WO2006123630A1 - 位相シフトマスクブランクの製造方法及び位相シフトマスクの製造方法 - Google Patents

位相シフトマスクブランクの製造方法及び位相シフトマスクの製造方法 Download PDF

Info

Publication number
WO2006123630A1
WO2006123630A1 PCT/JP2006/309696 JP2006309696W WO2006123630A1 WO 2006123630 A1 WO2006123630 A1 WO 2006123630A1 JP 2006309696 W JP2006309696 W JP 2006309696W WO 2006123630 A1 WO2006123630 A1 WO 2006123630A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
phase shift
shift mask
film
mask blank
Prior art date
Application number
PCT/JP2006/309696
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Suzuki
Minoru Sakamoto
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Publication of WO2006123630A1 publication Critical patent/WO2006123630A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to a phase shift mask blank and a phase shift mask, particularly an attenuation type (halftone type) that attenuates light having an exposure wavelength, and in particular, a phase shift suitable for a short wavelength having an exposure wavelength of 200 nm or less.
  • the present invention relates to a mask blank, a method of manufacturing a phase shift mask, and the like. Background art
  • Formation of a transfer pattern in the manufacture of a semiconductor device is performed by irradiating a pattern to be transferred with an exposure light onto a substrate to be transferred via a photomask (including a reticle) which is a pattern transfer master.
  • a light-shielding film pattern formed on a transparent substrate has been used conventionally, and the material of the light-shielding film is a chromium-based material (chromium alone, or chromium, nitrogen, oxygen In general, those containing carbon or the like, or laminated films of these material films) are used.
  • chromium-based material chromium alone, or chromium, nitrogen, oxygen In general, those containing carbon or the like, or laminated films of these material films
  • phase shift mask has been developed as one capable of improving the resolution of a transfer pattern.
  • Various types of phase shift masks (Levenson type, auxiliary pattern type, self-alignment type, etc.) are known. One of them is suitable for transferring high resolution patterns such as holes and dots.
  • Halftone phase shift masks are known. This halftone type phase shift mask has a predetermined phase shift amount (usually about 180 °) and a light transflective film pattern having a predetermined transmittance (usually about 3 to 20%) on a transparent substrate. In some cases, a light semi-transmissive film (phase shift film) is formed as a single layer or a multilayer.
  • the performance is (1) light resistance to exposure light, (2) chemical resistance, (3) low film stress, and (4) in-plane uniformity of optical properties (phase difference, transmittance). .
  • Patent Document 1 a thin film mainly containing metal, silicon, nitrogen and Z or oxygen is formed on a transparent substrate, and then the light transflective film is formed in 150%.
  • Patent Document 1 discloses a technique that can significantly reduce the film stress by performing a heat treatment at 380 ° C or higher.
  • Patent Document 2 discloses a phase shift mask blank in which a phase shift film mainly composed of metal and silicon is provided on a transparent substrate. A technique for improving light resistance by heat treatment at 250 to 350 ° C. for 90 to 150 minutes in a medium or oxygen atmosphere is disclosed.
  • the present inventors proceeded with development to realize in-plane uniformity with higher phase difference and transmittance.
  • the above products that meet the current strict specifications have been researched and developed with the aim of further improving in-plane uniformity, but good results cannot be obtained with further improvements in film formation methods, etc. I helped.
  • the heat treatment is performed with the intention of improving the characteristics (1) to (3).
  • natural cooling is performed as described in Patent Document 2. Therefore, the inventors have advanced research and development focusing on this cooling process.
  • the present inventors have advanced research and development focusing on the cooling process after the heat treatment.
  • the cooling means that can cool at the in-plane uniform cooling rate in the cooling process after the heat treatment.
  • this is an effective means for realizing the next higher specification (required specification).
  • Natural cooling is considered to be due to the low cooling rate, which contributes to in-plane variations in optical characteristics (phase difference and transmittance).
  • cooling is performed gradually from the outer peripheral direction of the substrate toward the center, such as cooling relatively fast outside the substrate and slowly cooling on the center side.
  • the history varies depending on the part in the plane.
  • the cooling temperature history varies depending on the in-plane region, resulting in in-plane variations in optical characteristics (phase difference, transmittance), and further in-plane uniformity for the above products that meet current strict specifications. It seems to be an obstacle to pursuing improvement.
  • the substrate outer peripheral force also cools toward the center of the substrate with natural cooling, which increases the influence of in-plane cooling rate and increases the cooling rate. It is considered that the problem of in-plane non-uniformity becomes obvious.
  • the ArF light semi-transmissive film has less metal (Mo, etc.) content in the film than KrF, and has low thermal conductivity, so it is considered that it is difficult to cool. In this way, the ArF mask blank is considered to be more prone to manifest the problem of non-uniform cooling rate and cooling rate.
  • the inventors of the present invention have examined the application effect of the present invention for the characteristics (1) to (3) in accordance with the present invention. It was found that the in-plane uniformity of the resulting film quality was improved, and the in-plane uniformity of the above characteristics (1) to (3) was improved.
  • the method of the present invention has the following configuration.
  • a light semi-transmissive film mainly composed of metal, silicon, nitrogen and Z or oxygen is formed, and after the heat treatment of the light semi-transmissive film, light immediately after the heat treatment is performed.
  • a method for producing a phase shift mask blank characterized in that the semipermeable membrane is cooled by a cooling means capable of cooling the semi-permeable film at an in-plane uniform cooling rate and forcibly cooling.
  • phase shift according to any one of configurations 1 to 3, wherein the cooling treatment for the light semi-transmissive film is performed by transferring heat from a cooling medium to the light semi-transmissive film through a transparent substrate.
  • Mask blank manufacturing method
  • a method of manufacturing a phase shift mask comprising: patterning the light semi-transmissive film in the phase shift mask blank according to any one of configurations 1 to 5 to form a light semi-transmissive portion on the transparent substrate.
  • the cooling process is performed by the cooling means that can be cooled at an in-plane uniform cooling rate and can be forcibly cooled.
  • the heat history associated with heating and cooling becomes in-plane uniform.
  • the in-plane uniformity of the film quality and physical properties is improved, and the in-plane uniformity of the characteristics (1) to (3) is improved. .
  • FIG. 1 is a schematic view showing a DC magnetron sputtering apparatus.
  • FIG. 2 is a schematic diagram for explaining a heating process using a hot plate and a cooling process using a cooling plate.
  • FIG. 3 is a schematic diagram showing measurement points in a phase shift mask blank.
  • the present invention is a method of manufacturing a phase shift mask blank in which a light semi-transmissive film having a predetermined transmittance with respect to an exposure wavelength is formed on a transparent substrate,
  • a light semi-transmissive film mainly composed of metal, silicon, nitrogen and Z or oxygen is formed, and after the heat treatment of the light semi-transmissive film, light immediately after the heat treatment is performed.
  • the semi-permeable membrane is a cooling means that can cool at a uniform cooling rate within the surface, and is cooled by a cooling means that can be forcibly cooled (Configuration 1).
  • a cooling means that can cool the light semi-transmissive film immediately after the heat treatment at an in-plane uniform cooling rate and can be forcibly cooled includes, for example, cooling. plate Is mentioned. According to the cooling plate, the cooling temperature history can be almost the same at the periphery and the center of the substrate.
  • the cooling plate referred to in the present invention refers to a flat plate-like cooling medium having a temperature lower than room temperature and a uniform in-plane temperature.
  • the cooling plate may have a temperature lower than room temperature. Surprisingly, this is because, for example, it has been found that the effect of the present invention is manifested when the cooling plate temperature is 18 ° C. or lower, preferably 15 ° C. or lower with respect to room temperature 22 ° C.
  • the temperature difference between the cooling plate and room temperature is preferably 5 ° C or higher, more preferably 7 ° C or higher.
  • the plane size of the cooling plate is preferably larger than the substrate size!
  • the cooling plate is preferably installed on the surface of the substrate opposite to the film forming surface, in parallel with the substrate and close to the substrate. In this case, cooling proceeds mainly based on a temperature gradient due to the temperature difference between the substrate and the cooling plate, and in addition, cooling by natural convection caused by the temperature difference is performed.
  • the cooling process for the light semi-transmissive film is performed by transferring heat from the cooling medium to the light semi-transmissive film through the transparent substrate (Configuration 4).
  • the substrate side force cooling with a large heat capacity is performed, so that uniform cooling can be performed. Since a thicker substrate can be cooled more uniformly, the thickness of the substrate is preferably 0.25 inch or more.
  • the cooling process performed by transferring the heat of the cooling medium force to the light semi-transmissive film through the transparent substrate has a metal content of 3 atomic% in the light semi-transmissive film. It is effective when these materials are used.
  • the ArF light translucent film contains less metal (such as Mo) in the film than the KrF light translucent film and has a lower thermal conductivity.
  • the present invention is also a force that exerts its effect particularly in such a case. Therefore, the present invention is suitable as a phase shift mask and a phase shift mask blank having an exposure wavelength of 200 nm or less, and a manufacturing method thereof, in which the problem of uneven cooling rate and the problem of cooling rate become obvious (Configuration 5).
  • the distance between the substrate and the cooling plate should be within a range that does not impair the in-plane uniformity of the cooling rate.
  • force S preferably about 0.1 to 5 mm.
