WO2023238487A1 - 記録媒体、情報の記録方法及び情報の読出方法 - Google Patents

記録媒体、情報の記録方法及び情報の読出方法 Download PDF

Info

Publication number
WO2023238487A1
WO2023238487A1 PCT/JP2023/013662 JP2023013662W WO2023238487A1 WO 2023238487 A1 WO2023238487 A1 WO 2023238487A1 JP 2023013662 W JP2023013662 W JP 2023013662W WO 2023238487 A1 WO2023238487 A1 WO 2023238487A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
light
group
layer
recording medium
Prior art date
Application number
PCT/JP2023/013662
Other languages
English (en)
French (fr)
Inventor
康太 安藤
麻紗子 横山
健司 田頭
秀和 荒瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023238487A1 publication Critical patent/WO2023238487A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Definitions

  • the present disclosure relates to a recording medium, an information recording method, and an information reading method.
  • Three-dimensional recording which records information on a multilayer body, is known as a technique for increasing the recording capacity of optical information recording media.
  • it is necessary to realize a finer focused spot in order to improve recording density.
  • a laser light with a short wavelength is used to achieve a finer focused spot.
  • This laser light includes a laser light having a center wavelength of 405 nm, which is the standard for Blu-ray (registered trademark) discs.
  • recording media using laser light having a center wavelength of 405 nm are known.
  • Patent Document 1 discloses a recording medium in which the interface between resin layers serves as a reflective surface. In the recording medium of Patent Document 1, there is no need to separately provide a reflective film.
  • Patent Document 2 discloses a recording medium that records information by irradiating a recording layer with recording light and changing its refractive index. In Patent Document 2, the recording layer includes a dye and a polymer binder.
  • Patent Document 3 discloses a recording medium that uses recording light and reproduction light having different wavelengths.
  • a recording medium in one aspect of the present disclosure is a first dielectric layer; a second dielectric layer; a recording layer having a recording area for recording information when irradiated with light and located between the first dielectric layer and the second dielectric layer; Equipped with The recording layer contains a dye material,
  • the transmittance of light with a wavelength of 405 nm in the recording layer is 95% or more, The light reflectance in the recording area where information is recorded is higher than the light reflectance in the recording area before information is recorded,
  • the refractive index n 3 of the two dielectric layers satisfies the following relational expressions (1) to (3). (1.33-0.15n 1 ) ⁇ 405(m+1/2)/(2n 1 ) ⁇ D ⁇ (1.33-0.15n 1 ) ⁇ 405(m+1)/(2n 1 ) ⁇ (1) n 1 > n 2 (2) n 1 > n 3 (3)
  • m is an integer from 0 to 4.
  • the present disclosure provides a new recording medium suitable for recording and reading information.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a recording medium according to an embodiment of the present disclosure.
  • FIG. 2 is a graph for explaining relational expression (1).
  • FIG. 3A is a flowchart regarding a method for recording information using a recording medium according to an embodiment of the present disclosure.
  • FIG. 3B is a flowchart regarding a method for reading information using a recording medium according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a recording medium according to a modification.
  • FIG. 5 is a graph showing the 1 H-NMR spectrum of Compound B used in Examples.
  • FIG. 6A is an optical microscope image showing recording marks formed on the recording layer of the recording medium of Example 4.
  • FIG. 6A is an optical microscope image showing recording marks formed on the recording layer of the recording medium of Example 4.
  • FIG. 6B is a graph showing reproduction signals of recording marks formed on the recording layer of the recording medium of Example 4.
  • FIG. 6C is a graph showing the degree of modulation of recording marks formed on the recording layer of the recording medium of Example 4.
  • FIG. 7 is a graph showing the relationship between the irradiation average energy of the recording light and the amount of deformation of the concave recording mark for the recording medium of Example 2.
  • the refractive index difference is set appropriately and that the shape of the recording mark is highly stable. From the viewpoint of reducing the linear light absorption of the recording layer and improving the recording sensitivity, it is desirable to use a dye material with high nonlinear light absorption. In a multilayer recording medium, the capacity tends to increase as the number of recording layers increases. Therefore, it is advantageous for the recording layer to be thin. Similarly, each dielectric layer must have high light transmittance at the recording/reproducing wavelength, have an appropriate refractive index difference with the recording layer, and be thin enough to prevent crosstalk. It is desirable that the following are established.
  • the linear light absorption per recording layer is reduced to minimize the influence of other recording layers other than the one on which recording or reproduction is to be performed.
  • reducing the linear light absorption of the recording layer increases the amount of light required for recording in the desired recording layer. Therefore, if the linear light absorption of the recording layer is excessively reduced, it is difficult to record on the recording layer using a commonly available light source. In this way, it is necessary to appropriately adjust the balance between the recording sensitivity of the recording layer and the amount of light required to reach the deep layers. Therefore, studies are being conducted on recording layers containing dyes that have a nonlinear optical effect, particularly dyes that can absorb nonlinear light.
  • nonlinear optical effect means that when a substance is irradiated with strong light such as a laser beam, an optical phenomenon proportional to the square of the electric field of the irradiated light or a higher order than the square occurs in that substance. do.
  • Optical phenomena include absorption, reflection, scattering, and light emission.
  • Second-order nonlinear optical effects proportional to the square of the electric field of irradiated light include second harmonic generation (SHG), Pockels effect, parametric effect, and the like.
  • Examples of third-order nonlinear optical effects proportional to the cube of the electric field of irradiated light include multiphoton absorption such as two-photon absorption, third harmonic generation (THG), and the Kerr effect.
  • multiphoton absorption such as two-photon absorption
  • multiphoton absorption such as two-photon absorption
  • nonlinear optical absorption A material capable of nonlinear light absorption is sometimes referred to as a nonlinear light absorption material.
  • nonlinear optical absorption is sometimes called nonlinear absorption.
  • Two-photon absorption refers to a phenomenon in which a compound absorbs two photons almost simultaneously and transitions to an excited state. Simultaneous two-photon absorption and staged two-photon absorption are known as two-photon absorption. Simultaneous two-photon absorption is sometimes called non-resonant two-photon absorption. Simultaneous two-photon absorption means two-photon absorption in a wavelength range where no one-photon absorption band exists. Stepwise two-photon absorption is sometimes called resonant two-photon absorption. In stepped two-photon absorption, a compound absorbs one photon and then transitions to a higher excited state by absorbing a second photon. In stepped two-photon absorption, a compound absorbs two photons sequentially.
  • the amount of light absorbed by a compound is usually proportional to the square of the irradiated light intensity and exhibits nonlinearity.
  • the amount of light absorbed by a compound can be used as an indicator of two-photon absorption efficiency.
  • the compound can absorb light only near the focal point of a laser beam having a high electric field strength. That is, in a sample containing a two-photon absorption material, compounds can be excited only at desired positions. In this way, compounds that cause simultaneous two-photon absorption provide extremely high spatial resolution, and are therefore being considered for application to recording layers of three-dimensional optical memories, photocurable resin compositions for stereolithography, and the like.
  • the two-photon absorption material When the two-photon absorption material further has fluorescent properties, the two-photon absorption material can also be applied to a fluorescent dye material used in two-photon fluorescence microscopes and the like. If this two-photon absorption material is used in a three-dimensional optical memory, it may be possible to adopt a method of reading the ON/OFF state of the recording layer based on changes in fluorescence from the two-photon absorption material.
  • Current optical memories employ a method of reading the ON/OFF state of a recording layer based on changes in light reflectance and changes in light absorption in a two-photon absorbing material.
  • a two-photon absorption cross section (GM value) is used as an index indicating the efficiency of two-photon absorption.
  • the unit of the two-photon absorption cross section is GM (10 ⁇ 50 cm 4 ⁇ s ⁇ molecule ⁇ 1 ⁇ photon ⁇ 1 ).
  • Many organic two-photon absorption materials having large two-photon absorption cross sections have been proposed so far.
  • a femtosecond laser such as a titanium sapphire laser
  • a pulsed laser having a pulse width from picoseconds to nanoseconds such as a semiconductor laser
  • Semiconductor lasers are suitable for industrial use because they are small, highly versatile, and stable in operation.
