WO2006121131A1 - プラズマドーピング方法およびプラズマドーピング装置 - Google Patents

プラズマドーピング方法およびプラズマドーピング装置 Download PDF

Info

Publication number
WO2006121131A1
WO2006121131A1 PCT/JP2006/309509 JP2006309509W WO2006121131A1 WO 2006121131 A1 WO2006121131 A1 WO 2006121131A1 JP 2006309509 W JP2006309509 W JP 2006309509W WO 2006121131 A1 WO2006121131 A1 WO 2006121131A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
plasma doping
impurity
vacuum vessel
doping method
Prior art date
Application number
PCT/JP2006/309509
Other languages
English (en)
French (fr)
Inventor
Yuichiro Sasaki
Katsumi Okashita
Hiroyuki Ito
Bunji Mizuno
Tomohiro Okumura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR1020077023413A priority Critical patent/KR101177867B1/ko
Priority to JP2007528323A priority patent/JP4979580B2/ja
Priority to CN2006800125087A priority patent/CN101160643B/zh
Priority to EP06746306A priority patent/EP1881523B1/en
Publication of WO2006121131A1 publication Critical patent/WO2006121131A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation

Definitions

  • the present invention relates to a plasma doping method, a plasma doping apparatus used in this method, and a silicon substrate formed by this method, and in particular, performs plasma doping in which impurities are introduced onto the surface of a solid sample such as a semiconductor substrate. On the way.
  • a plasma doping (PD) method is known in which the impurities are ionized and introduced into the solid with low energy (for example, Patent Document 1) reference).
  • the most widely used method for introducing impurities at present is ion implantation.
  • the plasma doping method is subsequently described in ITRS 2003 as a next-generation impurity introduction technique for ion implantation, and is an impurity introduction technique different from the ion implantation method.
  • an ion source for generating a gas force plasma, an ion force extracted from the ion source, an analysis magnet for mass separation to sort out only desired ions, and acceleration of desired ions
  • An apparatus configuration which has an electrode to be used and a process chamber for injecting accelerated desired ions into a silicon substrate. In order to implant impurities shallowly in ion implantation, it is sufficient to reduce the energy for extracting ions from the ion source and the acceleration energy.
  • the extraction energy reduces the number of ions extracted. Furthermore, when the acceleration energy is reduced, the ion beam is expanded due to the repulsive force of the ions during transport of the ion beam to the ion source wafer, and the ion diameter is lost due to collision with the inner wall of the beam line. It will be broken. Therefore, the throughput of the implantation process is reduced. For example, in the case of implanting B + ions, the throughput starts to decrease when the acceleration energy is 2 keV or less, and when it is 0.5 keV or less, the beam transport itself is It will be difficult. Even if the energy is lowered to 0.5 keV, B is injected to a depth of about 20 nm. That is, there is a problem that productivity is extremely reduced when it is desired to make an extension electrode thinner than this.
  • a plasma generation source for inducing plasma in a cylindrical vacuum vessel in which the silicon substrate can be disposed, a bias electrode for disposing the silicon substrate, and a bias electrode
  • a device configuration with a bias power supply to adjust the potential is used. It has a completely different apparatus configuration from ion implantation, which has neither an analysis magnet nor an acceleration electrode.
  • a bias electrode that combines a plasma source and a wafer holder is installed in a vacuum vessel, and ions are accelerated and introduced by the potential generated between the plasma and the wafer. This allows direct use of a low energy plasma, which allows the wafer to be bombarded with large amounts of low energy ions as compared to ion implantation. In other words, the dose rate is extremely large, and it has the following characteristics. This feature can maintain high throughput even with low energy B injection.
  • Non-Patent Document 2 a process technology to form a very shallow and low resistance source-drain extension electrode by applying a plasma doping method.
  • This new process technology is recognized as a new and particularly effective process technology (Non-Patent Document 2).
  • a doping source gas such as BH, to which a gas inlet force is also introduced, is detected by
  • a method is used in which plasma is generated by means of plasma generating means which also includes an electromagnetic wave waveguide and an electromagnet force, and boron ions in the plasma are supplied to the surface of the sample by a high frequency power supply.
  • impurity introduction amount is a very important point because it determines the specific resistance which is one of the important factors to determine the device characteristics.
  • the present inventors dilute BH, which has extremely high toxicity to the human body, as much as possible to improve safety and reduce the doping efficiency.
  • BH gas as a substance containing impurities to be doped can be used.
  • Patent Document 2 A method was proposed in which dilution with He gas having small ionization energy was performed to generate He plasma in advance, and then B H was discharged after it was generated (Patent Document 2). This way smell
  • the change of the dose amount of is small, it is easy to control the dose amount.
  • the plasma was generated in the vacuum chamber, and the impurity ions in the plasma were made to collide with the surface of the sample to make the impurity introduction layer on the surface of the sample.
  • the dose amount changes every time the silicon substrate is irradiated with plasma and reproducibility may not be good. This is considered to be the force S to generate plasma in the vacuum vessel for implanting ions into the silicon substrate, which changes the state in the vacuum vessel every time, and the dose amount is adjusted with good reproducibility. It was considered difficult. Furthermore, it has been considered difficult to maintain the dose uniformly in the surface of the silicon substrate because the state in the vacuum container changes every time. Even if it was possible to adjust the possible parameters and the device shape so that the dose amount becomes uniform, it was impossible to reproduce it repeatedly.
  • Patent Document 1 US Patent No. 4912065
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-179592
  • Patent Document 3 Patent No. 3340318
  • Non-Patent Document 2 Y. Sasaki, et al., Symp. On VLSI Tech. Pl80 (2004).
  • Non-Patent Document 3 B. Mizuno, et al .: Plasma Doping into the side-wall of a sub-0.5 ⁇ m width Trench, Ext. Abs. Of International Conference on SSDM, p. 317 (1987). 4: B. Mizuno, et al .: Plasma doping for silicon, Surface Coating tech., 8
  • Non-Patent Document 5 B. Mizuno, et al .: Plasma Doping of Boron for Fabricating the Surfac e Channel Sub-quarter micron PMOSFET, Symp. VLSI Tech, p. 66 (1996).
  • the present invention has been made based on this point.
  • the inventors of the present invention have found that the plasma concentration of the surface of the sample is not changed by striking (sputtering) the film containing the impurity fixed to the inner wall of the vacuum vessel with ions in the plasma. It was speculated that the amount may vary depending on the thickness of the film and the area on which the film is formed. In addition, it was estimated that it does not depend on the density of the impurities contained in the unit volume of the film.
  • the strength of the film containing the above-mentioned impurities fixed to the inner wall of the vacuum vessel also changed with each time the dose amount of the impurity introduced onto the surface of the silicon substrate.
  • the present invention has been made in view of the above-mentioned circumstances, and provides a plasma doping method capable of making the dose to the film strength silicon substrate to be the same every time even if the plasma processing is repeated.
  • the purpose is to
  • the present invention is based on the control of the dose amount and the in-plane uniformity based on the technical idea that reverses the conventional wisdom of plasma doping.
  • the impurities are ions, gases, and radical forces in plasma
  • the raw material is supplied as a gas from a gas pipe connected to a vacuum vessel. That is, the idea was that the amount of impurities contained in the gas, such as gas concentration, pressure, and gas mixing ratio, determines the amount of impurities introduced to the surface of the semiconductor substrate. Therefore, the distribution of plasma density, gas flow rate, and pressure was designed to be uniform on the semiconductor substrate surface.
  • the adjustment of the dose amount was also performed by adjusting the concentration of the impurity contained in the supplied gas, or adjusting the concentration of the impurity contained in the plasma, or adjusting the time for irradiating the plasma.
  • the ratio of the impurities introduced into the surface of the semiconductor substrate by supplying gas as a gas and converting it to plasma is introduced by plasma doping. It should be noted that it was found that only about 15% to about 30% of the total amount of impurities. This is a number that defeats conventional wisdom. In the past, processes and equipment were generally designed based on the idea that the main factor is the dose of gas plasma power. Furthermore, in the present invention, sputtering is performed by exposing the film including the impurity formed so as to adhere to the inner wall of the vacuum vessel to the plasma during repeated execution of the main factor force plasma doping which accounts for 85% to 70%.
  • the plasma doping method of the present invention a sample is placed on a sample electrode in a vacuum vessel, a plasma is generated in the vacuum vessel, and impurity ions in the plasma are caused to collide with the surface of the sample.
  • a plasma doping method for forming an impurity introduced layer on a surface wherein a film containing the impurity fixed to the inner wall of a vacuum vessel is struck by ions in plasma, whereby the impurity introduced by sputtering on the surface of the sample.
  • the film is formed on the inner wall of the vacuum vessel and the plasma doping is performed so that the amount of the impurity introduced into the sample does not change by the sputtering from the film containing the impurity on the inner wall of the vacuum vessel. Therefore, it is possible to introduce impurities with high reproducibility and in a stable manner.
  • the maintenance step includes a step of removing the film containing the impurity fixed to the inner wall of the vacuum vessel prior to forming the film containing the impurity.
  • the sample is a silicon substrate
  • the impurity dose is within a range of ⁇ 10% even if the plasma containing the impurity ions is repeatedly generated inside the vacuum vessel.
  • a film containing an impurity fixed to the inner wall of the vacuum vessel is formed so that the dose is uniform within the surface of the silicon substrate when it becomes the same level.
  • This configuration enables more accurate control.
  • the plasma doping method of the present invention includes the step of adjusting the shape of the inner wall of the vacuum vessel so that the amount of the impurities attached to the inner wall of the vacuum vessel becomes a desired value.
  • the plasma doping method of the present invention includes the step of adjusting the gas supply method so that the amount of the impurities attached to the inner wall of the vacuum vessel becomes a desired value.
  • the in-plane uniformity of the dose can be improved.
  • the in-plane uniformity can also be improved by moving the semiconductor substrate with respect to the gas injection port by rotating the semiconductor substrate.
  • the plasma doping method of the present invention after the vacuum container from which the film containing the impurity in the maintenance process power is removed is installed in a plasma doping apparatus, a plasma containing the impurity ions is generated inside the vacuum container. Forming a film containing the impurity.
  • the step of forming the film containing the impurity is a plasma generating apparatus in which a vacuum container from which the film containing the impurity is removed in the maintenance step is separately prepared to form a film. Then, the plasma containing the impurity ions is generated inside the vacuum vessel to form a film containing the impurity.
  • the plasma doping method of the present invention measures and manages the temperature of the inner wall of the vacuum vessel.
  • the method includes the step of introducing an impurity into the sample by sputtering from a film containing the impurity fixed to the inner wall of the vacuum vessel.
  • the amount of impurities introduced from the film containing the impurities into the semiconductor substrate changes with the temperature of the inner wall of the vacuum vessel. And, in order to keep this constant, it is desirable to adjust so that the temperature of the inner wall of the vacuum vessel is kept constant. Further, in order to bring the impurity introduction amount from the film to a desired value, it is desirable to adjust the temperature of the inner wall of the vacuum vessel to a desired temperature.
  • the present invention also includes disposing a dummy container inside the vacuum container so as to cover the inner wall, and forming a film on the inner wall of the container.
  • a dummy container In vacuum equipment, such dummy containers are often referred to as the inner chamber.
  • a film is formed on the inner wall of the vacuum chamber, the shape thereof is devised, and the temperature is controlled, but the same effect is exerted on the inner wall of the inner chamber with the same idea. It goes without saying that it is included in the present invention.
  • the inner chamber No. 1 has no vacuum holding function and can be easily removed, cleaned easily, and can be used as a consumable item. Therefore, by providing the inner chamber, only the inner chamber can be removed for cleaning without removing and cleaning the expensive vacuum vessel, which is more desirable.
  • the plasma is a plasma of a gas containing boron.
  • a film of boron can be formed on the inner wall of the vacuum vessel, and the film containing the impurities fixed to the inner wall of the vacuum vessel is sputtered by ions in the plasma and introduced to the surface of the sample by sputtering.
  • the amount of impurities does not change even if plasma containing impurity ions is repeatedly generated inside the vacuum vessel, and an impurity profile with high controllability and high accuracy can be obtained together with the impurities by sputtering.
  • the gas containing boron is a gas of molecules consisting of boron and hydrogen.
  • the boron-containing gas is siborane (B H)
  • B H is industrially inexpensive and can be put in a gas cylinder in a gas state.
  • Handling is easy because it can be transported and stored. Furthermore, since only boron and hydrogen act as well, the sputter rate is low, so that a highly accurate impurity profile can be obtained with good controllability.
  • the plasma includes a plasma of a gas obtained by diluting a gas of molecules of boron and hydrogen power with a rare gas.
  • the rare gas includes one whose atomic weight is an element having neon or less.
  • rare gases those having a large atomic weight have a large sputter rate, so it is difficult to form a stable film, and the surface of the silicon substrate is scraped off. Therefore, it is desirable to use a rare gas with a smaller atomic weight than neon.
  • the rare gas is helium.
  • helium has the smallest atomic weight in the rare gas and also has the smallest sputter rate, so that it is easy to form a stable film, and it is possible to minimize the removal of silicon.
  • the plasma may be a helicoid (B.sub.3H.sub.6).
  • the plasma doping method of the present invention includes one in which the implantation depth of boron is 7.5 nm force or 15.5 nm.
  • the plasma doping method of the present invention includes one in which the implantation depth of boron is 10 nm or less.
  • the plasma includes one using a continuous plasma.
  • uniformity of 1.5% or less can be realized.
  • plasma doping techniques using continuous plasma and techniques using pulsed plasma have been developed.
  • the uniformity and the reproducibility are secured by plasma doping in the technology of implantation deeper than about 20 nm in the implantation to a shallow region as intended in the present invention.
  • the uniformity and reproducibility were insufficient for the implantation.
  • An apparatus is an apparatus for carrying out the above-mentioned plasma doping method, which includes a vacuum container, a sample electrode, a gas supply device for supplying a gas into the vacuum container, and the inside of the vacuum container. And a pressure control device for controlling the pressure in the vacuum vessel, and a sample electrode power supply for supplying power to the sample electrode.
  • plasma doping is performed by controlling the pressure using a pressure control device. It is possible to ensure the reproducibility of the dose of boron implanted in the above.
  • the apparatus of the present invention also includes one further comprising a second plasma generating apparatus for forming a film containing the impurity.
  • the apparatus of the present invention has a mechanism for adjusting the flow rate distribution of the gas supplied to the vacuum vessel, and after the film containing the impurity is formed, the inner wall of the vacuum vessel is not opened to the atmosphere. Including those that allow adjustment of flow rate distribution.
  • the apparatus of the present invention also includes one having a mechanism for adjusting the temperature of the inner wall of the vacuum vessel to a desired temperature.
  • Temperature control of the temperature of the inner wall of the vacuum chamber can be realized by measuring the temperature with a temperature sensor and applying heat with a heater or the like. According to the experiments of the present inventors, when the experiment was performed without temperature control, the temperature of the inner wall of the vacuum vessel was initially room temperature, but reached 40 ° C. to 90 ° C. when the plasma doping process was repeated. . The ultimate temperature also depends on the number of treatments and conditions. And when the plasma doping process was stopped, the temperature dropped slowly to room temperature. That is, the temperature differs between when the plasma doping process is started and when the process is repeated. Furthermore, the temperature of the inner wall of the vacuum vessel is affected by the difference in external temperature. Therefore, it is desirable to adjust in advance to a desired temperature near 40 ° C.
  • the impurity introduction amount from the film can be adjusted to a desired value. More desirably, it is desirable to adjust to a desired temperature of 50 ° C to 70 ° C. As a result, the temperature that can be naturally reached can be adjusted under more plasma doping conditions, so that the repeatability is better.
  • the present invention is a silicon substrate with a diameter of 300 mm in which boron is introduced on the surface by plasma doping using a continuous plasma containing boron, and the profile of the introduced boron has a boron concentration of 5 ⁇ 10 18 cm — and at 7nm more 15. 5 nm or less in 3 to become depth, the steepness of the depth profile of boron if boron concentration was evaluated by a distance which decreases from 1 X 10 19 cm_ 3 to 1 X 10 18 cm_ 3 1 More than 5nm Zdec less than 3nm Zdec
  • the standard deviation on the surface of the silicon substrate is 2% or less excluding the end 3 mm of the silicon substrate.
  • the following remarkable effects can be obtained by manufacturing the above-mentioned substrate.
  • By introducing boron to a depth in the above range it is possible to form very fine MOSFET source and drain extension electrodes from the 65 nm node to the 22 nm node. Furthermore, by introducing boron with the steepness in the above range, the drain current of a very fine MOSFET can be increased.
  • By introducing boron by plasma doping the above-mentioned electrode of a fine MOSFET can be produced with high productivity. Furthermore, since the in-plane uniformity of the dose amount can be made a good level with a 300 mm substrate, productivity is improved and yield is improved.
  • the semiconductor substrate was demonstrated using a silicon substrate.
  • a germanium substrate or a strained silicon substrate may be used because it can be speculated that the same effect can be obtained because the atomic weight is not so different from the elemental silicon used in germanium and strained silicon substrates.
  • FIG. 1 Diagram showing the relationship between the number of sheets of plasma doping and the sheet resistance
  • FIG. 6 A diagram showing the relationship between the number of plasma doping processed sheets and the sheet resistance
  • FIG. 9 Diagram showing the relationship between plasma doping time, dose amount, and in-plane uniformity.
  • FIG. 11 A comparative view showing the uniformity of the plasma doping region obtained by the example of the present invention and the comparative example.
  • FIG. 12 The uniformity of the plasma doping region obtained by the example of the present invention and the comparative example Comparison chart shown
  • FIG. 13 A comparison chart showing the uniformity of the plasma doping region obtained by the example of the present invention and the comparative example.
  • FIG. 14 A diagram showing a plasma doping apparatus of embodiment 1 of the present invention.
  • FIG. 15 is a view showing a container installed inside the vacuum container of the present invention and a lid for closing the opening for the transfer arm.
  • FIG. 16 A diagram showing a plasma doping apparatus used to compare uniformity in Example 1 of the present invention.
  • FIG. 14 shows a cross-sectional view of a plasma doping apparatus used in the first embodiment of the present invention.
  • This plasma doping apparatus comprises a vacuum vessel 15 having a film containing impurities on its inner wall, a turbo molecular pump 6 as an exhaust device for evacuating the vacuum vessel 15, and a pressure for controlling the pressure in the vacuum vessel 15.
  • a target substrate (substrate) 13 is disposed on a lower electrode 14 which is composed of a high frequency power source 12 and a high frequency power source 1 as a voltage source for supplying a voltage to the lower electrode 14, and plasma irradiation is performed.
  • the high frequency power is supplied from the coil and the antenna 3 via the high frequency power supply 1 for generating plasma and the matching box 2 for adjusting the discharge.
  • Necessary gases are supplied via mass flow controllers MFC4 and 5.
  • the degree of vacuum in the vacuum vessel 15 is controlled by the mass flow controllers 4 and 5, the turbo molecular pump 6, the pressure regulating valve 7, and the dry pump 8. Electric power is supplied to the vacuum vessel 15 from the high frequency power supply 12 through the matching box 11.
  • the processing target substrate 13 installed in the vacuum vessel 15 is mounted on the sample table 14 and the power is supplied.
  • exhaust is performed by the turbo molecular pump 8 as an exhaust device to adjust the pressure as a pressure control device.
  • the pressure in the vacuum vessel 15 is maintained at a predetermined pressure by the pressure valve 9.
  • an inductively coupled plasma is generated in the vacuum vessel 15 by supplying 13.56 MHz high frequency power to the coil 3 as a plasma source by the high frequency power source 1.
  • the silicon substrate 13 as a sample is placed on the lower electrode 14.
  • high frequency power is supplied to the lower electrode 14 by the high frequency power supply 12, and the potential of the lower electrode 14 is set so that the silicon substrate (substrate to be treated) 13 as a sample has a negative potential with respect to plasma. You can now control it.
  • plasma of a gas containing impurities is generated in a vacuum vessel to form a film!
  • the dummy substrate may be repeatedly subjected to plasma doping under constant plasma doping conditions.
  • the film is struck with ions in plasma to increase the amount of impurities introduced into the surface of the silicon substrate by sputtering.
  • doping is performed on a plurality of silicon substrates under constant plasma doping conditions, and it can be understood that film formation is completed when the dose amount to the silicon substrate becomes equal. If the dose to the first substrate is smaller than the dose to the last substrate, the film formation is complete and the film formation is continued.
  • helium gas is introduced into the vacuum vessel 15 by the mass flow controller 4 while vacuuming the interior of the vacuum vessel 15 by the mass flow controller 5 while evacuating the vacuum vessel 15.
  • the plasma exposed to the silicon substrate 13 is a mixed gas plasma of B H and He (B H / He plasma
  • a silicon substrate is irradiated with a mixed gas plasma of B H and He (B H / He plasma) to
