WO2006121221A1 - 車線追従制御装置および車線追従制御方法 - Google Patents

車線追従制御装置および車線追従制御方法 Download PDF

Info

Publication number
WO2006121221A1
WO2006121221A1 PCT/JP2006/310278 JP2006310278W WO2006121221A1 WO 2006121221 A1 WO2006121221 A1 WO 2006121221A1 JP 2006310278 W JP2006310278 W JP 2006310278W WO 2006121221 A1 WO2006121221 A1 WO 2006121221A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
target
calculating
control device
Prior art date
Application number
PCT/JP2006/310278
Other languages
English (en)
French (fr)
Inventor
Pongsathorn Raksincharoensak
Masao Nagai
Original Assignee
National University Corporation Tokyo University Of Agriculture And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Tokyo University Of Agriculture And Technology filed Critical National University Corporation Tokyo University Of Agriculture And Technology
Priority to JP2007528355A priority Critical patent/JPWO2006121221A1/ja
Publication of WO2006121221A1 publication Critical patent/WO2006121221A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/08Lane monitoring; Lane Keeping Systems
    • B60T2201/083Lane monitoring; Lane Keeping Systems using active brake actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/08Lane monitoring; Lane Keeping Systems
    • B60T2201/089Lane monitoring; Lane Keeping Systems using optical detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30256Lane; Road marking