  • an organic nonlinear optical material is irradiated with light focused by a lens to increase the photon density using a laser with a pulse width of picoseconds to nanoseconds or longer, electrons are excited by one photon or two photons on the order of femtoseconds. After excitation, it relaxes to the lowest excited state in several hundred femtoseconds to picoseconds.
  • ESA Excited State Absorption
  • Methods for recording information on a recording medium include, for example, methods of deforming the recording layer or lower substrate by irradiation with recording light, methods of changing optical properties such as light absorption and refractive index in the recording layer, and A combination of these can be mentioned. It is believed that the deformation of the recording layer is caused by the pigment contained in the recording layer absorbing light and generating heat, which deforms the surrounding resin.
  • Patent Document 4 discloses a recording medium that records information by forming a convex shape on the interface between a recording layer and an intermediate layer. The thermal stability of the formed convex shape depends on the glass transition temperature of the resin.
  • a recording medium usually has a recording area.
  • the recording area refers to a spot that exists in the recording layer and can record information by being irradiated with light.
  • a recording area where information is recorded may be referred to as a recording section, and a recording area before information is recorded may be referred to as an unrecorded section.
  • the recorded portion and the unrecorded portion can be detected by a change in reflectance when irradiated with reproduction light, a difference in fluorescence characteristics, etc. Changes in reflectance are caused by, for example, differences in shape, light absorption, refractive index, etc. between the recorded portion and the unrecorded portion.
  • LTH Low To High
  • HTL High To Low
  • LTH Low To High
  • HTL High To Low
  • the intensity of light reaching the deep layers is high. Therefore, it is desirable that the recording layer has high transmittance.
  • the unrecorded portion of the recording layer also needs to exhibit a certain degree of linear light absorption.
  • LTH type recording has the possibility of adjusting the signal amplitude to a greater extent.
  • the signal amplitude is proportional to the difference between the reflectance in the unrecorded area and the reflectance in the recorded area.
  • Light reflection and light phase Generally, light reflection occurs when light is incident on media with different refractive indexes.
  • the manner in which light is incident can be considered to be one in which light is incident from a medium with a low refractive index to a medium with a high refractive index, and the other in which light is incident from a medium with a high refractive index to a medium with a low refractive index.
  • light is incident on a medium with a high refractive index
  • fixed end reflection occurs, and the phase of the reflected light is shifted by ⁇ .
  • free end reflection occurs and no phase shift occurs in the reflected light. Note that since light has wave properties, it is known that when two lights overlap in the same phase, they strengthen each other, and when they overlap in opposite phases, they weaken each other.
  • the present inventors focused on the magnitude relationship between the refractive indexes of the recording layer and the dielectric layer, and further designed the thickness of the recording layer according to the refractive index of the recording layer.
  • LTH type recording and reproduction is possible using the interference of According to this knowledge, it is possible to realize a high-capacity recording medium on which recording and reproducing operations can be performed with a simple device configuration.
  • the recording medium includes: a first dielectric layer; a second dielectric layer; a recording layer having a recording area for recording information when irradiated with light and located between the first dielectric layer and the second dielectric layer; Equipped with The recording layer contains a dye material, The transmittance of light with a wavelength of 405 nm in the recording layer is 95% or more, The light reflectance in the recording area where information is recorded is higher than the light reflectance in the recording area before information is recorded, The thickness D (nm) of the recording layer, the refractive index n 1 of the recording layer for light with a wavelength of 405 nm, the refractive index n 2 of the first dielectric layer for light with a wavelength of 405 nm, and the refractive index n 2 of the first dielectric layer for light with a wavelength of 405 nm.
  • the refractive index n 3 of the two dielectric layers satisfies the following relational expressions (1) to (3). (1.33-0.15n 1 ) ⁇ 405(m+1/2)/(2n 1 ) ⁇ D ⁇ (1.33-0.15n 1 ) ⁇ 405(m+1)/(2n 1 ) ⁇ (1) n 1 > n 2 (2) n 1 > n 3 (3)
  • m is an integer from 0 to 4.
  • a new recording medium suitable for recording and reading information can be provided.
  • this recording medium LTH type recording and reproduction is possible, and a large reproduction signal tends to be obtained by a reproduction operation.
  • the difference between the refractive index n 1 and the refractive index n 2 may be 0.2 or more, and the refractive index n 1 and The difference from the refractive index n 3 may be 0.2 or more.
  • the second aspect even when a small semiconductor laser is used, interference occurs in the reflected light, and a sufficient amount of reflected light tends to be ensured. Therefore, a smaller recording medium can be easily realized.
  • the refractive index n 1 may be 1.65 or more.
  • the third aspect it is easy to greatly adjust the difference in refractive index between the recording layer, the first dielectric layer, and the second dielectric layer.
  • materials that can be used in a coating process can be selected during their fabrication. According to the coating process, a recording medium tends to be easily produced.
  • a concave recording mark may be formed in the recording layer by being irradiated with recording light. good.
  • the reflectance of light at the recording section can be adjusted by the amount of deformation of the recording mark. Therefore, a highly reliable recording medium can be realized.
  • the dye material may include a polymer P1, and the polymer P1 has a nonlinear light absorption property. It may contain a group having
  • the polymer P1 may have a structural unit derived from vinylcarbazoles.
  • the recording layer may further include a polymer P2.
  • the polymer P2 may have a structural unit derived from vinylcarbazoles.
  • the recording layer it is easy to increase the refractive index of the recording layer while maintaining the transmittance of light with a wavelength of 390 nm to 410 nm.
  • Polymers P1 or P2 having constitutional units derived from vinyl carbazoles also tend to have high glass transition temperatures. Since the polymer P1 or P2 also tends to have appropriate solubility in solvents, the recording layer can be easily produced by coating.
  • the information recording method includes: Prepare a light source that emits light having a wavelength of 390 nm or more and 410 nm or less, condensing the light from the light source and irradiating the recording layer in the recording medium according to any one of the first to eighth aspects; Including.
  • information can be recorded on the recording medium at high recording density.
  • the method for reading information according to the tenth aspect of the present disclosure is, for example, a method for reading information recorded by the recording method according to the ninth aspect, comprising:
  • the reading method is Measuring the optical characteristics of the recording layer by irradiating the recording layer in the recording medium with light, reading information from the recording layer; Including.
  • the optical property may be the intensity of light reflected by the recording layer.
  • information can be easily read from the recording medium.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a recording medium 100 according to an embodiment of the present disclosure.
  • the recording medium 100 includes a recording layer 10, a first dielectric layer 20A, and a second dielectric layer 20B.
  • the recording layer 10 is located between the first dielectric layer 20A and the second dielectric layer 20B, and is in direct contact with each of the first dielectric layer 20A and the second dielectric layer 20B, for example.
  • the first dielectric layer 20A is located closer to the light source of the recording device than the second dielectric layer 20B.
  • the first dielectric layer 20A and the second dielectric layer 20B may be simply referred to as the dielectric layer 20.
  • the recording layer 10 contains a dye material and has a recording area.
  • the recording area is a spot where information can be recorded by being irradiated with light.
  • the light irradiated onto the recording area has, for example, a wavelength in a short wavelength range.
  • the short wavelength range means a wavelength range including 405 nm, for example, a wavelength range of 390 nm or more and 420 nm or less.
  • the light reflectance in the recording area where information is recorded is higher than the light reflectance in the recording area before information is recorded. In other words, in the recording area of the recording layer 10, the light reflectance increases as information is recorded.
  • the transmittance of light with a wavelength of 405 nm in the recording layer 10 is 95% or more. Furthermore, in the recording medium 100, the thickness D (nm) of the recording layer 10, the refractive index n 1 of the recording layer 10 for light with a wavelength of 405 nm, the refractive index n 2 of the first dielectric layer 20A for light with a wavelength of 405 nm, and The refractive index n 3 of the second dielectric layer 20B for light with a wavelength of 405 nm satisfies the following relational expressions (1) to (3).
  • m is an integer from 0 to 4.
  • the transmittance of light with a wavelength of 405 nm in the recording layer 10, the thickness D of the recording layer 10, and the refractive index n 1 of the recording layer 10 refer to the recording layer 10 before information is recorded. is the value for
  • the recording medium 100 when light enters from the first dielectric layer 20A side, the light travels through the first dielectric layer 20A. A part of this light is reflected at the interface 30A between the first dielectric layer 20A and the recording layer 10. The light that has entered the recording layer 10 from the first dielectric layer 20A travels through the recording layer 10. A part of this light is reflected at the interface 30B between the recording layer 10 and the second dielectric layer 20B.
  • the wavelength of the light incident on the recording medium 100 is 405 nm
  • the thickness D of the recording layer 10 is (1.33-0.15n 1 ) ⁇ 405(m+1/2)/(2n 1 ) ⁇
  • reflected lights A and B overlap in the same phase, and their intensity tends to increase the most.
  • the thickness D of the recording layer 10 is (1.33-0.15n 1 ) ⁇ 405(m+1)/(2n 1 ) ⁇
  • FIG. 2 is a graph for explaining relational expression (1).
  • the graph in FIG. 2 is an example of the relationship between the thickness D of the recording layer 10 and the reflectance when the refractive index n 1 of the recording layer 10 is 1.65 and light with a wavelength of 405 nm is incident on the recording medium 100. It shows.
  • the graph showing the relationship between the thickness D and the reflectance has a wave shape and has a plurality of maximum points and a plurality of minimum points.
  • the thickness D corresponding to the plurality of maximum points corresponds to (1.33-0.15n 1 ) ⁇ 405(m+1/2)/(2n 1 ) ⁇ .
  • the thickness D corresponding to the plurality of minimum points corresponds to (1.33-0.15n 1 ) ⁇ 405(m+1)/(2n 1 ) ⁇ .
  • the range that satisfies relational expression (1) is shown by a solid line, and the range that does not satisfy relational expression (1) is shown by a broken line.
  • a recording mark means a mark that is formed when information is recorded in a recording area, and the mark functions as a recording section.
  • the thickness D (nm) of the recording layer 10 may be equal to or greater than (1.33-0.15n 1 ) ⁇ 405(m+0.53)/(2n 1 ) ⁇ as long as the relational expression (1) is satisfied. , (1.33-0.15n 1 ) ⁇ 405(m+0.55)/(2n 1 ) ⁇ or more.
  • the thickness D (nm) may be less than or equal to (1.33-0.15n 1 ) ⁇ 405(m+0.8)/(2n 1 ) ⁇ , or (1.33-0.15n 1 ) ⁇ 405 (m+0.7)/(2n 1 ) ⁇ or less.
  • relational expression (1) assumes that light with a wavelength of 405 nm is incident on the surface of the recording layer 10 in the thickness direction of the recording layer 10.
  • the light is usually focused by a lens or the like. Therefore, even when light is irradiated in the thickness direction of the recording layer 10, some of the light enters the recording layer 10 at an angle.
  • (1.33-0.15n 1 ) is a correction coefficient derived using the characteristic matrix method in order to adjust the influence of the above-mentioned incident angle. In detail, the correction coefficient was derived by the following method.
  • the Maxwell equation was solved under the boundary conditions of the multilayer film to obtain the reflectance for each angle ⁇ .
  • the total reflectance was derived from a value weighted and integrated by the intensity of incident light on the objective lens. This total reflectance was plotted against the film thickness of the recording layer 10. Similar plots were created by changing the refractive index of the recording layer 10. As a result, the film thickness value corresponding to the maximum point and the film thickness value corresponding to the minimum point depended on the refractive index n 1 of the recording layer 10. Based on this dependence, the above correction coefficient was derived.
  • the reflected lights A and B overlap in opposite phases, and their intensity increases. It tends to decrease the most.
  • the thickness D of the recording layer 10 becomes (1.33-0 .15n 1 ) ⁇ 405(m+1/2)/(2n 1 ) ⁇ , reflected lights A and B overlap in opposite phases, and their intensity tends to decrease the most.
  • the thickness D of the recording layer 10 is (1.33-0.15n 1 ) ⁇ 405(m+1)/(2n 1 ) ⁇ , the reflected lights A and B overlap in the same phase, and their intensity increases. It tends to increase the most.
  • the recording layer 10 contains a dye material.
  • the pigment material may include polymer P1.
  • Polymer P1 contains, for example, a group G with nonlinear light absorption properties.
  • the group G typically has nonlinear light absorption characteristics for light having a wavelength in a short wavelength range.
  • polymer P1 has the above-mentioned group G in a side chain.
  • Whether the group contained in the polymer P1 has nonlinear light absorption characteristics can be determined by the following method. First, a compound having the same structure as the group contained in polymer P1 is prepared. The light absorption properties of this compound are measured to determine whether it has nonlinear light absorption properties. If this compound has nonlinear light absorption characteristics, it can be determined that the group contained in polymer P1 also has nonlinear light absorption characteristics. Note that even in the case where the polymer P1 itself has nonlinear light absorption characteristics, it can be determined that the polymer P1 contains the group G that has nonlinear light absorption characteristics.
  • Examples of the group G having nonlinear light absorption characteristics include a group containing at least one selected from the group consisting of a carbon-carbon double bond, a carbon-carbon triple bond, and an aromatic ring.
  • Specific examples of the group G include a group having a pyrene skeleton, a group having a diphenylacetylene skeleton, a group having a stiff-stilbene skeleton, and the like.
  • the polymer P1 contains the structural unit A having the group G described above.
  • the structural unit A include a structural unit A1 derived from styrenes and having a group G, and a structural unit A2 derived from a stilbene and having a group G.
  • the structural unit A1 may be simply referred to as a structural unit A1 derived from styrenes.
  • the structural unit A2 may be simply referred to as a structural unit A2 derived from stilbenes.
  • the polymer P1 includes, for example, at least one structural unit A selected from the group consisting of a structural unit A1 derived from styrenes and a structural unit A2 derived from stilbenes.
  • Polymer P1 may include a structural unit A1 derived from styrenes.
  • the above structural unit A is represented by the following formula (1), for example.
  • R 1 to R 8 are each independently at least one selected from the group consisting of H, B, C, N, O, F, Si, P, S, Cl, Br and I. Contains atoms. At least one selected from the group consisting of R 4 to R 8 contains a group G having nonlinear light absorption characteristics.
  • R 1 to R 8 each independently include a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, a group containing a sulfur atom, and a silicon atom. group, a group containing a phosphorus atom, or a group containing a boron atom.
  • At least one selected from the group consisting of R 4 to R 8 is a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, a group containing a sulfur atom, a group containing a silicon atom, It may also be a group in which a group containing a phosphorus atom or a group containing a boron atom is substituted with a group G having nonlinear light absorption characteristics.
  • halogen atom examples include F, Cl, Br, I, and the like.
  • a halogen atom may be referred to as a halogen group.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1 or more and 10 or less, may be 1 or more and 8 or less, or may be 1 or more and 5 or less.
  • the hydrocarbon group may be linear, branched, or cyclic.
  • hydrocarbon group examples include an aliphatic saturated hydrocarbon group, an alicyclic hydrocarbon group, and an aliphatic unsaturated hydrocarbon group.
  • the aliphatic saturated hydrocarbon group may be an alkyl group.
  • Examples of aliphatic saturated hydrocarbon groups include -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -C(CH 3 ) 3 , -CH2CH ( CH3 ) 2 , -( CH2 ) 3CH3 , -( CH2 ) 4CH3 , -C( CH2CH3 ) ( CH3 ) 2 , -CH2C (CH 3 ) 3 , -(CH 2 ) 5 CH 3 , -(CH 2 ) 6 CH 3 , -(CH 2 ) 7 CH 3 , -(CH 2 ) 8 CH 3 , -(CH 2 ) 9 CH
  • Examples of the alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • a halogenated hydrocarbon group means a group in which at least one hydrogen atom contained in the hydrocarbon group is substituted with a halogen atom.
  • the halogenated hydrocarbon group may be a group in which all hydrogen atoms contained in the hydrocarbon group are substituted with halogen atoms.
  • Examples of the halogenated hydrocarbon group include a halogenated alkyl group and a halogenated alkenyl group.
  • halogenated alkyl group examples include -CF 3 , -CH 2 F, -CH 2 Br, -CH 2 Cl, -CH 2 I, -CH 2 CF 3 and the like.
  • the group containing an oxygen atom is, for example, a substituent having at least one selected from the group consisting of a hydroxyl group, a carboxyl group, an aldehyde group, an ether group, an acyl group, and an ester group.
  • Examples of the substituent having a hydroxyl group include a hydroxyl group itself and a hydrocarbon group having a hydroxyl group.
  • Examples of the hydrocarbon group having a hydroxyl group include -CH 2 OH, -CH(OH)CH 3 , -CH 2 CH(OH)CH 3 and -CH 2 C(OH)(CH 3 ) 2 .
  • Examples of the substituent having a carboxyl group include the carboxyl group itself and a hydrocarbon group having a carboxyl group.
  • Examples of the hydrocarbon group having a carboxyl group include -CH 2 CH 2 COOH and -C(COOH)(CH 3 ) 2 .
  • Examples of the substituent having an aldehyde group include the aldehyde group itself and a hydrocarbon group having an aldehyde group.
  • Examples of the substituent having an ether group include an alkoxy group, a halogenated alkoxy group, an alkenyloxy group, an oxiranyl group, and a hydrocarbon group having at least one of these functional groups. At least one hydrogen atom contained in the alkoxy group may be substituted with a group containing at least one atom selected from the group consisting of N, O, P, and S.
  • alkoxy groups include methoxy, ethoxy, 2-methoxyethoxy, butoxy, 2-methylbutoxy, 2-methoxybutoxy, 4-ethylthiobutoxy, pentyloxy, hexyloxy, and heptyloxy groups.
  • halogenated alkoxy group examples include -OCHF 2 , -OCH 2 F, and -OCH 2 Cl.
  • hydrocarbon group having a functional group such as an alkoxy group include -CH 2 OCH 3 , -C(OCH 3 ) 3 , 2-methoxybutyl group, and 6-methoxyhexyl group.
  • Examples of the substituent having an acyl group include the acyl group itself and a hydrocarbon group having an acyl group.
  • Examples of the acyl group include -COCH 3 and the like.
  • Examples of the substituent having an ester group include an alkoxycarbonyl group, an acyloxy group, and a hydrocarbon group having at least one of these functional groups.
  • Examples of the alkoxycarbonyl group include -COOCH 3 , -COO(CH 2 ) 3 CH 3 and -COO(CH 2 ) 7 CH 3 .
  • Examples of the acyloxy group include -OCOCH 3 and the like.
  • the hydrocarbon group having a functional group such as an acyloxy group include -CH 2 OCOCH 3 and the like.
  • Examples of the substituent having an amino group include a primary amino group, a secondary amino group, a tertiary amino group, and a hydrocarbon group having at least one of these functional groups.
  • Examples of the tertiary amino group include -N(CH 3 ) 2 and the like.
  • Examples of the hydrocarbon group having a functional group such as a primary amino group include --CH 2 NH 2 , --CH 2 N(CH 3 ) 2 , --(CH 2 ) 4 N(CH 3 ) 2 and the like.
  • Examples of the substituent having an imino group include the imino group itself and a hydrocarbon group having an imino group.
  • Examples of the substituent having a cyano group include the cyano group itself and a hydrocarbon group having a cyano group.
  • Examples of the substituent having an amide group include the amide group itself and a hydrocarbon group having an amide group.
  • Examples of the amide group include -CONH 2 , -NHCHO, -NHCOCH 3 , -NHCOCF 3 , -NHCOCH 2 Cl, -NHCOCH(CH 3 ) 2 and the like.
  • Examples of the hydrocarbon group having an amide group include -CH 2 CONH 2 and -CH 2 NHCOCH 3 .
  • Examples of the substituent having a carbamate group include the carbamate group itself and a hydrocarbon group having a carbamate group.
  • Examples of the carbamate group include -NHCOOCH 3 , -NHCOOCH 2 CH 3 , -NHCO 2 (CH 2 ) 3 CH 3 and the like.
  • Examples of the substituent having a nitro group include the nitro group itself and a hydrocarbon group having a nitro group.
  • Examples of the hydrocarbon group having a nitro group include -C(NO 2 )(CH 3 ) 2 and the like.
  • Examples of the substituent having a cyanamide group include the cyanamide group itself and a hydrocarbon group having a cyanamide group.
  • the cyanamide group is represented by -NHCN.
  • Examples of the substituent having an isocyanate group include the isocyanate group itself and a hydrocarbon group having an isocyanate group.
  • Examples of the substituent having an oxime group include the oxime group itself and a hydrocarbon group having an oxime group.
  • Examples of the substituent having a thiol group include the thiol group itself and a hydrocarbon group having a thiol group.
  • the thiol group is represented by -SH.
  • alkynylthio group examples include -SC ⁇ CH and the like.
  • hydrocarbon group having a functional group such as an alkylthio group examples include -CH 2 SCF 3 and the like.
  • Examples of the substituent having a sulfinyl group include the sulfinyl group itself and a hydrocarbon group having a sulfinyl group.
  • Examples of the sulfinyl group include -SOCH 3 and the like.
  • Examples of the substituent having a sulfonyl group include the sulfonyl group itself and a hydrocarbon group having a sulfonyl group.
  • Examples of the sulfonyl group include -SO 2 CH 3 and the like.
  • Examples of the hydrocarbon group having a sulfonyl group include -CH 2 SO 2 CH 3 and -CH 2 SO 2 CH 2 CH 3 .
  • Examples of the substituent having a sulfino group include the sulfino group itself and a hydrocarbon group having a sulfino group.
  • Examples of the substituent having a sulfonic acid group include the sulfonic acid group itself and a hydrocarbon group having a sulfonic acid group.
  • Examples of the substituent having an acylthio group include the acylthio group itself and a hydrocarbon group having an acylthio group.
  • Examples of the acylthio group include -SCOCH 3 and the like.
  • Examples of the substituent having a sulfenamide group include the sulfenamide group itself and a hydrocarbon group having a sulfenamide group.
  • Examples of the sulfenamide group include -SN(CH 3 ) 2 and the like.
  • Examples of the substituent having a sulfonamide group include the sulfonamide group itself and a hydrocarbon group having a sulfonamide group.
  • Examples of the sulfonamide group include -SO 2 NH 2 and -NHSO 2 CH 3 .
  • Examples of the substituent having a thioamide group include the thioamide group itself and a hydrocarbon group having a thioamide group.
  • Examples of the thioamide group include -NHCSCH 3 and the like.
  • Examples of the substituent having a thiocarbamide group include the thiocarbamide group itself and a hydrocarbon group having a thiocarbamide group.
  • Examples of the thiocarbamide group include -NHCSNHCH 2 CH 3 and the like.
  • Examples of the substituent having a thiocyano group include the thiocyano group itself and a hydrocarbon group having a thiocyano group.
  • Examples of the hydrocarbon group having a thiocyano group include -CH 2 SCN and the like.
  • the group containing a silicon atom is, for example, a substituent having at least one selected from the group consisting of a silyl group and a siloxy group.
  • Examples of the substituent having a silyl group include the silyl group itself and a hydrocarbon group having a silyl group.
  • Silyl groups include -Si(CH 3 ) 3 , -SiH(CH 3 ) 2 , -Si(OCH 3 ) 3 , -Si(OCH 2 CH 3 ) 3 , -SiCH 3 (OCH 3 ) 2 , -Si (CH 3 ) 2 OCH 3 , -Si(N(CH 3 ) 2 ) 3 , -SiF(CH 3 ) 2 , -Si(OSi(CH 3 ) 3 ) 3 , -Si(CH 3 ) 2 OSi(CH 3 ) 3 etc.
  • Examples of the hydrocarbon group having a silyl group include -(CH 2 ) 2 Si(CH 3 ) 3 and the like.
  • Examples of the substituent having a siloxy group include the siloxy group itself and a hydrocarbon group having a siloxy group.
  • Examples of the hydrocarbon group having a siloxy group include -CH 2 OSi(CH 3 ) 3 and the like.
  • the group containing a phosphorus atom is, for example, a substituent having at least one selected from the group consisting of a phosphino group and a phosphoryl group.
  • Examples of the substituent having a phosphino group include the phosphino group itself and a hydrocarbon group having a phosphino group.
  • Phosphino groups include -PH 2 , -P(CH 3 ) 2 , -P(CH 2 CH 3 ) 2 , -P(C(CH 3 ) 3 ) 2 , -P(CH(CH 3 ) 2 ) 2 Examples include.
  • Examples of the substituent having a phosphoryl group include the phosphoryl group itself and a hydrocarbon group having a phosphoryl group.
  • Examples of the hydrocarbon group having a phosphoryl group include -CH 2 PO(OCH 2 CH 3 ) 2 and the like.
  • the group containing a boron atom is, for example, a substituent having a boronic acid group.
  • substituent having a boronic acid group include the boronic acid group itself and a hydrocarbon group having a boronic acid group.
  • At least one selected from the group consisting of R 4 to R 8 may be represented by the following formula (4). -L-R A (4)
  • L is a linking group containing at least one atom selected from the group consisting of C, N, O, and S. L does not include bonds that affect the conjugated system, such as, for example, carbon-carbon double bonds. L may contain an ether group and may be -CH 2 -O-CH 2 -. L may be an alkylene group.
  • R A is, for example, a group G having nonlinear light absorption characteristics, and may be a group having a pyrene skeleton.
  • R A may be represented by the following formula (4A).
  • R 28 to R 37 independently represent at least one member selected from the group consisting of H, B, C, N, O, F, Si, P, S, Cl, Br, and I. Contains atoms.
  • R 28 to R 37 is bonded to L in the above formula (4).
  • L in formula (4) may be directly bonded to the pyrene ring represented by formula (4A) at one position among R28 to R37 .
  • R 28 to R 37 each independently include a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, a group containing a sulfur atom, and a silicon atom. group, a group containing a phosphorus atom, or a group containing a boron atom. These groups include those mentioned above for R 1 to R 8 .
  • a specific example of the structural unit A includes, for example, the structural unit A-1 represented by the following formula (A-1).
  • the content of the structural unit A in the polymer P1 is, for example, 5 mol% or more, may be 7 mol% or more, may be 10 mol% or more, may be 15 mol% or more, and may be 20 mol% or more. It may be mol% or more.
  • the upper limit of the content of the structural unit A is not particularly limited, and is, for example, 65 mol%.
  • the polymer P1 may further contain other structural units other than the above-mentioned structural unit A.
  • other structural units include structural unit B1 derived from styrenes and not having the above-mentioned group G, and structural unit B2 derived from stilbenes and not having group G.
  • the structural unit B1 may be simply referred to as the structural unit B1 derived from styrenes.
  • the structural unit B2 is sometimes simply referred to as the structural unit B2 derived from stilbenes.
  • Polymer P1 includes, for example, at least one structural unit B selected from the group consisting of structural unit B1 derived from styrenes and structural unit B2 derived from stilbenes.
  • Polymer P1 may include structural unit B1 derived from styrenes.
  • the above structural unit B is represented by the following formula (2), for example.
  • R 9 to R 16 are each independently at least one selected from the group consisting of H, B, C, N, O, F, Si, P, S, Cl, Br, and I. It is a group other than group G that contains atoms and has nonlinear light absorption characteristics.
  • R 9 to R 16 each independently include a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, a group containing a sulfur atom, and a silicon atom. group, a group containing a phosphorus atom, or a group containing a boron atom. These groups include those mentioned above for R 1 to R 8 .
  • At least one selected from the group consisting of R 12 to R 16 may contain a leaving group or a polar functional group that can be used in a nucleophilic substitution reaction.
  • the leaving group include halogen groups and the like.
  • the polar functional group include a hydroxy group, an amino group, and a thiol group.
  • structural unit B examples include structural units B-1 represented by the following formula (B-1) to structural unit B-8 represented by the formula (B-8).
  • the content of the structural unit B in the polymer P1 is not particularly limited, and is, for example, 70 mol% or less, may be 60 mol% or less, may be 50 mol% or less, or may be 40 mol% or less. It may be 30 mol% or less, 20 mol% or less, or 10 mol% or less.
  • the lower limit of the content of the structural unit B is not particularly limited, and is, for example, 1 mol%.
  • the polymer P1 may have at least one side chain selected from the group consisting of a carbazole skeleton and a naphthalene skeleton.
  • the polymer P1 may include, as a structural unit other than the structural unit A, a structural unit C having at least one selected from the group consisting of a carbazole skeleton and a naphthalene skeleton in a side chain.
  • the polymer P1 may have, as the structural unit C, a structural unit derived from vinylcarbazoles.
  • a carbazole skeleton or a naphthalene skeleton may be included in the main chain.
  • the polymer P1 containing a carbazole skeleton or a naphthalene skeleton in its main chain may exhibit one-photon absorption characteristics for light having a wavelength in the range of 390 nm to 410 nm.
  • the above structural unit C is represented by the following formula (3), for example.
  • R 17 to R 27 independently represent at least one member selected from the group consisting of H, B, C, N, O, F, Si, P, S, Cl, Br, and I. Contains atoms.
  • R 17 to R 27 each independently include a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, a group containing a sulfur atom, and a silicon atom. group, a group containing a phosphorus atom, or a group containing a boron atom. These groups include those mentioned above for R 1 to R 8 .
  • structural unit C examples include structural unit C-1 represented by the following formula (C-1) to structural unit C-17 represented by the formula (C-17).
  • the content of the structural unit C in the polymer P1 is not particularly limited, and is, for example, 10 mol% or more, may be 35 mol% or more, may be 50 mol% or more, or may be 70 mol% or more. It may be 90 mol% or more.
  • the upper limit of the content of the structural unit C is not particularly limited, and is, for example, 95 mol%.
  • Polymer P1 is selected from the group consisting of structural unit A represented by the above formula (1), structural unit B represented by formula (2), and structural unit C represented by formula (3), for example. at least one. Polymer P may contain structural units A to C. As an example, the polymer P1 may be a random copolymer represented by the following formula (5).
  • R 1 to R 27 are the same as those described above for formula (1), formula (2), and formula (3).
  • x, y and z are each independently arbitrary integers.
  • the number x of structural units A, the number y of structural units B, and the number z of structural units C may satisfy 0.35 ⁇ z/(x+y+z), and 0.07 ⁇ x/( x+y+z) ⁇ 0.65.
  • polymer P1 is typically a random copolymer.
  • the polymer P1 may be a block copolymer, a graft copolymer, or the like.
  • a specific example of the polymer P1 includes, for example, a random copolymer P1-1 represented by the following formula (P1-1).
  • x, y, and z are arbitrary integers independently of each other.
  • specific examples of x:y:z are 7:3:90, 20:45:35, etc.
  • the method for synthesizing polymer P1 is not particularly limited.
  • Polymer P1 may be synthesized by reacting a nonlinear light absorbing dye with a precursor polymer.
  • the polymer P1 may be synthesized by preparing in advance a monomer having a group G having nonlinear light absorption characteristics, and polymerizing a group of monomers containing the monomer.
  • a reaction for bonding a nonlinear light-absorbing dye to a precursor polymer a nucleophilic substitution reaction in which a leaving group and a polar functional group are reacted, a cross-coupling reaction using a transition metal catalyst, etc. can be used.
  • the leaving group include halogen groups and the like.
  • polymer P1 may be synthesized by reacting a precursor polymer containing a structural unit derived from styrenes or stilbenes and having a leaving group with a nonlinear light-absorbing dye having a polar functional group.
  • Polymer P1 may be synthesized by reacting a precursor polymer containing a structural unit derived from styrenes or stilbenes and having a polar functional group with a nonlinear light-absorbing dye having a leaving group.
  • the dye material may contain an organic compound E having light absorption properties instead of or together with the polymer P1.
  • the organic compound E is, for example, a low molecular compound with a molecular weight of 1000 or less.
  • the organic compound E may have linear light absorption characteristics or nonlinear light absorption characteristics for light having a wavelength in a short wavelength range.
  • the organic compound E may utilize a nonlinear light absorption phenomenon due to excited state absorption.
  • the organic compound E may have large nonlinear light absorption in the recording layer 10 from the viewpoint of maintaining the light transmittance at a high value and improving the recording sensitivity.
  • the organic compound E contains at least one selected from the group consisting of a carbon-carbon double bond, a carbon-nitrogen double bond, and a carbon-carbon triple bond.
  • Organic compound E may further contain an aromatic ring.
  • the aromatic ring contained in the organic compound E may be composed of carbon atoms, or may be a heteroaromatic ring containing heteroatoms such as oxygen atoms, nitrogen atoms, and sulfur atoms. Examples of the aromatic ring contained in the organic compound E include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a furan ring, a pyrrole ring, a pyridine ring, and a thiophene ring.
  • the organic compound E may contain a benzene ring as an aromatic ring.
  • the number of aromatic rings contained in the organic compound E is not particularly limited, and may be, for example, 2 or more, 3 or more, or 5 or more.
  • the upper limit of the number of aromatic rings is not particularly limited, and is, for example, 15.
  • a plurality of aromatic rings may be connected by at least one bond selected from the group consisting of a carbon-carbon double bond, a carbon-nitrogen double bond, and a carbon-carbon triple bond.
  • the plurality of aromatic rings contained in the organic compound E may be the same or different.
  • organic compound E examples include a compound E1 represented by the following formula (E1).
  • organic compound E examples include a compound E2 represented by the following formula (E2), a compound E3 represented by the following formula (E3), and the like. These compounds E2 and E3 tend to exhibit large nonlinear optical absorption for light having wavelengths in the short wavelength range.
  • the dye material may contain one type of polymer P1 or one type of organic compound E, or two or more types of polymer P1. Alternatively, it may contain two or more types of organic compounds E.
  • the dye material may have small linear light absorption and appropriate nonlinear light absorption at the recording/reproducing wavelength.
  • the two-photon absorption cross section of the dye material may be greater than 1 GM, may be greater than 10 GM, may be greater than 20 GM, or may be greater than 100 GM. There may be.
  • the upper limit of the two-photon absorption cross section is not particularly limited, and is, for example, 1000 GM.
  • the two-photon absorption cross section can be measured, for example, by the Z-scan method described in J.Opt. Soc. Am. B, 2003, Vol. 20, p. 529.
  • the Z-scan method is widely used as a method for measuring nonlinear optical constants.
  • a measurement sample is moved along the irradiation direction of the laser beam near the focal point where the laser beam is focused. At this time, changes in the amount of light transmitted through the measurement sample are recorded.
  • the power density of incident light changes depending on the position of the measurement sample. Therefore, when the measurement sample performs nonlinear light absorption, when the measurement sample is located near the focal point of the laser beam, the amount of transmitted light is attenuated.
  • the two-photon absorption cross section can be calculated by fitting changes in the amount of transmitted light to a theoretical curve predicted from the intensity of the incident light, the thickness of the measurement sample, the concentration of the compound in the measurement sample, etc.
  • the two-photon absorption cross section of a pyrene derivative is about 50 GM to 300 GM.
  • the two-photon absorption cross section may be a value calculated by computational chemistry.
  • Several methods have been proposed to estimate the two-photon absorption cross section using computational chemistry.
  • the calculated value of the two-photon absorption cross section can be calculated based on the second-order nonlinear response theory described in J. Chem. Theory Comput. 2018, Vol. 14, p. 807.
  • the recording layer 10 may further include a polymer P2 different from the polymer P1.
  • the recording layer 10 may include a polymer P2 and an organic compound E.
  • organic compound E may be dispersed in a matrix containing polymer P2.
  • Polymer P2 includes, for example, the structural unit C described above for polymer P1.
  • the polymer P2 may have, as the structural unit C, a structural unit derived from vinylcarbazoles or a structural unit derived from vinylnaphthalenes.
  • a carbazole skeleton or a naphthalene skeleton may be included in the main chain.
  • the polymer P2 containing a carbazole skeleton or a naphthalene skeleton in its main chain may exhibit one-photon absorption characteristics for light having a wavelength in the range of 390 nm to 410 nm.
  • the polymer P2 does not need to contain the structural unit C and may be polycarbonate.
  • the polymers P1 and P2 have high transmittance, refractive index, and glass transition temperature for light in the wavelength range of 390 nm to 410 nm.
  • the glass transition temperature of polymers P1 and P2 is, for example, 200° C. or higher. Polymers P1 and P2 with glass transition temperatures this high are thermally stable.
  • the recording layer 10 containing this polymer P1 or P2 tends to be able to suppress changes in the shape of recording marks formed by light irradiation. That is, polymers P1 and P2 tend to improve the stability of the shape of recording marks.
  • the glass transition temperatures of the polymers P1 and P2 are too high, the recording sensitivity of the recording layer 10 may decrease.
  • the glass transition temperature of polymers P1 and P2 is, for example, 200° C. or more and 300° C. or less.
  • the glass transition temperature of polymers P1 and P2 may be 200°C or more and 250°C or less.
  • the glass transition temperature of polymers P1 and P2 can be determined by the following method. First, polymers P1 and P2 are subjected to thermogravimetric/differential thermal analysis (TG-DTA) measurement under the following conditions, and a DTA curve is created. The glass transition temperature can be determined from the inflection point of the heat capacity in the DTA curve. ⁇ Measurement conditions Atmosphere: Nitrogen atmosphere Measurement range: 25°C to 400°C Heating rate: 15°C/min
  • the weight average molecular weights of the polymers P1 and P2 When the weight average molecular weights of the polymers P1 and P2 are relatively large, the recording layer 10 tends to be easily formed. On the other hand, if the weight average molecular weights of the polymers P1 and P2 are too large, the solubility of the polymers decreases, and it may be difficult to form the recording layer 10 by a coating method. Therefore, the weight average molecular weights of polymers P1 and P2 may be 4,000 or more and 100,000 or less. The weight average molecular weights of the polymers P1 and P2 may be 4,000 or more and 50,000 or less.
  • the recording layer 10 is, for example, a thin film having a thickness of 1 nm or more and 1 ⁇ m or less. However, the thickness of the recording layer 10 may be less than 490 nm, and in some cases may be more than 1 ⁇ m. When the thickness of the recording layer 10 exceeds 1 ⁇ m, it tends to be difficult to obtain the effect of interference between the reflected light A from the interface 30A and the reflected light B from the interface 30B. This is considered to be due to the fact that the recording medium 100 is irradiated with the focused light. When using condensed light, the optical path length varies depending on the angle of incidence, so it is necessary to add up the components of the light incident from various angles. When the thickness of the recording layer 10 exceeds about 1 ⁇ m, the difference in optical path length depending on the incident angle increases, so it is considered that it is difficult to obtain an interference effect.
  • the transmittance of light with a wavelength of 405 nm in the recording layer 10 is 95% or more, may be 97% or more, or may be 99% or more.
  • the transmittance may be calculated by measuring the extinction coefficient using an ellipsometer.
  • the transmittance may be calculated by dissolving the material of the recording layer 10 in an appropriate solvent and using the absorbance value measured in the solution state.
  • the refractive index n 1 of the recording layer 10 may be 1.65 or more, 1.68 or more, or 1.70 or more.
  • the upper limit of the refractive index n 1 of the recording layer 10 is not particularly limited, and is, for example, 1.90.
  • the refractive index of the recording layer 10 can be measured using an ellipsometer. Note that the refractive index n 2 of the first dielectric layer 20A and the refractive index n 3 of the second dielectric layer 20B can also be measured using an ellipsometer.
  • the difference in refractive index between the recording layer 10 and the first dielectric layer 20A is large, the intensity of reflected light from the interface 30A tends to increase.
  • the difference in refractive index between the recording layer 10 and the second dielectric layer 20B is large, the intensity of reflected light from the interface 30B tends to increase. This tends to make it possible to obtain a good reproduction signal from the recording medium 100.
  • the difference between the refractive index n 1 of the recording layer 10 and the refractive index n 2 of the first dielectric layer 20A may be 0.2 or more.
  • the difference between the refractive index n 1 of the recording layer 10 and the refractive index n 3 of the second dielectric layer 20B may be 0.2 or more.
  • the effect of interference between the reflected light A from the interface 30A and the reflected light B from the interface 30B can be sufficiently obtained.
  • LTH type recording and reproducing can be realized using a small semiconductor laser having a center wavelength of 405 nm.
  • a small semiconductor laser for example, an optical pickup used for recording and reproducing conventional Blu-ray (registered trademark) discs can be used.