  • the dose increases at first, and then the dose continues to be almost constant regardless of the change in time.
  • the dose can be controlled more accurately by using the time when the dose is almost constant regardless of the change of time as the process window.
  • in-plane uniformity can also be obtained by measuring the time during which the dose is constant within the silicon substrate surface and setting the doping time according to the start time of the slowest one. I was able to.
  • the film containing this impurity may be formed after attaching the vacuum vessel after maintenance to the plasma doping apparatus. After film formation, failure in actual plasma doping conditions Introduce a pure thing. In this way, the film can be processed without exposure to the atmosphere after it has been formed.
  • a boron film since it is easy to react with water, the above method is preferable because it can be used in the process by forming a film without reacting with the water in the atmosphere.
  • the film containing the impurity may be provided in a plasma generator prepared separately for forming the film, after removing the film containing the impurity in the maintenance step, and then the impurity ion may be removed from the inside of the vacuum container.
  • the film containing the impurity may be formed by generating plasma containing the film. If a plurality of vacuum containers are prepared, while performing film deposition using a separately prepared plasma generator, the plasma doping process is carried out by attaching a vacuum container, to which a film has been previously attached, to a plasma doping apparatus. It can be carried out.
  • the productivity can be improved.
  • the plasma doping apparatus used is a commonly used apparatus.
  • PD condition is B H and
  • the gas mixing ratio of He was 0.05% and 99.95%, the source power was 1500 W, the bias power was 135 W, and the pressure was 0.9 Pa.
  • the plasma doping time for applying bias was 60 seconds. Under this constant PD condition, plasma doping was performed on a silicon substrate 300 mm in diameter in a vacuum vessel immediately after maintenance. Then, the first, 25th, 75th, 125th, 250th, and 500th silicon substrates were heat-treated at 1075 ° C. for 20 seconds. Thereafter, the sheet resistance at 121 points excluding the 3 mm edge of the substrate was measured by the four probe method, and the average value and the standard deviation of the sheet resistance were calculated. The in-plane uniformity is indicated by the standard deviation of sheet resistance (1 ⁇ ).
  • the term “dummy silicon substrate” means that the same silicon substrate is used, and that a new substrate is always used every time PD processing is performed, and PD processing is repeatedly performed about 100 times with the same silicon substrate. Vacuum container Consumption of silicon substrate without affecting experiments to form a film containing boron on the inner wall It is an experimental design action to save energy.
  • FIG. 1 shows the relationship between the number of sheets subjected to plasma doping and the sheet resistance. Although treated under the same PD conditions, sheet resistance first decreased as the number of processed sheets increased. As a result of analysis of the film formed on the inner wall of the vacuum vessel after the experiment, it was found that boron was contained. It is considered that the sheet resistance was reduced because a film was formed while repeating the PD treatment.
  • the sheet resistance of the 75th, the 125th, the 250th, and the 500th substrates subjected to the PD processing was 236.1 ohm / sq on average.
  • Fig. 3 shows only the range from the sheet resistance ratio to 1.2.
  • the decrease in sheet resistance is not saturated, that is, the film formation is also not saturated.
  • the sheet resistance is within ⁇ 5% of the average value, and the drop in sheet resistance is saturated. That is, it can be seen that the formation of the film was saturated by the PD treatment near the 75th sheet. After film formation was completed, the sheet resistance was able to stably continue several PD processes while fluctuating in a small range around the average value.
  • the sheet resistance of the first PD-processed substrate was about 3.2 times the average sheet resistance of the 75th and subsequent sheets (236.1 ohm / sq).
  • the dose can be considered to be approximately proportional to the sheet resistance. Therefore, it means that the dose for the first sheet is only about 30% of the 75th and subsequent sheets.
  • boron is contained in the B 2 H gas introduced from the gas inlet in the form of plasma, so that the form of gas, ions and radicals is introduced.
  • the dose caused by the film is zero.
  • the factor of the 75th and subsequent sheets is the effect of the B H gas plasma on the inner wall of the vacuum vessel.
  • Table 1 shows the doses for the first and the 75th and subsequent sheets according to the factors. It can be seen that the dose from the boron-containing film accounts for about 70% of the 75th and subsequent films, which is the main factor.
  • the dose due to BH gas plasma is about 30% It is This reverses the conventional concept of plasma doping, and is a newly confirmed fact. From this, in order to obtain in-plane uniformity and repeatability of the dose by plasma doping, it is important to pay attention to the dose from the film containing boron, and the dose due to the film is within the surface of the semiconductor substrate. It was found that it is important and desirable to make uniform, to improve repeatability, and to adjust to a desired dose.
  • FIG. 4 shows the relationship between the number of plasma doping processed sheets and the in-plane uniformity of sheet resistance.
  • the in-plane uniformity force which was 5.28% for the first sheet, is improved in the range of 2% to 3% for the 25th and subsequent sheets. This is because the shape of the inner wall of the vacuum vessel was adjusted so as to improve the in-plane uniformity when film formation is completed. Conventionally, the shape of the vacuum chamber and the position of the coil have been adjusted to make the plasma and gas distribution uniform. This corresponds to adjusting to obtain the best uniformity on the first sheet. However, in the present embodiment, the uniformity of the first sheet is ignored because the film is completely formed, and attention is paid to the state when the formation of the film is completed. It is a feature that the shape was adjusted.
  • the in-plane uniformity is better in the 25th and subsequent sheets on which the film has been formed than in the first sheet. And, it can be seen that in the 75th and subsequent sheets where the formation of the film is completed, the in-plane uniformity which is significantly improved from the first sheet can be continuously realized with good repeatability.
  • a plasma doping apparatus is prepared in which the shape of the inner wall of the vacuum vessel after maintenance is adjusted in advance so that the in-plane uniformity is further improved when film formation is completed. And plasma doping was performed.
  • the inner wall of the vacuum vessel it is desirable to adjust the shape of the side surface and the upper surface.
  • another vacuum vessel was set up to serve as the inner wall. This container can not hold a vacuum. It is a container for forming a film on the surface. By providing this, it is not necessary to clean the entire vacuum vessel at the time of maintenance, and only the above-mentioned vessel may be removed from the vacuum vessel and cleaned. If multiple containers are prepared, production can be continued using spare containers while cleaning the containers, and efficiency can be improved.
  • the above-mentioned vessel is provided with a vacuum holding capacity, so that the structure can be simplified and the cleaning itself becomes easy.
  • the shape of this container was devised as follows.
  • the container is generally symmetrical when viewed from the center of the silicon substrate.
  • it is necessary to provide an opening for loading and unloading the transfer arm for transferring the silicon substrate into the vacuum chamber. Only that part lacked much symmetry. Therefore, in order to maintain symmetry as much as possible, we have devised an approach that minimizes the area of the opening to an area that allows the silicon substrate and the transport arm to pass through.
  • a very good uniformity of 2% or less was obtained in the PD treatment after the completion of film formation on the 100th sheet.
  • FIG. 15 (a) is a diagram showing the semiconductor substrate transfer time
  • FIG. 15 (b) is a diagram showing the state during plasma doping.
  • a plasma doping apparatus in which the gas supply method has been adjusted in advance immediately after the maintenance so as to further improve the in-plane uniformity when the film formation is completed. It prepared and performed plasma doping.
  • the gas supply method is such that the top plate is disposed to face the silicon substrate, and 18 holes are made in the top plate like a shower head, and the hole force is also supplied to the inside of the vacuum chamber. I did it. Then, the positions of the holes were adjusted to improve in-plane uniformity when film formation was completed.
  • the plasma doping apparatus used here is shown in FIG.
  • FIG. 16 while a predetermined gas is introduced from the gas supply device 102 into the vacuum container 101, exhaust is performed by the turbo molecular pump 103 as an exhaust device, and the inside of the vacuum container 101 is specified by the pressure control valve 4. Can be kept at pressure.
  • An inductively coupled plasma can be generated in the vacuum vessel 101 by supplying a high frequency power of 13.56 MHz to the coil 108 provided in the vicinity of the dielectric window 107 opposed to the sample electrode 106 by the high frequency power source 105. it can.
  • a silicon substrate 109 as a sample is placed on the sample electrode 106.
  • a high frequency power source 110 for supplying high frequency power to the sample electrode 106 is provided, and the potential of the sample electrode 106 is set so that the substrate 109 as a sample has a negative potential with respect to plasma. It functions as a voltage source to control. In this way, ions in the plasma can be accelerated and collide toward the surface of the sample to introduce impurities into the surface of the sample.
  • the gas supplied from the gas supply device 102 is exhausted from the exhaust port 111 to the pump 103.
  • the flow rate of the gas containing the impurity source gas is controlled to a predetermined value by a flow rate control device (mass flow controller) provided in the gas supply device 102.
  • the impurity source gas is diluted with helium, for example, diborane (BH.sub.2) with helium (He).
  • the gas diluted to 5% is used as the impurity source gas, and this is controlled by the first mass flow controller.
  • the flow rate of helium is controlled by the second mass flow controller, and the gases whose flow rates are controlled by the first and second mass flow controllers are mixed in the gas supply device 102, and then the gas is introduced via the pipe (gas introduction path) 113.
  • the mixed gas is introduced into the vacuum vessel 101 from the gas outlet port 115 through a plurality of holes leading to the main path 114 and further communicating with the gas main path 114.
  • the plurality of gas outlets 115 blow gas toward the sample 9 from the opposite surface of the sample 109.
  • the gas outlets 115 are provided substantially symmetrically with respect to the center of the dielectric window 107, and have a structure in which gas is blown generally isotropically toward the sample. That is, 24 gas outlets 115 are disposed approximately isotropically.
  • 116 is a matching box
  • 117 is a V
  • the sheet resistance was stabilized after PD treatment on the 375th sheet and thereafter.
  • the average sheet resistance of the 75th and subsequent sheets was 220 ohm / sq.
  • the PD condition does not change between the first sheet and the 375th sheet, so the dose amount caused by the B 2 H gas plasma does not change.
  • Table 2 shows the dose amount by factor. After the 375th sheet, the dose from the film is about 85%, and the B H gas plasma origin is about 15%.
  • the main factor is the dose from the film.
  • FIG. 7 is a diagram showing the repeatability of sheet resistance.
  • the sheet resistance ratio is limited to the range of 0.8 to 1.2.
  • the sheet resistance is within ⁇ 5% of the average value, and the reduction in sheet resistance is saturated. That is, it can be understood that the formation of the film was saturated by the PD treatment near the 375th sheet. After the film formation was completed, the sheet resistance was able to stabilize and continue many PD processes with a small variation in the vicinity of the average value.
  • FIG. 8 is a diagram showing the repeatability of in-plane uniformity. After the maintenance, the method of gas supply was adjusted immediately after the maintenance in consideration of the in-plane uniformity when the formation of the film was completed, and as a result, the PD treatment after the completion of the formation of the film was performed. Of 1.85% or less was obtained.
  • the PD time is a time during which a bias is applied by plasma irradiation.
  • the PD time was changed to 14 seconds, 45 seconds, and 100 seconds.
  • the continuous processing on the 1350th sheet and on and after the 1354th sheet are all performed with a PD time of 60 seconds. Therefore, the data for 60 seconds is not the data for the dummy substrate, but the data for the 1375th sheet closest to the 1350th sheet was referred to.
  • Figure 9 shows the relationship between PD time and dose. In addition, changes in in-plane uniformity were shown.
  • FIGS. 11 to 14 show the results of the sheet resistance distribution at 121 locations excluding the 3 mm edge of the 300 mm substrate.
  • FIGS. 11 (a) to 11 (c) show the in-plane uniformity of the first sheet of the comparative example, the 1000th sheet of the example, and the 1375th sheet of the example, respectively.
  • To (b) show the in-plane uniformity of the first and 125th samples of the comparative example, respectively
  • FIGS. 13 (a) to 13 (c) show the 60% of the example after 14 seconds of the comparative example. It is a figure which shows 100 second after an Example, after a second.
  • FIG. 1 A SIMS probe file when the bias voltage is changed in the plasma doping apparatus used in the present invention is shown in FIG.
  • the implantation depth of boron could be varied in the range of 7.5 nm power and 15.5 nm. If the implantation energy range is at least equivalent to this, a film containing boron is formed on the inner wall of the vacuum container to saturate the sheet resistance, and when the formation of the film is completed, the in-plane uniformity is improved. It was confirmed in the same experiment that the method of the present invention, in which the shape of the inner wall of the vacuum vessel is previously adjusted, can be similarly used and its effectiveness.
  • the film in order to form a film, PD conditions actually used after film formation were repeatedly implemented. However, the film may be formed under conditions different from the PD conditions actually used. Specifically, in the example, the gas mixture ratio of B H and He was 0.05% and 99.95%, and the force was 0.1%.
  • Increasing the temperature by 26 degrees is desirable because it can reduce the time to form a film. After the film is formed in this way, the B H concentration is readjusted to achieve the desired dose, and the actual plasma is obtained.
  • BH concentration when forming a film
  • the degree is a general design matter that falls within the scope of the present invention, which is a matter to be studied in the future.
  • a dummy silicon substrate may be disposed on the sample electrode. After film formation is complete, it is desirable to remove the dummy substrate and also load the substrate to be processed to begin the actual process. This is efficient because it eliminates the need to use an extra substrate for film formation.
  • a comparative example 1 will be described with reference to FIG.
  • the plasma conditions, the gas supply method, and the shape of the inner wall of the vacuum vessel are adjusted so that the in-plane uniformity of the dose is improved.
  • the film containing the impurity fixed to the inner wall of the vacuum vessel is struck with the ions in the plasma, so that the amount of the impurity introduced by sputtering on the surface of the sample repeats the plasma containing the impurity ion within the vacuum vessel.
  • This approach does not have a maintenance step of preparing a vacuum container provided with a film containing the above-mentioned impurity on the inner wall so as not to change even if it is generated.
  • Most of the conventional approaches taken to improve repeatability and in-plane uniformity in plasma doping correspond to this case.
  • the plasma conditions were the same as in the example, and as a result of trial and error in various other conditions, it was possible to realize in-plane uniformity with a dose of 1.5% in the first processing.
  • the sheet resistance was 4 55 ohms / sq. This is the result of the conventional method.
  • the uniformity was found to be uniform.
  • the sex was 6.0% and the sheet resistance was 165 ohm / sq. It can be understood that the repeatability of the sheet resistance can not be obtained.
  • the level of uniformity generally required in practice is 2% or less, preferably 1.5% or less. From this, in Comparative Example 1, even if the condition of 1.5% uniformity can be obtained by adjusting the maintenance and conditions, maintenance is required again with processing of only 150 sheets or less.
  • the shape of the inner wall of the vacuum vessel and the gas supply method were adjusted so as to improve the in-plane uniformity in the state before forming the film immediately after the maintenance. But in this way Since a film containing boron is formed on the inner wall of the vacuum vessel by plasma doping, and the state changes, it is impossible to repeatedly and stably obtain good uniformity, and it is not possible to repeatedly obtain the same sheet resistance. I had a problem.
  • the embodiment has a maintenance step of preparing a vacuum container provided with a film containing the impurity on the inner wall so that the dose amount caused by the film does not change even if plasma is repeatedly generated inside the vacuum container.
  • the embodiment has a remarkable effect that the in-plane uniformity can be stably maintained at a good level even in long-term repeated production, and the same sheet resistance can be stably obtained. it can.
  • Comparative Example 2 it is also conceivable that the formation of the film was unintentionally completed. However, it is difficult to increase the repeatability and in-plane uniformity of sheet resistance to a certain level. If it is not in line with the intention of the present invention, it is very difficult to increase the repeatability of in-plane uniformity to a certain level, in particular.
  • the adjustment of the gas supply method includes the position at which the gas is supplied to the vacuum vessel. In order to change the shape of the inner wall of the vacuum vessel, it is necessary to provide mechanical drivability to a part of the inner wall.
  • the vacuum chamber can not be opened to the atmosphere, so In the comparative example, the adjustment of the in-plane uniformity becomes more difficult, so the effect of the example becomes more remarkable.
  • the shape of the inner wall of the vacuum vessel and the gas supply method may be adjusted in advance so that the in-plane uniformity after forming the film is improved. Hope! /.
  • Patent Document 3 A technique is disclosed in which a sputtering target gas is caused to collide in a plasma state with a solid target containing impurities, so that the impurities are ejected from the target and introduced into the surface of the sample.
  • the technique disclosed in Patent Document 3 is characterized in that a microwave of 1 GHz or more is introduced into the vacuum chamber 1.
  • the material constituting the target is a metal, plasma is generated even in a parallel plate type plasma generating apparatus having no plasma generating means such as ECR.
  • an ECR 18 is provided to introduce microwaves of 1 GHz or more into the vacuum chamber.
  • a plasma with a density as high as about 1000 times that of a parallel plate type plasma generating apparatus is generated. It can be driven into the surface. Therefore, since the temperature of the silicon substrate does not rise to 300 ° C. or more, it is possible to avoid the situation where the resist pattern formed on the silicon substrate is burnt.
  • a solid target containing impurities is prepared and placed inside a vacuum vessel.
  • the film containing impurities is formed in advance so that the amount of impurities introduced by sputtering does not change even if the plasma containing impurity ions is repeatedly generated inside the vacuum vessel. It is difficult to do maintenance as it is! //! / So you can get in-plane uniformity and repeatability. Explain the reason. Even if a solid target is disposed inside a vacuum vessel, when plasma containing an impurity (boron in the example) as used in the example is repeatedly excited in the vacuum vessel, boron on the surface of the solid target is generated.
  • the film containing In addition, the inner wall of the vacuum vessel A film containing boron is formed on the surface of the inner wall in a portion covered with a single get. Then, the excitation is continuously repeated, and after excitation for a certain time, film formation is saturated and completed. Therefore, only by disposing a solid target inside the vacuum chamber, a vacuum comprising the film containing the above-mentioned impurity on the inner wall so that the dose caused by the film does not change even if plasma is repeatedly generated inside the vacuum chamber. It does not have to have a maintenance step to prepare the container, and it is difficult to obtain repeatability of sheet resistance.
  • the method of producing the target is not clearly described, it is generally not to create the target inside the vacuum vessel, but to place the externally created one inside the vacuum vessel. It is thought that I will.
  • solid containing impurities is always exposed to the atmosphere. Therefore, it reacts with oxygen in the air to form an oxide film on the surface of the film, or reacts with water in the air to change the properties of the film. Acidification of the film and reaction with water in the atmosphere greatly affect the impurity dose and uniformity after plasma doping. Therefore, even if the shape and location of the solid target including impurities are designed to improve in-plane uniformity, uniform plasma doping can be performed as designed due to changes in atmospheric humidity and temperature. I can not do it! Repeated dose repeatability can not be obtained as designed for the same reason. Even within the clean room where humidity and temperature are controlled, humidity and temperature change slightly depending on the day, and it is not possible to suppress oxidation and reaction with water.
  • the film containing impurities on the inner wall is prevented so that the dose from the film containing the impurities fixed to the inner wall of the vacuum vessel does not change. Form This produces a remarkable effect that the dose is repeatedly reproduced. Furthermore, according to the present invention, even if the plasma containing impurity ions is repeatedly generated inside the vacuum chamber, the dose amount becomes equal within the range of ⁇ 10% within the surface of the semiconductor substrate even when the dose amount of the impurities is within the range of ⁇ 10%. A film containing impurities fixed to the inner wall of the vacuum vessel is formed so as to be uniform.
  • the vacuum container from which the film containing the impurity is removed in the maintenance step is provided in the plasma doping apparatus, and then the impurity ion is It is formed by generating plasma including.
  • the film containing the impurity can be subjected to plasma doping without being exposed to air once. Therefore, while maintaining repeatability on the entire surface of the 300 mm substrate except for the end 3 mm that is not affected by the air humidity or air temperature, adjust the PD time such as 1.7% of the standard deviation. It is possible to obtain the remarkable effect of enabling plasma doping of a very uniform impurity such as 1.5% or less.
  • Comparative Example 1 In the case where the plasma conditions, the gas supply method, and the shape of the inner wall of the vacuum vessel are adjusted so that the in-plane uniformity of the dose is improved before forming the film.
  • the plasma doping method of the present invention can control the impurity concentration profile with high accuracy, and can realize a shallow, plasma doping method for forming an impurity diffusion region. It can also be applied to applications such as the manufacture of thin film transistors used in liquid crystals and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