Definitions

  • the present invention relates to a lane tracking technology for controlling a vehicle by following a middle line of a lane (lane), and specifically, calculating at least one of a target drive torque, a target braking torque, and a target rudder angle.
  • Lane tracking to control vehicle operation a target drive torque, a target braking torque, and a target rudder angle.
  • the present invention relates to a slave control device and a lane tracking control method.
  • the vehicle lane departure tendency is detected based on the road shape of the road, and the vehicle deviates from the lane.
  • steering control is performed to extend the lane departure time or the lane departure time. Specifically, by detecting the white line from the image in front of the vehicle imaged by the camera, it is determined whether the vehicle tends to deviate from the lane or not, and tends to deviate from the lane. When this happens, the steering control mechanism is controlled by gradually changing the control curvature as the steering control parameter. This prolongs the lane departure distance or lane departure time and shortens the lane departure distance in the width direction.
  • the lane tracking control device described in Patent Document 2 ' Japanese Patent Laid-Open No. 2 0 0 0 — 3 0 2 0 5 5) is a prediction that can be achieved using only information that can be measured relatively easily and with high accuracy. It's about the control system.
  • Patent Document 2 first, for example, the foreseeing information of the target course is obtained by processing the image data obtained by the CCD camera, this is regarded as a confirmed disturbance, and the front wheel steering angle command value is input.
  • the DA RMA Deterministic Auto R egressive. Moving A verage
  • moire is used to output the lateral displacement of the vehicle from the target course! / Represents the vehicle model and the target course model.
  • GPS control generalized predictive control
  • the automatic steering device control device described in Patent Document 3 Japanese Laid-Open Patent Publication No. 7-315 25 40 is a driver-priority assist system that uses various assist methods in emergency situations to switch the driver. It compensates for delay and advance appropriately.
  • the gear ratio variable mechanism is bypassed and connected to the steering shaft divided into two parts of the vehicle steering device, and the steering control motor can be connected to the gear ratio variable mechanism to enable manual steering and automatic steering of the driver.
  • a torque control motor is provided on the steering shaft so that the torque control on the needle side is possible.
  • Control equipment The device has an image recognition control unit that receives the image signal of the CCD camera. This image recognition control unit calculates the distance by triangulation based on the image signal, and the entire screen is three-dimensional.
  • a distance distribution image is obtained.
  • the lane, the vehicle ahead, and obstacles are separated from the distance image.
  • the control device recognizes the left and right white lines, road shape, etc. from the lane image, recognizes what the object is from the image of the vehicle, obstacle, etc., and if there is an obstacle, By controlling the distance and speed relative to the object, the distance between the vehicles and the automatic steering control are controlled.
  • the vehicle movement control device described in Patent Document 4 does not give an unnatural feeling by respecting the operation intended by the driver as much as possible. Deviations from the lane or road due to inappropriate operation of the driver can be prevented. More specifically, a first target correct rate based on the curve curvature radius and a second target correct rate based on the operating state are calculated. When it is determined that the driver has a willingness to turn, if the absolute value of the first target yorate is greater than the absolute value of the second target yorate, the operation of the driver is relative to the actual road shape. Judge that it is insufficient, correct the second target speed with the first target speed, and control the braking force with the corrected second target speed.
  • the lane tracking travel control device described in Patent Document 5 can improve lane tracking performance by optimizing lane curvature correction.
  • the lane curvature detected from the image information is described in the form of the product of the correction coefficient and the lane curvature estimate.
  • the lane curvature estimate Calculate the correction factor Issue (estimate).
  • the lane curvature estimated value is brought close to the true lane curvature, and the correction coefficient for matching the measure between the image information for detecting the lane curvature and the vehicle model for estimating the vehicle state quantity is true. Move closer to the value.
  • the correction coefficient becomes a steady value, that is, a true value, unless the lane width changes, the measure between the image information for detecting the lane curvature and the vehicle model does not change, so there is no need to change the correction coefficient itself.
  • Lane correction is corrected and lane tracking is improved.
  • the corneal angle differential value, the vehicle lateral displacement, and the vehicle lateral displacement differential value are taken as observable state quantities, and the lane curvature and lane curvature derivative values are not observed as state quantities.
  • the motor torque is controlled by the regulator.
  • Patent Document 6 Japanese Patent Laid-Open No. 2 0 0 1-4 8 0 3 5
  • Patent Document 1 since the vehicle travel line is not made to follow the center line of the lane, if this technology is applied to automatic driving, the traveling state may not be stable. In addition, in Patent Document 1, since the vehicle side-slip angle that occurs during travel is not used for control, it is applicable to automatic driving technology that requires high-accuracy position control to position the vehicle in the center of the lane. It is unsuitable.
  • Patent Document 1 the curvature of the lane is detected, and the steering angle is controlled so that the traveling line matches the curvature. For this reason, there is a problem that the curvature calculation takes time and lacks responsiveness, and the curvature cannot be detected accurately depending on the display state of the white line on the road.
  • Patent Document 1 does not use the vehicle side slip angle that occurs during traveling because it does not use it for control, so it can be applied to automatic driving technology that requires position control that requires consideration of the vehicle side slip angle during rainy weather. Not suitable for application.
  • Patent Document 2 the curvature of the lane is regarded as a definite disturbance, and the DARMA model is constructed to predict the future value of curvature. That is, in Patent Document 2, as in Patent Document 1, the curvature of the lane is detected, and the steering angle is controlled so that the traveling line matches this curvature. 'For this reason, there is a problem that the curvature calculation takes time and lacks responsiveness, and the curvature cannot be detected accurately depending on the display state of the white line on the road. Moreover, in Patent Document 2, as in Patent Document 1, the vehicle side slip angle that occurs during travel is not used for control. However, it is not suitable for application to automatic driving technology that requires essential position control. .
  • Patent Document 3 various assistance methods are used to appropriately compensate for the driver's delay and advance in an emergency, and the vehicle's travel line does not follow the lane. For this reason, the speed and side slip angle are not used for control.
  • Patent Document 3 does not clearly indicate how to use the photographed white line by the imaging device (CCD camera), and does not follow the lane of the vehicle. Therefore, the technique described in Patent Document 3 cannot be applied to an automatic driving technique that requires high-accuracy position control that positions the vehicle in the center of the lane.
  • Patent Document 4 it does not matter where the vehicle is in the lane.
  • the steering angle operation of the driver is complemented. Therefore, it cannot be applied to the automatic driving technology that follows the driving line of the vehicle to the center line of the lane.
  • the first target speed is calculated by calculating the curvature radius of the lane from the image information obtained from the navigation system. As in Patent Documents 1 and 2, the calculation of the curvature radius is performed. It takes time and lacks responsiveness, and the curvature cannot be detected accurately depending on the white line display on the road.
  • Patent Document 4 as in Patent Documents 1 and 2, the vehicle side slip angle that occurs during traveling is not used for control, so it is essential to consider the vehicle side slip angle during rainy weather. It is not suitable for application to automatic driving technology that requires control.
  • Patent Document 5 since the radius of curvature of the center line of the lane is estimated by an observer, the amount of calculation is large when the lane width changes. Therefore, curvature calculation takes time and lacks responsiveness. In addition, what is selected as the optimal state variable has a large effect on the performance of the control system, so design is not easy (it is considered vulnerable to disturbances such as strong winds).
  • Patent Document 5 as in Patent Documents 1, 2, and 4 the vehicle side slip angle that occurs during traveling is not used for control. It is not suitable for automatic driving technology that requires position control that must be considered.
  • Patent Document 6 Even in Patent Document 6, the inconvenience caused by the calculation time of the lane curvature is solved, but the curvature calculation takes time and lacks responsiveness, and the curvature is detected correctly depending on the white line on the road. Can not.
  • the processing delay due to CPU is a problem, and there is no point in applying it to a system that performs high-speed processing.
  • Patent Document 6 as in Patent Documents 1, 2, 4, and 5, the vehicle body side slip angle that occurs during travel is not used for control, so it is essential to consider the vehicle body side slip angle when traveling in rainy weather. It is not suitable for automatic driving technology that requires position control.
  • An object of the present invention is to provide a lane tracking control device and a lane tracking control method that operate in an automatic manner.
  • FIG. 1 is a view showing a state where a vehicle 100 is traveling on a route L
  • FIG. 2 is a vehicle photographed from an imaging means VC mounted on the vehicle 100
  • FIG. 3 is a block diagram showing a lane tracking control device mounted on the vehicle 100.
  • the lane tracking control device A controls the vehicle 100 by following the middle line of the lane L (in FIG. 1, the middle line CL of the left and right white lines WL) as shown in FIG. Means (center line detecting means A 1 in FIG. 3), first calculating means (forward lateral deviation calculating means A 2 in FIG. 3), acquiring means (running state parameter acquiring means A 3 in FIG. 3), estimation Means (in Fig. 3, vehicle body side slip angle estimating means A 4), second calculating means (in Fig. 3, short rate target value calculating means A 5) and o G., third calculating means (in Fig. 3 1 moment input command value calculation means A 6) and control means A 7 (consisting of torque target value calculation means A 7 1 and operation signal generation means A 7 2).
  • the middle line detecting / detecting means A 1 recognizes (detects) the middle line C L of the lane L shown in FIG. 1 and generates and outputs the middle line recognition information a.
  • the middle line detecting means A 1 includes the imaging device V C shown in FIG. The imaging device V C captures the front of the vehicle 100 and outputs a captured image G.
  • the middle line detection means A 1 recognizes the position of the white line WL on the grid area obtained by dividing the captured image G into a grid pattern as shown in FIG.
  • the middle line recognition information a is generated from the position information of the white line WL and output.
  • the middle line detecting means A 1 detects the position of the white line WL (in this case, the lattice area including the white line already detected in the previous frame imaged by the imaging device VC and the surrounding grid area). The amount of processing can be reduced by performing the detection process for the area.
  • the front lateral deviation calculation means A 2 calculates the front lateral deviation of the vehicle 1 0 0 from the center line CL (the deviation from the center line CL of the predetermined point P in front of the vehicle on the center line CL of the vehicle 1 0 0) b ( In an embodiment described later, y sr ) is calculated.
  • the traveling state parameter acquisition means A 3 uses at least the vehicle speed c (V in the embodiment described later) and the actual rate d ( ⁇ in the embodiment described later) as the traveling state parameters of the vehicle 100. It is a means for obtaining, and can be specifically composed of a vehicle speed detecting means and a short rate detecting means.
  • the travel state parameter acquisition means A 3 is typically a vehicle speed detection means (speedometer), a short rate detection means (a short rate detector), and the vehicle body side slip angle estimation means A 4 includes a vehicle speed c and an actual speed. Based on the distance d, the vehicle body side slip angle .e (in the embodiment described later) is estimated.
  • the target value calculation means A 5 is based on the fact that the deviation of the center of gravity of the vehicle 1 0 0 from the center line CL (center of gravity deviation) is 0 based on the front lateral deviation b, the vehicle speed c, and the vehicle body side slip angle e.
  • a target yorate f ( ⁇ d in the embodiment described later) is calculated.
  • the motor moment input command value calculating means A 6 calculates a command motor moment input g (M in the embodiment described later) from the vehicle speed c and the target motor rate f.
  • the control means A 7 calculates at least one of the target driving torque h (T mr., T mrr in the embodiment described later), the target braking torque, and the target rudder angle corresponding to the commanded moment input g. , Output a predetermined operation signal i.
  • the control means A 7 calculates the target drive torque h
  • the operation signal i is output so that the driving torque of the vehicle 100 matches the target driving torque h.
  • the control means A 7 can calculate the vehicle side slip angle e by adding a first-order lag element to the product of the coefficient depending on the vehicle speed c and the actual speed d of the vehicle 100. Further, the control means A 7 can calculate the command moment input g by a linear addition formula of the target normal rate f and the differential value (df Z dt) of the target normal rate f.
  • the lane tracking control device B controls the vehicle 100 by following the middle line CL of the lane L as shown in FIG.
  • the middle line detecting means B 1) the first calculating means (front lateral deviation calculating means B 2 in FIG. 4), the vehicle speed detecting means B 3, the vehicle body side slip angle detecting means B 4, and the second Calculation means (in FIG. 4, the current target value calculation means B 5), the third calculation means (in FIG. 4, the current input command value calculation means B 6), and the control means B 7 (torque target value).
  • FIG. 4 the configuration of the middle line detecting means B 1, the front lateral deviation calculating means B 2, the normal rate target value calculating means B 5, the moment input command value calculating means B 6 and the control means B 7 is shown in FIG. Same as middle line detection means A1, forward lateral deviation calculation means A2, parallel rate target value calculation means A5, normal input command value calculation means A6 and control means A7 In Figure 4, the actual rate d is not acquired.
  • the vehicle speed detection means B3 acquires the vehicle speed c of the vehicle 100.
  • the lane tracking control device B is not provided with vehicle side slip angle estimation means.
  • Vehicle side slip angle detecting means B 4 for detecting the side slip angle e is provided.
  • the vehicle speed detection means B 3 and the vehicle body side slip angle detection means B 4 in FIG. 4 correspond to the traveling state parameter acquisition means A 3 in FIG.
  • the detected vehicle speed c and vehicle body side slip angle e are sent to the correct target value calculation means B 5.
  • the first mode of the lane tracking control method is to control the vehicle 100 shown in FIG. 1 by following the center line CL in the lane L.
  • the recognition step (the center line detection step SA 1 1 in FIG. 5) and The first calculation step (front lateral deviation calculation step SA 1 2 in FIG. 5), the acquisition step (running state parameter acquisition step SA 1 3 in FIG. 5), and the estimation step (vehicle side slip angle in FIG. 5)
  • second calculating step in FIG. 5 the current target value calculating step SA 1 5
  • third calculating step in FIG. 5 the current input command value calculating step SA 1
  • a control step SA 1 7 consististing of a target torque calculation step SA 1 7 1 and an operation signal generation step SA 1 7 2).
  • the operation is the same as that shown by 2, A 3, A 4, A 5, A 6, A 7 (A 7 1, A 7 2).
  • FIG. 6 illustrates a second aspect of the lane tracking control method of the present invention.
  • the second mode of the lane tracking control method is to control the vehicle 100 by following the middle line CL of the lane L, as in the first mode described in FIG. 5.
  • the recognition step (the middle line in FIG. 6) Detect 'step SB 1 1) and the first calculation Step (front lateral deviation calculation step SB 1 2 in FIG. 6), vehicle speed detection step step (SB 1 3) for detecting the vehicle speed, and vehicle side slip angle detection step (SB) for detecting the vehicle side slip angle 14), the second calculation step (in Fig. 6, the current target value calculation step SB 15), the third calculation step (in Fig. 6, the current input command value calculation step SB 16), and the control Step SB 1 7 (consisting of target torque calculation step SB 1 7 1 and operation signal generation step SB 1 7 2).
  • step S B 1 3 is the same as the operation by the means indicated by the symbols B 3 and B 4 in FIG.
  • FIG. 1 is a diagram showing a state where a vehicle is traveling on a route.
  • Figure 2 is an image of the front of the vehicle taken from the imaging means mounted on the vehicle.
  • FIG. 3 is a block diagram showing a first aspect of the lane tracking control device of the present invention.
  • FIG. 4 is a block diagram showing a second mode of the lane tracking control device according to the present invention.
  • FIG. 5 is a block diagram showing a first aspect of the lane tracking control method of the present invention.
  • FIG. 6 is a block diagram showing a second mode of the lane tracking control method of the present invention.
  • FIG. 7 is a block diagram showing a schematic configuration of the vehicle according to one embodiment of the present invention.
  • Figure 8 shows the correspondence between the road coordinate system and the planar coordinate system of the image.
  • FIG. 9 is a captured image of the CCD camera in the above embodiment.
  • FIG. 10 is a flowchart showing the operation of the image processing unit in the above embodiment.
  • FIG. 11 is a diagram in which a grid-like region is created over the entire y-axis in the image captured by the CCD camera in the embodiment described above.
  • FIG. 12 is a diagram in which 5 ⁇ 2 grid-like regions are created on the left and right sides of the image captured by the CCD camera in the embodiment described above.
  • FIG. 13 is a flowchart showing the operation of the lane following device in the embodiment described above.
  • Fig. 14 is a diagram showing a set course for the curved road following test.
  • Fig. 15 shows the results of the curved road following test.
  • FIG. 7 is a block diagram showing a schematic configuration of a vehicle 100 to which the lane tracking control device according to one embodiment of the present invention is applied.
  • the vehicle 100 is equipped with a CCD camera 1 (imaging device), a vehicle speed sensor 2, a short rate sensor 3, an image processing unit 10 and a lane tracking controller 20.
  • the vehicle 1 0 0 is the rear wheel.
  • left and right rear wheel drive motors 4 and 5 and left and right rear wheel tires 6 and 7 are shown. '
  • the CCD camera 1 is placed on the top of the vehicle 100, and while the vehicle 100 is traveling, it captures 60 images continuously per second (creates a frame). It functions as the recognition means (midline detection means A 1) and the first calculation means (forward lateral deviation calculation means A 2) shown in Fig. 3, and processes the road image information captured by the CCD camera 1 To do.
  • the lane tracking controller 20 includes an acquisition means (traveling state parameter acquisition means A 3), an estimation means (vehicle side slip angle estimation means A 4), a second calculation means (yolay) shown in FIG. G functions as target value calculation means A 5), third calculation means (moment input command value calculation means A 6), and control means A 7.
  • the vehicle speed sensor 2 converts the rotational speed of a non-driven wheel (front wheel in this embodiment) measured by an optical speedometer (not shown) to a vehicle speed V, and outputs this vehicle speed V to the lane tracking controller 20. To do.
  • the correct sensor 3 detects the actual correct rate ⁇ of the vehicle 100 and outputs it to the lane tracking controller 20.
  • the image processing unit 10 is composed of a discretized digital system such as a computer (not shown).
  • the image processing unit 10 detects a white line from a road image (captured image G) ahead of the army taken by the CCD camera 1, The position information of the white line is converted into a forward lateral deviation y s ⁇ and output to the lane tracking controller 20.
  • the lane tracking controller 20 is configured by a computer or the like, and is detected by the forward lateral deviation y sr from the image processing unit 10, the vehicle speed V detected by the vehicle speed sensor 2, and the actual sensor 3. Based on the rate ⁇ ,
  • CC Calculate the left and right rear wheel drive torques T mr or T mrr and output them to the drive motors 4 and 5.
  • the drive system of the vehicle 100 has a small electric motor built in each of the rear tires 6 and 7 of the vehicle in order to generate a momentary input due to the difference in driving force between the left and right rear wheels.
  • the drive torque can be freely controlled.
  • the actual 3D road coordinate system has the center of the imaging lens of the CCD camera 1 as the origin, and the Y-axis from the right to the left in the vehicle traveling direction. It is defined in the XY Z coordinate system where the Z axis is upward in the height direction and the lens optical axis is the X axis in the vehicle traveling direction.
  • the C C D camera 1 captures the road ahead of the vehicle 100 0 ′ with a resolution of ⁇ 4 0 X 4 80 pixels as shown in FIG.
  • the image processing unit 10 sets a plane coordinate system for the captured image G.
  • the plane coordinate system of this image G follows the screen operation direction of the television communication system such as NTSC, with the top left of the image as the origin, the left to the right, the y axis in the horizontal direction, and the z in the vertical direction from the top to the bottom. Defined in the yz coordinate system as the axis.
  • the coordinate transformation from the 3D road coordinate system to the plane coordinate system is expressed by the following equation.
  • f is the focal length of the camera lens.
  • h is the height from the road surface to the center of the CCD camera 1 lens.
  • Equation (2) is as follows. ,
  • 1 s [m] is the camera's forward gaze distance.
  • l s is a horizontal distance from the center of the total length of the vehicle 100 to the position of the white line to be detected, and is assumed to be approximately 8 to 0 m at a distance sufficiently longer than the total length of the vehicle 100.
  • the image processing unit 10 performs first-order spatial differentiation of the road image in the grid area created in Step P5, and emphasizes the boundary between the white line and the road surface (Step P7).
  • the image processing unit 10 performs a luminance binarization process S on the image after the first-order spatial differentiation, and extracts white lines on the left and right sides of the road in the grid area (step P 9).
  • the image processing unit 10 reads the next image from the CD camera 1 (steps ⁇ 1, ⁇ 3).
  • the image processing unit 10 adds yi (t) and y 2 calculated from the previous image to the image read this time. Create 5 x 2 grids of 30 x 30 pixels centered around (t) (step P17, Fig. 12). Thereafter, the process returns to step P7.
  • the lane tracking controller 20 obtains the vehicle speed V detected by the vehicle speed sensor 2 and the actual vehicle speed ⁇ of the vehicle 100 detected by the vehicle sensor 3. To do. Further, the front lateral deviation ysr is acquired from the image processing unit 10 (step S 1).
  • the lane tracking controller 20 estimates the slip angle of the vehicle body from the detected vehicle speed V and the actual vehicle speed according to the following equation (6) (Step S3). .
  • ddt represents time derivative
  • C f is the corner Li Ngupawa per wheel front tires
  • C r is the rear transportation cornering power per tire 1 exports
  • m is vehicle mass
  • the distance from the point to the front wheel axle, 1 r is the distance from the center of gravity of the vehicle 100 to the rear wheel axle.
  • the lane tracking controller 20 calculates the vehicle body center of gravity during driving based on the vehicle side slip angle ⁇ estimated by Equation (6) and the vehicle speed V and the front lateral deviation y sr obtained in step S 1.
  • the target yo rate ⁇ d is calculated from Eq.
  • step S 5 the lane tracking controller 20 inputs the command moment input so that the actual speed ⁇ matches the target speed ⁇ d based on the vehicle speed V and the target speed ⁇ d calculated in step S5.
  • M is calculated by equation (8) (step S 7).
  • 1 is the vehicle wheelbase and I z is the single inertia moment.
  • the lane tracking controller 20 calculates the target drive torque ⁇ r ⁇ T mrr for the left and right wheels (9) (10) in order to realize the command-moment input ⁇ calculated in step S7. (Step S9).
  • d is the vehicle tread and r w is the effective radius of the tire.
  • Left wheel target drive torque is the target drive torque ⁇ r ⁇ T mrr for the left and right wheels (9) (10) in order to realize the command-moment input ⁇ calculated in step S7.
  • the lane tracking controller 20 detects the target driving torque T mr calculated in step S9 ! , T mrr is converted to pulse voltage and output to the left and right drive motors 4 and 5 (step S 11). As a result, the rotational speed detected by the rotation detectors in the left and right drive motors 4 and 5 is adjusted so that the actual drive torque becomes the calculated target drive torques T mr I and T mrr . Controls drive torque.
  • a control system was mounted on an experimental vehicle and an experiment was conducted. As shown in Fig. 14 ', an experiment was conducted in which the vehicle accelerated from a straight running state to 25 km / h and traveled on a curved road with a 120 m-constant turning radius. When following a curved road, the vehicle speed was set to 25 km / h.
  • Figure 15 shows the time series response of the experimental results. From the top of the figure, the front lateral deviation y sr and the center-of-gravity point lateral deviation y calculated by the image processing unit 10. r , actual ⁇ from the gyro sensor, target yo rate y d calculated in step S5, side slip angle estimated in step S3, command omoment input M, left and right wheel The target drive torques T mr and T mrr are shown. The center-of-gravity point lateral deviation y er is estimated off-line from the lateral deviation from the image processing unit 10 and the vehicle model.
  • the vehicle enters the curved road around 3.5 seconds, and the vehicle's actual ⁇ matches the target yorate y d during steady circle turning due to the 'driving force difference between the left and right wheels. This can be confirmed.
  • Center-of-gravity point lateral deviation y It can be confirmed that the value of f is almost zero after entering the curved road, and good lane following performance is obtained.
  • the road curvature is detected by detecting the vehicle speed, the vehicle actual rate, and the front lateral deviation with respect to the target lane, and controlling the driving torque of the left and right wheels based on that information. Therefore, the lateral displacement of the center of gravity of the vehicle body always matches the target lane, and high lane tracking performance can be maintained.
  • a calculation method proportional to the target short rate has been shown.
  • the present invention is not limited to this, and other methods such as feedback control method of actual short rate etc.
  • the control method can be used.
  • the target driving torque, the target braking torque, and the target rudder angle are set so that the deviation from the center line CL force of the center of gravity of the vehicle is zero based on the forward lateral deviation, the vehicle speed, and the slip angle of the vehicle body.
  • Control at least one as the operation amount.
  • lane tracking control can be performed without calculating the lane curvature, thus enabling high-speed processing.
  • stable position control can be performed even during rainy weather.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

