WO2013066101A1 - 발광소자 - Google Patents

발광소자 Download PDF

Info

Publication number
WO2013066101A1
WO2013066101A1 PCT/KR2012/009170 KR2012009170W WO2013066101A1 WO 2013066101 A1 WO2013066101 A1 WO 2013066101A1 KR 2012009170 W KR2012009170 W KR 2012009170W WO 2013066101 A1 WO2013066101 A1 WO 2013066101A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
semiconductor material
type semiconductor
emitting device
Prior art date
Application number
PCT/KR2012/009170
Other languages
English (en)
French (fr)
Inventor
배호기
안현철
김종복
양휘찬
박찬석
이준혁
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2013066101A1 publication Critical patent/WO2013066101A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded

Definitions

  • the present invention relates to a light emitting device, and more particularly, to a light emitting device capable of increasing an emission source by forming an electron transport layer and an emission layer having an organic-inorganic porous structure.
  • LEDs Light emitting diodes
  • OLEDs organic LEDs
  • the light emitting diodes (LEDs) emit light by applying an electric field from the outside as opposed to a solar cell.
  • LED uses the light emission phenomenon by recombination of electron holes injected by PN junction.
  • the PN junction process uses a vacuum deposition process, and the film formation process is long, and the large area is limited.
  • the disadvantage is that the module cost increases.
  • an object of the present invention is to provide a light emitting device having an organic-inorganic nanoporous bulk heterojunction structure.
  • An object of the present invention is to provide an organic-inorganic nano-porous Bi-Layer structure light emitting device.
  • the electron transport layer is a porous structure of the n-type semiconductor material
  • the light emitting layer is an inorganic semiconductor light emitting material
  • the organic semiconductor light emitting material and the light absorbing material is characterized in that made of one or more materials.
  • a light emitting device including a light emitting display device of an electron transport layer, a light emitting layer, and a hole transport layer according to a feature of the present invention
  • a light emitting device in which a first substrate on which a first transparent electrode is formed and a second substrate on which a second transparent electrode is disposed opposite to each other are laminated by an encapsulant and a hole transport material is formed between the first substrate and the second substrate.
  • the electron transport layer is formed of a porous n-type semiconductor material on the first substrate, and the light emitting layer is formed of at least one of an organic semiconductor light emitting material, an inorganic semiconductor light emitting material, and a light absorbing material, and the first transparent electrode as a cathode;
  • a power supply unit electrically connected between the second transparent electrodes as an anode to apply power;
  • the present invention can increase the light emitting source by adsorbing the light emitting material to the oxide semiconductor of the nanoporous structure, thereby maximizing the light emitting efficiency of the light emitting device.
  • the light emitting device forming process can be manufactured by a non-vacuum wet process, and thus, a low cost large area light emitting device can be manufactured.
  • the present invention maximizes the light emitting site by using the oxide semiconductor of the nanoporous structure to increase the efficiency of the light emitting device, it is possible to use a low-cost light absorbing material to significantly lower the manufacturing cost of the light emitting device.
  • the light emitting device has an organic-inorganic hybrid structure, and thus the lifespan can be extended compared to the organic LED.
  • the present invention utilizes a porous structure compared to the Bi-Layer of the conventional LED device has the effect of improving the luminous efficiency.
  • FIG. 1 is a view for explaining the configuration of an organic-inorganic hybrid light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a view showing the concept of a bulk heterojunction structure of the organic-inorganic hybrid light emitting device according to an embodiment of the present invention.
  • 3 is a view showing the concept of an organic-inorganic bilayer structure of the organic-inorganic hybrid light emitting device according to an embodiment of the present invention.
  • FIG. 4 is a view showing the structure of an electron transport layer and a light emitting layer according to another embodiment of the present invention.
  • FIG. 1 is a view for explaining the configuration of an organic-inorganic hybrid light emitting device according to an embodiment of the present invention.
  • the counter electrode substrate 200 having the working electrode (photoelectrode) substrate 100 having the first transparent electrode 120 formed thereon and the second transparent electrode 220 disposed opposite thereto is formed. Is encapsulated by the encapsulant 250 and an electrolyte 240 is injected between the working electrode substrate 100 and the counter electrode substrate 200.
  • the power supply 300 is electrically connected between both ends of the first transparent electrode 120 and the second transparent electrode 220 to apply an AC voltage or a current having a predetermined period by amplitude modulation in a forward or reverse direction. It is.
  • the first transparent electrode 120 is formed on the first transparent substrate 110, and the electron transport layer 130 having the light emitting layer 140 formed thereon is formed thereon.
  • the electron transport layer 130 represents a porous oxide semiconductor layer in which a plurality of nanostructured oxide semiconductor materials are formed in a porous structure.
  • the porous oxide semiconductor layer is not only limited to one embodiment of the present invention but includes all n-type inorganic semiconductor materials such as sulfides and group 2-6 compounds, and n-type oxide semiconductors.
  • the light emitting layer 140 includes an inorganic and an organic semiconductor light emitting material, a light absorbing material (dye, etc.) and a mixture thereof.
  • the inorganic semiconductor light emitting material may be any material as long as it is a group 3-5 semiconductor and a group 2-6 compound semiconductor material, and the organic semiconductor light emitting material may be any material in which an anchoring group of dye is introduced into the OLED and LED light emitting material.
  • the light emitting layer 140 may use an oxide semiconductor having a nanoporous structure to widen the light absorption wavelength range and increase the efficiency of the light emitting device, and may significantly reduce the manufacturing cost of the light emitting device by using a low cost light absorbing material. .
  • the electron transport layer 130 represents a working electrode made of metal oxide particles, a nanostructured oxide semiconductor (eg, titanium dioxide (TiO 2 ) is used), or the like.
  • a nanostructured oxide semiconductor eg, titanium dioxide (TiO 2 ) is used
  • the electron transport layer 130 absorbs the dye 140 which absorbs external light and generates electrons on the surface thereof.
  • the dye 140 may be formed of a metal composite including aluminum (Al), platinum (Pt), palladium (Pd), europium (Eu), lead (Pb), iridium (Ir), ruthenium (Ru), and the like. In addition to the dye 140, both inorganic and organic semiconductor light emitting materials may be used.
  • the first transparent substrate 110 serving as a support for supporting the first transparent electrode 120 should be formed to be transparent to allow incidence of external light, and may be made of, for example, transparent glass or plastic.
  • plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PET). Poly-imide (PI), Tri Acetyl Cellulose (TAC), and the like.