  プラズマ処理を繰り返しても、膜からシリコン基板へのドーズ量が毎回同一となるようにすることができるプラズマドーピング方法を提供する。  本発明のプラズマドーピング方法は、真空容器内の試料電極に試料を載置し、真空容器内にプラズマを発生させ、プラズマ中の不純物イオンを試料の表面に衝突させて試料の表面に不純物導入層を形成するプラズマドーピング方法であって、真空容器の内壁に固着した前記不純物を含む膜がプラズマ中のイオンで叩かれることによって、前記試料の表面にスパッタリングで導入される不純物の量が前記不純物イオンを含むプラズマを真空容器内部で繰り返し発生させても変化しないように内壁に前記不純物を含む膜を備えた真空容器を用意するメンテナンス工程と、試料電極に試料を載置する工程と、不純物イオンを含むプラズマを照射して前記試料に不純物イオンを打ち込むと共に真空容器の内壁に固着した不純物を含む膜からのスパッタリングで不純物を前記試料に導入する工程とを含む。

Description

明 細 書
プラズマドーピング方法およびプラズマドーピング装置
技術分野
[0001] 本発明は、プラズマドーピング方法、この方法に用いられるプラズマドーピング装置 およびこの方法で形成されたシリコン基板に係り、特に不純物を半導体基板等の固 体試料の表面に導入するプラズマドーピングを行う方法に関する。
背景技術
[0002] 不純物を固体試料の表面に導入する技術としては、不純物をイオン化して低エネ ルギ一で固体中に導入するプラズマドーピング (PD)法が知られて 、る(例えば、特 許文献 1参照)。
[0003] 一方、不純物を導入する方法として、現在最も広く用いられて!/ヽる方法はイオン注 入法である。プラズマドーピング法は、例えば非特許文献 1にあきらかなように、 ITRS 2003でも引き続きイオン注入の次世代の不純物導入技術として記載され、イオン注 入法とは異なる不純物導入技術である。
以下にイオン注入とプラズマドーピングの技術的相違点を少し詳細に説明する。
[0004] イオン注入法にぉ 、ては、ガス力 プラズマを発生させるイオン源と、イオン源から 引き出したイオン力 所望のイオンだけを選別するために質量分離する分析磁石と、 所望のイオンを加速する電極と、加速した所望のイオンをシリコン基板に注入するプ ロセスチャンバ一とを有する装置構成が用いられる。イオン注入にぉ 、て不純物を浅 く注入するためには、イオン源からイオンを引き出すエネルギーと加速エネルギーと を小さくすれば良い。
[0005] しかし、引き出しエネルギーを小さくすると引き出されるイオンの数が減少してしまう 。さらに、加速エネルギーが小さくなるとイオンビームをイオン源力 ウェハに輸送す る間にイオン同士の電荷による反発力でビーム径が広がってしまい、ビームライン内 壁に衝突するなどして多数のイオンが失われてしまう。そのため、注入処理のスルー プットが低下してしまう。例えば B+イオンを注入する場合では、加速エネルギーが 2ke V以下になるとスループットが低下し始め、 0.5keV以下になるとビームの輸送自体が 困難になる。し力し、 0.5keVまで低エネルギー化しても 20nm程度の深さまで Bが注入 されてしまう。つまり、これよりも薄いエクステンション電極を作りたい場合には生産性 が極端に低下してしまうという課題がある。
[0006] これに対してプラズマドーピング法においては、シリコン基板を内部に配置できるよ うな円柱形状の真空容器にプラズマを誘起するプラズマ発生源と、シリコン基板を配 置するバイアス電極と、バイアス電極の電位を調整するバイアス電源を有する装置構 成が用いられる。分析磁石も加速電極も有しない、イオン注入と全く異なる装置構成 である。真空容器にプラズマ源とウェハホールダを兼ねたバイアス電極を設置し、プ ラズマとウェハの間に発生するポテンシャルでイオンを加速して導入する。これにより 、低エネルギーのプラズマを直接使用することができるので、イオン注入と比較して 大量の低エネルギーイオンをウェハに照射できる。つまりドーズレートが桁違いに大 き 、と 、う特徴がある。この特徴により低エネルギーの B注入でも高 、スループットを 維持できる。
[0007] さらに、本発明者らは、プラズマドーピング法を応用して、極めて浅くて且つ低抵抗 のソース ·ドレインエクステンション電極を形成するプロセス技術を開発した。この新規 プロセス技術は、新規で特段の効果があるプロセス技術として認知されている(非特 許文献 2)。
[0008] この方法では、ガス導入口力も導入されたドーピング原料ガス、例えば B Hを、マ
2 6 イク口波導波管及び電磁石力も成るプラズマ発生手段によってプラズマ化し、プラズ マ中のボロンイオンを高周波電源によって試料の表面に供給するという方法がとられ る。
[0009] 半導体装置の小型化、高集積化に伴い、不純物導入領域における特性は極めて 重要である。なかでも、ドーズ量 (不純物導入量)は、素子特性を決定する重要な要 素のひとつである比抵抗を決定するため、ドーズ量の制御はきわめて重要なポイント である。
しカゝしながら、プラズマドーピング法を用いると、極浅で低抵抗のソース'ドレインェ タステンション電極が形成できることはわ力つたにもかかわらず、その特性を制御する ドーズ量の制御方法は開発されて 、な力つた。これまでにはプラズマドーピングする 時間を変化させることで、ドーズ量を変化させる方法が採られていたが、これでは制 御の精度が不十分であり、実用的ではなかった。
[0010] このような状況の中で、本発明者らは、人体に対してきわめて危険性の高い毒性を もつ B Hをできるだけ希釈して安全性を高め、ドーピング効率を低下させることなぐ
2 6
安定してプラズマの発生や維持を行なうとともに、ドーパント注入量の制御を容易に 行なうことのできる方法として、ドーピングする不純物を含む物質としての B Hガスを
2 6
、電離エネルギーの小さい Heガスで希釈し、 Heのプラズマを先行して発生させ、し カゝる後に B Hを放電させるようにする方法を提案した (特許文献 2)。この方法におい
2 6
て、 B Hガスの濃度が 0. 05%未満となるようにするのが望ましいとの提案もある。
2 6
[0011] し力しながら、 0. 05%程度の低濃度にしたとき、ドーズ量を制御しやすいとの報告 はなされているものの、これはガス濃度を一定にしつつ、時間を変化させてドーズ量 を変えるものであった。 B Hガス濃度を低濃度にした方が、時間変化に対するボロン
2 6
のドーズ量変化が小さくなるのでドーズ量を制御し易いという内容のものであった。ド ーズ量の制御精度を高める上で進歩したものであった力 s、真空容器内にプラズマを 発生させ、プラズマ中の不純物イオンを試料の表面に衝突させて試料の表面に不純 物導入層を形成するプラズマドーピング方法では、同じプラズマ条件であるにも係わ らずシリコン基板にプラズマを照射するたびにドーズ量が変化して再現性がよくない 場合があった。これは、シリコン基板にイオンを注入するために真空容器内でプラズ マを発生させる力 S、そのことによって真空容器内の状態が毎回変化するためであると され、ドーズ量を再現性良く調整することは困難であるとされていた。さらに、真空容 器内の状態が毎回変化するのでドーズ量をシリコン基板面内で均一に維持すること も困難であるとされていた。考えられるパラメータや装置形状を調整して、ドーズ量が 均一になるようにできたとしても、それを繰り返し再現させることができな力つたのであ る。
[0012] 特許文献 1 :米国特許第 4912065号明細書
特許文献 2 :特開 2004— 179592号公報
特許文献 3:特許第 3340318号公報
特干文献 1 international Tecnnology Roadmap for semiconductors 2001 Edition (I TRS2001)の Front End Processの Figure 30の Shallow Junction Ion Dopingの欄 非特許文献 2 : Y. Sasaki, et al., Symp. on VLSI Tech. pl80 (2004).
非特許文献 3 : B. Mizuno, et al.: Plasma Doping into the side-wall of a sub- 0.5 μ m width Trench, Ext. Abs. of International Conference on SSDM, p. 317 (1987). 非特許文献 4 : B. Mizuno, et al.: Plasma doping for silicon, Surface Coating tech., 8
5, 51 (1996).
非特許文献 5 : B. Mizuno, et al.: Plasma Doping of Boron for Fabricating the Surfac e Channel Sub-quarter micron PMOSFET, Symp. VLSI Tech, p. 66 (1996).
発明の開示
発明が解決しょうとする課題
[0013] このように、真空容器内の状態が毎回変化することは知られていたものの、具体的 に何がどのように変化するのかは明らかでな力つた。本発明者らは、種々の考察の結 果、プラズマチャンバ一としての真空容器内壁に不純物を含む膜が形成され、その 膜の状態が変化することに着目した。具体的には、 B Hガスとヘリウムガスの混合ガ
2 6
スプラズマによるプラズマドーピング処理を繰り返すと、膜の色の濃さと膜が形成され ている面積が変化していく。つまり、膜の厚みが厚くなり、膜が形成される面積が大き くなつていくことに注目し、本発明はこの点に基づいてなされたものである。本発明者 らは、真空容器の内壁に固着した前記不純物を含む膜がプラズマ中のイオンで叩か れる (スパッタリングされる)ことによって前記試料の表面のプラズマ濃度が変化する のではないか、その変化量は膜の厚さ、膜が形成される面積、によって変化するので はないかという推測をした。また、膜の単位体積中に含まれる不純物の密度にも左右 されるのではな 、かと推測した。
[0014] 本発明者らの実験結果によると、真空容器の内壁に固着した前記不純物を含む膜 力もシリコン基板表面に導入される不純物のドーズ量力 毎回変化した。
[0015] 本発明は、前記実情に鑑みてなされたものであり、プラズマ処理を繰り返しても、膜 力 シリコン基板へのドーズ量が毎回同一となるようにすることができるプラズマドーピ ング方法を提供することを目的とする。
課題を解決するための手段 [0016] 本発明は、これまでのプラズマドーピングの常識を覆す技術的思想に基づ 、てドー ズ量の制御と面内均一化を行ったものである。従来のプラズマドーピングの常識では 、不純物はプラズマ中のイオン、ガス、ラジカル力も導入され、その原料は真空容器 に接続されたガス管からガスとして供給されるものであった。つまり、ガス濃度や圧力 、ガスの混合比といったようにガスに含まれる不純物の量が半導体基板表面に導入 される不純物の量を決定するという思想であった。そこで、プラズマ密度やガスの流 量、圧力の分布を半導体基板面上で均一になるように設計していた。また、ドーズ量 の調整も供給するガスに含まれる不純物の濃度を調整することでプラズマに含まれる 不純物の濃度を調整するか、またはプラズマを照射する時間を調整することで行って いた。
[0017] これに対して、本発明では、発明の前提となる発見として、ガス管力もガスとして供 給しプラズマ化して半導体基板表面に導入される不純物の割合は、プラズマドーピ ングで導入される不純物の全体量の 15%から 30%程度に過ぎないことを発見した 点に着目すべきである。これは従来の常識を覆す数値である。従来は、ガスプラズマ 力 のドーズ量が主要因であるとの思想に基づいてプロセスと装置全般の設計が行 われていた。さらに本発明では、 85%から 70%を占める主要因力 プラズマドーピン グを繰り返し実施する間に真空容器の内壁に固着するように形成された不純物を含 む膜がプラズマに曝されることでスパッタリングされ、これにより一度膜に取り込んだ 不純物を再びプラズマ中に放出して、放出された不純物が半導体基板表面に導入 される現象が占めていることも明らかになった。ドーズ量に占める要因別の割合をより 厳密に決定することは今後の研究を待たざるを得な 、し、プラズマドーピング条件に よって変化すると考えられる力 従来では主要因と考えられていたガスプラズマ起因 のドーズ量の割合が小さいことが重要である。従来で考慮されていたように、プラズマ のパラメータを調整しても、ドーズ量を制御し、均一性を繰り返し安定に保ち、再現性 良くプロセスを行うことは不可能であることが理解できるであろう。つまりドーズ量を制 御し、繰り返し均一性を安定に保ち、再現性良くプロセスを行うためには、主要因で ある不純物を含む膜起因のドーズ量の制御、安定性の確保に取り組まなければなら ない。つまり、真空容器の内壁に固着する不純物を含む膜を調整することである。 [0018] 本発明のプラズマドーピング方法は、真空容器内の試料電極に試料を載置し、真 空容器内にプラズマを発生させ、プラズマ中の不純物イオンを試料の表面に衝突さ せて試料の表面に不純物導入層を形成するプラズマドーピング方法であって、真空 容器の内壁に固着した前記不純物を含む膜がプラズマ中のイオンで叩かれることに よって、前記試料の表面にスパッタリングで導入される不純物の量が前記不純物ィォ ンを含むプラズマを真空容器内部で繰り返し発生させても変化しないように内壁に前 記不純物を含む膜を備えた真空容器を用意するメンテナンス工程と、試料電極に試 料を載置する工程と、不純物イオンを含むプラズマを照射して前記試料に不純物ィ オンを打ち込むと共に真空容器の内壁に固着した不純物を含む膜からのスパッタリ ングで不純物を前記試料に導入する工程とを含むことを特徴とする。
この構成によれば、真空容器の内壁の不純物を含む膜からのスパッタリングにより 試料に導入される不純物の量が変化しないように、真空容器の内壁に膜を形成し、 プラズマドーピングを行って ヽるため、再現性よくかつ安定して不純物導入を行うこと ができる。
[0019] また本発明は、上記プラズマドーピング方法にぉ 、て、前記メンテナンス工程が、 不純物を含む膜を形成するに先立ち、真空容器の内壁に固着した不純物を含む膜 を除去する工程を含む。
この構成により、真空容器の内壁に付着した不純物を一旦除去し、再度条件に合 わせて不純物を含む膜を形成しているため、信頼性の向上をは力ることができる。
[0020] また本発明のプラズマドーピング方法は、前記試料がシリコン基板であり、前記不 純物イオンを含むプラズマを真空容器内部で繰り返し発生させても不純物のドーズ 量が ± 10%の範囲内で同程度になったときにドーズ量がシリコン基板の面内で均一 になるように真空容器の内壁に固着した不純物を含む膜を形成する。
この構成により、より高精度の制御が可能となる。
[0021] また本発明のプラズマドーピング方法は、真空容器内壁に付着する不純物の量が 所望の値となるように、真空容器内壁の形状を調整する工程を含む。
例えば、膜の形成が完了した段階で、不純物イオンを含むプラズマから導入される 不純物の分布と、真空容器の内壁に固着した不純物を含む膜からのスパッタリング で導入される不純物の分布を合わせた分布力 シリコン基板表面で均一になるように 真空容器の内壁の形状を調整しておく。膜の形成が完了した段階で均一になるよう に調整することが重要であり、より望ましい。こうすることで均一に繰り返し性の良いプ ラズマドーピングを実現できる。膜を形成する前やその途中で不純物のドーズ量の分 布が均一になるように真空容器内壁の形状を調整しても、プラズマドーピング処理を 繰り返す間に真空容器の内壁の状態、すなわち膜の状態が変化するので、均一性 を再現することは困難である。
[0022] また本発明のプラズマドーピング方法は、真空容器内壁に付着する不純物の量が 所望の値となるように、ガス供給方法を調整する工程を含む。
例えば、ガス噴射口の付近には色の濃い、つまり厚い不純物を含む膜が形成され 易い。このために、半導体基板の面上で、ガス噴射ロカ 近い部分はドーズ量が大 きくなり、遠い部分はドーズ量が小さくなる。このことを利用して、ガス噴射口と半導体 基板の位置関係を調整することにより、ドーズ量の面内均一性を改善することができ る。例えば、ガス噴射口に対して半導体基板を回転するなどの方法で移動させること によっても面内均一性を改善することが可能となる。
[0023] また本発明のプラズマドーピング方法は、前記メンテナンス工程力 不純物を含む 膜を除去した真空容器をプラズマドーピング装置に設置した後、真空容器内部で前 記不純物イオンを含むプラズマを発生させることで前記不純物を含む膜を形成する 工程を含む。
この構成によれば、特別の装置を用いることなぐ制御性よく高精度の不純物プロフ アイルを得ることができる。