本発明では、前記前方横偏差と前記車速と前記車体横すべり角とから、車両の重心点の車線の中線からのズレが0となるように、目標駆動トルク、目標制動トルク、目標舵角の少なくとも1つを操作量として制御する。これにより、車線の曲率計算を行わずに車線追従制御ができるので、高速処理が可能となる。また、走行時に生じる車体横すべり角を制御パラメータに用いることで、雨天走行時等においても安定した位置制御を行うことができる。

Description

車線追従制御装置および車線追従制御方法
技術分野
. 本発明は、 車両を車線 (レーン) の中線に追従させて制御する車 線追従技術に関し、 具体的には目標駆動トルク、 目標制動トルク、 目標舵角の少なく とも 1つを算出して車両の動作を制御する車線追 明
従制御装置およぴ車線追従制御方法に関する。
糸田 1
背景技術
交通事故の低減を目指す安全技術の一種と して、 ドライバーの運 転操作を軽減するための技術開発が行われている。 その技術の例と して、 先行車両との相対距離を一定に維持する車間距離制御技術や 、 車両が常に車線 (レーン) の中央部に走行するよう制御する車線 追従 (車線維持) 等の制御技術が挙げられる。 これらの技術のうち、 車载カメラによ り道路の白線認識を行い、 認識した白線の位置に基づき自動操舵機構を制御する制御技術につ いては、 特許文献 1から 6に示すよ うに、 従来、 様々な提案がなさ れている。
特許文献 1 (特開 2 0 0 2— 2 1 1 4 2 8公報) に記載の車両挙 動制御装置では、 走行路の道路形状に基づいて車両の車線逸脱傾向 を検出し、 車両が車線逸脱傾向にあるときは車線逸脱時間または車 線逸脱所要時間を延ばすよ うに操舵制御を行っている。 具体的には 、 カメ ラで撮像した車両前方の画像から白線を検出することによ り 、 車両が車線逸脱傾向にあるか杏かを判断し、 車線逸脱傾向にある ときは、 操舵制御パラメータと しての制御用曲率を徐々に変化させ て操舵制御機構を制御する。 これにより、 車線逸脱距離または車線 逸脱所要時間を延ばすと と もに、 車幅方向の車線逸脱距離を短く し ている。
特許文献 2 ' (特開 2 0 0 0 — 3 0 2 0 5 5公報) に記載の車線追 従制御装置は、 比較的容易にかつ高精度に計測可能な情報のみを用 いて達成し得る予見制御系に'かかるものである。 特許文献 2では、 先ず、 例えば C C D.カメラで得た画像データを処理することによつ て目標コースの予見情報を得て、 これを確定外乱とみなし、 前輪舵 角指令値を入力と し、 目.標コースからの車両の横方向変位量を出力 とする D A RMA (D e t e r m i n i s t i c A u t o R e g r e s s i v e . M o v i n g A v e r a g e ) モアノレを用!/ヽ て車両モデル並びに目標コースモデルを表す。 次に、 一般化予測制 御 (G P C制御) 理論を拡張し、 車両モデル並びに目標コースモデ ルにこれを適用して将来の確定外乱に対する車線追従誤差を'捕償す る。 これにより、 車両状態量推定器を不要と した上で、 状態量フィ 一ドパック予見制御系と同等の性能を得ている。
特許文献 3 (特開平 7 — 3 1 5 2 4 0号公報) に記載の自動操舵 装置の制御装置は、 ドライバー優先のアシス ト方式において、 緊急' 時に各種のアシス ト方法を用いて ドライバーの切り遅れや進みを適 切に補償するものである。 具体的には、 車両のステアリ ング装置の 2分割したステアリ ング軸にギヤ比可変機構をバイパスして連設し 、 このギヤ比可変機構に操舵制御モータを ドライパーのマニュアル 操舵と 自動操舵を可能に設け、 ステア リ ング軸に トルク制御モータ をノヽン ドル側の トルク制御が可'能となるよ うに設けている。 制御装 置は、 C C Dカメラの撮像信号が入力する画像認識制御ュニッ トを 有しており、 この画像認識制御ユニッ トは、 撮像信号に基づき三角 測量法で距離を算出して、 画面全体が三次元の距離分布の画像を得 ている。 そして距離画像から車線、 前方車両、 障害物等を分離して 検出している。 そして、 制御装置は、 車線の画像から左右の白線、 道路形状等を認識し、 俞方車両、 障害物等の画像からは物体が何で あるかを認識すると ともに、 障害物があるときは当該障害物との相 的な距離や速度等を 織して、 車間距離制御や自動操舵制御を行 つてレヽる。
特許文献 4 (特開 2 0 0 2— 1 2 0 7 1 1公報) に記載の車両挙 動制御装置は、 ドライパーの意図する操作を最大限に尊重して不自 然な感覚を与えることなく ドライパーの不適切な操作による車線或 いは道路からの逸脱を防止することができる。 具体的には、 カーブ 曲率半径に基づいた第 1 の目標ョーレー トと、 運転状態に基づいた 第 2の目標ョーレー トを演算する。 そして、 ドライバーに旋回意志 があると判定した場合において、 第 1 の目標ョーレー トの絶対値が 第 2の目標ョーレー トの絶対値よ り大きいときは、 ドライパーの操 作が実際の道路形状に対し不足していると判断して第 2の目標ョー レー トを第 1 の目標ョーレー トで補正し、 この補正した第 2の目標 ョーレー トで制動力制御を行.う。
特許文献 5 (特開 2 0 0 5— 4 4 2 0 8公報) に記載の車線追従 走行制御装置は、 車線曲率の補正を適正化して車線追従性を向上す るこ とができる。 具体的'には、 画像情報から検出された車線曲率を 、 補正係数と車線曲率推定値との積の形で記述し、 オブザーバを用 いて、 各車両状態量と ともに、 '車線曲率推定値おょぴ補正係数を算 出 (推定) する。 これによ り、 車線曲率推定値を真の車線曲率に近 づけ、 車線曲率を検出するための画像情報と車両状態量を推定する ための車両モデルとのメジャーを合致させるための補正係数を真値 に近づける。 補正係数が定常値、 すなわち真値になると、 車線幅が 変わらない限り、 車線曲率を検出するための画像情報と車両モデル とのメジャーは変化しないから、 補正係数自体を変更する必要がな く、 車線曲率の補正が 正化されて車線追従性が向上する。 なお、 特許文献 5では、 ョー角 ョ一角微分値 , 車両横変位, 車両横変位 微分値を可観測状態量と し 、 車線曲率, 車線曲率微分値を観測でき ない状態量と して各状態里を推定し、 レギユ レータによりモータ ト ルクを制御している。
特許文献 6 (特開 2 0 0 1 - 4 8 0 3 5公報) の車線追従装置は
、 道路曲率に応じた車両の育 IJ方注視点位置における目標ラインを力 ープの内側へずらすことにより、 直線路のみならずカーブにおいて も安定に車線追従することができる。 具体的には、 操舵力伝達系に 設けられた自動操舵ァクチユエータによ り操舵トルクもしく は操舵 反力 トルクを与え、 自動操舵時に、 自動操舵制御手段によ り設定さ れた目標ラインに車両を追従させる制御指令を自動操舵ァクチユエ ータに対し出力する。 そして、 道路曲率推定手段によ りたとえば車 線の中心線を検出し、 方の道路曲率を推定すると ともに、 目標ラ ィン補正手段によ り前方の道路曲率に応じて目標ライン設定手段に 設定されている 目標ラィンを前方注視点においてカープの内側方向 にずらす補正をする。 すなわち、 カーブにおいては、 目標ラインが 、 撮像装置によ り得た画像から得られる車線の中心線からずれて制 御されてしま う不都合を解消するために、 目標ラインの補正を行つ ている。 発明の開示
特許文献 1では、 車両の走行ラインを車線の中心線に追随させる ものではないので、 この技術を自動運転に適用すると、 走行状態が 安定しないおそれがある。 また特許文献 1では、 走行時に生じる車 体横すぺり角を制御に用いていないため、 車両を車線の中央に位置 させるよ うな高精度の位置制御を必要とする自動運転技術への適用 には不向きである。
また、 特許文献 1では車線の曲率を検出、 走行ラインをこの曲率に 合せるよ うに操舵角を制御している。 このため、 曲率計算に時間が かかり即応性に欠けるし、 道路上の白線の表示状態によっては曲率 が正確に検出できないという問題がある。 しかも、 特許文献 1では 、 走行時に生じる車体横すベり角を制御に用いていないため、 雨天 走行時等における車体横すぺり角の考慮が必須の位置制御を必要と する自動運転技術への適用には不向きである。
特許文献 2では、 車線の曲率を確定外乱と しており、 D A R M A モデルを構築して曲率の未来値を予測している。 すなわち、 特許文 献 2では、 特許文献 1 と同様、 車線の曲率を検出し、 走行ライ ンを この曲率に合せるように操舵角を制御している。' このため、 曲率計 算に時間がかかり即応性に欠け、 道路上の白線の表示状態によって は曲率が正確に検出できないという問題がある。 しかも、 特許文献 2でも、 特許文献 1 と同様、 走行時に生じる車体横すベり角を制御 に用いていないため、 雨天走行時等における車体横すベり角の考慮 が必須の位置制御を必要とする自動運転技術への適用には不向きで ある。 .
特許文献 3では、 緊急時に各種のアシス ト方法を用いて ドライバ 一の切り遅れや進みを適切に補償するものであり、 車両の走行ライ ンを車線に追随させるものではない。 このため、 制御に際してョー レー トや車体横すベり角を用いることはない。 なお、 特許文献 3に は、 撮像装置 (C C Dカメラ) によ り.撮影した白線をどのよ うに利 用するかが明示されておらず、 車両の走行ラインを車線に追随させ るものではない。 よって特許文献 3に記載の技術では、 車両を車線 の中央に位置させるような高精度の位置制御を必要とする自動運転 技術への応用はできない。
特許文献 4では、 車両が車線のどこに存在しているかは問題とせ ず、 第 2 の目標ョーレー トが第 1 の目標ョーレー トと異なるときに 、 ドライパーの舵角操作を補完する。 したがって、 車両の走行ライ ンを車線の中心線に追随させる自動運転技術への適用はできない。 . また、 特許文献 4では、 ナビゲーシヨ ンシステムから取得した画像 情報から車線の曲率半径を求めることで第 1の目標ョーレー トを演 算しており、 特許文献 1, 2 と同様、 曲率半径の計算に時間がかか り即応性に欠けるし、 道路上の白線の表示状態によっては曲率が正 確に検出できないという問題がある。 しかも、 特許文献 4でも、 特 許文献 1, 2 と同様、 走行時に生じる車体横すベり角を制御に用い ていないため、 雨天走行時等における車体横すベり角の考慮が必須 の位置制御を必要とする自動運転技術への適用には不向きである。 特許文献 5では、 オブザーバによ り車線の中心線の曲率半径を推 定しているので、 車線幅が変化'するよ うな場合には計算量が多く な り、 曲率計算に時間がかかり即応性に欠ける。 また、 最適な状態変 数と して何を選択するかが制御系の性能に大き く影響するので設計 が容易ではない (強風などの外乱には脆弱であると考えられる) 。 しかも、 特許文献 5でも、 特許文献 1, 2, 4 と同様、 走行時に生 じる車体横すベり角を制御に用いていないため、 雨天走行時等にお ける車体横すベり角の考慮が必須の位置制御を必要とする自動運転 技術への適用には不向きである。
特許文献 6でも、 車線の曲率の計算時間に起因する不都合は解消 され'るものの、 曲率計算に時間がかかり即応性に欠けるし、 道路上 の白.線の表示状態によっては曲率が正確に検出できない。 また、 特 許文献 6では、 C P U等による処理の遅れを問題と しており、 高速 処理が行われるシステムには適用しても意味がない。 しかも、 特許 文献 6でも、 特許文献 1 , 2, 4, 5 と同様、 走行時に生じる車体 横すぺり角を制御に用いていないため、 雨天走行時等における車体 横すベり角の考慮が必須の位置制御を必要とする自動運転技術への 適用には不向きである。
本発明は、 上記事情に鑑みてなされたもので、 道路曲率情報を必 要とせずに、 カーブにおいても高い車線追従性能を維持することが 可能で、 しかもすべりが生じるよ うな路面状態においても良好に動 作する車線追従制御装置および車線追従制御方法を提供することを 目的と している。