  • the first transparent electrode 120 formed on the first transparent substrate 110 may include indium tin oxide (ITO), fluorine tin oxide (FTO), and antimony tin oxide (ATO). , Zinc oxide, tin oxide, ZnOGa 2 O 3 , ZnO-Al 2 O 3, or a transparent material.
  • the first transparent electrode 120 may be formed of a single film or a laminated film of a transparent material.
  • the second transparent substrate 210 disposed to face the first transparent substrate 110 serves as a support for supporting the second transparent electrode 220 and the catalyst electrode 230, the first transparent substrate 110 It may be made of transparent glass or plastic, such as.
  • the second transparent electrode 220 and the catalyst electrode 230 formed on the second transparent substrate 210 are formed to face the first transparent electrode 120.
  • the second transparent electrode 220 may be made of a transparent material such as indium tin oxide, fluorine oxide, antimony tin oxide, zinc oxide, tin oxide, ZnOGa 2 O 3 , ZnO-Al 2 O 3 , and the catalyst electrode 230 ) Serves to activate the redox couple, and may be composed of platinum, ruthenium, palladium, iridium, rhodium (Rh), osmium (Os), carbon (C), WO 3 , TiO 2 , and the like. Can be.
  • FIG. 2 is a view showing the concept of a bulk heterojunction structure of the organic-inorganic hybrid light emitting device according to an embodiment of the present invention
  • Figure 3 is an organic-inorganic device of the organic-inorganic hybrid light emitting device according to an embodiment of the present invention It is a figure which shows the concept of a bilayer structure.
  • the n-type semiconductor material 130 serves as the electron transport layer
  • the dye 140 plays the role of the light emitting layer
  • the electrolyte 240 plays the role of the hole transport layer.
  • the above-described electrolyte 240 includes one of a liquid electrolyte, a solid electrolyte, and a gel electrolyte.
  • a gel polymer electrolyte having low crystallinity, easy injection of electrolyte solution, and improved lifetime characteristics is preferable.
  • the hole transport layer may be a monomolecular and polymeric hole transport material, and includes organic and inorganic hole transport materials.
  • the hole transport layer is preferably a polymer-type hole transporter capable of surface bonding while sufficiently infiltrating a nanoporous oxide semiconductor.
  • a hole blocking layer is provided between the nanoporous oxide semiconductor 130 and the light emitting layer 140 to prevent electron injection energy loss due to energy difference and to prevent the injected holes from being lost to the nanoporous oxide. Insertion is preferable for maximizing the luminous efficiency.
  • the hole transport prevention layer is a non-conductive material having high ionization energy and heat resistance insulation compared with the light emitting layer 140 to prevent degradation of the light emitting layer 140 and to prevent holes from moving from the light emitting layer 140 to the n-type semiconductor material 130. Material can be used.
  • the electron affinity is about an intermediate value between the light emitting layer 140 and the electron transport layer (nanoporous porous layer material) 130. It is preferable to have an organic semiconductor material as such a material.
  • an electron blocking layer may be inserted between the emission layer 140 and the hole transport layer to prevent electrons from moving from the emission layer 140 to the electrolyte 240.
  • the electron transport prevention layer is a non-conductive material having a smaller electron affinity than the light emitting layer 140.
  • MEHPPV PEDOT: PSS, or the like may be used.
  • the above-described hole transport prevention layer and the electron transport prevention layer may include optional or both.
  • electrons are introduced from the n-type semiconductor material 130, holes are introduced from the electrolyte 240, and electrons in the conduction band lose energy and recombine with holes in the valence band to emit light in this process.
  • the n-type semiconductor material 130 may be any material as long as the n-type semiconductor material (inorganic porous structure) 130 as well as titanium dioxide (TiO 2 ) having a nano-porous structure.
  • the inorganic semiconductor light emitting material, the organic semiconductor light emitting material, or the dye 140 is adsorbed and coated to be chemically / physically bonded to the n-type semiconductor material 130 of the inorganic porous structure, a bulk hetero junction structure is formed.
  • the n-type semiconductor material 130 may be formed in an inorganic thin film structure, and the n-type semiconductor material 130 and the light emitting layer 140 may be configured as a bilayer to form a bilayer junction structure. have.
  • the inorganic porous structure n-type semiconductor material 130 is used as an electron transport layer, and the light emitting layer 140 is coated to be chemically / physically bonded to the n-type semiconductor material 130, and then a p-type organic semiconductor material or a conductive material is used as the hole transport layer.
  • Organic coatings form a bulk hetero junction structure or a bilayer junction structure.
  • the bulk heterojunction structure increases the recombination emission source of the electron-hole excitons, thereby constituting a light emitting device having an organic-inorganic junction structure that maximizes the luminous efficiency.
  • any light emitting device having an organic-inorganic junction structure may be applied to any light emitting display device such as an LED, an organic light emitting diode (OLED), an organic EL, or an inorganic EL.
  • any light emitting display device such as an LED, an organic light emitting diode (OLED), an organic EL, or an inorganic EL.
  • a greater amount of dye 140 may be attached, thereby increasing the light emitting source that can be produced, thereby maximizing the light emission efficiency.
  • the nanoparticles are used as the n-type semiconductor material 130 and the catalyst electrode 230, and because the surface area of the material increases dramatically in the same volume, a large amount of the dye 140 can be attached to the surface, The rate of the electrochemical reaction between the n-type semiconductor material 130 and the catalyst electrode 230 and the electrolyte 240 may be increased.
  • an oxide semiconductor material (TiO 2 ) is formed in a nanoporous structure.
  • the n-type semiconductor material 130 is not formed in a porous structure, but is formed in a rod shape in the longitudinal direction, and the light emitting layer 140 is coated on the surface of the rod-shaped oxide semiconductor material. It can be formed to.
  • the shape of the n-type semiconductor material 130 is formed in the shape of a rod in the longitudinal direction, it is possible to standardize the light emitting source of the light emitting device, which has manufacturing advantages.
  • the present invention can increase the light emitting source by adsorbing the light emitting material to the oxide semiconductor of the nanoporous structure, thereby maximizing the light emitting efficiency of the light emitting device.
  • the light emitting device forming process can be manufactured by a non-vacuum wet process, and thus, a low cost large area light emitting device can be manufactured.
  • the present invention maximizes the light emitting site by using the oxide semiconductor of the nanoporous structure to increase the efficiency of the light emitting device, it is possible to use a low-cost light absorbing material to significantly lower the manufacturing cost of the light emitting device.
  • the light emitting device has an organic-inorganic hybrid structure, and thus the lifespan can be extended compared to the organic LED.
  • the present invention utilizes a porous structure compared to the Bi-Layer of the conventional LED device has the effect of improving the luminous efficiency.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

