계발광소자 및 그 제조방법
WO2012160714A1 (ja) * 2011-05-20 2012-11-29 国立大学法人山形大学 有機電子デバイス及びその製造方法
JP5682877B2 (ja) * 2011-05-20 2015-03-11 国立大学法人山形大学 有機電子デバイス及びその製造方法
US9373823B2 (en) 2011-05-20 2016-06-21 National University Corporation Yamagata University Organic electronic device and method for manufacturing the same
WO2013066101A1 (ko) * 2011-11-04 2013-05-10 주식회사 동진쎄미켐 발광소자
CN111116927A (zh) * 2019-06-19 2020-05-08 江阴市永乐印务有限公司 一种稀土铽荧光配合物Tb-CPs的制备方法及在包装纸类的防伪应用
CN114316955A (zh) * 2021-12-29 2022-04-12 安徽科技学院 一种多孔硅与硫氰酸亚铜复合的光学材料制备方法
CN114316955B (zh) * 2021-12-29 2023-08-25 安徽科技学院 一种多孔硅与硫氰酸亚铜复合的光学材料制备方法

Also Published As

Publication number Publication date
JP5170638B2 (ja) 2013-03-27
EP1901363A4 (en) 2011-07-13
JPWO2006126407A1 (ja) 2008-12-25
EP1901363A1 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
WO2006126407A1 (ja) 発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス
Yang et al. Facile synthesis of a micro-scale MOF host–guest with long-lasting phosphorescence and enhanced optoelectronic performance
Yang et al. Room temperature phosphorescence of Mn (II) and Zn (II) coordination polymers for photoelectron response applications
Bolink et al. Long‐living light‐emitting electrochemical cells–control through supramolecular interactions
Paulo et al. Carbon quantum dots as new hole transport material for perovskite solar cells
Zhuang et al. Conductive MOFs with photophysical properties: applications and thin-film fabrication
Kui et al. Luminescent organoplatinum (II) complexes with functionalized cyclometalated C^ N^ C ligands: structures, photophysical properties, and material applications
Sano et al. Novel europium complex for electroluminescent devices with sharp red emission
US6420056B1 (en) Electroluminescent device with dye-containing organic-inorganic hybrid materials as an emitting layer
Wang et al. Long-lived room temperature phosphorescence of organic–inorganic hybrid systems
JP4635997B2 (ja) 電気化学発光装置、及び電気化学発光素子の駆動方法
TWI422088B (zh) 具有奈米點之有機發光二極體及其製造方法
TWI395509B (zh) 有機電場發光元件
Wang et al. Electroswitchable fluorescent thin film controlled by polyoxometalate
Leeb et al. Colloidal synthesis and electroluminescence properties of nanoporous MnIIZnS films
KR101991525B1 (ko) 도핑된 정공 도체 층을 포함하는 유기 반도체 부품
Fresta et al. Deciphering the Electroluminescence Behavior of Silver (I)‐Complexes in Light‐Emitting Electrochemical Cells: Limitations and Solutions toward Highly Stable Devices
Koinuma et al. Green electrogenerated chemiluminescence using a quinacridone derivative as a guest molecule
Somjit et al. Encapsulation of aggregation-caused quenching dye in metal-organic framework as emissive layer of organic light-emitting diodes
CN107573354A (zh) 一种以氰基苯为核心的化合物及其在oled器件上的应用
Shen et al. A donor–acceptor ligand boosting the performance of FA 0.8 Cs 0.2 PbBr 3 nanocrystal light-emitting diodes
Mayer et al. Supramolecular conformational effects in the electrocatalytic properties of electrostatic assembled films of meso (3-and 4-pyridyl) isomers of tetraruthenated porphyrins
JP2008047450A (ja) 電気化学発光素子、及び電気化学発光装置
Jayabharathi et al. Red, green and blue phosphorescent organic light-emitting diodes with ITO-free anode material
La-Placa et al. Red Light-Emitting Electrochemical Cells Employing Pyridazine-Bridged Cationic Diiridium Complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517773

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746376

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU