WO2006118192A1 - 圧電部品及びその製造方法 - Google Patents

圧電部品及びその製造方法 Download PDF

Info

Publication number
WO2006118192A1
WO2006118192A1 PCT/JP2006/308832 JP2006308832W WO2006118192A1 WO 2006118192 A1 WO2006118192 A1 WO 2006118192A1 JP 2006308832 W JP2006308832 W JP 2006308832W WO 2006118192 A1 WO2006118192 A1 WO 2006118192A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrode
substrate
pair
electrodes
Prior art date
Application number
PCT/JP2006/308832
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Nakai
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to CN200680012453XA priority Critical patent/CN101160719B/zh
Priority to KR1020077019264A priority patent/KR100909817B1/ko
Priority to JP2007514805A priority patent/JP4751385B2/ja
Priority to US11/911,107 priority patent/US7649306B2/en
Publication of WO2006118192A1 publication Critical patent/WO2006118192A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0561Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • the present invention relates to a piezoelectric component that is easy to manufacture and excellent in reliability, and a manufacturing method thereof.
  • microcomputers have been used for communication devices and electronic devices, and piezoelectric components incorporating piezoelectric vibration elements have been widely used as clock sources for such microcomputers.
  • a piezoelectric component there is known one in which a vibrating electrode is formed on both main surfaces of a piezoelectric substrate, and a sealing space for securing a space in which the vibrating electrode vibrates is formed on each upper part.
  • the sealing space is not airtight, moisture in the air, flux during soldering, etc. may enter the sealing space, resulting in deterioration of the electrical characteristics of the piezoelectric component.
  • the conventional piezoelectric component has a problem in that it is impossible to visually confirm the inside of the region sealed by the sealing substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 59-110217 (Fig. 5)
  • the piezoelectric component proposed in Patent Document 1 uses a plate glass for the sealing substrate, and therefore cracks in the sealing substrate due to external force, mechanical or thermal shock. And / or cracks are likely to occur!
  • the plate glass is inferior in workability and mechanical strength, there has been a problem that the thickness of the sealing substrate cannot be reduced!
  • Recent communication devices and electronic devices are becoming smaller and thinner, and the demand for smaller and thinner components mounted on these devices is increasing.
  • shock resistance is also applied to components mounted on these devices in order to improve the strength against dropping impacts. There is a strong demand for improved sex.
  • An object of the present invention is to provide a piezoelectric component that can be thinned and has excellent impact resistance.
  • Another object of the present invention is to provide a method for manufacturing a piezoelectric component that makes it easy to confirm the performance of the sealed space by visual recognition and can stably obtain the piezoelectric component of the present invention. It is in.
  • the piezoelectric component of the present invention includes a piezoelectric vibration element in which a pair of electrodes that are at least partially opposed to each other via the piezoelectric substrate are formed on both main surfaces of the piezoelectric substrate, and the direction of the pair of electrodes A pair of frames respectively disposed on both main surfaces of the piezoelectric substrate so as to surround a region to be formed, and a pair of translucent grease materials and disposed so as to cover both outer surfaces of the pair of frames And a pair of input / output terminal electrodes respectively connected to the pair of electrodes.
  • V ⁇ piezoelectric parts can be obtained.
  • the sealing substrate is made of a resin material, and has excellent workability with respect to glass and ceramics. Therefore, it is easy to make the sealing substrate thinner, whereby a thin piezoelectric component can be obtained.
  • the sealing substrate is made of a resin material and the sealing substrate is superior in elasticity and toughness to glass and ceramics, the sealing substrate itself has a strength against thermal and mechanical shock. Since the sealing substrate absorbs and relaxes external forces and impacts and protects the piezoelectric substrate, the piezoelectric component can be made highly reliable.
  • the piezoelectric component of the present invention when the pair of frames in the above configuration are made of a translucent resin material cover, the piezoelectric substrate, the frame body, and the sealing substrate It is easy to visually check whether there are continuous bubbles that reduce the airtightness of the configured sealing space inside the frame body or at the interface between the frame body and the piezoelectric substrate by visual inspection. This makes it possible to check the piezoelectric components with higher reliability.
  • a coating layer made of a light-shielding resin material cover is formed on at least one outer surface of the pair of sealing substrates.
  • the sealing substrate also has a light-transmitting resin material power by being marked on the coating layer made of a light-shielding resin material.
  • the coating layer is formed only in the region to which the mark is applied, the coating layer is formed in a limited region, so that when the dicing is performed, the notch applied to the main surface of the piezoelectric substrate is applied. As a mark, dicing can be performed, and a piezoelectric component that is easy to manufacture and excellent in reliability can be obtained.
  • the pair of electrodes includes a vibrating electrode facing each other through the piezoelectric substrate, a lead electrode for connecting the vibrating electrode to the input / output terminal electrode, and the piezoelectric substrate from the vibrating electrode or the lead electrode. If it is composed of a capacitor electrode that extends toward the ground terminal electrode formed on the side surface of the substrate and forms a capacitor with the ground terminal electrode, the capacitor is formed between the capacitor electrode and the ground terminal electrode. Capacity can be used as a load capacity in an oscillation circuit configured using this piezoelectric component, so that a capacitive element for forming a separate load capacity is not required. Built-in Thus, a small piezoelectric component can be obtained.
  • a dielectric substrate and at least one of the inside and the surface of the dielectric substrate are formed on at least one outer surface of the pair of sealing substrates, and the pair of input / output terminal electrodes are respectively formed.
  • a pair of hot-side capacitor electrodes connected to each other, and a ground-side capacitor that is formed on at least one of the inside and the surface of the dielectric substrate and connected to the ground terminal electrode, and forms a capacitor between the hot-side capacitor electrode If a capacitive element consisting of an electrode is attached, a large capacitance formed between a hot-side capacitive electrode and a ground-side capacitive electrode facing each other through a dielectric substrate can be used with this piezoelectric component. It can be used as a load capacity in the configured oscillation circuit, and can be a small piezoelectric component incorporating a piezoelectric vibration element and a large load capacity.
  • the method for manufacturing a piezoelectric component according to the present invention includes a step of preparing a piezoelectric mother substrate having electrodes formed on both main surfaces and having a plurality of element regions each serving as a piezoelectric vibration element, and both the piezoelectric mother substrates.
  • a sealing mother substrate made of a light-transmitting resin material is attached on one main surface side so as to cover the lattice body, and the piezoelectric mother substrate and the frame body portion of the lattice body and the sealing member are attached.
  • the appearance of the formation state of the sealing space and the presence or absence of continuous bubbles in the lattice body that reduce the hermeticity of the sealing space are determined by appearance inspection. As a result, defective products can be removed during the manufacturing process, so that highly reliable piezoelectric parts can be efficiently manufactured.
  • a coating layer made of a light-shielding resin is formed on the outer surface of the sealing mother substrate, and a mark is applied to the coating layer.
  • a mark is applied to a sealing substrate that also has a resin material strength, it becomes possible to improve the visibility of the marking and prevent the misidentification of the marking, so that the manufacturing method should be excellent in productivity. it can.
  • a mark is applied to the coating layer using a laser beam, a mark using a laser that is difficult for translucent grease can be easily obtained. This makes it wear resistant.
  • a laser marker having an excellent printing speed can be used for marking by printing such as an inkjet printer.
  • FIG. 1 is an external perspective view schematically showing a piezoelectric component that can be applied to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing a piezoelectric component that can be applied to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view schematically showing a piezoelectric component that works on the embodiment of the present invention.
  • FIG. 4 is a plan view of a piezoelectric substrate used in the piezoelectric component shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line AA of the piezoelectric substrate used in the piezoelectric component shown in FIG.
  • FIG. 6 is an equivalent circuit diagram of a piezoelectric component that works according to an embodiment of the present invention.
  • FIG. 7 is an external perspective view schematically showing another example of a piezoelectric component that works on the embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view schematically showing another example of a piezoelectric component that can be used in the embodiment of the present invention.
  • FIG. 9 is an exploded perspective view schematically showing another example of a piezoelectric component that works on the embodiment of the present invention.
  • FIG. 10 is a top view showing a capacitive element used in another example of a piezoelectric component that works according to an embodiment of the present invention.
  • FIG. 11 is a bottom view showing a capacitive element used in another example of a piezoelectric component that works according to an embodiment of the present invention.
  • FIG. 12 is a plan view for each step schematically showing the embodiment of the method for manufacturing a piezoelectric component of the present invention.
  • FIG. 13 is a plan view for each step schematically showing the embodiment of the method for manufacturing a piezoelectric component of the present invention.
  • FIG. 14 is a plan view for each step schematically showing the embodiment of the method for manufacturing a piezoelectric component of the present invention.
  • FIG. 15 is a plan view for each step schematically showing the embodiment of the method for manufacturing a piezoelectric component of the present invention.
  • FIG. 16 is a plan view for each step schematically showing the embodiment of the method for manufacturing a piezoelectric component of the present invention.
  • 61 (61a, 61b), 62 (62a, 62b): Input / output terminal electrodes
  • FIG. 1 is an external perspective view schematically showing a piezoelectric component that works according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the piezoelectric component shown in FIG. 1, and FIG. It is a disassembled perspective view of the piezoelectric component shown.
  • FIG. 4 is a plan view of the piezoelectric vibration element used in the piezoelectric component shown in FIG. 1, and FIG. 5 is a cross-sectional view taken along the line AA.
  • FIG. 6 is an equivalent circuit diagram of the piezoelectric component shown in FIG.
  • the piezoelectric component 1 includes a piezoelectric vibration element 10 in which a pair of electrodes 20a and 20b are formed on both main surfaces of the piezoelectric substrate 11 so as to partially face each other via the piezoelectric substrate 11, and the pair of electrodes 20a and 20b.
  • This is a structure having the sealing substrates 40a and 40b and the covering layers 50a and 50b formed on the outer surfaces of the pair of sealing substrates 40a and 40b.
  • the pair of input / output terminal electrodes 61a and 61b are collectively represented by the number 61
  • the pair of input / output terminal electrodes 62a and 62b are collectively represented by the number 62
  • the ground terminal electrodes 63a and 63b are collectively represented by the number 63.
  • the input / output terminal electrodes 61 and 62 and the ground terminal electrode 63 are respectively formed on both side surfaces of the piezoelectric substrate 11, and the input / output terminal electrodes 61a and 62a and the ground terminal electrode 63a are provided on one side surface and the other side surface.
  • the input / output terminal electrodes 61b and 62b and the ground terminal electrode 63b are formed respectively.
  • external connection electrodes 71, 72, 73 are formed on the lower surface of the piezoelectric component 1.
  • Input / output terminal The child electrodes 61a and 61b are connected to the external connection electrode 71, the input / output terminal electrodes 62a and 62b are connected to the external connection electrode 72, and the ground terminal electrodes 63a and 63b are connected to the external connection electrode 73, respectively.