전자 수송층, 발광층, 정공 수송층의 발광 표시 장치를 포함하는 발광소자는 상기 전자 수송층을 n형 반도체 물질로 다공질 구조이고, 발광층을 무기 반도체 발광물질, 유기 반도체 발광물질 및 광흡수물질 중 하나 이상의 물질로 이루어진 것을 특징으로 한다.

Description

발광소자
본 발명은 발광소자에 관한 것으로서, 특히 유무기 다공질 구조의 전자 수송층과 발광층을 형성하여 발광 소스를 증대할 수 있는 발광소자에 관한 것이다.
발광 다이오드(Light Emitting Diode, LED)는 발광에 기여하는 물질에 따라 무기 LED, 유기 LED(OLED)로 대별할 수 있으며, 태양전지의 반대 개념으로 외부에서 전계를 인가하여 빛을 내는 발광소자이다.
이러한 발광소자는 표시 장치에서 조명 산업에 이르기까지 향후 거대 시장을 주도할 차세대 발광 장치에 대한 연구가 세계적인 이슈가 되고 있으며, 새로운 발광 재료 및 발광 소자 개발에 대한 원천 기술 선점과 고부가 가치의 실현이라는 측면에서 많은 연구가 이루어지고 있다.
LED는 PN 접합에 의해 주입된 전자 정공의 재결합에 의한 발광 현상을 이용한 것으로 PN 접합 공정이 진공 증착 공정을 이용하여 성막 공정이 길고 대면적화에 제약이 있으며 진공 장비에 의한 제조 공정의 투자비 증대로 LED 모듈 코스트가 증가하는 단점이 있다.
이와 같은 문제점을 해결하기 위하여, 본 발명은 유무기 나노 다공질의 벌크 헤테로 결합(Bulk Hetero Junction) 구조의 발광소자를 제공하는데 그 목적이 있다.
본 발명은 유무기 나노 다공질의 Bi-Layer 구조의 발광소자를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 특징에 따른 전자 수송층, 발광층, 정공 수송층의 발광 표시 장치를 포함하는 발광소자에서 상기 전자 수송층은 n형 반도체 물질로 다공질 구조이고, 상기 발광층은 무기 반도체 발광물질, 유기 반도체 발광물질 및 광흡수물질 중 하나 이상의 물질로 이루어진 것을 특징으로 한다.
본 발명의 특징에 따른 전자 수송층, 발광층, 정공 수송층의 발광 표시 장치를 포함하는 발광소자는,
제1 투명전극이 형성된 제1 기판과 이에 대향하여 배치된 제2 투명전극이 형성된 제2 기판을 봉지재에 의해 합지하고, 상기 제1 기판과 상기 제2 기판 사이에 정공 수송물질이 형성된 발광소자로서,
상기 제1 기판 위에 상기 전자 수송층을 다공질 구조의 n형 반도체 물질로, 상기 발광층을 유기 반도체 발광물질, 무기 반도체 발광물질 및 광흡수물질 중 하나 이상의 물질로 이루어지며, 음극인 상기 제1 투명전극과 양극인 상기 제2 투명전극 사이에 전기적으로 접속되어 전원을 인가하는 전원 공급부를 포함하며,
상기 전원 공급부로부터 역전압이 인가되면, 상기 제1 투명전극으로부터 상기 n형 반도체 물질로 전자가 유입되는 것을 특징으로 한다.
전술한 구성에 의하여, 본 발명은 나노 다공질 구조의 산화물 반도체에 발광물질을 흡착함으로써 발광 소스를 증대할 수 있어 발광소자의 발광 효율을 극대화하는 효과가 있다.
본 발명은 발광소자 형성 공정이 비진공 습식 공정으로 제조 가능하므로 저가격 대면적 발광소자의 제조가 가능한 효과가 있다.
본 발명은 나노 다공질 구조의 산화물 반도체를 사용하여 발광싸이트를 극대화하여 발광소자의 효율을 높이며, 저가의 광흡수물질을 사용하여 발광소자의 제조 비용을 현저히 낮출 수 있는 효과가 있다.
본 발명은 발광소자를 유무기 하이브리드 구조로 형성하여 유기 LED에 비교하여 장수명화가 가능한 효과가 있다.
본 발명은 기존의 LED 소자의 Bi-Layer에 비교하여 다공질 구조를 활용하므로 발광 효율을 개선하는 효과가 있다.
도 1은 본 발명의 실시예에 따른 유무기 하이브리드 발광소자의 구성을 설명하기 위한 도면이다.
도 2는 본 발명의 실시예에 따른 유무기 하이브리드 발광소자의 벌크 헤테로 결합(Bulk Hetero Junction) 구조의 개념을 나타낸 도면이다.
도 3은 본 발명의 실시예에 따른 유무기 하이브리드 발광소자의 유무기 이중층(Bilayer) 구조의 개념을 나타낸 도면이다.
