WO2006118164A1 - 情報記録媒体及び光学情報記録再生装置 - Google Patents

情報記録媒体及び光学情報記録再生装置 Download PDF

Info

Publication number
WO2006118164A1
WO2006118164A1 PCT/JP2006/308781 JP2006308781W WO2006118164A1 WO 2006118164 A1 WO2006118164 A1 WO 2006118164A1 JP 2006308781 W JP2006308781 W JP 2006308781W WO 2006118164 A1 WO2006118164 A1 WO 2006118164A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
light
recording layer
layer
reflectance
Prior art date
Application number
PCT/JP2006/308781
Other languages
English (en)
French (fr)
Inventor
Teruhiro Shiono
Tatsuo Itoh
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/913,013 priority Critical patent/US7848205B2/en
Priority to CN2006800147832A priority patent/CN101171633B/zh
Priority to JP2007514783A priority patent/JP4712798B2/ja
Publication of WO2006118164A1 publication Critical patent/WO2006118164A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24624Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes fluorescent dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/25Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing liquid crystals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers

Definitions

  • the present invention relates to an information recording medium and an optical information recording / reproducing apparatus capable of three-dimensionally recording recording pits that are information bits.
  • an information recording medium capable of good recording / reproduction with high accuracy with a small decrease in the amount of recording light even in a lower recording layer located away from the objective lens while ensuring reflected light for focus servo
  • the present invention relates to an optical information recording / reproducing apparatus used for recording / reproducing of the information recording medium.
  • optical discs such as CD (compact disc) and DVD (digital versatile disc), optical card memory, and the like are used.
  • Non-Patent Document 1 describes an information recording medium in which a plurality of recording layers 101 are three-dimensionally stacked as shown in FIG. Yes.
  • This information recording medium 121 includes a glass transparent substrate 104, and recording layers 101a to 101d using a urethane-urea copolymer material, which is a photon mode recording material, on the transparent substrate 104.
  • the intermediate layers 102a to 102c made of PVA (polybulal alcohol) films and PMMA (polymethylmethacrylate) films are alternately laminated.
  • a recording light 122a having a large peak power with a wavelength of 0.790 xm emitted from the Ti sapphire laser of the recording light source 120a passes through the beam splitter 118a, and the beam expander 123 Then, the light passes through the beam splitter 118b, and is condensed by the objective lens 106 onto the desired recording layer 101c of the multilayer information recording medium 121 that can be recorded and reproduced three-dimensionally (converging light 107).
  • the wavelength is halved only in the portion where the light density is high (the light collecting point and its vicinity) due to nonlinear phenomena such as the two-photon absorption process.
  • the reproduction light 122b having a small peak wavelength of 0.6328 zm emitted from the He_Ne laser of the reproduction light source 120b is recorded on the desired recording layer 101c by the objective lens 106. It is focused on the pit 105 (converged light 107). Then, the reflected light is bent in the Y-axis direction by the beam splitter 118b, collected by the detection lens 111, and passes through the pinhole 114 arranged at the condensing point of the detection lens 111 to detect the light. The signal is reproduced by detection by the device 119.
  • Non-Patent Document 1 By the way, although not examined in Non-Patent Document 1, in the conventional optical disc recording / reproducing apparatus, the recording light or the reproducing light from the light source is accurately focused on the disc through the objective lens during recording or reproduction. Focus servo is performed so that For this reason, it is desirable to perform focus servo even when the recording pit 105 recorded by nonlinear recording such as two-photon absorption recording is recorded and reproduced as in Non-Patent Document 1. That is, if a certain reflected light is obtained from the recording layer 101 when the recording light 122a or the reproducing light 122b is irradiated to the information recording medium 121, the reflected light should be used as a focus servo light. Thus, the light can be accurately collected on the desired recording layer 101c.
  • each recording layer 101 requires a reflected light for focus servo having a constant intensity.
  • the information recording medium 121 has a plurality of recording layers 101 laminated in order to form recording pits three-dimensionally. Therefore, when the number of recording layers 101 is large, the recording light and the reproduction light are reflected and absorbed not only by the desired recording layer 101c but also by each recording layer 101. Due to the reflection and absorption at each recording layer 101, the light amounts of the recording light and the reproduction light decrease until reaching the lowest layer (101d in FIG. 20) farthest from the objective lens.
  • This decrease in recording sensitivity is caused by the fact that, for example, in the case of two-photon absorption recording, the recording sensitivity is proportional to the square characteristic of light quantity (n-th power characteristic in n-photon recording). For example, when the amount of recording light is 0.8, the recording sensitivity decreases to 0.8 times in normal one-photon absorption recording, but in two-photon absorption recording, the recording sensitivity is 0.64 times the square. To drop. For this reason, it is difficult for a conventional information recording medium such as Non-Patent Document 1 to secure a sufficient amount of light at the time of recording up to the lower recording layer while securing reflected light for focus servo. In this case, the recording light source may be adjusted in accordance with the position of the recording layer.
  • a semiconductor laser having a high peak power for example, several lOOmW to: 1 W or more is used for recording. Because it is necessary as a light source, there is practically no margin for adjusting the light source power in the high output direction. Therefore, when recording the lower recording layer in order to record the recording pits three-dimensionally in the recording unit, it is difficult to increase the recording light source power higher than the recording power of the upper recording layer. For this reason, it is desirable to use an information recording medium that does not require adjustment of the power at the time of recording or can perform good recording with a small adjustment of the power (for example, the adjustment amount is
  • Non-Patent Document 1 Yoshimasa Kawada et al .: “Three-dimensional optical memory using an organic recording medium with a multilayer structure, Opticsjapan 2000 Proceedings pp. 95- 96 (2000)
  • the present invention has been made in order to solve the above-described problems in the prior art, and in particular, while recording reflected light for focus servo, recording is also performed on a lower recording layer away from the objective lens.
  • An object of the present invention is to provide an information recording medium and an optical information recording / reproducing apparatus capable of good recording and reproduction with high accuracy with a small decrease in the amount of light.
  • One aspect of the present invention is an information recording medium comprising a substrate and a recording unit capable of recording recording pits three-dimensionally on the substrate, wherein the recording unit has a wavelength ⁇ 2.
  • Have recording light The recording pits are recorded by condensing, and a plurality of recording layers in which the recording pits are reproduced by condensing reproducing light having a wavelength shorter than the wavelength ⁇ 2 and a wavelength ⁇ 1, and the recording
  • the recording layer and the intermediate layer alternately stacked, and the reflectance of the unrecorded area of the recording layer with respect to the recording light wavelength ⁇ 2 is greater than the reflectance of the unrecorded area of the recording layer with respect to the reproduction light wavelength: 11 It is a small information recording medium.
  • FIG. 1 is an explanatory diagram showing a configuration of an information recording medium according to the present invention and a state of recording / reproducing recorded pits.
  • FIG. 2 (b) is an example of the relationship between the thickness of the recording layer of the information recording medium according to Embodiment 1 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 2B is a diagram showing a range of the film thickness of the recording layer in which the reflectance of the recording light in the unrecorded area of the recording layer is lower than the reflectance of the reproducing light in FIG.
  • FIG. 3 (b) shows another relationship between the thickness of the recording layer of the information recording medium according to Embodiment 1 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 3 (b) shows an example of the recording layer thickness range in which the reflectance of the recording light in the unrecorded area of the recording layer is lower than the reflectance of the reproduction light in FIG. 3 (b). is there.
  • FIG. 4 is a diagram showing the relationship between the thickness of the recording layer of the information recording medium of FIG. 2 and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer.
  • FIG. 2 is a drawing showing the relationship between the thickness of the recording layer of the information recording medium of FIG. 2 and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 5 is a drawing showing the relationship between the thickness of the recording layer of the information recording medium of Fig. 3 (b) and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer.
  • FIG. 4 is a diagram showing the relationship between the thickness of the recording layer of the information recording medium in FIG. 3 and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 6 is a drawing showing manufacturing steps of the information recording medium according to Embodiment 1 of the present invention. 7]
  • FIG. 7 is a diagram showing a configuration of the optical information recording / reproducing apparatus according to the first embodiment of the present invention and a state in which a signal is recorded and reproduced on an information recording medium.
  • FIG. 8A shows an example of the relationship between the thickness of the recording layer of the information recording medium according to Embodiment 2 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 8B is a drawing showing the range of the film thickness of the recording layer where the reflectance of the recording light in the unrecorded area of the recording layer is lower than the reflectance of the reproducing light in FIG. 8A.
  • FIG. 9A is another example of the relationship between the thickness of the recording layer of the information recording medium according to Embodiment 2 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 9B is a diagram showing a range of the film thickness of the recording layer in which the reflectance of the recording light in the unrecorded area of the recording layer is lower than the reflectance of the reproduction light in FIG. 9A. .
  • FIG. 10A is a drawing showing the relationship between the thickness of the recording layer of the information recording medium of FIG. 8A and the reflectance of the reproduction light in the unrecorded and recorded areas of the recording layer.
  • FIG. 10B is a drawing showing the relationship between the thickness of the recording layer of the information recording medium in FIG. 8A and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 11A is a diagram showing the relationship between the thickness of the recording layer of the information recording medium of FIG. 9A and the reflectance of the reproduction light in the unrecorded and recorded areas of the recording layer.
  • FIG. 9 is a diagram showing the relationship between the film thickness of the recording layer of the information recording medium in FIG. 9A and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 12A is an example of the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 3 of the present invention and the reflectance of reproduction light and recording light in an unrecorded area of the recording layer.
  • FIG. 12B is a drawing showing the range of the film thickness of the recording layer in which the reflectance of the recording light in the unrecorded area of the recording layer is lower than the reflectance of the reproduction light in FIG. 12A. .
  • FIG. 13A shows the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 3 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 13B is a drawing showing the range of the film thickness of the recording layer in which the reflectance of the recording light in the unrecorded area of the recording layer is lower than the reflectance of the reproducing light in FIG. 13A. It is.
  • FIG. 14A is a drawing showing the relationship between the thickness of the recording layer of the information recording medium of FIG. 12A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer.
  • Figure 12 6 is a drawing showing the relationship between the thickness of the recording layer of the information recording medium A and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 15A is a drawing showing the relationship between the film thickness of the recording layer of the information recording medium of FIG. 13A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer;
  • FIG. 3 is a diagram showing the relationship between the film thickness of the recording layer of the information recording medium in FIG. 3A and the reflectance of recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 16A is an example of the relationship between the thickness of the recording layer of the information recording medium according to Embodiment 4 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 16B is a diagram showing a range of the film thickness of the recording layer in which the reflectance of the recording light in the unrecorded area of the recording layer is lower than the reflectance of the reproducing light in FIG. 16A. .
  • FIG. 17A shows the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 4 of the present invention and the reflectance of the reproduction light and recording light in the unrecorded area of the recording layer.
  • FIG. 17B is a drawing showing the range of the recording layer thickness that is lower than the reflectance of the reproducing light in FIG. 17A. is there.
  • FIG. 18A is a drawing showing the relationship between the thickness of the recording layer of the information recording medium of FIG. 16A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer.
  • FIG. 16 is a view showing the relationship between the film thickness of the recording layer of the information recording medium in FIG. 16A and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 19A is a drawing showing the relationship between the thickness of the recording layer of the information recording medium of FIG. 17A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer.
  • FIG. 17 is a diagram showing the relationship between the film thickness of the recording layer of the information recording medium in FIG. 17A and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 20 is an explanatory diagram showing a configuration of a conventional optical information recording / reproducing apparatus and a state of signal recording / reproducing.
  • the reproducing light wavelength 1 (hereinafter sometimes simply referred to as ⁇ ) is the recording light wavelength 2 (hereinafter simply referred to as ⁇ 2). If it is shorter, the reflected light for the focus servo is secured and nonlinear recording is performed.
  • the reflectance of the unrecorded area of the recording layer with respect to the recording light wavelength ⁇ 2 is It is characterized by being smaller than the reflectance of an unrecorded area.
  • FIG. 1 is an explanatory diagram showing a configuration of an information recording medium according to the present invention and how a signal is recorded and reproduced.
  • the information recording medium 21 of the present invention is a substrate having a thickness of 1.1 mm, for example.
  • Recording lights 7a and 7a 'of the recording unit 3 (7a is a convergent light of the recording light onto the information recording medium 21, 7a' is a reflected light of the recording light from the information recording medium 21) and reproducing lights 7b and 7b '(7b is the convergent light of the reproduction light to the information recording medium 21 and 7b is the reflected light of the reproduction light from the information recording medium 21) on the incident side or input / output side, for example, 50 to: 100 / im
  • a protective layer 4 of a thickness of may be further provided. By providing the protective layer 4, recording and reproduction can be performed even if there is some dust, dirt, scratches, etc. on the information recording medium.
  • the convergent light 7a having the recording light wavelength ⁇ 2 is applied to the track 25 that is the target layer, for example, the recording area of the recording layer Id.
  • the reflected light 7a ′ from the recording layer Id is detected by a photodetector (not shown in FIG. 1), the reflected light 7a ′ can also be used as focus servo light.
  • the focus servo using the reflected light 7a ′ the recording light is accurately condensed on the recording layer Id of the target at the time of recording, and the optical constant of the recording layer, preferably the refractive index is changed, so that the recording pit 5 Is recorded.
  • the same convergent light 7b having a reproduction light wavelength ⁇ 1 is irradiated to the recording layer Id of the target, for example.
  • the reflected light 7b ′ from the recording layer Id is detected by a photodetector (not shown in FIG. 1), the reflected light 7b ′ can also be used as focus servo light. And with the focus servo using this reflected light 7b ' The reproduction light is focused on the track 25 of the recording layer Id of the get, and the signal is reproduced by the reflected light 7b ′ of the recording pit 5 force that is the recorded area.
  • the recorded pit 5 is partially recorded on the track 25 of the recording layer Id as in the unrecorded area 24 and the recorded area 23 (the area where the recorded pit 5 is formed). Is the recorded area 23), and the reflected light for focus servo is the larger of the reflected light obtained from the unrecorded area 24 and the recorded area 23 (recorded pit 5). That's fine. That is, in the information recording medium using nonlinear recording such as the two-photon absorption recording of the present invention, recording pits are formed by using a change in the optical constant of the recording layer by recording, for example, a change in refractive index.
  • the reflectance of the recording layer changes before and after recording. For this reason, for example, the difference between the refractive index n2 of the intermediate layer 2 and the refractive index n of the unrecorded area 24 of the recording layer 1 (I n2-n I)
  • the difference from the refractive index nl of the recorded area 23 is larger than (I n2 ⁇ nl
  • the reflectance of the unrecorded area 24 is large, but the reflectance of the recorded area 23 is small. Therefore, in the information recording medium having such characteristics, reflected light from the unrecorded area 24 is mainly detected for focus servo.
  • the characteristic that the reflectance is lowered by recording as described above is called H ⁇ L (High-to-Low).
  • the difference between the refractive index n2 of the intermediate layer 2 and the refractive index n of the unrecorded area 24 of the recording layer 1 (I n2 ⁇ n I) is such that the refractive index n2 of the intermediate layer 2 and the recorded area of the recording layer 1 23 Is smaller than the difference (I n2 ⁇ nl I) from the refractive index nl, the reflectance of the unrecorded area 24 is small, but the reflectance of the recorded area 23 is large.
  • the reflected light at the recorded area 23 (that is, the recording pit 5) is mainly detected for focus servo.
  • the characteristic that the reflectivity increases due to the above recording is called L ⁇ H (Low-to_High).
  • An additional intermediate layer is preferred.
  • the refractive index of the intermediate layer 2 is preferably such that the difference between the refractive index of the unrecorded area 24 of the recording layer 1 or the refractive index of the recorded area 23 is 0.05 or more. If the difference in refractive index is 0.05 or more, it has been confirmed that a reflectance of at least about 0.1% with respect to the reproduction light can be obtained and good focus servo can be performed during reproduction.
  • the amount of light at the time of recording or reproduction decreases in the lower recording layer away from the objective lens, making recording or reproduction difficult.
  • the reduction in the amount of light during recording affects the recording sensitivity in a multiplier manner, it becomes difficult to form recording pits in the lower recording layer.
  • the reflectance of the unrecorded area 24 with respect to ⁇ 2 is greater than the reflectance of the unrecorded area 24 with respect to ⁇ 1 by utilizing the difference in wavelength between the lengths 1 and 2 in nonlinear recording. It has been found that if the recording layer is formed so as to be smaller, good recording and reproduction can be achieved with high accuracy even in the lower recording layer while performing focus servo.
  • the recording layer has a reflectance relationship of the present invention, the recording light transmittance of each recording layer 1 is large. For this reason, even in the lowermost recording layer (la in FIG. 1) farthest from the objective lens 6, good recording can be performed with little decrease in the amount of the recording light 7a.
  • a large peak power of several hundred mW to lW or more is required as recording light. Therefore, the recording light source to be used is difficult to adjust to increase the peak power, whereas the reproducing light source is The necessary peak power is small, and it is preferable to suppress the recording light power (in general, several mW to several tens mW) in order to prevent recording by reproducing light.
  • the reproduction light source has a capacity of about 1Z10 of the recording light source, and its maximum output has a margin.
  • the reflectance for the reproduction light wavelength in the unrecorded area of the recording layer is set to be larger than the reflectance for the recording light wavelength, and as the target recording layer becomes a lower layer away from the objective lens 6, the recording layer Even if the reflected light intensity of the reproduction light from the light source gradually decreases, if the power of the light source for reproduction is increased in response to the decrease, if necessary, the reduction of the reflected light intensity is prevented to a detectable level. Is possible.
  • the reflectance with respect to the reproduction light wavelength is high, a sufficient amount of light can be ensured even if the reproduction light has a small power.
  • the recording light power is about 10 times the reproduction light power, It is also possible to set the reflectance as low as about ⁇ with respect to the reproduction light wavelength.
  • the reflectance characteristics of the recording layer as described above vary depending on the recording light wavelength and the reproduction light wavelength used, but by adjusting the film thickness of the recording layer, It was found that the reflectance suitable for the combination can be secured.
  • the information recording medium that satisfies the relationship between the recording light and the reflectance of the reproduction light will be described in detail by dividing each combination of the recording light wavelength and the reproduction light wavelength.
  • the reproduction light wavelength ⁇ 1 is shorter than the recording light wavelength 2.
  • the reproduction light wavelength satisfies 0.6 ⁇ 1 ⁇ 0.7 xm
  • the recording light wavelength is An information recording medium and an optical information recording / reproducing apparatus using recording light and reproducing light satisfying 0.73 / im ⁇ 1 2 ⁇ 0.83 / im are described.
  • FIGS. 2A and 2B show an example of the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 1 of the present invention and the reflectance of the reproduction light and the recording light in an unrecorded area of the recording layer.
  • 3A and 3B show another example of the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 1 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer. Is shown.
  • FIG. 4A shows the relationship between the thickness of the recording layer of the information recording medium of FIG.
  • FIG. 4B shows the relationship between FIG. 2 shows the relationship between the thickness of the recording layer of the information recording medium and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • FIG. 5A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 3A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer. The relationship between the film thickness of the recording layer of the information recording medium and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer is shown.
  • FIG. 6 shows a manufacturing process of the information recording medium according to Embodiment 1 of the present invention.
  • FIG. 7 shows a configuration of the optical information recording / reproducing apparatus according to Embodiment 1 of the present invention and a state in which recording pits are recorded / reproduced on the information recording medium.
  • ⁇ ⁇ is the reproduction light wave
  • ⁇ 2 is the recording light wavelength
  • is the refractive index of the unrecorded area 24 of the recording layer 1
  • nl is the refractive index of the recorded area 23 of the recording layer
  • n2 is the refractive index of the intermediate layer 2.
  • the photochromic material of the recording layer 1 of the present embodiment for example, cis-l, 2_Dicyano-l, 2-bis (2,4,5-trimethy ⁇ 3-thienyl) ethene, which is one of diarylethenes, is used.
  • the ring-opened body constitutes an unrecorded area 24, and the ring-closed body constitutes a recorded area 23.
  • n2 Is an information recording medium (n ⁇ nl ⁇ n2) greater than nl, that is, an information recording medium having H ⁇ L characteristics.
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 has the maximum value with respect to 1 is ⁇ ⁇ 1 /
  • the film thickness of the recording layer 1 represented by (4 ⁇ ) and having the maximum reflectivity with respect to 2 is represented by ⁇ 2 ⁇ (4 ⁇ ).
  • the reflectance displacement that changes sinusoidally with respect to ⁇ 1 indicated by the dotted line with respect to the film thickness t of the recording layer is Rl (t) 1 1)] / 2, which is indicated by the solid line. ;
  • the influence on the reflectance based on the difference in refractive index due to wavelength dispersion is small in most cases with respect to ⁇ 1 and ⁇ 2 (for example, the refractive index is a significant figure 2 to 3). Therefore, in the information recording medium having the refractive index as described above, it is possible to simplify the above formula by regarding rl for ⁇ 1 and r2 for ⁇ 2 as the same.
  • the displacement Rl (t) of the reflectance of ⁇ 1 in the unrecorded area with respect to the film thickness of the recording layer indicated by the dotted line and the film thickness of the recording layer indicated by the solid line Unrecorded area If the displacement R2 (t) of the reflectance of ⁇ 2 in the range of the film thickness t satisfying the following formula (1) is satisfied, the reproduction light wavelength and the recording light wavelength of this embodiment are used. Therefore, the reflectance of the unrecorded area of the recording layer with respect to ⁇ 2 is smaller than the reflectance of the unrecorded area of the recording layer with respect to ⁇ 1 by J.
  • is the reproduction light wavelength
  • ⁇ 2 is the recording light wavelength
  • is the refractive index of the unrecorded area of the recording layer
  • t is the film thickness of the recording layer
  • rl is the unrecorded area of the recording layer with respect to ⁇ 1 Maximum reflectance of
  • r2 is the maximum reflectivity of the unrecorded area of the recording layer for fly 2.
  • Each range represented by 1 2 3 i is t t T t, t t t, t t t t, .... That is,
  • the film thickness range of the recording layer is T which satisfies the following formula (2).
  • i is an arbitrary integer of 0 or more, and 0 ⁇ t ⁇ t.
  • the reflectance characteristics of the L ⁇ H information recording medium that uses the reflected light in the recorded area for focus servo will be described.
  • An information recording medium having the characteristics of H is obtained.
  • the displacement of the reflectance of the information recording medium having the characteristic of L ⁇ H is different only in rl and r2, and the reflectance period, maximum value, and
  • the preferred recording layer 1 has the same film thickness in any of the information recording media having the characteristics of H ⁇ L or L ⁇ H.
  • T (t to t) or T (t to t), i.e., i in formula (2) is 1 or 2
  • a film thickness in the range is preferable because the difference in reflectance between the reproduction light and the reflected light becomes large.
  • the recording pit 5 is recorded on the recording layer 1 and reproduced.
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to ⁇ has the maximum value is ⁇ ⁇ 1 / (4 ⁇ ) using an arbitrary positive odd number ⁇ .
  • the thickness of the recording layer in which the reflectance of the recorded area 23 with respect to ⁇ 1 has the maximum value is expressed by ⁇ ⁇ 1 / (4nl). Therefore, as the film thickness of the recording layer 1 increases, each area The amount of deviation of the maximum value of the reflectance increases.
  • the reflected light 7b ′ of the reproduction light in the recorded area 23 becomes the reproduction signal light of the recording pit 5. Therefore, at the time of reproduction, the larger the difference between the reflected light intensity of the unrecorded area 24 with respect to ⁇ 1 and the reflected light intensity of the recorded area 23 with respect to 11, the higher the modulation rate of the reproduced signal, which is preferable. Therefore, when the reflected light intensity of the reproduction light in the recorded area 23 is small and constant, it is desirable that the reflected light intensity of the reproduction light from the unrecorded area 24 is large. According to the study, the reflectivity is 0.7 times or more the maximum reflectivity rl of the reproduction light in the unrecorded area 24. max
  • Thicknesses are shown in order from the smallest to the Ta, Tb, Tc, ..., (...
  • ⁇ 1 is the reproduction light wavelength
  • 2 is the recording light wavelength
  • t is the thickness of the recording layer
  • n is the refractive index of the unrecorded area of the recording layer
  • p is any positive odd number .
  • Specific recording layer thicknesses are, for example, 0.07, m ⁇ Ta ⁇ 0.15 xm, 0.28 zm ⁇ T b ⁇ 0.36 xm, 0.49 xm ⁇ Tc ⁇ 0.57 xm 0.71 xm ⁇ Td ⁇ 0.78 zm,.
  • a more preferable range of the thickness of each recording layer 1 is a good reproduction signal intensity (The maximum reflectivity rl is 0.7 times or more), and the reflectivity for ⁇ 2 of the unrecorded area 24 is max.
  • a film thickness range that simultaneously satisfies the range expressed by Ta, Tb, Tc, and so on.
  • a more preferable film thickness that satisfies both ranges of film thickness at the same time is, for example, 0.0 xm ⁇ Tr ⁇ 0 12 xm, 0.28 ⁇ m ⁇ Tr ⁇ 0.35 xm, 0.49 / im ⁇ Tr ⁇ 0.57 xm, 0.71 / im ⁇ Tr ⁇ 0. 78 ⁇ m, satisfying (represents repetition), Tr, Tr, Tr, Tr, Tr,.
  • the more preferable range of film thickness is different depending on the combination of wavelength and refractive index.