  • the electrode 20a includes the vibrating electrode 21a and the vibrating electrode 21a as input / output terminals as shown in FIGS.
  • the electrode 20b includes a vibration electrode 21b, a lead-out electrode 22b for connecting the vibration electrode 21b to the input / output terminal electrodes 62a and 62b, and extends from the vibration electrode 21b toward the ground terminal electrode 63b. And a capacitor electrode 23b for forming a capacitor with the electrode 63b.
  • the vibration electrodes 21a and 21b are formed so that parts thereof face each other with the piezoelectric substrate 11 in between.
  • an electric field is applied between the vibrating electrodes 21a and 21b, energy is confined between them and thickness vibration is excited (see FIG. 5).
  • the piezoelectric vibration element 10 resonates at a specific frequency.
  • the load capacitance shown in the equivalent circuit diagram of FIG. 6 is between the capacitance electrode 23a and the ground electrode 63a.
  • the load capacitor C2 shown in the equivalent circuit diagram of FIG. 6 is formed between the capacitor electrode 23b and the ground electrode 63b.
  • the piezoelectric component 1 including the piezoelectric vibration element 10 and the load capacitances CI and C2 as shown in FIG. 6 is configured as a whole.
  • a characteristic of the piezoelectric component 1 of this example is that the sealing substrates 40a and 40b are made of a light-transmitting resin material.
  • the light transmittance of the sealing substrates 40a and 40b is preferably 25% or more from the viewpoint of facilitating the appearance inspection without requiring a special light source. If the light transmittance is 25% or more, the state of the sealed space can be visually confirmed even with general indoor brightness (about 1500 lux). Conversely, if the light transmittance of the sealing substrates 40a and 40b is lower than 25%, it is difficult to check the state of the sealing space by visual inspection.
  • the light transmittance in the present invention is measured using a spectrophotometer. Specifically, the sealing substrates 40a and 40b are irradiated with light in the visible light region (400 to 800), and the light intensity before and after transmission through the sealing substrate is measured using a spectrophotometer. It is obtained by measuring the ratio of the light intensity before and after (light intensity transmitted from the resin substrate Z light intensity of the light source).
  • the sealing substrates 40a and 40b are made of a resin material having excellent processability, it is easy to make the sealing substrates 40a and 40b thin, and thus the thin piezoelectric component 1 is obtained. be able to. Furthermore, according to the piezoelectric component 1 of this example, the sealing substrates 40a and 40b are made of a resin material excellent in elasticity and toughness.
  • the sealing substrates 40a and 40b themselves have high strength against external forces and thermal mechanical impacts, and the sealing substrates 40a and 40b absorb and mitigate external forces and impacts to protect the piezoelectric substrate 11.
  • the piezoelectric component 1 having excellent reliability can be obtained. Specific materials for the sealing substrates 40a and 40b will be described later.
  • the frames 30a and 30b are also made of a translucent resin material.
  • the sealing substrates 40a and 40b and the frames 30a and 30b are set to 50% or more, after the sealing substrates 40a and 40b are arranged on the outer surfaces of the frames 30a and 30b, however, it is possible to easily confirm whether or not bubbles are present at the interface between the frames 30a and 30b and the piezoelectric substrate 11 by visual inspection. Therefore, the sealing substrates 40a and 40b and the frame
  • the light transmittances of the bodies 30a and 30b are preferably 50% or more.
  • the coating layers 50a and 50b made of a light-shielding (opaque) resin material are formed on the outer surfaces of the sealing substrates 40a and 40b.
  • the covering layers 50a and 50b are marked (indicated by “M” in FIG. 16).
  • the “mark” means a serial number attached to the piezoelectric component 1 or a trademark representing the manufacturer.
  • the sealing substrates 40a and 40b are translucent and are difficult to identify.
  • the sealing substrates 40a and 40b that also have a translucent grease material strength are directly marked. Compared with the case where it is made, it can be set as the piezoelectric component 1 which the visibility of the mark improved.
  • the coating layers 50a, 50b made of the light-shielding resin material cover also have a function of protecting the sealing substrates 40a, 40.
  • the capacitor C1 is formed between the capacitor electrode 23a and the ground terminal electrode 63a as shown in FIG. 5, and the capacitor electrode 23b and the ground terminal electrode 6 are formed. Since the capacitor C2 is formed with 3b, it is not necessary to separately form a capacitor element for forming the load capacitors CI and C2. Therefore, a small piezoelectric component 1 incorporating the piezoelectric vibration element 10 and the load capacities CI and C2 can be obtained.
  • FIG. 4 which is a plan view of the piezoelectric substrate 11, the capacitive electrode 23a and the capacitive electrode 23b are arranged so as not to oppose each other via the piezoelectric substrate 11, that is, to be displaced from each other. It is preferable.
  • the frames 30a and 30b are formed of an insulating resin, and are formed on the piezoelectric substrate 11 between the capacitive electrode 23a and the ground terminal electrode 63a and between the capacitive electrode 23b and the ground terminal electrode 63b.
  • the capacities CI and C2 can be increased. The This is because the dielectric constants of the frames 30a and 30b are higher than the dielectric constant of air.
  • the frames 30a and 30b have a function of blocking the adhesion of metallic foreign matters. For this reason, even if the distance between the capacitor electrode 23a and the ground terminal 63a and the interval between the capacitor electrode 23b and the ground terminal electrode 63b are reduced, an electrical short circuit between the electrodes due to adhesion of metallic foreign matter is prevented. can do.
  • FIG. 7 is an external perspective view schematically showing a piezoelectric component that can be applied to another embodiment of the present invention.
  • FIG. 8 is a schematic longitudinal sectional view of the piezoelectric component shown in FIG. 7, and FIG. 9 is an exploded perspective view of the piezoelectric component shown in FIG.
  • FIGS. 10 and 11 are a top view and a bottom view, respectively, schematically showing a capacitive element used in the piezoelectric component shown in FIG.
  • the characteristic feature of the piezoelectric component 2 in this example is that the capacitive electrodes 23a and 23b are not formed on the piezoelectric substrate 11, and instead the capacitive element 80 is attached to the lower surface of the sealing substrate 40b. is there.
  • the capacitive element 80 includes a pair of hot-side capacitive electrodes 82a and 82b on the upper surface of the dielectric substrate 81 and a ground-side capacitance on the lower surface of the dielectric substrate 81, as shown in FIGS. Each of the electrodes 83 is formed.
  • the hot-side capacitor electrode 82a is connected to the lead-out electrode 22a formed on one main surface of the piezoelectric substrate 11 and the external connection electrode 71 formed on the lower surface of the dielectric substrate 81 through the input / output terminal electrodes 61a and 61b, respectively.
  • the hot-side capacitor electrode 82b is connected to the lead electrode 22b formed on the other main surface of the piezoelectric substrate 11 and the external connection electrode 72 formed on the bottom surface of the dielectric substrate 81 via the input / output terminal electrodes 62a and 62b, respectively. I'm connected.
  • the ground-side capacitor electrode 83 is disposed on the lower surface of the dielectric substrate 81 so as to be positioned between the external connection electrodes 71 and 72, and both ends thereof are connected to the ground terminal electrodes 63a and 63b.
  • the ground side capacitor electrode 83 also has a function as an external connection electrode.
  • the piezoelectric component 2 including the piezoelectric vibration element 10 and the load capacitances CI and C2 as shown in the equivalent circuit diagram shown in FIG. 6 is configured.
  • the hot-side capacitive electrode 82a and the ground-side capacitive electrode 83 are opposed to each other via the dielectric substrate 81, so the hot-side capacitive electrode 82a and the ground-side capacitive electrode
  • the capacitance C1 formed between the capacitor 83 and the capacitor 83 can be increased.
  • the hot-side capacitance electrode 82b and the ground-side capacitance electrode 83 are opposed to each other via the dielectric substrate 81, the hot-side capacitance electrode 82b and the ground-side capacitance electrode 83 are formed.
  • the capacity C2 can be increased.
  • 12 to 16 are plan views for each process schematically showing the method for manufacturing the piezoelectric component of this example.
  • FIGS. 12-16 is a top view which also looked at the upper surface side force. The state below the piezoelectric mother substrate 91 is shown, but the lower side is processed in the same manner as the upper side.
  • a piezoelectric mother substrate 91 having a plurality of element regions 92 that are divided and each serves as the piezoelectric vibration element 10 is prepared (FIG. 12).
  • Electrodes 20a and 20b are formed in advance on both main surfaces of each element region 92 of the piezoelectric mother substrate 91.
  • a dicing line 93 to be cut later by dicing is provided at the boundary between the element regions 92 of the piezoelectric mother substrate 91.
  • conductive bumps 97 are formed so as to be divided into four by dicing at both end portions of the electrode 20a serving as the lead electrode 22a and both ends of the electrode 20b serving as the lead electrode 22b (see FIG. ( Figure 13).
  • connection between the extraction electrode 22a and the terminal electrodes 61a and 61b and the connection between the extraction electrode 22b and the terminal electrodes 62a and 62b can be improved.
  • the lattice body 94 is made transparent so as to cover both main surfaces of the piezoelectric mother substrate 91 while leaving the portions of the vibrating electrodes 21a and 21b on both main surfaces of the piezoelectric mother substrate 91. Formed using grease material (Fig. 14) The lattice body 94 is divided along with the element region 92 along the dicing line 93 to form the frame body 30 on each piezoelectric vibration element 10.
  • a sealing mother board 95 made of a translucent resin material is attached so as to cover the lattice 94 (FIG. 15).
  • a sealing space S is formed for each element region 92 by the element region 92 of the piezoelectric mother substrate 91, the portion that becomes the frame body 30 of the lattice body 94, and the mother substrate 95 for sealing.
  • both the lattice body 94 and the sealing mother board 95 are made of a light-transmitting resin material, the formation state of the sealing space S can be confirmed by visual inspection such as image recognition.
  • force such as continuous bubbles that reduce the airtightness of the sealing space S, the inside of the lattice body 94, the interface between the lattice body 94 and the piezoelectric mother substrate 91, and the interface between the lattice body 94 and the sealing mother substrate 95 It can be checked by visual inspection such as image recognition.
  • a portion where the sealing allowance (indicated by "d” in FIG. 2) by the frames 30a and 30b is narrow can also be inspected by visual inspection or image recognition.
  • coating layers 50a and 50b made of light-shielding (opaque) grease are formed on the outer surface of the sealing mother substrate 95 (FIG. 15). 16).
  • a mark M is formed on the coating layers 50a and 50b made of the light-shielding resin material.
  • the process of forming the coating layers 50a and 50b is compared to the case where the marks are directly applied to the sealing substrates 40a and 40b made of a light-transmitting resin material.
  • the depth of the mark M is set to 3 ⁇ m or more, the visibility can be further improved.
  • the mark M by applying the mark M to the coating layers 50a and 50b, marking using a laser beam, which is difficult for translucent grease, can be performed. As a result, the mark M having excellent wear resistance can be applied.
  • a laser beam which is difficult for translucent grease
  • YA G laser wavelength: 1064 nm
  • CO laser wavelength: 10.6 ⁇ m
  • it can. It is better that the wavelength of the laser beam used for the coating layer is excellent in color developability of the resin. In general, it is suitable to use a laser having a wavelength power of about 1064 nm.
  • external connection electrodes 71, 72, 73 are formed on the lower surface of the lower coating layer 50b and divided by dicing (FIG. 16). In addition, when forming the external connection electrodes 71, 72, 73, it is possible to perform dicing with high accuracy by forming a mark serving as a reference for dicing with the same material.
  • the reference pattern 96 may be formed together with the electrodes 20a and 20b on both main surfaces of the piezoelectric mother substrate 91! /.
  • the reference pattern 96 is used for confirming the dicing line 93.