  • a spacer between the substrate and the cooling plate to keep the distance between the substrate and the cooling plate constant in the plane.
  • the spacer the in-plane uniformity of the cooling rate for the light semi-transmissive film is not impaired by the thermal conductivity of the spacer itself, and there is little risk of scratching the substrate by the spacer. Is preferred to be.
  • An example of such a spacer is a spacer that can also be a polyimide film.
  • the cooling plate can be installed with respect to the substrate in parallel with the substrate, on both the upper and lower surfaces of the substrate with a distance that does not impair the in-plane uniformity of the cooling rate.
  • the cooling means that can cool the light semi-transmissive film immediately after the heat treatment is a cooling method that can reduce variations in optical characteristics (phase difference, transmittance) based on natural cooling. I just need it.
  • the cooling means includes means for exposing the substrate after heat treatment to a cooling gas (including room temperature), means for placing the substrate after heat treatment in a cooling gas (fluid), and the like.
  • a cooling gas including room temperature
  • a cooling gas fluid
  • uniform cooling can be promoted by forced convection.
  • the cooling means is preferably a cooling means capable of forcibly cooling at a uniform cooling rate within a plane even between a plurality of substrates in single wafer processing or batch processing. .
  • the cooling rate is forced cooling that is faster than the cooling (slow cooling) rate in natural cooling, and the preferred cooling rate is -25 ° CZ minutes to -200 ° CZ minutes. Yes (Configuration 3), and a more preferable cooling rate is -50 ° CZ to -150 ° CZ.
  • the cooling rate exceeds the above upper limit value, there may be a failure due to excessive cooling. Conversely, if the cooling rate falls below the lower limit value, the cooling rate approaches the cooling rate by natural cooling, and the optical characteristics (phase difference) This is because it is considered that the effect of reducing the variation in transmittance is reduced.
  • the in-plane uniformity of the heat history associated with heating and cooling can be improved by a method in which the heat treatment is performed on a hot plate and the cooling treatment is performed on a cooling plate. This is preferable because it can be expected to improve the in-plane uniformity of the above characteristics (1) to (3).
  • the light semi-transmissive film in the phase shift mask blank according to any one of the configurations 1 to 5 described above is patterned, and the light semi-transmissive portion is formed on the transparent substrate. It is characterized by forming (Configuration 6).
  • the light semi-transmissive film is preferably formed by a film forming method capable of satisfying the above-mentioned strict specifications by pursuing a film forming method such as oblique sputtering and substrate rotation. This is because, when the variation in optical characteristics (phase difference and transmittance) is high due to the film forming method, the application effect is small even when the present invention is applied.
  • the DC magnetron sputtering apparatus shown in FIG. 1 has a vacuum chamber 1, and a sputtering target 2 and a substrate holder 3 are arranged inside the vacuum chamber 1.
  • the sputtering target 2 employs an oblique sputtering method in which the target surface is disposed obliquely downward.
  • the sputtering target 2 is formed by joining a target material 4 and a backing plate 5 with an indium-based bonding agent.
  • a full surface erosion magnetron force sword (not shown) is attached behind the sputtering target 2.
  • the backing plate 5 is cooled directly or indirectly by a water cooling mechanism.
  • the magnetron cathode (not shown), the backing plate 5 and the target material 4 are electrically coupled.
  • the exposed backing plate surfaces 5A, 5B, and 5C are roughened by a method such as blasting (mechanical / physical roughening of the surface).
  • the target material side surface 4B is roughened by a method such as blasting.
  • a transparent substrate 6 is mounted on the rotatable substrate holder 3.
  • a shield 20 (having a temperature controllable structure) as a removable film adhesion preventing part is installed on the inner wall of the vacuum chamber 1.
  • the portion of the ground shield 21 in the shield 20 is electrically grounded to the target 2.
  • the earth shield 21 is arranged above the target surface 4A (backing plate 5 side).
  • the vacuum chamber 1 is exhausted by a vacuum pump through the exhaust port 7.
  • the atmosphere in the vacuum chamber 1 does not affect the characteristics of the film formed.
  • a mixed gas containing nitrogen is introduced from the gas inlet 8 and the entire erosion magnetron force using the DC power source 9 is introduced. Sputtering is performed by applying a negative voltage to the sword (not shown).
  • the DC power source 9 has an arc detection function and can monitor the discharge state during sputtering.
  • the pressure inside the vacuum chamber 1 is measured by a pressure gauge 10.
  • the transmittance of the light semi-transmissive film formed on the transparent substrate is adjusted by the type and mixing ratio of the gas introduced from the gas introduction port 8.
  • the gas pressure during sputtering for forming a thin film such as a light semi-transmissive film, the output of the sputtering DC power supply, and the sputtering time directly affect the transmittance and the phase angle. It is necessary to improve the accuracy of the controller, DC power supply and other equipment, and the accuracy of the setting signal that also transmits the controller power. Since the gas pressure during sputtering is affected by the exhaust conductance of the equipment, a mechanism that can accurately determine the opening of the exhaust valve and the position of the shield is also required.
  • the film containing silicon nitride has a great influence on the optical characteristics of the gas film such as moisture, which also generates the inner wall force of the vacuum chamber, a pump capable of sufficiently exhausting the vacuum chamber is mounted. It is necessary to provide a mechanism capable of baking. Degree of vacuum in the vacuum tank, generally if the deposition rate is lOnmZmin 2 X 10- 5 pa or less, if the deposition rate is 5 NmZmin is required less 1 X 10- 5 pa.
  • composition of the translucent film formed on the transparent substrate was Mo: 4.3 atomic%, Si: 35.7 atomic%, and N: 60.0 atomic%.
  • the film composition of the light translucent film was measured by RBS (Rutherford backscattering analysis).
  • the hot plate 30 was heated at a hot plate temperature of 300 ° C for 10 minutes, and then the cooling plate 31 was cooled at a cooling plate temperature of 15 ° C for 5 minutes (cooling) Speed: -56 ° CZ min).
  • the surface temperature of the light semi-transmissive film 41 in the phase shift mask blank immediately after the cooling treatment was 22 ° C. which is the same as the room temperature.
  • the film surface temperature of this light translucent film was measured by thermography.
  • a transparent substrate is formed on the hot plate 30 and the cooling plate 31 with a predetermined interval (0.1 to 5 mm) through the spacer 32, respectively.
  • the side that did not form 40 membranes was installed.
  • the heat treatment and the cooling treatment for the light semi-transmissive film 41 were performed by transferring heat from the heating medium and the cooling medium to the light semi-transmissive film 41 through the transparent substrate 40.
  • phase angle and transmittance at 13 points in the substrate plane shown in Fig. 3 were measured, and the in-plane variation of the phase angle was 180 ° ⁇ 1 °.
  • the in-plane variation of transmittance was 6% ⁇ 0.1%, and very good results were obtained.
  • the phase angle was measured with a phase difference meter (Lasertec: MPM-193), and the transmittance was measured with a spectrophotometer (Hitachi, Ltd .: U-4100).
  • the acid resistance (average value) is -0.7 °
  • the alkali resistance (average value) is -4.6 °
  • the light resistance (average value) is + 0.14%
  • the amount of change in flatness is + 0.6 / zm and good.
  • a resist film was formed on the nitrided molybdenum and silicon (Mo SiN) thin film of the phase shift mask blank obtained above, and a resist pattern was formed by pattern exposure and development.
  • the exposed portion of the strong thin film was removed to obtain a thin film pattern (light translucent portion) of nitrided molybdenum and silicon force.
  • a phase shift mask for ArF excimer laser exposure was obtained by rinsing with water or the like.
  • the pattern did not shift due to the film stress of the light semi-transmissive film, and it was good.
  • the cooling plate temperature: 15 ° C for 5 minutes is not subjected to the cooling treatment, and the hot plate temperature: 300 ° C for 10 minutes, followed by natural cooling (in a room temperature atmosphere, temperature: 22 ° A phase shift mask blank was produced in the same manner as in Example except that it was cooled by C).
  • the acid resistance, alkali resistance, light resistance, in-plane uniformity of the film stress, and the change amount (average value) of the acid resistance, alkali resistance, light resistance, and flatness change amount are compared to the examples. It is inferior because it is poor.
  • a force using a hot plate as a heating means and a cooling plate as a cooling means is not limited to this.
  • the exposure light source may be an F2 excimer laser (exposure wavelength: 157 nm).
  • oxidized metal and silicon (MSiO, M: transition metals such as Mo, Ta, Ni, W, Zr, Ti, Cr), oxynitrided metal and Silicon (MSiO N), oxycarburized metal and silicon (MSiCO), oxynitrided carbon and silicon (MSiCON) can be used! /.
  • the metal contained in the light semi-transmissive film is not limited to a transition metal such as Mo, Ta, Ni, W, Zr, Ti, Cr, and includes one or more of these elements. Does not help.
  • the film configuration of the light semi-transmissive film may be a single layer or a plurality of layers.
  • a light shielding film may be formed on the light semi-transmissive film for the purpose of blocking the exposure wavelength.
  • the material of the light-shielding film for example, when the material different from the etching characteristics of the light translucent film is molybdenum, chromium, chromium oxide, chromium nitride, chromium carbide, chromium fluoride A material containing at least one of them is preferred. In this case, the heat treatment and the rapid cooling treatment may be performed after the light shielding film is formed.
  • the present invention is an attenuation type (halftone type) that attenuates light having an exposure wavelength, and is particularly applicable to a phase shift mask blank and a phase shift mask suitable for short wavelengths with an exposure wavelength of 200 nm or less. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 透明基板上に、露光波長に対し所定の透過率を有する光半透過膜を形成した位相シフトマスクブランクの製造方法であって、前記透明基板上に、金属、シリコン、窒素及び/または酸素を主たる構成要素とする光半透過膜を形成し、該光半透過膜の熱処理を例えば加熱プレート等によって行った後、該熱処理を行った直後の光半透過膜を、面内均一冷却速度で冷却しうる冷却手段であって、かつ強制的に冷却しうる冷却手段(例えば冷却プレート等)によって冷却処理する。