도 4는 본 발명의 다른 실시예에 따른 전자 수송층과 발광층의 구조를 나타낸 도면이다.
* 도면의 주요부분에 대한 부호의 설명 *
100: 작동전극 기판
110: 제1 투명기판
120: 제1 투명전극
130: 전자 수송층, 다공질 산화물 반도체층, n형 반도체 물질
140: 발광층, 염료
200: 상대전극 기판
210: 제2 투명기판
220: 제2 투명전극
230: 촉매전극
240: 전해질
250: 봉지재
300: 전원 공급부
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 실시예에 따른 유무기 하이브리드 발광소자의 구성을 설명하기 위한 도면이다.
본 발명의 실시예에 따른 발광소자는 제1 투명전극(120)이 형성된 작동전극(광전극) 기판(100)과 이에 대향하여 배치된 제2 투명전극(220)이 형성된 상대전극 기판(200)을 봉지재(250)에 의해 합지하고, 작동전극 기판(100)과 상대전극 기판(200) 사이에 전해질(240)이 주입된 구조로 되어 있다.
제1 투명전극(120)과 제2 투명전극(220) 사이에는 양단에 전기적으로 접속되어 순방향 또는 역방향으로 진폭 변조에 의해 소정의 주기를 갖는 교류 전압 또는 전류를 인가하는 전원 공급부(300)가 연결되어 있다.
작동전극 기판(100)은 제1 투명기판(110) 상에 제1 투명전극(120)이 형성되고, 그 위에 발광층(140)을 표면에 형성한 전자 수송층(130)이 형성된다.
여기서, 전자 수송층(130)은 나노 구조의 산화물 반도체 물질이 다공질 구조로 복수개 형성되어 있는 다공질 산화물 반도체층을 나타낸다.
다공질 산화물 반도체층은 본 발명의 하나의 실시예일 뿐 이에 한정하지 않고, 황화물, 2-6족 화합물 등의 n형 무기물 반도체 물질, n형 산화물 반도체를 모두 포함한다.
여기서, 발광층(140)은 무기 및 유기 반도체 발광물질, 광흡수물질(염료 등)과 이들의 혼합한 물질을 포함한다. 무기 반도체 발광물질은 3-5족 반도체, 2-6족 화합물 반도체 물질이면 어떠한 물질도 가능하고, 유기 반도체 발광물질은 OLED, LED 발광재료에 염료의 Anchoring기를 도입한 재료면 어떠한 것도 가능하다.
발광층(140)은 나노 다공질 구조의 산화물 반도체를 사용하여 광흡수 파장대의 영역을 넓히고 발광소자의 효율을 높일 수 있으며 저가의 광흡수물질을 사용하여 발광소자의 제조 비용을 현저히 낮출 수 있는 효과가 있다.
전자 수송층(130)은 금속 산화물 입자, 나노 구조의 산화물 반도체(예, 이산화티타늄(TiO2)이 이용됨) 등으로 이루어진 작동 전극을 나타낸다.
이러한 전자 수송층(130)은 표면에 외부광을 흡수하여 전자를 생성하는 염료(140)가 흡착된다. 염료(140)는 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 유로퓸(Eu), 납(Pb), 이리듐(Ir), 루테늄(Ru) 등을 포함하는 금속 복합체로 이루어질 수 있다. 염료(140) 이외에 무기 및 유기 반도체 발광물질을 모두 사용할 수 있다.
제1 투명전극(120)을 지지하는 지지체 역할을 하는 제1 투명기판(110)은 외부광의 입사가 가능하도록 투명하게 형성되어야 하며, 예를 들어, 투명한 유리 또는 플라스틱으로 이루어질 수 있다. 플라스틱의 구체적인 예로는 폴리에틸렌 테레프탈레이트(Poly Ethylene Terephthalate, PET), 폴리에틸렌 나프탈레이트(Poly Ethylene Naphthalate: PEN), 폴리카보네이트(Poly-Carbonate: PC), 폴리프로필렌(Poly-Propylene: PP), 폴리이미드(Poly- Imide: PI), 트리 아세틸 셀룰로오스(Tri Acetyl Cellulose: TAC) 등을 들 수 있다.
제1 투명기판(110)에 형성되는 제1 투명전극(120)은 인듐 틴 산화물(Indium Tin Oxide: ITO), 플루오르 틴 산화물(Fluorine Tin Oxide: FTO), 안티몬 틴 산화물(Antimony Tin Oxide: ATO), 징크 산화물(Zinc Oxide), 틴 산화물(Tin Oxide), ZnOGa2O3, ZnO-Al2O3 등의 투명 물질로 이루어질 수 있다. 제1 투명전극(120)은 투명 물질의 단일막 또는 적층막으로 이루어질 수 있다.