  • the reference pattern 96 has the same width as that of the dicing blade, and is arranged immediately next to the dicing line 93. In this case, since the coating layers 50a and 50b are formed over the entire outer surfaces of the upper and lower sealing substrates 40a and 40b, the coating layer is formed only in the region to be marked, and the reference pattern 96 is formed on the coating layers 50a and 50b. Try not to cover it.
  • the reference pattern 96 applied to the main surface of the piezoelectric substrate 11 can be seen through. Therefore, when dicing, the reference pattern 96 is used as a mark for dicing. It becomes possible to do.
  • the input / output terminal electrodes 61 and 62 and the ground terminal electrode 63 are formed on the respective side surfaces to complete the piezoelectric component 1.
  • Piezoelectric substrate 11 and piezoelectric mother substrate 91 are composed of lead zirconate titanate (PZT), lead titanate (PT), sodium potassium niobate (Na K NbO), bismuth layered compound (eg MBi Ti l-xx 3 4 Four
  • It consists of piezoelectric single crystals such as crystals and lithium tantalate.
  • the piezoelectric substrate 11 has a rectangular open shape with a length of 0.6 mm to 5 mm, a width of 0.2 mm to 5 mm, and a thickness of 40 m to: Lmm. I like it.
  • the piezoelectric substrate 11 does not need to have a uniform thickness over the entire surface.
  • the thickness of the vibration region A is made thinner than the surrounding region. Or can be formed thick.
  • a piezoelectric substrate 11 provided with a powerful internal electrode such as Ag-Pd as a vibration electrode can be used.
  • the value of the dielectric constant of the piezoelectric substrate 11 is preferably 1000 or less from the viewpoint of excellent resonance characteristics in the high frequency region.
  • the piezoelectric substrate 11 also has a ceramic material strength
  • a piezoelectric substrate 11 having desired piezoelectric characteristics can be obtained by applying a polarization treatment by applying a voltage of 3 to 6 kVZmm at a temperature of 80 to 200 ° C.
  • the piezoelectric substrate 11 is made of a piezoelectric single crystal material
  • the piezoelectric single crystal material ingot (base material) to be the piezoelectric substrate 11 is cut in a predetermined crystal direction to obtain a desired A piezoelectric substrate 11 having piezoelectric characteristics is obtained.
  • the electrodes 20a and 20b are preferably made of a metal film such as gold, silver, copper, or aluminum from the viewpoint of conductivity.
  • the thickness is preferably in the range of 0.1 ⁇ m to 3 ⁇ m. If the metal film is thinner than 0.1 ⁇ m, for example, if it is exposed to a high temperature in the atmosphere, the conductivity tends to decrease due to acid and soot, and if the metal film is thicker than 3 m, the film peels off. It is the power that makes it easier to do.
  • a base electrode layer having high adhesion to the ceramic substrate such as Cr may be formed in advance, and a desired metal film may be formed thereon. After depositing a metal film on the entire surface of both main surfaces of the substrate 11, the thickness is applied by spin coating or the like.
  • Various electrodes can be formed by forming a photoresist film with a force of ⁇ 10 m on a metal film and patterning it by photoetching.
  • the vibration electrode 21 is disposed substantially at the center of both main surfaces of the piezoelectric substrate 11 and has a rectangular or circular shape with a length of several tens to several millimeters in the vertical and horizontal directions. The details of the dimensions are determined by the resonance characteristics and other desired electrical characteristics.
  • the frame 30 (and the lattice body 94) is made of a translucent resin material.
  • a resin material based on phenolic resin, polyimide resin, epoxy resin, or the like. it can.
  • an epoxy resin base material because it has excellent insulating properties, high adhesion to ceramics, and excellent moisture resistance and heat resistance.
  • the epoxy resin is a curable type that does not cause hydrolysis, and is added with particles such as rutile acid titanium for the purpose of reducing the moisture permeability of water, or has an insulating property.
  • rutile acid titanium for the purpose of reducing the moisture permeability of water, or has an insulating property.
  • 2-4 diamino-1, 6 vinyl, 1 S triamine and isocyanuric acid can be used.
  • Such a resin material is prepared by, for example, applying a thermosetting or photocurable resin to the piezoelectric substrate 11 to a thickness of 1 ⁇ to 80 / ⁇ m by screen printing or transfer, and heating. Alternatively, it can be formed by curing with ultraviolet irradiation.
  • the thickness of the frame 30 (and the grid 94) be 20 ⁇ m to 60 ⁇ m! / ⁇ .
  • the upper surface of the lattice body 94 formed on the piezoelectric substrate 11 may have such a shape as a convex shape, when the lattice body 94 and the sealing substrate 40 are joined, It is possible to effectively suppress the bubbles that reduce the hermeticity of the sealed space from remaining on the joint surface between the two.
  • the sealing substrates 40a and 40b are made of a translucent resin material and are attached to the upper and lower surfaces of the piezoelectric vibration element 10 via the frame bodies 30a and 30b to secure a sealing space together with the frame bodies 30a and 30b. It has a function.
  • the vertical and horizontal lengths are usually substantially the same as the vertical and horizontal lengths of the piezoelectric substrate 11.
  • the thickness of the upper sealing substrate 40a should be 10 ⁇ m or more, but the thickness of the lower sealing substrate 40b is a function to relieve stress and mechanical and thermal shock from the mounting substrate. Power to reduce the height of piezoelectric parts From the viewpoint, it is preferably 100 ⁇ m or less.
  • the elastic modulus by DMA is preferably in the range of 2 to 60 GPa. From the viewpoint of the function of absorbing impact, the range of 2 to 20 GPa is particularly preferable.
  • a resin sheet material obtained by impregnating a polyimide-based resin or an epoxy-based resin in a cloth having strength such as glass fiber galamide fiber is used. By using it, it is possible to reliably form a sealed space by suppressing thermal deformation of the sealing substrate 40a, and to have excellent mechanical strength.
  • a polyimide resin sheet or an epoxy resin sheet (pre-preda) with a glass fiber content of 30 to 80% having an adhesive function is preferably used.
  • Good bonding can be achieved by holding and curing at a temperature of 150 to 200 ° C for 5 to 90 minutes while applying a pressure of 0.2 to 5 MPa.
  • a sealing substrate 40 by combining a plurality of resin sheets having different properties, a sealing substrate having excellent overall characteristics such as mechanical strength, impact resistance, and moisture resistance 40.
  • the light transmittance mainly depends on the thickness of the sealing substrates 40a and 40b, the type of the resin material, and the type of additive added to the resin material. And can be adjusted by the amount. For example, when epoxy resin is used as the resin material for the sealing substrates 40a and 40b, to achieve 50% light transmittance of the sealing substrate, 100% by weight of epoxy resin, carbon black, etc. Add 15% by weight of the above coloring additive and make the thickness of the sealing substrate 150 ⁇ m!
  • the covering layers 50a and 50b are made of a resin material having a light-shielding property, and are formed on the outer surfaces of the sealing substrates 40a and 40b.
  • the coating layers 50a and 50b have a thickness of 5 ⁇ m to 50 ⁇ m.
  • resin such as epoxy resin and polyimide resin
  • a pigment and a fine powder dispersant such as carbon black It is preferable to use rosin colored by mixing and mixing.
  • a resin material made by impregnating a glass fiber garamide fiber cloth with a light-shielding resin is also used. be able to.
  • At least one of the coating layers 50a and 50b is marked with various information about the piezoelectric component 1, and external connection electrodes 71, 72, and 73 are formed on the lower surface of the coating layer 50b. Yes.
  • the marking method as already described, printing by an ink jet printer or the like, marking with a laser beam, or the like can be used.
  • the terminal electrodes 61, 62, 63 and the external connection electrodes 71, 72, 73 can be formed of a highly conductive metal film such as gold, silver, copper, and aluminum. From the viewpoint of conductivity, which is preferably formed using an epoxy-based conductive resin, those containing 75 to 95% by mass of a conductive filler such as silver, copper, or nickel are preferable. Used.
  • the metal filler should have a small particle size from the viewpoint of smoothing the surface of the conductive resin and improving the mountability, but considering the printability, use an average particle size of 0.5 to 5 m. It is preferable to do.
  • the thickness of the conductive film is too thin, the conductivity deteriorates. If the thickness is too thick, the conductive film is likely to be peeled off due to the stress acting during mounting. Therefore, the thickness is preferably in the range of 10 ⁇ m to 60 ⁇ m. .
  • it may be applied by using a conventionally known screen printing method or roller transfer, and cured by heating or ultraviolet irradiation.
  • At least one type of plating film using Cu, Ni, Sn, Au, etc. may be formed on the surface of the conductive resin, which can improve solderability.
  • the dielectric substrate 81 has a function of protecting the piezoelectric substrate 11 from an external force in addition to a function of forming a load capacitance together with the hot side capacitance electrodes 82a and 82b and the ground side capacitance electrode 83. It consists of ferroelectric ceramic materials such as lead zirconate titanate (PZT), lead titanate (PT), and barium titanate (BT). From the viewpoint of mountability on circuit boards, it is 0.6mn long! ⁇ 5mm, width 0 • 2mn! A rectangular single plate having a thickness of up to 5 mm and a thickness of several tens of ⁇ m to 1 mm.
  • PZT lead zirconate titanate
  • PT lead titanate
  • BT barium titanate
  • This dielectric substrate 81 has a method in which a raw material powder is coated with a binder and pressed. The powder is mixed and dried with water and a dispersant using a ball mill, and a sheet is produced by a method such as molding by the doctor blade method with binder, solvent, plasticizer, etc., and the sheet is 1100-1400 ° C. It is formed by firing at a peak temperature of several tens of minutes to several hours.
  • the dielectric substrate 81 is made of a ferroelectric ceramic material such as lead zirconate titanate (PZT), lead titanate (PT), or barium titanate (BT). Since the dielectric constant can be increased, the capacitive element 80 having a sufficiently large capacitance can be configured.
  • the relative dielectric constant of the dielectric substrate 81 is preferably 200 to 5000.
  • the hot-side capacitor electrodes 82a and 82b and the ground-side capacitor electrode 83 are formed by applying a conductive resin or conductive base by a conventionally known screen printing method or the like, and curing or baking by ultraviolet irradiation or heating. It is formed by doing.
  • a high-temperature firing type conductive paste that is made by adding 75% to 95% by mass of silver powder, glass powder, oil or fat, and solvent and firing at 400 to 800 ° C is suitable. Can be used.
  • the conductive resin a conductive resin containing a conductive filler such as silver in a proportion of 75 to 95% by mass can be suitably used.
  • the electrode film thickness is preferably 8-15 ⁇ m.
  • a highly conductive metal film such as gold, silver, copper, or aluminum is deposited by vacuum deposition, PVD, or sputtering, and then 1-10 ⁇ m thick by spin coating or the like. Form a photoresist film on the metal film and pattern-engage it by photoetching.
  • a base electrode layer having high adhesion to the ceramic substrate such as Cr is formed in advance, and a desired metal film is formed thereon. May be.
  • the conductive bump 97 is formed by applying a conductive resin conductive paste by a conventionally known screen printing method or the like, and curing or baking by ultraviolet irradiation or heating.
  • the conductive paste is preferably a high-temperature firing type conductive paste that is made by adding 75% to 95% by weight of silver powder, glass powder, oil or fat, and a solvent, and firing at 400 to 800 ° C. Can be used properly.
  • a conductive resin containing 75 to 95% by mass of a conductive filler such as silver can be preferably used.
  • the reference pattern 96 is made of the same material as the electrodes 20a and 20b, and can be formed at the same time as the electrodes 20a and 20b using a forming method, but it can be formed by screen printing using other materials such as non-conductive pigments. May be formed.
  • the covering layer 50b may be formed only on the other sealing substrate 40b.
  • the sealing substrates 40a and 40b without forming the coating layers 50a and 50b.
  • the visibility of the mark is excellent by setting the light transmittance of the sealing substrates 40a and 40b in the range of 25% to 75%.
  • the sealing substrates 40a and 40b are directly marked, it is not necessary to separately provide the coating layers 50a and 50b, so that a thin piezoelectric component can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 圧電基板11の両主面に一対の電極20a,20bを形成した圧電振動素子10と、その両主面に取り付けた一対の枠体30a,30bと、透光性の樹脂材料から成り、枠体30a,30bを覆うように取り付けた一対の封止基板40a,40bと、封止基板40a,40bの上に形成された不透明の被覆層50a,50bと、一対の電極20a,20bにそれぞれ接続された一対の入出力端子電極61a,61bとを有する圧電部品1。封止空間の形成状態や枠体30a,30bによる封止代を目視や画像認識等の外観検査によって確認することができ、信頼性の高い圧電部品1を得ることができる。また、被覆層50a,50bの上にマーキングできる。