Description

明 細 書
位相シフトマスクブランクの製造方法及び位相シフトマスクの製造方法 技術分野
[0001] 本発明は、位相シフトマスクブランク、位相シフトマスクに関し、特に、露光波長の光 を減衰させる減衰型 (ハーフトーン型)で、特に、露光波長が 200nm以下の短波長 に適した位相シフトマスクブランク、及び位相シフトマスクの製造方法等に関する。 背景技術
[0002] 半導体装置の製造における転写パターンの形成は、パターン転写の原版であるフ オトマスク(レチクルを含む)を介して被転写基板上に露光光のパターン照射を行うこ とにより行われる。
[0003] このようなフォトマスクとしては、透明基板上に遮光膜パターンが形成されたものが 従来から使用されており、遮光膜の材料は、クロム系材料 (クロム単体、又はクロムに 窒素、酸素、炭素等が含有されたもの、あるいはこれら材料膜の積層膜)が用いられ ているのが一般的である。
[0004] さらに、近年において転写パターンの解像度を向上できるものとして、位相シフトマ スクが開発されている。位相シフトマスクには、様々なタイプ(レベンソン型、補助パタ ーン型、自己整合型など)が知られている力 その中の一つとして、ホール、ドット等 の高解像パターンの転写に適したハーフトーン型位相シフトマスクが知られている。 このハーフトーン型位相シフトマスクは、透明基板上に、所定の位相シフト量 (通常略 180° )を有し、かつ、所定の透過率 (通常 3〜20%程度)を有する光半透過膜バタ ーンが形成されたものであり、光半透過膜 (位相シフト膜)が単層で形成されているも のや多層で形成されているものがある。
発明の開示
発明が解決しょうとする課題
[0005] ところで、ハーフトーン型位相シフトマスク及び位相シフトマスクブランクにおいては 、露光波長が短波長化するにつれて、光半透過膜に対して次に示す性能(1)〜 (4) への要求が厳しくなつてきて!、る。 [0006] その性能は、(1)露光光に対する耐光性、(2)耐薬品性、(3)低膜応力、(4)光学 特性 (位相差、透過率)の面内均一性、である。
[0007] ここで、上記(1)〜(3)については、光半透過膜の加熱処理によって、これらの性 能向上を図る技術が開発され利用されている。例えば、特開 2002-162726号公報 (特許文献 1)には、透明基板上に、金属、シリコン、窒素及び Zまたは酸素を主たる 構成要素とする薄膜を形成した後、該光半透過膜を 150°C以上で熱処理を行うこと によって、上記(1)〜(3)の性能向上を図る技術が開示されている。更に,特許文献 1では、 380°C以上で熱処理を行うことによって、膜応力を顕著に低減しうる技術も開 示されている。また、特開 2002-156742号公報 (特許文献 2)には、透明基板上に 金属とシリコンを主成分とする位相シフト膜を設けてなる位相シフトマスクブランクに おいて、この位相シフト膜を空気中または酸素雰囲気中 250〜350°Cで 90〜150分 加熱処理することによって、耐光性の向上を図る技術が開示されている。
[0008] 一方、上記 (4)の光学特性の面内均一性についても、露光波長が短波長化するに つれて、近年、位相差、透過率のばらつきの仕様 (要求スペック)の厳しさが増してき ている。本出願人は、これに対応すベぐ膜厚の面内均一性向上による位相差、透 過率のばらつき低減を主眼として開発を進め、斜めスパッタ及び基板回転などの成 膜方法の追求によって(特開 2000- 277260公報(特許文献 3)、特開 2003- 2425 公報 (特許文献 4) )、前述の厳しくなつたスペック (例えば、位相差の面内ばらつき 18 0° ±2° 以内、透過率の面内ばらつき 6%±0. 2%以内)を満たしているのが現状 である。
[0009] このような状況下、本発明者らは、位相差、透過率のより高い面内均一性を実現す ベく開発進めた。具体的には、現行の厳しいスペックを満たす上記製品について更 なる面内均一性向上を目指して、研究開発を重ねたところ、成膜方法の更なる改良 等では良好な結果を得ることができな力つた。ここで、上述のように、上記(1)〜(3) の諸特性向上を意図して加熱処理行われている。その際、特許文献 2に記載のよう に自然冷却が行われている。そこで、本発明者らは、この冷却過程に着目して研究 開発を進めた。
課題を解決するための手段 [0010] 上記のように本発明者らは、加熱処理後の冷却過程に着目して研究開発を進めた 結果、加熱処理後の冷却過程において、面内均一冷却速度で冷却しうる冷却手段 であって、かつ強制的に冷却しうる冷却手段によって冷却処理することによって、現 行の厳しいスペックを満たす製品に対し、光学特性 (位相差、透過率)ばらつきを更 に低減できること、並びに、本手法は、意外にも、より高い次の仕様 (要求スペック)の 実現に有効な手段であることを見出した。
[0011] 光学特性 (位相差、透過率)ばらつきを更に低減可能な理由は、(1)熱処理後の自 然冷却で常温 (室温)に戻すと冷却速度が基板の中心部と外周部とでばらつくこと、 (
2)自然冷却だと冷却速度が小であること、が光学特性 (位相差、透過率)の面内ばら つきの一因となって 、るものと考えられる。
[0012] 詳しくは、加熱処理後に自然冷却すると、常温 (室温)に戻るまで長時間かかるもの となる。例えば、一辺が 6インチ、厚み 0. 25インチの正方形の透明基板上に光半透 過膜を形成してなる位相シフトマスクブランクを 300°Cで熱処理後に室温 22°Cの雰 囲気下に放置し、自然冷却した場合には、室温に戻るまでには 30分程度時間がか かっていた。
[0013] また、その冷却形態を考察すると、基板の外側では比較的速く冷却され、中心側で はゆっくりと冷却されるなど、基板の外周方向から中心部に向けて徐々に冷却され、 冷却温度履歴が面内の部位によって異なる。そして、冷却温度履歴が面内の部位に よって相違することにより、光学特性 (位相差、透過率)の面内におけるばらつきが生 じ、現行の厳しいスペックを満たす上記製品について更なる面内均一性向上を追求 する上で障害となるものと考えられる。
[0014] なお、 KrFエキシマレーザ光(248nm)力 200nm以下への露光波長の短波長化 に伴い、光半透過膜中の金属原子含有量の低下や、基板の板厚の板厚化 (例えば 板厚 0. 9インチから 2. 5インチに板厚化)の変化が起きている。そして、 KrF以前は 、加熱処理後の冷却工程の差が顕在化しにくかったと考えられる。
[0015] これに対し、 200nm以下では、基板の板厚化に伴い、自然冷却では基板外周部 力も基板中心に向力つて冷えるので、冷却速度の面内不均一の影響が増大し冷却 速度の面内不均一の問題が顕在化すると考えられる。 [0016] また、 ArF用の光半透過膜は膜中の金属(Mo等)の含有量が KrF用に比べ少なく 熱伝導率が低いので、冷却されにくいと考えられる。このように、 ArF用マスクブラン クの方が冷却速度の面内不均一の問題や冷却速度の問題が顕在化しやすいものと 考えられる。