  • the first dielectric layer 20A and the second dielectric layer 20B may have the same or different thicknesses, compositions, and the like.
  • a material is used that can adjust the refractive index difference with the recording layer 10 to an appropriate value and has high light transmittance at the recording/reproducing wavelength.
  • the recording medium 100 includes a plurality of recording layers 10, the interlayer distance between the recording layers 10 can be appropriately adjusted by adjusting the thickness of the dielectric layer 20.
  • the refractive index difference between the recording layer 10 and the dielectric layer 20 is, for example, about 0.2 or more.
  • the refractive index of the recording layer 10 is represented by n1 and the refractive index of the dielectric layer 20 is represented by n2
  • the reflectance at the interface between the recording layer 10 and the dielectric layer 20 is ((n2-n1)/( It is known that the value is approximately the value calculated by n2+n1)) 2 . That is, when the refractive index of the recording layer 10 is 1.65 and the refractive index of the dielectric layer 20 is 1.45, the reflectance of the interface between these layers is about 0.004.
  • the dielectric layer 20 includes, for example, a polymer material.
  • the refractive index of the polymer material used for the dielectric layer 20 is about 1.4 to 1.6, particularly about 1.45 to 1.5. Therefore, when the refractive index of the recording layer 10 is higher than 1.65, the difference in refractive index with the dielectric layer 20 can be easily adjusted to about 0.1 to 0.2 or more. By adjusting the refractive index difference between the recording layer 10 and the dielectric layer 20 within the above range, the intensity of reflected light at the interface can be improved and good focus servo characteristics can be obtained.
  • Examples of the material for the dielectric layer 20 include cellulose acetate, acrylic resin, and methacrylic resin.
  • the thickness of the dielectric layer 20 is not particularly limited, and is, for example, 5 nm or more and 100 ⁇ m or less. However, the thickness of the dielectric layer 20 may exceed 100 ⁇ m.
  • the recording medium 100 can be manufactured, for example, by the following method. First, a coating liquid is prepared by mixing the material of the recording layer 10 with a solvent. This coating liquid is applied to a substrate by a method such as spin coating, and the resulting coating film is dried to produce a thin recording layer 10.
  • a dielectric layer 20 is formed on the recording layer 10.
  • the dielectric layer 20 includes a resin material
  • the resin material is mixed with a solvent to prepare a coating liquid.
  • the dielectric layer 20 can be produced by applying this coating liquid onto the recording layer 10 by a method such as spin coating and drying the obtained coating film.
  • the coating liquid may contain a photosensitive monomer or the like, and the dielectric layer 20 may be produced by polymerizing the monomer with light or heat.
  • the dielectric layer 20 may be fabricated by previously fabricating a thin film that functions as the dielectric layer 20 and bonding the thin film to the recording layer 10. If necessary, the recording medium 100 can be obtained by alternately producing a plurality of recording layers 10 and a plurality of dielectric layers 20.
  • the recording medium 100 of this embodiment uses, for example, light having a wavelength in a short wavelength range.
  • the recording medium 100 uses light having a wavelength of 390 nm or more and 410 nm or less.
  • the light used in the recording medium 100 has, for example, a high photon density near its focal point.
  • the power density near the focal point of the light used in the recording medium 100 is, for example, 0.1 W/cm 2 or more and 1.0 ⁇ 10 20 W/cm 2 or less.
  • the power density near the focal point of this light may be 1.0 W/cm 2 or more, 1.0 ⁇ 10 2 W/cm 2 or more, or 1.0 ⁇ 10 5 W/cm It may be 2 or more.
  • a femtosecond laser such as a titanium sapphire laser
  • a pulsed laser having a pulse width from a picosecond to a nanosecond such as a semiconductor laser
  • FIG. 3A is a flowchart regarding a method of recording information using the recording medium 100.
  • a light source that emits light having a wavelength of 390 nm or more and 410 nm or less is prepared.
  • the light source for example, a femtosecond laser such as a titanium sapphire laser, or a pulsed laser having a pulse width from picoseconds to nanoseconds such as a semiconductor laser can be used.
  • step S12 light from a light source is focused by a lens or the like and irradiated onto the recording layer 10 of the recording medium 100.
  • light from a light source is focused by a lens or the like and irradiated onto a recording area of the recording medium 100.
  • the NA (numerical aperture) of the lens used for condensing light is not particularly limited.
  • a lens having an NA of 0.8 or more and 0.9 or less may be used.
  • the power density of this light near the focal point is, for example, 0.1 W/cm 2 or more and 1.0 ⁇ 10 20 W/cm 2 or less.
  • the power density near the focal point of this light may be 1.0 W/cm 2 or more, 1.0 ⁇ 10 2 W/cm 2 or more, or 1.0 ⁇ 10 5 W/cm It may be 2 or more.
  • a physical or chemical change occurs in the recording area irradiated with the above light.
  • a concave recording mark is formed in the recording area.
  • the depth of the concave recording mark is not particularly limited, and is, for example, 1 nm or more and 100 nm or less.
  • the physical or chemical change changes the optical properties of the recording area. For example, the intensity of light reflected in the recording area, the reflectance of light in the recording area, the absorption rate of light in the recording area, the refractive index of light in the recording area, the intensity of fluorescent light emitted from the recording area, The wavelength of fluorescent light changes. As an example, the intensity of light reflected at the recording area increases. In other words, the reflectance of light in the recording area increases. Thereby, information can be recorded in the recording layer 10, specifically in the recording area (step S13).
  • FIG. 3B is a flowchart regarding a method for reading information using the recording medium 100.
  • the recording layer 10 of the recording medium 100 is irradiated with light. Specifically, the recording area on the recording medium 100 is irradiated with light.
  • the light used in step S21 may be the same as the light used to record information on the recording medium 100, or may be different.
  • the wavelength of the reproduction light used in step S21 may be the same as the wavelength of the recording light used in step S12.
  • step S22 the optical characteristics of the recording layer 10 are measured. Specifically, the optical characteristics of the recording area are measured.
  • step S22 for example, the intensity of light reflected by the recording area or the intensity of fluorescent light emitted from the recording area is measured as the optical characteristic of the recording area.
  • the optical characteristics of the recording area include the reflectance of light in the recording area, the absorption rate of light in the recording area, the refractive index of light in the recording area, and the wavelength of fluorescent light emitted from the recording area. may be measured.
  • step S23 information is read from the recording layer 10, specifically from the recording area.
  • the recording area where information is recorded that is, the recording section
  • the recording area where information is recorded can be found by the following method.
  • the optical characteristics of the area irradiated with light are measured.
  • Optical properties include, for example, the intensity of light reflected in the region, the reflectance of light in the region, the absorption rate of light in the region, the refractive index of light in the region, and the fluorescence emitted from the region. Examples include the intensity of the light, the wavelength of the fluorescent light emitted from the region, etc.
  • the area irradiated with light is a recording section. For example, if the intensity of the light reflected in the area exceeds a specific value, it may be determined that the area is the recording section. Alternatively, it may be determined that the area is not a recording section if the intensity of the light reflected in the area is below a specific value. If it is determined that it is not the recording section, similar operations are performed on other areas of the recording medium. This makes it possible to search for the recording section.
  • the method of recording and reading information using the recording medium 100 can be performed by, for example, a known recording device.
  • the recording apparatus includes, for example, a light source that irradiates a recording area on the recording medium 100 with light, a measuring device that measures optical characteristics of the recording area, and a controller that controls the light source and the measuring device.
  • the wavelengths of the recording light and the reproduction light irradiated onto the recording medium 100 may be the same.
  • the recording device can perform recording and reproducing operations on the recording medium 100 using one type of light source.
  • This recording device for example, does not include multiple types of light sources and has a simple configuration.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a recording medium 110 according to a modification.
  • the recording medium 110 includes a plurality of recording layers 10 and a plurality of dielectric layers 20. Except for this, the structure of the recording medium 110 according to the modification is the same as the recording medium 100 described above. Therefore, common elements between the recording medium 100 described above and the recording medium 110 of the modified example are given the same reference numerals, and their explanations may be omitted.
  • the plurality of recording layers 10 are arranged in the thickness direction of the recording medium 110, for example.
  • the number of recording layers 10 is not particularly limited, and is, for example, 2 or more and 1000 or less.