  • the reflectance of ⁇ 2 of the unrecorded area 24 and the recorded area 23 is also a sinusoidal periodic function similar to the reflectance of ⁇ 1 (maximum The reflectivity value and the minimum reflectivity are the same values as the reflectivity of the reproduction light), and shows the H ⁇ L behavior in which the reflectivity decreases after recording.
  • the reflectance of the unrecorded area 24 with respect to ⁇ 2 shows the maximum value.
  • the film thickness of the recording layer 1 is expressed by ⁇ 2 / (4 ⁇ ) using an arbitrary positive odd number ⁇ .
  • the film thickness of the recording layer 1 in which the reflectance of the finished region 23 has the maximum value is expressed by ⁇ 2 / (4nl). For this reason, the larger the thickness of the recording layer 1, the larger the deviation of the maximum reflectance in each region.
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to ⁇ has the maximum value is ⁇ ⁇ lZ (4n) using an arbitrary positive odd number ⁇ .
  • the film thickness of the recording layer 1 represented by the recorded region 23 having the maximum reflectance is represented by ⁇ ⁇ lZ (4nl). For this reason, as the film thickness of the recording layer 1 increases, the deviation amount of the maximum value increases.
  • the information recording medium having the characteristic of L ⁇ H also has the intensity of the reflected light with respect to ⁇ 1 of the unrecorded area 24 and the recorded area 23, during reproduction. It is preferable that the difference in reflected light intensity with respect to ⁇ 1 is large, because the modulation rate of the reproduction signal increases. Therefore, when the intensity of reflected light with respect to ⁇ 1 in the unrecorded area 24 is small and constant, it is desirable that the intensity of reflected light with respect to ⁇ 1 in the recorded area 23 is large. As described above, if the reflectivity is 0.7 times or more of the maximum reflectivity, the IC configuration of the detection circuit can be ensured. It has been confirmed that a good reproduction signal can be obtained without changing the composition. The film thickness of the preferred recording film that can provide a reflectance of 0.7 times or more of the maximum reflectance rl of the reproduction light is smaller.
  • the ranges are Ta, Tb, Tc,... (... means repetition) indicated by horizontal arrows in FIG. 5A.
  • the thickness t of the recording layer is in a range that satisfies the following formula (4).
  • ⁇ 1 is the reproduction light wavelength
  • ⁇ 2 is the recording light wavelength
  • t is the film thickness of the recording layer
  • nl is the refractive index of the recorded region of the recording layer
  • p is any positive odd number.
  • Specific recording layer thicknesses are, for example, 0.07 / im ⁇ Ta ⁇ 0.14 xm, 0.27 / im ⁇ T b ⁇ 0.35 xm, 0.48 ⁇ 0.55 xm, 0.68 ⁇ (1 ⁇ 0.76 / im, ...
  • a more preferable range of the thickness of each recording layer 1 is a good reproduction signal intensity (maximum (Reflectance r 1 0.7 times or more) is secured, and the reflectivity for unrecorded area 24 2 is ⁇ 1 max
  • the film thickness in a more preferable range that satisfies both the film thickness ranges simultaneously is, for example, 0.07 ⁇ ⁇ 0. 12 / im, 0. 27
  • the more preferable range of the film thickness differs depending on the combination of wavelength and refractive index.
  • the information recording medium having the characteristics of H ⁇ L and L ⁇ H has a recording layer thickness of, for example, 0.6 xm or less. The thinner one is easier to make. Therefore, the film thickness range of the recording layer 1 is preferably set around Tr, Tr, or Tr shown in the above results and FIGS. 4A and 5A.
  • the reflectance of the unrecorded area 24 and the recorded area 23 with respect to ⁇ 2 is also a sinusoidal periodic function similar to the reflectance with respect to ⁇ 1 (
  • the maximum reflectance and the minimum reflectance are the same values as each reflectance of the reproduction light wavelength).
  • the thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to ⁇ 2 shows the maximum value is expressed by ⁇ 2 ⁇ (4 ⁇ ) using an arbitrary positive odd number ⁇ , and the recorded area for ⁇ 2 23
  • the film thickness of the recording layer 1 having the maximum reflectance is expressed by ⁇ 2 ⁇ (. Therefore, the larger the film thickness of the recording layer 1, the larger the deviation of the maximum reflectance in each region. To go.
  • the reproducing light wavelength 11 satisfies 0.6 ⁇ ll ⁇ 0.
  • the reflectivity of the unrecorded area 24 for the indicated 2 can be significantly smaller than the reflectivity of the unrecorded area 24 for ⁇ 1 indicated by the dotted line.
  • the thickness is included in the more preferable thickness Tr of the recording layer 1 described above), unrecorded for ⁇ 1
  • the reflectance of the region 24 is 0.32% for the information recording medium of H ⁇ L, and 0.36% for the information recording medium of L ⁇ H.
  • the reflectance of the unrecorded area 24 with respect to ⁇ 2 is 0.18% for the H ⁇ L information recording medium and 0.20% for the L ⁇ H information recording medium. is there.
  • an information recording medium is obtained in which the reflectance of the unrecorded area 24 with respect to ⁇ 2 is significantly smaller than the reflectance of the unrecorded area 24 with respect to ⁇ 1.
  • the recording sensitivity changes in a multiplier manner with respect to the light amount (for example, in two-photon absorption recording, the recording sensitivity is proportional to the square characteristic of the light amount)
  • the recording sensitivity is proportional to the square characteristic of the light amount
  • a decrease in the amount of light becomes a problem (for example, in two-photon absorption recording, when the amount of recording light increases by 0.9 times, the recording sensitivity decreases to 0.81 times the square).
  • the decrease in the amount of recording light is reduced, recording on a three-dimensional information recording medium having multiple recording layers is ensured while ensuring reflected light for the focus servo. It is possible to record and reproduce pits with good accuracy.
  • the reflectivity of the unrecorded area 24 with respect to 1 is an information recording medium force of H ⁇ L of 0.32% and an information recording medium force of L ⁇ H of 0.36%.
  • the reflectance of the unrecorded area 24 with respect to 2 is 0.04% for the H ⁇ L information recording medium, and 0.0% for the L ⁇ H information recording medium. 05%. Therefore, the reflectance with respect to the recording light is further reduced as compared with the recording layer having a film thickness of 0.32 ⁇ .
  • the amount of recording light is larger than the amount of reproducing light (for example, about 10 times).
  • the reflectivity sufficient to perform focus servo with the reproduction light is about 0.1%. Therefore, it is sufficient that the reflectance of the unrecorded area 24 with respect to 2 is secured to about 0.01% or more. In this embodiment, in the range of ⁇
  • the reflectance of the unrecorded area 24 with respect to ⁇ 2 at the film thickness of the recording layer that gives the maximum reflectance with respect to ⁇ 1 can be made smaller than the reflectance at ⁇ or ⁇ . Therefore, the recording layer 1
  • the film thickness range is particularly preferred. For example, 50 layers
  • the decrease in the amount of recording light can be suppressed to 2%. Therefore, the decrease in the amount of recording light is less than the decrease in the amount of reproduction light. Can be significantly reduced to about 1Z8. For this reason, a recording layer having a film thickness in the T range is formed.
  • the recording pit 5 is formed using a two-photon, multi-photon, or plasma absorption process, which is one of nonlinear absorption phenomena. Therefore, the recording layer 1 which is not only the intermediate layer 2 also has almost no loss other than the reflected light described above with respect to ⁇ 2 and ⁇ 1, and it is possible to efficiently record / reproduce three-dimensional recording pits. Playback is possible. That is, by using the nonlinear absorption phenomenon, a substantially transparent recording layer 1 is used, and high light utilization efficiency is achieved. However, for example, in order to perform recording using the two-photon absorption process, the recording layer 1 is made of a recording material that is substantially transparent at the recording light wavelength, but absorbs at half that wavelength.
  • pulse laser light of 2 0.78 / im, pulse width of 100 femtoseconds to 10 nanoseconds, for example, a relatively high peak light quantity, several lOOmW to several W or more Is focused on the desired recording layer Id by the objective lens 6 as the convergent light 7a of the recording light. Due to the concentration of this recording light, for example, by the two-photon absorption process, which is one of the nonlinear absorption phenomena, the wavelength is halved (0. As a result, the recording pit 5 is written. In the first embodiment, the recording pit 5 is recorded by changing the refractive index among the optical constants of the recording layer 1, but the optical constant may have other characteristics.
  • the use of the change in the refractive index of the recording layer 1 is preferable for the information recording medium having the recording unit 3 having the multilayer structure because the loss of light is smaller than the use of the absorption change. Further, even if multiphoton absorption such as three-photon absorption is used, recording suitable for an information recording medium having a recording section 3 having a multilayer structure can be performed. For example, in the three-photon absorption recording, a recording material that absorbs at a wavelength that is 1/3 of the force that is substantially transparent to the recording light wavelength is used.
  • the recording pit 5 is smaller than in the case of normal recording (for example, in the case of two-photon absorption, the diameter of the recording pit 5 is smaller). Is 0.71 times that of recording with one-photon absorption). For this reason, if a reproduction light wavelength shorter than the recording light wavelength (a reproduction light wavelength having a wavelength of about 0.7 times the recording light wavelength in the case of two-photon absorption) is used, the recording light is reproduced again.
  • the actual spot diameter at the time of birth approaches the same level, and recording and playback can be optimized or dense.
  • each recording layer 1 has a track guide groove (not shown in FIG. 1).
  • the track pitch Tp is, for example, 0.59 m
  • the groove depth is, for example, 0.49 x m.
  • the ⁇ 1st order diffracted light from this groove is detected by a photodetector (not shown), whereby a tracking error signal is obtained and recorded / reproduced accurately along the track.
  • the resin contained in the substrate 9 in addition to polycarbonate, PMMA, norbornene resin (for example, “Arton” manufactured by CJSR Corporation), or cycloolefin resin (for example, “Zeonex” (made by Nippon Zeon Corporation)) Etc. are used.
  • PMMA norbornene resin
  • cycloolefin resin for example, “Zeonex” (made by Nippon Zeon Corporation)
  • the recording layer 1 is formed by mixing, as a recording material, for example, diaryl ethene, which is one of photochromic materials, or a derivative thereof, and, if necessary, 10 to 50 wt% of a substantially transparent resin.
  • a photochromic material By using a photochromic material, write-once that can be recorded in photon mode and rewritable recording that can be erased can be realized.
  • diallethene or a derivative thereof is preferable because thermally stable recording can be performed.
  • diarylethenes there are various derivatives of diarylethenes, specifically, l, 2-Bis [2-methylbenzo [b] thiophen_3_yl] _3,3,4,4,5,5_hexailuoro_l_cyclopentene, 2,3_Bis (2,4 , 5_tnmetnyi— «3-thienyl) maleic Anhydride 2,3— Bis (2,4,5—tnmethy ⁇ ⁇ 3—thienyl) maleimide, cis—1,2—Di cyano-1, 2, _bis (2,4,5_trimethy ⁇ 3_thienyl) ethene and the like are mentioned, but the present invention is not particularly limited as long as it is a material having a skeleton structure of diallethene.
  • the effect of preventing recrystallization of galleethene can be obtained by mixing diarelethene or a derivative thereof with, for example, a substantially transparent resin such as PMMA (polymethyl methacrylate) or an ultraviolet curable resin. However, if it is not recrystallized, no transparent resin is required. / o diallethene or its derivatives may be used
  • the recording layer of the present invention may contain, for example, a fluorescent material that emits light with high efficiency at a wavelength at which the photochromic material is exposed in the two-photon absorption process of recording light. It is preferable that the recording layer contains such a fluorescent material because the sensitivity of the recording material can be improved.
  • photochromic materials generally have low recording sensitivity in the two-photon absorption process, while fluorescent materials have high recording sensitivity in the two-photon absorption process. Therefore, the photochromic material which is generally excellent in the sensitivity of one-photon absorption is sensed by the two-photon fluorescence in the one-photon absorption process.
  • fluorescent material as described above include inorganic fluorescent materials such as europium-activated strontium pyrophosphate 'magnesium [(Sr, Mg) PO: Eu], and paratel
  • organic fluorescent dyes such as phenyl (p-Terphenyl).
  • a material that is recorded in a photon mode such as a side chain liquid crystalline polymer or a photopolymer
  • Photopolymers are preferred because they are suitable for write-once recording and are stable after recording.
  • an organic dye, a resin film mixed with ultrafine particles such as ⁇ , and a TeO film are also preferable.
  • a resin that is the same as or different from the resin used for the recording layer 1 in order to obtain a predetermined reflectance at the interface with the recording layer 1 is used.
  • a transparent resin such as an ultraviolet (UV) curable resin, a thermosetting resin, a glass, a norbornene resin, or a cycloolefin resin is used.
  • Recording pits 5 were recorded three-dimensionally in the recording layer 1 in the order not passing through the recording layer 1.
  • the recording pits 5 are recorded in such an order, for example, in the target layer Id, the scattering generated by passing through the recording layer le above the target layer id and the recorded recording pits 5 of If.
  • the effect of reducing the influence of stray light (noise light) such as light and unwanted diffracted light improves the SN ratio
  • the recording pit 5 is sequentially recorded from the position farthest from the objective lens 6 in the recording layer 1 (the recording layer la in FIG.
  • the recording layer la is formed on the substrate 9 by, for example, spin coating (FIG. 6B), and the intermediate layer 2a is formed thereon by, for example, coating. ( Figure 6C).
  • the recording layer lb, the intermediate layer 2b, the recording layer lc,... are repeatedly formed on the intermediate layer 2a.
  • the protective layer 4 is formed on the light incident side by, for example, coating or film formation (FIG. 6D).
  • the intermediate layer 2 and the recording layer 1 may be formed excessively. Then, an excessively formed portion of the intermediate layer 2 and the recording layer 1 (that is, a portion of the recording portion on the light incident side) may be used as the protective layer 4. According to this configuration of the recording portion, it is not necessary to form the protective layer 4 in a separate process, and a protective layer made of substantially the same material as the recording portion 3 is formed.
  • the optical information recording / reproducing apparatus 70 of the present embodiment has two types of light sources having different wavelengths, that is, the recording light source 20a and the reproducing light source 20b.
  • the recording light source 20a and the reproducing light source 20b In the optical path from the light sources 20a and 20b to the information recording medium 21, a beam splitter 18a, a collimator lens 16, a beam splitter 18b, a rising mirror 12, a wave plate 10, a spherical aberration correction element 13, and an objective lens 6 are provided.
  • a focus Z track error signal detection element 15 In the optical path from the beam splitter 18b to the photodetector 19 in the return path, a focus Z track error signal detection element 15, a detection lens 11, and a pinhole 14 that reduces the interlayer crosstalk of the information recording medium 21 are arranged. Has been.
  • the recording light source 20a is a semiconductor pulse laser light source that emits recording light having a pulse width force of, for example, 100 femtoseconds to 10 nanoseconds and a wavelength ⁇ 2 of 0.78 ⁇ m.
  • the reproduction light source 20b is, for example, a semiconductor laser light source that emits reproduction light having a wavelength of 11: 0.66 ⁇ m.
  • the recording density can be reduced to non-linear recording such as two-photon absorption recording, multiphoton absorption recording, and plasma absorption recording. Higher density.
  • a light source in which both light sources are arrayed may be used.
  • the wave plate 10 is arranged in a common optical path of recording / reproducing light to the objective lens 6 and the light source 20.
  • This wave plate 10 is designed so as to be substantially ⁇ / 4 plate force for recording light 22a or close to it by utilizing the difference between both wavelengths, and substantially ⁇ for reproducing light 22b. Designed to be at or near the force of a / 2 board or a board.
  • the beam splitter 18a also utilizes the difference between the two wavelengths to transmit the recording light 22a, reflects the reproduction light 22b, and the beam splitter 18b also utilizes the difference in wavelength to record the light 22a. It is a polarization beam splitter and is designed to function as a half mirror that hardly depends on the polarization direction for the reproduction light 22b.
  • the optical information recording / reproducing device 70 of the present embodiment is linearly polarized light emitted from the recording light source 20a in the Y-axis direction and has a relatively large peak value as shown in FIG.
  • Recording light 22a of pulsed laser light first passes through the beam splitter 18a. Then, the recording light 22 a becomes substantially parallel light by the collimator lens 16, passes through the beam splitter 18 b that is a beam branching element, and the optical path is bent in the Z-axis direction by the rising mirror 12.
  • the light is focused on the desired recording layer lb of the recording unit 3 by passing through the protective layer 4 of the information recording medium 21 having the configuration described so far by the objective lens 6 having a focal length of 0.8 mm and a focal length of 2 mm (convergent light). 7a).
  • focus servo and track servo A row of recording pits 5 is recorded on the recording layer 1 using a non-linear phenomenon such as a two-photon or multi-photon absorption process.
  • an information recording medium in which the reflectance of the unrecorded area with respect to the recording light wavelength is smaller than the reflectance of the unrecorded area with respect to the reproduction light wavelength.
  • the decrease in recording noise is reduced and the recording pit 5 is recorded with high accuracy.
  • the spherical aberration correction element 13 provided in the optical path from the light source 20 to the objective lens 6 is used in the recording unit 3 If recording is performed while controlling the amount of spherical aberration by the spherical aberration correction element 13 in accordance with the recording depth of the recorded information pit 5, a good recording pit 5 can be formed with high accuracy.
  • the spherical aberration correcting element 13 a liquid crystal element having a variable refractive index distribution, a beam expander in which a concave lens and a convex lens are combined, and an interval between both lenses in the optical axis direction is variable is used.
  • the reproduction light 22b which is a linearly polarized laser beam emitted from the reproduction light source 20b, is bent in the Y-axis direction by the beam splitter 18a, and substantially the same by the collimator lens 16. It becomes parallel light, passes through the beam splitter 18b, and the optical path is bent in the Z-axis direction by the rising mirror 12. Then, the reproduction light 22b (laser light 8) bent in the Z-axis direction passes through the wave plate 10 and the spherical aberration correction element 13, and remains linearly polarized by the objective lens 6 to be recorded on the recording section of the information recording medium 21. Condensed to the recording pit 5 of the recording layer 1 (converged light 7b).
  • the laser beam 7b ′ reflected by the recording pit 5 is folded in the reverse direction, passes through the objective lens 6, the spherical aberration correction element 13, the wave plate 10, and the rising mirror 12 in this order, and is optically reflected by the beam splitter 18b. Is bent in the Z-axis direction, branched into a plurality of lights by the diffractive focus Z-track error signal detection element 15, and becomes detection converged lights 17 and 17 'by the detection lens 11.
  • the detection converged light 17 serving as the reproduction signal light passes through the pinhole 14 and the signal is detected by the photodetector 19a.
  • the detected convergent light 17 ′ that becomes the branched focus / track error signal is detected by another photodetector 19b without passing through the pinhole.
  • the detection convergent light 17 'that becomes the focus Z track error signal is a conventional method such as the astigmatism method, SSD method (spot' size detection method), and three beam tracking method.
  • Each focus and track error signal Detected. That is, the recorded pits are recorded and reproduced by utilizing the change in the optical constant of the recording layer while performing the focus servo and the track servo using the reflected lights 7a ′ and 7b ′.
  • the focal length of the detection lens 11 is, for example, 33 mm, and the Airy disk diameter on the photodetector 19 side is, for example, 9.
  • the pinhole 14 is a force pinhole 14 installed at a substantially focal position of the detection convergent light 17.
  • the objective lenses in the upper and lower recording layers la, lc, and Id in the optical axis direction of the desired recording layer lb Crosstalk light (interlayer crosstalk) that is unnecessary reflected light from another recording pit irradiated by the convergent light 7 of 6 is distributed outside the pinhole 14. Since these lights do not enter the pinhole 14, interlayer crosstalk is reduced. Further, the same effect can be obtained even if the detection convergent light 17 is detected by the photodetector 19a in which the light receiving portion of the photodetector has a pinhole diameter instead of the pinhole 14.
  • the layer interval Ad of the recording layer 1 is 5 to The quality of the playback signal has been improved to a level where there is no problem even at 8 xm (interlayer crosstalk ⁇ 30 dB).
  • the signal strength can be increased by using an APD (avalanche photodiode).
  • APD active photodiode
  • the optical information recording / reproducing apparatus of the above embodiment may emit the reproducing light 22b together with the recording light 22a at the time of recording, and perform focus servo by the reproducing light 7b.
  • the reproducing light is emitted during recording, and the convergent light 7b is condensed on the desired recording layer lb and the reflected light 7b 'is used to perform focus servo, while the convergent light 7a is focused on the desired recording layer lb.
  • Focus servo using recording light tends to be difficult. For this reason, if focus servo is performed using reproduction light during recording, the recording pits 5 are recorded with high layer accuracy on the lowermost recording layer la while ensuring reflected light for focus servo.
  • the recording sensitivity is a square characteristic of the light quantity. Therefore, if the focus servo is performed by the reproduction light, the attenuation of the recording light by the focus servo can be suppressed, and the effect is great.
  • the reflectance of an unrecorded area with respect to ⁇ 2 is particularly small, for example, 0.01% or less. It is preferable to have a film thickness of the recording layer (that is, a film thickness that makes focus servo difficult with only the recording light).
  • the film thickness of such a recording layer is expressed in a range that satisfies the following formula (5), considering the displacement of the reflectance of the unrecorded area with respect to ⁇ 2.
  • ⁇ 2 is the recording light wavelength
  • is the refractive index of the unrecorded area of the recording layer
  • q is an arbitrary positive even number
  • the reproduction light wavelength 1 used in the present embodiment is 0.6 ⁇ 1 ⁇ 0.7 ⁇ m
  • the recording light wavelength ⁇ 2 is 0 ⁇ 73 / im ⁇ e 2 ⁇ In the range of 0 ⁇ 83 ⁇ m
  • q 4, that is, a film thickness t that satisfies the following formula (6).
  • the range of this film thickness t is as described above; 1 It is possible to secure the reflectance of the unrecorded area with respect to 1 and good reproduction signal intensity (more than 0.7 times the maximum reflectance rl) max
  • the information recording medium having the characteristic of H ⁇ L has a lower reflectance after recording than the information recording medium having the characteristic of L ⁇ H. It is preferable that a large difference in reflectance is obtained before and after recording, and as a result, the modulation rate can be increased.
  • the second embodiment is similar to the first embodiment in that the reproduction light wavelength ⁇ 1 shorter than the recording light wavelength 2 is used.
  • the force reproduction light wavelength is 0.35 / im ⁇ 1 ⁇ 0. It differs in that recording light and reproducing light satisfying 45 / im and recording light wavelength satisfying 0.6 ⁇ 2 ⁇ 0.7 ⁇ are used.
  • FIGS. 8 to 11 are diagrams for explaining the information recording medium of the second embodiment in detail.
  • FIG. 8A and 8B show an example of the relationship between the thickness of the recording layer of the information recording medium according to Embodiment 2 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • ing . 9A and 9B show another example of the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 2 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer. Is shown.
  • FIG. 10A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 8A and the reflectance of the reproduction light in the unrecorded area and the recorded area of the recording layer.
  • FIG. 11A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 9A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer
  • FIG. 2 shows the relationship between the thickness of the recording layer of the information recording medium and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • Nl l. 60
  • n2 In the case of 1.64, the thickness of the recording layer and the reflectance of the unrecorded area 24 with respect to ⁇ 1 (0.405 zm) and ⁇ 2 (0.66 ⁇ m) as shown by the dotted line and the solid line in FIGS. 8A and 8B It was confirmed that the relationship showed a sinusoidal periodic change.
  • the reflectance displacement is the same as in Embodiment 1.
  • Rl (t) rl [1 -cos (4 ⁇ ⁇ t / ⁇ 1)] / 2
  • R2 (t) r2 (l_co
  • Rl (t) rl [1- ⁇ 8 (4 ⁇
  • the reproduction light wavelength and the recording light wavelength of this embodiment are used as long as the film thickness is larger than the displacement R2 (t) of the reflectance of ⁇ 2 in the unrecorded area of the recording layer with respect to the film thickness of the layer.
  • the reflectance of the unrecorded area with respect to ⁇ 2 is smaller than the reflectance of the unrecorded area with respect to ⁇ . That is, as in the first embodiment, when the film thickness of the recording layer satisfies Expression (1), good recording / reproduction can be performed with high accuracy while ensuring the reflected light for focus servo.
  • Each range is t ⁇ T ⁇ t, t ⁇ T, as in the condition of the expression (2) in the first embodiment. ⁇ t, t ⁇ T ⁇ t, t ⁇ T ⁇ t, ...
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to 1 has the maximum value is expressed by ⁇ 1 / (4n) using an arbitrary positive odd number p
  • the film thickness of the recording layer at which the reflectance of the recorded area 23 with respect to 1 shows the maximum value is represented by p ⁇ 1 / (4nl).
  • a preferable recording film film in which the reflectance of the reproduction light in the unrecorded area 24 is 0.7 times or more of the maximum reflectance is obtained.
  • the thickness is in the range that satisfies equation (3).
  • the specific thickness of the recording layer is, for example, within the range of Ta, Tb, Tc, 1, (... means repetition) indicated by the horizontal arrows in FIG. , m ⁇ Ta ⁇ 0.09 ⁇ m, 0.17 xm ⁇ Tb ⁇ 0.22 zm, 0.30 xm ⁇ Tc ⁇ 0.35 zm, 0.43 xm ⁇ Td ⁇ 0.48 ⁇ m, 0.56 ⁇ m ⁇ Te ⁇ 0.61 ⁇ m, fc.
  • the more preferable range of the thickness of the recording layer 1 is As in Form 1, the reflectivity for ⁇ 2 of the unrecorded area 24 is smaller than the reflectivity for ⁇ 1, and the range represented by ⁇ , ⁇ , ⁇ ,. (0.7 times or more of the maximum value) is certain
  • Tr, Tr, T Tr ⁇ 0.22 xm, 0.32 ⁇ m ⁇ Tr ⁇ 0.34 ⁇ m, 0.43 / im ⁇ Tr ⁇ 0.48 ⁇ m, 0. 57 xm ⁇ Tr ⁇ 0. 61 xm,..., (... means repetition), Tr, Tr, T
  • the reflectivity of the unrecorded area 24 and the recorded area 23 with respect to ⁇ 1 shows a periodic change in a sine wave shape as indicated by the dotted line and the solid line in FIG. 11A, respectively.
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to 1 has the maximum value is ⁇ 1 / (4n) using an arbitrary positive odd number p.
  • the film thickness of the recording layer in which the reflectance of the recorded area 23 with respect to E1 has the maximum value is expressed as pE1 / (4nl).
  • a preferable recording film film in which the reflectance of the reproduction light in the recorded region 23 is 0.7 times or more of the maximum reflectance is obtained.
  • the thickness is in the range that satisfies equation (4).
  • the specific thickness of the recording layer is, for example, within the range of Ta, Tb, Tc, 1, (... means repeatedly) indicated by the horizontal arrows in FIG. m ⁇ Ta ⁇ 0.09 ⁇ m, 0. 17 xm ⁇ Tb ⁇ 0.21 zm, 0.29 xm ⁇ Tc ⁇ 0.34 ⁇ m, 0.42, m ⁇ Tcl ⁇ 0.47 ⁇ m, 0.55 xm ⁇ Te ⁇ 0. 59 zm.
  • the more preferable range of the thickness of each recording layer 1 is a good reproduction signal intensity ( The maximum reflectivity rl is 0.7 times or more), and the reflectivity for ⁇ 2 of the unrecorded area 24 is max.
  • the film thickness in a more preferable range that satisfies both film thickness ranges simultaneously is, for example, 0.04 ⁇ ⁇
  • the information recording medium having both the characteristics of H ⁇ L and L ⁇ H has a recording layer thickness of, for example, 0.6 xm or less. It is easier to make a thinner one. Therefore, it is preferable to set the film thickness range of the recording layer 1 around each of the above results and Tr, Tr, Tr, Tr, or Tr shown in FIGS. 10A and 11A.
  • the reproduction light wavelength 1 satisfies 0.35 / im ⁇ 1 ⁇ 0.45 / im, and the recording light wavelength 2 power SO.
  • the reflectance of the unrecorded area 24 with respect to 2 shown in FIG. 2 can be significantly smaller than the reflectance of the unrecorded area 24 with respect to ⁇ 1 indicated by the dotted line.
  • the reflectivity is 0.32% for the H ⁇ L information recording medium and 0.36% for the L ⁇ H information recording medium.
  • the reflectivity of the unrecorded area 24 with respect to ⁇ 2 is substantially the same and is 0.02%.
  • an information recording medium is obtained in which the reflectance of the unrecorded area 24 with respect to ⁇ 2 is significantly smaller than the reflectance of the unrecorded area with respect to ⁇ 1.
  • the film thickness of the recording layer 1 is within the range of, for example, 7 ⁇
  • the reflectance of the unrecorded area 24 with respect to ⁇ 1 is 0.32% for the H ⁇ L information recording medium and 0.36% for the L ⁇ H information recording medium.
  • the reflectivity of the unrecorded area 24 with respect to ⁇ 2 is 0.06% for the information recording medium of H ⁇ L and 0.07% for the information recording medium of L ⁇ H. Therefore, it is possible to obtain an information recording medium in which a decrease in the amount of recording light is greatly suppressed as compared with a decrease in the amount of reproduction light.
  • the more preferable range of film thickness is wavelength and refractive index. Needless to say, it is different depending on the stitch length.
  • the manufacturing method of the information recording medium and the optical information recording / reproducing apparatus of the present embodiment are the same as those described in the first embodiment.
  • both the recording light and the reproduction light are emitted, and the reproduction light is condensed on the desired recording layer and reflected.
  • Focus servo may be performed using light.
  • the reflectance power with respect to ⁇ 2 for example, a film thickness that is as small as 0.01% or less, is in a range that satisfies Equation (5), as in the first embodiment.
  • the film thickness of the recording layer satisfying the formula (7) in any of the information recording media having the characteristics of H ⁇ L and L ⁇ H The range is 0.20 ⁇ 0.22 / im. This range of film thickness is included in the more preferable range of film thickness Tr shown in FIGS. 10A and 11A described above.
  • q 4 that is, a recording layer having a film thickness t in a range satisfying the following formula (8) is preferable.
  • the range of the film thickness satisfying the equation (8) with the refractive index of the recording layer is 0.41 zm ⁇ t ⁇ 0.44 xm.
  • the range common to the more desirable film thickness Tr shown in FIG. 10A or FIG. 11A is 0.43 M m ⁇ t for H ⁇ L information recording media.
  • the third embodiment is the same as the first embodiment in that the reproduction light wavelength ⁇ 1 shorter than the recording light wavelength ⁇ 2 is used.
  • the force reproduction light wavelength is 0.48 zm ⁇ ⁇ 1 ⁇ 0.58 zm. It is different in that recording light and reproducing light satisfying and satisfying the recording light wavelength of 0.6 ⁇ 2 ⁇ 0.7 ⁇ are used.
  • FIGS. 12 to 15 are drawings for explaining the information recording medium of the third embodiment in detail.
  • FIG. 12A and 12B show an example of the relationship between the thickness of the recording layer of the information recording medium according to Embodiment 3 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 13A and FIG. 13B show another example of the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 3 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer. An example is shown.
  • FIG. 14A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 12A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer, and FIG.
  • FIG. 15A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 13A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer.
  • FIG. 15B shows the relationship between FIG. 2 shows the relationship between the thickness of the recording layer of the information recording medium and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • Nl l.60
  • n2 l.6 4.
  • each range is defined as t ⁇ T ⁇ t, t ⁇
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to ⁇ 1 has the maximum value is expressed by ⁇ lZ (4n) using an arbitrary positive odd number ⁇ .
  • the film thickness of the recording layer at which the reflectance of the recorded area 23 with respect to ⁇ 1 shows the maximum value is represented by ⁇ ⁇ 1 / (4nl).
  • the preferable film thickness of the recording film in which the reflectance of the reproduced light obtained is 0.7 times or more of the maximum reflectance is in the range satisfying the formula (3).
  • the specific thickness of the recording layer is, for example, within the range of Ta, Tb, Tc, one (... means repetition) indicated by the horizontal arrows in FIG. , m ⁇ Ta ⁇ 0. 12 xm, 0.2 3 xm ⁇ Tb ⁇ 0.29 zm, 0.40 xm ⁇ Tc ⁇ 0.46 ⁇ m, 0.57 xm ⁇ Td ⁇ 0.63 ⁇ m, 0.74 xm ⁇ Te ⁇ 0.80 zm, ... is there.
  • the more preferable range of the film thickness of each recording layer 1 is As in the first embodiment, the reflectivity for the unrecorded area 24 and the length 2 is smaller than the reflectivity for ⁇ 1, and the range represented by ⁇ , ⁇ , ⁇ ,. (More than 0.7 times the maximum value)
  • the film thickness in a more preferable range that satisfies both the film thickness ranges simultaneously is, for example, 0.05 xm in one jet including the film thickness force M and the horizontal force indicated by the horizontal arrows in FIG. 14A.
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to ⁇ 1 shows the maximum value is expressed by ⁇ 1Z (4 ⁇ ) using an arbitrary positive odd number ⁇ , and the recording with respect to ⁇ 1
  • the film thickness of the recording layer in which the reflectance of the finished area 23 shows the maximum value is represented by ⁇ ; 11Z (4nl).
  • the preferred recording film thickness for obtaining the reproduction light reflectance in the recorded area 23 is 0.7 times or more of the maximum reflectance is as follows. , The range satisfies Eq. (4).
  • the specific film thickness of the recording layer is, for example, within a range of Ta, Tb, Tc,... (... means repeatedly) indicated by a horizontal arrow in FIG. 0.05, m ⁇ Ta ⁇ 0.ll xm, 0.22 xm ⁇ Tb ⁇ 0.28 zm, 0.38 xm ⁇ Tc ⁇ 0.45 zm, 0.55, m ⁇ Tcl ⁇ 0.61 ⁇ m, 0.72 xm ⁇ Te ⁇ 0. 78 ⁇ m.
  • a range of film thickness that is sometimes satisfied is desirable.
  • the film thickness in a more preferable range that satisfies both the film thickness ranges simultaneously is indicated by the horizontal arrows in FIG. ⁇ m ⁇ Tr ⁇ 0. 10 xm, 0.22 ⁇ m ⁇ Tr ⁇ 0.28 ⁇ m, 0.38 ⁇ m
  • a more preferable range of the film thickness differs depending on the combination of the wavelength and the refractive index.
  • the information recording medium having the characteristics of both H ⁇ L and L ⁇ H has a recording layer thickness of, for example, 0.6. It's easier to make the one that is thinner than zm. Therefore, the film thickness range of the recording layer 1 is preferably set to Tr, Tr, Tr, or around Tr described above and shown in FIGS. 14A and 15A.
  • the reproduction light wavelength 11 is 0.48 ⁇
  • the reflectance of the unrecorded area 24 for ⁇ 2 indicated by the line can be significantly smaller than the reflectance of the unrecorded area 24 for ⁇ 1 indicated by the dotted line.
  • the recording layer When the film thickness of 1 is set to T xm (this film thickness is
  • the reflectance of H ⁇ L is 0.32% for the information recording medium of H ⁇ L , and the power of the information recording medium of L ⁇ H is 0.36%.
  • the reflectivity of the unrecorded area 24 with respect to ⁇ 2 is as small as 0.12% for the H ⁇ L information recording medium force and 0.1% for the L ⁇ H information recording medium.
  • an information recording medium is obtained in which the reflectance of the unrecorded area 24 with respect to ⁇ 2 is significantly smaller than the reflectance of the unrecorded area with respect to ⁇ 1.
  • the reflectivity of the unrecorded area 24 with respect to 1 is H ⁇ L information recording medium force 0.32%, and L ⁇ H information recording medium force 0.36%.
  • the reflectivity of the unrecorded area 24 with respect to ⁇ 2 is very small, 0.0007% for the H ⁇ L information recording medium and 0.0008% for the L ⁇ H information recording medium.
  • an information recording medium can be obtained in which the decrease in the amount of recording light is greatly suppressed as compared with the decrease in the amount of reproduction light.
  • the more preferable range of film thickness varies depending on the combination of wavelength and refractive index.
  • the information recording medium manufacturing method and optical information recording / reproducing apparatus according to the present embodiment have the same configurations as those described in the first embodiment.
  • both the recording light and the reproduction light are emitted, and the reproduction light is condensed on the desired recording layer and reflected.
  • Focus servo may be performed using light.
  • the reflectance power with respect to ⁇ 2 for example, a film thickness that is as small as 0.01% or less, is in a range that satisfies Equation (5), as in the first embodiment.
  • the reproduction light wavelength satisfies 0.48 x m ⁇ ⁇ 1 ⁇ 0.58 ⁇ m, and the recording light wavelength is 0.6.
  • a recording layer having a film thickness t in the range of q 4, that is, the following expression (9) is preferable.
  • the film thickness of the recording layer satisfying the formula (9) in any information recording medium having the characteristics of H ⁇ L and L ⁇ H The range of The range is 0.41 xm ⁇ t ⁇ 0.44 zm. This film thickness range is included in the more preferable film thickness range shown in FIGS. 14A and 15A described above.
  • the fourth embodiment is the same as the first embodiment in that a reproduction light wavelength ⁇ 1 shorter than the recording light wavelength ⁇ 2 is used, and the reproduction light wavelength satisfies 0.35 ⁇ 11 ⁇ 0.45 zm, The difference is that recording light and reproducing light satisfying the recording light wavelength of 0.48 ⁇ m ⁇ ⁇ 1 ⁇ 0.58 zm are used.
  • FIGS. 16 to 19 are diagrams for explaining the information recording medium of the fourth embodiment in detail.
  • FIGS. 16A and 16B show an example of the relationship between the thickness of the recording layer of the information recording medium according to Embodiment 4 of the present invention and the reflectance of reproduction light and recording light in an unrecorded area of the recording layer.
  • FIG. 17A and FIG. 17B show another example of the relationship between the film thickness of the recording layer of the information recording medium according to Embodiment 3 of the present invention and the reflectance of the reproduction light and the recording light in the unrecorded area of the recording layer.
  • FIG. 18A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 16A and the reflectance of the reproduction light in the unrecorded area and the recorded area of the recording layer
  • FIG. 18A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 16A and the reflectance of the reproduction light in the unrecorded area and the recorded area of the recording layer
  • FIG. 19A shows the relationship between the thickness of the recording layer of the information recording medium of FIG. 17A and the reflectance of the reproduction light in the unrecorded area and recorded area of the recording layer.
  • FIG. 19B shows the relationship between FIG. 2 shows the relationship between the thickness of the recording layer of the information recording medium and the reflectance of the recording light in the unrecorded area and recorded area of the recording layer.
  • Rl (t) rl [l_cos (4n7it / 1)] / 2
  • R2 (t) r2 [l-cos (4n max max
  • the displacement of the reflectance of ⁇ 1 in the unrecorded area of the recording layer with respect to the film thickness of the recording layer indicated by the dotted line Rl (t) force is indicated by the solid line.
  • the thickness of the recording layer is larger than the displacement R2 (t) of the reflectance of ⁇ 2 in the unrecorded area of the recording layer
  • the reproduction light wavelength and the recording light wavelength of the present embodiment are When used, the reflectivity of the unrecorded area for ⁇ 2 is smaller than the reflectivity of the unrecorded area for ⁇ 2. That is, as in the first embodiment, when the film thickness of the recording layer satisfies Expression (1), good recording / reproduction can be performed with high accuracy while ensuring the reflected light for focus servo.
  • the reflectivity curve force for 11 is indicated by the solid line; the range of the recording layer thickness that is larger than the reflectivity curve for 12 is shown by the horizontal arrows in FIGS. 16B and 17B, respectively.
  • Each range expressed using t is
  • the thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to ⁇ 1 has the maximum value is expressed by ⁇ 1 / (4 ⁇ ) using an arbitrary positive odd number ⁇ , and ⁇ 1
  • the thickness of the recording layer at which the reflectance of the recorded area 23 with respect to the maximum value is expressed by ⁇ 1 / (4nl).
  • a preferable recording film film in which the reflectance of the reproduction light in the unrecorded area 24 is 0.7 times or more of the maximum reflectance is obtained.
  • the thickness is in the range that satisfies equation (3).
  • Specific recording layer thicknesses are, for example, 0.04 ⁇ m ⁇ Ta ⁇ 0.09 / im, 0.17 / im ⁇ Tb ⁇ 0.22 / im, as indicated by the horizontal arrows in Fig. 18A. 0. 30 / im ⁇ Tc ⁇ 0.35 xm, 0.43 ⁇ 0.48 ⁇ m, 0.56 ⁇ 0.61 / im,.
  • the more preferable range of the film thickness of each recording layer 1 is As in the first embodiment, the reflectivity for the unrecorded area 24 and the length 2 is smaller than the reflectivity for ⁇ 1, and the range represented by ⁇ , ⁇ , ⁇ ,. (More than 0.7 times the maximum value)
  • a more preferable film thickness that satisfies both film thickness ranges simultaneously is, for example, 0.04 zm ⁇ Tr ⁇ in the order of monthly thickness as shown by the horizontal arrow in FIG. 18A. 0.07 ⁇ m, 0.17 ⁇
  • Tr Tr ⁇ 0.59 xm,..., (... means repeatedly), Tr, Tr
  • the reflectivity of the unrecorded area 24 and the recorded area 23 with respect to ⁇ 1 shows a periodic change in a sine wave shape as indicated by a dotted line and a solid line in FIG. 19A, respectively.
  • the reflectance in the recorded area 23, which is 5, increases to the maximum value rl 0.83% (the minimum value is max
  • the film thickness of the recording layer 1 in which the reflectance of the unrecorded area 24 with respect to ⁇ has the maximum value is expressed by ⁇ 1 / (4 ⁇ ) using an arbitrary positive odd number ⁇ .
  • the film thickness of the recording layer at which the reflectance of the recorded area 23 with respect to ⁇ 1 has the maximum value is expressed by ll / (4nl).
  • the preferred recording film thickness for obtaining the reproduction light reflectance in the recorded region 23 of 0.7 times or more of the maximum reflectance is as follows. The range that satisfies Equation (4).
  • the specific thickness of the recording layer is, for example, within the range of Ta, Tb, Tc, ... (... means repeatedly) indicated by the horizontal arrows in Fig. 19A. 0.04 / im ⁇ Ta ⁇ 0.09 xm, 0.17 m ⁇ Tb ⁇ 0.21 / im, 0.29 ⁇ 0.34 ⁇ m, 0.42 ⁇ m ⁇ Td ⁇ 0.47 ⁇ m, 0.55 ⁇ 0.59 / im, 0.67 / im ⁇ Tf ⁇ 0.72 xm.
  • the more preferable range of the thickness of each recording layer 1 is a good reproduction signal intensity (maximum The reflectance is 0.7 times or more of the reflectivity), and the reflectivity for the length 2 of the unrecorded area 24 is smaller than the reflectivity for ⁇ 1. That is, ⁇ , ⁇ , ⁇ , ...
  • the more preferable film thickness of each recording layer 1 that satisfies both ranges of film thickness at the same time is, for example, 0.04 M m in order from the smallest film thickness indicated by the horizontal arrow in FIG. ⁇ Tr ⁇ 0.07 zm, 0.17 ⁇ 0.21 zm, 0.30 zm ⁇ Tr ⁇ 0.34 ⁇ m, 0.45
  • Tr Tr, Tr, Tr, Tr, Tr, ...
  • the information recording medium having both the characteristics of H ⁇ L and L ⁇ H has a recording layer thickness of 0.6 xm or less to some extent, for example. Thinner is easier to make. For this reason, the range of the film thickness of the recording layer 1 depends on each of the above results and FIGS. It is preferable to set Tr, Tr, Tr, Tr, or around Tr shown in A.
  • the reproduction light wavelength 11 is 0.35 ⁇
  • both of the information recording media in particular, T (t to t) (t to t), i.e., i in the formula (2) is in the range of 1 or 2.
  • the reflectance of the unrecorded area 24 with respect to ⁇ 2 indicated by the solid line can be significantly smaller than the reflectance of the unrecorded area 24 with respect to ⁇ 1 indicated by the dotted line.
  • 3/1 / (4 ⁇ ) 0.20 / im in the area of the film thickness force ⁇ of the recording layer 1 is set (this
  • the film thickness is included in the more preferable film thickness Tr of the recording layer 1 described above.
  • the reflectivity of the recording area 24 is 0.32% for the information recording medium from H to L, and 0.36% for the information recording medium from L to H.
  • the reflectance of the unrecorded area 24 with respect to ⁇ 2 is 0.06% for the information recording medium of H ⁇ L and 0.07% for the information recording medium of L ⁇ H.
  • an information recording medium is obtained in which the reflectance of the unrecorded area 24 with respect to ⁇ 2 is significantly smaller than the reflectance of the unrecorded area with respect to ⁇ 1.
  • the reflectivity of the unrecorded area 24 with respect to ⁇ 1 is 0.32% for the information recording medium of H ⁇ L and 0.36% of the information recording medium force of L ⁇ H.
  • the reflectance of the unrecorded area 24 with respect to ⁇ 2 is as small as 0.03%. Therefore, an information recording medium can be obtained in which the decrease in the amount of recording light is greatly suppressed compared to the decrease in the amount of reproduction light.
  • the more preferable range of film thickness varies depending on the combination of wavelength and refractive index.
  • the information recording medium manufacturing method and optical information recording / reproducing apparatus according to the present embodiment have the same configurations as those described in the first embodiment.
  • both the recording light and the reproduction light are emitted, and the reproduction light is condensed on the desired recording layer and reflected.
  • Focus servo may be performed using light.
  • the reflectance power with respect to ⁇ 2 for example, a film thickness that is as small as 0.01% or less, is in a range that satisfies Equation (5), as in the first embodiment. [0165] (q-0.104) ⁇ 2 / (4 ⁇ ) ⁇ t ⁇ (q + 0.104) ⁇ 2 / (4 ⁇ ) (5)
  • the film thickness of the recording layer satisfying the formula (10) in the information recording medium having both the characteristics of H ⁇ L and L ⁇ H The range of is 0.16 / im ⁇ t ⁇ 0.18 / im.
  • the more common film thickness range Tr shown in FIG. 18A and FIG. 19A described above is either H ⁇ L or L ⁇ H.
  • q 4 that is, a recording layer having a film thickness t in a range satisfying the following formula (11) is preferable.
  • the range of the film thickness satisfying the expression (11) with the refractive index of the recording layer is 0.33 / im ⁇ t ⁇ 0.35 / im.
  • the range common to the more desirable film thickness Tr shown in FIG. 18A or 19A is 0.33 xm ⁇ t for H ⁇ L information recording media.
  • the range is 0.33 / im ⁇ t ⁇ 0.34 / im.
  • the force described in the case where the refractive index n of the unrecorded area of the recording layer is smaller than the refractive index nl of the recorded area is the same even when n> nl.
  • the present invention is applied to. That is, when the ring-closed ring of the dialuleten is used as a non-recorded area and the ring-opened body is used as a recorded area, the refractive index n of the non-recorded area is larger than the recorded area nl.
  • the H ⁇ L information recording medium satisfies the relationship n2 ⁇ nl ⁇ n
  • the L ⁇ H information recording medium satisfies the relationship nl ⁇ n ⁇ n2. It is preferable to do.
  • the present invention is not limited to these embodiments.
  • the information recording medium and the optical information recording / reproducing of each embodiment are not included.
  • An information recording medium and an optical information recording / reproducing device combined with a configuration of a live device are also included in the present invention, and the same effect can be achieved.
  • the information recording medium includes a rewritable type in addition to the write-once type. Furthermore, it goes without saying that any information recording medium on which information is recorded can be applied to an optical information reproducing apparatus that performs only reproduction.
  • the intermediate layer has both wavelengths.
  • the recording light and the reproduction light are incident on an unrecorded information recording medium, respectively, and the transmittance is measured. It can be assumed that
  • the objective lens, the collimator lens, and the detection lens used in the above embodiment are named for convenience, and are the same as general lenses.
  • the present invention is a substrate in which two substrates having a recording portion are joined on a substrate.
  • the present invention can also be applied to an information recording medium having recording units on both sides.
  • an optical disk has been described as an example of an information recording medium.
  • a medium with different specifications such as thickness and recording density is reproduced by a similar information recording / reproducing apparatus.
  • one aspect of the present invention is an information recording medium including a substrate and a recording unit capable of three-dimensionally recording recording pits on the substrate, wherein the recording The unit records the recording pit by condensing recording light having a wavelength ⁇ 2, and reproduces the recording pit by condensing reproduction light having a wavelength ⁇ 1 shorter than the wavelength ⁇ 2.
  • the recording layer has a plurality of recording layers and intermediate layers alternately stacked with the recording layers, and the reflectance of the unrecorded area of the recording layer with respect to the recording light wavelength ⁇ 2 is the recording layer for the reproduction light wavelength; 11 This is an information recording medium smaller than the reflectance of the unrecorded area.
  • the recording layer preferably contains a photochromic material. According to the above configuration, a sufficient amount of recording light is ensured even in the lowermost recording layer, so that even a photochromic material whose recording sensitivity is affected by the amount of light can perform good recording due to a nonlinear phenomenon.
  • the recording light and the reproduction light satisfy the relationship of one of the following reproduction light wavelengths ⁇ 1 and ⁇ 2 (i) to (iv).
  • the thickness t of the recording layer is defined as the change in the reflectance of the reproduction light in the unrecorded area of the recording layer relative to the thickness of the recording layer and the unrecorded area of the recording layer relative to the thickness of the recording layer. It is preferable that the condition of the following formula (1) showing the relationship with the displacement of the reflectance of the recording light in the region is satisfied.
  • is the reproduction light wavelength
  • ⁇ 2 is the recording light wavelength
  • is the refractive index of the unrecorded area of the recording layer
  • t is the film thickness of the recording layer
  • rl is the unrecorded area of the recording layer relative to ⁇ 1 Maximum reflectance
  • r2 is the maximum reflectance of the unrecorded area of the recording layer with respect to ⁇ 2.
  • a recording layer having a reproduction light reflectance higher than that of the recording light in an unrecorded area can be obtained, so that good recording can be performed while ensuring reflected light for focus servo. It becomes.
  • the film thickness t of the recording layer satisfying the above reflectance relationship is The thickness of the recording layer where the displacement of the reflectance of ⁇ 1 in the unrecorded area of the recording layer with respect to the film thickness matches the displacement of the reflectance of ⁇ 2 in the unrecorded area of the recording layer with respect to the thickness of the recording layer.
  • a range satisfying the condition of t and the following expression (2) is preferable.
  • t is greater than or equal to 0
  • i is an arbitrary integer greater than or equal to 0
  • 0 ⁇ t ⁇ t is an arbitrary integer greater than or equal to 0
  • the difference in refractive index due to wavelength dispersion is small.
  • the difference between the refractive index of the intermediate layer and the refractive index of the unrecorded area of the recording layer is greater than the difference between the refractive index of the intermediate layer and the refractive index of the recorded area of the recording layer.
  • the thickness t of the recording layer preferably satisfies the condition of the following formula (3).
  • ⁇ 1 is the reproduction light wavelength
  • ⁇ 2 is the recording light wavelength
  • t is the film thickness of the recording layer
  • n is the refractive index of the unrecorded area of the recording layer
  • P is any positive odd number.
  • the present invention provides a difference between the refractive index of the intermediate layer and the refractive index of the unrecorded area of the recording layer, which is smaller than the difference between the refractive index of the intermediate layer and the refractive index of the recorded area of the recording layer. It is preferable that the thickness t of the recording layer satisfies the condition of the following formula (4).
  • ⁇ 1 is the reproduction light wavelength
  • ⁇ 2 is the recording light wavelength
  • t is the film thickness of the recording layer
  • nl is the refractive index of the recorded region of the recording layer
  • p is any positive odd number.
  • the amount of reflected light for focus servo during reproduction can be sufficiently obtained in an information recording medium having the L ⁇ H characteristic.
  • the film thickness t of the recording layer satisfies the condition of the following formula (5).
  • ⁇ 2 is the recording light wavelength
  • t is the thickness of the recording layer
  • n is the refractive index of the unrecorded area of the recording layer
  • q is any positive even number.
  • the recording layer preferably has a thickness of 0.6 ⁇ m or less. According to the above configuration, the recording layer is easily produced by a coating method or the like.
  • the difference between the refractive index of the intermediate layer and the refractive index of the unrecorded area of the recording layer or the difference between the refractive index of the intermediate layer and the recorded area of the recording layer. But 0
  • the film thickness t preferably satisfies the conditions of the following formulas (6) to (: 11).
  • ⁇ 1 is the reproduction light wavelength
  • ⁇ 2 is the recording light wavelength
  • is the refractive index of the unrecorded area of the recording layer
  • t is the film thickness of the recording layer.
  • the reflected light for the focus servo can be sufficiently secured both during recording and during reproduction, and the amount of recording light during recording and reproduction light during reproduction can be reduced. Since the reduction can be suppressed, good recording and reproduction can be performed.
  • Another aspect of the present invention is a first light source that emits recording light, a second light source that emits reproduction light having a wavelength shorter than the wavelength of the recording light, and the first and second light sources.
  • An optical information recording / reproducing apparatus comprising: an objective lens for condensing recording light and reproduction light emitted from the light source on the information recording medium; and a photodetector for detecting reflected light from the information recording medium.
  • the recording pit is recorded by using the change in the optical constant of the recording layer on which the recording light is condensed during recording, and the reflected light from the recording layer of the reproducing light is used during reproduction.
  • the optical information recording / reproducing apparatus reproduces the recording pit by performing focus servo and utilizing a difference in reflectance based on a change in the optical constant of the recording layer.
  • the focus servo can be performed by the reproduction light during reproduction. Therefore, good recording can be performed by reducing the decrease in the amount of light.
  • focus servo may be performed by using reflected light from a recording layer of the recording light during the recording. According to the above configuration, since the focus servo is performed even during recording, the recording pits are recorded with high accuracy.
  • both the recording light and the reproducing light are emitted, and the force servo is utilized by using the reflected light from the recording layer of the reproducing light. May be performed.
  • the information recording medium of the present invention since the reflectance of the reproduction light in the unrecorded area is set higher than the reflectance of the recording light, if the focus servo is performed by the reproduction light during recording, the recording pits are recorded with high accuracy.
  • the light source that emits the recording light is preferably a laser light source that emits pulsed light having a pulse width of 100 femtoseconds to 10 nanoseconds. According to the above configuration, good recording is performed due to a nonlinear phenomenon.
  • the recording pit is recorded by a non-linear absorption phenomenon such as two-photon absorption, multi-photon absorption, plasma absorption process.
  • the film thickness t of the recording layer of the information recording medium preferably satisfies the following conditions (12) to (17).
  • ⁇ 1 is the reproduction light wavelength
  • 2 is the recording light wavelength
  • is the refractive index of the unrecorded area of the recording layer
  • t is the film thickness of the recording layer.
  • the focus servo light can be ensured both during recording and reproduction, and the amount of recording light during recording and reproduction light during reproduction can be sufficiently ensured. Playback is possible.
  • the optical recording / reproducing apparatus of the present invention it is preferable to record the recording pits three-dimensionally so that the recording light condensed by the objective lens does not pass through the already recorded recording pits. According to the above configuration, it is possible to obtain an effect of reducing the influence of stray light (noise light) such as scattered light and unnecessary diffracted light generated by passing through the recorded recording pits (improvement of SN ratio).
  • stray light noise light
  • the optical recording / reproducing apparatus of the present invention at the time of recording, it is preferable to record the recording pits from the recording layer farthest from the objective lens of the recording unit of the information recording medium. According to the above configuration, the scattered light caused by the recording light passing through the recorded recording pits is not necessary. The influence of stray light (noise light) such as folding light is reduced.
  • another aspect of the present invention provides a first light source that emits recording light, a second light source that emits reproduction light having a shorter wavelength than the wavelength of the recording light, and the first and Second light source force
  • An optical information recording / reproducing device comprising: an objective lens that condenses the emitted recording light and reproduction light on the information recording medium; and a photodetector that detects reflected light from the information recording medium.
  • a recording device that uses the reflected light of the recording light from the recording layer during recording, and uses the change in the optical constant of the recording layer on which the recording light is collected.
  • the information recording medium of the present invention since the reflectance of the unrecorded area with respect to the reproduction light is larger than the reflectance of the unrecorded area with respect to the recording light, the reflected light is irradiated by irradiating the recording light or the reproduction light during recording. Can be used to perform focus servo. Since the recording light is less attenuated, good recording can be performed with high accuracy even in the lower recording layer.
  • an information recording medium capable of three-dimensionally recording recording pits that are information bits, it is favorable even for a lower recording layer away from the objective lens while performing focus servo.
  • An information recording medium capable of recording and Z or reproduction is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Head (AREA)

Abstract

基板と、前記基板上に記録ピットを3次元的に記録可能な記録部と、を備えた情報記録媒体であって、前記記録部は、波長λ2を有する記録光を集光することにより前記記録ピットが記録され、前記波長λ2より短い波長λ1を有する再生光を集光することにより前記記録ピットが再生される複数の記録層と、前記記録層と交互に積層された中間層とを有し、記録光波長λ2に対する記録層の未記録領域の反射率が、再生光波長λ1に対する記録層の未記録領域の反射率よりも小さい情報記録媒体。

Description

明 細 書
情報記録媒体及び光学情報記録再生装置
技術分野
[0001] 本発明は、情報ビットである記録ピットを 3次元的に記録可能な情報記録媒体及び 光学情報記録再生装置に関する。特に、フォーカスサーボ用の反射光を確保しつつ 、対物レンズから離れた下層に位置する記録層でも記録光の光量の低下が小さぐ 高精度に良好な記録/再生が可能な情報記録媒体、及びその情報記録媒体の記録 再生に用いられる光学情報記録再生装置に関する。
背景技術
[0002] 光学的な情報記録媒体として、 CD (コンパクトディスク)、 DVD (デジタル多用途デ イスク)等の光ディスクや光カードメモリ等が利用されている。
[0003] 記録情報のさらなる大容量化を実現するために、図 20に示されるような、 3次元的 に複数の記録層 101が積層形成された情報記録媒体が非特許文献 1に記載されて いる。
[0004] この情報記録媒体 121は、ガラスの透明基板 104と、該透明基板 104上に、フォト ンモード記録材料であるウレタンーゥレア共重合体材料を用レ、た記録層 101 a〜: 101 dと、 PVA (ポリビュルアルコール)膜と PMMA (ポリメチルメタアタリレート)膜からな る中間層 102a〜: 102cとが交互に積層されて形成されている。
[0005] 記録時においては、記録用光源 120aの Tiサファイアレーザから出射された波長 0 . 790 x mのピークパヮの大きな記録光 122aが、ビームスプリッタ 118aを通過し、ビ ームエキスパンダー 123により、ビーム径を拡大され、さらに、ビームスプリッタ 118b を通過し、対物レンズ 106により、 3次元的に記録再生可能な多層の情報記録媒体 1 21の所望の記録層 101cに集光される(収束光 107)。このような収束光 107が集光 されると、 2光子吸収過程等のような非線形現象により、光のパヮ密度の高い部分 (集 光点及びその近傍)のみが波長が半分になったような吸収が生じ、記録ピット 105が 記録される。従って、記録層が増加しても、他の記録層は記録光に対して略透明で あり、所定の記録位置のみで 2光子吸収が生じるため、記録光の減衰が抑えられ、下 層に位置する記録層でも十分な記録が行なわれる。
[0006] 一方、再生時においては、再生用光源 120bの He _Neレーザから出射された波 長 0. 6328 z mのピークパヮの小さい再生光 122bが、同じく対物レンズ 106により、 所望の記録層 101cの記録ピット 105に集光される(収束光 107)。そして、反射され た光はビームスプリッタ 118bで Y軸方向に曲げられて、検出レンズ 1 11で集光され、 検出レンズ 1 11の集光点に配置されたピンホール 114を通過して、光検出器 119で 検出されることにより、信号が再生される。
[0007] ところで、非特許文献 1では検討されていないが、従来の光ディスク記録再生装置 においては、記録時あるいは再生時において、光源からの記録光あるいは再生光が 対物レンズを通してディスク上に正確に焦点を結ぶようにフォーカスサーボが行われ ている。このため、非特許文献 1のように 2光子吸収記録等の非線形記録により記録 された記録ピット 105が記録再生される場合にも、フォーカスサーボを行なうことが望 ましい。すなわち、記録光 122aあるいは再生光 122bが情報記録媒体 121に照射さ れた際に、記録層 101から一定の反射光が得られれば、その反射光をフォーカスサ ーボ用の光として利用することにより正確に所望の記録層 101cに集光することがで きる。
[0008] し力しながら、本発明者等の検討によれば、上記のようなフォーカスサーボが非特 許文献 1に記載されているような 3次元記録可能な情報記録媒体 121で行なわれる 場合、次のような問題があると考えられた。
[0009] すなわち、情報記録媒体 121の記録時または再生時に正確に所望の記録層 101c に記録光または再生光を集光するためには、記録光波長と再生光波長のどちらに対 しても各記録層 101で一定強度のフォーカスサーボ用の反射光が必要とされる。
[0010] ところが、情報記録媒体 121は 3次元的に記録ピットを形成するために複数の記録 層 101が積層されている。このため、記録層 101の層数が多い場合には、記録光及 び再生光は所望の記録層 101cだけでなく各記録層 101でも反射及び吸収が生ず る。この各記録層 101での反射及び吸収により、対物レンズから最も離れた最下層( 図 20では 101d)に至るまでに記録光及び再生光の光量が低下する。従って、記録 光あるいは再生光を用レ、てフォーカスサーボ用の反射光を得ようとすれば、記録光 あるいは再生光の透過量の減少をもたらすこととなり、 2光子吸収過程のような大きな 光量を必要とする記録では下層の記録層に至るに従って良好な記録ピットが形成で きないという問題が生じる。具体的には、 2光子吸収記録、多光子吸収記録やプラズ マ吸収記録等のような非線形記録が利用される場合では、特に、記録時に、通常の 1光子吸収記録に比べて、光量の低下に伴って著しく記録感度が低下する。この記 録感度の低下は、例えば、 2光子吸収記録の場合では、記録感度が光量の 2乗特性 (n光子記録では n乗特性)に比例することに起因するためである。例えば、記録光の 光量が 0. 8倍となると、通常の 1光子吸収記録では記録感度は 0. 8倍に低下するが 、 2光子吸収記録では、記録感度はその 2乗の 0. 64倍に低下する。このため、非特 許文献 1のような従来の情報記録媒体ではフォーカスサーボ用の反射光を確保しな がら、下層の記録層まで記録時に十分な光量を確保することが困難となる。この場合 、記録用光源のパヮを記録層の位置によって調整することも考えられるが、非線形記 録は、ピークパヮの高い、例えば、数 lOOmW〜: 1W以上のピークパヮを有する半導 体レーザを記録用光源として必要とするため、現実的に高出力方向への光源のパヮ 調整の余裕がほとんどなレ、。従って、記録部に 3次元的に記録ピットを記録するため に下層の記録層を記録するとき、記録用光源のパヮを上層の記録層を記録するとき のパヮより上げることは困難である。このため、記録時のパヮ調整が不要、もしくは小 さいパヮ調整で良好な記録が可能な情報記録媒体が望ましい (例えば、調整量は、
3割以内が望ましい)。
非特許文献 1:川田善正他: "多層膜構造を有する有機記録媒体を用レ、た 3次元光メ モリ,,、 Opticsjapan 2000 講演予稿集 pp. 95— 96 (2000年)
発明の開示
[0011] 本発明は、上記従来技術における課題を解決するためになされたものであり、特に 、フォーカスサーボ用の反射光を確保しつつ、対物レンズから離れた下層の記録層 に対しても記録光の光量の低下が小さぐ高精度に良好な記録再生が可能な情報 記録媒体及び光学情報記録再生装置を提供することを目的とする。
[0012] 本発明の一局面は、基板と、前記基板上に記録ピットを 3次元的に記録可能な記 録部とを備えた情報記録媒体であって、前記記録部は、波長 λ 2を有する記録光を 集光することにより前記記録ピットが記録され、前記波長 λ 2より短レ、波長 λ 1を有す る再生光を集光することにより前記記録ピットが再生される複数の記録層と、前記記 録層と交互に積層された中間層とを有し、記録光波長 λ 2に対する記録層の未記録 領域の反射率が、再生光波長; 1 1に対する記録層の未記録領域の反射率よりも小さ レ、情報記録媒体である。
[0013] 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによつ て、より明白となる。
図面の簡単な説明
[0014] [図 1]図 1は、本発明に係る情報記録媒体の構成と記録ピットを記録/再生する様子 を示す説明図である。
[図 2]図 2Αは、本発明の実施の形態 1に係る情報記録媒体の記録層の膜厚と、記録 層の未記録領域での再生光及び記録光の反射率との関係の一例を示す図面であり 、図 2Βは、図 2Αにおいて、記録層の未記録領域での記録光の反射率が、再生光の 反射率より低くなる記録層の膜厚の範囲を示す図面である。
[図 3]図 3Αは、本発明の実施の形態 1に係る情報記録媒体の記録層の膜厚と、記録 層の未記録領域での再生光及び記録光の反射率との関係の他の一例を示す図面 であり、図 3Βは、図 3Αにおいて、記録層の未記録領域での記録光の反射率が、再 生光の反射率より低くなる記録層の膜厚の範囲を示す図面である。
[図 4]図 4Αは、図 2Αの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び 記録済領域での再生光の反射率との関係を示す図面であり、図 4Βは、図 2Αの情報 記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記録光の 反射率との関係を示す図面である。
[図 5]図 5Αは、図 3Αの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び 記録済領域での再生光の反射率との関係を示す図面であり、図 5Βは、図 3Αの情報 記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記録光の 反射率との関係を示す図面である。
[図 6]図 6は、本発明の実施の形態 1に係る情報記録媒体の製造工程を示す図面で ある。 園 7]図 7は、本発明の実施の形態 1に係る光学情報記録再生装置の構成と情報記 録媒体に信号を記録 Z再生する状態を示す図面である。
園 8]図 8Aは、本発明の実施の形態 2に係る情報記録媒体の記録層の膜厚と、記録 層の未記録領域での再生光及び記録光の反射率との関係の一例を示す図面であり 、図 8Bは、図 8Aにおいて、記録層の未記録領域での記録光の反射率が、再生光の 反射率より低くなる記録層の膜厚の範囲を示す図面である。
園 9]図 9Aは、本発明の実施の形態 2に係る情報記録媒体の記録層の膜厚と、記録 層の未記録領域での再生光及び記録光の反射率との関係の他の一例を示す図面 であり、図 9Bは、図 9Aにおいて、記録層の未記録領域での記録光の反射率が、再 生光の反射率より低くなる記録層の膜厚の範囲を示す図面である。
[図 10]図 10Aは、図 8Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及 び記録済領域での再生光の反射率との関係を示す図面であり、図 10Bは、図 8Aの 情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記録 光の反射率との関係を示す図面である。
園 11]図 11Aは、図 9Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及 び記録済領域での再生光の反射率との関係を示す図面であり、図 11Bは、図 9Aの 情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記録 光の反射率との関係を示す図面である。
[図 12]図 12Aは、本発明の実施の形態 3に係る情報記録媒体の記録層の膜厚と、記 録層の未記録領域での再生光及び記録光の反射率との関係の一例を示す図面で あり、図 12Bは、図 12Aにおいて、記録層の未記録領域での記録光の反射率が、再 生光の反射率より低くなる記録層の膜厚の範囲を示す図面である。
[図 13]図 13Aは、本発明の実施の形態 3に係る情報記録媒体の記録層の膜厚と、記 録層の未記録領域での再生光及び記録光の反射率との関係の他の一例を示す図 面であり、図 13Bは、図 13Aにおいて、記録層の未記録領域での記録光の反射率 が、再生光の反射率より低くなる記録層の膜厚の範囲を示す図面である。
[図 14]図 14Aは、図 12Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域 及び記録済領域での再生光の反射率との関係を示す図面であり、図 14Bは、図 12 Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記 録光の反射率との関係を示す図面である。
[図 15]図 15Aは、図 13Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域 及び記録済領域での再生光の反射率との関係を示す図面であり、図 15Bは、図 3A の情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記 録光の反射率との関係を示す図面である。
[図 16]図 16Aは、本発明の実施の形態 4に係る情報記録媒体の記録層の膜厚と、記 録層の未記録領域での再生光及び記録光の反射率との関係の一例を示す図面で あり、図 16Bは、図 16Aにおいて、記録層の未記録領域での記録光の反射率が、再 生光の反射率より低くなる記録層の膜厚の範囲を示す図面である。
[図 17]図 17Aは、本発明の実施の形態 4に係る情報記録媒体の記録層の膜厚と、記 録層の未記録領域での再生光及び記録光の反射率との関係の他の一例を示す図 面であり、図 17Bは、図 17Aにおいて、記録層の未記録領域での記録光の反射率 力 再生光の反射率より低くなる記録層の膜厚の範囲を示す図面である。
[図 18]図 18Aは、図 16Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域 及び記録済領域での再生光の反射率との関係を示す図面であり、図 18Bは、図 16 Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記 録光の反射率との関係を示す図面である。
[図 19]図 19Aは、図 17Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域 及び記録済領域での再生光の反射率との関係を示す図面であり、図 19Bは、図 17 Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記 録光の反射率との関係を示す図面である。
[図 20]図 20は、従来の光学情報記録再生装置の構成と信号の記録/再生の様子を 示す説明図である。
発明を実施するための最良の形態
本発明の情報記録媒体は、記録光と再生光の関係において、再生光波長え 1 (以 下、単に λ ΐと省略する場合がある)が記録光波長え 2 (以下、単に λ 2と省略する場 合がある)より短い場合に、フォーカスサーボ用の反射光を確保しながら、非線形記 録を利用して 3次元的に記録ピットを記録し、再生するために、記録光波長 λ 2に対 する記録層の未記録領域の反射率が、再生光波長; 1 1に対する上記記録層の未記 録領域の反射率よりも小さいことを特徴とする。
[0016] 図 1は、本発明に係る情報記録媒体の構成と信号を記録 Ζ再生する様子を示す説 明図である。
[0017] 図 1に示されるように、本発明の情報記録媒体 21は、例えば 1. 1mmの厚さの基板
9と、上記基板 9上に形成された複数の記録層 1 (図 1では la〜: Ifの 6層が図示され ており、その各膜厚は tである)を含む記録部 3を具備している。記録部 3は、記録層 1 間に、例えば、 t = 3〜10 /1 111厚の中間層2 (図1では2&〜26の5層が図示されてぃ る)が設けられており、記録層 1と中間層 2とが交互に複数積層された構造を有してい る。
[0018] 記録部 3の記録光 7a、 7a' (7aは情報記録媒体 21への記録光の収束光、 7a'は情 報記録媒体 21からの記録光の反射光)及び再生光 7b、 7b' (7bは情報記録媒体 21 への再生光の収束光、 7b'は情報記録媒体 21からの再生光の反射光)の入射側も しくは入出力側には、例えば 50〜: 100 /i mの厚さの保護層 4がさらに設けられてもよ レ、。保護層 4が設けられることにより、情報記録媒体上の埃、ゴミ、傷等が多少存在し ても記録及び再生が可能である。
[0019] 本発明の情報記録媒体は、記録時において、記録光波長 λ 2の収束光 7aがター ゲット層である、例えば、記録層 Idの記録領域であるトラック 25に照射される。このと き、記録層 Idからの反射光 7a'を光検出器(図 1では図示なし)で検出すれば、反射 光 7a'をフォーカスサーボ用の光としても用いることができる。そして、この反射光 7a' を利用したフォーカスサーボにより、記録時に、正確にターゲットの記録層 Idに記録 光が集光され、記録層の光学定数、好ましくは屈折率を変化させて、記録ピット 5が 記録される。
[0020] また、再生時も同じぐ再生光波長 λ 1の収束光 7bが、例えば、ターゲットの記録層 Idに照射される。このとき、記録層 Idからの反射光 7b'を光検出器(図 1では図示な し)で検出すれば、反射光 7b'をフォーカスサーボ用の光としても用いることができる 。そして、この反射光 7b'を利用したフォーカスサーボにより、再生時に、正確にター ゲットの記録層 Idのトラック 25に再生光が集光され、記録済領域である記録ピット 5 力 の反射光 7b'により信号が再生される。
[0021] 再生時では、記録層 Idのトラック 25に、未記録領域 24と記録済領域 23のように、 部分的に記録ピット 5が記録されているので (記録ピット 5の形成されている領域が記 録済領域 23である)、フォーカスサーボ用の反射光としては、未記録領域 24と記録 済領域 23 (記録ピット 5)から得られる反射光の内いずれか大きい方の反射光を用い ればよい。すなわち、本発明の 2光子吸収記録等の非線形記録を利用する情報記 録媒体は、記録により記録層の光学定数の変化、例えば、屈折率の変化を利用して 記録ピットが形成されるため、記録層と中間層の組み合わせにより記録前後で記録 層の反射率が変化する。このため、例えば、中間層 2の屈折率 n2と記録層 1の未記 録領域 24の屈折率 nとの差( I n2— n I )が、中間層 2の屈折率 n2と記録層 1の記 録済領域 23の屈折率 nlとの差( I n2— nl | )より大きい場合は、未記録領域 24の 反射率は大きいが、記録済領域 23の反射率は小さくなる。従って、このような特性を 有する情報記録媒体では未記録領域 24での反射光がフォーカスサーボ用として主 に検出される。上記のような、記録により反射率が低くなる特性は H→L (High-to-Lo w)と呼ばれる。一方、中間層 2の屈折率 n2と記録層 1の未記録領域 24の屈折率 nと の差( I n2— n I )が、中間層 2の屈折率 n2と記録層 1の記録済領域 23の屈折率 nl との差( I n2— nl I )より小さい場合は、未記録領域 24の反射率は小さいが、記録 済領域 23の反射率は大きくなる。従って、このような特性を有する情報記録媒体では 記録済領域 23 (すなわち、記録ピット 5)での反射光がフォーカスサーボ用として主に 検出される。上記のような記録により反射率が高くなる特性は L→H (Low-to_High)と 呼ばれる。
[0022] また、通常、記録による屈折率の変化量( I nl— n I )はそれ程大きくないため、反 射光の光量を考慮すれば、 H→Lの場合には、記録層の未記録領域の屈折率 n及 び記録済領域の屈折率 nlのレ、ずれよりも高レ、屈折率 n2を有する中間層、すなわち 、各屈折率が、 nく nl <n2の関係を満足する中間層が好ましい。一方、 L→Hの場 合には、記録層の未記録領域の屈折率 n及び記録済領域の屈折率 nlのいずれより も低い屈折率 n2を有する中間層、すなわち、各屈折率が、 nl >n>n2の関係を満 足する中間層が好ましい。なお、中間層 2の屈折率は、記録層 1の未記録領域 24の 屈折率もしくは記録済領域 23の屈折率との差が 0. 05以上が好ましい。前記屈折率 の差が 0. 05以上であれば、再生光に対して少なくとも約 0. 1 %以上の反射率が得 られ、再生時に良好なフォーカスサーボを行えることが確認されている。
[0023] 上記のようなフォーカスサーボ用の反射光を確保しょうとすると、対物レンズから離 れた下層の記録層では記録時または再生時の光量が低下し、記録または再生が困 難になる。特に、非線形記録の場合、記録時の光量の減少は記録感度に乗数的に 影響するため、下層の記録層での記録ピットの形成が困難となる。
[0024] 本発明によれば、非線形記録におけるえ 1とえ 2の波長の違いを利用して、 λ 2に 対する未記録領域 24の反射率が、 λ 1に対する未記録領域 24の反射率よりも小さく なるように記録層を形成すれば、フォーカスサーボを行いながら、下層の記録層にお レ、ても高精度に良好な記録及び再生を達成できることが見出された。
[0025] すなわち、本発明の反射率の関係を有する記録層であれば、各記録層 1での記録 光の透過率が大きい。このため、対物レンズ 6から最も離れた最下層の記録層(図 1 では la)においても、記録光 7aの光量の低下が少なぐ良好な記録が可能となる。そ して、非線形記録では記録光として数 100mW〜lW以上の大きなピークパヮを必要 とするため、利用する記録用光源はそのピークパヮを増加させるような調整が困難で あるのに対し、再生用光源は必要なピークパヮは小さぐまた、再生光による記録を 防止するためにも記録光のパヮよりもそのパヮを抑えることが好ましい(一般に、数 m W〜数 10mW程度)。従って、再生用光源のパヮは記録用光源の 1Z10程度であり 、その最大出力は余裕をもっている。このため、記録層の未記録領域の再生光波長 に対する反射率が記録光波長に対する反射率より大きくなるように設定されて、ター ゲットの記録層が対物レンズ 6から離れた下層になるに従って記録層からの再生光の 反射光強度が徐々に低下しても、必要により再生用光源のパヮをその低下に対応さ せて大きくすれば、検出可能な程度までにその反射光強度の低下を防ぐことが可能 となる。そして、上記の記録用光源及び再生用光源が使用される場合、再生光波長 に対する反射率は高いため、再生光のパヮが小さくても十分な光量が確保できる。一 方、記録光のパヮは再生光のパヮの 10倍程度であることから、記録光波長に対する 反射率を再生光波長に対して ιΖιο程度まで低く設定することも可能となる。
[0026] 本発明によれば、上記のような記録層の各反射率の特性は、使用される記録光波 長と再生光波長により異なるが、記録層の膜厚を調整することにより各波長の組み合 わせに適した反射率を確保できることが見出された。以下の各実施の形態では、上 記記録光と再生光の反射率の関係を満たす情報記録媒体について、各記録光波長 及び再生光波長の組み合わせに分けて具体的に説明される。
[0027] (実施の形態 1)
本実施の形態においては、再生光波長 λ 1が記録光波長え 2よりも短ぐ例えば、 再生光の波長が 0. 6 μ ηι≤ λ 1≤0. 7 x mを満たし、記録光の波長が 0. 73 /i m≤ 1 2≤0. 83 /i mを満たす記録光及び再生光を利用する情報記録媒体及び光学情 報記録再生装置が説明される。このような波長を有する光源としては、具体的には、 例えば、 え 1 = 0. 66 /i mを出射する半導体レーザ、及び λ 2 = 0. 78 /i mを出射す る半導体レーザが挙げられる。
[0028] 図 2から図 5を用いて、本実施の形態における情報記録媒体 21の記録層 1の好まし い膜厚が詳細に説明される。図 2A及び図 2Bは、本発明の実施の形態 1に係る情報 記録媒体の記録層の膜厚と、記録層の未記録領域での再生光及び記録光の反射 率との関係の一例を示している。図 3A及び図 3Bは、本発明の実施の形態 1に係る 情報記録媒体の記録層の膜厚と、記録層の未記録領域での再生光及び記録光の 反射率との関係の他の一例を示している。図 4Aは、図 2Aの情報記録媒体の記録層 の膜厚と、記録層の未記録領域及び記録済領域での再生光の反射率との関係を示 しており、図 4Bは、図 2Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域 及び記録済領域での記録光の反射率との関係を示している。図 5Aは、図 3Aの情報 記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での再生光の 反射率との関係を示しており、図 5Bは、図 3Aの情報記録媒体の記録層の膜厚と、 記録層の未記録領域及び記録済領域での記録光の反射率との関係を示している。 また、図 6は、本発明の実施の形態 1に係る情報記録媒体の製造工程を示している。 図 7は、本発明の実施の形態 1に係る光学情報記録再生装置の構成と情報記録媒 体に記録ピットを記録/再生する状態を示している。各図において、 λ ΐは再生光波 長、 λ 2は記録光波長、 ηは記録層 1の未記録領域 24の屈折率、 nlは記録層の記 録済領域 23の屈折率、及び n2は中間層 2の屈折率を示す。
[0029] 本実施の形態の記録層 1のフォトクロミック材料として、例えば、ジァリールェテンの 1つである cis-l,2_Dicyano- l,2-bis(2,4,5- trimethy卜 3- thienyl)etheneが用いられた 場合、その開環体が未記録領域 24を、その閉環体が記録済領域 23を構成する。こ のような記録層 1では、例えば、典型的には、各屈折率が、 n= l . 55、 nl = l . 60と なる。そして、中間層 2に紫外線硬化樹脂が用レ、られた場合、その種類によって屈折 率 n2は異なるが、例えば、 n2 = l . 64の紫外線硬化樹脂からなる中間層 2が用いら れれば、 n2が nlより大きい情報記録媒体(nく nlく n2)、すなわち H→Lの特性を 有する情報記録媒体となる。この情報記録媒体においては、記録層の膜厚と、 λ 1 ( 0. 66 x m)及びえ 2 (0. 78 /i m)に対する記録層 1の未記録領域 24の各反射率と の関係は、図 2A及び図 2Bの、それぞれ、点線、及び実線で示されるように、正弦波 状の周期的な変化を示すことが確認された。この反射率の変位において、再生光の 最大反射率は、 rl =0. 32%、記録光の最大反射率は、 r2 =0. 32%、再生 max max
光の最小反射率は、 rl =0%、記録光の最小反射率は、 r2 =0%である。そし mm mm
て、図 2Aに示されるように、 え 1に対して未記録領域 24の反射率が最大値を示す記 録層 1の膜厚は、任意の正の奇数 Pを用いて、 ρ λ 1/ (4η)で表され、 え 2に対する 反射率が最大値を示す記録層 1の膜厚は、 ρ 2Ζ (4η)で表される。また、記録層の 膜厚 tに対して、点線で示された λ 1に対して正弦波状に変化する反射率の変位は、 Rl (t) 1 1) ]/2で、実線で示された; I 2に対する正弦波
Figure imgf000013_0001
状に変化する反射率の変位は、 R2 (t) =r2 [1— cos (4n n t/ λ 2) ]/2の各式 max
で表わされる。なお、本実施の形態のように、 λ 1と λ 2に対して、波長分散による屈 折率の差に基づく反射率への影響は殆どの場合小さく(例えば、屈折率は有効数字 2〜3桁で同じ値となる)、従って、上記のような屈折率を有する情報記録媒体では λ 1に対する rl と λ 2に対する r2 を同一とみなして上記式を簡略化することもでき max max
る。
[0030] 図 2Bに示されるように、点線で示される記録層の膜厚に対する未記録領域におけ る λ 1の反射率の変位 Rl (t)と、実線で示される記録層の膜厚に対する未記録領域 における λ 2の反射率の変位 R2 (t)とが下記式(1)の条件を満たす膜厚 tの範囲で あれば、本実施の形態の再生光波長及び記録光波長が使用される場合に、 λ2に 対する記録層の未記録領域の反射率が、 λ 1に対する記録層の未記録領域の反射 率より / J、さくなる。
[0031] rl [ΐ-οο8(4ηπί λ l)]/2>r2 [1 -cos (4η π t/ λ 2) ]/2 (1)
max max
[0032] 式中、 λΐは再生光波長、 λ 2は記録光波長、 ηは記録層の未記録領域の屈折率 、 tは記録層の膜厚、 rl は λ 1に対する記録層の未記録領域の最大反射率、及び
max
r2 はえ 2に対する記録層の未記録領域の最大反射率である。
max
[0033] 具体的には、 Rl (t)と R2(t)の 0以上の交点における膜厚は、小さい方から順に t
0
、t、 t、t、 ·'·、 ΐ、 ···、 (iは 0以上の任意の整数で、 0≤tく t 、 ···は繰り返しを
1 2 3 i i i+1
意味する)とすると、 t =0 ηι, t =0. 12 ηι, t =0. 23 η , t =0. 35 ηι, t
0 1 2 3 4
=0.46μηι、 t =0. 58μη、 t =0.69μηι、 t =0. 81μη、 ···、となる。従って
5 6 7
、点線で示された Rl(t)力 S、実線で示された R2(t)より大きくなる記録層の膜厚の範 囲は、図 2B中、横方向の矢印で示される、 T、T、T、 ···、の範囲である。 tを用い
1 2 3 i て表される各範囲は、 tく Tく t、tく Tく t、 tく Tく t、 ···、となる。すなわち、
0 1 1 2 2 3 4 3 5
記録層の膜厚の範囲は、以下の式(2)を満たす T となる。
i+1
[0034] t く T く t (2)
2i i+1 2i+l
[0035] ただし、 iは 0以上の任意の整数であり、 0≤t <t である。
i i+1
[0036] 交点の膜厚 tは、上記の式(1)で Rl(t)=R2(t)、すなわち、 rl [ΐ-οο8(4ηπ
l max
t/ λ1)]/2 = Γ2 [1 _cos (4n πΐ/ λ 2) ]Z2の式を解くことにより、数学的に容
max
易に求められる。このとき、上述したように λ 1と; I 2に対して波長分散による屈折率 の差が小さい場合、 rl =r2 と近似されるので、式(1)は、 cos(4n7it/ l) =
max max
cos (4n t/ 12)と簡略化される。
[0037] 次に、記録済領域における反射光をフォーカスサーボ用として利用する L→Hの情 報記録媒体の反射率特性が説明される。例えば、中間層 2の屈折率 n2 = l.46の紫 外線硬化型樹脂からなる中間層が用レ、られれば、 n2が nより小さい情報記録媒体 (n 2<n<nl)、すなわち L→Hの特性を有する情報記録媒体となる。この情報記録媒 体においては、記録層の膜厚と、 λ1(0. 66 111)及びぇ2(0. 78 xm)に対する各 記録層 1の未記録領域 24の反射率との関係は、図 3A及び図 3Bの、それぞれ、点線 、実線で示されるように、正弦波状の周期的な変化を示すことが確認された。この反 射率の変位において、再生光の最大反射率は、 rl =0. 36%,記録光の最大反
max
射率は、 r2 =0. 36%、再生光の最小反射率は、 rl =0%、記録光の最小反射
max mm
率は、 r2 =0%である。そして、図 3に示されるように、前述の図 2の H→Lの特性を min
有する情報記録媒体の反射率の変位と比べて、 L→Hの特性を有する情報記録媒 体の反射率の変位は、 rl 、 r2 が異なるのみで、反射率の周期、最大値、及び
max max
最小値を示す記録層の膜厚は同じであることが分る。従って、図 3Bに示された 2本の 反射率の変位の交点における膜厚 t (iは任意の 0以上の整数)の値は、図 2に示され
i
た値と同じとなる。その結果、 え 1に対する反射率が λ 2に対する反射率よりも低くな る好ましい記録層の膜厚 T (iは任意の 0以上の整数)の範囲も同じで、 t =0 μ m
i+ 1 0
く T <t =0. 12 η , t =0. 23 ηι<Τく t =0. 35 ηι, t =0. 46 η <Τ
1 1 2 2 3 4 3
<t =0. 58 /i m、 · · ·、である。以上から、記録層の未記録領域の屈折率 n、再生光
5
波長え 1、及び記録光波長え 2が同じであれば、 H→Lあるいは L→Hのいずれ特性 を有する情報記録媒体においても、好ましい記録層 1の膜厚は同じになることが判明 した。特に、 T (t〜t )あるいは T (t〜t )、すなわち、式(2)における iが 1または 2の
2 2 3 3 4 5