[0017] 更に、本発明者らは、上記本発明に伴い、上記(1)〜(3)の諸特性についても本 発明の適用効果を調べたところ、加熱'冷却に伴う熱履歴が面内均一となり、この結 果膜質'物性の面内均一性が向上し、上記(1)〜(3)の諸特性の面内均一性の向上 作用があることを見出した。
[0018] 本発明方法は、以下の構成を有する。
[0019] (構成 1)
透明基板上に、露光波長に対し所定の透過率を有する光半透過膜を形成した位 相シフトマスクブランクの製造方法であって、
前記透明基板上に、金属、シリコン、窒素及び Zまたは酸素を主たる構成要素とす る光半透過膜を形成し、該光半透過膜の熱処理を行った後、該熱処理を行った直後 の光半透過膜を、面内均一冷却速度で冷却しうる冷却手段であって、かつ強制的に 冷却しうる冷却手段によって冷却処理することを特徴とする位相シフトマスクブランク の製造方法。
[0020] (構成 2)
前記熱処理温度は、 150°C以上であることを特徴とする構成 1の位相シフトマスクブ ランクの製造方法。
[0021] (構成 3)
前記冷却処理における冷却速度は、 -25°CZ分〜 -200°CZ分であることを特徴と する構成 1又は 2の位相シフトマスクブランクの製造方法。
[0022] (構成 4)
前記光半透過膜に対する前記冷却処理は、冷却媒体からの熱を透明基板を介し て光半透過膜に伝達することによって行われることを特徴とする構成 1乃至 3のいず れかの位相シフトマスクブランクの製造方法。
[0023] (構成 5) 前記露光波長は 200nm以下であることを特徴とする構成 1乃至 4のいずれかの位 相シフトマスクブランクの製造方法。
[0024] (構成 6)
構成 1乃至 5のいずれかの位相シフトマスクブランクにおける前記光半透過膜をパ ターニングして、前記透明基板上に光半透過部を形成することを特徴とする位相シフ トマスクの製造方法。
発明の効果
[0025] 本発明によれば、加熱処理後の冷却過程にお!、て、面内均一冷却速度で冷却しう る冷却手段であって、かつ強制的に冷却しうる冷却手段によって冷却処理することに よって、上述した現行の厳しいスペックを満たす製品に対し、光学特性 (位相差、透 過率)のばらつきを更に低減できる。
[0026] また、加熱'冷却に伴う熱履歴が面内均一となり、その結果膜質 ·物性の面内均一 性向上し、上記(1)〜(3)の諸特性の面内均一性が向上する。
図面の簡単な説明
[0027] [図 1]DCマグネトロンスパッタリング装置を示す模式図である。
[図 2]ホットプレートによる加熱工程、冷却プレートによる冷却工程を説明するための 模式図である。
[図 3]位相シフトマスクブランクにおける測定点を示す模式図である。
発明を実施するため最良の形態
[0028] 以下、本発明を詳細に説明する。
[0029] 本発明は、透明基板上に、露光波長に対し所定の透過率を有する光半透過膜を 形成した位相シフトマスクブランクの製造方法であって、
前記透明基板上に、金属、シリコン、窒素及び Zまたは酸素を主たる構成要素とす る光半透過膜を形成し、該光半透過膜の熱処理を行った後、該熱処理を行った直後 の光半透過膜を、面内均一冷却速度で冷却しうる冷却手段であって、かつ強制的に 冷却しうる冷却手段によって冷却処理することを特徴とする (構成 1)。
[0030] ここで、「熱処理を行った直後の光半透過膜を、面内均一冷却速度で冷却しうる冷 却手段であって、かつ強制的に冷却しうる冷却手段」としては、例えば冷却プレート が挙げられる。冷却プレートによると、基板周縁と中心部とではその冷却温度履歴は ほとんど同じとすることが可能である。
[0031] 本発明で言う冷却プレートは、室温より低い温度を有し、かつ面内均一温度を有す る平板状の冷却媒体を言う。
[0032] 冷却プレートは室温より低い温度を有すればよい。これは、驚くべきことに、例えば 室温 22°Cに対し冷却プレート温度が 18°C以下、好ましくは 15°C以下であれば、本 願発明の効果が発現されることが判明したためである。冷却プレートと室温との温度 差(室温-冷却プレート温度)は、 5°C以上が好ましぐ 7°C以上が更に好ましい。
[0033] 冷却プレートの平面サイズは、基板サイズよりも大き!/、ことが好ま 、。
[0034] 冷却プレートは、基板における膜形成面とは反対側の面に、基板と平行に、基板に 近接して設置することが好ましい。この場合、主として基板と冷却プレートとの温度差 による温度勾配に基づいて冷却が進行し、これに加え前記温度差によって生じる自 然対流による冷却が行われる。
[0035] また、この場合、光半透過膜に対する冷却処理は、冷却媒体からの熱を透明基板 を介して光半透過膜に伝達することによって行われる (構成 4)。このとき、熱容量の 大きい基板側力 冷却が行われるので、均一な冷却ができる。このように基板が厚い 方が均一に冷却できるので、基板の厚さは 0. 25インチ以上の厚さであることが好ま しい。
[0036] 上記のように冷却媒体力 の熱を透明基板を介して光半透過膜に伝達することによ つて行われる冷却処理は、光半透過膜に含まれる金属の含有量が 3原子%以上の 材料である場合に効果的である。その理由は、上述したように、 ArF用の光半透過膜 は膜中の金属 (Mo等)の含有量が KrF用光半透過膜に比べ少なく熱伝導率が低い ので、冷えにくぐその結果、 ArF用ブランクにおいて冷却速度不均一の問題や冷却 速度の問題が顕在化するのである力 本発明はこのような場合において特にその効 果が発揮されるものだ力もである。したがって、本発明は、冷却速度不均一の問題や 冷却速度の問題が顕在化する、露光波長が 200nm以下の位相シフトマスク及び位 相シフトマスクブランク及びそれらの製造方法として適する(構成 5)。
[0037] 基板と冷却プレートとの距理は、冷却速度の面内均一性を損なわない範囲とするこ と力 S好ましく、 0. l〜5mm程度が好ましい。
[0038] 基板と冷却プレートとの間にスぺーサを介在させ、基板と冷却プレートとの距理を面 内一定に保つことが好ましい。スぺーサとしては、スぺーサ自体の熱伝導性によって 光半透過膜に対する冷却速度の面内均一性が損なわれないこと、及び、スぺーサに よって基板に傷が付く恐れの少な 、ものであることが好まし 、。このようなスぺーサと しては、ポリイミドカもなるスぺーサなどが挙げられる。
[0039] 冷却プレートは、基板に対し、基板と平行に、基板の上面及び下面の双方に、冷却 速度の面内均一性を損なわない距理をあけて設置することができる。