Description

明 細 書
圧電部品及びその製造方法
技術分野
[0001] 本発明は、製造が容易で信頼性に優れた圧電部品及びその製造方法に関するも のである。
背景技術
[0002] 従来から、通信機器や電子機器にはマイクロコンピュータが使用されており、このよ うなマイクロコンピュータのクロック源として、圧電振動素子を内蔵した圧電部品が広 く用いられている。
このような圧電部品としては、圧電基板の両主面に振動電極を形成し、それぞれの 上部に、振動電極が振動するスペースを確保するための封止空間を形成したものが 知られている。
[0003] このような圧電部品においては、封止空間の確保が不充分であれば、振動電極に 封止基板などが接触するおそれがある。こうなれば、振動電極の振動がダンプされて 電気特性が劣化するという問題が生じる。
また、封止空間の気密性が悪いと、空気中の水分や半田付け時のフラックスなどが 封止空間に侵入して、圧電部品の電気特性が劣化するという問題が生じる。
[0004] また従来の圧電部品においては、封止基板によって封止された領域の内部の出来 映えを目視によって確認することができな 、と 、う問題があった。
それを解決するために封止基板を透明な板ガラスを用いて形成した圧電部品が提 案されている(例えば、特許文献 1を参照)。
特許文献 1:特開昭 59— 110217号公報 (第 5図)
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1にて提案された圧電部品においては、封止基板に板ガラ スを使用しているため、外力や機械的 ·熱的な衝撃によって封止基板に割れやクラッ クが発生しやす!/、と 、う問題があった。 また、板ガラスが加工性や機械的強度に劣ることから、封止基板の厚みを薄くする ことができな 、と!/、う問題もあった。
[0006] 最近の通信機器や電子機器においては小型化及び薄型化が進んでおり、これら の機器に搭載される部品に対する小型化及び薄型化の要求も益々強くなつている。 また、携帯電話やポータブル MDプレーヤーのような、ユーザーが常に携帯する通 信機器や電子機器においては、落下衝撃などに対する強度向上のため、これらの機 器に搭載される部品に対しても耐衝撃性の向上が強く求められている。
[0007] よって、従来の圧電部品においては、上述した耐衝撃性や薄型化の問題は致命的 なものとなってきている。
本発明の目的は、薄型化が可能で耐衝撃性に優れた圧電部品を提供することにあ る。
また、本発明の他の目的は、目視ゃ画像認識による封止空間の出来映えの確認が 容易であるとともに、本発明の圧電部品を安定して得ることができる圧電部品の製造 方法を提供することにある。
課題を解決するための手段
[0008] 本発明の圧電部品は、圧電基板の両主面に、該圧電基板を介して少なくとも一部 が互いに対向する一対の電極が形成された圧電振動素子と、前記一対の電極の対 向する領域を包囲するように前記圧電基板の両主面にそれぞれ配置された一対の 枠体と、透光性の榭脂材料から成り、前記一対の枠体の両外面を覆うように配置した 一対の封止基板と、前記一対の電極にそれぞれ接続された一対の入出力端子電極 とを有するちのである。
[0009] このような本発明の圧電部品によれば、封止基板が透光性の榭脂材料力 成ること により、振動電極に枠体が接触していないかどうかや、枠体による封止代が充分に確 保されているかどうか、あるいは封止空間の気密性を低下させる連続した気泡などが 封止基板の内部や封止基板と枠体との界面に生じて 、な 、かどうかを目視ゃ画像認 識等の外観検査によって容易に確認することが可能となり、これによつて信頼性の高
Vヽ圧電部品を得ることができる。
[0010] また、封止基板が榭脂材料から成り、ガラスやセラミックス等に対して加工性に優れ るものであることにより、封止基板の薄型化が容易となり、これによつて薄型の圧電部 品とすることができる。
さらに、封止基板が榭脂材料から成り、封止基板がガラスやセラミックス等に対して 弾性及び靭性 (toughness)に優れて ヽるので、封止基板自体が熱的 '機械的衝撃に 対する強度が高いのみならず、封止基板が外力及び衝撃を吸収'緩和して圧電基板 を保護する効果を奏するので、信頼性に優れた圧電部品とすることができる。
[0011] また、本発明の圧電部品によれば、上記構成において一対の枠体が透光性の榭 脂材料カゝら成るようにしたときは、圧電基板と枠体と封止基板とで構成される封止空 間の気密性を低下させる連続した気泡などが枠体の内部や枠体と圧電基板との界 面に存在するか否かを目視ゃ画像認識等の外観検査によって容易に確認すること が可能となり、さらに信頼性に優れた圧電部品を得ることができる。
[0012] さらに、本発明の圧電部品によれば、上記構成において、一対の封止基板の少な くとも一方の外面に遮光性の榭脂材料カゝら成る被覆層が形成されており、この被覆 層にマークが施されて ヽるようにしたときは、遮光性の榭脂材料からなる被覆層にマ ークが施されていることにより、透光性の榭脂材料力もなる封止基板にマークが施さ れて ヽる場合に比較して、視認性に優れたマーキングを有する圧電部品を得ること ができる。
[0013] また、マークを施す領域にのみ被覆層が形成されているようにすれば、被覆層を限 定された領域に形成することによって、ダイシングするとき、圧電基板の主面に施した ノターンを目印としてダイシングすることが可能となり、製造が容易で、信頼性に優れ た圧電部品を得ることができる。
前記一対の電極は、前記圧電基板を介して互いに対向する振動電極と、該振動電 極を前記入出力端子電極に接続する引き出し電極と、前記振動電極または前記引 き出し電極から、前記圧電基板の側面に形成されたグランド端子電極へ向かって延 出され、該グランド端子電極との間で容量を形成する容量電極とから成るものであれ ば、容量電極とグランド端子電極との間に形成された容量を、この圧電部品を用いて 構成される発振回路における負荷容量として利用することが可能となるため、負荷容 量を別に形成するための容量素子が不要となり、圧電振動素子と負荷容量とを内蔵 した小型の圧電部品とすることができるものとなる。
[0014] また、前記一対の封止基板の少なくとも一方の外面に、誘電体基板と、該誘電体基 板の内部及び表面の少なくとも一方に形成されて前記一対の入出力端子電極にそ れぞれ接続された一対のホット側容量電極と、前記誘電体基板の内部及び表面の 少なくとも一方に形成されてグランド端子電極に接続され、前記ホット側容量電極と の間に容量を形成するグランド側容量電極とから成る容量素子が取り付けられている ものであれば、誘電体基板を介して対向するホット側容量電極とグランド側容量電極 との間に形成される大きな容量を、この圧電部品を用いて構成される発振回路にお ける負荷容量として利用することが可能となり、圧電振動素子と大きな負荷容量とを 内蔵した小型の圧電部品とすることができるものとなる。
[0015] 本発明の圧電部品の製造方法は、両主面に電極が形成され、それぞれ圧電振動 素子となる複数の素子領域を有する圧電母基板を準備する工程と、前記圧電母基 板の両主面に、前記素子領域の境界に沿って前記素子領域とともに分割されて、前 記圧電振動素子上で個々の枠体となる格子体を、透光性の榭脂材料を用いて形成 する工程と、前記格子体を覆うように、透光性の榭脂材料から成る封止母基板を一主 面側で取り付けて、前記圧電母基板と前記格子体の前記枠体となる部分と前記封止 母基板との間に複数の封止空間を形成する工程とを備えるものである。
[0016] このような本発明の圧電部品の製造方法によれば、封止空間の形成状態や、封止 空間の気密性を低下させる格子体中の連続した気泡の有無などを外観検査によつ て確認して、製造工程の途中で不良品を取り除くことができるので、信頼性に優れた 圧電部品を効率よく製造することが可能となる。
前記複数の前記封止空間を形成する工程の後に、前記封止母基板の外面に遮光 性の樹脂から成る被覆層を形成し、当該被覆層にマークを施すこととすれば、透光 性の榭脂材料力もなる封止基板にマークを施す場合に比較して、マーキングの視認 性を向上させることが可能となり、マーキングの誤認を防止できるので、生産性に優 れた製造方法とすることができる。
[0017] 前記被覆層に、レーザー光線を利用してマークを施すこととすれば、透光性の榭脂 に対しては困難なレーザーを利用したマークが容易となる。これによつて、耐摩耗性 に優れたマークを施すことが可能であり、また、インクジェットプリンタ等の印刷による マーキングに対して印字速度に優れたレーザーマーカーが使用可能な、生産性に 優れた製造方法とすることができる。
[0018] 本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照 して次に述べる実施形態の説明により明らかにされる。
図面の簡単な説明
[0019] [図 1]本発明の実施の形態に力かる圧電部品を模式的に示す外観斜視図である。
[図 2]本発明の実施の形態に力かる圧電部品を模式的に示す縦断面図である。
[図 3]本発明の実施の形態に力かる圧電部品を模式的に示す分解斜視図である。
[図 4]図 1に示す圧電部品に用いられる圧電基板の平面図である。
[図 5]図 1に示す圧電部品に用いられる圧電基板の A— A線断面図である。
[図 6]本発明の実施の形態に力かる圧電部品の等価回路図である。
[図 7]本発明の実施の形態に力かる圧電部品の他の例を模式的に示す外観斜視図 である。
[図 8]本発明の実施の形態に力かる圧電部品の他の例を模式的に示す縦断面図で ある。
[図 9]本発明の実施の形態に力かる圧電部品の他の例を模式的に示す分解斜視図 である。
[図 10]本発明の実施の形態に力かる圧電部品の他の例に用いられる容量素子を示 す上面図である。
[図 11]本発明の実施の形態に力かる圧電部品の他の例に用いられる容量素子を示 す下面図である。
[図 12]本発明の圧電部品の製造方法の実施の形態を模式的に示す工程毎の平面 図である。
[図 13]本発明の圧電部品の製造方法の実施の形態を模式的に示す工程毎の平面 図である。
[図 14]本発明の圧電部品の製造方法の実施の形態を模式的に示す工程毎の平面 図である。 [図 15]本発明の圧電部品の製造方法の実施の形態を模式的に示す工程毎の平面 図である。
[図 16]本発明の圧電部品の製造方法の実施の形態を模式的に示す工程毎の平面 図である。
符号の説明
1, 2:圧電部品
10:圧電振動素子
11:圧電基板
20a, 20b:主面電極
21a, 21b:振動電極
22a, 22b:引き出し電極
23a, 23b:容量電極
30a, 30b:枠体
40a, 40b:封止基板
50a, 50b:被覆層
61 (61a, 61b)、 62 (62a, 62b):入出力端子電極
63 (63a, 63b):グランド端子電極
71, 72, 73:外部接続電極
80:容量素子
81:誘電体基板
82a, 82b:ホット側容量電極
83:グランド側容量電極
91:圧電母基板
92:素子領域
93:ダイシングライン
94:枠体
95:封止母基板
96:基準パターン 97 :導電性バンプ
A:対向領域
S :封止空間
発明を実施するための最良の形態
[0021] 図 1は、本発明の実施の形態に力かる圧電部品を模式的に示す外観斜視図である 図 2は図 1に示す圧電部品の縦断面図であり、図 3は図 1に示す圧電部品の分解 斜視図である。
図 4は図 1に示す圧電部品に用いられる圧電振動素子の平面図、図 5はその A— A 線断面図である。
[0022] 図 6は図 1に示す圧電部品の等価回路図である。
圧電部品 1は、圧電基板 11の両主面に、圧電基板 11を介して一部が互いに対向す るように一対の電極 20a,20bを形成した圧電振動素子 10と、一対の電極 20a,20bの対 向領域 Aを包囲するように圧電基板 11の両主面にそれぞれ配置された一対の枠体 3 0a, 30bと、この一対の枠体 30a, 30bの外面をそれぞれ覆うように取り付けた一対の 封止基板 40a, 40bと、一対の封止基板 40a, 40bの外面に形成された被覆層 50a, 50 bとを有した構造である。
[0023] このような圧電部品 1の側面には、電極 20aに接続された一対の入出力端子電極 61 a,61b、電極 20bに接続された一対の入出力端子電極 62a,62b及びそれらの間に配置 されたグランド端子電極 63a,63bが形成されている。
一対の入出力端子電極 61a,61bを総称して番号 61で表し、一対の入出力端子電 極 62a,62bを総称して番号 62で表し、グランド端子電極 63a,63bを総称して番号 63で 表す。
[0024] 入出力端子電極 61, 62及びグランド端子電極 63は、それぞれ圧電基板 11の両側 面に形成されており、一方側面に入出力端子電極 61a, 62a及びグランド端子電極 63 aが、他方側面に入出力端子電極 61b, 62b及びグランド端子電極 63bがそれぞれ形 成されている。
また、圧電部品 1の下面には外部接続電極 71, 72, 73が形成されている。入出力端 子電極 61aと 61bとが外部接続電極 71に、入出力端子電極 62aと 62bとが外部接続電 極 72に、グランド端子電極 63aと 63bとが外部接続電極 73にそれぞれ接続されている
[0025] 圧電基板 11の両主面に形成されている一対の電極 20a,20bのうち、電極 20aは、図 4、図 5に示すように、振動電極 21aと、振動電極 21aを入出力端子電極 61a, 61bに接 続するための引き出し電極 22aと、振動電極 21aからグランド端子電極 63aに向力つて 延出され、グランド端子電極 63aとの間で容量を形成するための容量電極 23aとから 成る。
一方、電極 20bは、振動電極 21bと、振動電極 21bを入出力端子電極 62a, 62bに接 続するための引き出し電極 22bと、振動電極 21bからグランド端子電極 63bに向かって 延出され、グランド端子電極 63bとの間で容量を形成するための容量電極 23bとから 成る。
[0026] 振動電極 21a, 21bは、圧電基板 11を介して一部が互いに対向するように形成され ている。振動電極 21a, 21bの間に電界が印加されることによってこの間にエネルギー を閉じ込め、厚み振動が励起される(図 5参照)。この結果、圧電振動素子 10は、特 定周波数で共振する。
また、容量電極 23aとグランド電極 63aとの間で、図 6の等価回路図に示す負荷容量