範囲の膜厚であれば、再生光と反射光の反射率の差が大きくなるため、好ましい。 次に、記録層 1に記録ピット 5が記録され、再生される場合について説明される。 H →L (nく nl <n2)の特性を有する情報記録媒体において、例えば、各反射率が、 n = 1. 55、nl = l . 60、n2 = l . 64である場合、 λ 1に対する未記録領域 24及び記 録済領域 23の各反射率は、図 4Αのそれぞれ点線及び実線で示されるように正弦波 状の周期的な変化を示すことが確認された。この情報記録媒体は H→Lの特性を有 するため、未記録領域 24における最大反射率は rl =0. 32%である力 記録ピッ
max
ト 5である記録済領域 23における最大反射率は rl =0. 06%に低下する(最小値
max
はいずれも 0%である)。そして、図 4Aに示されるように、 λ ΐに対する未記録領域 24 の反射率が最大値を示す記録層 1の膜厚は、任意の正の奇数 ρを用いて、 ρ λ 1/ ( 4η)で表され、 λ 1に対する記録済領域 23の反射率が最大値を示す記録層の膜厚 は、 ρ λ l/ (4nl)で表わされる。このため、記録層 1の膜厚が厚くなるほど、各領域 における反射率の最大値のずれ量は大きくなつていく。
[0039] 既述したように、記録済領域 23の再生光の反射光 7b'が記録ピット 5の再生信号光 となる。このため、再生時には、 λ 1に対する未記録領域 24の反射光強度と; 11に対 する記録済領域 23の反射光強度の差が大きいほど、再生信号の変調率が大きくなり 好ましい。従って、記録済領域 23の再生光の反射光強度が小さく一定のとき、未記 録領域 24からの再生光の反射光強度が大きい方が望ましい。検討によれば、その 反射率は未記録領域 24における再生光の最大反射率 rl の 0. 7倍以上の反射率 max
が確保されれば、従来の光学情報記録再生装置で使用されてレ、る光検出器の検出 回路の ICの構成を変えることなぐ良好な再生信号が得られることが確認されている
[0040] この再生光の最大反射率 rl の 0. 7倍以上の反射率を示す好ましい記録膜の膜 max
厚は、小さい方から順に、図 4Aで横方向の矢印で示された、 Ta、 Tb、 Tc、 ···、 (· ·
•は繰り返しを意味する)の範囲である。この記録層の膜厚 tは、以下の式(3)を満た す範囲となる。
[0041] (p-0. 369) λ l/(4n)≤t≤ (p + 0. 369) λ 1/ {An) (3)
[0042] 式中、 λ 1は再生光波長、 え 2は記録光波長、 tは記録層の膜厚、 nは記録層の未 記録領域の屈折率、及び pは任意の正の奇数である。
[0043] 具体的な記録層の膜厚は、例えば、 0. 07, m≤Ta≤0. 15 xm、 0. 28 zm≤T b≤0. 36 xm、 0.49 xm≤Tc≤0. 57 xm、 0. 71 xm≤Td≤0. 78 zm、 ···、 である。
[0044] 以上の結果を考え合わせると、 H→L(n<nl<n2)の特性を有する情報記録媒体 の場合、より好ましい各記録層 1の膜厚の範囲は、良好な再生信号強度 (最大反射 率 rl の 0. 7倍以上)が確保され、かつ、未記録領域 24の λ 2に対する反射率が max
λ 1に対する反射率よりも小さくなる範囲である。すなわち、 Τ、 Τ、 Τ、 · · ·、で表さ
1 2 3
れる範囲と、 Ta、 Tb、 Tc、 · · ·、で表される範囲を同時に満たす膜厚の範囲が望まし レ、。具体的に、両膜厚の範囲を同時に満たすより好ましい膜厚は、図 4Aの横方向の 矢印で示されるように、小さレヽ方力ら J噴に、例えば、 0. 07 xm≤Tr <0. 12 xm、 0 . 28^m≤Tr <0. 35 xm、 0.49/im≤Tr ≤0. 57 xm、 0. 71/im≤Tr ≤0. 78 μ m、 · · ·、(· · ·は繰り返しを意味する)を満たす、 Tr、 Tr、 Tr、 Tr、 . · ·、とな
1 2 3 4
る。上記のより好ましい膜厚の範囲は波長や屈折率の組み合わせで異なることは言う までもない。
[0045] なお、図 4Bに示されたように、未記録領域 24及び記録済領域 23の λ 2に対する 反射率も、それらの λ 1に対する反射率と同じような正弦波状の周期関数となり(最大 反射率値と最小反射率は再生光の各反射率と同じ値である)、記録後に反射率が低 下する H→Lの挙動を示す。 λ 2に対する未記録領域 24の反射率が最大値を示す 記録層 1の膜厚は、任意の正の奇数 ρを用いて、 ρえ 2/ (4η)で表され、 え 2に対す る記録済領域 23の反射率が最大値を示す記録層 1の膜厚は、 ρえ 2/ (4nl)で表さ れる。このため、記録層 1の膜厚が厚くなるほど、各領域における反射率の最大値の ずれ量は大きくなつていく。
[0046] 次に、 L→H (nl >n >n2)の特性を有する情報記録媒体において、例えば、各屈 折率力 n= l . 55、nl = l . 60、n2 = l . 46である場合、 え 1に対する未記録領域 2 4及び記録済領域 23の各反射率は、図 5Aの、それぞれ点線、実線で示されるように 正弦波状に周期的に変化を示すことが確認された。この情報記録媒体は L→Hの特 性を有するため、記録層の未記録領域 24における最大反射率は rl =0. 36%で max
ある力 記録ピット 5の記録済領域 23における最大反射率は rl =0. 83%に増加 max
する(最小値はいずれも 0%である)。そして、図 5Aに示されるように、 λ ΐに対する未 記録領域 24の反射率が最大値を示す記録層 1の膜厚は、任意の正の奇数 ρを用い て、 ρ λ lZ (4n)で表され、記録済領域 23の反射率が最大値を示す記録層 1の膜厚 は、 ρ λ lZ (4nl)で表される。このため、記録層 1の膜厚が厚くなるほど、それらの 最大値のずれ量は大きくなつていく。
[0047] この L→Hの特性を有する情報記録媒体も、 H→Lの特性を有する情報記録媒体と 同様に、再生時には、未記録領域 24の λ 1に対する反射光強度と記録済領域 23の λ 1に対する反射光強度の差が大きいほど、再生信号の変調率が大きくなるため好 ましい。従って、未記録領域 24の λ 1に対する反射光強度が小さく一定のとき、記録 済領域 23の λ 1に対する反射光強度が大きい方が望ましい。上記したように、その 反射率は、最大反射率の 0. 7倍以上の反射率が確保されれば、検出回路の ICの構 成を変えずに良好な再生信号が得られることが確認されてレ、る。この再生光の最大 反射率 rl の 0. 7倍以上の反射率が得られる好ましい記録膜の膜厚は、小さい方 max
から順に、図 5Aで横方向の矢印で示された、 Ta、Tb、Tc、 ···、(···は繰り返しを 意味する)の範囲である。この記録層の膜厚 tは、以下の式 (4)を満たす範囲となる。
[0048] (ρ-0. 369) λ l/(4nl)≤t≤ (ρ + 0. 369) λ l/(4nl) (4)
[0049] ただし、 λ 1は再生光波長、 λ 2は記録光波長、 tは記録層の膜厚、 nlは記録層の 記録済領域の屈折率、及び pは任意の正の奇数である。
[0050] 具体的な記録層の膜厚は、例えば、 0.07/im≤Ta≤0. 14 xm、 0. 27/im≤T b≤0. 35 xm、 0.48μηι≤Το≤0. 55 xm、 0.68μηι≤Τ(1≤0. 76/im、 ···、 である。
[0051] 以上の結果を考え合わせると、 L→H(nl>n>n2)特性を有する情報記録媒体の 場合、より好ましい各記録層 1の膜厚の範囲は、良好な再生信号強度 (最大反射率 r 1 の 0. 7倍以上)が確保され、かつ、未記録領域 24のえ 2に対する反射率が λ 1 max
に対する反射率よりも小さくなる範囲である。すなわち、 T、 T、 T、 · · ·、で表される
1 2 3
範囲と、 Ta、 Tb、 Tc、 · · ·、で表される範囲を同時に満たす膜厚の範囲が望ましい。 具体的には、両膜厚の範囲を同時に満たすより好ましい範囲の膜厚は、図 5Aに示さ れるように、膜厚力 M、さレヽ方力ら順に、例えば、 0.07μηι≤ΤΓ <0. 12/im, 0. 27
1
^m≤Tr <0. 35 zm、 0.48 xm≤Tr ≤0. 55 xm、 0.68 xm≤Tr ≤0. 76 μ
2 3 4 m、 · · ·、(···は繰り返しを意味する)を満たす、 Tr、 Tr、 Tr、 Tr、 · · ·、となる。上
1 2 3 4
記のより好ましい膜厚の範囲は、波長や屈折率の組み合わせで異なることは言うまで もない。
[0052] そして、上記各 Trの範囲の中でも、製造の点から、 H→Lと L→Hのどちらの特性を 有する情報記録媒体も、記録層の膜厚は、例えば、 0. 6 xm以下とある程度薄い方 が作りやすい。このため、記録層 1の膜厚の範囲は、上記の各結果と図 4A及び図 5 Aに示された、 Tr、 Tr、または Trの辺りに設定されることが好ましい。
1 2 3
[0053] なお、図 5Bに示されるように、未記録領域 24及び記録済領域 23の λ 2に対する反 射率も、それらの λ 1に対する反射率と同じような正弦波状の周期関数になり(最大 反射率と最小反射率は再生光波長の各反射率と同じ値である)、記録後に反射率が 増加する L→Hの挙動を示す。 λ 2に対する未記録領域 24の反射率が最大値を示 す記録層 1の膜厚は、任意の正の奇数 ρを用いて、 ρλ2Ζ (4η)で表され、 λ2に対 する記録済領域 23の反射率が最大値を示す記録層 1の膜厚は、 ρλ2Ζ ( で 表される。このため、記録層 1の膜厚が厚くなるほど、各領域における反射率の最大 値のずれ量は大きくなつていく。
[0054] また、本実施の形態の記録光及び再生光のように、再生光波長 11が 0. 6μτη≤ ll≤0. を満たし、記録光波長; 12力 0. 73 xm≤ λ2≤0.83 xmを満たす 関係の場合には、 H→Lまたは L→Hの特性を有する情報記録媒体のどちらであって も、図 2及び図 3(え 1 = 0· 66/im、 λ2 = 0. 78 μ m)に示されたように、特に、 T (t
2 2
〜t )と丁 (t〜t )、すなわち、式(2)における iが 1または 2の範囲において、実線で
3 3 4 5
示されたえ 2に対する未記録領域 24の反射率は、点線で示された λ 1に対する未記 録領域 24の反射率よりも大幅に小さくできることが理解される。例えば、記録層 1の 膜厚が、 Τの膜厚の範囲内の 3え 1/ (4η) =0. 32 μΐηに設定された場合 (この膜
2
厚は、前述した、より好ましい記録層 1の膜厚 Trに含まれる)、 λ 1に対する未記録
2
領域 24の反射率は、 H→Lの情報記録媒体が、 0. 32%、 L→Hの情報記録媒体が 、 0. 36%である。これに対し、同じ記録層の厚みで、 λ 2に対する未記録領域 24の 反射率は、 H→Lの情報記録媒体が 0. 18%、 L→Hの情報記録媒体が、 0. 20%で ある。このように、いずれの場合でも λ 2に対する未記録領域 24の反射率が λ 1に対 する未記録領域 24の反射率より顕著に小さい情報記録媒体が得られる。
[0055] 従って、本発明によれば、例えば、記録層 1が 30層の場合の情報記録媒体 21を考 えると、対物レンズ 6から最も遠い最下層の記録層 laにおいて、未記録領域 24で再 生光 7bの光量は、 H→Lの特性を有する情報記録媒体が、(1_0.0032)29 = 0. 9 1、 L→Hの特性を有する情報記録媒体が、 (1— 0.0036)29 = 0. 90となり、どちら の情報記録媒体においてもおよそ 10%低下する。一方、最下層の記録層 laにおい て、未記録領域 24における記録光 7aの光量は、 H→Lの特性を有する情報記録媒 体が、 (1-0. 0018)29 = 0. 95、 L→Hの特性を有する情報記録媒体が、 (1-0.0 020)29 = 0. 94となり、記録光の光量の低下は 5〜6%となる。従って、記録光の光 量の低下は再生光の光量の低下に比べて半分程度に小さくできる。このため、記録 層 1の層数が多くなる程、本発明の効果は大きくなる。
[0056] 非線形吸収現象で記録ピットが記録される場合、記録感度が光量に対して乗数的 に変化するので (例えば、 2光子吸収記録では、記録感度が光量の 2乗特性に比例 する)、特に記録に関しては光量の低下が問題となる(例えば、 2光子吸収記録では 、記録光の光量が 0. 9倍になると記録感度はその 2乗の 0. 81倍に低下する)。しか しながら、本発明によれば、記録光の光量の低下が低減されるため、フォーカスサー ボ用の反射光を確保しながら、多層の記録層を有する情報記録媒体に 3次元的に記 録ピットを精度良く良好に記録及び再生することが可能となる。
[0057] また、記録層 1の膜厚が、 Tの領域、例えば、 5 λ l/ (4n) =0. 53 x mに設定さ
3
れた場合 (この膜厚は、前述した、より好ましい記録層 1の膜厚 Trの範囲に含まれる
3
)、 え 1に対する未記録領域 24の反射率は、 H→Lの情報記録媒体力 0· 32%、 L →Hの情報記録媒体力 0. 36%である。これに対し、同じ記録層の厚みで、 え 2に 対する未記録領域 24の反射率は、 H→Lの情報記録媒体が、 0. 04%、 L→Hの情 報記録媒体が、 0. 05%である。従って、 0. 32 μ ηの膜厚を有する記録層と比べ、さ らに記録光に対する反射率が小さくなる。既述したように、記録光の光量は再生光の 光量に比べて大きい(例えば、 10倍程度)。一方、再生光によりフォーカスサーボを 行うための十分な反射率は約 0. 1%である。従って、 え 2に対する未記録領域 24の 反射率は約 0. 01 %以上確保されれば足りる。本実施の形態において、 Τの範囲で
3
は、 λ 1に対して最大の反射率を与える記録層の膜厚での λ 2に対する未記録領域 24の反射率は、 Τあるいは Τにおける反射率より小さくできる。従って、記録層 1の
1 2
層数が多い情報記録媒体には Τの膜厚の範囲が特に好ましい。例えば、 50層の記
3
録層 1を有する情報記録媒体の場合、対物レンズ 6から最も遠い最下層の記録層 la においては、未記録領域 24での再生光 7bの光量は、 H→Lの情報記録媒体が、(1 -0. 0032) 49 = 0. 85、 L→Hの情報記録媒体力 (1— 0. 0036) 49 = 0. 84であり 、再生光の光量の低下は 15〜: 16%となる。これに対し、未記録領域 24での記録光 7 aの光量は、 H→Lの情報記録媒体力 (1 -0. 004) 49 = 0. 98、 L→Hの情報記録 媒体が、(1— 0. 005) 49 = 0. 98となり、 50層目の記録層でも記録光の光量の低下 は 2%に抑えられる。従って、記録光の光量の低下は、再生光の光量の低下に比べ て 1Z8程度と大幅に小さくできる。このため、 Tの範囲の膜厚を有する記録層を形
3
成すれば、記録光でのフォーカスサーボ用の反射光を確保しながら、精度良く良好 な記録及び再生が行われる。
[0058] 次に、本発明の情報記録媒体の各構成が説明される。本実施の形態の情報記録 媒体 21は、非線形吸収現象の 1つである、 2光子、多光子、またはプラズマ吸収過程 を用いて、記録ピット 5が形成される。従って、中間層 2だけでなぐ記録層 1も λ 2と λ 1に対して、上記に述べられた反射光以外は殆ど損失が発生せず、効率的に 3次 元的な記録ピットの記録/再生が可能となる。すなわち、非線形吸収現象を用いるこ とにより、略透明な記録層 1が用いられ、高い光利用効率が達成される。ただし、例え ば、 2光子吸収過程を利用して記録を行うためには、記録層 1は、記録光波長では略 透明であるが、その半分の波長では吸収を示す記録材料が用いられる。
[0059] 上記の情報記録媒体に、 え 2 = 0. 78 /i m、パルス幅が 100フェムト秒〜 10ナノ秒 の、例えば、比較的ピーク光量の高い、数 lOOmW〜数 W以上のパルスレーザ光が 記録光の収束光 7aとして、対物レンズ 6により所望の記録層 Idに集光される。この記 録光の集光により、例えば、非線形吸収現象の 1つである 2光子吸収過程によって、 光子密度の高い部分 (集光点及びその近傍)のみにおいて波長が半分 (0. 39 μ η ) になったような吸収が生じ、記録ピット 5が書き込まれる。本実施の形態 1では、記録 ピット 5は記録層 1の光学定数のうち、屈折率を変化させて記録されているが、光学 定数は他の特性であってもよい。ただし、記録層 1の屈折率の変化を利用する方が、 吸収変化を用いるよりも光の損失が少なくなるため、多層構造の記録部 3を有する情 報記録媒体には望ましい。また、 3光子吸収のような多光子吸収が用いられても、多 層構造の記録部 3を有する情報記録媒体に適した記録が可能になる。例えば、 3光 子吸収記録では、記録光波長に対しては略透明である力 その 1/3の波長に対し て吸収を示す記録材料が用いられる。また、 2光子吸収過程等の非線形吸収現象を 利用して記録ピットが記録される場合、記録ピット 5は通常の記録の場合に比べて小 さくなる(例えば、 2光子吸収では記録ピット 5の径は 1光子吸収で記録した場合に比 ベて 0. 71倍となる)。このため、記録光波長よりも短い再生光波長(2光子吸収では 、記録光波長の約 0. 7倍の波長を有する再生光波長)が使用されると、記録時と再 生時の実質的なスポット径が同程度に近づき、記録及び再生の最適化もしくは高密 度化が図られる。
[0060] 本実施の形態 1において、各記録層 1はそれぞれトラックガイド溝を具備している( 図 1には図示無し)。トラックピッチ Tpは、例えば 0. 59 m、溝深さは、例えば 0. 49 x mである。この溝からの ± 1次回折光が光検出器(図示無し)で検出されることによ りトラッキング誤差信号が得られ、正確にトラック上に沿って記録再生される。
[0061] 基板 9に含まれる樹脂としては、ポリカーボネート以外に PMMA、ノルボルネン樹 脂(例えば、「アートン」 CJSR株式会社製))、またはシクロォレフイン樹脂(例えば、「 ゼォネックス」 (日本ゼオン株式会社製) )等が用いられる。
[0062] 記録層 1は、記録材料として、例えば、フォトクロミック材料の 1つであるジァリールェ テンまたはその誘導体と、必要により、全体の 10〜50wt%略透明な樹脂とを混入し て形成される。フォトクロミック材料を用いることにより、フオトンモードで記録可能なラ イトワンスゃ、記録消去が可能なリライタブル記録が実現できる。これらの中でも、ジ ァリールェテンまたはその誘導体は熱的に安定な記録が行なえるため好ましい。
[0063] ジァリールェテンには色々の誘導体があり、具体的には、 l,2-Bis[2-methylbenzo[b ]thiophen_3_yl]_3,3,4,4,5,5_hexailuoro_l_cyclopentene、 2,3_Bis(2,4,5_tnmetnyi— «3 -thienyl)maleic Anhydride 2,3— Bis(2,4,5— tnmethy卜《3— thienyl)maleimide、 cis— 1,2— Di cyano- 1,2_bis(2,4, 5_trimethy卜 3_thienyl)ethene等が挙げられるが、本発明はこれら に限定されるものではなぐジァリールェテンの骨格構造を有する材料であれば、特 に限定されない。
[0064] また、ジァリールェテンまたはその誘導体と、例えば、 PMMA (ポリメチルメタアタリ レート)や紫外線硬化樹脂等の略透明な樹脂との混合により、ジァリールェテンの再 結晶化の防止効果が得られる。ただし、再結晶化しない場合であれば、透明樹脂は 特に必要とされず、 100。/oのジァリールェテンまたはその誘導体が用いられてもよい
[0065] さらに、本発明の記録層は、例えば、記録光の 2光子吸収過程でフォトクロミック材 料を感光させる波長を高効率で発光する蛍光材料を含有してもよレ、。このような蛍光 材料を記録層が含有すれば、記録材料の感度向上が図られるため好ましい。すなわ ち、フォトクロミック材料は一般的に 2光子吸収過程での記録感度が低いが、蛍光材 料は 2光子吸収過程での記録感度が高いものがある。従って、その 2光子蛍光により 、一般に 1光子吸収の感度は優れているフォトクロミック材料が 1光子吸収過程で感 光される。
[0066] 上記のような蛍光材料としては、具体的には、例えば、ユーロピウム付活ピロ燐酸ス トロンチウム 'マグネシウム [ (Sr, Mg) P O : Eu]のような無機蛍光材料や、パラテル
2 2 7
フエニル (p—Terphenyl)のような有機蛍光色素等が挙げられる。
[0067] 本発明の記録層に用いられる他の記録材料としては、側鎖型液晶性高分子ゃフォ トポリマー等のフォトンモードで記録される材料も好ましい。側鎖型液晶性高分子から なる記録層は、記録後の記録ピットの屈折率変化 (例えば、 Δ η=0. 2)が大きいとい う特徴があり、また偏光方向も記録されるため、通常記録に比べて記録容量を略 2倍 に増やすことが可能である。またフォトポリマーはライトワンス記録に適しており、記録 後に安定な材料であるため好ましレ、。
[0068] 上記以外の記録層に用いられる記録材料としては、有機色素、 Ζη〇等の超微粒子 が混入された樹脂膜や、 TeO膜等も好ましい。これら記録材料の屈折率変化を利
2
用することにより、光の吸収損失が減少するため好ましい。本発明において、屈折率 の変化量は記録光の照射方法により制御されてもよい。さらに記録光として数 W〜数 10kWの比較的ピークパヮの高いパルス光を用レ、、ボイドと呼ばれる空のピットを記 録してもよレ、。ピットがボイドの場合は、屈折率が 1であるので、記録層の屈折率が、 例えば 1. 7の場合、屈折率変化量は Δ η= _0. 7となり、絶対値が大きくなる。この ため、コントラスト良く信号が再生される。また、相変化材料は光の吸収を利用して記 録されるため、層数の多い記録には適さないが、 2〜6層程度の多層光ディスク用の 記録層の記録材料として使用可能である。
[0069] 記録層 1の間に形成される中間層 2としては、記録層 1との界面で所定の反射率を 得るために記録層 1に使用される樹脂とは同一または異なる樹脂が用いられる。この ような樹脂としては、例えば、紫外線 (UV)硬化樹脂、熱硬化性樹脂、 ΡΜΜΑ、ノル ボルネン樹脂、またはシクロォレフイン樹脂等の透明樹脂が用いられる。
[0070] なお、本実施の形態では、対物レンズ 6からの収束光 7aが既に記録された記録ピッ トを通過しない順序で、記録層 1中に、順次、記録ピット 5が 3次元的に記録された。こ のような順序で記録ピット 5が記録されることにより、例えば、ターゲット層 Idにおいて 、ターゲット層 idより上層の記録層 le、及び Ifの記録済の記録ピット 5を透過すること によって発生する散乱光、不要回折光等の迷光(ノイズ光)の影響を減らす効果 (SN 比向上)が得られる。具体的には、例えば、記録層 1中の、対物レンズ 6から最も離れ た位置(図 1では、記録層 la)から順次記録ピット 5が記録されれば、既に記録済み の記録ピットを通過することなぐ他の記録ピット 5が記録される。図 1の構成では順に laの列、 lbの歹 IJ、 lcの列というように、 z軸方向に 3次元的に記録すればよい。
[0071] 本実施の形態の情報記録媒体 21の製造方法としては、従来公知の製法を採用す ることができる。具体的には、図 6に示されるように、基板 9に、例えばスピンコート等 の塗布により、記録層 laが形成され(図 6B)、その上に、例えば塗布により、中間層 2 aが形成される(図 6C)。そして、その中間層 2a上に、同様にして、記録層 lb、中間 層 2b、記録層 lc、 · · ·、が繰り返し形成される。最後に、保護層 4が、例えば塗布や、 フィルム形成法により、光の入射側に形成される(図 6D)。塗布法によって、記録層 1 と中間層 2が形成されることにより、情報記録媒体の作製が容易で、低コスト化が可能 になる。
[0072] 本実施の形態において、中間層 2及び記録層 1は余剰に形成されてもよい。そして 、余剰に形成された中間層 2及び記録層 1の部分(つまり記録部の一部であって、光 が入射する側の部分)が保護層 4として使用されてもよい。この記録部の構成によれ ば、別工程での保護層 4の形成が不要となり、記録部 3と実質的に同じ材料からなる 保護層が形成される。
[0073] 次に、本実施の形態の情報記録媒体に記録ピットを記録及び Zまたは再生するた めの光学情報記録再生装置が説明される。図 7に示されるように、本実施の形態の 光学情報記録再生装置 70は、記録用光源 20aと再生用光源 20bのそれぞれ波長が 異なる 2種類の光源を有している。そして、光源 20a、 20bから情報記録媒体 21まで の光路中に、ビームスプリッタ 18a、コリメータレンズ 16、ビームスプリッタ 18b、立ち上 げミラー 12、波長板 10、球面収差補正素子 13、及び対物レンズ 6が配置されている [0074] 復路における、ビームスプリッタ 18bから光検出器 19までの光路には、フォーカス Zトラック誤差信号検出素子 15、検出レンズ 11、及び情報記録媒体 21の層間クロス トークを小さくするピンホール 14が配置されている。
[0075] 記録用光源 20aは、パルス幅力 例えば 100フェムト秒から 10ナノ秒で波長 λ 2が 0. 78 x mの記録光を出射する半導体パルスレーザ光源である。再生用光源 20bは 、例えば、波長; 1 1が 0. 66 x mの再生光を出射する半導体レーザ光源である。記録 用光源 20aの波長よりも短い波長を出射する再生用光源が使用されることにより、 2 光子吸収記録や多光子吸収記録、プラズマ吸収記録のような非線形記録にぉレ、て、 記録密度がより高密度化される。なお、両光源がアレイ化された光源が用いられても よい。
[0076] 波長板 10は、図 7に示されるように、対物レンズ 6と光源 20までの記録再生光の共 通光路に配置されている。この波長板 10は両波長の違いを利用して、記録光 22aに 対しては実質的に λ /4板力、またはそれに近くなるように設計され、再生光 22bに 対しては実質的に λ /2板もしくはえ板となる力、またはそれに近くなるように設計さ れている。また、ビームスプリッタ 18aも、両波長の違いを利用して、記録光 22aは透 過、再生光 22bは反射し、さらに、ビームスプリッタ 18bも、波長の違いを利用して、 記録光 22aに対しては偏光ビームスプリッタで、再生光 22bに対しては、偏光方向に ほとんど依存しない、ハーフミラーとして機能するように設計されてレ、る。
[0077] 本実施の形態の光学情報記録再生装置 70は、図 7に示されるように、記録時にお いては、記録用光源 20aから Y軸方向に出射された直線偏光でピークパヮの比較的 大きなパルスレーザ光の記録光 22aが、まずビームスプリッタ 18aを通過する。そして 、記録光 22aはコリメータレンズ 16により、略平行光となり、ビーム分岐素子であるビ 一ムスプリッタ 18bを透過して、立ち上げミラー 12によって光路を一Z軸方向に折り曲 げられる。そして、—Z軸方向に折り曲げられた記録光 22a (レーザ光 8)は、波長板 1 0で実質的に円偏光に変換され、球面収差補正素子 13を通過して、例えば、開口数 NA = 0. 85、焦点距離 2mmの対物レンズ 6によって、これまでに説明した構成を有 する情報記録媒体 21の保護層 4を通過して記録部 3の所望の記録層 lbに集光する (収束光 7a)。そして、その反射光 7a'を利用してフォーカスサーボ、及びトラックサー ボを行いながら、 2光子または多光子吸収過程等のような非線形現象を用いて、記録 層 1に、記録ピット 5の列が記録される。本実施の形態では、記録光波長に対する未 記録領域の反射率が再生光波長に対する未記録領域の反射率より小さい情報記録 媒体が使用されているため、記録層の最下層(図 7では記録層 la)においても、記録 ノ ヮの低下が低減され記録ピット 5が精度良く記録される。
[0078] このとき、収束光 7aが通過する記録部 3の厚さが記録深さにより異なるので、光源 2 0から対物レンズ 6までの光路中に設けた球面収差補正素子 13で記録部 3中の記録 される情報ピット 5の記録深さに応じて、球面収差補正素子 13で球面収差量を制御 しながら記録するようにすれば、良好な記録ピット 5が精度良く形成される。球面収差 補正素子 13は、屈折率分布が可変である液晶素子や、凹レンズと凸レンズを組み合 わせてァクチユエ一タで両レンズの光軸方向の間隔が可変なビームエキスパンダー 等が用いられる。
[0079] 再生時においては、再生用光源 20bから出射された直線偏光のレーザ光である再 生光 22bは、ビームスプリッタ 18aにより Y軸方向に折り曲げられ、同じぐコリメ一タレ ンズ 16により、略平行光となり、ビームスプリッタ 18bを透過して、立ち上げミラー 12 によって光路を一 Z軸方向に折り曲げられる。そして、 Z軸方向に折り曲げられた再 生光 22b (レーザ光 8)は、波長板 10、球面収差補正素子 13を通過して、直線偏光 のまま、対物レンズ 6によって情報記録媒体 21の記録部 3の記録層 1の記録ピット 5 に集光(収束光 7b)する。そして、記録ピット 5によって反射されたレーザ光 7b'は、逆 方向に折り返し、対物レンズ 6、球面収差補正素子 13、波長板 10、立ち上げミラー 1 2を順に通過し、ビームスプリッタ 18bにより光軸を Z軸方向に曲げられ、回折型フォ 一カス Zトラック誤差信号検出素子 15によって、複数の光に分岐され、検出レンズ 1 1により検出収束光 17、 17'となる。再生信号光となる検出収束光 17はピンホール 1 4を通過して光検出器 19aにより信号が検出される。分岐されたフォーカス/トラック 誤差信号となる検出収束光 17'は、ピンホールを通過させずに、別の光検出器 19b で検出される。フォーカス Zトラック誤差信号となる検出収束光 17'は、ピンホールを 通過させない構成により、非点収差法、 SSD法 (スポット 'サイズ ·ディテクシヨン法)、 3ビームトラッキング法のような従来方法で、それぞれフォーカスやトラック誤差信号が 検出される。すなわち反射光 7a'、 7b 'を利用してフォーカスサーボ、及びトラックサ ーボを行いながら、記録層の光学定数の変化を利用することにより記録ピットが記録 Z再生される。
[0080] 検出レンズ 11の焦点距離は、例えば 33mmであり、光検出器 19側でのエアリーデ イスク径は例えば 9. である。ピンホール 14は、検出収束光 17の略焦点の位置 に設置されている力 ピンホール 14を設けることにより、所望の記録層 lbの光軸方向 の上下の記録層 la、 lc、 Idにおける対物レンズ 6の収束光 7が照射する別の記録ピ ットからの不要反射光であるクロストーク光(層間クロストーク)がピンホール 14の外部 に分布する。それらの光はピンホール 14内に入らなくなるため、層間クロストークが減 少する。また、ピンホール 14の代わりに、光検出器の受光部がピンホール径の大きさ を有する光検出器 19aにより、検出収束光 17を検出するようにしても同様の効果が 得られる。
[0081] 本実施の形態では、ピンホール 14の大きさが再生信号光の検出収束光 17のエア リーディスク径の 5倍以下であれば、例えば、記録層 1の層間隔 A dが 5〜8 x mでも 問題ないレベル (層間クロストーク量≤30dB)まで再生信号の品質が向上された。た だし、ピンホール 14の大きさを小さくして、記録層 1の間隔(中間層 2の膜厚)をより小 さくすることは可能である力 小さくし過ぎると、ピンホール 14に入る光量が減少したり 、環境温度により、光学系が歪んで、検出収束光 17が、ピンホール 14の中心からず れる傾向がある。また、光量が低下する場合、 APD (アバランシェフオトダイオード)を 使用することにより信号強度が強められる。このため、本発明のような 3次元多層記録 再生装置において、材料の制限で検出光量が低下しすぎるときは APDの利用が効 果的である。
[0082] また、上記形態の光学情報記録再生装置は、さらに記録時に、記録光 22aとともに 再生光 22bも出射させて、上記再生光 7bによりフォーカスサーボを行ってもよレ、。す なわち、記録時に再生光を出射し、収束光 7bを所望の記録層 lbに集光してその反 射光 7b'を利用してフォーカスサーボを行いながら、収束光 7aを所望の記録層 lbに 集光して記録ピット 5を記録することもできる。既述したように、記録層の膜厚が記録 光波長に対して低い反射率を示す範囲であれば、最下層の記録層においても記録 光のパヮの低下が抑えられる力 記録光を利用したフォーカスサーボは困難となる傾 向がある。このため記録時に、再生光を利用してフォーカスサーボを行えば、フォー カスサーボ用の反射光を確保しつつ、最下層の記録層 l aに記録ピット 5がー層精度 良く記録される。特に、非線形吸収現象が利用される場合、例えば 2光子吸収過程 が利用される場合では、記録感度は光量の 2乗特性となる。従って、再生光によって フォーカスサーボが行われれば、フォーカスサーボによる記録光の減衰が抑えられる ため、その効果が大きい。このような記録時に再生光によりフォーカスサーボを行う光 学情報記録再生装置に用いられる情報記録媒体 21は、特に、 λ 2に対する未記録 領域の反射率が、例えば、 0. 01 %以下と小さくなる記録層の膜厚 (すなわち、記録 光だけではフォーカスサーボが困難になる膜厚)を有することが好ましい。このような 記録層の膜厚は、 λ 2に対する未記録領域の反射率の変位を考慮すれば、以下の 式(5)を満たす範囲で表される。