[0040] なお、冷却プレートを使用すると (枚葉処理すると)、複数の基板間の光学特性 (位 相差、透過率)のばらつきを低減できる。
[0041] 本発明にお 、て、熱処理を行った直後の光半透過膜を、冷却しうる冷却手段は、 自然冷却に基づく光学特性 (位相差、透過率)のばらつきを低減できる冷却方法で あれば良い。
[0042] 具体的には、自然冷却による冷却速度面内不均一に基づく光学特性 (位相差、透過 率)のばらつきを低減できる手法や、自然冷却によると冷却速度が遅いことに基づく 光学特性 (位相差、透過率)のばらつきを低減できる手法であれば良 、。
[0043] 本発明にお 、て、冷却手段は、加熱処理後の基板を冷却気体(常温含む)に晒す 手段や、加熱処理後の基板を冷却気体 (流体)中に置く手段等が含まれる。これらの 場合、強制対流により均一冷却を促進することができる。
[0044] 本発明において、冷却手段は、枚葉処理又はバッチ処理における複数の基板間に おいても、面内均一冷却速度であって、かつ強制的に冷却しうる冷却手段であること が好ましい。
[0045] 本発明にお 、て、冷却速度は自然冷却における冷却 (徐冷)速度よりも冷却速度が 早い強制冷却であって、好ましい冷却速度は- 25°CZ分〜 -200°CZ分であり(構成 3)、更に好ましい冷却速度は- 50°CZ分〜 -150°CZ分である。
[0046] 冷却速度が上記の上限値を上回った場合、急冷しすぎることに伴う障害が考えられ 、逆に下限値を下回った場合には、自然冷却による冷却速度に近づき、光学特性( 位相差、透過率)のばらつき低減効果が薄れると考えられるからである。 [0047] 本発明にお!/、ては、加熱処理をホットプレートで行!、、かつ、冷却処理を冷却プレ ートで行う方法によって、加熱 ·冷却に伴う熱履歴の面内均一性が向上でき、これに より上記(1)〜(3)の諸特性の面内均一性の向上が期待できるので好ましい。
[0048] 本発明の位相シフトマスクの製造方法は、上述した構成 1〜5のいずれかに記載の 位相シフトマスクブランクにおける光半透過膜をパターユングして、透明基板上に光 半透過部を形成することを特徴とする (構成 6)。
[0049] この場合、光半透過膜は、斜めスパッタ及び基板回転などの成膜方法の追求によ つて、上述した厳しくなつたスペックを満たすことが可能な成膜方法によって形成する ことが好ましい。成膜方法に起因して光学特性 (位相差、透過率)のばらつき力もとも と大きい場合、本願発明を適用しても、適用効果が小さいためである。
[0050] 以下に、本発明の位相シフトマスクブランクの製造方法に特に適した DCマグネトロ ンスパッタ装置について詳しく説明する。
[0051] 図 1に示す DCマグネトロンスパッタ装置は、真空槽 1を有しており、この真空槽 1の 内部にスパッタリングターゲット 2及び基板ホルダ 3が配置されて!、る。スパッタリング ターゲット 2は、ターゲット面が斜め下向きに配置された斜めスパッタリング方式を採 用している。スパッタリングターゲット 2は、ターゲット材 4とバッキングプレート 5がイン ジユウム系のボンディング剤により接合されてなる。スパッタリングターゲット 2の背後 には、全面エロージョンマグネトロン力ソード(図示せず)が装着されている。バッキン グプレート 5は水冷機構により直接または間接的に冷却されている。マグネトロンカソ ード(図示せず)とバッキングプレート 5及びターゲット材 4は電気的に結合されている 。露出しているバッキングプレート面 5A, 5B、 5Cは、ブラスト処理 (機械的'物理的 に表面を粗らす処理)等の方法を用いて粗らしている。ターゲット材側面 4Bは、ブラ スト処理等の方法を用いて粗らしている。回転可能な基板ホルダ 3には透明基板 6が 装着されている。
[0052] 真空槽 1の内壁には、取り外し可能な膜付着防止部品であるシールド 20 (温度制 御可能な構成を有する)が設置されている。シールド 20におけるアースシールド 21 の部分は、ターゲット 2と電気的に接地されている。アースシールド 21は、ターゲット 面 4Aより上部(バッキングプレート 5側)に配置してある。 [0053] 真空槽 1は排気口 7を介して真空ポンプにより排気されて 、る。真空槽 1内の雰囲 気が形成する膜の特性に影響しな ヽ真空度まで達した後、ガス導入口 8から窒素を 含む混合ガスを導入し、 DC電源 9を用いて全面エロージョンマグネトロン力ソード(図 示せず)に負電圧を加え、スパッタリングを行う。 DC電源 9はアーク検出機能を持ち、 スパッタリング中の放電状態を監視できる。真空槽 1内部の圧力は圧力計 10によって 測定されている。
[0054] 透明基板上に形成する光半透過膜の透過率は、ガス導入口 8から導入するガスの 種類及び混合比により調整する。
[0055] また、光半透過膜等の薄膜を形成するスパッタリング時のガス圧、スパッタリング用 DC電源の出力、スパッタリングを行う時間は直接的に透過率、位相角に影響を与え るため、ガス流量コントローラ、 DC電源その他機器の精度向上やコントローラ力も発 信する設定信号の精度向上が必要である。スパッタリング時のガス圧は、装置の排気 コンダクタンスにも影響を受けるため、排気口バルブの開度ゃシ-ルドの位置を正確 に決定できる機構も必要である。
[0056] また、窒化シリコンを含む膜では、真空槽内壁力も発生する水分等のガス力 膜の 光学特性に大きな影響を与えるため、真空槽内を十分に排気できるポンプを装着し 、真空槽内壁をべ一キングできる機構を設けることが必要である。真空槽内の真空度 は、成膜速度が lOnmZminである場合はおおむね 2 X 10— 5pa以下、成膜速度が 5 nmZminである場合には 1 X 10— 5pa以下が必要である。
[0057] 以下、実施例に基づき本発明をさらに詳細に説明する。
[0058] (実施例)
(位相シフトマスクブランクの製造)
図 1に示すスパッタリング装置 1を用い、スパッタリングターゲット 2として Mo: Si = 1 0: 90のターゲットを用い、スパッタリングガスとしてアルゴンと窒素とヘリウム(ガス流 量: Ar: 10sccm、 N : 80sccm
2 、 He :40sccm)を用い、成膜圧力: 0. 15Paとして、 反応性スパッタリング(DCスパッタリング)により、一辺が 6インチ(約 152mm)、厚さ 0 . 25インチ (約 6. 35mm)の正方形の透明基板 (合成石英基板)上 10に、窒化され たモリブデン及びシリコン(MoSiN)の光半透過膜 (膜厚: 70nm)を形成して、 ArF エキシマレーザ (波長 193nm)露光用位相シフトマスクブランクを得た。
[0059] 透明基板上に形成された光半透過膜の組成は、 Mo :4. 3原子%、 Si: 35. 7原子 %、 N: 60. 0原子%であった。