以下、 本発明の概要を説明する。
図 1から図 3によ り、 本発明の車線追従制御装置の第 1態様を説 明する。 図 1は、 車両 1 0 0が路線 Lを走行している様子を示す図 であり、 図 2は車両 1 0 0に搭載した撮像手段 V Cから撮影した車 両 1 0 0の前方の画像であり、 図 3は車両 1 0 0に搭載された車線 追従制御装置を示すプロック図である。
図 3において車線追従制御装置 Aは、 図 1に示すよ うに車両 1 0 0を車線 Lの中線 (図 1では左右の白線 W Lの中線 C L ) に追従さ せて制御するもので、 認識手段 (図 3では中線検出手段 A 1 ) と、 第 1 の算出手段 (図 3では前方横偏差算出手段 A 2 ) と、 取得手段 (図 3では走行状態パラメータ取得手段 A 3 ) と、 推定手段 (図 3 では車体横すベり角推定手段 A 4 ) と、 第 2の算出手段 (図 3では ョーレー ト 目標値算出手段 A 5 ) とo G.、 第 3 の算出手段 (図 3ではョ 一モーメント入力指令値算出手段 A 6 ) と、 制御手段 A 7 (トルク 目標値算出手段 A 7 1 と操作信号生成手段 A 7 2 とからなる) とを 備えている。
中線検.出手段 A 1 は、 図 1 に示す車線 Lの中線 C Lを認識 (検出 ) し中線認識情報 a を生成して出力する。 中線検出手段 A 1 は、 図 1 に示す撮像装置 V Cを含む。 撮像装置 V Cは車両 1 0 0 の前方を 撮影し撮影画像 Gを出力する。
中線検出手段 A 1 は、 車線 Lの中線 C Lを認識するために、 図 2 に示すよ うに撮影画像 Gを格子状に分割した当該格子状領域上の白 線 W Lの位置を認識し、 当該白線 W Lの位置情報から中線認識情報 a を生成して出力する。 中線検出手段 A 1は、 白線 W Lの位置を検 出する(こ際して、 撮像装置 V Cによ り撮影した先のフ レームにおい て既に検出した白線を含む格子状領域およびその周囲の格子状領域 について検出処理を行う ことで、 処理量を削減することができる。 前方横偏差算出手段 A 2は、 中線 C Lからの車両 1 0 0 の前方横 偏差 (車両 1 0 0の中心線 C L上の車両前方の所定点 Pの、 中線 C Lからのズレ) b (後述する実施形態では y s r ) を算出する。 走行状態パラメータ取得手段 A 3は、 車両 1 0 0の走行状態パラ メータと して少なく とも車速 c (後述する実施形態では V ) と実ョ 一レー ト d (後述する実施形態では γ ) とを取得する手段であり、 具体的には車速検出手段とョーレー ト検出手段から構成することが できる。
なお、 走行状態パラメータ取得手段 A 3は、 典型的には車速検出 手段 (速度計) ゃョーレー ト検出手段 (ョーレート検出計) である 車体横すぺり角推定手段 A 4は、 車速 c と実ョーレー ト d とに基 づき、 車両 1 0 0の車体横すベり角 . e (後述する実施形態では ) を推定する。
ョーレー ト 目標値算出手段 A 5は、 前方横偏差 b と車速 c と車体 横すぺり角 e とから、 車両 1 0 0の重心点の、 中線 C Lからのズレ (重心点偏差) が 0 となる目標ョーレー ト f (後述する実施形態で は γ d ) を算出する。
ョーモーメ ン ト入力指令値算出手段 A 6は、 車速 c と 目標ョーレ ー ト f とから指令ョーモーメ ン ト入力 g (後述する実施形態では M ) を算出する。
制御手段 A 7は、 指令ョーモーメ ン ト入力 gに対応する目標駆動 トルク h (後述する実施形態では T m r . 、 T m r r ) 、 目標制動 トル ク、 目標舵角の少なく とも 1つを算出して、 所定の操作信号 i を出 力する。 制御手段 A 7は、 目標駆動トルク hを算出する場合には、 車両 1 0 0の駆動 トルクを目標駆動 トルク hに一致するように操作 信号 i を出力する。 制御手段 A 7は、 車速 c に依存した係数と車両 1 0 0の実ョーレー ト d と の積に一次遅れ要素を付加して車体横す ぺり角 e を算出するこ とができる。 また、 制御手段 A 7は、 目標ョ 一レー ト f と 目標ョーレー ト f の微分値 ( d f Z d t ) との一次加 算式によ り指令ョーモーメ ン ト入力 g を算出するこ とができる。
図 4によ り 、 本発明の車線追従制御装置の第 2態様を説明する。 図 4において車線追従制御装置 Bは、 車線追従制御装置 Aと同様 、 図 1 に示したよ う に車両 1 0 0 を車線 Lの中線 C Lに追従させて 制御するもので、 認識手段 (図 4では中線検出手段 B 1 ) と、 第 1 の算出手段 (図 4では前方横偏差算出手段 B 2 ) と、 車速検出手段 B 3 と、 車体横すベり角検出手段 B 4 と、 第 2の算出手段 (図 4で はョーレー ト 目標値算出手段 B 5 ) と、 第 3の算出手段 (図 4では ョーモーメ ン ト入力指令値算出手段 B 6 ) と、 制御手段 B 7 ( トル ク 目標値算出手段 B 7 1 と操作信号生成手段 B 7 2 とからなる) と を備えている。
図 4において、 中線検出手段 B l 、 前方横偏差算出手段 B 2、 ョ 一レー ト 目標値算出手段 B 5 、 ョーモーメ ン ト入力指令値算出手段 B 6および制御手段 B 7 の構成は図 3に示した中線検出手段 A 1、 前方横偏差算出手段 A 2 、 ョ一レー ト 目標値算出手段 A 5、 ョーモ 一メ ン ト入力指令値算出手段 A 6および制御手段 A 7 と同じである 図 4では、 実ョーレー ト dは取得しない。 車速検出手段 B 3は、 車両 1 0 0 の車速 c を取得する。 また、 図 4 で車線追従制御装置 B には、 車体横すベり角推定手段は設けられていない代わり に、 車体 横すベり角 e を検出する車体横すベり角検出手段 B 4が設けられて いる。 図 4の車速検出手段 B 3 と車体横すぺり角検出手段. B 4は、 図 3の走行状態パラメータ取得手段 A 3に対応する。 検出された車 速 cおよび車体横すぺり角 eは、 ョーレー ト 目標値算出手段 B 5に 送出される。
図 5によ り、 本発明の車線追従制御方法の第 1態様を説明する。 車線追従制御方法の第 1態様は、 図 1 に示した車両 1 0 0を車線 Lにおける中線 C Lに追従させて制御するもので、 認識ステップ ( 図 5では中線検出ステップ S A 1 1 ) と、 第 1 の算出ステップ (図 5では前方横偏差算出ステップ S A 1 2 ) と、 取得ステップ (図 5 では走行状態パラメータ取得ステップ S A 1 3 ) と、 推定ステップ (図 5では車体横すベり角推定ステップ S A 1 4 ) と、.第 2の算出 ステップ (図 5ではョーレー ト 目標値算出ステップ S A 1 5 ) と、 第 3 の算出ステップ (図 5ではョーモーメ ン ト入力指令値算出ステ ップ S A 1 6 ) と、 制御ステップ S A 1 7 (目標 トルク算出ステツ プ S A 1 7 1 と操作信号生成ステップ S A 1 7 2 とからなる) とを 有している。
ステップ S A l l , S A 1 2 , S A 1 3 , S A 1 4 , S A 1 5 , S A 1 6 , S A 1 7 ( S A 1 7 1 , S A 1 7 2 ) における動作は、 図 5で符号 A l , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 ( A 7 1 , A 7 2 ) によ り示した手段による動作と同じである。
— 図 6によ り、 本発明の車線追従制御方法の第 2態様を説明する。 車線追従制御方法の第 2態様は、 図 5で説明した第 1態様と同様 、 車両 1 0 0を車線 Lの中線 C Lに追従させて制御するもので、 認 識ステップ (図 6では中線検出'ステップ S B 1 1 ) と、 第 1 の算出 ステップ (図 6 では前方横偏差算出ステップ S B 1 2 ) と、 車速を 検出する車速検出ステップステップ ( S B 1 3 ) と、 車体横すベり 角を検出する車体横すベり角検出ステップ ( S B 1 4 ) と、 第 2の 算出ステップ (図 6ではョーレー ト 目標値算出ステップ S B 1 5 ) と、 第 3の算出ステップ (図 6ではョーモーメ ン ト入力指令値算出 ステップ S B 1 6 ) と、 制御ステップ S B 1 7 (目標 トルク算出ス テツプ S B 1 7 1 と操作信号生成ステツプ S B 1 7 2 とからなる) とを有している。
各ス丁ップ S B 1 1 , S B 1 2 , S B 1 5 , S B 1 6 , S B 1 7
( S B 1 7 1 , S B 1 7 2 ) における動作は、 図 4で符号 B 1 , B
2, B 5 , B 6 , B 7 ( B 7 1 , B 7 2 ) によ り示した手段による 動作と 1口]じである。 また 、 ステップ S B 1 3 における.動作は 、 図 4 で符号 B 3, B 4によ り示した手段による動作と同じである 図面の簡単な説明
図 1 は 、 車両が路線を走行している様子を示す図である。
図 2は車両に搭載した撮像手段から撮影した車両の前方の画像で ある。
図 3 は 、 本発明の車線追従制御装置の第 1態様を示すプロ ック図 である
図 4は 、 本発明の車線追従制御 ¾置の第 2態様を示すプロ ック図 である
図 5は 、 本発明の車線追従制御方法の第 1態様を示すブ口 ック図 である。 図 6は、 本発明の車線追従制御方法の第 2態様を示すブロ ック図 である。
図 7は、 本発明の一実施形態に係る車両の概略構成を示すプロッ ク図である。
図 8は、 道路座標系と画像の平面座標系の対応図である。
図 9は、 同上の実施形態における C C Dカメラの撮像画像である ' 図 1 0は、 同上の実施形態に.おける画像処理部の動作を示すフロ 一チヤ一トである。
図 1 1は、 同上の実施形態における、 C C Dカメラで撮像した画 像に格子状'領域を y軸全域に作成した図.である。
図 1 2は、 同上の実施形態における、 C C Dカメラで撮像した画 像に格子状領域を左右それぞれ 5 X 2個作成した図である。
図 1 3は、 同上の実施形態における、 車線追従性器の動作を示す フローチャートである。
図 1 4は、 曲線路追従走行試験の設定コースを示す図である。
図 1 5は、 曲線路追従走行試験の結果を示す図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。
図 7は、 本発明の一実施形態に係る車線追従制御装置を適用した 車両 1 0 0の概略構成を示すブロック図である。
図 7において車両 1 0 0には、 C C Dカメ ラ 1 (撮像装置) 、 車 速センサ 2、 ョーレー トセンサ 3、 画像処理部 1 0、 車線追従制御 器 2 0が搭載されている。 なお.、 本実施形態では車両 1 0 0は後輪
r r 駆動車であり 、 図 7では左右後輪の駆動モータ 4 , 5、 左右後輪タ ィャ 6, 7を図示してある。 '
C C Dカメ ラ 1 は、 車両 1 0 0 の上部に載置され、 車両 1 0 0 の 走行中、 1秒間に 6 0枚連続して撮像する (フ レームを作成する) 画像処理部 1 0 は、 図 3 に示した認識手段 (中線検出手段 A 1 ) 、 第 1 の算」出手段 (前方横偏差算出手段 A 2 ) と して機能し、 C C Dカメ ラ 1 で撮像した道路画像情報を処理する。
車線追従制御器 2 0 は、 図 3 に示 4した取得手段 (走行状態パラメ ータ取得手段 A 3 ) 、 推定手段 (車体横すベり角推定手段 A 4 ) 、 第 2 の算出手段 (ョーレー ト 目標値算出手段 A 5 ) 、 第 3 の算出手 段 (ョーモーメ ン ト入力指令値算出手段 A 6 ) 、 制御手段 A 7 と し て機能する。
車速センサ 2は、 図示しない光学式速度計で測定した非駆動輪 ( 本実施形態では前輪). の回転速度を車速 Vに換算しており、 この車 速 Vを車線追従制御器 2 0 へ出力する。