[0083] (q - 0. 104) λ 2/ (4η)≤t≤ (q + 0. 104) λ 2/ (4η) (5)
[0084] 式中、 λ 2は記録光波長、 ηは記録層の未記録領域の屈折率、 qは任意の正の偶 数である。
[0085] 例えば、本実施の形態で使用される再生光波長え 1が 0. 6 μ ηι≤ λ 1≤0. 7 μ m 、記録光の波長 λ 2が 0· 73 /i m≤え 2≤0· 83 μ mの範囲の場合は、 q= 4、すなわ ち以下の式 (6)を満たす範囲の膜厚 tに設定される。
[0086] 3. 90 λ 2/ (4η)≤t≤4. 10 λ 2/ (4η) (6)
[0087] 上記で説明された屈折率 ηを有する記録層の場合、 H→Lと L→Hのどちらの特性 を有する情報記録媒体においても、式(6)を満たす記録層の膜厚の範囲は、 0. 49 μ τη≤ί≤0. 52 x mとなる。この膜厚 tの範囲は、上記した; 1 1に対する未記録領域 の反射率を確保でき、かつ、良好な再生信号強度 (最大反射率 rl の 0. 7倍以上) max
が確保される、前述した図 4A、及び図 5Aに図示したより好ましい膜厚 Trの範囲内
3 にも含まれる。従って、記録時に、再生光でフォーカスサーボを行っても、記録光の 光量の低下が抑えられているため下層の記録層でも光源のピークパヮを調整するこ とな 精度良く記録ピットが記録される。そして、再生時には、再生光の反射率を記 録光の反射率よりも大きくしているため、再生光でフォーカスサーボが行われる。なお 、再生時に、下層の記録層で光量が不足する場合には、再生用光源は記録用光源 に比べて低パヮであり調整により容易に光量を上げることができるため、ターゲットで ある記録層が対物レンズから離れるに従レ、、所望の反射光強度が得られるよう必要 によりパヮ調整すれば、光量の不足も改善される。また、図 4及び図 5の対比から理 解されるように、 H→Lの特性を有する情報記録媒体の方が L→Hの特性を有する情 報記録媒体より記録後の反射率が低くなり、記録前後で大きな反射率の差が得られ 、その結果、変調率を大きくできるため好ましい。
[0088] (実施の形態 2)
次に、本発明の実施の形態 2の情報記録媒体が説明される。実施の形態 2は、記 録光波長え 2よりも短い再生光波長 λ 1が使用される点は実施の形態 1と同様である 力 再生光波長が 0. 35 /i m≤ λ 1≤0. 45 /i mを満たし、記録光波長が 0. 6 μ ηι≤ λ 2≤0. 7 μ ΐηを満たす記録光及び再生光が利用される点で異なる。このような波長 を有する光源としては、具体的には、例えば、 え 1 = 0. 405 /i mの半導体レーザ、及 びえ 2 = 0. 66 /i mの半導体レーザが挙げられる。
[0089] 図 8から図 11は、本実施の形態 2の情報記録媒体を詳細に説明する図面である。
図 8A及び図 8Bは、本発明の実施の形態 2に係る情報記録媒体の記録層の膜厚と、 記録層の未記録領域での再生光及び記録光の反射率との関係の一例を示している 。図 9A及び図 9Bは、本発明の実施の形態 2に係る情報記録媒体の記録層の膜厚と 、記録層の未記録領域での再生光及び記録光の反射率との関係の他の一例を示し ている。図 10Aは、図 8Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域 及び記録済領域での再生光の反射率との関係を示しており、図 10Bは、図 8Aの情 報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域での記録光 の反射率との関係を示している。図 11Aは、図 9Aの情報記録媒体の記録層の膜厚 と、記録層の未記録領域及び記録済領域での再生光の反射率との関係を示してお り、図 11Bは、図 9Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び 記録済領域での記録光の反射率との関係を示している。
[0090] まず、実施の形態 1の情報記録媒体と同様に、 H→L (n< nl < n2)の特性を有す る情報記録媒体において、例えば、各屈折率が、 n= l . 55、 nl = l . 60、及び n2 = 1.64である場合、図 8A及び図 8Bに点線、及び実線で示されるように、記録層の膜 厚と、 λ1(0.405 zm)と λ2(0.66 μ m)に対する未記録領域 24の反射率との関 係は、正弦波状の周期的な変化を示すことが確認された。この反射率の変位は実施 の形態 1と同じ、 Rl(t) =rl [1 -cos (4η π t/ λ 1) ]/2, R2 (t) =r2 [l_co
max
=0.32%で
Figure imgf000030_0001
あり、最小反射率は、 rl =r2 =0%である。
min min
[0091] 次に、 L→H(nl>n>n2)の特性を有する情報記録媒体において、例えば、各屈 折率が、 η=1· 55、nl = l.60、及び η2 = 1.46である場合、図 9Α及び図 9Βの点 線及び実線に示されるように、各反射率は実施の形態 1と同様の正弦波状の周期的 な変化を示すことが確認された。すなわち、それぞれ、 Rl (t) =rl [1-οο8(4ηπ
max
t/ λ 1) ]/2、 R2 (t) =r2 [1— cos (4n %t/ λ 2) ]/2で表される。ここで、最大
max
反射率は、 rl =r2 =0.36%であり、最小反射率は、 rl =r2 =0%である
max max mm mm
[0092] 従って、図 8B及び図 9Bに示されるように、点線で示される記録層の膜厚に対する 記録層の未記録領域におけるえ 1の反射率の変位 Rl (t) ヽ実線で示される記録 層の膜厚に対する記録層の未記録領域における λ 2の反射率の変位 R2 (t)より大き くなる膜厚の範囲であれば、本実施の形態の再生光波長及び記録光波長が使用さ れる場合に、 λ 2に対する未記録領域の反射率が、 λΐに対する未記録領域の反射 率よりも小さくなる。すなわち、実施の形態 1と同様に、式(1)を満たす記録層の膜厚 であれば、フォーカスサーボ用の反射光を確保しつつ、高精度に良好な記録再生を 行うことができる。
[0093] 両反射率曲線の交点における膜厚 tは、どちらの場合においても同じで、小さい方 力ら J噴に、 t =0 xm、 t =0.08 m、 t =0.16 xm、 t =0.24 m、 t =0.32 xm、 t =0.67
Figure imgf000030_0002
μ m' · ·、である。従って、点線で示された λ 1に対する反射率曲線力 実線で示さ れた λ 2に対する反射率曲線より大きくなる記録層の膜厚の範囲は、図 8Βと図 9Βに それぞれ横方向の矢印で示された、 Τ、 Τ、 Τ、 · · ·、の範囲である。 tを用いて表さ
1 2 3 i
れる各範囲は、実施の形態 1における式(2)の条件と同じように、 t <T <t、 t <T <t、 t <T <t、 t <T <t、 ···、となる。
3 4 3 5 6 4 7
[0094] 記録層 1に記録ピット 5が記録され、再生される場合についても、実施の形態 1の場 合と同様に説明される。すなわち、 H→L(nく nl<n2)の特性を有する情報記録媒 体において、例えば、各屈折率が、 n=l. 55、 nl = l.60、及び n2 = l. 64である 場合、 λΐに対する未記録領域 24及び記録済領域 23の各反射率は、図 10Aにそ れぞれ点線及び実線で示されるように、正弦波状に周期的な変化を示すことが確認 された。この情報記録媒体は H→Lの特性を有するため、未記録領域 24における最 大反射率は rl =0. 32%であるが、記録ピット 5である記録済領域 23での最大反 max
射率は rl =0.06%に低下する(最小反射率はいずれも 0%である)。そして、図 1 max
OAに示されるように、 え 1に対する未記録領域 24の反射率が最大値を示す記録層 1 の膜厚は、任意の正の奇数 pを用いて、 ρλ l/(4n)で表され、 え 1に対する記録済 領域 23の反射率が最大値を示す記録層の膜厚は、 p λ 1/ (4nl)で表わされる。
[0095] 従って、本実施の形態においても、実施の形態 1と同様に、未記録領域 24におけ る再生光の反射率が、最大反射率の 0. 7倍以上得られる好ましい記録膜の膜厚は、 式 (3)を満たす範囲となる。
[0096] (ρ-0. 369) λ l/(4n)≤t≤ (p + 0. 369) λ 1/ {An) (3)
[0097] 具体的な記録層の膜厚は、例えば、図 10Aに横方向の矢印で示された、 Ta、 Tb、 Tc、一、(···は繰り返しを意味する)の範囲で、 0.04, m≤Ta≤0. 09 μ m、 0. 1 7 xm≤Tb≤0. 22 zm、 0. 30 xm≤Tc≤0. 35 zm、 0.43 xm≤Td≤0.48 μ m、 0. 56 μ m≤Te≤0.61 μ m、 · · ·、で fcる。
[0098] 以上の結果を考え合わせると、本実施の形態の H→L(n<nl<n2)の特性を有す る情報記録媒体において、より好ましい記録層 1の膜厚の範囲は、実施の形態 1と同 様に、未記録領域 24の λ 2に対する反射率が λ 1に対する反射率よりも小さくなる Τ 、 Τ、 Τ、 · · ·、で表される範囲と、良好な再生信号強度 (最大値の 0. 7倍以上)が確
2 3
保できる Ta、 Tb、 Tc、 · · ·、で表される範囲を同時に満たす範囲となる。具体的に、 両膜厚の範囲を同時に満たすより好ましい膜厚は、図 10Aの横方向の矢印で示され た、膜厚力 、さレヽ方力ら順に、例えば、 0.0 μΐΆ≤Ύΐ <0. 0. 17 μτη≤
1
Tr ≤0. 22 xm、 0. 32^m<Tr <0. 34 μ m、 0.43/im≤Tr <0.48 μ m、 0. 57 xm<Tr ≤0. 61 xm、 .··、(· · ·は繰り返しを意味する)を満たす、 Tr、 Tr、 T
5 1 2 r、 Tr、 Tr · · ·、となる。
3 4 5、
[0099] 次に、 L→H(nl>n>n2)の特性を有する情報記録媒体において、例えば、各屈 折率力 S、n=i. 55、nl = l. 60、n2 = l.46である場合、 λ 1に対する未記録領域 2 4及び記録済領域 23の反射率は、図 11Aにそれぞれ点線、実線で示されるように正 弦波状に周期的な変化を示すことが確認された。この情報記録媒体は L→Hの特性 を有するため、未記録領域 24の最大反射率は rl =0. 36%である力 記録ピット max
5の記録済領域 23での反射率は最大値 rl =0.83%に増加する(最小値はいず max
れも 0%である)。そして、図 11Aに示されるように、 え 1に対する未記録領域 24の反 射率が最大値を示す記録層 1の膜厚は、任意の正の奇数 pを用いて、 ρλ l/(4n) で表され、 え 1に対する記録済領域 23の反射率が最大値を示す記録層の膜厚は、 p え l/(4nl)で表わされる。
[0100] 従って、本実施の形態においても、実施の形態 1と同様に、記録済領域 23におけ る再生光の反射率が、最大反射率の 0. 7倍以上得られる好ましい記録膜の膜厚は、 式 (4)を満たす範囲となる。
[0101] (p-0. 369) λ l/(4nl)≤t≤ (p + 0. 369) λ l/(4nl) (4)
[0102] 具体的な記録層の膜厚は、例えば、図 11Aに横方向の矢印で示された、 Ta、 Tb、 Tc、一、(···は繰り返し意味する)の範囲で、 0.04, m≤Ta≤0.09 μ m, 0. 17 xm≤Tb≤0. 21 zm、 0. 29 xm≤Tc≤0. 34 μ m、 0.42, m≤Tcl≤0.47 μ m、 0. 55 xm≤Te≤0. 59 zm、 ···、である。
[0103] 以上の結果を考え合わせると、 L→H(nl>n>n2)特性を有する情報記録媒体に おいて、より好ましい各記録層 1の膜厚の範囲は、良好な再生信号強度 (最大反射 率 rl の 0. 7倍以上)が確保され、かつ、未記録領域 24の λ 2に対する反射率が max
λ 1に対する反射率よりも小さくなる範囲である。すなわち、 Τ、 Τ、 Τ、 · · ·、で表さ
1 2 3
れる範囲と、 Ta、 Tb、 Tc、 · · ·、で表される範囲を同時に満たす膜厚の範囲が望まし レ、。具体的には、両膜厚の範囲を同時に満たすより好ましい範囲の膜厚は、図 11A の横方向の矢印で示された、膜厚が小さい方から順に、例えば、 0.04μΐΆ≤Ύΐ <
1
0.08μηι、 0. 17/im≤Tr ≤0. 21μη、 0. 32μηく Trく 0. 34 μ m、 0.42 μ m≤Tr≤0. 47 z m、 0. 57 x m<Tr≤0. 59 m、 · · ·、(· · ·は,操り返しを意味す
4 5
る)を満たす、 Tr、 Tr、 Tr、 Tr、 Tr、 · · ·、となる。
1 2 3 4 5
[0104] なお、本実施の形態の記録光波長及び再生光波長の範囲内であっても、波長や 屈折率の組み合わせでより好ましい膜厚の範囲が異なることは言うまでもない。
[0105] また、上記各 Trの範囲の中でも、製造の点から、 H→Lと L→Hのどちらの特性を有 する情報記録媒体も、記録層の膜厚は例えば、 0. 6 x m以下とある程度薄い方が作 りやすレ、。このため、記録層 1の膜厚の範囲は、上記の各結果と、図 10A及び図 11 Aに示された、 Tr、 Tr、 Tr、 Tr、または Trの辺りに設定することが好ましい。
1 2 3 4 5
[0106] また、本実施の形態の記録光及び再生光のように、再生光波長え 1が 0. 35 /i m≤ え 1≤0. 45 /i mを満たし、記録光波長え 2力 SO. 6 μ ΐη≤λ 2≤0. 7 x mを満たす関 係の場合には、 H→Lまたは L→Hの特性を有する情報記録媒体のどちらであっても 、図 8、及び図 9 ( 1 = 0. 405 x m、 2 = 0. 66 μ m)に示されるように、特に、 T (
2 t〜t )と T (t〜t )、すなわち、式(2)における iが 1または 3の範囲において、実線
2 3 4 6 7
で示されたえ 2に対する未記録領域 24の反射率は、点線で示された λ 1に対する未 記録領域 24の反射率よりも大幅に小さくできることが理解される。例えば、記録層 1 の膜厚が、 Τの領域の 3え 1/ (4η) =0. 20 μ ΐηに設定された場合(この膜厚は、前
2
述した、より好ましい記録層 1の膜厚 Trに含まれる)、 え 1に対する未記録領域 24の
2
反射率は、 H→Lの情報記録媒体が、 0. 32%、 L→Hの情報記録媒体が、 0. 36% となる。これに対し、 λ 2に対する未記録領域 24の反射率は、どちらも略同じで 0. 02 %である。このように、いずれの場合でも λ 2に対する未記録領域 24の反射率が λ 1 に対する未記録領域の反射率より顕著に小さい情報記録媒体が得られる。
[0107] また、記録層 1の膜厚が、 Τの範囲内の、例えば、 7 λ
4 lZ (4n) =0. 46 z mに設 定された場合 (この膜厚は、前述した、より好ましい記録層 1の膜厚 Trの範囲に含ま
4
れる)、 λ 1に対する未記録領域 24の反射率は、 H→Lの情報記録媒体が、 0. 32% 、 L→Hの情報記録媒体が、 0. 36%となる。これに対し、 λ 2に対する未記録領域 2 4の反射率は、 H→Lの情報記録媒体が、 0. 06%、 L→Hの情報記録媒体力 0. 0 7%である。従って、再生光の光量の低下に比べて記録光の光量の低下が大幅に抑 えられた情報記録媒体が得られる。なお、より好ましい膜厚の範囲は波長や屈折率 の糸且み合わせで異なることは言うまでもなレヽ。
[0108] 本実施の形態の情報記録媒体の製造方法や光学情報記録再生装置は実施の形 態 1で説明された構成と同様のものが使用される。
[0109] さらに、本実施の形態においても、実施の形態 1と同様に、記録時に、記録光と再 生光の両方を出射させて、再生光を所望の記録層に集光してその反射光を利用して フォーカスサーボを行なってもよい。このとき、 λ 2に対する反射率力 例えば、 0. 01 %以下と小さくなる膜厚は、実施の形態 1と同様に、式(5)を満たす範囲となる。
[0110] (q-O. 104) λ2/(4η)≤t≤ (q + O. 104) λ2/(4η) (5)
[0111] 従って、再生光波長が 0. 35μΐη≤ λ 1≤0.45 μ mを満たし、記録光波長が 0. 6 μηι≤ λ 2≤0. 7 μΐηを満たす記録光及び再生光が使用される場合、例えば、 q=2 、すなわち以下の式(7)を満たす範囲の膜厚 tを有する記録層が好ましい。
[0112] 1. 90λ2/(4η)≤t≤2. 10λ2/(4η) (7)
[0113] 例えば、上記で説明された屈折率 ηを有する記録層の場合、 H→Lと L→Hのどちら の特性を有する情報記録媒体においても、式 (7)を満たす記録層の膜厚の範囲は、 0. 20μηι≤ί≤0. 22/imとなる。この膜厚の範囲は、前述した図 10A、及び図 11 Aで示されたより好ましい膜厚 Trの範囲内に含まれる。
2
[0114] あるいは、本実施の形態の場合、 q = 4、すなわち以下の式(8)を満たす範囲の膜 厚 tを有する記録層が好ましレ、。
[0115] 3. 90λ2/(4η)≤t≤4. 10λ2/(4η) (8)
[0116] この場合、上記記録層の屈折率で、式 (8)を満たす膜厚の範囲は、 0. 41 zm≤t ≤0.44 xmとなる。この膜厚の範囲で、図 10Aあるいは図 11Aに示されたより好ま しい膜厚 Trの範囲と共通する範囲は、 H→Lの情報記録媒体では、 0. 43Mm≤t
3
≤0.44 xm、 L→Hの情報記録媒体では、 0.42 zm≤t≤0. 44 zmとなる。
[0117] (実施の形態 3)
次に、本発明の実施の形態 3の情報記録媒体が説明される。実施の形態 3は、記 録光波長 λ 2よりも短い再生光波長 λ 1が使用される点は実施の形態 1と同様である 力 再生光波長が 0.48 zm≤ λ 1≤0. 58 zmを満たし、記録光波長が 0. 6μτη≤ λ2≤0. 7 μΐηを満たす記録光及び再生光が利用される点で異なる。このような波長 を有する光源としては、具体的には、例えば、 λ1 = 0.532 zmの Nd:YAG_SH Gレーザ、及び λ 2 = 0.66 xmの半導体レーザが挙げられる。
[0118] 図 12から図 15は、本実施の形態 3の情報記録媒体を詳細に説明する図面である。
図 12A及び図 12Bは、本発明の実施の形態 3に係る情報記録媒体の記録層の膜厚 と、記録層の未記録領域での再生光及び記録光の反射率との関係の一例を示して いる。図 13A及び図 13Bは、本発明の実施の形態 3に係る情報記録媒体の記録層 の膜厚と、記録層の未記録領域での再生光及び記録光の反射率との関係の他の一 例を示している。図 14Aは、図 12Aの情報記録媒体の記録層の膜厚と、記録層の未 記録領域及び記録済領域での再生光の反射率との関係を示しており、図 14Bは、図 12Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域で の記録光の反射率との関係を示している。図 15Aは、図 13Aの情報記録媒体の記 録層の膜厚と、記録層の未記録領域及び記録済領域での再生光の反射率との関係 を示しており、図 15Bは、図 13Aの情報記録媒体の記録層の膜厚と、記録層の未記 録領域及び記録済領域での記録光の反射率との関係を示している。
[0119] まず、実施の形態 1の情報記録媒体と同様に、 H→L(n<nl<n2)の特性を有す る情報記録媒体において、例えば、各屈折率が、 n=l.55、 nl = l.60、 n2 = l.6 4である場合、図 12A及び図 12Bに点線、及び実線で示されるように、 え 1(0.532 μ m)と; I 2 (0.66 μ m)に対する未記録領域 24の反射率は、正弦波状の周期的な 変化を示すことが確認された。この反射率の変位は実施の形態 1と同じ、 Rl (t) =rl [ΐ-οο8(4ηπί λ 1)]/2, R2 (t) =r2 [1— cos (4n π t/ λ 2) ]Z2で表さ max max
れる。そして、最大反射率は、 rl =r2 =0.32%、最小反射率は、 rl =r2 max max mm mm
=0%である。
[0120] 次に、 L→H(nl>n>n2)の特性を有する情報記録媒体において、例えば、各屈 折率力 S、 n=l.55、 nl = l.60、 n2 = l.46である場合、図 13A及び図 13Bに示さ れるように、各反射率は同様の正弦波状の周期的な変化を示すことが確認された。 すなわち、それぞれ、 Rl(t) =rl [1 -cos (4η π t/ λ 1) ]/2, R2 (t) =r2 [1 max max
_(03(4117^/ぇ2)]/2で表される。ここで、最大反射率は、1"1 =r2 =0.36 max max
%、最小反射率は、 rl =r2 =0%である。 [0121] 従って、図 12B及び図 13Bに示されるように、点線で示される記録層の膜厚に対す る記録層の未記録領域における λ 1の反射率の変位 Rl (t) 、実線で示される記録 層の膜厚に対する記録層の未記録領域における λ 2の反射率の変位 R2 (t)より大き くなる膜厚の範囲であれば、本実施の形態の再生光波長及び記録光波長が使用さ れる場合に、 λ 2に対する未記録領域の反射率が、 λΐに対する未記録領域の反射 率よりも小さくなる。すなわち、実施の形態 1と同様に、式(1)を満たす記録層の膜厚 であれば、フォーカスサーボ用の反射光を確保しつつ、高精度に良好な記録再生を 行うことができる。
[0122] 両反射率曲線の交点における膜厚 tは、どちらの場合においても同じで、小さい方
i
力ら I噴に、 t =Ο ηι, η, t =0.19 ηι,
0 t =0. ΙΟ
1 2 t =0.29 η, t =0.38
3 4
μηι、 t =0.48μη、 t =0.57μηι、 t =0.67μηι、 t =0.76μη、 t =0.88
5 6 7 8 9
μ m、 · · ·、である。従って、点線で示されたえ 1に対する反射率曲線力 実線で示さ れた λ 2に対する反射率曲線より大きくなる記録層の膜厚の範囲は、図 12Bと図 13B にそれぞれ横方向の矢印で示された、 Τ、 Τ、 Τ、 · · ·、の範囲である。 tを用いて表
1 2 3 i
される各範囲は、実施の形態 1における式(2)の条件と同じように、 t <T <t、 t <
0 1 1 2
Tく t、 tく Tく t、 tく Tく t、 ···、となる。
2 3 4 3 5 6 4 7
[0123] 記録層 1に記録ピット 5が記録され、再生される場合についても、実施の形態 1の場 合と同様に説明される。すなわち、 H→L(nく nl<n2)の特性を有する情報記録媒 体にぉレヽて、 ί列えほ、、各屈折率力 S、 n=l.55、 nl = l.60、 n2 = l.64である場合、 λ 1に対する未記録領域 24及び記録済領域 23の各反射率は、図 14Aにそれぞれ 点線、実線で示されるように正弦波状に周期的に変化することが確認された。この情 報記録媒体は H→Lの特性を有するため、未記録領域 24の最大反射率は rl =0
max
.32%である力 記録ピット 5である記録済領域 23での反射率は最大値 rl =0.0
max
6%に低下する(最小値はいずれも 0%である)。そして、図 14Aに示されるように、 λ 1に対する未記録領域 24の反射率が最大値を示す記録層 1の膜厚は、任意の正の 奇数 Ρを用いて、 ρλ lZ(4n)で表され、 λ 1に対する記録済領域 23の反射率が最 大値を示す記録層の膜厚は、 ρ λ 1/ (4nl)で表わされる。
[0124] 従って、本実施の形態においても、実施の形態 1と同様に、未記録領域 24におけ る再生光の反射率が、最大反射率の 0.7倍以上得られる好ましい記録膜の膜厚は、 式 (3)を満たす範囲となる。
[0125] (ρ-0.369) λ l/(4n)≤t≤ (p + 0.369) λ l/(4n) (3)
[0126] 具体的な記録層の膜厚は、例えば、図 14Aに横方向の矢印で示された、 Ta、 Tb、 Tc、一、(···は繰り返しを意味する)の範囲で、 0.05, m≤Ta≤0. 12 xm、 0.2 3 xm≤Tb≤0.29 zm、 0.40 xm≤Tc≤0.46 μ m、 0.57 xm≤Td≤0.63 μ m、 0.74 xm≤Te≤0.80 zm、 ···、である。
[0127] 以上の結果を考え合わせると、本実施の形態の H→L(n<nl<n2)の特性を有す る情報記録媒体において、より好ましい各記録層 1の膜厚の範囲は、実施の形態 1と 同様に、未記録領域 24のえ 2に対する反射率が λ 1に対する反射率よりも小さくなる Τ、 Τ、 Τ、 · · ·、で表される範囲と、良好な再生信号強度 (最大値の 0.7倍以上)が
1 2 3
確保できる Ta、 Tb、 Tc、 · · ·、で表される範囲とを同時に満たす範囲となる。具体的 に、両膜厚の範囲を同時に満たすより好ましい範囲の膜厚は、図 14Aの横方向の矢 印で示される、膜厚力 M、さレヽ方力ら 1噴に、例えば、 0.05 xm≤Tr <0. lO/im, 0. 23^m≤Tr <0.29 xm、 0.40^m≤Tr≤0.46 μ m、 0.57^m<Tr≤0.6
2 3 4
3 xm、 0.76μηι<ΤΓ≤0· 80 xm、 ···、(···は繰り返しを意味する)を満たす、
5
Tr、 Tr、 Tr、 Tr、 Tr、 · · ·、となる。
1 2 3 4 5
[0128] 次に、 L→H(nl>n>n2)の特性を有する情報記録媒体において、例えば、各屈 折率力 S、 n=l.55、 nl = l.60、 n2 = l.46である場合、各反射率 ίま、図 15Aにそ れぞれ点線、実線で示されるように正弦波状に周期的に変化を示すことが確認され た。この情報記録媒体は L→Hの特性を有するため、未記録領域 24の最大反射率 は rl =0.36%である力 記録ピット 5である記録済領域 23での反射率は最大値 r max
1 =0.83%に増加する(最小値はいずれも 0%である)。そして、図 15Aに示され max
るように、 λ 1に対する未記録領域 24の反射率が最大値を示す記録層 1の膜厚は、 任意の正の奇数 ρを用いて、 ρλ 1Z (4η)で表され、 λ 1に対する記録済領域 23の 反射率が最大値を示す記録層の膜厚は、 ρ;11Z (4nl)で表わされる。
[0129] 従って、本実施の形態においても、実施の形態 1と同様に、記録済領域 23におけ る再生光の反射率が、最大反射率の 0.7倍以上得られる好ましい記録膜の膜厚は、 式 (4)を満たす範囲となる。
[0130] (ρ-Ο. 369) λ l/(4nl)≤t≤ (ρ + Ο. 369) λ l/(4nl) (4)
[0131] 具体的な記録層の膜厚は、例えば、図 15Aに横方向の矢印で示された、 Ta、 Tb、 Tc、 .··、(···は繰り返し意味する)の範囲で、 0.05, m≤Ta≤0. ll xm、 0. 22 xm≤Tb≤0. 28 zm、 0. 38 xm≤Tc≤0.45 zm、 0. 55, m≤Tcl≤0. 61 μ m、 0. 72 xm≤Te≤0. 78 μ m、 ···、である。
[0132] 以上の結果を考え合わせると、 L→H(nl>n>n2)特性を有する情報記録媒体に おいて、良好な再生信号強度 (最大値の 0. 7倍以上)が確保され、かつ、未記録領 域 24の λ 2に対する反射率がえ 1に対する反射率よりも小さくなる範囲である。すな わち、 Τ、 Τ、 Τ、 · · ·、で表される範囲と、 Ta、 Tb、 Tc、 · · ·、で表される範囲とを同
1 2 3
時に満たす膜厚の範囲が望ましい。具体的には、両膜厚の範囲を同時に満たすより 好ましい範囲の膜厚は、図 15Aの横方向の矢印で示された、膜厚が小さい方から順 に、 ί列; ま、 0. 05^m≤Tr <0. 10 xm、 0. 22^m≤Tr ≤0. 28 μ m、 0. 38 μ
1 2
m<Tr ≤0.45/i m、 0. 57 μ m<Tr ≤0. 61 μ m、 0. 76 μ mく Tr ≤0. 78 μ m
3 4 5
、 · · ·、 (···は繰り返し意味する)を満たす、 Tr、 Tr、 Tr、 Tr、 Tr、 · · ·、となる。
1 2 3 4 5
[0133] なお、本実施の形態の記録光波長及び再生光波長の範囲内であっても、波長や 屈折率の組み合わせでより好ましい膜厚の範囲が異なることは言うまでもない。
[0134] また、本実施の形態の情報記録媒体も製造の点から、 H→Lと L→Hのどちらの特 性を有する情報記録媒体も、記録層の膜厚は、例えば、 0. 6 zm以下とある程度薄 い方が作りやすレ、。このため、記録層 1の膜厚の範囲は、上記に述べ、図 14A及び 図 15Aに示された、 Tr、 Tr、 Tr、または Trの辺りに設定することが好ましい。
1 2 3 4
[0135] また、本実施の形態の記録光及び再生光のように、再生光波長 11が 0.48μτη≤
11≤0. 58 zmを満たし、記録光波長; 12が 0. 6μηι≤ λ2≤0. を満たす関 係の場合には、 H→Lまたは L→Hの特性を有する情報記録媒体のどちらであっても 、図 12、及び図 13( 1 = 0. 532 xm、 12 = 0.66 μ m)に示されるように、特に、 T (t〜t )と丁 (t〜t )、すなわち、式(2)における iが 1または 2の範囲において、実
2 2 3 3 4 5
線で示された λ 2に対する未記録領域 24の反射率は、点線で示された λ 1に対する 未記録領域 24の反射率よりも大幅に小さくできることが理解される。例えば、記録層 1の膜厚が、 T x mに設定された場合 (この膜厚は、
Figure imgf000039_0001
前述した、より好ましい記録層 1の膜厚 Trに含まれる)、 λ ΐに対する未記録領域 24
2
の反射率は、 H→Lの情報記録媒体が、 0. 32%、 L→Hの情報記録媒体力 0. 36 %となる。これに対し、 λ 2に対する未記録領域 24の反射率は、 H→Lの情報記録媒 体力 0. 12%、 L→Hの情報記録媒体が、 0. 13%と小さくなる。このように、いずれ の場合でも λ 2に対する未記録領域 24の反射率が λ 1に対する未記録領域の反射 率より顕著に小さい情報記録媒体が得られる。
[0136] また、記録層 1の膜厚が、 Τの領域の、例えば、 5 λ 1/ (4η) =0. 43 /i mに設定さ
3
れた場合 (この膜厚は、前述した、より好ましい記録層 1の膜厚 Trの範囲に含まれる
3
)、 え 1に対する未記録領域 24の反射率は、 H→Lの情報記録媒体力 0· 32%、 L →Hの情報記録媒体力 0. 36%となる。これに対し、 λ 2に対する未記録領域 24の 反射率は、 H→Lの情報記録媒体が、 0. 0007%、 L→Hの情報記録媒体が、 0. 00 08%と非常に小さくなる。このように、いずれの場合でも再生光の光量の低下に比べ て記録光の光量の低下が大幅に抑えられた情報記録媒体が得られる。なお、より好 ましい膜厚の範囲は波長や屈折率の組み合わせで異なることは言うまでもない。
[0137] 本実施の形態の情報記録媒体の製造方法や光学情報記録再生装置は実施の形 態 1で説明された構成と同様のものが使用される。
[0138] さらに、本実施の形態においても、実施の形態 1と同様に、記録時に、記録光と再 生光の両方を出射させて、再生光を所望の記録層に集光してその反射光を利用して フォーカスサーボを行なってもよい。このとき、 λ 2に対する反射率力 例えば、 0. 01 %以下と小さくなる膜厚は、実施の形態 1と同様に、式(5)を満たす範囲となる。
[0139] (q-0. 104) λ 2/ (4η)≤t≤ (q + 0. 104) λ 2/ (4η) (5)
[0140] 従って、再生光波長が 0. 48 x m≤ λ 1≤0. 58 μ mを満たし、記録光波長が 0. 6
M m≤ λ 2≤0. 7 x mを満たす場合、例えば、 q = 4、すなわち以下の式(9)を満た す範囲の膜厚 tを有する記録層が好ましい。