[0024] また本発明のプラズマドーピング方法は、前記不純物を含む膜を形成する工程が、 メンテナンス工程で不純物を含む膜を除去した真空容器を、膜を形成するために別 途準備したプラズマ発生装置に設置した後、真空容器内部で前記不純物イオンを含 むプラズマを発生させることで前記不純物を含む膜を形成する。
この構成によれば、別の装置を用い所望の制御を行うようにしているため、制御性 よく高精度の不純物プロファイルを得ることができる。
[0025] また本発明のプラズマドーピング方法は、真空容器の内壁の温度を測定し、管理し ながら真空容器の内壁に固着した不純物を含む膜からのスパッタリングで不純物を 前記試料に導入する工程を有するものを含む。
この構成により、不純物を含む膜から半導体基板に導入される不純物の量は真空 容器内壁の温度によって変化することを見出した。そして、これを一定に保っために は真空容器内壁の温度を一定に保つように調整することが望ましい。また、膜からの 不純物導入量を所望の値にするには真空容器内壁の温度を所望の温度に調整する ことが望ましい。
なお、本発明は、真空容器の内部に内壁を覆うようにダミーの容器を配置して、そ の容器の内壁に膜を形成することも含む。真空設備ではこのようなダミーの容器をィ ンナーチャンバ一と呼ぶことが多い。本発明では、真空容器内壁に膜を形成したり、 その形状を工夫したり、その温度を管理したりするというように記載したが、インナー チャンバ一内壁についても同様の工夫で同様の効果を発揮することは言うまでもなく 、よって本発明に含まれる。さらにインナーチャンバ一は真空を保持する機能はなく 簡単に取り外しができ、洗浄も簡単であり、消耗品として使える。よって、インナーチヤ ンバーを設けることで、高価な真空容器を取り外して洗浄することなぐインナーチヤ ンバーだけを取り外して洗浄ができるのでさらに望ましい。
[0026] また本発明のプラズマドーピング方法は、前記プラズマは、ボロンを含むガスのプラ ズマである。
この構成によれば、ボロンの膜を真空容器内壁に形成することができ、真空容器内 壁に固着した不純物を含む膜がプラズマ中のイオンで叩かれることによって、試料の 表面にスパッタリングで導入される不純物の量が不純物イオンを含むプラズマを真空 容器内部で繰り返し発生させても変化しないようにし、スパッタリングによる不純物とと もに、制御性よく高精度の不純物プロファイルを得ることができる。
[0027] また本発明のプラズマドーピング方法は、前記ボロンを含むガスはボロンと水素から なる分子のガスであるものを含む。
[0028] ガスとしては、 BFなどを用いることも可能である力 Fはスパッタレートが高いため
3
に安定した膜を形成し難い。安定した膜を形成するためには、スパッタレートの低い 元素で構成されるガスを用いる方がより望ましい。さらにスパッタレートが高いとプラズ マドーピング処理中にシリコン基板表面を削りとるので設計通りにデバイスを製造で きない。さらに、不純物を導入したシリコン表面を削ることになるので、制御性の良い 不純物導入自体が困難になる。水素は、 Fに比べてスパッタレートが低いので、 Bと 水素からなる分子ガスを用いることにより、制御性よく高精度の不純物プロファイルを 得ることができる。
[0029] また本発明のプラズマドーピング方法は、前記ボロンを含むガスはシボラン (B H )
2 6 であるものを含む。
この構成によれば、 B Hは、工業的に安価であり、ガスボンベに入れてガス状態で
2 6
輸送、保管できることから、取り扱いが容易である。さらに、ボロンと水素のみ力もなる ので、スパッタレートが低いため、制御性よく高精度の不純物プロファイルを得ること ができる。
[0030] また本発明のプラズマドーピング方法は、前記プラズマは、ボロンと水素力 なる分 子のガスを希ガスで希釈したガスのプラズマであるものを含む。
この構成によれば、ボロンを含むガス濃度が高過ぎると、剥がれ易い膜ができてし まう。膜が剥がれると半導体製造で歩留まりの低下要因であるパーティクルが発生し てしまうという課題となり都合が悪い。そこで、他のガスで希釈してガス濃度を低くする ことにより剥がれにくい膜の形成が可能となるが、希釈するガスとしては、化学的に安 定であることから希ガスが特に望ま 、。
[0031] また本発明のプラズマドーピング方法は、前記希ガスは原子量がネオン以下の元 素であるものを含む。
希ガスの中でも、原子量の大きいものはスパッタレートが大きいために、安定した膜 を形成し難いし、シリコン基板表面を削りとつてしまう。そこで、ネオンよりも原子量の 小さ 、希ガスを用いることが望ま 、。
[0032] また本発明のプラズマドーピング方法は、前記希ガスがヘリウムであるものを含む。
特にヘリウムは、希ガスの中で原子量が最も小さぐスパッタレートも最も小さいので、 安定した膜を形成し易い上シリコンの削れを最小に留めることができる。
[0033] また本発明のプラズマドーピング方法は、前記プラズマは、シボラン (B H )をヘリ
2 6 ゥムで希釈したガスのプラズマであるものを含む。 B Hのガス濃度が低濃度になるようにヘリウムで希釈したガスを用いることが最も望
2 6
ましい。
[0034] また本発明のプラズマドーピング方法は、ボロンの注入深さが 7. 5nm力ら 15. 5n mであるものを含む。
実験の結果から、ボロンの注入深さが 7. 5nm力 15. 5nmに相当する注入エネル ギー範囲であれば、真空容器の内壁にボロンを含む膜を形成してシート抵抗を飽和 させると共に、膜の形成が完了したときに面内均一性が良好となることがわ力つてい る。
[0035] また本発明のプラズマドーピング方法は、ボロンの注入深さが lOnm以下であるも のを含む。
ボロンの注入深さが lOnm以下であるような低エネルギー条件下では、均一性を得 るのは極めて困難であるが、実験結果から、本発明の方法によれば、 PD時間を調整 することで 1. 5%以下の均一性を実現できることがわ力つた。
[0036] また本発明のプラズマドーピング方法は、前記プラズマは、連続プラズマを用いるも のを含む。
この構成によれば、連続プラズマを用いて PD時間を調整することで 1. 5%以下の 均一性を実現できる。一般的に、プラズマドーピングでは連続プラズマを用いる技術 とパルスプラズマを用いる技術が開発されてきた。パルスプラズマを用いたもので、本 発明で意図するような浅い領域への打込みではなぐ 20nm程度よりも深い打込みの 技術ではプラズマドーピングで均一性と再現性を確保したとの報告もあるが浅い領域 への打ち込みに対しては均一性および再現性が不十分であった。これに対し、本願 発明では種々の実験結果から、連続プラズマで浅い領域への打込みで均一性と再 現性を確保することができた。
[0037] また本発明の装置は、上記プラズマドーピング方法を実施するための装置であって 、真空容器と、試料電極と、真空容器内にガスを供給するガス供給装置と、真空容器 内を排気する排気装置と、真空容器内の圧力を制御する圧力制御装置と、試料電 極に電力を供給する試料電極用電源を備えたことを特徴とする。
この構成により、圧力制御装置を用いて圧力を制御することで、プラズマドーピング で注入したボロンのドーズ量の再現性を確保することが可能となる。
[0038] また本発明の装置は、前記不純物を含む膜を形成するための第 2のプラズマ発生 装置をさらに備えたものを含む。
この構成により、容易に真空容器の内壁の状態を制御することができる。
[0039] また本発明の装置は、前記真空容器に供給するガスの流量分布を調整する機構を 有し、前記不純物を含む膜を形成した後に真空容器の内壁を大気開放することなく 前記ガスの流量分布を調整できるようにしたものを含む。
この構成により、別の装置を用いることなぐさらには真空を形成する準備時間を別 に設けることなぐ容易にかつ短時間で所望の内部状態を得ることが可能となる。
[0040] また本発明の装置は、前記真空容器の内壁の温度を所望の温度に調整する機構 を有するものを含む。
真空容器内壁の温度の温度制御は温度センサーで温度を測定し、ヒータなどで熱 を加えることで実現できる。本発明者らの実験によると温度制御を行うことなく実験を 行うと、真空容器内壁の温度は、最初、室温であるが、プラズマドーピング処理を繰り 返すと 40°Cから 90°Cに達した。到達温度は、処理回数や条件にも依存する。そして 、プラズマドーピング処理を停止すると室温までゆっくり低下した。つまり、プラズマド 一ビング処理を開始するときと、繰り返し処理をするときで温度が異なる。さらに外部 温度の差で真空容器内壁の温度は影響を受ける。そこで、プラズマドーピング処理 を繰り返したときに自然に到達する温度付近、すなわち 40°Cから 90°Cの所望の温度 に予め調整しておくことが望ましい。これにより、膜からの不純物導入量を所望の値 に調整することができる。さらに望ましくは 50°Cから 70°Cの所望の温度に調整してお くことが望ましい。これにより、より多くのプラズマドーピング条件で自然に到達する温 度に調整することができるのでより繰り返し性が良好となる。
[0041] また本発明は、ボロンを含む連続プラズマを用いたプラズマドーピングで表面にボ ロンを導入した直径 300mmのシリコン基板であり、導入されたボロンのプロファイル は、ボロン濃度が 5 X 1018cm_3となる深さで 7nm以上 15. 5nm以下であり、ボロン 濃度が 1 X 1019cm_3から 1 X 1018cm_3に低下する距離で評価した場合のボロンの 深さプロファイルの急峻性は 1. 5nmZdec以上 3nmZdec以下であり、ボロンのドー ズ量は、前記シリコン基板の端部 3mmを除 、た面での標準偏差が 2%以下である。 本発明の方法を用いて製造できる多くの製品の中でも、上記の基板を製造すること で以下のような顕著な効果を得ることができる。上記範囲の深さにボロンを導入するこ とで、 65nmノードから 22nmノードの非常に微細な MOSFETのソースとドレインの エクステンション電極を形成できる。さらに上記範囲の急峻性でボロンを導入すること で、非常に微細な MOSFETのドレイン電流を増大させることができる。プラズマドー ビングでボロンを導入することで生産性良く微細な MOSFETの上記電極を生産でき る。さらに 300mm基板でドーズ量の面内均一性を良い水準にできるので、生産性が 改善されると共に歩留まりが良くなる。なお、実施例では半導体基板はシリコン基板 を用いて実証した。しかし、ゲルマニウム基板、歪みシリコン基板でも使われている元 素力 シリコン元素とそれほど原子量が違わないことから同様の効果を得られることが 推測できるので、ゲルマニウム基板、歪みシリコン基板でも良い。
図面の簡単な説明
[図 1]プラズマドーピング処理枚数とシート抵抗の関係を示す図
[図 2]シート抵抗の繰り返し再現性 (シート抵抗の比が 0.5から 4.0の範囲を表示)を示 す図
[図 3]シート抵抗の繰り返し再現性 (シート抵抗の比が 0.8から 1.2の範囲を表示)を示 す図
[図 4]面内均一性の繰り返し再現性を示す図
[図 5]面内均一性の繰り返し再現性を示す図
[図 6]プラズマドーピング処理枚数とシート抵抗との関係を示す図
[図 7]シート抵抗の繰り返し再現性を示す図
[図 8]面内均一性の繰り返し再現性を示す図
[図 9]プラズマドーピング時間とドーズ量、面内均一性との関係を示す図
[図 10]プラズマドーピング直後のボロンの SIMSプロファイルを示す図
[図 11]本発明の実施例と比較例により得られたプラズマドーピング領域の均一性を 示す比較図
[図 12]本発明の実施例と比較例により得られたプラズマドーピング領域の均一性を 示す比較図
[図 13]本発明の実施例と比較例により得られたプラズマドーピング領域の均一性を 示す比較図
[図 14]本発明の実施例 1のプラズマドーピング装置を示す図
[図 15]本発明の真空容器内部に設置する容器と搬送アーム用開口を塞ぐ蓋を示す 図
[図 16]本発明の実施例 1で均一性を比較するために用いたプラズマドーピング装置 を示す図
符号の説明
1 高周波電源
2 マッチングボックス
3 コイル
4 マスフローコントローラ
5 マスフローコントローラ
6 ターボ分子ポンプ
7 調圧弁
8 ドライポンプ
9 冷却水供給ユニット
10 V モニター
DC
11 マッチングボックス
12 高周波電源
13 試料 (被処理基板)
14 下部電極
15 真空容器
16 開口
17 蓋
20 開口に蓋をする機構
101 真空容器 102 ガス供給装置
103 ターボ分子ポンプ
104 調圧弁
105 プラズマ源用高周波電源
106 試料電極
107 誘電体窓
108 コィノレ
109 基板
110 試料電極用高周波電源
111 排気口
112 支柱
113 ガス導入経路
114 ガス主経路
115 ガス吹き出し口
発明を実施するための最良の形態
以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態 1)
以下、本発明の実施の形態 1について、図面を参照しつつ詳細に説明する。
図 14に本発明の実施の形態 1にお 、て用いられるプラズマドーピング装置の断面 図を示す。
このプラズマドーピング装置は、内壁に不純物を含む膜を形成してなる真空容器 1 5と、真空容器 15内を排気する排気装置としてのターボ分子ポンプ 6と、真空容器 15 内の圧力を制御する圧力制御装置としての調圧弁 7と、下部電極 14に対向した誘電 体窓の近傍に設けられたプラズマ源としてのコイルおよびアンテナ 3と、このコイルお よびアンテナ 3に 13. 56MHzの高周波電力を供給する高周波電源 12と、下部電極 14に電圧を供給する電圧源としての高周波電源 1とで構成されており、試料台を兼 ねる下部電極 14上に被処理基板 (基板) 13を設置し、プラズマ照射を行なうもので ある。 [0045] ここでは、プラズマを発生させるための高周波電源 1と放電の調整を行なうマツチン グボックス 2を介して、コイル及びアンテナ 3から高周波が供給される。必要なガスは マスフローコントローラ MFC4及び 5を介して供給される。真空容器 15内の真空度は 前記マスフローコントローラ 4及び 5、ターボ分子ポンプ 6、調圧弁 7、ドライポンプ 8に よって制御される。真空容器 15に対しては、高周波電源 12から、マッチングボックス 11を介して電力が供給される。真空容器 15内に設置した、被処理基板 13は試料台 14に載置され、前記電力が供給される。
[0046] 次に、プラズマドーピング工程について述べる。
このプロセスチャンバ一の真空容器 15内にガス供給装置力 マスフローコントロー ラ 4、 5を介して所定のガスを導入しつつ、排気装置としてのターボ分子ポンプ 8により 排気を行い、圧力制御装置としての調圧弁 9により真空容器 15内を所定の圧力に保 つ。そして高周波電源 1により、プラズマ源としてのコイル 3に 13. 56MHzの高周波 電力を供給することにより、真空容器 15内に誘導結合型プラズマを発生させる。この 状態で下部電極 14上に、試料としてのシリコン基板 13を載置する。また、下部電極 1 4には高周波電源 12によって高周波電力が供給されており、試料としてのシリコン基 板 (被処理基板) 13がプラズマに対して負の電位をもつように、下部電極 14の電位 を制御することができるようになって 、る。
[0047] まず、不純物を含むガスのプラズマを真空容器の中で発生させて膜を形成して!/ヽく 。例えば、一定のプラズマドーピング条件でダミー基板に繰り返しプラズマドーピング を行えば良い。膜が形成されるに従って、膜がプラズマ中のイオンで叩かれることに よってシリコン基板の表面にスパッタリングで導入される不純物の量が増加していく。
[0048] この増加はやがて飽和に達して、一定のプラズマドーピング条件で行った場合に 1 回のプラズマドーピング処理で導入される不純物のドーズ量は、プラズマドーピング を繰り返しても一定となる。例えば、一定のプラズマドーピング条件で複数毎のシリコ ン基板にドーピングを行 、、シリコン基板へのドーズ量が同じになって ヽれば膜の形 成が完了したことが分かる。もし、最初の基板へのドーズ量が最後の基板へのドーズ 量よりも小さ 、傾向にあれば、膜の形成は完了して ヽな 、ので膜の形成を続ける。
[0049] さらに、膜の形成が完了した段階で、不純物イオンを含むプラズマから導入される 不純物の分布と、真空容器の内壁に固着した不純物を含む膜からのスパッタリング で導入される不純物の分布を合わせた分布力 シリコン基板表面で均一になるように 真空容器の内壁の形状を調整しておく。
[0050] 膜の形成が完了した段階で均一になるように調整することが重要であり、より望まし い。こうすることで均一に繰り返し性の良いプラズマドーピングを実現できる。膜を形 成する前やその途中で不純物のドーズ量の分布が均一になるように真空容器内壁 の形状を調整しても、プラズマドーピング処理を繰り返す間に真空容器の内壁の状 態、すなわち膜の状態が変化するので、均一性を再現することはできない。