ョーレー トセンサ 3は、 車両 1 0 0 の実ョーレー ト γ を検出し、 車線追従制御器 2 0 へ出力する。 画像処理部 1 0 は、 図示しないコ ンピュータ等の離散化されたディ ジタルシステムで構成され、 C C Dカメ ラ 1で撮像した軍両前方の道路画像 (撮影画像 G ) から、 白 線を検出し、 その白線の位置情報を前方横偏差 y s ^に変換して、 車 線追従制御器 2 0 に出力する。
車線追従制御器 2 0 はコ ンピュータ等によ り構成され、 画像処理 部 1 0からの前方横偏差 y s r と、 車速センサ 2で検出された車速 V と、 ョーレー トセンサ 3で検出.された実ョーレー ト γ に基づいて、
C C 左右後輪の駆動 トルク Tm rい Tm r rを算出し、 駆動'モータ 4 , 5 に出力する。
車両 1 0 0の駆動システムは、 左右後輪の駆動力差によるョーモ 一メント入力を発生させるため、 車両の後輸タイヤ 6, 7にそれぞ れ小型電動モータが内蔵されており、 各モータの駆動 トルクを自由 自在に制御することが可能となっている。
こ こで、 実際の 3次元道路座標系を、 図 8のよ うに、 C C Dカメ ラ 1 の撮像レンズの中心を原点と して、 車両進行方向に向かって右 から左方向に Y軸、 車両の高さ方向へ上向きに Z軸、 レンズ光軸を 車両進行方向に X軸とする XY Z座標系で定義する。
C C Dカメ ラ 1 は、 車両 1 0 0'の前方の道路を、 図 9のよ うに β 4 0 X 4 8 0 ピクセルの解像度で撮像する。 撮像した画像 Gは、 画 像処理部 1 0にて平面座標系を設定する。 この画像 Gの平面座標系 は、 N T S C等のテ レビジョ ン通信方式の画面操作方向に従い、 画 像左上を原点と して左から右へ水平方向に y軸、 上から下へ垂直方 向に z軸とする y z座標系で定義される。
平面座標系の原点が 3次元道路座標系の X軸上にあるとすれば、 3次元道路座標系から平面座標系への座標変換は次式で表される。 ただし、 f はカメラレンズの焦点距離である。
y = - f ( Y/X) ( 1 )
ζ = - f ( Ζ /X) ( 2 )
車両の側面 (上下方向) に関する運動方程式は、 車両のピッチ角 が大きく発生しないと仮定して、 以下のよ うに表される。 こ こで、 hは道路表面から C C Dカメラ 1のレンズ中心までの高さである。
Z = - h · ( 3 ) よって、 ( 2 ) 式は以下のよ うになる。 ,
z = - f ( Z / X)
=ー f (一 h / 1 J 二 ί 1 s ( 4 )
ここで: 1 s [m] はカメラの前方注視距離である。 l sは、 車両 1 0 0の全長の中心から検出する白線の位置までの水平距離であり 、 車両 1 0 0の全長よ り も充分長い距離で、 おおよそ 8〜 0 mを 想定している。 本実施形態では、 l s == 1 0 [m] に固定し、 そのと きの画像上の zの値を z = 3 3 0 [ピクセル] に固定している。 次に画像処理部 1 0の動作について図 1 0のフローチャートを参 照して説明する。
この動作は、 1 6 m s e c毎のサンプリ ングタイムで実行される 画像処理部 1 0は、 C C Dカメ.ラ 1が撮像した画像を読み込む ( ステップ P 1 ) 。 読み込んだ画像が 1番最初の画像である場合 (ス テツプ P 3の 「Y e s」 ) 、 車両 1 0 0の全長中心部;^ら 1 s [m] 離れた地点を示す Z = 3 3 0 ピクセルを基準と して、 上下にそれぞ れ 3 0 X 3 0 ピクセルの格子状領域を、 y軸全域に作成する。 つま り、 図 1 1 に示すよ うに、 z = 3 0 0 と z = 3 6 0の間に挟まれた 画像内すべてに、 3 0 X 3 0 ピクセルの格子状領域を作成する (ス テツプ P 5 ) 。
次に画像処理部 1 0は、 ステップ P 5で作成した格子状領域内の 道路画像を一次空間微分し、 白線と路面の境界を強調させる (ステ ップ P 7 ) 。
C 次に画像処理部 1 0 は、 一次空間微分を行った後の画像において 、 輝度の二値化処 Sを行い、 格子状領域内における道路の左右両側 の白線を抽出する (ステップ P 9 ) 。
次に画像処理部 1 0は、 ステップ P.9で抽出した左右の白線につ いて、 z = 3 3 0 ピクセルにおける白線上の yの値を求める。 この とき、 抽出した白線は車両 1 0 0から充分離れているので、 白線の 幅を考慮しなぐてよい。 yの値は原点から近い順に y ( t ) 、 y 2 ( t ) と し、 これに対応する z をそれぞれ z い z 2 ( z x = z 2 = 3 3 0 ピクセル) とする (ステップ P I 1 ) 。
次に、 ステップ P 1 1 で算出した白線の位置情報から、 前方横偏 差 y s r ( t ) を ( 5 ) 式のよ う に算出する (ステップ P 1 3 ) 。 こ こで、 t は時間である。 '
; =¼·^^ (5)
/ V. ノ
引き続いて処理を行う場合 (ステップ Ρ 1 5で 「Ν ο」 ) 、 画像 処理部 1 0は C C Dカメ ラ 1 から次の画像を読み込む (ステップ Ρ 1, Ρ 3 ) 。
画像は 1秒間に 6 0枚と高速で撮像しているため、 今回読み取つ た画像における y i ( t + 1 ) と y 2 ( t + 1 ) の値は、 1つ前の画 像における y i ( t ) と y 2 ( t ) と大き く変化しないとみなすこ と ができる。 これは、 カープにおける y i と y 2においても、 同様に取 り扱う こ とができる。 これは、 C C Dカメ ラ 1 が高速で撮像してい るこ と と、 車両自体がカープを白線に沿って走行しているため、 車 両から l s [m] での道路が直線路のよ う に見えるからである。 これ
C は、 カーブの旋回半径が R = l 0 0 m程度までであれば有効である よって、 画像処理部 1 0は、 今回読み取った画像に、 前回の画像 で算出した y i ( t ) .と y 2 ( t ) を中心とする、 3 0 X 3 0 ピクセ ルの格子状領域をそれぞれ 5マス X 2マス作成する (ステップ P 1 7, 図 1 2 ) 。 以後、 ステップ P 7の処理に戻る。
このよ う にして、 演算処理を行う領域を狭めることによ り、 処理 時間を短縮し、 白線認識の高速化を図る。
次に車線追従制御器 2 0の動作について図 1 3 を参照して説明す る。 この動作は、 5 m s e c毎のサンプリ ングタイムで実行される 車線追従制御器 2 0 は、 車速センサ 2が検出した車速 Vと、 ョー レー トセンサ 3が検出した車両 1 0 0の実ョーレー ト γ を取得する 。 また、 画像処理部 1 0から前方横偏差 y s rを取得する (ステップ S 1 ) 。
次に車線追従制御器 2 0は、 検出した車速 Vと車両の実ョ一レ.一 ト に基づいて車体横すベり角 を下記の ( 6 ) 式によ り推定する (ステップ S 3 ) 。
Figure imgf000020_0001
ただし、 d d t は時間微分を表し、 C f は前輪タイヤ 1輪あたり のコーナ リ ングパワー、 C rは後輸タイヤ 1輸あたり のコーナリ ング パワー、 mは車両質量、 1 f は車両 1 0 0の重心点から前輪軸までの 距離、 1 rは車両 1 0 0の重心点から後輪軸までの距離である。 次に車線追従制御器 2 0は、 ( 6 ) 式で推定し^車体横すベり角 β と、 ステップ S 1 で取得した車速 Vと前方横偏差 y s rに基づいて 、 走行時に車体重心点が道路両側の白線の中線に常に一致する、 つ ま り重心点横偏差が 0 となるよ うな目標ョーレー ト γ dを ( 7 ) 式に よ り算出する (ステップ S 5 ) 。
Figure imgf000021_0001
次に車線追従制御器 2 0は、 車速 Vとステップ S 5で算出された 目標ョーレー ト Ί dに基づいて、 実ョーレー ト γが目標ョーレー ト γ dと一致するよ う、 指令ョーモーメ ン ト入力 Mを ( 8 ) 式によ り算出 する (ステップ S 7 ) 。 ただし、 1 は車両ホイールベース、 I zはョ 一慣性モーメ ン トである。
Figure imgf000021_0002
次に車線追従制御器 2 0 は、 ステップ S 7で算出された指令ョー モーメ ン ト入力 Μを実現させるために、 左右輪の目標駆動 トルク Τ rい Tm r rを ( 9 ) ( 1 0 ) 式によ り算出する (ステップ S 9 ) 。 ただし、 dは車両 ト レッ ド、 r wはタイヤの有効半径である。 左輪の目標駆動トルク
(9) a
右輪の目標駆動トルク
T {†) f=— 10) d r 次に車線追従制御器 2 0は、 ステップ S 9で算出した目標駆動 ト ルク Tm r !、 Tm r rをパルス電圧に変換し左右輪の駆動モータ 4, 5 に出力する (ステップ S 1 1 ) 。 これによ り、 実際の駆動 トルク を、 算出した目標駆動 トルク Tm r I、 Tm r rになるよ う、 左右輸の 駆動モータ 4 , 5 内の回転検出器で検出している回転速度おょぴ駆 動 トルクを制御する。
本発明の有効性を検討するため、 制御システムを実験車両に実装 して実験を行った。 図 1 4に'示すよ う に、 車両が直進走行状態から 時速 2 5 k mまで加速し、 1 2 0 m—定の旋回半径の曲線路を走行 する実験を行った。 なお、 曲線路を追従する際に、 車速を 2 5 k m ノ h—定と した'。
実験結果の時系列応答を図 1 5 に示す。 図の上段から、 画像処理 部 1 0 よ り算出した前方横偏差 y s r、 重心点横偏差 y 。 r、 ジャイロ センサからの実ョーレー ト γ とステップ S 5で算出した目標ョーレ ー ト y d、 ステ ップ S 3で推定した車体横すベり角 、 指令ョーモー メ ン ト入力 M、 左右輪の目標駆動 トルク T m r ,、 Tm r rを示してい る。 なお、 重心点横偏差 y e rは画像処理部 1 0からの横偏差及ぴ車 両モデルよ りオフライ ンで推定したものである。
図 1 5 よ り 、 3. 5秒付近で曲線路に進入し、 左右輪の'駆動力差 によ り 定常円旋回時に、 車両の実ョーレー ト γ は目標ョーレー ト y d によ く 一致するこ とが確認できる。 これは、 指令ョーモーメ ン ト入 力 Mの算出方法が有効であることを意味する。 重心点横偏差 y。 f の 値は曲線路進入後もほぼ零になっているこ とが確認でき、 良好な車 線追従性能を得ている。 このよ うに、 本実施の形態によれば、 車速と車両の実ョーレー ト と 目標車線に対する前方横偏差を検出し、 その情報に基づいて左右 輪の駆動 トルクを制御することによ り、 道路曲率を必要とせず、 車 体重心点横変位が常に目標車線に一致し、 高い車線追従性能を維持 することが可能となる。
以上、 本発明の実施形態について図面を参照して後述してきたが 、 具体的な構成はこの実施形態に限られるものではなく、 本発明の 要旨を逸脱しない範囲の設計変更等も含まれている。
例えば、 指令ョーモーメ ン ト入力 Mの算出手段では、 目標ョーレ ー トに比例する算出方法を示したが、 本発明はこれに限定される者 ではなく、 実ョーレー トのフィー ドバック制御手法等、 他の制御手 法で.あつてもよい。
また、 指令ョーモーメント入力 Mを発生させるために、 左右輪の 駆動トルク差によって実現するものを示したが、 本発明はこれに限 定されるものではなく、 制動 トルク差による手法等であってもよい
産業上の利用可能性 ·
本発明では、 前方横偏差と車速と車体横すベり角とから、 車両の 重心点の中線 C L力 らのズレが 0 となるよ うに、 目標駆動 トルク、 目標制動 トルク、 目標舵角の少なく とも 1つを操作量と して制御す る。 これによ り、 車線の曲率計算を行わずに車線追従制御ができる ので、 高速処理が可能となる。 また、 走行時に生じる車体横すベり角を制御パラメータに用いる ことで、 雨天走行時等においても安定した位置制御を行う ことがで きる。