[0060] なお、光半透過膜の膜組成は RBS (ラザフォード後方散乱分析法)により測定した。
その後、図 2に示すように、ホットプレート 30によってホットプレート温度: 300°Cで 10 分間の加熱処理を行った後、冷却プレート 31によって冷却プレート温度: 15°Cで 5 分間の冷却処理 (冷却速度: - 56°CZ分)を行った。冷却処理直後の位相シフトマス クブランクにおける光半透過膜 41の表面温度は室温と同じ 22°Cであった。この光半 透過膜の膜表面温度は、サーモグラフィ一により測定した。
[0061] また、加熱処理、急冷処理とともに、ホットプレート 30上、冷却プレート 31上に、そ れぞれスぺーサ 32を介して所定の間隔 (0. l〜5mm)を隔てて、透明基板 40の膜 面を形成していない方の面が設置されるようにした。これにより、光半透過膜 41に対 する加熱処理、冷却処理は、加熱媒体、冷却媒体からの熱を透明基板 40を介して 光半透過膜 41に伝達することによって行った。
[0062] 上記のようにして得られた位相シフトマスクブランクについて、図 3に示す基板面内 の 13地点における位相角、透過率を測定したところ、位相角の面内ばらつきは 180 ° ± 1° 、透過率の面内ばらつきは 6% ±0. 1%になっており、非常に良好な結果を 得られた。なお、位相角は位相差測定器 (レーザーテック社製: MPM-193)により測 定し、透過率は分光光度計(日立製作所社製: U-4100)により測定した。
[0063] 次に、光半透過膜の耐酸性、耐アルカリ性、耐光性、膜応力の評価を、図 3に示す 基板面内の 13地点について、以下の条件にて実施した。
[0064] (i)耐酸性:熱濃硫酸 (H SO : 96%、温度: 100°C)中に 120分間浸漬した前後の
2 4
位相角変化で評価。
[0065] (ii)耐アルカリ性:アンモニア過水(29%NH: 30%H O: H O = l : 2 : 10 (体積比)
3 2 2 2
、温度 : 25°C)中に 120分間浸漬した前後の位相角変化で評価。
[0066] (iii)耐光性: ArFエキシマレーザ(露光波長 193nm)を 8mjZcm2Zpulseのェネル ギー、周波数: 200Hzの条件で、累積エネルギー量 30mjZcm2を照射し、この照射 による露光波長透過率の上昇により評価。露光波長における透過率は、分光光度計 により測定。
[0067] (iv)膜応力:光半透過膜形成前と、光半透過膜形成後であって加熱処理及び冷却 処理後と、における透明基板の平坦度変化で評価。基板の平坦度は基板の端 3mm を除外した 146mm角の範囲について測定し、基板の最小二乗法により算出された 焦平面からの最高点と最低点における高さの差で評価した。また、平坦度は、干渉 計(トロッペル社製: FlatMaster200)を用いて測定した。
[0068] 上記の結果、耐酸性、耐アルカリ性、耐光性、膜応力の面内均一性は良好であつ た。
[0069] また、耐酸性 (平均値)は- 0. 7° 、耐アルカリ性 (平均値)は- 4. 6° 、耐光性 (平 均値)は + 0. 14%、平坦度変化量は + 0. 6 /z mと良好であった。
[0070] (位相シフトマスクの製造)
上記で得られた位相シフトマスクブランクの窒化されたモリブデン及びシリコン (Mo SiN)からなる薄膜上に、レジスト膜を形成し、パターン露光、現像によりレジストバタ ーンを形成した。
[0071] 次いで、ドライエッチング(SF +Heガス)により窒化されたモリブデン及びシリコン
6
力 なる薄膜の露出部分を除去し、窒化されたモリブデン及びシリコン力 なる薄膜 のパターン (光半透過部)を得た。
[0072] レジスト膜剥離後、 100°Cの 98%硫酸 (H SO )に 15分間浸漬して硫酸洗浄し、純
2 4
水などでリンスして、 ArFエキシマレーザ露光用位相シフトマスクを得た。
[0073] その結果、良好なパターン断面形状が得られ、パターンの側壁も滑らかであった。
また、光半透過膜の膜応力によるパターンずれも起らず、良好であった。
[0074] (比較例)
上述の実施例において、冷却プレート温度: 15°Cで 5分間の冷却処理は行わず、 ホットプレート温度: 300°Cで 10分間の加熱処理後に、 自然冷却(室温雰囲気中、温 度: 22°C)により冷却した以外は実施例と同様にして位相シフトマスクブランクを作製 した。
[0075] 加熱処理後、光半透過膜の膜表面温度が雰囲気温度 22°Cになるまで、 40分程度 の時間を要し、冷却速度は、 -7. 5°CZ分であった。 [0076] 上記のようにして得られた位相シフトマスクブランクについて、図 3に示す基板面内 の 13地点における位相角、透過率を測定したところ、位相角の面内ばらつきは 180
。 ± 2° 、透過率の面内ばらつきは 6% ±0. 3%であった。
[0077] また、耐酸性、耐アルカリ性、耐光性、膜応力の面内均一性、並びに、耐酸性、耐 アルカリ性、耐光性、平坦度変化量の変化量 (平均値)は、実施例に比べ劣るもので めつに。
[0078] 以上、好ましい実施例を掲げて本発明を説明したが、本発明は上記実施例に限定 されるものではない。特に、実施例では加熱手段としてホットプレートを用い、冷却手 段として冷却プレートを用いた力 これに限定されない。
[0079] また、露光光源としては、 F2エキシマレーザ (露光波長 157nm)であっても良い。
[0080] また、光半透過膜の材料としては、酸化された金属及びシリコン(MSiO、 M: Mo、 Ta、 Ni、 W、 Zr、 Ti、 Cr等の遷移金属)、酸化窒化された金属及びシリコン(MSiO N)、酸化炭化された金属及びシリコン (MSiCO)、酸化窒化炭化された金属及びシ リコン(MSiCON)でもかまわな!/、。
[0081] また、光半透過膜に含まれる金属としては、 Mo、 Ta、 Ni、 W、 Zr、 Ti、 Cr等の遷移 金属単体に限らず、これらの元素を 1種以上含むものであっても力まわない。
[0082] また、光半透過膜の膜構成としては、単層であっても複数層であっても力まわない。
[0083] また、光半透過膜上に露光波長を遮断する目的で、遮光膜を形成してもカゝまわな い。遮光膜の材料としては、例えば、光半透過膜のエッチング特性と異なる材料がよ ぐ金属がモリブデンの場合、クロムや、クロムの酸化物、クロムの窒化物、クロムの炭 化物、クロムのフッ化物、それらを少なくとも 1つ含む材料が好ましい。この場合にお いて、加熱処理及び急冷処理は、遮光膜形成後に行ってもかまわない。
産業上の利用可能性
[0084] 本発明は、露光波長の光を減衰させる減衰型 (ハーフトーン型)で、特に、露光波 長が 200nm以下の短波長に適した位相シフトマスクブランク及び位相シフトマスクに 適用可能である。