C1が形成され、容量電極 23bとグランド電極 63bとの間で、図 6の等価回路図に示す 負荷容量 C2がそれぞれ形成される。
[0027] この結果、全体として図 6に示すような、圧電振動素子 10と負荷容量 CI, C2とを内 蔵した圧電部品 1が構成される。
本例の圧電部品 1の特徴的なことは、封止基板 40a, 40bが、透光性の榭脂材料か ら成る点である。
このことにより、製造段階において、封止基板 40a, 40 bの外側から、振動電極 21a, 21bに枠体 30a, 30bが接触していないかどうか、枠体 30a, 30bによる封止代(図 2に" d"で示す)が充分に確保されているかどうか、あるいは封止空間の気密性を低下さ せる連続した気泡などが、封止基板の内部や封止基板と枠体との界面に生じていな いかどうかを、外観検査によって確認することが可能となる。これによつて信頼性の高 ぃ圧電部品 1を得ることができる。
[0028] 封止基板 40a,40bの光透過率は、特別な光源を要することなく外観検査を容易にす るという点から、 25%以上が好ましい。光透過率を 25%以上にしておけば、一般的 な室内の明るさ(1500ルクス程度)でも、封止空間の状態を目視により確認することが できる。逆に封止基板 40a,40bの光透過率が 25%より低いと、封止空間の状態を目 視による外観検査によって確認することが困難となる。なお、本発明における光透過 率は、分光光度計を用いて測定したものである。具体的には、封止基板 40a,40bに可 視光領域 (400應〜 800應)の光を照射し、封止基板の透過前後の光強度を、分光 光度計を用いて測定し、透過前後の光強度の比率 (榭脂基板から透過した光強度 Z 光源の光強度)を計測することにより求めたものである。
[0029] また、封止基板 40a, 40bが加工性に優れる榭脂材料カゝら成ることにより、封止基板 40a, 40bの薄型化が容易となり、これによつて薄型の圧電部品 1とすることができる。 さらに、本例の圧電部品 1によれば、封止基板 40a, 40bは弾性及び靭性に優れた 榭脂材料から成る。
このことにより、封止基板 40a, 40b自体、外力や熱的'機械的衝撃に対する強度が 高くなるとともに、封止基板 40a, 40bが外力及び衝撃を吸収し緩和して圧電基板 11 を保護するので、信頼性に優れた圧電部品 1とすることができる。封止基板 40a,40bの 具体的な材料にっ 、ては後述する。
[0030] また、本例の圧電部品 1によれば、枠体 30a, 30bも透光性の榭脂材料力 成ること が好ましい。
この場合には、圧電基板 11と枠体 30a, 30bと封止基板 40a, 40bとで形成される封 止空間 Sの気密性を低下させる連続した気泡など力 枠体 30a, 30bの内部や枠体 30 a, 30bと圧電基板 11との界面に存在するか否かを、封止基板 40a, 40bの外側から外 観検査によって容易に確認することが可能となり、信頼性に優れた圧電部品 1を得る ことができるものとなる。ここで、封止基板 40a,40b及び枠体 30a, 30bの光透過率をと もに 50%以上にしておけば、封止基板 40a,40bを枠体 30a, 30bの外表面に配置した 後でも、枠体 30a, 30bと圧電基板 11との界面に気泡が存在するか否かを外観検査に よって容易に確認することができるようになる。したがって、封止基板 40a,40b及び枠 体 30a, 30bの光透過率はともに 50%以上にしておくことが好ましい。
[0031] さらに、本例の圧電部品 1によれば、封止基板 40a, 40bの外面に遮光性 (不透明) の榭脂材料から成る被覆層 50a, 50bが形成されている。この被覆層 50a, 50bには、 マーク(図 16に" M"で示す)が施されている。ここで「マーク」とは、圧電部品 1に付け る製造番号や、製造者を表す商標などをいう。
封止基板 40a, 40bに直接マークを施すと、透光性があるので、識別しにくい。
[0032] そこで、この遮光性の被覆層 50a, 50bを設け、この被覆層 50a, 50bにマーキングす ることにより、透光性の榭脂材料力もなる封止基板 40a, 40bに直接マークが施されて いる場合に比較して、マークの視認性が向上した圧電部品 1とすることができる。同 時に、この遮光性の榭脂材料カゝら成る被覆層 50a, 50bは、封止基板 40a, 40を保護 する機能も有している。
[0033] またさらに、本例の圧電部品 1によれば、容量電極 23aとグランド端子電極 63aとの 間で、図 5に示すとおり容量 C1が形成されており、容量電極 23bとグランド端子電極 6 3bとの間で容量 C2が形成されているので、負荷容量 CI, C2を形成するための容量 素子を別に形成する必要がない。したがって、圧電振動素子 10と負荷容量 CI, C2と を内蔵した小型の圧電部品 1とすることができる。
[0034] 力かる容量電極 23aと容量電極 23bとは、圧電基板 11の平面図である図 4に示す ように、圧電基板 11を介して互いに対向しないように、つまりズレているように配置す ることが好ましい。
これにより、振動電極 21a、 21bで発生する厚み振動を大きく抑制することなぐ容 量 Cl、 C2を得ることできる。この理由は、図 5の断面図に示すように、振動電極 21a と振動電極 21bとの対向領域 Aから外れた領域に容量 CI, C2が形成され、その容 量 CI, C2に起因する電界が発生しても、その電界は、対向領域 Aにおける厚み振 動に殆ど影響を与えないためである。なぜなら、対向領域 Aの中心部が最も大きく振 動し、対向領域 Aから外れて外側にいくほど振動は小さくなるからである。
[0035] また、枠体 30a, 30bを絶縁性の樹脂で形成し、容量電極 23aとグランド端子電極 63 aとの間、及び容量電極 23bとグランド端子電極 63bとの間の圧電基板 11上にそれぞ れ枠体 30a, 30bが存在するようにすることにより、容量 CI, C2を大きくすることができ る。これは、枠体 30a, 30bの誘電率が空気の誘電率よりも高いからである。
さらに、枠体 30a, 30bは、金属性異物の付着をブロックする機能を有する。このため 、容量電極 23aとグランド端子 63aとの間、及び容量電極 23bとグランド端子電極 63bと の間の間隔を小さくしても、金属性異物の付着などによる電極間の電気的短絡を防 止することができる。
[0036] 図 7は本発明の他の実施の形態に力かる圧電部品を模式的に示す外観斜視図で ある。
図 8は図 7に示す圧電部品の模式的な縦断面図であり、図 9は図 7に示す圧電部品 の分解斜視図である。
図 10、図 11は、それぞれ図 7に示す圧電部品に用いられる容量素子を模式的に 示す上面図及び下面図である。
[0037] なお、本例においては前述した例と異なる点についてのみ説明し、同様の構成要 素については同一の参照符号を用いて重複する説明を省略するものとする。
本例の圧電部品 2における特徴的なところは、圧電基板 11に容量電極 23a, 23bが 形成されておらず、その代わりに封止基板 40bの下面に、容量素子 80が取り付けられ ていることである。
[0038] 容量素子 80は、図 9、図 10及び図 11に示すように、誘電体基板 81の上面に一対の ホット側容量電極 82a, 82bを、また誘電体基板 81の下面にグランド側容量電極 83を それぞれ形成して構成されて 、る。
そして、ホット側容量電極 82aは入出力端子電極 61a, 61bを介して圧電基板 11の 一主面に形成された引き出し電極 22a及び誘電体基板 81の下面に形成された外部 接続電極 71にそれぞれ接続されている。一方、ホット側容量電極 82bは入出力端子 電極 62a, 62bを介して圧電基板 11の他主面に形成された引き出し電極 22b及び誘 電体基板 81の下面に形成された外部接続電極 72にそれぞれ接続されて ヽる。また 、グランド側容量電極 83は、誘電体基板 81の下面で、外部接続電極 71、 72の間に 位置するように配され、その両端が、グランド端子電極 63a, 63bと接続されている。な お、グランド側容量電極 8 3は外部接続電極としての機能も有している。
[0039] ホット側容量電極 82aとグランド側容量電極 83との間で図 6に示すとおり負荷容量 C 1が、ホット側容量電極 82bとグランド側容量電極 83との間で負荷容量 C2がそれぞれ 形成されている。これにより、図 6に示す等価回路図で表されるような、圧電振動素子 10と負荷容量 CI, C2とを内蔵した圧電部品 2が構成される。
本例の圧電部品 2によれば、ホット側容量電極 82aとグランド側容量電極 83とを、誘 電体基板 81を介して対向させて ヽるので、ホット側容量電極 82aとグランド側容量電 極 83との間に形成される容量 C1を大きなものとすることができる。同様に、ホット側容 量電極 82bとグランド側容量電極 83とを、誘電体基板 81を介して対向させて ヽるので 、ホット側容量電極 82bとグランド側容量電極 83との間に形成される容量 C2を大きな ちのとすることがでさる。
[0040] 次に、圧電部品の製造方法について、図 1〜図 5の圧電部品 1を例にとって説明す る。
図 12〜図 16は、それぞれ本例の圧電部品の製造方法を模式的に示す工程毎の 平面図である。
なお、図 12〜図 16は、上面側力も見た平面図となっている。圧電母基板 91よりも下 側の状態は示されて ヽな 、が、下側も上側と同様に処理されるものである。
[0041] 本例の圧電部品の製造方法によれば、まず、分割されて各々が圧電振動素子 10と なる複数の素子領域 92を有する圧電母基板 91を準備する(図 12)。
圧電母基板 91の各素子領域 92の両主面には、電極 20a,20bがあらかじめ形成され ている。圧電母基板 91の素子領域 92どうしの境界には、後にダイシングによって切除 されるダイシングライン 93が設けられて 、る。
[0042] 次に、電極 20aの引き出し電極 22aとなる部分の両端部及び電極 20bの引き出し電 極 22bとなる部分の両端部に、ダイシングによって 4分割されるように導電性バンプ 97 を形成する(図 13)。
これによつて、引き出し電極 22aと端子電極 61a, 61bとの接続、及び引き出し電極 2 2bと端子電極 62a, 62bとの接続を良好なものとすることができる。
[0043] 次に、圧電母基板 91の両主面に、振動電極 21a,21bの部分を残して、圧電母基板 91の両主面を覆うように、格子体 94を、透光性の榭脂材料を用いて形成する(図 14) この格子体 94は、ダイシングライン 93に沿って、素子領域 92と共に分割されて、個 々の圧電振動素子 10上で枠体 30となるものである。
次に、格子体 94を覆うように、透光性の榭脂材料から成る封止用母基板 95を取り付 ける(図 15)。
[0044] これらの圧電母基板 91の素子領域 92と、格子体 94の枠体 30となる部分と、封止用 の母基板 95とによって、素子領域 92ごとに封止空間 Sを形成する。
格子体 94も封止用の母基板 95も、いずれも透光性の榭脂材料からなるので、封止 空間 Sの形成状態を、目視ゃ画像認識等の、外観検査によって確認することができ る。また、封止空間 Sの気密性を低下させる連続した気泡など力 格子体 94の内部や 、格子体 94と圧電母基板 91との界面、格子体 94と封止用の母基板 95との界面などに 存在しないかどうかを、目視ゃ画像認識等の、外観検査によって確認することができ る。
[0045] また、枠体 30a, 30bによる封止代(図 2に" d"で示す)が狭くなつている箇所も、目視 や画像認識等の、外観検査によって点検することもできる。
これらの外観検査によって、不良品があれば、分割後に取り除くことができるので、 信頼性に優れた圧電部品を製造することが可能となる。
次に、複数の封止空間 Sを形成した図 15の工程の後に、封止用の母基板 95の外 面に遮光性 (不透明)の榭脂から成る被覆層 50a, 50bを形成する(図 16)。
[0046] この遮光性の榭脂材料からなる被覆層 50a, 50b上にマーク Mを施す。
被覆層 50a, 50bにマーク Mを施すこととすれば、透光性の榭脂材料からなる封止 基板 40a, 40bに直接マークを施す場合に比較して、被覆層 50a, 50bを形成する工程 がーつ増えるものの、マーク Mの視認性を向上させることが可能となり、マーク Mの誤 認を防止できて生産性に優れた製造方法とすることができる。なお、マーク Mの深さ を 3 μ m以上にしておけば、視認性をより向上させることができる。
[0047] また、被覆層 50a, 50bにマーク Mを施すことにより、透光性の榭脂に対しては困難 であるレーザー光線を利用したマーキングができる。これによつて、耐摩耗性に優れ たマーク Mを施すことが可能となる。このような用途のレーザーとしては、例えば、 YA Gレーザー(波長: 1064nm)や COレーザー(波長: 10.6 μ m)を用いて印字することが できる。被覆層として用いる榭脂の発色性に優れるという点力 レーザーの波長は、 短い方が良ぐ一般的には、波長力 l064nm程度のレーザーを用いることが適してい る。
[0048] また、レーザー光線を利用すると、インクジェットプリンタ等の印刷によるマーキング と比べて印字速度に優れるので、生産性に優れた製造方法とすることができる。 次に、下側の被覆層 50bの下面に外部接続電極 71, 72, 73を形成し、ダイシングに よって分割する(図 16)。なお、外部接続電極 71, 72, 73を形成する際に、併せて同 一材料によってダイシングの基準となる目印を形成しておくこととすれば、ダイシング を精度良く行なうことができる。
[0049] なお、本例の圧電部品の製造方法においては、図 12に示すように、圧電母基板 91 の両主面に電極 20a,20bと共に基準パターン 96を形成してもよ!/、。この基準パターン 9 6は、ダイシングライン 93が確認できるようにするためのもので、ダイシングブレードの 幅と同じ幅とし、ダイシングライン 93のすぐ横に配置している。この場合、上下の封止 基板 40a, 40bの外面の全面に渡って被覆層 50a, 50bを形成するのでなぐマークを 施す領域にのみ被覆層を形成し、基準パターン 96が被覆層 50a,50bに覆われないよ うにする。このように被覆層 50a, 50bを限定された領域に形成することによって、圧電 基板 11の主面に施した基準パターン 96が透視可能となるので、ダイシングするとき、 当該基準パターン 96を目印としてダイシングすることが可能となる。