Claims

請 求 の 範 '囲
1 . 車両を車線の中線に追従させて制御する車線追従制御装置にお いて、
5 前記車線の中線からの前記車両の前方横偏差を算出する第 1の算 出'手段と'、 '
前記車両の走行状態パラメータと して少なく とも車速と実ョーレ 一ト とを取得する取得手段と、
前記車速と前記実ョーレー トとに基づき、 前記車両の車体横すベ0 り角を推定する推定手段と、
前記前方横偏差と前記車速と前記車体横すベり角とから前記車両 の重心点の前記車線の中線からのズレが 0 となる目標ョーレー トを 算出する第 2 の算出手段と、
—前記車速と前記目標ョーレー トとから指令ョーモーメ ン ト入力を5 算出する第 3の算出手段と、
前記指令ョーモーメン ト入力に対応する目標駆動 トルク、 目標制 動 トルク、 目標舵角の少なく とも 1つを算出して、 所定の操作信号 を出力する制御手段と、
を有すことを特徴とする車線追従制御装置。
0 2 . 前記制御手段は、 前記目標駆動 トルクを算出し、 前記車両の駆 動 トルクを前記目標駆動 トルクに一致するよ うに前記操作信号を出 力することを特徴とする請求項 1に記載の車線追従制御装置。
3 . 前記車線の中線を認識し中線認識情報を生成して出力する認識 手段を備え、
C C O 2006/121221 前記第 1の算出手段は、 前記中線認識情報に基づき前記前方横偏
差を算出することを特徴とする請求項 1から 3の何れかに記載の車
線追従制御装置。
4 . 前記認識手段は、 車両の前方を撮影し撮影画像を出力する撮像
装置を含み、 前記撮影画像を格子状に分割した当該格子状領域に表
示される前記車線の両側の白線の位置を認識し、 当該白線の位置情
報を前記中線認識情報と して生成して出力することを特徴とする請
求項 1から 3の何れかに記載の車線追従制御装置。
前記認識手段は、 前記白線の位 2'
5 . 4置を認識するに際して、 前記撮
影装置によ り撮影した先のフ レームにおいて既に認識した白線を含
む格子状領域およびその周囲の格子状について認識処理を行う こと
を特徴とする請求項 4に記載の車線追従制御装置。
6 . 前記推定手段は、 前記車速に依存した係数と前記車両の実ョー
レー トとの積に一次遅れ要素を付加して前記車体横すベり角を算出
することを特徴とする請求項 1から 5の何れかに記載の車線追従制
御装置。 ·
7 . 前記制御手段は、 前記目標ョーレー ト と当該目標ョーレー トの
微分値との一次加算式によ り前記指令ョーモーメ ン ト入力を算出す
ることを特徴とする請求項 1から 6の何れかに記載の車線追従制御
装置。
8 . 車両を車線の中線に追従させて制御する車線追従制御装置にお
いて、
前記車線の中線からの前記車両の前方横偏差を算出する第 の算 ' 出手段と、
車速を検出する車速検出手段'と、 - c O 2006/121221
25 車体横すベり角を検出する車体横滑り角検出手段と、
前記前方横偏差と前記車速と前記車体横すベり角とから前記車両 の重心点の前記車線の中線からのズレが 0 となる 目標ョーレー トを 算出する第 2の算出手段と、
前記車速と前記目標ョーレートとから指令ョーモーメ ン ト入力を 算出する第 3の算出手段と、
前記指令ョーモーメ ン ト入力に対応する目標駆動トルク、 目標制 動トルク、 目標舵角の少なく とも 1つを算出して、 所定の操作信号 を出力する制御手段と、
を有すことを特徴とする車線追従制御装置。
9 . 前記制御手段は、 前記目標駆動 トルクを算出し、 前記車両の 駆動 トルクを前記目標駆動 トルクに一致するよ うに前記操作信号を 出力するこ とを特徴とする請求項 8に記載の車線追従制御装置。
1 0 . 前記車線の中線を認識し中線認識情報を生成して出力する 認識手段を備え、 ·
前記第 1の算出手段は、 前記中線認識情報に基づき前記前方横偏 差を算出することを特徴とする請求項 8または 9に記載の車線追従 制御装置。
1 1 . 前記認識手段は、 車両の前方を撮影し撮影画像を出力する 撮像装置を含み、 前記撮影画像を格子状に分割した当該格子状領域 に表示される前記車線の両側の白線の位置を認識し、 当該白線の位 置情報を前記中線認識情報と して生成して出力することを特徴とす る請求項 8から 1 0の何れかに記載の車線追従制御装置。
1 2 . 前記認識手段は、 前記白線の位置を認識するに際して、 前 記撮影装置によ り撮影した先のフレームにおいて既に認識した白線 r C O 2006/121221
26 を含む格子状領域およぴその周囲の格子状について認識処理を行う ことを特徴とする請求項 1 1に記載の車線追従制御装置。
1 3 . 前記推定手段は、 前記車速に依存した係数と前記車両の実 ョーレー ト との積に一次遅れ要素を付加して前記車体横すベり角を 算出することを特徴とする請求項 8から 1 2の何れかに記載の車線 追従制御装置。
1 4 . 前記制御手段は、 前記目標ョ ー レー ト と当該目標ョ ー レー トの微分値との一次加算式により前記指令ョーモーメン ト入力を算 出することを特徴とする請求項 8から 1 2の何れかに記載の車線追 従制御装置。
1 5 . 車両を車線の中線に追従させて制御する車線追従制御方法 において、
前記車線の中線からの前記車両の前方横偏差を算出する第 1の算 出ステップと、
前記車両の走行状態パラメータと して少なく と も車速と実ョ ーレ 一ト とを取得すさ取得ステップと、
前記車速と前記実ョ一レー ト とに基づき、 前記車両の車体横すベ り角を推定する推定ステップと、
前記前方横偏差と前記車速と前記車体横すベり角とから前記車両 の重心点の前記車線の中線からのズレが 0 となる目標ョ ーレー トを 算出する第 2の算出ステップと、
前記車速と前記目標ョーレー トとから指令ョーモーメ ント入力を 算出する第 3 の算出ステップと、
C 前記指令ョーモーメ ント入力に対応する 目標駆動 トルク、 目標制 動 トルク、 目標舵角の少なく とも 1つを算出して、 所定の操作信号 を出力する制御ステップと、
を有すことを特徴とする車線追従制御方法。
1 6 . 車両を車線の中線に追従させて制御する車線追従制御方法 において、
前記車線の中線からの前記車両の前方横偏差を算出する第 1の算 出ステップと、
2
前記車両の車速を検出する車速検 7出取得ステップと、
車体横すベり角を検出する車体横滑り角検出ステップと、 前記前方横偏差と前記車速と前記車体横すベり角とから前記車両 の重心点の前記車線の中線からのズレが 0 となる 目標ョーレー トを 算出する第 2の算出ステップと、
前記車速と前記目標ョーレー トとから指令ョーモーメ ン ト入力を 算出する第 3の算出ステップと、
前記指令ョーモーメ ント入力に対応する 目標駆動 トルク、 目標制 動トルク、 目標舵角の少なく とも 1つを算出して、 所定の操作信号 を出力する制御ステップと、
を有すことを特徴とする車線追従制御方法。
PCT/JP2006/310278 2005-05-13 2006-05-15 車線追従制御装置および車線追従制御方法 WO2006121221A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528355A JPWO2006121221A1 (ja) 2005-05-13 2006-05-15 車線追従制御装置および車線追従制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-141960 2005-05-13
JP2005141960 2005-05-13