Claims

請求の範囲
[1] 透明基板上に、露光波長に対し所定の透過率を有する光半透過膜を形成した位 相シフトマスクブランクの製造方法であって、
前記透明基板上に、金属、シリコン、窒素及び Zまたは酸素を主たる構成要素とす る光半透過膜を形成し、該光半透過膜の熱処理を行った後、該熱処理を行った直後 の光半透過膜を、面内均一冷却速度で冷却しうる冷却手段であって、かつ強制的に 冷却しうる冷却手段によって冷却処理することを特徴とする位相シフトマスクブランク の製造方法。
[2] 前記熱処理温度は、 150°C以上であることを特徴とする請求項 1記載の位相シフト マスクブランクの製造方法。
[3] 前記冷却処理における冷却速度は、 - 25°CZ分〜 -200°CZ分であることを特徴と する請求項 1又は 2記載の位相シフトマスクブランクの製造方法。
[4] 前記光半透過膜に対する前記冷却処理は、冷却媒体からの熱を透明基板を介し て光半透過膜に伝達することによって行われることを特徴とする請求項 1乃至 3のい ずれか一に記載の位相シフトマスクブランクの製造方法。
[5] 前記露光波長は 200nm以下であることを特徴とする請求項 1乃至 4の 、ずれか一 に記載の位相シフトマスクブランクの製造方法。
[6] 請求項 1乃至 5のいずれか一に記載の位相シフトマスクブランクにおける前記光半 透過膜をパターユングして、前記透明基板上に光半透過部を形成することを特徴と する位相シフトマスクの製造方法。
PCT/JP2006/309696 2005-05-20 2006-05-16 位相シフトマスクブランクの製造方法及び位相シフトマスクの製造方法 WO2006123630A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-147695 2005-05-20
JP2005147695A JP4930964B2 (ja) 2005-05-20 2005-05-20 位相シフトマスクブランクの製造方法及び位相シフトマスクの製造方法

Publications (1)

Publication Number Publication Date
WO2006123630A1 true WO2006123630A1 (ja) 2006-11-23