[0050] この後に、それぞれの側面に入出力端子電極 61, 62、及びグランド端子電極 63を 形成して圧電部品 1が完成する。
次に、本発明の圧電部品の形状、製造材料などについて説明する。
圧電基板 11及び圧電母基板 91は、チタン酸ジルコン酸鉛 (PZT) ,チタン酸鉛 (PT ) ,ニオブ酸ナトリウム 'カリウム(Na K NbO ) ,ビスマス層状化合物(例: MBi Ti l -x x 3 4 4
O 、 M : 2価のアルカリ土類金属元素)などを基材とする圧電セラミックス、又は、水
15
晶,タンタル酸リチウムなどの圧電単結晶から成る。
[0051] 小型化及び回路基板への実装性という観点からは、圧電基板 11は、長さが 0.6mm 〜5mm、幅が 0.2mm〜5mm、厚みが 40 m〜: Lmmの四角开状とすることが好ま しい。 また、圧電基板 11は全面で一様な厚みを有する必要はなぐ厚み振動のエネルギ 一閉じ込めを良くして共振特性を向上する目的で、例えば、振動領域 Aの厚みを、 周囲の領域よりも薄くしたり、また、厚く形成したりすることができる。
[0052] また、さらに共振特性を優れたものにする目的で、例えば、 Ag— Pdなど力 なる内 部電極を振動電極として設けた圧電基板 11を用いることもできる。
なお、圧電基板 11の比誘電率の値は、高周波領域の共振特性に優れるという点か ら、 1000以下であることが好ましい。
圧電基板 11がセラミック材料力も成る場合は、原料粉末にノ インダを加えてプレス する方法、あるいは原料粉末を水や分散剤と共にボールミルを用いて混合した後に 乾燥し、ノ インダ,溶剤,可塑剤等を加えてドクターブレード法により成型する方法な どによってシート状と成し、次に、 1100°C〜1400 °Cのピーク温度で 0.5〜8時間焼成 して基板を形成し、例えば、厚み方向に 80〜200°Cの温度にて 3〜6kVZmmの電 圧をかけて分極処理を施すことによって所望の圧電特性を有した圧電基板 11が得ら れる。
[0053] また、圧電基板 11が圧電単結晶材料から成る場合は、圧電基板 11となる圧電単結 晶材料のインゴット (母材)を所定の結晶方向となるように切断することにより、所望の 圧電特性を有した圧電基板 11が得られる。
電極 20a,20bは、導電性の観点からは金,銀,銅,アルミニウム等の金属膜から成る ことが好ましい。厚みは 0.1 μ m〜3 μ mの範囲とすることが好ましい。金属膜が 0.1 μ mよりも薄い場合には、例えば、大気中において高温にさらされると酸ィ匕によって導 電性が低下しやすくなり、また、金属膜が 3 mよりも厚くなると膜が剥離しやすくなる 力 である。
[0054] このような金属膜の被着には、真空蒸着法, PVD法,スパッタリング法、あるいは厚 膜印刷法による塗布及び焼き付けなどが利用できる。
また、圧電基板 11との密着性を高めるために、例えば、 Crのようにセラミック基板と の密着性が高い下地電極層を予め形成し、その上に所望の金属膜を形成してもよい 圧電基板 11の両主面の全面に金属膜を被着させた後、スピンコート法などで厚み 力^〜 10 mのフォトレジスト膜を金属膜上に形成し、フォトエッチングによってパター ンユングして各種電極を形成することができる。
[0055] 振動電極 21は、圧電基板 11の両主面のほぼ中央に配置され、縦'横方向の長さが 数 10 m〜数 mmの四角形状や円形状とされる。共振特性やその他所望の電気特 性によって形状寸法の詳細は決められる。
枠体 30 (及び格子体 94)は透光性の榭脂材料から成り、例えば、フエノール系榭脂 ,ポリイミド系榭脂,エポキシ系榭脂などを基材とする榭脂材料を使用することができ る。
[0056] 中でも、絶縁性に優れると共に、セラミックスとの接着性が高く、耐湿性及び耐熱性 に優れるという点から、エポキシ系榭脂の基材を使用することが好ましい。
好ましくは、エポキシ系榭脂は、加水分解を起さない硬化型のものがよぐまた、水 の透湿性を低下する目的でルチル酸ィ匕チタンなどの粒子を添加したものや、絶縁性 を高める目的で 2— 4ジァミノ一 6ビニール一 Sトリァミンとイソシァヌル酸とを添カ卩した ものなどを使用することができる。
[0057] このような榭脂材料は、例えば、熱硬化型または光硬化型の榭脂を圧電基板 11上 にスクリーン印刷や転写などによって 1 μ πι〜80 /ζ mの厚みで塗布し、加熱または紫 外線照射によって硬化させて形成することができる。
封止空間の高さを良好に保持しつつ薄型を実現すると!/、う観点から、枠体 30 (及び 格子体 94)の厚みは 20 μ m〜60 μ mであることが特に好まし!/ヽ。
[0058] また、圧電基板 11上に形成した格子体 94の上面を凸型としてもよぐこのような形状 とすること〖こよって、格子体 94と封止基板 40とを接合する際に、両者の接合面に封止 空間の気密性を低下させる気泡が残存することを有効に抑制することができる。 封止基板 40a, 40bは、透光性の榭脂材料から成り、枠体 30a, 30bを介して圧電振 動素子 10の上下面に取り付けられて枠体 30a, 30bと共に封止空間を確保する機能 を有する。その縦'横の長さは通常は圧電基板 11の縦'横の長さと略同一である。上 側に位置する封止基板 40aの厚みは 10 μ m以上あればよいが、下側に位置する封 止基板 40bの厚みは、実装基板からの応力及び機械的,熱的衝撃を緩和する機能を 持たせることが好ましいという観点力 20 m以上が好ましぐ圧電部品の低背化の 観点から 100 μ m以下とするのが好ましい。
[0059] また、適度な弾性が必要であり、 DMA (Dynamic Mechanical Analysis:動的粘弾性 試験)による弾性率が 2〜60GPaの範囲が好ましい。衝撃を吸収する機能の観点か ら、 2〜20GPaの範囲が特に好ましい。
このような封止基板 40a, 40b (及び封止用の母基板 95)には、ガラス繊維ゃァラミド 繊維など力もなる布にポリイミド系榭脂やエポキシ系榭脂を含浸させた榭脂シート材 を用いることにより、封止基板 40aの熱変形を抑制して確実に封止空間を形成するこ とができ、機械的強度にも優れたものとすることができる。
[0060] 特に、接着機能を有するガラス繊維の含有量が 30〜80%のポリイミド榭脂シートや エポキシ榭脂シート(プリプレダ)などが好適に使用され、その場合は、 lOOPa以下の 真空中または大気中にて 0.2MPa〜5MPaの圧力を加えながら 150°C〜200°Cの温 度で 5分〜 90分保持して硬化させると良好に接合できる。
封止基板 40と格子体 94との接着に接着剤を用いる必要がな 、ので、材料及び工数 が減少し効率的に製造することが可能となる。
[0061] また、性質が異なる複数の榭脂シートを組み合わせて封止基板 40を構成することに より、機械的強度、耐衝撃性、耐湿性などの諸特性が総合的に優れた封止基板 40と することができる。
封止基板 40a, 40bが榭脂材料カゝら成る場合、その光透過率は、主として封止基板 4 0a, 40bの厚み及び榭脂材料の種類、ならびに榭脂材料に添加する添加材の種類と 量によって調整することができる。例えば、封止基板 40a, 40bの榭脂材料としてェポ キシ榭脂を用いた場合、封止基板の光透過率を 50%とするには、エポキシ榭脂 100 重量%に対し、カーボンブラックなどの着色性添加材を 15重量%添加し、封止基板 の厚みを 150 μ mとすればよ!ヽ。
[0062] 被覆層 50a, 50bは遮光性を有する榭脂材料カゝら成り、封止基板 40a, 40bの外面に 形成されている。被覆層 50a, 50bの厚みは 5 μ m〜50 μ mであり、エポキシ系榭脂, ポリイミド系榭脂などの一般的な榭脂に対し、例えば、カーボンブラックなどの顔料と 微粉末の分散剤とを含有混合させて着色した榭脂が好適に使用される。それ以外に も、ガラス繊維ゃァラミド繊維の布に遮光性の榭脂を含浸させた榭脂材料も使用する ことができる。
[0063] また、被覆層 50a, 50bの少なくとも一方には圧電部品 1に関する各種情報を記した マークが施されており、被覆層 50bの下面には外部接続電極 71, 72, 73が形成されて いる。マーキングの方法については、すでに述べたとおり、インクジェットプリンタ等に よる印刷、レーザー光線による刻印などを用いることができる。
端子電極 61, 62, 63、及び外部接続電極 71, 72, 73は、金,銀,銅,アルミニウム等 の良導電性の金属膜で形成することもできるが、榭脂との接続強度の観点から、ェポ キシ系の導電性榭脂を用いて形成するのが好ましぐ導電性の観点からは、銀,銅, ニッケルなどの導電性フィラーを 75〜95質量%含有したものが好適に用いられる。
[0064] 適度な弾性を有する導電性榭脂を用いることによって、実装基板力もの応力及び 衝撃を緩和する機能を持たせることが可能となり、信頼性に優れた圧電部品とするこ とがでさる。
導電性榭脂表面を平滑にして実装性を良好にするという観点からは金属フィラーの 粒径は小さい方がよいが、印刷性も考慮して、平均粒径は 0.5〜5 mのものを使用 することが好ましい。
[0065] また、導電性膜の厚みは、薄すぎると導電性が悪化し、厚すぎると実装時に働く応 力によって剥離しやすくなるので、 10 μ m〜60 μ mの範囲とすることが好ましい。 このような導電性榭脂の被着形成には、従来周知のスクリーン印刷法やローラー転 写などを用いて塗布し、加熱や紫外線照射によって硬化させればよい。
所望によって、さらに導電性榭脂の表面に、 Cu, Ni, Sn, Auなどを用いた少なくと も 1種類のメツキ膜を形成してもよぐそれによつて半田付け性を向上させることができ る。
[0066] 誘電体基板 81は、ホット側容量電極 82a, 82b及びグランド側容量電極 83と共に負 荷容量を形成する機能に加え、外力から圧電基板 11を保護する機能を有する。チタ ン酸ジルコン酸鉛 (PZT)やチタン酸鉛 (PT) ,チタン酸バリウム(BT)などの強誘電 体セラミック材料カゝら成り、回路基板への実装性の観点から、縦 0.6mn!〜 5mm、横 0 •2mn!〜 5mm、厚みが数 10 μ m〜 lmmの四角形状の単板とされる。
[0067] この誘電体基板 81は、原料粉末にバインダをカ卩えてプレスする方法、ある!/、は原料 粉末を水,分散剤とともにボールミルを用いて混合及び乾燥し、バインダ,溶剤,可 塑剤等をカ卩えてドクターブレード法により成型する方法などによってシートを作製し、 そのシートを 1100〜1400°Cのピーク温度で数 10分〜数時間焼成することにより形成 される。
ここで、誘電体基板 81の材料をチタン酸ジルコン酸鉛 (PZT)やチタン酸鉛 (PT) , チタン酸バリウム(BT)などの強誘電体セラミック材料とすることで、誘電体基板 81の 比誘電率を大きくできるため、充分な大きさの静電容量を有する容量素子 80を構成 できる。なお、誘電体基板 81の比誘電率としては 200〜5000とすることが好ましい。
[0068] ホット側容量電極 82a, 82b及びグランド側容量電極 83は、導電性榭脂ゃ導電性べ 一ストを従来周知のスクリーン印刷法などにより塗布し、紫外線照射や加熱による硬 ィ匕もしくは焼成することで形成される。
導電性ペーストとしては、 75〜95質量%の銀粉末にガラス粉末,榭脂または油脂, 溶剤が添加されて成り、 400〜800°Cで焼成される高温焼成型の導電性ペーストが好 適に使用できる。
[0069] また、導電性榭脂としては、銀などの導電性フィラーを 75〜95質量%の割合で含有 する導電性樹脂が好適に使用できる。導電性ペーストや導電性樹脂を使用する場合 は、電極膜厚は 8〜15 μ mとするのが好ましい。
また、金,銀,銅,アルミニウム等の良導電性の金属膜を、真空蒸着法, PVD法,ス ノ ッタリング法等によって被着し、その後スピンコート法等によって厚みが 1〜10 μ m のフォトレジスト膜を金属膜上に形成し、フォトエッチングによってパターンユングして 形成してちょい。
[0070] この場合、圧電基板 11との密着性を高めるために、例えば、 Crのようにセラミック基 板との密着性が高い下地電極層を予め形成し、その上に所望の金属膜を形成しても よい。
導電性バンプ 97は、導電性榭脂ゃ導電性ペーストを従来周知のスクリーン印刷法 などにより塗布し、紫外線照射や加熱による硬化もしくは焼成することで形成される。 導電性ペーストとしては、 75〜95質量%の銀粉末にガラス粉末,榭脂または油脂, 溶剤が添加されて成り、 400〜800°Cで焼成される高温焼成型の導電性ペーストが好 適に使用できる。
[0071] また、導電性榭脂としては、銀などの導電性フィラーを 75〜95質量%の割合で含有 する導電性榭脂が好適に使用できる。
基準パターン 96は、電極 20a,20bと同様の材料.形成方法を用いて電極 20a,20bと 同時に形成すればよ 、が、例えば非導電性の顔料など他の材料を用いてスクリーン 印刷法などによって形成しても構わな 、。
[0072] なお、本発明は上述した実施の形態に限定されるものではなぐ本発明の要旨を逸 脱しな 、範囲にお!、て種々の変更,改良が可能である。
例えば、上述した実施の形態の例においては、上下の封止基板 40a, 40bの外側に それぞれ被覆層 50a, 50bを形成した力 一方の封止基板 40aのみに被覆層 50aを形 成してもよぐ他方の封止基板 40bのみに被覆層 50bを形成しても構わない。
[0073] また、封止基板 40a,40bに直接マークを施し、被覆層 50a, 50bを形成しないでおくこ とも可能である。この場合、マークの視認性を考慮して封止基板 40a,40bの光透過率 をある程度低くしておくことが好ましい。例えば、上述した YAGレーザーを利用してマ 一キングを行う場合には、封止基板 40a,40bの光透過率を 25%〜75%の範囲に設 定することにより、マークの視認性に優れ、尚且つ封止空間の状態を目視により確認 することが可能な圧電部品となすことができる。このように封止基板 40a,40bに直接マ ークを施すようにすれば、別途、被覆層 50a, 50bを設ける必要がないので、薄型の圧 電部品とすることができる。また被覆層の 50a, 50b作製工程を省けるので生産性向 上に供するという利点もある。