[0141] 3. 90 λ 2/ (4η)≤t≤4. 10 λ 2/ (4η) (9)
[0142] 例えば、上記で説明された屈折率 ηを有する記録層の場合、 H→Lと L→Hのどちら の特性を有する情報記録媒体においても、式 (9)を満たす記録層の膜厚の範囲は、 0.41 xm≤t≤0.44 zmの範囲となる。この膜厚の範囲は、前述した図 14A、及び 図 15Aで示されたより好ましい膜厚 Trの範囲内に含まれる。
3
[0143] (実施の形態 4)
次に、本発明の実施の形態 4の情報記録媒体が説明される。実施の形態 4は、記 録光波長 λ 2よりも短い再生光波長 λ 1が使用される点は実施の形態 1と同様である 、再生光波長が 0. 35μΐΆ≤ 11≤0.45 zmを満たし、記録光波長が 0.48 μ m ≤ λ1≤0. 58 zmを満たす記録光及び再生光が利用される点で異なる。このような 波長を有する光源としては、具体的には、例えば、 え 1 = 0.405 /imの半導体レー ザ、及びえ 2 = 0· 532 /imの Nd:YAG— SHGレーザが挙げられる。
[0144] 図 16から図 19は、本実施の形態 4の情報記録媒体を詳細に説明する図面である。
図 16A及び図 16Bは、本発明の実施の形態 4に係る情報記録媒体の記録層の膜厚 と、記録層の未記録領域での再生光及び記録光の反射率との関係の一例を示して いる。図 17A及び図 17Bは、本発明の実施の形態 3に係る情報記録媒体の記録層 の膜厚と、記録層の未記録領域での再生光及び記録光の反射率との関係の他の一 例を示している。図 18Aは、図 16Aの情報記録媒体の記録層の膜厚と、記録層の未 記録領域及び記録済領域での再生光の反射率との関係を示しており、図 18Bは、図 16Aの情報記録媒体の記録層の膜厚と、記録層の未記録領域及び記録済領域で の記録光の反射率との関係を示している。図 19Aは、図 17Aの情報記録媒体の記 録層の膜厚と、記録層の未記録領域及び記録済領域での再生光の反射率との関係 を示しており、図 19Bは、図 17Aの情報記録媒体の記録層の膜厚と、記録層の未記 録領域及び記録済領域での記録光の反射率との関係を示している。
[0145] まず、実施の形態 1の情報記録媒体と同様に、 H→L(n<nl<n2)の特性を有す る情報記録媒体において、例えば、各屈折率が、 n=l. 55、 nl = l. 60、 n2 = l.6 4である場合、図 16A及び図 16Bの点線及び実線に示されるように、 λΐ(0.405 μ m)と; I 2(0. 532 xm)に対する未記録領域 24の反射率は、実施の形態 1と同様の 正弦波状の周期的な変化を示すことが確認された。この反射率の変位は実施の形 態 1と同じ、 Rl(t)=rl [l_cos(4n7it/ 1)]/2、 R2(t) =r2 [l-cos(4n max max
Tit/え 2) ]/2で表される。そして、最大反射率は、 rl =r2 =0. 32%、最小 反射率は、 rl =r2 =0%である。
min min
[0146] 次に、 L→H(nl>n>n2)の特性を有する情報記録媒体において、例えば、各屈 折率力 S、例えば、 n=l. 55、 nl = l. 60、 n2 = l.46である場合、図 17A及び図 17 Bの点線及び実線に示されるように、実施の形態 1と同様の正弦波状の周期的な変 化を示すことが確認された。すなわち、それぞれ、 Rl(t)=rl [1— cos(4n7it/ max
λ 1) ]Z2、 R2 (t) =r2 [1— cos (4n π t/ λ 2) ]/2で表される。ここで、最大反
max
射率は、 rl =r2 =0. 36%、最小反射率は、 rl =r2 =0%である。
max max min min
[0147] 従って、図 16B及び図 17Bに示されるように、点線で示される記録層の膜厚に対す る記録層の未記録領域における λ 1の反射率の変位 Rl (t)力 実線で示される記録 層の膜厚に対する記録層の未記録領域における λ 2の反射率の変位 R2 (t)より大き くなる膜厚の範囲であれば、本実施の形態の再生光波長及び記録光波長が使用さ れる場合に、 λ 2に対する未記録領域の反射率が、 λ ΐに対する未記録領域の反射 率よりも小さくなる。すなわち、実施の形態 1と同様に、式(1)を満たす記録層の膜厚 であれば、フォーカスサーボ用の反射光を確保しつつ、高精度に良好な記録再生が 行うことができる。
[0148] 両反射率曲線の交点における膜厚 tは、どちらの場合においても同じで、 t =0μ
i 0 m、 t =0. 07μη、 t =0. 15μηι、 t =0. 22 ηι, t =0. 30 μ m、 t =0. 37 μ
1 2 3 4 5 m、 t =0. 52 xm、 t8 = 0. 55 xm、 t9 = 0. 59 m、 ···、である。
Figure imgf000041_0001
従って、点線で示された; 11に対する反射率曲線力 実線で示された; 12に対する反 射率曲線より大きくなる記録層の膜厚の範囲は、図 16Bと図 17Bにそれぞれ横方向 の矢印で示された、 T、T、T、 ···、の範囲である。 tを用いて表される各範囲は、
1 2 3 i
実施の形態 1における式(2)の条件と同じように、 t <T <t、 t <T <t、 t <T <
0 1 1 2 2 3 4 3 t、 tく Tく t、 ···、となる。
5 6 4 7
[0149] 次に、記録層 1に記録ピット 5が記録され、再生される場合についても、実施の形態 1の場合と同様に説明される。すなわち、 H→L(nく nl<n2)の特性を有する情報 記録媒体において、例えば、各屈折率が、 n=l. 55、 nl = l. 60、 n2 = l. 64の場 合、 λ ΐに対する未記録領域 24及び記録済領域 23の各反射率は、図 18Aにそれぞ れ点線及び実線で示されるように正弦波状に周期的な変化を示すことが確認された 。この情報記録媒体は H→Lの特性を有するため、未記録領域 24における最大反射 率は rl =0. 32%である力 記録ピット 5である記録済領域 23での反射率は最大 max
値 rl =0.06%に低下する(最小値はいずれも 0%である)。そして、図 18Aに示 max
されるように、 λ 1に対する未記録領域 24の反射率が最大値を示す記録層 1の膜厚 は、任意の正の奇数 ρを用いて、 ρλ 1/ (4η)で表され、 λ 1に対する記録済領域 23 の反射率が最大値を示す記録層の膜厚は、 ρえ 1/ (4nl)で表わされる。
[0150] 従って、本実施の形態においても、実施の形態 1と同様に、未記録領域 24におけ る再生光の反射率が、最大反射率の 0. 7倍以上得られる好ましい記録膜の膜厚は、 式 (3)を満たす範囲となる。
[0151] (ρ-0. 369) λ l/(4n)≤t≤ (p + 0. 369) λ 1/ {An) (3)
[0152] 具体的な記録層の膜厚は、例えば、図 18Aに横方向の矢印で示された、 0.04 μ m≤Ta≤0.09/im、 0. 17/im≤Tb≤0. 22/im、 0. 30/im≤Tc≤0. 35 xm、 0.43μηι≤Τά≤0.48 μ m、 0. 56μηι≤Τθ≤0.61/im、 ···、である。
[0153] 以上の結果を考え合わせると、本実施の形態の H→L(n<nl<n2)の特性を有す る情報記録媒体において、より好ましい各記録層 1の膜厚の範囲は、実施の形態 1と 同様に、未記録領域 24のえ 2に対する反射率が λ 1に対する反射率よりも小さくなる Τ、 Τ、 Τ、 · · ·、で表される範囲と、良好な再生信号強度 (最大値の 0. 7倍以上)が
1 2 3
確保できる Ta、 Tb、 Tc、 · · ·、で表される範囲とを同時に満たす範囲となる。具体的 に、両膜厚の範囲を同時に満たすより好ましい膜厚は、図 18Aの横方向の矢印で示 された、月莫厚カ Mヽさレヽ方カら順に、例えば、 0.04 zm≤Tr <0.07μ m、 0. 17μ
1
m≤Tr <0. 22 zm、 0. 30 xm<Tr ≤0. 35 xm、 0.45 xm<Tr ≤0.48 μ m
2 3 4
、 0. 56 zm≤Trく 0. 59 xm、 .··、 (· · ·は繰り返し意味する)を満たす、 Tr、 Tr
5 1 2
、 Tr、 Tr、 Tr、 ···、となる。
3 4 5
[0154] 次に、 L→H(nl>n>n2)の特性を有する情報記録媒体において、例えば、各屈 折率力 S、n=i. 55、nl = l. 60、n2 = l.46である場合、 λ 1に対する未記録領域 2 4及び記録済領域 23の反射率は、図 19Aにそれぞれ点線、実線で示されるように正 弦波状に周期的な変化を示すことが確認された。この情報記録媒体は L→Hの特性 を有するため、未記録領域 24の最大反射率は rl =0. 36%である力 記録ピット 5である記録済領域 23での反射率は最大値 rl =0.83%に増加する(最小値は max
いずれも 0%である)。そして、図 19Aに示されるように、 λΐに対する未記録領域 24 の反射率が最大値を示す記録層 1の膜厚は、任意の正の奇数 ρを用いて、 ρλ 1/( 4η)で表され、 λ 1に対する記録済領域 23の反射率が最大値を示す記録層の膜厚 は、 ll/ (4nl)で表わされる。
[0155] 従って、本実施の形態においても、実施の形態 1と同様に、記録済領域 23におけ る再生光の反射率が、最大反射率の 0.7倍以上得られる好ましい記録膜の膜厚は、 式 (4)を満たす範囲となる。
[0156] (ρ-0.369) λ l/(4nl)≤t≤ (p + 0.369) λ l/(4nl) (4)
[0157] 具体的な記録層の膜厚は、例えば、図 19Aに横方向の矢印で示された、 Ta、 Tb、 Tc、 ···、(···は繰り返し意味する)の範囲で、 0.04/im≤Ta≤0.09 xm、 0.17 m≤Tb≤0.21/im、 0.29μηι≤Το≤0.34 μ m、 0.42 μ m≤Td≤0.47 μ m、 0.55μηι≤Τθ≤0.59/im、 0.67/im≤Tf≤0.72 xm、 ···、である。
[0158] 以上の結果を考え合わせると、 L→H(nl>n>n2)の特性を有する情報記録媒体 において、より好ましい各記録層 1の膜厚の範囲は、良好な再生信号強度 (最大反 射率の 0.7倍以上)が確保され、かつ、未記録領域 24のえ 2に対する反射率が λ 1 に対する反射率よりも小さくなる範囲である。すなわち、 Τ、 Τ、 Τ、 · · ·、で表される
1 2 3
範囲と、 Ta、 Tb、 Tc、 · · ·、で表される範囲とを同時に満たす膜厚の範囲が望ましい 。具体的には、両膜厚の範囲を同時に満たすより好ましい各記録層 1の膜厚は、図 1 9Aの横方向の矢印で示された、膜厚が小さい方から順に、例えば、 0.04Mm≤Tr <0.07 zm、 0.17 μΐΆ≤Ύτ≤0.21 zm、 0.30 zm<Tr≤0.34 μ m、 0.45
1 2 3
xmく Tr≤0.47 zm、 0.55 xm<Tr≤0.59 m、 · · ·、(· · ·は,操り返しを意味
4 5
する)を満たす、 Tr、 Tr、 Tr、 Tr、 Tr、 · · ·、となる。
1 2 3 4 5
[0159] なお、本実施の形態の記録光波長及び再生光波長の範囲内であっても、波長や 屈折率の組み合わせでより好ましい膜厚の範囲が異なることは言うまでもない。
[0160] また、上記各 Trの範囲の中でも、製造の点から、 H→Lと L→Hのどちらの特性を有 する情報記録媒体も、記録層の膜厚は例えば、 0.6 xm以下とある程度薄い方が作 りやすい。このため、記録層 1の膜厚の範囲は、上記の各結果と、図 18A及び図 19 Aに示された、 Tr、 Tr、 Tr、 Tr、または Trの辺りに設定することが好ましい。
1 2 3 4 5
[0161] また、本実施の形態の記録光及び再生光のように、再生光波長 1 1が 0. 35 μ τη≤
1 1≤0. 45 z mを満たし、記録光波長; 1 2力 0. 48 μ ΐη≤ λ 1≤0. 58 z mを満た す関係の場合には、 H→Lまたは L→Hの特性を有する情報記録媒体のどちらであ つても、図 16、及び図 17 ( λ 1 = 0. 405 z m、 λ 2 = 0. 66 μ m)に示されるように、 特に、 T (t〜t )と丁 (t〜t )、すなわち、式(2)における iが 1または 2の範囲にお
2 2 3 3 4 5
いて、実線で示された λ 2に対する未記録領域 24の反射率は、点線で示された λ 1 に対する未記録領域 24の反射率よりも大幅に小さくできることが理解される。例えば 、記録層 1の膜厚力 Τの領域の 3え 1/ (4η) = 0. 20 /i mに設定された場合(この
2
膜厚は、前述した、より好ましい記録層 1の膜厚 Trに含まれる)、 λ 1に対する未記
2
録領域 24の反射率は、 H→Lの情報記録媒体が、 0. 32%、 L→Hの情報記録媒体 力 0. 36%となる。これに対し、 λ 2に対する未記録領域 24の反射率は、 H→Lの 情報記録媒体が、 0. 06%、 L→Hの情報記録媒体が、 0. 07%である。このように、 いずれの場合でも、 λ 2に対する未記録領域 24の反射率が λ 1に対する未記録領 域の反射率より顕著に小さい情報記録媒体が得られる。
[0162] また、記録層 1の膜厚が、 Τの範囲の、例えば、 5え 1/ (4η) = 0. 33 /i mに設定
3
された場合 (この膜厚は、前述した、より好ましい記録層 1の膜厚 Trの範囲に含まれ
3
る)、 λ 1に対する未記録領域 24の反射率は、 H→Lの情報記録媒体が、 0. 32%、 L→Hの情報記録媒体力 0. 36%となる。これに対し、 λ 2に対する未記録領域 24 の反射率は、どちらも、 0. 03%と小さくなる。従って、再生光の光量の低下に比べて 記録光の光量の低下は大幅に抑えられた情報記録媒体が得られる。なお、より好ま しい膜厚の範囲は波長や屈折率の組み合わせで異なることは言うまでもない。
[0163] 本実施の形態の情報記録媒体の製造方法や光学情報記録再生装置は実施の形 態 1で説明された構成と同様のものが使用される。
[0164] さらに、本実施の形態においても、実施の形態 1と同様に、記録時に、記録光と再 生光の両方を出射させて、再生光を所望の記録層に集光してその反射光を利用して フォーカスサーボを行なってもよい。このとき、 λ 2に対する反射率力 例えば、 0. 01 %以下と小さくなる膜厚は、実施の形態 1と同様に、式(5)を満たす範囲となる。 [0165] (q-0.104) λ2/(4η)≤t≤ (q + 0. 104) λ2/(4η) (5)
[0166] 従って、再生光波長が 0.35 xm≤ λ1≤0.45 xmを満たし、記録光波長が 0.4 8μΐη≤λ1≤0.58μ mを満たす記録光及び再生光が使用される場合、例えば、 q =2、すなわち、以下の式(10)を満たす範囲の膜厚 tを有する記録層が好ましい。
[0167] 1.90λ2/(4η)≤t≤2.10λ2/(4η) (10)
[0168] 例えば、上記で説明された屈折率 ηを有する記録層の場合、 H→Lと L→Hのどちら の特性を有する情報記録媒体においても、式(10)を満たす記録層の膜厚の範囲は 、0.16/im≤t≤0.18/imとなる。この膜厚の範囲で、前述した図 18A、及び図 19 Aで示されたより好ましい膜厚の範囲 Trと共通する範囲は、 H→L、 L→Hのどちら
2
の特性を有する情報記録媒体においても、 0.17/im≤t≤0.18/imとなる。
[0169] あるいは、本実施の形態の場合、 q = 4、すなわち、以下の式(11)を満たす範囲の 膜厚 tを有する記録層が好ましい。
[0170] 3.90λ2/(4η)≤t≤4.10λ2/(4η) (11)
[0171] この場合、上記記録層の屈折率で、式(11)を満たす膜厚の範囲は、 0.33/im≤ t≤0.35/imとなる。この膜厚の範囲で、図 18Aあるいは図 19Aに示されたより好ま しい膜厚 Trの範囲と共通する範囲は、 H→Lの情報記録媒体では、 0.33 xm≤t
3
≤0.35 xmで、 L→Hの情報記録媒体では、 0.33/im≤t≤0.34 /imの範囲とな る。
[0172] なお、上記の実施の形態では、いずれも記録層の未記録領域の屈折率 nが記録済 領域の屈折率 nlより小さい場合について説明された力 逆に n>nlの場合において も同様に本発明が適用される。すなわち、ジァリールェテンの閉環体が未記録領域と して、その開環体が記録済領域として利用される場合、未記録領域の屈折率 nは記 録済領域 nlより大きくなる。この場合、中間層の屈折率 n2に対して、 H→Lの情報記 録媒体は、 n2<nl<nの関係を、 L→Hの情報記録媒体は、 nl<n<n2の関係を 満足することが好ましい。
[0173] 以上、実施の形態 1から実施の形態 4の情報記録媒体及びそれを記録再生する光 学情報記録再生装置について説明されたが、本発明はこれらの実施の形態に限定 されるものではなく、それぞれの実施の形態の情報記録媒体及び光学情報記録再 生装置との構成を組み合わせた情報記録媒体及び光学情報記録再生装置も本発 明に含まれ、同様の効果を奏することができる。また、上記の情報記録媒体は追記型 以外に書き換え型も含まれる。さらに、情報が記録された情報記録媒体であれば、再 生のみを行なう光学情報再生装置にも適用できることは言うまでもない。
[0174] なお、記録光波長に対する記録層の未記録領域の反射率が、再生光波長に対す る記録層の未記録領域の反射率よりも小さいことを確認するには、中間層が両波長 に対して実質的に透明である場合、未記録の情報記録媒体に、記録光と再生光をそ れぞれ入射して各透過率を測定し、記録光に対する透過率が高ければ、上記関係 を満たしているとみなせる。
[0175] また、上記実施の形態で用いた対物レンズとコリメータレンズ、検出レンズは便宜上 名付けたものであり、一般にいうレンズと同じである。
[0176] さらに、上記実施の形態はいずれも基板の片面のみに記録部を有する情報記録媒 体について説明されたが、本発明は基板上に記録部を有する 2つの基板が接合され た基板の両面に記録部を有する情報記録媒体にも適用可能である。
[0177] またさらに、上記実施の形態においては、情報記録媒体として光ディスクを例に挙 げて説明されたが、同様の情報記録再生装置で厚みや記録密度など複数の仕様の 異なる媒体が再生されるように設計されたカード状やドラム状、テープ状の製品への 適用も本発明の範囲に含まれる。
[0178] 以上説明されたように、本発明の一局面は、基板と、前記基板上に記録ピットを 3次 元的に記録可能な記録部とを備えた情報記録媒体であって、前記記録部は、波長 λ 2を有する記録光を集光することにより前記記録ピットが記録され、前記波長 λ 2よ り短い波長 λ 1を有する再生光を集光することにより前記記録ピットが再生される複 数の記録層と、前記記録層と交互に積層された中間層とを有し、記録光波長 λ 2に 対する記録層の未記録領域の反射率が、再生光波長; 1 1に対する記録層の未記録 領域の反射率よりも小さい情報記録媒体である。上記構成によれば、フォーカスサー ボ用の反射光を確保しつつ、対物レンズから離れた最下層の記録層に対しても記録 光の光量の低下が小さく高精度に良好な記録再生が可能な情報記録媒体が実現さ れる。 [0179] 本発明において、前記記録層は、フォトクロミック材料を含むことが好ましい。上記 構成によれば、最下層の記録層においても記録光量が十分確保されるため、光量に よって記録感度が影響されるフォトクロミック材料であっても非線形現象によって良好 な記録が行われる。
[0180] 本発明において、前記記録光及び再生光は、下記 (i)〜(iv)のいずれか 1つの再生 光波長 λ 1及び記録光波長 λ 2の関係を満たすことが好ましい。
[0181] (i)0. 6 xm≤ λ1≤0. 7 xm, 0. 73 zm≤ λ2≤0. 83 zm
(ii) 0. 35μηι≤ λ1≤0.45μηι, 0. 6/im≤ λ2≤0. 7 μ m
(iii) O.48μηι≤ λ1≤0. 58/im、 0. 6/im≤ λ 2≤0. 7 μ m
(iv) O. 35/im≤ λ1≤0.45μηι, 0.48μηι≤ λ2≤0. 58 /im
[0182] 上記記録光及び反射光の関係を満たせば、記録光波長より短い波長を有する再 生光波長が利用されるため、フォーカスサーボ用の反射光を確保しつつ、良好な記 録が可能となる。また、非線形吸収現象を利用して記録される記録ピットの大きさは 1 光子吸収記録のそれに比べて小さくなるため、上記関係の記録光及び再生光が使 用されると、記録時と再生時の実質的なスポット径が同程度に近づき、記録及び再生 の最適化もしくは高密度化が図られる。
[0183] 本発明において、前記記録層の膜厚 tは、記録層の膜厚に対する記録層の未記録 領域における再生光の反射率の変位と、記録層の膜厚に対する記録層の未記録領 域における記録光の反射率の変位との関係を示す下記式(1)の条件を満たすことが 好ましい。
[0184] rl [ΐ-οο8(4ηπί λ l)]/2>r2 [1 -cos (4η π t/ λ 2) ]/2 (1) max max
[0185] ただし、 λΐは再生光波長、 λ 2は記録光波長、 ηは記録層の未記録領域の屈折率 、 tは記録層の膜厚、 rl は λ 1に対する記録層の未記録領域の最大反射率、及び max
r2 は λ 2に対する記録層の未記録領域の最大反射率である。
max
[0186] 上記構成によれば、未記録領域において再生光の反射率が記録光のそれよりも高 い記録層が得られるため、フォーカスサーボ用の反射光を確保しつつ、良好な記録 が可能となる。
[0187] 本発明において、上記の反射率の関係を満たす記録層の膜厚 tは、前記記録層の 膜厚に対する記録層の未記録領域における λ 1の反射率の変位と、前記記録層の 膜厚に対する記録層の未記録領域における λ 2の反射率の変位とがー致する記録 層の膜厚 tと、以下の式(2)の条件を満たす範囲が好ましい。
[0188] t く tく t (2)
2i 2i+ l
[0189] ただし、 tは、 0以上であり、 iは 0以上の任意の整数で、 0≤t <t である。
i i i+ 1
[0190] また、本発明におレ、て、波長分散による屈折率の差が小さレ、場合には、前記 rl
max と、前記 r2 とは実質的に同じとみなすことができる。
max
[0191] 本発明において、前記中間層の屈折率と前記記録層の未記録領域の屈折率の差 力 前記中間層の屈折率と前記記録層の記録済領域の屈折率の差より大きぐ前記 記録層の膜厚 tが、下記の式(3)の条件を満たすことが好ましい。
[0192] (p-O. 369) λ l/ (4n)≤t≤ (p + O. 369) λ 1/ {An) (3)
[0193] ただし、 λ 1は再生光波長、 λ 2は記録光波長、 tは記録層の膜厚、 nは記録層の 未記録領域の屈折率、及び Pは任意の正の奇数である。
[0194] 上記構成によれば、 H→Lの特性を有する情報記録媒体において、再生時におけ るフォーカスサーボ用の反射光の光量が十分に得られる。
[0195] また、本発明は、前記中間層の屈折率と前記記録層の未記録領域の屈折率の差 力 前記中間層の屈折率と前記記録層の記録済領域の屈折率の差より小さぐ前記 記録層の膜厚 tが、下記の式 (4)の条件を満たすことが好ましい。
[0196] (ρ-Ο. 369) λ l/ (4nl)≤t≤ (ρ + Ο. 369) λ l/ (4nl) (4)
[0197] ただし、 λ 1は再生光波長、 λ 2は記録光波長、 tは記録層の膜厚、 nlは記録層の 記録済領域の屈折率、及び pは任意の正の奇数である。
[0198] 上記構成によれば、 L→Hの特性を有する情報記録媒体において、再生時におけ るフォーカスサーボ用の反射光の光量が十分に得られる。
[0199] さらに、本発明は、前記記録層の膜厚 tが、下記の式(5)の条件を満たすことが好ま しい。
[0200] (q-O. 104) λ 2/ (4η)≤t≤ (q + O. 104) λ 2/ (4η) (5)
[0201] ただし、 λ 2は記録光波長、 tは記録層の膜厚、 nは記録層の未記録領域の屈折率 、及び qは任意の正の偶数である。 [0202] 上記構成によれば、記録時に再生光でフォーカスサーボを行う場合の記録層の膜 厚の範囲が好適化される。
[0203] 本発明において、前記記録層の膜厚は、 0. 6μ m以下であることが好ましい。前記 構成によれば、記録層が塗布法等により容易に作製される。
[0204] 本発明おいて、記録層の膜厚 tは、前記式(2)における tが、 i=l〜3のいずれか 1 つが好ましい。上記構成によれば、未記録領域における再生光の反射率と記録光の 反射率との差が顕著に大きい情報記録媒体が得られる。
[0205] 本発明において、前記中間層の屈折率と前記記録層の未記録領域の屈折率との 差、または、前記中間層の屈折率と前記記録層の記録済領域の屈折率との差が、 0
.05以上であることが好ましい。上記構成によれば、再生光に対して少なくとも約 0.
1%以上の反射率が得られるため、再生時に良好なフォーカスサーボを行える。
[0206] そして、本発明において、前記記録光及び再生光が下記 (i)〜(iv)のいずれ力 1つの 再生光波長 λ 1及び記録光波長 λ 2の関係を有するとき、前記記録層の膜厚 tは、そ れぞれ下記の式(6)〜(: 11)の条件を満たすことが好ましい。
[0207] (i)0. 6/im≤ λ1≤0. 7 μ m、 0. 73 xm≤え 2≤0.83 xmのとき、
3. 90λ2/(4η)≤t≤4. 10λ2/(4η) (6)
(ii) 0. 35μηι≤ λ1≤0.45μηι, 0.6μηι≤ λ2≤0. 7/imのとさ、
1. 90λ2/(4η)≤t≤2. 10λ2/ (4η) (7)
または、 3. 90 λ 2/ (4η)≤t≤4. 10 λ 2/ (4η) (8)
(iii) O.48μηι≤ λ1≤0. 58 μ m、 0. 6 zm≤ λ2≤0. のとき、
3. 90λ2/(4η)≤t≤4. 10λ2/ (4η) (9)
(iv) O. 35 zm≤ λ1≤0. 0.48 xm≤ λ2≤0. 58 xmのとき、
1. 90λ2/(4η)≤t≤2. 10λ2/(4η) (10)
または、 3. 90 λ 2/ (4n)≤t≤4. 10 λ 2/ (4η) (11)
[0208] ただし、式(6)〜(: 11)中、 λ 1は再生光波長、 λ 2は記録光波長、 ηは記録層の未 記録領域の屈折率、 tは記録層の膜厚である。
[0209] 上記構成によれば、記録時及び再生時のいずれにおいてもフォーカスサーボ用の 反射光を十分に確保できるとともに、記録時の記録光及び再生時の再生光の光量の 低減が抑えられるため、良好な記録再生が可能となる。
[0210] 本発明の他の一局面は、記録光を出射する第 1の光源と、前記記録光の波長より 短い波長を有する再生光を出射する第 2の光源と、前記第 1及び第 2の光源から出 射された記録光及び再生光を上記の情報記録媒体に集光する対物レンズと、前記 情報記録媒体からの反射光を検出する光検出器と、を備えた光学情報記録再生装 置であって、記録時に、前記記録光が集光される記録層の光学定数の変化を利用 することにより記録ピットを記録し、再生時に、前記再生光の記録層からの反射光を 利用することによりフォーカスサーボを行ない、且つ、前記記録層の光学定数の変化 に基づく反射率の違いを利用することにより前記記録ピットを再生する光学情報記録 再生装置である。本発明の情報記録媒体は再生光波長に対する未記録領域の反射 率が記録光波長に対する未記録領域の反射率よりも大きくいため、再生時に、再生 光によるフォーカスサーボを行うことができるとともに、記録光の光量の低下を低減し て、良好な記録を行うことができる。
[0211] 本発明の上記光学情報記録再生装置において、前記記録時に、前記記録光の記 録層からの反射光を利用することによりフォーカスサーボを行なってもよい。上記構 成によれば、記録時にもフォーカスサーボが行われるため、精度良く記録ピットが記 録される。
[0212] また、本発明の上記光学録再生装置において、前記記録時に、前記記録光と前記 再生光の両方を出射させて、前記再生光の記録層からの反射光を利用してフォー力 スサーボを行なってもよい。本発明の情報記録媒体は未記録領域における再生光の 反射率が記録光の反射率より高く設定されているため、記録時に再生光によってフ オーカスサーボが行われれば、精度良く記録ピットが記録される。
[0213] 本発明の上記光学録再生装置において、前記記録光を出射する光源は、パルス 幅が 100フェムト秒から 10ナノ秒のパルス光を発するレーザ光源が好ましい。上記構 成によれば、非線形現象により良好な記録が行われる。
[0214] 本発明の上記光学録再生装置において、前記記録ピットは、 2光子吸収、多光子 吸収、プラズマ吸収過程等の非線形吸収現象により記録される。上記構成によれば
、記録光の集光によって所定の記録層のみの光学定数が変化するために 3次元的 に記録ピットが記録される。
[0215] 本発明の上記光学録再生装置において、前記記録光及び再生光が、下記 (i)〜(iv) のいずれか 1つの再生光波長 λ 1及び記録光波長 λ 2の関係を有するとき、前記情 報記録媒体の記録層の膜厚 tは、それぞれ下記式(12)〜(17)の条件を満たすこと が好ましい。
[0216] (i)0. 6μΐΆ≤ λ1≤0. 7 μτη, Ο. 73μτη≤ λ2≤0.83 xmのとき、
3. 90λ2/(4η)≤t≤4. 10λ2/(4η) (12)
(ii) 0. 35μηι≤ λ1≤0.45μηι, 0.6μηι≤ λ2≤0. 7/imのとさ、
1. 90λ2/(4η)≤t≤2. 10X2/ (4η) (13)
または、 3. 9( 2/(4n)≤t≤4. l( 2/(4n) (14)
(iii) O.48μηι≤ λ1≤0. 58 xm、 0. 6/im≤ 12≤0. 7/imのとき、
3. 90λ2/(4η)≤t≤4. 10λ2/(4η) (15)
(iv) O. 35/im≤ 1≤0.45/im、 0.48^m≤ 2≤0. 58 xmのとき、
1. 90λ2/(4η)≤t≤2. 10λ2/(4η) (16)
または、 3. 9( 2/(4n)≤t≤4. l( 2/(4n) (17)
[0217] ただし、式(12)〜(: 17)中、 λ 1は再生光波長、 え 2は記録光波長、 ηは記録層の 未記録領域の屈折率、 tは記録層の膜厚である。
[0218] 上記構成によれば、記録時及び再生時のいずれにおいてもフォーカスサーボ光を 確保できるとともに、記録時の記録光及び再生時の再生光の光量を十分に確保でき るため、良好な記録再生が可能となる。
[0219] 本発明の上記光学録再生装置において、対物レンズで集光される記録光が既に 記録された記録ピットを通過しないように、前記記録ピットを 3次元的に記録すること が好ましい。上記構成によれば、記録済の記録ピットを透過することによって発生す る散乱光、不要回折光等の迷光 (ノイズ光)の影響を減らす効果 (SN比向上)が得ら れる。
[0220] 本発明の上記光学録再生装置において、記録時には、前記情報記録媒体の記録 部の対物レンズから最も離れた記録層から記録ピットを記録することが好ましい。上 記構成によれば、記録光が記録済の記録ピットを透過することによる散乱光、不要回 折光等の迷光(ノイズ光)の影響が低減される。
[0221] そして、本発明の他の一局面は、記録光を出射する第 1の光源と、前記記録光の 波長より短い波長を有する再生光を出射する第 2の光源と、前記第 1及び第 2の光源 力 出射された記録光及び再生光を上記の情報記録媒体に集光する対物レンズと、 前記情報記録媒体からの反射光を検出する光検出器と、を備えた光学情報記録再 生装置であって、記録時に、前記記録光の記録層からの反射光を利用することにより フォーカスサーボを行レ、、且つ、前記記録光が集光される記録層の光学定数の変化 を利用することにより記録ピットを記録する力 \または、記録時に、前記記録光と前記 再生光の両方を出射させて、前記再生光の記録層からの反射光を利用してフォー力 スサーボを行ない、且つ、前記記録光が集光される記録層の光学定数の変化を利 用することにより記録ピットを記録する光学情報記録再生装置である。本発明の情報 記録媒体は、再生光に対する未記録領域の反射率が、記録光に対する未記録領域 の反射率よりも大きいため、記録時に記録光または再生光を照射することにより、そ の反射光を利用してフォーカスサーボを行うことができる。そして、記録光の減衰が少 ないため、下層の記録層においても高精度に良好な記録を行うことができる。
産業上の利用可能性
[0222] 本発明によれば、情報ビットである記録ピットを 3次元的に記録可能な情報記録媒 体において、フォーカスサーボを行いながら、対物レンズから離れた下層の記録層に 対しても良好な記録及び Zまたは再生が可能な情報記録媒体が提供される。