[0051] シリコン基板 13を下部電極としての試料台 14に載置した後、真空容器 15内を排気 しつつ、マスフローコントローラ 4により真空容器 15内にヘリウムガスを、またマスフ口 一コントローラ 5により真空容器 15内にドーピング原料ガスとしてのジボラン (B H )
2 6 ガスを供給し、調圧弁 9を制御して真空容器 15内の圧力を 0. 9Paに保つ。次に、プ ラズマ源としてのコイル 3に高周波電力を 1500W供給することにより、真空容器 15内 にプラズマを発生させるとともに、下部電極 14に 200Wの高周波電力を供給すること により、ボロンをシリコン基板 13の表面近傍に打ち込むことができる。ここでシリコン基 板 13に曝されているプラズマは、 B Hと Heの混合ガスプラズマ(B H /Heプラズマ
2 6 2 6
)である。なお、 B Hと Heの混合の割合は、マスフローコントローラ 4と 5に流す Heガ
2 6
スと B Hガスの流量の比を変えることで変化させることができる。
2 6
[0052] B Hと Heの混合ガスプラズマ(B H /Heプラズマ)をシリコン基板に照射してバイ
2 6 2 6
ァスをかけると、ボロンのシリコン基板へのドーピングとスパッタリングが飽和する(釣り 合う)時間がある。すなわち、プラズマ照射を開始すると、最初はドーズ量が増加する 力 その後、時間の変化によらずドーズ量はほとんど一定となる時間が続く。時間の 変化によらずドーズ量がほとんど一定となる時間をプロセスウィンドウとすることでドー ズ量をさらに正確に制御できる。また、このシリコン基板面内で、ドーズ量が一定とな る時間をあら力じめ測定し、その一番遅いものの開始時間に合わせてドーピング時 間を設定することにより、面内均一性も得ることができた。
[0053] この不純物を含む膜は、プラズマドーピング装置にメンテナンス後の真空容器を取 り付けた後で形成しても良 、。膜を形成した後で実際のプラズマドーピング条件で不 純物を導入する。こうすることで、膜は形成された後に大気に触れることなくプロセス を行うことができる。ボロンの膜の場合、水分と反応し易いので、上記の方が大気中 の水分と反応することなく膜を形成してプロセスに使うことができるので望ましい。
[0054] 不純物を含む膜は、或いは、メンテナンス工程で不純物を含む膜を除去した真空 容器を、膜を形成するために別途準備したプラズマ発生装置に備え付けた後、真空 容器内部で前記不純物イオンを含むプラズマを発生させることで前記不純物を含む 膜を形成しても良い。真空容器を複数用意しておけば、別途準備したプラズマ発生 装置で膜をつける作業をしている間に、事前に膜をつけておいた真空容器をプラズ マドーピング装置に取り付けてプラズマドーピング処理を行うことができる。これにより
、真空容器内壁に膜をつける間にもシリコン基板にプラズマドーピング処理を行える ので生産性を向上することができる。
[0055] <実施例 1 >
本発明の実施例 1について説明する。なお、特に特筆しない場合、以下の実験方 法は各実施例に共通である。まず、上記図 14に示すプラズマドーピング装置を用い 、 B Hと Heの混合ガスプラズマを用いて真空容器にボロンの膜を形成した。ここで
2 6
用いたプラズマドーピング装置は、通常用いられる装置である。 PD条件は、 B Hと
2 6
Heのガス混合比は 0.05%と 99.95%、ソースパワーは 1500W、バイアスパワーは 135W 、圧力は 0. 9Paで行った。バイアスを印加しているプラズマドーピング時間は 60秒と した。この一定の PD条件で、メンテナンス直後の真空容器内で直径 300mmのシリコ ン基板にプラズマドーピングを行った。そして、 1枚目、 25枚目、 75枚目、 125枚目、 25 0枚目、 500枚目に処理したシリコン基板を 1075°C、 20秒間の条件で熱処理した。そ の後、基板の端部 3mmを除いた 121箇所のシート抵抗を四探針法で測定し、シート 抵抗の平均値と標準偏差を計算した。面内均一性は、シート抵抗の標準偏差 (1 σ ) で示した。上記で、例えば 2枚目以降 24枚目までを熱処理しな力つた理由は、これら の処理はダミーのシリコン基板を用いて行った力もである。ダミーのシリコン基板とは 、同じシリコン基板を用いる力 PD処理毎に常に新しい基板を用いるのではなぐ 10 0回程度は同じシリコン基板で繰り返し PD処理を行ったという意味である。真空容器 内壁にボロンを含む膜を形成する実験に影響を及ぼさずに、シリコン基板の消費量 を節約するための実験計画上の処置である。
[0056] 図 1はプラズマドーピング処理枚数とシート抵抗の関係である。同じ PD条件で処理 したにも係わらず、最初はシート抵抗が高ぐ処理枚数が増加するに従ってシート抵 抗が低下した。実験後に真空容器内壁に形成されていた膜を分析した結果、ボロン を含んでいることが分力ゝつた。 PD処理を繰り返すうちに膜が形成されていって、シー ト抵抗が低下したものと考えられる。
[0057] 75枚目、 125枚目、 250枚目、 500枚目に PD処理した基板のシート抵抗の平均 値は 236.1 ohm/sqであった。図 2と図 3は、 236.1 ohm/sqを 1とした場合のシート抵抗 の比を縦軸にとって、 PD処理枚数を横軸にとった図である。図 3は、シート抵抗の比 力 から 1.2の範囲に限って表示した。図 3から 25枚目ではシート抵抗の低下は飽 和しておらず、すなわち膜の形成も飽和していない。ところが、 75枚目以降はシート 抵抗は平均値から ±5%以内のばらつきに収まっており、シート抵抗の低下は飽和し ている。すなわち、膜の形成は 75枚目付近の PD処理で飽和したことがわかる。膜の 形成が完了した後は、シート抵抗は平均値付近を小さい範囲でばらつきながら数多 くの PD処理を安定して続けることができた。
図 2を参照して、 1枚目に PD処理した基板のシート抵抗は 75枚目以降の平均のシ ート抵抗 (236.1 ohm/sq)の約 3. 2倍であった。ドーズ量は、シート抵抗にほぼ比例 すると考えることができる。よって、 1枚目のドーズ量は 75枚目以降の 3割程度しかな いことを意味している。ボロンが導入される要因は、 1枚目の場合は、ガス導入口から 導入された B Hガスに含まれるボロンがプラズマ化してガス、イオン、ラジカルの状
2 6
態で導入された B Hガスプラズマ起因のものが全てである。このとき、ボロンを含む
2 6
膜は形成されていないので、膜が起因のドーズ量は零である。一方で、 75枚目以降 の要因は、 B Hガスプラズマが起因したものにカ卩えて真空容器内壁に形成されたボ
2 6
ロンを含む膜が起因したものが含まれる。 1枚目の場合も 75枚目以降の場合も PD条 件は変わりがないので、 B Hガスプラズマ起因のドーズ量は変化がない。変化した
2 6
のは膜が起因のドーズ量である。表 1に 1枚目と 75枚目以降のドーズ量を要因別に 分けて示した。 75枚目以降では、ボロンを含む膜からのドーズ量が約 70%を占めて 主要因になっていることがわかる。 B Hガスプラズマ起因のドーズ量は、約 30%だ けである。これは、プラズマドーピングの従来の概念を覆すものであり、新規に確認し た事実である。このことからプラズマドーピングでドーズの面内均一性、繰り返し性を 得るためには、ボロンを含む膜からのドーズ量に着目することが重要であり、膜起因 のドーズ量を半導体基板の面内で均一にすること、繰り返し再現性を良くすること、 所望のドーズ量になるように調整することが重要であり望ましいことを見出した。
[表 1]
Figure imgf000022_0001
[0059] 図 4は、プラズマドーピング処理枚数とシート抵抗の面内均一性の関係である。 1枚 目に 5.28%であった面内均一性力 25枚目以降は 2%から 3%の範囲に改善されたこ とがわかる。これは、膜の形成が完了したときに面内均一性が良くなる様に真空容器 の内壁の形状を調整したからである。従来はプラズマやガス分布を均一にするよう〖こ 真空容器の形状やコイルの位置を調整していた。これは、 1枚目に最も良い均一性 が得られるように調整していることに相当する。ところが、本実施例では、膜が全く形 成されて 、な 、と 、う理由で 1枚目の均一性は無視して、膜の形成が完了したときの 状態に着目して真空容器内壁の形状を調整したことが特徴である。この結果、膜が 形成されてきた 25枚目以降の方が 1枚目よりも面内均一性が良い。そして、膜の形 成が完了した 75枚目以降では、 1枚目よりも大幅に改善した面内均一性を継続して 繰り返し再現性良く実現できることがわかる。
[0060] 上記実験結果に基づいて、膜の形成が完了したときに面内均一性がさらに良くなる ように、メンテナンス後の真空容器内壁の形状をあら力じめ調整したプラズマドーピン グ装置を用意し、プラズマドーピングを行った。真空容器内壁の中でも特に側面と上 面の形状を調整することが望ましい。具体的には、真空容器の中にもう一つ内壁の 役目をする容器を設けた。この容器は真空を保持することはできない。その表面に膜 を形成するための容器である。これを設けることで、メンテナンス時に真空容器全体 を洗浄する必要がなく、前述の容器のみを真空容器から取り外して洗浄すればょ 、 。容器を複数準備しておけば、容器の洗浄中に予備の容器を用いて生産を続けるこ とができ、効率向上をは力ることができる。さらに真空容器に比べて前述の容器は真 空保持能力を備えて ヽな ヽので構造を簡単にでき、洗浄自体がし易くなる。
[0061] この容器の形状を下記のように工夫した。容器は、シリコン基板中央から見て概ね 対称形状である。しかし、シリコン基板を真空容器内に搬送するための搬送アームを 真空容器に出し入れするための開口を設ける必要がある。その部分のみは対称性を 著しく欠いていた。そこで、できるだけ対称性を保てるように、シリコン基板と搬送ァー ムが通り抜けられるだけの面積に開口の面積をできるだけ小さくする工夫をした。そ の結果、図 5のように膜の形成が完了した 100枚目以降の PD処理において、 2%以 下の非常に良い均一性を得た。 [0062] なお、ここでは、開口の面積を小さくした力 プラズマドーピングを行うときは開口に 蓋をする機構を設けて開口を塞ぐようにし、開口に蓋をした後に膜を形成するように した方が対称性をより高められるので望ましい。開口 16に蓋をする機構 20は、図 15 に示すように容器 15の外側力も板状の蓋 17をあてがうようにすれば良 、。シンプル な構成として、さらに駆動部を容器の外側に設けることで、パーティクルを発生させる ことなく蓋をすることができる。図 15 (a)は半導体基板搬送時を示す図、図 15 (b)は プラズマドーピング時の状態を示す図である。
[0063] 上記実験結果に基づいて、膜の形成が完了したときに面内均一性がさらに改善さ れるように、ガスの供給の仕方をメンテナンス直後にあら力じめ調整したプラズマドー ビング装置を用意し、プラズマドーピングを行った。ガスの供給の仕方は、シリコン基 板と対面するように天板を配置し、天板にシャワーヘッドのように 18個の穴を開けて、 その穴力もガスが真空チャンバ一内部に供給されるようにした。そして、穴の位置を 膜の形成が完了したときに面内均一性が良くなるように調整した。ここで用いたプラズ マドーピング装置を図 16に示す。
[0064] 図 16において、真空容器 101内に、ガス供給装置 102から所定のガスを導入しつ つ、排気装置としてのターボ分子ポンプ 103により排気を行い、調圧弁 4により真空 容器 101内を所定の圧力に保つことができる。高周波電源 105により 13. 56MHzの 高周波電力を試料電極 106に対向した誘電体窓 107の近傍に設けられたコイル 10 8に供給することにより、真空容器 101内に誘導結合型プラズマを発生させることがで きる。試料電極 106上に、試料としてのシリコン基板 109を載置する。また、試料電極 106に高周波電力を供給するための高周波電源 110が設けられており、これは、試 料としての基板 109がプラズマに対して負の電位をもつように、試料電極 106の電位 を制御する電圧源として機能する。このようにして、プラズマ中のイオンを試料の表面 に向力つて加速し衝突させて試料の表面に不純物を導入することができる。なお、ガ ス供給装置 102から供給されたガスは、排気口 111からポンプ 103へ排気される。
[0065] ガス供給装置 102内に設けられている流量制御装置 (マスフローコントローラ)によ り、不純物原料ガスを含むガスの流量を所定の値に制御する。一般的には、不純物 原料ガスをヘリウムで希釈したガス、例えば、ジボラン (B H )をヘリウム (He)で 0. 5%に希釈したガスを不純物原料ガスとして用い、これを第 1マスフローコントローラで 流量制御する。さらに第 2マスフローコントローラでヘリウムの流量制御を行い、第 1及 び第 2マスフローコントローラで流量が制御されたガスをガス供給装置 102内で混合 した後、配管 (ガス導入経路) 113を介してガス主経路 114に導き、さらにガス主経路 114と連通する複数の穴を介して、ガス吹き出し口 115より真空容器 101内に混合ガ スを導く。複数のガス吹き出し口 115は、試料 109の対向面より試料 9に向けてガス を吹き出すようになつている。
[0066] ガス吹き出し口 115は、誘電体窓 107の中心に対してほぼ対称に設けられ、試料 に向けて概ね等方的にガスを吹き出す構造となっている。つまり、 24戸のガス吹き出 し口 115が概ね等方的に配置されている。 116はマッチングボックス、 117は V モ
DC
ニタである。
[0067] その結果、図 6のように 375枚目以降の PD処理にぉ 、てシート抵抗は安定した。 3 75枚目以降のシート抵抗の平均値は 220 ohm/sqであった。 1枚目と 375枚目以降 で PD条件は変わりがないので、 B Hガスプラズマ起因のドーズ量は変化がない。変
2 6
化したのは膜起因のドーズ量である。表 2にドーズ量を要因別に分けて示した。 375 枚目以降では、膜からのドーズ量が約 85%、 B Hガスプラズマ起因が約 15%であ
2 6
る。膜からのドーズ量が主要因になって 、ることがわ力る。
[0068] [表 2]
Figure imgf000026_0001
[0069] 図 7は、シート抵抗の繰り返し再現性を示す図である。ここではシート抵抗の比が 0. 8から 1.2の範囲に限って表示した。 375枚目以降は、シート抵抗は平均値から ±5% 以内のばらつきに収まっており、シート抵抗の低下は飽和している。すなわち、膜の 形成は 375枚目付近の PD処理で飽和したことが了解できる。膜の形成が完了した 後は、シート抵抗は平均値付近を小さい範囲でばらつきながら数多くの PD処理を安 定して続けることができた。
[0070] 図 8は、面内均一性の繰り返し性を示す図である。膜の形成が完了したときの面内 均一性を考慮してメンテナンス直後にあら力じめガスの供給の仕方を調整してぉ 、た 結果、膜の形成が完了した 375枚目以降の PD処理において、 1. 85%以下の非常 に良い均一性を得た。
[0071] 次に、 1350枚目力ら 1353枚目の PD処理では、 PD時間を変化させてドーズ量と 面内均一性の変化を調べた。 PD時間とはプラズマ照射してバイアスを印加して 、る 時間である。 PD時間を 14秒、 45秒、 100秒と変化させた。なお、 1350枚目以前と 1 354枚目以降の連続処理は、全て PD時間を 60秒として行ったものである。そこで、 60秒のデータはダミー基板で行ったものではなく 1350枚目に最も近い 1375枚目に 処理したデータを参照した。図 9に PD時間とドーズ量の関係を示した。併せて面内 均一性の変化を示した。プラズマ照射を開始すると、最初はドーズ量が増加するが、 その後、 1. 7E15cm_2が漸近線となるように増加した。時間の変化によらずドーズ 量の変化が非常に小さい時間があることが認められる。このような時間をプロセスウイ ンドウとすることでドーズ量を正確に制御できる。漸近線の 7割以上のドーズ量となる 時間に設定することがさらに望ましい。これにより、面内均一性をさらに改善できる。 漸近線により近いドーズ量となる時間に設定することがさらに望ましい。これにより、最 も良い水準の面内均一性を得られる。実際に、 PD時間を 100秒とすることで容器の 形状、ガス供給方法、 PD時間以外の PD条件が同じであるにも係らず、 1 σで 1. 34 %の面内均一性を実現できた。