한편, 제1 투명기판(110)에 대향 배치되는 제2 투명기판(210)은 제2 투명전극(220) 및 촉매전극(230)을 지지하는 지지체 역할을 하는 것으로, 제1 투명기판(110)과 같이 투명한 유리 또는 플라스틱으로 이루어질 수 있다.
제2 투명기판(210)에 형성되는 제2 투명전극(220) 및 촉매전극(230)은 제1 투명전극(120)과 대향 배치되도록 형성된다. 제2 투명전극(220)은 인듐 틴 산화물, 플루오르 틴 산화물, 안티몬 틴 산화물, 징크 산화물, 틴 산화물, ZnOGa2O3, ZnO-Al2O3 등의 투명 물질로 이루어질 수 있고, 촉매전극(230)은 산화-환원 쌍(Redox couple)을 활성화시키는 역할을 하는 것으로, 백금, 루테늄, 팔라듐, 이리듐, 로듐(Rh), 오스뮴(Os), 탄소(C), WO3, TiO2 등으로 이루질 수 있다.
다음으로, 도 2 및 도 3을 참조하여 본 발명의 실시예에 따른 유무기 하이브리드 발광소자의 동작 원리를 상세하게 설명한다.
도 2는 본 발명의 실시예에 따른 유무기 하이브리드 발광소자의 벌크 헤테로 결합(Bulk Hetero Junction) 구조의 개념을 나타낸 도면이고, 도 3은 본 발명의 실시예에 따른 유무기 하이브리드 발광소자의 유무기 이중층(Bilayer) 구조의 개념을 나타낸 도면이다.
발광소자는 전자 수송층의 역할을 n형 반도체 물질(130), 발광층의 역할을 염료(140), 정공 수송층의 역할을 전해질(240)이 담당한다.
전술한 전해질(240)은 액체형 전해질, 고체형 전해질 및 겔형 전해질 중 하나의 전해질을 포함한다.
그러나 정공 수송층의 역할을 담당하고 광전환 효율을 저하시키지 않기 위해서는 낮은 결정성을 갖고 전해액 주입이 용이하고 수명 특성을 향상시킨 겔형 고분자 전해질이 바람직하다.
또한, 정공 수송층은 단분자 및 폴리머형 정공 수송 물질일 수 있으며, 유기 및 무기 정공 수송재료를 포함한다.
정공 수송층은 나노 포러스(Nano Porous)한 산화물 반도체에 충분히 스며들면서 표면 결합이 가능한 폴리머형 정공 수송체가 바람직하다.
나노포러스한 산화물 반도체(130)와 발광층(140) 사이에 에너지 차이에 의한 전자 주입 에너지 손실을 방지하고 주입된 정공이 나노포러스 산화물에 이르러 손실되는 것을 방지하기 위한 정공 수송 방지층(Hole Blocking Layer)을 삽입하는 것이 발광 효율의 극대화에 바람직하다.
정공 수송 방지층은 발광층(140)의 열화를 방지하고 발광층(140)으로부터 n형 반도체 물질(130)로 정공이 이동하는 것을 방지하기 위하여 발광층(140)에 비해 이온화 에너지가 큰 비전도성 재료, 내열성 절연 재료를 사용할 수 있다.
또한, 정공 수송 방지층은 n형 반도체 물질(130)로부터 전자를 받아서 발광층(140)에 전달해야 하므로 전자 친화도가 발광층(140)과 전자 수송층(나노포러스 다공질 층 소재)(130)의 중간 값 정도를 가지는 것이 좋으며, 이러한 재료로 유기 반도체 소재를 사용할 수 있다.
이에 더하여 발광층(140)과 정공 수송층 사이에 발광층(140)으로부터 전해질(240)로 전자가 이동하는 것을 방지하기 위하여 전자 수송 방지층(Electron Blocking Layer)을 삽입할 수 있다.
전자 수송 방지층은 발광층(140)에 비해 전자 친화도가 작은 비전도성 재료로, 예를 들어 MEHPPV, PEDOT:PSS 등을 사용할 수 있다.
전술한 정공 수송 방지층과 전자 수송 방지층은 선택적 또는 양자 모두 포함할 수 있다.
도 2 및 도 3을 참조하면, 전원 공급부(300)는 제1 투명전극(음극)(120), 제2 투명전극(양극)(220)의 양단에 역방향으로 직류 전압을 인가하게 되면, 제1 투명전극(120)으로부터 전자가 유입되어 이동하고, 제2 투명전극(220)으로부터 촉매전극(230)을 통해 정공이 형성되어 이동한다.
발광층(140)은 n형 반도체 물질(130)로부터 전자가, 전해질(240)로부터 정공이 유입되고, 전도대의 전자가 에너지를 잃으면서 가전자대의 정공과 재결합하여 이러한 과정에서 빛을 방출하게 된다.