Claims

請求の範囲
基板と、前記基板上に記録ピットを 3次元的に記録可能な記録部とを有する情報記 録媒体であって、
前記記録部は、波長 λ 2を有する記録光を集光することにより前記記録ピットが記 録され、前記波長 λ 2より短い波長 λ 1を有する再生光を集光することにより前記記 録ピットが再生される複数の記録層と、前記記録層と交互に積層された中間層とを有 し、
記録光波長 λ 2に対する記録層の未記録領域の反射率が、再生光波長 λ 1に対 する記録層の未記録領域の反射率よりも小さい情報記録媒体。
前記記録層は、フォトクロミック材料を含む請求項 1に記載の情報記録媒体。
前記記録光及び再生光は、下記 (i)〜(iv)のいずれか 1つの再生光波長 λ 1及び記 録光波長 λ 2の関係を満たす請求項 1に記載の情報記録媒体。
(i) 0. 6μΐη≤ λ1≤0. 7 xm、 0. 73 xm≤ λ2≤0.83 xm
(ii) 0. 35 xm≤ λ 1≤0.45 μ m, 0.6 μ m≤ λ 2≤0. 7 μ m
(iii) O.48 xm≤ λ1≤0. 58 xm、 0. 6 zm≤ 12≤0. 7 μ m
(iv) 0. 35 zm≤ l≤0. 0.48 xm≤ 2≤0. 58 μ m
前記記録層の膜厚 tは、記録層の膜厚に対する記録層の未記録領域における再生 光の反射率の変位と、記録層の膜厚に対する記録層の未記録領域における記録光 の反射率の変位との関係を示す下記式(1)の条件を満たす請求項 1に記載の情報 記録媒体。
rl [1 cos(4n7rt/え l)]/2>r2 [1— cos (4η π t/え 2)コ/2 (1) max max
ただし、 え 1は再生光波長、 λ 2は記録光波長、 nは記録層の未記録領域の屈折率 、 tは記録層の膜厚、 rl はえ 1に対する記録層の未記録領域の最大反射率、及び max
r2 はえ 2に対する記録層の未記録領域の最大反射率である。
max
前記記録層の膜厚 tは、前記記録層の膜厚に対する記録層の未記録領域における 再生光の反射率の変位と、前記記録層の膜厚に対する記録層の未記録領域におけ る記録光の反射率の変位とがー致する記録層の膜厚 tと、以下の式(2)の条件を満 たす請求項 4記載の情報記録媒体。 t < t< t (2)
2i 2i + l
ただし、 tは、 0以上であり、 iは 0以上の任意の整数で、 0≤t < t である。
i i i+ 1
前記 rl と、前記 r2 とが実質的に同じである請求項 4に記載の情報記録媒体。
max max
前記中間層の屈折率と前記記録層の未記録領域の屈折率の差が、前記中間層の 屈折率と前記記録層の記録済領域の屈折率の差より大き
前記記録層の膜厚 tが、下記の式(3)の条件を満たす請求項 1に記載の情報記録 媒体。
(p— 0. 369) λ l/ (4n)≤t≤ (p + 0. 369) λ 1/ {An) (3)
ただし、 え 1は再生光波長、 λ 2は記録光波長、 tは記録層の膜厚、 nは記録層の 未記録領域の屈折率、及び Pは任意の正の奇数である。
前記中間層の屈折率と前記記録層の未記録領域の屈折率の差が、前記中間層の 屈折率と前記記録層の記録済領域の屈折率の差より小さぐ
前記記録層の膜厚 tが、下記の式 (4)の条件を満たす請求項 1に記載の情報記録 媒体。
(p— 0. 369) λ l/ (4nl )≤t≤ (p + 0. 369) λ l/ (4nl) (4)
ただし、 え 1は再生光波長、 λ 2は記録光波長、 tは記録層の膜厚、 nlは記録層の 記録済領域の屈折率、及び pは任意の正の奇数である。
前記記録層の膜厚 tが、下記の式(5)の条件を満たす請求項 1に記載の情報記録 媒体。
(q- 0. 104) λ 2/ (4η)≤t≤ (q + 0. 104) λ 2/ (4η) (5)
ただし、 λ 2は記録光波長、 tは記録層の膜厚、 nは記録層の未記録領域の屈折率 、及び qは任意の正の偶数である。
前記記録層の膜厚は、 0. 6 z m以下である請求項 1に記載の情報記録媒体。 iは、:!〜 3のいずれかである請求項 5に記載の情報記録媒体。
前記中間層の屈折率と前記記録層の未記録領域の屈折率との差、または、前記中 間層の屈折率と前記記録層の記録済領域の屈折率との差が、 0. 05以上である請求 項 1に記載の情報記録媒体。
前記記録光及び再生光が下記 (i)〜(iv)のいずれか 1つの再生光波長 λ 1及び記録 光波長; I 2の関係を有するとき、前記記録層の膜厚 tは、それぞれ下記の式 (6)〜(1 1)の条件を満たす請求項 1に記載の情報記録媒体。
(i) 0. 6 zm≤ λ 1≤0. 7 xm, 0. 73 xm≤ λ2≤0.83 xmのとき、
3. 90λ2/(4η)≤t≤4. 10λ2/ (4η) (6)
(ii) 0. 35μηι≤ λ1≤0.45 μ m, 0.6 xm≤ λ2≤0. のとき、
1. 90λ2/(4η)≤t≤2. 10λ2/ (4η) (7)
または、 3. 90 λ 2/ (4η)≤t≤4. 10 λ 2/ (4η) (8)
(iii) O.48μηι≤ λ1≤0. 58/im、 0. 6/im≤ λ 2≤0. 7/imのとき、
3. 90λ2/(4η)≤t≤4. 10X2/ (4η) (9)
(iv) 0. 35/im≤ λ1≤0.45/im, 0.48μηι≤ λ2≤0. 58 xmのとき、
1. 90λ2/(4η)≤t≤2. 10X2/ (4η) (10)
または、 3. 90X2/ (4η)≤t≤4. 10X2/ (4η) (11)
ただし、式 (6)〜(: 11)中、 え 1は再生光波長、 え 2は記録光波長、 ηは記録層の未 記録領域の屈折率、 tは記録層の膜厚である。
記録光を出射する第 1の光源と、
前記記録光の波長より短い波長を有する再生光を出射する第 2の光源と、 前記第 1及び第 2の光源から出射された記録光及び再生光を請求項 1に記載の情 報記録媒体に集光する対物レンズと、
前記情報記録媒体力 の反射光を検出する光検出器と、を備えた光学情報記録 再生装置であって、
記録時に、前記記録光が集光される記録層の光学定数の変化を利用することによ り記録ピットを記録し、
再生時に、前記再生光の記録層からの反射光を利用することによりフォーカスサー ボを行ない、且つ、前記記録層の光学定数の変化に基づく反射率の違いを利用す ることにより前記記録ピットを再生する光学情報記録再生装置。
前記記録時に、前記記録光の記録層からの反射光を利用することによりフォーカス サーボを行なう請求項 14に記載の光学情報記録再生装置。
前記記録時に、前記記録光と前記再生光の両方を出射させて、前記再生光の記 録層からの反射光を利用してフォーカスサーボを行なう請求項 14に記載の光学情報 記録再生装置。
前記記録光を出射する光源は、パルス幅が 100フェムト秒から 10ナノ秒のパルス 光を発するレーザ光源である請求項 14に記載の光学情報記録再生装置。
前記記録ピットは、 2光子吸収、多光子吸収、プラズマ吸収過程等の非線形吸収現 象により記録される請求項 14に記載の光学情報記録再生装置。
前記記録光及び再生光が、下記 (i)〜(iv)のいずれ力 4つの再生光波長 λ 1及び記 録光波長え 2の関係を有するとき、前記情報記録媒体の記録層の膜厚 tは、それぞ れ下記の式(12)〜(17)の条件を満たす請求項 16に記載の光学情報記録再生装 置。
(i) 0. 6/im≤ λ1≤0. 7μηι, 0. 73μηι≤ λ2≤0.83 xmのとさ、
3. 90λ2/(4η)≤t≤4. 10X2/ (4η) (12)
(ii) 0. 35μηι≤ λ1≤0.45μηι, 0.6μηι≤ λ2≤0. 7/imのとさ、
1. 90λ2/(4η)≤t≤2. 10X2/ (4η) (13)
または、 3. 9( 2/(4n)≤t≤4. l( 2/(4n) (14)
(iii) O.48μηι≤ λ1≤0. 58 xm、 0. 6/im≤ 12≤0. 7/imのとさ、
3. 90λ2/(4η)≤t≤4. 10λ2/(4η) (15)
(iv) 0. 35 zm≤ λ1≤0.45 xm、 0.48 xm≤ 12≤0. 58 zmのとさ、
1. 90λ2/(4η)≤t≤2. 10λ2/(4η) (16)
または、 3. 90 λ 2/ (4n)≤t≤4. 10 λ 2/ (4η) (17)
ただし、式(12)〜(: 17)中、 λΐは再生光波長、 λ 2は記録光波長、 ηは記録層の 未記録領域の屈折率、 tは記録層の膜厚である。
対物レンズで集光される記録光が既に記録された記録ピットを通過しないように、前 記記録ピットを 3次元的に記録する請求項 14に記載の光学情報記録再生装置。 前記情報記録媒体の記録部にぉレ、て、対物レンズから最も離れた記録層から記録 ピットを記録する請求項 14に記載の光学情報記録再生装置。
記録光を出射する第 1の光源と、
前記記録光の波長より短い波長を有する再生光を出射する第 2の光源と、 前記第 1及び第 2の光源から出射された記録光及び再生光を請求項 1に記載の情 報記録媒体に集光する対物レンズと、
前記情報記録媒体力 の反射光を検出する光検出器と、を備えた光学情報記録 再生装置であって、
記録時に、前記記録光の記録層からの反射光を利用することによりフォーカスサー ボを行い、且つ、前記記録光が集光される記録層の光学定数の変化を利用すること により記録ピットを記録するカ または
記録時に、前記記録光と前記再生光の両方を出射させて、前記再生光の記録層 からの反射光を利用してフォーカスサーボを行なレ、、且つ、前記記録光が集光される 記録層の光学定数の変化を利用することにより記録ピットを記録する光学情報記録 再生装置。
PCT/JP2006/308781 2005-04-27 2006-04-26 情報記録媒体及び光学情報記録再生装置 WO2006118164A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/913,013 US7848205B2 (en) 2005-04-27 2006-04-26 Information-recording medium and optical information-recording/reproducing device
CN2006800147832A CN101171633B (zh) 2005-04-27 2006-04-26 信息记录介质以及光学信息记录再生装置
JP2007514783A JP4712798B2 (ja) 2005-04-27 2006-04-26 情報記録媒体及び光学情報記録再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-129265 2005-04-27
JP2005129265 2005-04-27

Publications (1)

Publication Number Publication Date
WO2006118164A1 true WO2006118164A1 (ja) 2006-11-09

Family

ID=37307963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308781 WO2006118164A1 (ja) 2005-04-27 2006-04-26 情報記録媒体及び光学情報記録再生装置

Country Status (4)

Country Link
US (1) US7848205B2 (ja)
JP (1) JP4712798B2 (ja)
CN (1) CN101171633B (ja)
WO (1) WO2006118164A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008435A1 (ja) * 2007-07-11 2009-01-15 Sharp Kabushiki Kaisha 光情報記録媒体及び光情報記録媒体駆動装置
JP2010092569A (ja) * 2008-10-10 2010-04-22 Sharp Corp 光情報記録媒体および光情報記録媒体駆動装置
WO2023238487A1 (ja) * 2022-06-06 2023-12-14 パナソニックIpマネジメント株式会社 記録媒体、情報の記録方法及び情報の読出方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099705A1 (ja) * 2007-02-16 2008-08-21 Sanyo Electric Co., Ltd. 記録媒体および記録再生装置
RU2501098C2 (ru) * 2008-09-15 2013-12-10 Панасоник Корпорэйшн Способ измерения оптических носителей информации, оптический носитель информации, устройство записи и устройство воспроизведения
JP2010097632A (ja) * 2008-10-14 2010-04-30 Fujifilm Corp 光記録媒体の情報再生方法および情報再生装置
WO2010067490A1 (ja) * 2008-12-08 2010-06-17 パナソニック株式会社 光情報媒体測定方法、光情報媒体、記録装置及び再生装置
JP5310423B2 (ja) * 2009-09-14 2013-10-09 ソニー株式会社 再生装置、再生方法
US8680076B2 (en) 2010-10-25 2014-03-25 Signal Pharmaceuticals, Llc Methods of treatment, improvement and prevention using haloaryl substituted aminopurines
JP2012094207A (ja) * 2010-10-26 2012-05-17 Sony Corp 記録装置、スポット位置制御方法
CN110459243B (zh) * 2019-07-16 2021-02-02 中国科学院上海光学精密机械研究所 以二次谐波为读写方式的多级相变存储器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505701A (ja) * 1996-12-05 2001-04-24 オーエムディー デヴァイセス エルエルシー 多層蛍光光学ディスクから3−dデータを読取る光学ピックアップ
JP2003171382A (ja) * 2001-12-07 2003-06-20 Ricoh Co Ltd フォトクロミック材料
WO2004019333A1 (ja) * 2002-08-21 2004-03-04 Matsushita Electric Industrial Co., Ltd. 光情報処理装置および記録媒体
JP2004259369A (ja) * 2003-02-26 2004-09-16 Ricoh Co Ltd 多層記録媒体及び多層記録システム
WO2004107040A1 (ja) * 2003-05-28 2004-12-09 Matsushita Electric Industrial Co., Ltd. 情報記録媒体およびその製造方法、並びに記録再生方法、光学情報記録再生装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559784A (en) * 1993-03-26 1996-09-24 Fuji Xerox Co., Ltd. Multi-layer optical information detection by two laser beam and optical multilayer recording medium
WO2000031733A1 (en) * 1998-11-25 2000-06-02 Eugen Pavel Three-dimensional optical memory with fluorescent photosensitive material
IL135309A0 (en) * 2000-03-28 2001-05-20 Ortal Apert Three-dimensional optical memory
CN100392738C (zh) * 2002-04-08 2008-06-04 松下电器产业株式会社 信息记录媒体、其制造方法以及光信息记录再现装置
CN1226724C (zh) * 2003-10-27 2005-11-09 中国科学院西安光学精密机械研究所 利用飞秒激光在透明介质中实现三维光存储的写读装置
US8018801B2 (en) * 2003-12-04 2011-09-13 Panasonic Corporation Optical information reproduction device
JP2006172600A (ja) * 2004-12-15 2006-06-29 Hitachi Ltd 3次元情報記録方法及び再生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505701A (ja) * 1996-12-05 2001-04-24 オーエムディー デヴァイセス エルエルシー 多層蛍光光学ディスクから3−dデータを読取る光学ピックアップ
JP2003171382A (ja) * 2001-12-07 2003-06-20 Ricoh Co Ltd フォトクロミック材料
WO2004019333A1 (ja) * 2002-08-21 2004-03-04 Matsushita Electric Industrial Co., Ltd. 光情報処理装置および記録媒体
JP2004259369A (ja) * 2003-02-26 2004-09-16 Ricoh Co Ltd 多層記録媒体及び多層記録システム
WO2004107040A1 (ja) * 2003-05-28 2004-12-09 Matsushita Electric Industrial Co., Ltd. 情報記録媒体およびその製造方法、並びに記録再生方法、光学情報記録再生装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008435A1 (ja) * 2007-07-11 2009-01-15 Sharp Kabushiki Kaisha 光情報記録媒体及び光情報記録媒体駆動装置
JPWO2009008435A1 (ja) * 2007-07-11 2010-09-09 シャープ株式会社 光情報記録媒体及び光情報記録媒体駆動装置
JP4625137B2 (ja) * 2007-07-11 2011-02-02 シャープ株式会社 光情報記録媒体
JP2011048903A (ja) * 2007-07-11 2011-03-10 Sharp Corp 光情報記録媒体駆動装置
JP2010092569A (ja) * 2008-10-10 2010-04-22 Sharp Corp 光情報記録媒体および光情報記録媒体駆動装置
WO2023238487A1 (ja) * 2022-06-06 2023-12-14 パナソニックIpマネジメント株式会社 記録媒体、情報の記録方法及び情報の読出方法

Also Published As

Publication number Publication date
CN101171633B (zh) 2010-12-15
CN101171633A (zh) 2008-04-30
JPWO2006118164A1 (ja) 2008-12-18
US7848205B2 (en) 2010-12-07
JP4712798B2 (ja) 2011-06-29
US20090067313A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
WO2006118164A1 (ja) 情報記録媒体及び光学情報記録再生装置
JP4584265B2 (ja) 情報記録媒体及び光学情報記録再生装置
US6009065A (en) Optical pickup for 3-D data storage reading from the multilayer fluorescent optical disk
CN101421784B (zh) 光学信息记录再生装置
JPWO2007055249A1 (ja) 情報記録媒体及びその製造方法並びに光学情報記録再生装置
JPH05101398A (ja) 3次元記録再生装置
JP5406134B2 (ja) 光情報記録媒体およびその製造方法
JP4469336B2 (ja) 情報記録媒体およびその製造方法、並びに記録再生方法、光学情報記録再生装置
WO2003085657A1 (fr) Support d&#39;enregistrement d&#39;information et son procede de production, et appareil d&#39;enregistrement/reproduction d&#39;information optique
JP5100010B2 (ja) 光学情報再生装置
JP2011170935A (ja) 光記録再生方法、光記録媒体
WO2004036569A1 (ja) 情報記録媒体およびその製造方法、並びに光学情報記録再生装置
JP2004213885A (ja) 多層媒体
JP2005050543A (ja) 情報記録又は再生方法
JP2007305292A (ja) 情報記録媒体
JP2005044513A (ja) 情報記録媒体、情報再生方法、および情報記録方法
JP4038504B2 (ja) 情報記録装置
JP4498056B2 (ja) 光情報記録媒体及び光情報記録再生方法
JP2012208987A (ja) 光記録媒体、光記録媒体の製造方法、光記録方法
JP2005044512A (ja) 情報記録媒体製造方法
JP2012208991A (ja) 光記録媒体
JP2008165969A (ja) 情報記録装置及び情報再生装置
JP2004213884A (ja) 層アクセス方法、情報記録または再生方法
JP2004213883A (ja) 情報記録方法
JP2007200541A (ja) 情報記録装置及び情報再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014783.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514783

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11913013

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732387

Country of ref document: EP

Kind code of ref document: A1