Family

ID=37431202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309696 WO2006123630A1 (ja) 2005-05-20 2006-05-16 位相シフトマスクブランクの製造方法及び位相シフトマスクの製造方法

Country Status (4)

Country Link
JP (1) JP4930964B2 (ja)
KR (1) KR100922913B1 (ja)
TW (1) TWI403829B (ja)
WO (1) WO2006123630A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI600779B (zh) * 2012-05-16 2017-10-01 Hoya股份有限公司 光罩基底、轉印用光罩及其等之製造方法
US20200285144A1 (en) * 2017-09-21 2020-09-10 Hoya Corporation Mask blank, transfer mask, and method for manufacturing semiconductor device
JP2021056290A (ja) * 2019-09-27 2021-04-08 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク、その製造方法、及びハーフトーン位相シフト型フォトマスク

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286455B1 (ja) 2012-03-23 2013-09-11 Hoya株式会社 マスクブランク、転写用マスクおよびこれらの製造方法
KR102444967B1 (ko) * 2021-04-29 2022-09-16 에스케이씨솔믹스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크
KR102465982B1 (ko) * 2021-07-13 2022-11-09 에스케이씨솔믹스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크
KR102503790B1 (ko) * 2021-10-07 2023-02-23 에스케이엔펄스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348996A (ja) * 1999-06-02 2000-12-15 Matsushita Electronics Industry Corp ステンシルマスク、その製造方法、及びそれを用いた縮小投影露光方法
JP2002229183A (ja) * 2000-12-01 2002-08-14 Hoya Corp リソグラフィーマスクブランク及びその製造方法
JP2003160854A (ja) * 2001-11-26 2003-06-06 Anelva Corp スパッタリング装置におけるパーティクル発生防止方法、スパッタリング方法、スパッタリング装置及び被覆用部材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503713B2 (ja) * 1997-01-22 2010-07-14 株式会社アルバック 真空成膜法の基板冷却方法
JP2000268418A (ja) * 1999-03-12 2000-09-29 Sony Corp アニール装置及び記録媒体用ディスクの製造方法
JP3608654B2 (ja) * 2000-09-12 2005-01-12 Hoya株式会社 位相シフトマスクブランク、位相シフトマスク
JP3722029B2 (ja) * 2000-09-12 2005-11-30 Hoya株式会社 位相シフトマスクブランクの製造方法、及び位相シフトマスクの製造方法
JP2002156742A (ja) * 2000-11-20 2002-05-31 Shin Etsu Chem Co Ltd 位相シフトマスクブランク、位相シフトマスク及びこれらの製造方法
JP2002289537A (ja) * 2001-03-27 2002-10-04 Mitsui Eng & Shipbuild Co Ltd CVD―SiC中空体縦型ウェハボート
JP4158885B2 (ja) * 2002-04-22 2008-10-01 Hoya株式会社 フォトマスクブランクの製造方法
JP4049372B2 (ja) * 2002-10-23 2008-02-20 Hoya株式会社 ハーフトーン型位相シフトマスクブランクスの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348996A (ja) * 1999-06-02 2000-12-15 Matsushita Electronics Industry Corp ステンシルマスク、その製造方法、及びそれを用いた縮小投影露光方法
JP2002229183A (ja) * 2000-12-01 2002-08-14 Hoya Corp リソグラフィーマスクブランク及びその製造方法
JP2003160854A (ja) * 2001-11-26 2003-06-06 Anelva Corp スパッタリング装置におけるパーティクル発生防止方法、スパッタリング方法、スパッタリング装置及び被覆用部材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI600779B (zh) * 2012-05-16 2017-10-01 Hoya股份有限公司 光罩基底、轉印用光罩及其等之製造方法
US20200285144A1 (en) * 2017-09-21 2020-09-10 Hoya Corporation Mask blank, transfer mask, and method for manufacturing semiconductor device
JP2021056290A (ja) * 2019-09-27 2021-04-08 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク、その製造方法、及びハーフトーン位相シフト型フォトマスク
JP7192731B2 (ja) 2019-09-27 2022-12-20 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク、その製造方法、及びハーフトーン位相シフト型フォトマスク
US11644743B2 (en) 2019-09-27 2023-05-09 Shin-Etsu Chemical Co., Ltd. Halftone phase shift-type photomask blank, method of manufacturing thereof, and halftone phase shift-type photomask

Also Published As

Publication number Publication date
JP2006323236A (ja) 2006-11-30
TW200705092A (en) 2007-02-01
JP4930964B2 (ja) 2012-05-16
KR100922913B1 (ko) 2009-10-22
KR20080015453A (ko) 2008-02-19
TWI403829B (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
JP3608654B2 (ja) 位相シフトマスクブランク、位相シフトマスク
TWI620002B (zh) 遮罩基底及相移遮罩之製造方法
US7901842B2 (en) Photomask blank and method of producing the same, method of producing photomask, and method of producing semiconductor device
JP4462423B2 (ja) フォトマスクブランクの製造方法
KR100587827B1 (ko) 포토마스크 블랭크의 제조방법
US8927179B2 (en) Optical member for EUV lithography, and process for production of reflective layer-equipped substrate
WO2006123630A1 (ja) 位相シフトマスクブランクの製造方法及び位相シフトマスクの製造方法
JP2004062135A (ja) ハーフトーン型位相シフトマスクブランクの製造方法、ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
TWI724226B (zh) 半色調相位移空白光罩之製造方法、半色調相位移空白光罩及半色調相位移光罩
JP2017173857A (ja) マスクブランクおよび転写用マスク
JP2012108564A (ja) マスクブランク、転写用マスク及び転写用マスクの製造方法
JP6371221B2 (ja) マスクブランクの製造方法および転写用マスクの製造方法
JP4766507B2 (ja) 位相シフトマスクブランク及び位相シフトマスクの製造方法
SG194284A1 (en) Photomask blank and manufacturing method thereof
JPH0864524A (ja) X線吸収マスクの製造方法
JP2005234209A (ja) ハーフトーン位相シフトマスクブランクの製造方法、ハーフトーン位相シフトマスクブランク、ハーフトーン位相シフトマスク及びパターン転写方法
JP2003248298A (ja) フォトマスクブランク及びフォトマスク
JP4371230B2 (ja) フォトマスクブランクの製造方法
JP2001109129A (ja) CrAlONを位相シフト物質として使用した位相シフトマスクおよびその製造方法
JP2020144358A (ja) フォトマスクブランク、フォトマスクの製造方法、および表示装置の製造方法
JP2004318184A (ja) 位相シフトマスクブランク、位相シフトマスク
JP2014209200A (ja) マスクブランクの製造方法および転写用マスクの製造方法
JP7192731B2 (ja) ハーフトーン位相シフト型フォトマスクブランク、その製造方法、及びハーフトーン位相シフト型フォトマスク
JP2003231965A (ja) 位相シフトマスクブランク、フォトマスクブランク、並びにそれらの製造装置及び製造方法
WO2004017140A1 (ja) マスクブランクの製造方法、転写マスクの製造方法、マスクブランク製造用スパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077029549

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746410

Country of ref document: EP

Kind code of ref document: A1