도 2에 도시된 바와 같이, n형 반도체 물질(130)은 나노 다공질 구조의 이산화티타늄(TiO2) 뿐만 아니라 n형 반도체 물질(무기물 다공질 구조)(130)이면 어떠한 물질도 가능하다.
무기물 다공질 구조의 n형 반도체 물질(130)에 화학적/물리적으로 결합되도록 무기 반도체 발광물질, 유기 반도체 발광물질 또는 염료(140)를 흡착하여 코팅하게 되므로 Bulk Hetero Junction 구조체를 형성한다.
도 3에 도시된 바와 같이, n형 반도체 물질(130)을 무기물 박막 구조로 형성하고, n형 반도체 물질(130)과 발광층(140)을 이중층(Bilayer)으로 구성하여 Bilayer Junction 구조체를 형성할 수도 있다.
무기물 다공질 구조의 n형 반도체 물질(130)을 전자 수송층으로 하고, n형 반도체 물질(130)에 화학적/물리적으로 결합되도록 발광층(140)을 코팅한 후, 정공 수송층으로 p형 유기 반도체 물질 또는 도전성 유기물질을 코팅하므로 Bulk Hetero Junction 구조체 또는 Bilayer Junction 구조체를 구성한다.
이 때 Bulk Hetero Junction 구조는 전자-정공 여기자의 재결합 발광소스를 증대하므로 발광 효율을 극대화하는 유무기 접합 구조의 발광소자를 구성할 수 있는 것이다.
여기서, 유무기 접합 구조의 발광소자는 LED, OLED(Organic Light Emitting Diode), 유기 EL, 무기 EL 등 발광 표시 장치면 어떠한 장치도 적용이 가능하다.
n형 반도체 물질(130)과 전해질(240) 사이와 촉매전극(230)과 전해질(240) 사이에서 이루어지는 전기화학 반응에 따르므로, 전극과 전해질(240)이 닿는 면적이 넓을수록 많은 반응이 빠르게 진행될 수 있다. 아울러 n형 반도체 물질(130)의 표면 면적이 넓을수록 많은 양의 염료(140)가 붙어 있을 수 있기 때문에 생산할 수 있는 발광 소스를 증대하므로 발광 효율을 극대화한다.
따라서, n형 반도체 물질(130)과 촉매전극(230) 소재로 나노 입자를 사용하며, 동일 부피에서 물질의 표면적이 극단적으로 증가하기 때문에 많은 양의 염료(140)를 표면에 부착할 수 있고, n형 반도체 물질(130)과 촉매전극(230)과 전해질(240) 사이의 전기화학 반응의 속도를 증가시킬 수 있다.
본 발명의 n형 반도체 물질(130)은 산화물 반도체 물질(TiO2)이 나노 다공질 구조로 형성된 것이다.
도 4에 도시된 바와 같이, 이러한 n형 반도체 물질(130)의 형태를 다공질 구조로 형성하지 않고, 길이 방향의 막대 형상으로 형성하고, 막대 형상의 산화물 반도체 물질의 표면에 발광층(140)을 코팅하도록 형성할 수 있다. n형 반도체 물질(130)의 형태를 길이 방향의 막대 형상으로 형성하는 경우, 발광소자의 발광 소스의 규격화가 가능하므로 제조상의 장점이 있다.
이상에서 설명한 본 발명의 실시예는 장치 및/또는 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하기 위한 프로그램, 그 프로그램이 기록된 기록 매체 등을 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
전술한 구성에 의하여, 본 발명은 나노 다공질 구조의 산화물 반도체에 발광물질을 흡착함으로써 발광 소스를 증대할 수 있어 발광소자의 발광 효율을 극대화하는 효과가 있다.
본 발명은 발광소자 형성 공정이 비진공 습식 공정으로 제조 가능하므로 저가격 대면적 발광소자의 제조가 가능한 효과가 있다.
본 발명은 나노 다공질 구조의 산화물 반도체를 사용하여 발광싸이트를 극대화하여 발광소자의 효율을 높이며, 저가의 광흡수물질을 사용하여 발광소자의 제조 비용을 현저히 낮출 수 있는 효과가 있다.
본 발명은 발광소자를 유무기 하이브리드 구조로 형성하여 유기 LED에 비교하여 장수명화가 가능한 효과가 있다.
본 발명은 기존의 LED 소자의 Bi-Layer에 비교하여 다공질 구조를 활용하므로 발광 효율을 개선하는 효과가 있다.