Publications (1)

Publication Number Publication Date
WO2006121221A1 true WO2006121221A1 (ja) 2006-11-16

Family

ID=37396703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310278 WO2006121221A1 (ja) 2005-05-13 2006-05-15 車線追従制御装置および車線追従制御方法

Country Status (2)

Country Link
JP (1) JPWO2006121221A1 (ja)
WO (1) WO2006121221A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200674A (ja) * 2009-03-03 2010-09-16 National Agriculture & Food Research Organization 走行制御装置
CN104859661A (zh) * 2015-05-14 2015-08-26 上海理工大学 车辆过弯时间优化算法
CN105774801A (zh) * 2014-12-22 2016-07-20 罗伯特·博世有限公司 用于引导车道上的车辆的方法和设备
JP6109998B1 (ja) * 2016-03-07 2017-04-05 先進モビリティ株式会社 車両位置認識システム
CN107054361A (zh) * 2015-09-25 2017-08-18 株式会社斯巴鲁 车辆的转向控制装置
KR20180095225A (ko) * 2017-02-17 2018-08-27 현대자동차주식회사 차량 및 차량의 제어 방법
WO2020009163A1 (ja) * 2018-07-03 2020-01-09 株式会社ブリヂストン 走行車両の自動テスト走行システム
JP2021018180A (ja) * 2019-07-22 2021-02-15 株式会社Zmp 走行車両の自動走行システム
JP2021018181A (ja) * 2019-07-22 2021-02-15 株式会社Zmp 走行車両の自動走行システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112829760B (zh) * 2019-11-25 2022-05-24 宇通客车股份有限公司 一种车辆行驶轨迹的预测方法与系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117510A (ja) * 1993-10-20 1995-05-09 Nissan Motor Co Ltd 車両のヨーイング運動量制御装置
JPH10297522A (ja) * 1997-04-28 1998-11-10 Nissan Motor Co Ltd 操舵補助装置
JP2002032125A (ja) * 2000-07-13 2002-01-31 Nissan Motor Co Ltd 車両の自動操縦制御装置
JP2002352226A (ja) * 2001-05-25 2002-12-06 Nissan Motor Co Ltd 走行路検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117510A (ja) * 1993-10-20 1995-05-09 Nissan Motor Co Ltd 車両のヨーイング運動量制御装置
JPH10297522A (ja) * 1997-04-28 1998-11-10 Nissan Motor Co Ltd 操舵補助装置
JP2002032125A (ja) * 2000-07-13 2002-01-31 Nissan Motor Co Ltd 車両の自動操縦制御装置
JP2002352226A (ja) * 2001-05-25 2002-12-06 Nissan Motor Co Ltd 走行路検出装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200674A (ja) * 2009-03-03 2010-09-16 National Agriculture & Food Research Organization 走行制御装置
CN105774801A (zh) * 2014-12-22 2016-07-20 罗伯特·博世有限公司 用于引导车道上的车辆的方法和设备
CN104859661A (zh) * 2015-05-14 2015-08-26 上海理工大学 车辆过弯时间优化算法
CN107054361B (zh) * 2015-09-25 2018-10-09 株式会社斯巴鲁 车辆的转向控制装置
CN107054361A (zh) * 2015-09-25 2017-08-18 株式会社斯巴鲁 车辆的转向控制装置
WO2017154825A1 (ja) * 2016-03-07 2017-09-14 先進モビリティ株式会社 車両位置認識システム
JP2017159879A (ja) * 2016-03-07 2017-09-14 先進モビリティ株式会社 車両位置認識システム
JP6109998B1 (ja) * 2016-03-07 2017-04-05 先進モビリティ株式会社 車両位置認識システム
KR20180095225A (ko) * 2017-02-17 2018-08-27 현대자동차주식회사 차량 및 차량의 제어 방법
KR102183204B1 (ko) 2017-02-17 2020-11-25 현대자동차주식회사 차량 및 차량의 제어 방법
WO2020009163A1 (ja) * 2018-07-03 2020-01-09 株式会社ブリヂストン 走行車両の自動テスト走行システム
JP2021018180A (ja) * 2019-07-22 2021-02-15 株式会社Zmp 走行車両の自動走行システム
JP2021018181A (ja) * 2019-07-22 2021-02-15 株式会社Zmp 走行車両の自動走行システム
JP7265257B2 (ja) 2019-07-22 2023-04-26 株式会社Zmp 走行車両の自動走行システム
JP7329215B2 (ja) 2019-07-22 2023-08-18 株式会社Zmp 走行車両の自動走行システム

Also Published As

Publication number Publication date
JPWO2006121221A1 (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2006121221A1 (ja) 車線追従制御装置および車線追従制御方法
JP6055525B1 (ja) 車両の走行制御装置
CN104742959B (zh) 车辆的车道保持控制装置
US7447578B2 (en) Steering control apparatus and method for automotive vehicle
JP5747998B2 (ja) 車両の走行軌跡制御装置
JP3430832B2 (ja) 道路曲率推定装置
JP6327701B2 (ja) 車両の車線逸脱防止制御装置
US11498617B2 (en) Vehicle control method and vehicle control device
JP2007022117A (ja) 車両安定化制御システム
CA3036762A1 (en) Parking assist method and device
JP6579699B2 (ja) 車両の走行制御装置
CN109808766A (zh) 基于视觉的主动转向系统
JP4923563B2 (ja) 操舵装置
JP2018167731A (ja) 車両の走行制御装置
US11912360B2 (en) Vehicle control method, vehicle control system, and vehicle
JP4419560B2 (ja) 車両のレーン走行支援装置
JP6387172B2 (ja) ステアリング装置
JP3402054B2 (ja) 道路白線認識装置
JP5483194B2 (ja) スライディングモード制御装置及び車両の自動操舵制御装置
CN116118770A (zh) 面向稳健自动驾驶控制的车辆感知系统的自适应合理化器
JP4483426B2 (ja) 車両のレーン走行支援装置
JP4228875B2 (ja) 車両のレーン走行支援装置
JP5582394B2 (ja) 車両の自動操舵制御装置
JP4423926B2 (ja) 車両のレーン走行支援装置
JP2020006860A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007528355

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746762

Country of ref document: EP

Kind code of ref document: A1