[0072] 以上の結果の中で、 300mm基板の端部 3mmを除いた 121箇所のシート抵抗の 分布の結果を図 11乃至図 14に示す。図 11 (a)乃至 (c)はそれぞれ比較例の 1枚目 、実施例の 1000枚目、実施例の 1375枚目の試料の面内均一性を示す図、図 12 (a )乃至 (b)はそれぞれ比較例の 1枚目、 125枚目の試料の面内均一性を示す図、図 13 (a)乃至 (c)はそれぞれ比較例の 14秒後、実施例の 60秒後、実施例の 100秒後 を示す図である。
[0073] PD直後のシリコン基板を SIMS分析した結果、ボロンの注入深さは 9. 4nmであった
(図 10参照)。これは、ボロンの注入エネルギーが非常に低エネルギーであることを 意味している。注入深さが 10nm以下になるような低エネルギーでは、従来の技術で すでに広く工業的に使用されており、均一性に優れたイオン注入の方法であっても、 300mm基板の端部 3mmを除く全面で 2%以下の均一性を実現するのは容易では ない。まして、均一性に困難があることで知られているプラズマドーピングの方法では なおさら困難の度合いは強い。注入深さが 10nm以下で 300mm基板の端部 3mm を除く全面で 2%以下、さらに PD時間を調整することで 1. 5%以下の均一性を実現 できる。
[0074] 本発明で用いたプラズマドーピング装置でバイアス電圧を変えた場合の SIMSプ口 ファイルを図 10に示した。ボロンの注入深さは 7. 5nm力ら 15. 5nmの範囲で変化さ せることができた。少なくともこれに相当する注入エネルギー範囲であれば、真空容 器の内壁にボロンを含む膜を形成してシート抵抗を飽和させると共に、膜の形成が 完了したときに面内均一性が良くなる様に真空容器内壁の形状をあらかじめ調整し ておく本発明の方法が同様に使用できることとその有効性を同様の実験で確認した
[0075] なお、実施例では、膜を形成するために、膜形成後の実際に用いる PD条件を繰り 返し実施した。しかし、実際に用いる PD条件とは異なる条件で膜を形成しても良い。 具体的には、実施例では、 B Hと Heのガス混合比は 0.05%と 99.95%とした力 0.1%と
2 6
99.9%としても良い。 B H濃度が高い方が膜を短い時間で形成できると考えられるの
2 6
で望ましい。ただし、 5%にまで B H濃度を高めると膜が安定せず、シート抵抗も面内
2 6
均一性も安定しないことがわ力つている。安定した膜を形成できる範囲内で B H濃
2 6 度を高めることが、膜を形成する時間を短縮できるので望ましい。このようにして膜を 形成した後で、所望のドーズ量になるように B H濃度を調整し直して実際のプラズマ
2 6
ドーピングを実施する方が実用的であり望ましい。膜を形成するときの最適な B H濃 度については、今後の研究事項である力 本発明の範疇に入る通常の設計事項で ある。さらに、膜を形成する間は、ダミーのシリコン基板を試料電極の上に配置してお けば良い。膜の形成が完了した後で、ダミー基板を試料電極力も取り外し、処理した い基板を載せて実際のプロセスを開始することが望ましい。これにより、膜の形成の ための基板を余分に使用しなくて良くなるので効率的である。
[0076] (比較例 1)
比較例 1として図 4を参照しながら説明する。
真空容器をメンテナンスした後、つまり、膜を除去した後に、ドーズ量の面内均一性 が良くなるようにプラズマ条件、ガスの供給方法、真空容器内壁の形状を調整したも のである。膜からのドーズ量という概念を意識していない。真空容器の内壁に固着し た前記不純物を含む膜がプラズマ中のイオンで叩かれることによって、前記試料の 表面にスパッタリングで導入される不純物の量が前記不純物イオンを含むプラズマを 真空容器内部で繰り返し発生させても変化しないように内壁に前記不純物を含む膜 を備えた真空容器を用意するメンテナンス工程を有しな ヽアプローチである。プラズ マドーピングで繰り返し性、面内均一性を良くするために採られた従来のアプローチ のほとんどがこの場合に相当する。
[0077] プラズマ条件は実施例と同じにして、他の条件を様々に試行錯誤した結果、 1枚目 の処理で 1. 5%のドーズ量の面内均一性を実現することができた。シート抵抗は、 4 55 ohm/sqであった。ここまでは従来の手法の成果である。し力し、 1枚目で 1. 5%の 均一性を実現したそのままの状態で、同じ PD条件でプラズマドーピング処理を繰り 返し実施して 150枚目に処理したシリコン基板を検査したところ、均一性は 6. 0%で あり、シート抵抗は 165 ohm/sqであった。シート抵抗の繰り返し性が得られないこと が了解できる。さらに、通常、一般的に実用で求められる均一性の水準は、 2%以下 、望ましくは 1. 5%以下である。このことから、比較例 1では、メンテナンスや条件の調 整をして 1. 5%の均一性を得られる状態を整えても、わずか 150枚以下の処理で再 度メンテナンスが必要になる。
[0078] 比較例 1では、メンテナンス直後の膜を形成する前の状態で真空容器内壁の形状 やガスの供給方法を面内均一性が良くなるように調整した。しかし、この方法では、プ ラズマドーピングにより真空容器内壁にボロンを含む膜が形成されていき、状態が変 化していくので、繰り返し安定して良い均一性を得ることもできないし、繰り返して同じ シート抵抗を得ることもできなカゝつた。これに対して実施例では、プラズマを真空容器 内部で繰り返し発生させても膜起因のドーズ量が変化しないように内壁に前記不純 物を含む膜を備えた真空容器を用意するメンテナンス工程を有する。そして、真空容 器内壁にボロンを含む膜が安定して形成された後の状態で真空容器内壁の形状や ガスの供給方法を面内均一性が良くなるようにあら力じめ調整した。この差によって、 実施例は長期繰り返す生産をしても面内均一性を安定して良い水準に保つことがで きるし、シート抵抗も安定して同じものを得られる、という顕著な効果を発揮できる。
[0079] (比較例 2)
比較例 2として、メンテナンス直後ではなぐ実験の都合などで意図せずに膜の形 成途中でドーズ量の面内均一性が良くなるようにガスの供給方法、真空容器内壁の 形状を調整した場合である。シート抵抗の繰り返し性の実験を始める場合もある。通 常、プラズマドーピングで不純物を含むガスプラズマを用いると、例えば B Hと Heの
2 6 混合ガスプラズマを用いた場合などでは、実験者が意図していなくても膜が自然に 形成される。プラズマドーピングの不純物の深さ制御などを実験して 、た実験者が、 その後、実験の都合上で真空容器のメンテナンスを行わずに面内均一性、または繰 り返し性の実験を始めた場合などが比較例 2に相当する。ただし、プラズマを真空容 器内部で繰り返し発生させても膜の形成は不完全であり、膜起因のドーズ量が変化 しないように内壁に前記不純物を含む膜を備えた真空容器を用意するメンテナンス 工程を有しているわけではない。膜の形成が不完全だ力もである。この場合は比較 例 1と同様の理由でシート抵抗の繰り返し性は得られな 、。
[0080] (比較例 3)
比較例 2で、もし膜の形成が意図せずして完了していた場合も考えられる。しかし、 シート抵抗の繰り返し安定性および面内均一性を確実な水準まで高めることは困難 である。本発明の意図に沿っていない場合には、特に面内均一性の繰り返し性を確 実な水準に高めることは非常に困難である。
[0081] その理由を説明する。膜が形成された後では、真空容器の内壁の形状、ガスの供 給方法を調整することが一般的なプラズマドーピング装置では困難であるためである 。ガスの供給方法の調整には、具体的には、ガスを真空容器に供給する位置などが ある。真空容器の内壁の形状を変えるには、機械的駆動性を内壁の一部に持たせる 必要がある。
[0082] しかし、真空容器内で内壁の形状を変えるような複雑な機械的動きを行うとパーテ イタルが発生しやすい。できるだけ機械的な動きは少なくしたい。まして膜が形成され た部分の内壁を動かすと膜の一部が剥がれることでパーティクルの原因となり易い。 ガスを真空容器に供給する位置を変える場合も、ガス吹き穴の位置を変化させるた めの機械的動きが発生する。そのために同様の理由でパーティクルの原因となり易 い。
[0083] 一方、機械的駆動性を持たせずに大気に開放して真空容器の内壁の形状、ガスの 供給方法を調整することも考えられる。しかし、この場合も膜の形成後に大気開放せ ずに生産に移行できる場合と比べるとパーティクルの発生頻度は明らかに多くなるの で望ましくない。さらに、ボロンを含む膜の場合は特に困難である。実験結果からポロ ンを含む膜は、水分と反応し易いことがわ力 ている。このため、大気に曝すと大気 中の水分と反応して膜の性質が変わってしまうので、その後に真空容器を真空に引 いて、プラズマドーピングを行えるように調整しても、もはや大気に曝す前の膜の性能 は得られない。そこで、特にボロンを含む膜の場合、膜を形成した後に真空容器を大 気に開放して真空容器の内壁の形状、ガスの供給方法を調整できない。
[0084] 比較例 2では、意図せずに膜が形成され、その後に繰り返し性と面内均一性を改善 するように真空容器内壁の形状やガスの供給方法を調整した。しかし、この方法では 、もし膜の形成が途中であった場合には繰り返し性は得られない。また、もし膜の形 成が完了していた場合には、面内均一性を改善することが難し力つた。これに対して 実施例では、真空容器内壁にボロンを含む膜が安定して形成された後の状態で真 空容器内壁の形状やガスの供給方法を面内均一性が良くなるようにあらかじめ調整 した。この差によって、実施例はパーティクルを発生させることなく面内均一性と繰り 返し性を安定して良い水準に保つことができるという顕著な効果を発揮できる。
[0085] さらに、膜がボロンを含む場合には、真空容器を大気開放することができないので、 比較例では面内均一性の調整がより困難となるので、実施例の効果はより顕著となる 。このように実施例のように膜を形成する前に、膜を形成した後の面内均一性が良く なるように真空容器の内壁の形状、ガスの供給方法をあらかじめ調整しておくことが より望まし!/、。
[0086] (比較例 4)
不純物を含む固体状のターゲットにスパッタリング用のガスをプラズマ状態で衝突 させてターゲットから不純物を飛び出させ、飛び出した不純物を試料の表面部に導 入する技術が開示されている(特許文献 3)。この特許文献 3に示された技術では、 1 GHz以上のマイクロ波を真空チャンバ一内に導入することが特徴である。従来のス ノ ッタリング装置においては、ターゲットを構成する材料が金属であるため、 ECR等 のプラズマ発生手段を有しない平行平板型プラズマ発生装置でもプラズマは発生 する。
[0087] し力しながら、ボロンを含有するターゲットを用いる場合には、ボロンは絶縁性が高 いため、発生した電界を発散させてしまうので、プラズマは発生し難い。そこで、 EC R18を設けて 1GHz以上のマイクロ波を真空チャンバ一内に導入する。このように 1G Hz以上のマイクロ波を真空チャンバ一内に導入すると、平行平板型プラズマ発生装 置の約 1000倍の高密度のプラズマが発生するので、短時間でボロン等の不純物を シリコン基板の表面部に打ち込むことができる。このため、シリコン基板の温度が 300 °C以上に上昇しないので、シリコン基板の上に形成されたレジストパターンが焦げる 事態を回避できるというものである。
[0088] この方法では、不純物を含む固体状のターゲットを準備して、真空容器内部に配置 する。しかし、この比較例では試料の表面にスパッタリングで導入される不純物の量 が前記不純物イオンを含むプラズマを真空容器内部で繰り返し発生させても変化し な 、ように、不純物を含む膜をあらかじめ形成するようにメンテナンスをして!/、な!/、た め、面内均一性や繰り返し性を得るのは困難である。その理由を説明する。固体状 のターゲットを真空容器内部に配置したとしても、実施例で用いたような不純物(実施 例ではボロン)を含むプラズマを真空容器内で繰り返し励起すると、固体状のターゲ ットの表面にボロンを含む膜が形成されていく。また、真空容器の内壁で固体状のタ 一ゲットで覆われて ヽな 、部分には内壁の表面にボロンを含む膜が形成されて 、く。 そして、繰り返し励起を続けて実施して、ある時間励起した後に膜の形成が飽和して 完成する。よって、固体状のターゲットを真空容器内部に配置しただけでは、プラズ マを真空容器内部で繰り返し発生させても膜起因のドーズ量が変化しないように内 壁に前記不純物を含む膜を備えた真空容器を用意するメンテナンス工程を有してい ることにならないし、シート抵抗の繰り返し性を得るのは困難である。
[0089] また、ターゲットの作成方法は明確には記載されていないが、ターゲットは真空容 器の内部で作成せず、外部で作成したものを真空容器の内部に設置することが一般 的であろうと考えられる。しかし、この方法では、不純物を含む固体は必ず一度大気 に曝される。よって大気中の酸素と反応して膜の表面に酸化膜が形成されたり、大気 中の水分と反応して膜の性質が変化したりしてしまう。膜が酸ィ匕したり、大気中の水 分と反応したりすることはプラズマドーピング後の不純物のドーズ量、均一性に多大 な影響を与える。よって、仮に面内均一性が良くなるように不純物を含む固体状のタ 一ゲットの形状やその配置場所を設計したとしても、大気の湿度や気温などの変化 で設計どおりに均一なプラズマドーピングを行うことはできな!ヽ。同じ理由でドーズ量 の繰り返し再現性も設計通りに得られない。なお、湿度や気温が管理されたクリーン ルームの内部であっても湿度、温度は日によってわずかに変化するし、酸化や水分 との反応を抑えることはできな 、。
[0090] これに対して本発明では、プラズマを真空容器内部で繰り返し発生させても真空容 器の内壁に固着した不純物を含む膜からのドーズ量が変化しないように内壁に不純 物を含む膜を形成する。これによつて、ドーズ量が繰り返し再現するという顕著な効 果を得る。さらに本発明では、不純物イオンを含むプラズマを真空容器内部で繰り返 し発生させても不純物のドーズ量が ± 10%の範囲内で同程度になったときにドーズ 量が半導体基板の面内で均一になるように真空容器の内壁に固着した不純物を含 む膜を形成する。これにより、ドーズ量の面内均一性を良い水準に保ちながら繰り返 し再現性を得ることができるという顕著な効果を得る。さらに本発明では、前記不純物 を含む膜を形成する工程は、メンテナンス工程で不純物を含む膜を除去した真空容 器をプラズマドーピング装置に備え付けた後、真空容器内部で前記不純物イオンを 含むプラズマを発生させることで形成する。これにより、不純物を含む膜を一度も大 気に曝すことなくプラズマドーピングに供することができる。よって、大気の湿度や気 温に影響されることなぐ端部 3mmを除く 300mm基板の全面で繰り返し再現性を保 ちながら、標準偏差が 1. 7%のような、さらに PD時間を調整することで 1. 5%以下の ような非常に均一な不純物のプラズマドーピングが可能になるという顕著な効果を得 ることがでさる。
[表 3]
01マヾ 4。
一^^#A tsi^ M¾61987198¾〕 〔r0092 ti:li ί。
Figure imgf000035_0002
(実施例)膜を形成する前に、膜を形成した後の面内均一性が良くなるように真空容器の内壁の形 状、ガスの供給方法をあらかじめ調整した場合。
(比較例 1 )膜を形成する前にドーズ量の面内均一性が良くなるようにプラズマ条件、ガスの供給方 法、真空容器内壁の形状を調整した場合。
(比較例 2、(3) )意図せずに膜の形成途中でドーズ量の面内均一性が良くなるようにガスの供給方 法、真空容器内壁の形状を調整した場合。
Figure imgf000035_0001
(比較例 4)不純物を含む固体状のターゲットにスパッタリング用のガスをプラズマ状態で衝突させ てターゲットから不純物を飛び出させ、飛び出した不純物を試料の表面部に導入する技術。
実用化は困難であった。実用化の壁になっていた課題のひとつがドーズ量と面内均 一性の繰り返し安定性であった。本発明はこれらを解決したものである。
比較例 1、 2、 3は、これらを組合せて用いて設計事項を整えた場合でも、プラズマド 一ビングを繰り返したときのドーズ量と面内均一性の十分な繰り返し安定性が得られ ない。一方で、実施例ではドーズ量と面内均一性の繰り返し安定性が得られる。本発 明が示したドーズ量と面内均一性の繰り返し安定性の解決方法は、比較例を組合せ て容易に想達できるものでもなぐ装置技術の設計事項でもない、これまでにない独 自の方法で顕著な効果を発揮するものである。
産業上の利用可能性
本発明のプラズマドーピング方法は、高精度に不純物濃度プロファイルの制御を行 うことができ、浅 、不純物拡散領域を形成するプラズマドーピング方法を実現すること が可能であることから、半導体の不純物導入工程をはじめ、液晶などで用いられる薄 膜トランジスタの製造等の用途にも適用できる。