Claims (12)

  1. 전자 수송층, 발광층, 정공 수송층의 발광 표시 장치를 포함하는 발광소자에 있어서,
    상기 전자 수송층은 n형 반도체 물질로 다공질 구조이고, 상기 발광층은 무기 반도체 발광물질, 유기 반도체 발광물질 및 광흡수물질 중 하나 이상의 물질로 이루어진 것을 특징으로 하는 발광소자.
  2. 제1항에 있어서,
    상기 전자 수송층은 산화물, 황화물 반도체 물질, 2-6족 화합물 중 하나인 것을 특징으로 하는 발광소자.
  3. 제1항에 있어서,
    상기 정공 수송층은 단분자 및 폴리머형 정공 수송 물질이거나, 액체형 전해질, 고체형 전해질, 겔형 전해질 중 하나의 전해질인 것을 특징으로 하는 발광소자.
  4. 제1항에 있어서,
    상기 무기 반도체 발광물질은 3-5족 반도체, 2-6족 화합물 반도체 물질이고, 상기 유기 반도체 발광물질은 OLED, LED 발광재료에 염료의 Anchoring기를 도입한 재료이며, 상기 광흡수물질은 상기 염료인 것을 특징으로 하는 발광소자.
  5. 제1항에 있어서,
    상기 다공질 구조의 n형 반도체 물질에 상기 발광층을 흡착하여 코팅한 후, 상기 정공 수송층으로 p형 유기 반도체 또는 도전성 유기물질을 코팅하는 것을 특징으로 하는 발광소자.
  6. 제1항에 있어서,
    상기 전자 수송층인 무기물 다공질 구조의 n형 반도체 물질에 상기 발광층을 흡착하여 벌크 헤테로 결합(Bulk Hetero Junction) 구조체를 형성하는 것을 특징으로 하는 발광소자.
  7. 제1항에 있어서,
    상기 전자 수송층인 무기물 박막 구조의 n형 반도체 물질에 상기 발광층을 코팅하여 이중층(Bilayer) 구조체를 형성하는 것을 특징으로 하는 발광소자.
  8. 제1항에 있어서,
    상기 전자 수송층과 상기 발광층 사이에 에너지 차이에 의한 전자 주입 에너지 손실을 방지하기 위하여 정공 수송 방지층을 더 포함하는 것을 특징으로 하는 발광소자.
  9. 제1항에 있어서,
    상기 발광층과 상기 정공 수송층 사이에 상기 발광층으로부터 상기 정공 수송층으로 전자가 이동하는 것을 방지하기 위한 전자 수송 방지층을 더 포함하는 것을 특징으로 하는 발광소자.
  10. 제1항에 있어서,
    상기 n형 반도체 물질의 형태는 길이 방향의 막대 형상으로 복수개 형성하고, 상기 형성된 막대 형상의 산화물 반도체 물질의 표면에 상기 발광층을 흡착하여 코팅하는 것을 특징으로 하는 발광소자.
  11. 전자 수송층, 발광층, 정공 수송층의 발광 표시 장치를 포함하는 발광소자에 있어서,
    제1 투명전극이 형성된 제1 기판과 이에 대향하여 배치된 제2 투명전극이 형성된 제2 기판을 봉지재에 의해 합지하고, 상기 제1 기판과 상기 제2 기판 사이에 정공 수송물질이 형성된 발광소자로서,
    상기 제1 기판 위에 상기 전자 수송층을 다공질 구조의 n형 반도체 물질로, 상기 발광층을 유기 반도체 발광물질, 무기 반도체 발광물질 및 광흡수물질 중 하나 이상의 물질로 이루어지며, 음극인 상기 제1 투명전극과 양극인 상기 제2 투명전극 사이에 전기적으로 접속되어 전원을 인가하는 전원 공급부를 포함하며,
    상기 전원 공급부로부터 역전압이 인가되면, 상기 제1 투명전극으로부터 상기 n형 반도체 물질로 전자가 유입되는 것을 특징으로 하는 발광소자.
  12. 제11항에 있어서,
    상기 다공질 구조의 n형 반도체 물질에 상기 발광층을 흡착하여 벌크 헤테로 결합(Bulk Hetero Junction) 구조체를 형성하는 것을 특징으로 하는 발광소자.
PCT/KR2012/009170 2011-11-04 2012-11-02 발광소자 WO2013066101A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0114252 2011-11-04
KR1020110114252A KR20130049312A (ko) 2011-11-04 2011-11-04 발광소자