Claims

請求の範囲
[1] 圧電基板の両主面に、該圧電基板を介して少なくとも一部が互いに対向する一対 の電極が形成された圧電振動素子と、
前記一対の電極の対向する領域を包囲するように前記圧電基板の両主面にそれ ぞれ配置された一対の枠体と、
透光性の榭脂材料から成り、前記一対の枠体の両外面を覆うように配置した一対 の封止基板と、
前記一対の電極にそれぞれ接続された一対の入出力端子電極とを有する圧電部
P
PPo
[2] 前記一対の枠体が透光性の榭脂材料から成る請求項 1に記載の圧電部品。
[3] 前記一対の封止基板の少なくとも一方の外面に遮光性の榭脂材料から成る被覆層 が形成されており、該被覆層にマークが施されて ヽる請求項 1に記載の圧電部品。
[4] マークを施す領域にのみ被覆層が形成されて!ヽる請求項 1に記載の圧電部品。
[5] グランド端子電極が前記圧電基板の側面に形成されており、
前記一対の電極は、前記圧電基板を介して互いに対向する振動電極と、該振動電 極を前記入出力端子電極に接続する引き出し電極と、前記振動電極または前記引 き出し電極力 前記グランド端子電極へ向かって延出され、該グランド端子電極との 間で容量を形成する容量電極とから成る請求項 1に記載の圧電部品。
[6] 前記一対の電極のうち、一方の主面電極から延出される容量電極と、他方の主面 電極から延出される容量電極とは、前記圧電基板を介して互いに対向しない位置に 配置されて!、る請求項 5に記載の圧電部品。
[7] グランド端子電極を有し、前記一対の封止基板の少なくとも一方の外面に、誘電体 基板と、該誘電体基板の内部及び表面の少なくとも一方に形成されて前記一対の入 出力端子電極にそれぞれ接続された一対のホット側容量電極と、前記誘電体基板の 内部及び表面の少なくとも一方に形成されて前記グランド端子電極に接続され、前 記ホット側容量電極との間に容量を形成するグランド側容量電極とから成る容量素子 が取り付けられて 、る請求項 1に記載の圧電部品。
[8] 両主面に電極が形成され、それぞれ圧電振動素子となる複数の素子領域を有する 圧電母基板を準備する工程と、
前記圧電母基板の両主面に、前記素子領域の境界に沿って前記素子領域ととも に分割されて、前記圧電振動素子上で個々の枠体となる格子体を、透光性の榭脂 材料を用いて形成する工程と、
前記格子体を覆うように、透光性の榭脂材料力 成る封止母基板を一主面側で取 り付けて、前記圧電母基板と前記格子体の前記枠体となる部分と前記封止母基板と の間に複数の封止空間を形成する工程と
を備える圧電部品の製造方法。
[9] 複数の前記封止空間を形成する工程の後に、
前記封止母基板の外面に遮光性の樹脂から成る被覆層を形成する工程と、 前記被覆層にマークを施す工程とを備える請求項 8に記載の圧電部品の製造方法
[10] 前記被覆層にマークを施す工程は、レーザー光線を利用してマーキングする工程 である請求項 9に記載の圧電部品の製造方法。
PCT/JP2006/308832 2005-04-27 2006-04-27 圧電部品及びその製造方法 WO2006118192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200680012453XA CN101160719B (zh) 2005-04-27 2006-04-27 压电部件及其制造方法
KR1020077019264A KR100909817B1 (ko) 2005-04-27 2006-04-27 압전 부품 및 그 제조 방법
JP2007514805A JP4751385B2 (ja) 2005-04-27 2006-04-27 圧電部品及びその製造方法
US11/911,107 US7649306B2 (en) 2005-04-27 2006-04-27 Piezoelectric component and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005129161 2005-04-27
JP2005-129161 2005-04-27
JP2006-087615 2006-03-28
JP2006087615 2006-03-28