Claims

請求の範囲
[1] 真空容器内の試料電極に試料を載置し、真空容器内にプラズマを発生させ、ブラ ズマ中の不純物イオンを試料の表面に衝突させて試料の表面に不純物導入層を形 成するプラズマドーピング方法であって、
真空容器の内壁に固着した前記不純物を含む膜がプラズマ中のイオンで叩かれる こと〖こよって、前記試料の表面にスパッタリングで導入される不純物の量が前記不純 物イオンを含むプラズマを真空容器内部で繰り返し発生させても変化しないように内 壁に前記不純物を含む膜を備えた真空容器を用意するメンテナンス工程と、 試料電極に試料を載置する工程と、
不純物イオンを含むプラズマを照射して前記試料に不純物イオンを打ち込むと共 に真空容器の内壁に固着した不純物を含む膜からのスパッタリングで不純物を前記 試料に導入する工程と、
を含むことを特徴とするプラズマドーピング方法。
[2] 請求項 1に記載のプラズマドーピング方法であって、
前記メンテナンス工程は、不純物を含む膜を形成するに先立ち、真空容器の内壁 に固着した不純物を含む膜を除去する工程を含むプラズマドーピング方法。
[3] 請求項 1または 2に記載のプラズマドーピング方法であって、
前記試料が半導体基板であり、前記不純物イオンを含むプラズマを真空容器内部 で繰り返し発生させても不純物のドーズ量が ± 10%の範囲内で同程度になったとき に、不純物イオンを含むプラズマ力 導入される不純物の分布と、真空容器の内壁 に固着した不純物を含む膜からのスパッタリングで導入される不純物の分布を合わ せた分布が、半導体基板の面内で均一になるように真空容器の内壁に固着した不 純物を含む膜を形成するプラズマドーピング方法。
[4] 請求項 3に記載のプラズマドーピング方法であって、
前記真空容器内壁に付着する不純物の量が所望の値となるように、
前記真空容器の内壁の形状を調整する工程を含むプラズマドーピング方法。
[5] 請求項 3に記載のプラズマドーピング方法であって、
前記真空容器内壁に付着する不純物の量が所望の値となるように、 ガスの供給方法を調整する工程を含むプラズマドーピング方法。
[6] 請求項 1に記載のプラズマドーピング方法であって、
前記メンテナンス工程は、不純物を含む膜を除去した真空容器をプラズマドーピン グ装置に設置した後、前記真空容器内部で前記不純物イオンを含むプラズマを発生 させることで前記不純物を含む膜を形成する工程を含むプラズマドーピング方法。
[7] 請求項 1に記載のプラズマドーピング方法であって、
前記不純物を含む膜を形成する工程は、メンテナンス工程で不純物を含む膜を除 去した真空容器を、膜を形成するために別途準備したプラズマ発生装置に設置した 後、真空容器内部で前記不純物イオンを含むプラズマを発生させることで前記不純 物を含む膜を形成するプラズマドーピング方法。
[8] 請求項 1に記載のプラズマドーピング方法であって、
前記真空容器の内壁の温度を測定し、管理しながら真空容器の内壁に固着した不 純物を含む膜からのスパッタリングで不純物を前記試料に導入する工程を有するプ ラズマドーピング方法。
[9] 請求項 1に記載のプラズマドーピング方法であって、
前記プラズマは、ボロンを含むガスのプラズマであるプラズマドーピング方法。
[10] 請求項 9に記載のプラズマドーピング方法であって、
前記ボロンを含むガスはボロンと水素からなる分子のガスであるプラズマドーピング 方法。
[11] 請求項 9に記載のプラズマドーピング方法であって、
前記ボロンを含むガスはシボラン(B H )であるプラズマドーピング方法。
2 6
[12] 請求項 10に記載のプラズマドーピング方法であって、
前記プラズマは、ボロンと水素からなる分子のガスを希ガスで希釈したガスのプラズ マであるプラズマドーピング方法。
[13] 請求項 12に記載のプラズマドーピング方法であって、
前記希ガスは原子量がネオン以下の元素であるプラズマドーピング方法。
[14] 請求項 12に記載のプラズマドーピング方法であって、
前記希ガスはヘリウムであるプラズマドーピング方法。
[15] 請求項 11に記載のプラズマドーピング方法であって、
前記プラズマは、シボラン (B H )をヘリウムで希釈したガスのプラズマである記載
2 6
のプラズマドーピング方法。
[16] 請求項 9に記載のプラズマドーピング方法であって、
ボロンの注入深さが 7. 5nm力ら 15. 5nmであるプラズマドーピング方法。
[17] 請求項 9に記載のプラズマドーピング方法であって、
ボロンの注入深さが 1 Onm以下であるプラズマドーピング方法。
[18] 請求項 1乃至 17のいずれかに記載のプラズマドーピング方法であって、
前記プラズマは、連続プラズマを用いるプラズマドーピング方法。
[19] 請求項 1乃至 18のいずれかに記載のプラズマドーピング方法を実施するためのプ ラズマドーピング装置であって、
真空容器と、試料電極と、真空容器内にガスを供給するガス供給装置と、真空容器 内を排気する排気装置と、真空容器内の圧力を制御する圧力制御装置と、試料電 極に電力を供給する試料電極用電源を備えたプラズマドーピング装置。
[20] 請求項 19に記載のプラズマドーピング装置であって、
前記不純物を含む膜を形成するためのプラズマ発生装置をさらに備えたプラズマド 一ビング装置。
[21] 請求項 19に記載のプラズマドーピング装置であって、
前記真空容器に供給するガスの流量分布を調整する機構を有し、
前記不純物を含む膜を形成した後に真空容器の内壁を大気開放することなく前記 ガスの流量分布を調整できるようにしたプラズマドーピング装置。
[22] 請求項 19に記載のプラズマドーピング装置であって、
前記真空容器の内壁の温度を所望の温度に調整する機構を有するプラズマドーピ ング装置。
[23] ボロンを含む連続プラズマを用いたプラズマドーピングで表面にボロンを導入した 直径 300mmのシリコン基板であり、
導入されたボロンのプロファイルは、ボロン濃度が 5 X 1018cm_3となる深さで 7 nm以上 15. 5nm以下であり、ボロン濃度が 1 X 1019cm_3から 1 X 1018 cm—3に低下する距離で評価した場合のボロンの深さプロファイルの急峻性は 1. 5n mZdec以上 3nmZdec以下であり、ボロンのドーズ量は、前記シリコン基板の端部 3 mmを除いた面での標準偏差が 2%以下であるシリコン基板。
PCT/JP2006/309509 2005-05-12 2006-05-11 プラズマドーピング方法およびプラズマドーピング装置 WO2006121131A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020077023413A KR101177867B1 (ko) 2005-05-12 2006-05-11 플라즈마 도핑 방법 및 플라즈마 도핑 장치
JP2007528323A JP4979580B2 (ja) 2005-05-12 2006-05-11 プラズマドーピング方法
CN2006800125087A CN101160643B (zh) 2005-05-12 2006-05-11 等离子体掺入方法和等离子体掺入设备
EP06746306A EP1881523B1 (en) 2005-05-12 2006-05-11 Plasma doping method and plasma doping apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005140405 2005-05-12
JP2005-140405 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006121131A1 true WO2006121131A1 (ja) 2006-11-16