Publications (1)

Publication Number Publication Date
WO2013066101A1 true WO2013066101A1 (ko) 2013-05-10

Family

ID=48192382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009170 WO2013066101A1 (ko) 2011-11-04 2012-11-02 발광소자

Country Status (3)

Country Link
KR (1) KR20130049312A (ko)
TW (1) TW201324844A (ko)
WO (1) WO2013066101A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10021761B2 (en) * 2016-10-21 2018-07-10 AhuraTech LLC System and method for producing light in a liquid media

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215984A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 有機電界発光素子
WO2004112440A1 (ja) * 2003-06-13 2004-12-23 Matsushita Electric Industrial Co., Ltd. 発光素子及びその製造方法、表示装置
KR20060053916A (ko) * 2004-08-20 2006-05-22 세이코 엡슨 가부시키가이샤 일렉트로루미네선스 장치 및 일렉트로루미네선스 장치의제조 방법 및 전자 기기
WO2006126407A1 (ja) * 2005-05-27 2006-11-30 Gifu University 発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス
JP2011119076A (ja) * 2009-12-01 2011-06-16 Sony Corp 無機電界発光素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215984A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 有機電界発光素子
WO2004112440A1 (ja) * 2003-06-13 2004-12-23 Matsushita Electric Industrial Co., Ltd. 発光素子及びその製造方法、表示装置
KR20060053916A (ko) * 2004-08-20 2006-05-22 세이코 엡슨 가부시키가이샤 일렉트로루미네선스 장치 및 일렉트로루미네선스 장치의제조 방법 및 전자 기기
WO2006126407A1 (ja) * 2005-05-27 2006-11-30 Gifu University 発光デバイス及びこの発光デバイスを用いたエレクトロルミネッセンス
JP2011119076A (ja) * 2009-12-01 2011-06-16 Sony Corp 無機電界発光素子

Also Published As

Publication number Publication date
KR20130049312A (ko) 2013-05-14
TW201324844A (zh) 2013-06-16

Similar Documents

Publication Publication Date Title
US7317210B2 (en) Organic light emitting diode, method for the production thereof and uses thereof
US7901538B2 (en) Transparent conductive multi-layer structure, process for its manufacture and device making use of transparent conductive multi-layer structure
US8791633B2 (en) Radiation-emitting device
US8399889B2 (en) Organic light emitting diode and organic solar cell stack
US8975512B2 (en) Tandem photovoltaic cells
KR101727344B1 (ko) 캡슐화 광전자 장치 및 그 제조 방법
JP4624664B2 (ja) 大型有機デバイス及び大型有機デバイスを製造する方法
US20150207097A1 (en) Components and method for producing components
KR102610180B1 (ko) 광전자 소자를 위한 확산-제한 전기활성 베리어 층
JP2014179536A (ja) ロールスクリーン及びロールスクリーン装置
US20150270509A1 (en) Method and apparatus for producing an optoelectronic element
WO2012053763A2 (ko) 광산란층을 구비한 염료감응 태양전지모듈 및 그 제조 방법
CN104106310A (zh) 有机电致发光元件
WO2018043910A1 (ko) 페로브 스카이트 태양전지 효율 향상을 위한 정공수송물질
WO2013066101A1 (ko) 발광소자
KR20230155395A (ko) 접착필름의 봉지 기술을 이용한 유기전자소자 및 이의 제조 방법
KR101697370B1 (ko) 종이를 기판으로 하는 유기발광 다이오드 및 그 제조방법
JP2008071937A (ja) 有機薄膜太陽電池
KR20100092304A (ko) 유기 태양전지 및 그 제조 방법
WO2013051825A2 (ko) 염료감응 태양전지 모듈 및 이의 전극 보호층 형성 방법
CN219372996U (zh) 一种oled显示模组及具有其的显示屏
WO2017052195A1 (ko) 유연소자, 이의 제조방법 및 이의 제조장치
US20210012973A1 (en) Optoelectronic module
CN111370581B (zh) 正结构有机太阳能电池
CN207732722U (zh) 太阳能光伏平面发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845794

Country of ref document: EP

Kind code of ref document: A1