Publications (1)

Publication Number Publication Date
WO2006118192A1 true WO2006118192A1 (ja) 2006-11-09

Family

ID=37307990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308832 WO2006118192A1 (ja) 2005-04-27 2006-04-27 圧電部品及びその製造方法

Country Status (5)

Country Link
US (2) US7649306B2 (ja)
JP (1) JP4751385B2 (ja)
KR (1) KR100909817B1 (ja)
CN (1) CN101160719B (ja)
WO (1) WO2006118192A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274331A (ja) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp 圧電発振器
JP2010057011A (ja) * 2008-08-29 2010-03-11 Nippon Dempa Kogyo Co Ltd 圧電デバイス及びその製造方法
JP2011223547A (ja) * 2010-03-26 2011-11-04 Seiko Instruments Inc パッケージマーキング方法、パッケージ、圧電振動子、発振器、電子機器、および電波時計
JP2012217155A (ja) * 2011-03-30 2012-11-08 Nippon Dempa Kogyo Co Ltd 圧電デバイス及び圧電デバイスの製造方法
JP2015162700A (ja) * 2014-02-26 2015-09-07 京セラクリスタルデバイス株式会社 圧電振動素子及び圧電デバイス
JP2016154368A (ja) * 2011-03-30 2016-08-25 日本電波工業株式会社 圧電デバイス及び圧電デバイスの製造方法
WO2024142439A1 (ja) * 2022-12-26 2024-07-04 株式会社村田製作所 圧電振動子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026397A1 (ja) * 2005-08-30 2007-03-08 Kyocera Corporation 圧電共振素子及びそれを用いた圧電共振装置
JP5325151B2 (ja) * 2010-03-31 2013-10-23 日本電波工業株式会社 水晶デバイス、及びその製造方法
JP2012209937A (ja) * 2011-03-15 2012-10-25 Nippon Dempa Kogyo Co Ltd 圧電デバイス
JP5930526B2 (ja) * 2012-02-20 2016-06-08 日本電波工業株式会社 圧電振動素子及び圧電デバイス
JP5815612B2 (ja) * 2013-07-29 2015-11-17 京セラ株式会社 電子機器
JP2014239203A (ja) * 2014-01-31 2014-12-18 株式会社村田製作所 電子部品及び電子部品の実装構造体
WO2016084417A1 (ja) * 2014-11-28 2016-06-02 京セラ株式会社 圧電部品
WO2019160140A1 (ja) * 2018-02-19 2019-08-22 株式会社村田製作所 多層基板、フィルタ、マルチプレクサ、高周波フロントエンド回路及び通信装置
US20230070377A1 (en) * 2021-09-09 2023-03-09 Onano Industrial Corp. Integrated structure of circuit mold unit of ltcc electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248613A (ja) * 1990-02-26 1991-11-06 Murata Mfg Co Ltd 圧電部品
JPH05218790A (ja) * 1992-02-05 1993-08-27 Matsushita Electric Ind Co Ltd 圧電振動子
JP2003304137A (ja) * 2002-02-06 2003-10-24 Murata Mfg Co Ltd 電子部品

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539942B2 (ja) 1974-02-05 1980-10-15
JPS59110217A (ja) 1982-12-14 1984-06-26 Murata Mfg Co Ltd チツプ形状の圧電振動部品とその製造方法
JPS6137624A (ja) * 1984-07-31 1986-02-22 Nippon Air Shiyuutaa Kk 気送子のステ−シヨン及びこのステ−シヨンを備えた空気搬送装置
JPS6137624U (ja) * 1984-08-10 1986-03-08 株式会社村田製作所 静電容量内蔵型圧電共振子
JPH0352312A (ja) * 1989-07-19 1991-03-06 Murata Mfg Co Ltd 圧電共振子
US5369862A (en) * 1990-02-26 1994-12-06 Murata Manufacturing Co., Ltd. Method of producing a piezoelectric device
JP2537576B2 (ja) 1991-07-17 1996-09-25 鹿島建設株式会社 鉄骨柱の柱頭レベル調整装置および調整方法
JPH0518119U (ja) * 1991-08-06 1993-03-05 住友金属工業株式会社 圧電部品
JP3161773B2 (ja) 1991-09-10 2001-04-25 松下電工株式会社 配線器具の取付装置
JP3158742B2 (ja) 1992-02-25 2001-04-23 株式会社村田製作所 チップ型発振子およびこの発振子を用いた発振回路
JPH0576119U (ja) * 1992-03-13 1993-10-15 株式会社村田製作所 チップ型圧電部品
JPH06244670A (ja) * 1993-02-16 1994-09-02 Murata Mfg Co Ltd 圧電部品
JPH07304135A (ja) * 1994-05-10 1995-11-21 Asahi Glass Co Ltd 複合樹脂シート
JPH08204496A (ja) * 1995-01-20 1996-08-09 Toko Inc 圧電振動部品
JP3577783B2 (ja) * 1995-03-01 2004-10-13 イビデン株式会社 半田キャリアの製造方法
JPH09116363A (ja) * 1995-10-20 1997-05-02 Seiko Epson Corp 圧電振動子及び圧電発振器の製造方法
JPH10242788A (ja) * 1997-02-27 1998-09-11 Kyocera Corp 圧電部品
EP0897217A3 (en) * 1997-08-12 2001-09-19 NGK Spark Plug Co. Ltd. Energy trapping type piezoelectric filter
JPH11150153A (ja) * 1997-11-18 1999-06-02 Murata Mfg Co Ltd 電子部品
JPH11346138A (ja) * 1998-06-02 1999-12-14 Murata Mfg Co Ltd チップ型圧電共振子及び該チップ型圧電共振子の周波数調整方法
JP2001060843A (ja) * 1999-08-23 2001-03-06 Murata Mfg Co Ltd チップ型圧電部品
JP3475876B2 (ja) * 1999-10-15 2003-12-10 株式会社村田製作所 容量内蔵型圧電共振部品
JP3438689B2 (ja) * 1999-12-20 2003-08-18 株式会社村田製作所 圧電共振子及び圧電発振子
JP2002124845A (ja) * 2000-08-07 2002-04-26 Nippon Sheet Glass Co Ltd 水晶振動子パッケージ及びその製造方法
JP2002190539A (ja) * 2000-12-22 2002-07-05 Kyocera Corp 圧電振動子用容器
JP2003248613A (ja) 2001-11-20 2003-09-05 Sharp Corp 情報配信システムおよびそれに用いられる配信情報生成装置
JP3879923B2 (ja) * 2002-09-25 2007-02-14 セイコーエプソン株式会社 電子部品用蓋体の製造方法
JP2005218790A (ja) 2004-02-09 2005-08-18 Adachi Light Co Ltd 遊技機の球体流下速度制動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248613A (ja) * 1990-02-26 1991-11-06 Murata Mfg Co Ltd 圧電部品
JPH05218790A (ja) * 1992-02-05 1993-08-27 Matsushita Electric Ind Co Ltd 圧電振動子
JP2003304137A (ja) * 2002-02-06 2003-10-24 Murata Mfg Co Ltd 電子部品

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274331A (ja) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp 圧電発振器
JP2010057011A (ja) * 2008-08-29 2010-03-11 Nippon Dempa Kogyo Co Ltd 圧電デバイス及びその製造方法
JP2011223547A (ja) * 2010-03-26 2011-11-04 Seiko Instruments Inc パッケージマーキング方法、パッケージ、圧電振動子、発振器、電子機器、および電波時計
JP2012217155A (ja) * 2011-03-30 2012-11-08 Nippon Dempa Kogyo Co Ltd 圧電デバイス及び圧電デバイスの製造方法
JP2016154368A (ja) * 2011-03-30 2016-08-25 日本電波工業株式会社 圧電デバイス及び圧電デバイスの製造方法
JP2015162700A (ja) * 2014-02-26 2015-09-07 京セラクリスタルデバイス株式会社 圧電振動素子及び圧電デバイス
WO2024142439A1 (ja) * 2022-12-26 2024-07-04 株式会社村田製作所 圧電振動子

Also Published As

Publication number Publication date
KR100909817B1 (ko) 2009-07-28
CN101160719B (zh) 2010-12-08
US20090236941A1 (en) 2009-09-24
JP4751385B2 (ja) 2011-08-17
US20100109483A1 (en) 2010-05-06
US7649306B2 (en) 2010-01-19
KR20070114138A (ko) 2007-11-29
JPWO2006118192A1 (ja) 2008-12-18
US8138659B2 (en) 2012-03-20
CN101160719A (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
JP4751385B2 (ja) 圧電部品及びその製造方法
JP6133609B2 (ja) 圧電部品
JP5206377B2 (ja) 電子部品モジュール
US9837978B2 (en) Piezoelectric component
US8256292B2 (en) Acceleration sensor with surface protection
US7626317B2 (en) Piezoelectric oscillation element and piezoelectric oscillation component using the same
US9267846B2 (en) Infrared detection element, infrared detection module, and manufacturing method therefor
JP5121646B2 (ja) 圧電発振子
JP2007227751A (ja) 電子部品およびその製造方法
JP4508997B2 (ja) 圧電共振部品
JP4905853B2 (ja) 圧電デバイス
JP5031486B2 (ja) 電子部品
JP2008244838A (ja) 圧電共振部品の製造方法
JP6117555B2 (ja) 圧電部品
JP6154146B2 (ja) 圧電部品
JP2004282621A (ja) 容量内蔵型圧電共振子及びその周波数調整方法
JP2010078389A (ja) 加速度センサ
JP2010107288A (ja) 加速度センサおよび加速度センサの実装構造
JP2006311523A (ja) 圧電発振子
JP2014110449A (ja) 圧電部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012453.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514805

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077019264

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11911107

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745760

Country of ref document: EP

Kind code of ref document: A1