Family

ID=37396640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309509 WO2006121131A1 (ja) 2005-05-12 2006-05-11 プラズマドーピング方法およびプラズマドーピング装置

Country Status (7)

Country Link
US (3) US20070111548A1 (ja)
EP (1) EP1881523B1 (ja)
JP (1) JP4979580B2 (ja)
KR (1) KR101177867B1 (ja)
CN (1) CN101160643B (ja)
TW (1) TWI385718B (ja)
WO (1) WO2006121131A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090763A1 (ja) * 2007-01-22 2008-07-31 Panasonic Corporation 半導体装置の製造方法及び半導体製造装置
JP2008300687A (ja) * 2007-05-31 2008-12-11 Tokyo Electron Ltd プラズマドーピング方法及びその装置
WO2009084160A1 (ja) * 2007-12-28 2009-07-09 Panasonic Corporation プラズマドーピング装置及び方法並びに半導体装置の製造方法
WO2009084130A1 (ja) * 2007-12-28 2009-07-09 Panasonic Corporation 半導体装置の製造方法
JP2010040571A (ja) * 2008-07-31 2010-02-18 Panasonic Corp 半導体装置及びその製造方法
JP2010519735A (ja) * 2007-02-16 2010-06-03 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 改良型ドーズ量制御付きマルチステップ・プラズマドーピング方法
US8450819B2 (en) 2010-11-09 2013-05-28 Panasonic Corporation Plasma doping method and apparatus thereof
JP5237820B2 (ja) * 2006-11-15 2013-07-17 パナソニック株式会社 プラズマドーピング方法
CN105374655A (zh) * 2014-08-25 2016-03-02 汉辰科技股份有限公司 离子布植方法与离子布植机
US9841604B2 (en) 2014-04-07 2017-12-12 Samsung Electronics Co., Ltd. Color separation device and image sensor including the color separation device
KR20190069589A (ko) * 2016-11-08 2019-06-19 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 작업물 상에 도펀트 종을 증착하는 방법, 작업물 내에 도펀트 종을 주입하는 방법, 및 작업물을 프로세싱하는 방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200423185A (en) 2003-02-19 2004-11-01 Matsushita Electric Ind Co Ltd Method of introducing impurity
KR101107766B1 (ko) * 2003-10-09 2012-01-20 파나소닉 주식회사 접합 형성 방법 및 이를 이용하여 형성된 피처리물
JPWO2005119745A1 (ja) * 2004-06-04 2008-04-03 松下電器産業株式会社 不純物導入方法
WO2008041702A1 (fr) * 2006-10-03 2008-04-10 Panasonic Corporation Procédé et appareil de dopage de plasma
WO2008050596A1 (fr) * 2006-10-25 2008-05-02 Panasonic Corporation Procédé de dopage par plasma et appareil de dopage par plasma
JP5357037B2 (ja) * 2007-03-23 2013-12-04 パナソニック株式会社 プラズマドーピング装置及び方法
US8004045B2 (en) 2007-07-27 2011-08-23 Panasonic Corporation Semiconductor device and method for producing the same
US7776727B2 (en) * 2007-08-31 2010-08-17 Applied Materials, Inc. Methods of emitter formation in solar cells
US20100304527A1 (en) * 2009-03-03 2010-12-02 Peter Borden Methods of thermal processing a solar cell
US8501605B2 (en) * 2011-03-14 2013-08-06 Applied Materials, Inc. Methods and apparatus for conformal doping
GB201202128D0 (en) * 2012-02-08 2012-03-21 Univ Leeds Novel material
US9093335B2 (en) * 2012-11-29 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Calculating carrier concentrations in semiconductor Fins using probed resistance
US9224644B2 (en) 2012-12-26 2015-12-29 Intermolecular, Inc. Method to control depth profiles of dopants using a remote plasma source
CN105097437A (zh) * 2014-05-22 2015-11-25 中芯国际集成电路制造(上海)有限公司 形成应变硅层的方法、pmos器件的制作方法及半导体器件
DE102015204637A1 (de) * 2015-03-13 2016-09-15 Infineon Technologies Ag Verfahren zum Dotieren eines aktiven Hall-Effekt-Gebiets einer Hall-Effekt-Vorrichtung und Hall-Effekt-Vorrichtung mit einem dotierten aktiven Hall-Effekt-Gebiet
JP6496210B2 (ja) * 2015-08-12 2019-04-03 日本電子株式会社 荷電粒子線装置
CN114744286A (zh) * 2022-03-30 2022-07-12 广东马车动力科技有限公司 一种离子掺杂固态电解质膜及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293279A (ja) * 1995-04-20 1996-11-05 Fuji Xerox Co Ltd 非質量分離型イオン注入装置
JPH1187261A (ja) * 1997-07-10 1999-03-30 Eaton Corp 低ドーズ量のイオン注入方法及びその装置
JPH11154482A (ja) * 1997-11-19 1999-06-08 Sanyo Electric Co Ltd 半導体装置の製造方法
US20030166328A1 (en) 1995-10-23 2003-09-04 Bunji Mizuno Method of manufacturing semiconductor devices by sputter-doping
JP2004047695A (ja) * 2002-07-11 2004-02-12 Matsushita Electric Ind Co Ltd プラズマドーピング方法及び装置
WO2005020306A1 (ja) 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. 不純物導入層の形成方法及び被処理物の洗浄方法並びに不純物導入装置及びデバイスの製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912065A (en) * 1987-05-28 1990-03-27 Matsushita Electric Industrial Co., Ltd. Plasma doping method
KR930003857B1 (ko) * 1987-08-05 1993-05-14 마쯔시다덴기산교 가부시기가이샤 플라즈마 도우핑방법
JP3431647B2 (ja) * 1992-10-30 2003-07-28 株式会社半導体エネルギー研究所 半導体装置とその作製方法およびメモリ装置の作製方法およびレーザードーピング処理方法
US5330800A (en) * 1992-11-04 1994-07-19 Hughes Aircraft Company High impedance plasma ion implantation method and apparatus
JPH06330727A (ja) 1993-05-20 1994-11-29 Toyota Autom Loom Works Ltd 排気ガス浄化装置
US6165876A (en) * 1995-01-30 2000-12-26 Yamazaki; Shunpei Method of doping crystalline silicon film
JP3340318B2 (ja) 1995-08-10 2002-11-05 松下電器産業株式会社 不純物導入装置及び不純物導入方法
KR970013011A (ko) * 1995-08-10 1997-03-29 모리시다 요이치 불순물 · 도입장치 및 불순물 도입방법
US5851906A (en) * 1995-08-10 1998-12-22 Matsushita Electric Industrial Co., Ltd. Impurity doping method
US6135128A (en) 1998-03-27 2000-10-24 Eaton Corporation Method for in-process cleaning of an ion source
JP3160263B2 (ja) * 1999-05-14 2001-04-25 キヤノン販売株式会社 プラズマドーピング装置及びプラズマドーピング方法
JP3088721B1 (ja) * 1999-08-11 2000-09-18 キヤノン販売株式会社 不純物処理装置及び不純物処理装置のクリーニング方法
TW521295B (en) * 1999-12-13 2003-02-21 Semequip Inc Ion implantation ion source, system and method
US7303982B2 (en) * 2000-08-11 2007-12-04 Applied Materials, Inc. Plasma immersion ion implantation process using an inductively coupled plasma source having low dissociation and low minimum plasma voltage
TW479296B (en) * 2001-03-06 2002-03-11 Macronix Int Co Ltd Method to prevent ion punch-through using plasma doping process
US20030079688A1 (en) * 2001-10-26 2003-05-01 Walther Steven R. Methods and apparatus for plasma doping by anode pulsing
TWI312645B (en) * 2002-07-11 2009-07-21 Panasonic Corporatio Method and apparatus for plasma doping
US20040149219A1 (en) * 2002-10-02 2004-08-05 Tomohiro Okumura Plasma doping method and plasma doping apparatus
JP4544447B2 (ja) 2002-11-29 2010-09-15 パナソニック株式会社 プラズマドーピング方法
JP4589606B2 (ja) * 2003-06-02 2010-12-01 住友重機械工業株式会社 半導体装置の製造方法
JP4374487B2 (ja) * 2003-06-06 2009-12-02 株式会社Sen イオン源装置およびそのクリーニング最適化方法
JP2005005328A (ja) 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd 不純物導入方法、不純物導入装置およびこれを用いて形成された半導体装置
JP4411581B2 (ja) * 2003-06-13 2010-02-10 株式会社Sen イオン源装置及びそのための電子エネルギー最適化方法
JP4303662B2 (ja) 2003-09-08 2009-07-29 パナソニック株式会社 プラズマ処理方法
KR101076516B1 (ko) * 2003-09-08 2011-10-24 파나소닉 주식회사 플라즈마 처리방법 및 장치
US8058156B2 (en) * 2004-07-20 2011-11-15 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
US7326937B2 (en) * 2005-03-09 2008-02-05 Verian Semiconductor Equipment Associates, Inc. Plasma ion implantation systems and methods using solid source of dopant material
US7879701B2 (en) * 2005-06-30 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8642135B2 (en) * 2005-09-01 2014-02-04 Micron Technology, Inc. Systems and methods for plasma doping microfeature workpieces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293279A (ja) * 1995-04-20 1996-11-05 Fuji Xerox Co Ltd 非質量分離型イオン注入装置
US20030166328A1 (en) 1995-10-23 2003-09-04 Bunji Mizuno Method of manufacturing semiconductor devices by sputter-doping
JPH1187261A (ja) * 1997-07-10 1999-03-30 Eaton Corp 低ドーズ量のイオン注入方法及びその装置
JPH11154482A (ja) * 1997-11-19 1999-06-08 Sanyo Electric Co Ltd 半導体装置の製造方法
JP2004047695A (ja) * 2002-07-11 2004-02-12 Matsushita Electric Ind Co Ltd プラズマドーピング方法及び装置
WO2005020306A1 (ja) 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. 不純物導入層の形成方法及び被処理物の洗浄方法並びに不純物導入装置及びデバイスの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B. MIZUNO ET AL., PLASMA DOPING FOR SILICON, SURFACE COATING TECH., vol. 85, 1996, pages 51
SASAKI Y. ET AL.: "B2H6 Plasma Doping with In-situ He Pre-amorphization", SYMP. ON VLSI TECH., 2004, pages 180 - 181, XP010732853 *
See also references of EP1881523A4 *
TRENCH, EXT. ABS. OF INTERNATIONAL CONFERENCE ON SSDM, 1987, pages 317

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237820B2 (ja) * 2006-11-15 2013-07-17 パナソニック株式会社 プラズマドーピング方法
US7754503B2 (en) 2007-01-22 2010-07-13 Panasonic Corporation Method for producing semiconductor device and semiconductor producing apparatus
JP5237833B2 (ja) * 2007-01-22 2013-07-17 パナソニック株式会社 半導体装置の製造方法及び半導体製造装置
WO2008090763A1 (ja) * 2007-01-22 2008-07-31 Panasonic Corporation 半導体装置の製造方法及び半導体製造装置
JP2010519735A (ja) * 2007-02-16 2010-06-03 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 改良型ドーズ量制御付きマルチステップ・プラズマドーピング方法
JP2008300687A (ja) * 2007-05-31 2008-12-11 Tokyo Electron Ltd プラズマドーピング方法及びその装置
US8030187B2 (en) 2007-12-28 2011-10-04 Panasonic Corporation Method for manufacturing semiconductor device
US7972945B2 (en) 2007-12-28 2011-07-05 Panasonic Corporation Plasma doping apparatus and method, and method for manufacturing semiconductor device
JP4880033B2 (ja) * 2007-12-28 2012-02-22 パナソニック株式会社 半導体装置の製造方法
WO2009084130A1 (ja) * 2007-12-28 2009-07-09 Panasonic Corporation 半導体装置の製造方法
WO2009084160A1 (ja) * 2007-12-28 2009-07-09 Panasonic Corporation プラズマドーピング装置及び方法並びに半導体装置の製造方法
JP2010040571A (ja) * 2008-07-31 2010-02-18 Panasonic Corp 半導体装置及びその製造方法
US8450819B2 (en) 2010-11-09 2013-05-28 Panasonic Corporation Plasma doping method and apparatus thereof
US9841604B2 (en) 2014-04-07 2017-12-12 Samsung Electronics Co., Ltd. Color separation device and image sensor including the color separation device
CN105374655A (zh) * 2014-08-25 2016-03-02 汉辰科技股份有限公司 离子布植方法与离子布植机
KR20190069589A (ko) * 2016-11-08 2019-06-19 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 작업물 상에 도펀트 종을 증착하는 방법, 작업물 내에 도펀트 종을 주입하는 방법, 및 작업물을 프로세싱하는 방법
KR102319152B1 (ko) * 2016-11-08 2021-11-01 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 작업물 상에 도펀트 종을 증착하는 방법, 작업물 내에 도펀트 종을 주입하는 방법, 및 작업물을 프로세싱하는 방법

Also Published As

Publication number Publication date
KR20080007436A (ko) 2008-01-21
US20070111548A1 (en) 2007-05-17
EP1881523A1 (en) 2008-01-23
EP1881523A4 (en) 2010-05-26
KR101177867B1 (ko) 2012-08-28
US20070176124A1 (en) 2007-08-02
EP1881523B1 (en) 2013-01-02
TW200707552A (en) 2007-02-16
CN101160643B (zh) 2012-04-18
TWI385718B (zh) 2013-02-11
JPWO2006121131A1 (ja) 2008-12-18
US7358511B2 (en) 2008-04-15
US20080067439A1 (en) 2008-03-20
CN101160643A (zh) 2008-04-09
JP4979580B2 (ja) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2006121131A1 (ja) プラズマドーピング方法およびプラズマドーピング装置
JP5102495B2 (ja) プラズマドーピング方法
JP4544447B2 (ja) プラズマドーピング方法
JP5237820B2 (ja) プラズマドーピング方法
JP2005530341A (ja) 基板を処理するためのプラズマ方法及び装置
US20130323916A1 (en) Plasma doping method and apparatus
WO2008041702A1 (fr) Procédé et appareil de dopage de plasma
WO1993018201A1 (en) Plasma implantation process and equipment
US7858155B2 (en) Plasma processing method and plasma processing apparatus
JP2000068227A (ja) 表面処理方法および装置
JP2005005328A (ja) 不純物導入方法、不純物導入装置およびこれを用いて形成された半導体装置
US20110097516A1 (en) Plasma processing apparatus and plasma processing method
US7651954B2 (en) Manufacturing method of semiconductor device and semiconductor device manufacturing apparatus
WO2006104145A1 (ja) プラズマドーピング方法およびこれに用いられる装置
JP3378909B2 (ja) ドライエッチング方法及びその装置
JPH0530500B2 (ja)
JPH0547713A (ja) プラズマ処理装置
CN113767453A (zh) 等离子处理装置以及等离子处理方法
KR20200141802A (ko) 기판 처리 장치 및 기판 처리 방법
JPH01152721A (ja) 不純物のドーピング方法
JPH04337073A (ja) シリコン酸化膜形成方法
JPH0794466A (ja) 表面処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012508.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528323

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006746306

Country of ref document: EP

Ref document number: 1020077023413

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746306

Country of ref document: EP