  • the compositions of the plurality of recording layers 10 may be the same or different.
  • a recording medium 110 including a plurality of recording layers 10 functions as a three-dimensional optical memory.
  • a specific example of the recording medium 110 is a three-dimensional optical disc.
  • the transmittance of light with a wavelength of 405 nm is 95% or more for each of the plurality of recording layers 10.
  • the intensity of light that reaches the recording layer 10 located at a position farther away from the light source, that is, the inner layer is less likely to decrease.
  • the plurality of recording layers 10 and the plurality of dielectric layers 20 are arranged alternately, for example.
  • a plurality of recording layers 10 and a plurality of dielectric layers 20 are alternately stacked.
  • each of the plurality of recording layers 10 is disposed between two dielectric layers 20 and is in direct contact with each of the two dielectric layers 20.
  • the number of dielectric layers 20 is not particularly limited, and is, for example, 3 or more and 1001 or less.
  • the composition and thickness of the plurality of dielectric layers 20 may be the same or different.
  • the dielectric layer 20 closest to the upper surface of a specific recording layer 10 is regarded as the first dielectric layer 20A
  • the dielectric layer 20 closest to the lower surface of the recording layer 10 is
  • the body layer 20 is considered as the second dielectric layer 20B
  • the thickness D (nm) of the recording layer 10 the refractive index n 1 of the recording layer 10
  • the refractive index n 2 of the first dielectric layer 20A
  • the refractive index n 3 of the second dielectric layer 20B satisfies the above-mentioned relational expressions (1) to (3).
  • the above conditions are satisfied for each recording layer 10.
  • the thicknesses of the plurality of recording layers 10 may be the same or different.
  • the thickness of each recording layer 10 is relatively small, a recording medium 110 having a large number of recording layers 10 and a large recording capacity can be easily manufactured. be able to.
  • Compound A manufactured by Tokyo Chemical Industry Co., Ltd.
  • Compound B manufactured by Sigma-Aldrich Co., Ltd.
  • Compound C manufactured by Sigma-Aldrich Co., Ltd.
  • FIG. 5 is a graph showing the 1 H-NMR spectrum of Compound B.
  • the 1 H-NMR spectrum of compound B was as follows.
  • Precursor F added was the same as the weight of 1-hydroxymethylpyrene.
  • the reaction solution which had been allowed to cool to room temperature, was added to a large amount of methanol to obtain a white precipitate.
  • the obtained solid was collected by filtration and washed. In the washing operation, ethanol, water, and diethyl ether were used in this order as the washing liquid.
  • Compound D was obtained by drying the solid under vacuum. Compound D was identified by 1 H-NMR.
  • polyvinyl carbazole manufactured by Sigma-Aldrich, molecular weight 25,000 to 50,000
  • PMMA polymethyl methacrylate
  • Example 1 ⁇ Preparation of recording medium> [Example 1] First, Compound A and polyvinylcarbazole were measured and dissolved in chlorobenzene. The compounding amount of Compound A was 0.9 parts by mass based on 99.1 parts by mass of polyvinylcarbazole. The concentration of solute in the resulting solution was about 3 wt%. Next, the obtained solution was applied to a glass substrate by a spin coating method. The glass substrate was 20 mm square and 1 cm thick. Spin coating was performed at 3000 rpm for 30 seconds. Next, a recording layer was prepared by drying the obtained coating film at 80° C. for 30 minutes. Thereby, the recording medium of Example 1 was obtained.
  • Example 2 Compound B was used instead of Compound A, the amount of Compound B was changed to 5 parts by mass relative to 95 parts by mass of polyvinylcarbazole, and the concentration of solute in the chlorobenzene solution was changed to approximately 5 wt%.
  • a recording medium of Example 2 was produced by the same method as Example 1 except for.
  • Example 3 Compound C was used instead of Compound A, the amount of Compound C was changed to 20 parts by mass relative to 80 parts by mass of polyvinylcarbazole, and the concentration of solute in the chlorobenzene solution was changed to about 5 wt%.
  • a recording medium of Example 3 was produced by the same method as Example 1 except for.
  • Example 4 First, Compound D was dissolved in chlorobenzene. The concentration of Compound D in the obtained solution was about 5 wt%. Next, the obtained solution was applied to a glass substrate by a spin coating method. The glass substrate was 20 mm square and 1 cm thick. Spin coating was performed at 3000 rpm for 30 seconds. Next, a recording layer was prepared by drying the obtained coating film at 80° C. for 30 minutes. As a result, a recording medium of Example 4 was obtained.
  • Example 5 A recording medium of Example 5 was produced in the same manner as Example 4 except that Compound E was used in place of Compound D.
  • Comparative example 1 A recording medium of Comparative Example 1 was produced by the same method as Example 1, except that the amount of chlorobenzene was adjusted to change the solute concentration in the chlorobenzene solution to about 5 wt%.
  • Comparative example 2 A recording medium of Comparative Example 2 was produced in the same manner as in Example 2, except that the amount of chlorobenzene was adjusted to change the solute concentration in the chlorobenzene solution to about 7 wt%.
  • the recording media of Examples and Comparative Examples are both laminates of a glass substrate and a recording layer.
  • the air layer in contact with the recording layer was regarded as the first dielectric layer
  • the glass substrate was regarded as the second dielectric layer.
  • the thickness D and refractive index n 1 of the recording layer were evaluated using an ellipsometer. Specifically, the refractive index n 1 at a wavelength of 405 nm was read from the spectrum obtained by measurement. Further, the difference between the refractive index n 1 and the refractive index n 2 of the air layer as the first dielectric layer, and the difference between the refractive index n 1 and the refractive index n 3 of the glass substrate as the second dielectric layer. The difference was calculated. Note that the refractive index n 2 of the air layer with respect to light with a wavelength of 405 nm was 1. The refractive index n 3 of the glass substrate for light with a wavelength of 405 nm was 1.47.
  • a sample was irradiated with pulsed light having a center wavelength of 405 nm, a peak power of 100 mW, and a repetition frequency of 100 kHz through a lens with an NA of 0.85.
  • the pulsed light was focused and irradiated onto the recording layer on the glass substrate from the side closer to the recording layer than the glass substrate.
  • the pulsed light irradiation was performed while moving the sample in parallel at a rate of 10 ⁇ m/sec.
  • the pulse width of the pulsed light was adjusted between 10 nanoseconds and 1000 nanoseconds.
  • FIG. 6A is an optical microscope image showing recording marks formed on the recording layer of the recording medium of Example 4. As can be seen from FIG. 6A, recording marks in the form of recording lines were formed on the recording layer by the recording operation.
  • FIG. 6A shows the direction of light irradiation in the reproduction operation, that is, the reproduction direction.
  • FIG. 6B is a graph showing reproduction signals of recording marks formed on the recording layer of the recording medium of Example 4. From FIG. 6B, it was confirmed that the amount of reflected light increased at the position of the recording mark due to the above-described reproduction operation.
  • a recording operation was performed by irradiating the sample with one pulse of pulsed light having a center wavelength of 405 nm and a peak power of 100 mW through a lens having an NA of 0.85.
  • the pulse width of the pulsed light was adjusted between 10 nanoseconds and 5 milliseconds.
  • the pulsed light was focused and irradiated onto the recording layer on the glass substrate from the side closer to the recording layer than the glass substrate.
  • Modulation degree (Reflected light signal strength at the recorded part - Reflected light signal strength at the unrecorded part) / (Reflected light signal strength at the unrecorded part)
  • FIG. 7 is a graph showing the relationship between the irradiation average energy of the recording light and the amount of deformation of the concave recording mark for the recording medium of Example 2. Note that the amount of deformation of the recording mark means the depth of the recording mark.
  • a release film (film masking tape 605 #50, manufactured by Teraoka Seisakusho) was placed on the recording layer to prepare a sample.
  • the static evaluation recording operation described above was performed on this sample.
  • the release film was peeled off from the sample, and the recorded portion was observed using an atomic force microscope (AFM). As a result, concave recording marks were formed in the recording section.
  • Example 2 a cover layer of cellulose acetate was placed on the recording layer to prepare a sample.
  • the cover layer was produced by a coating method.
  • the static evaluation recording operation described above was performed on this sample.
  • the cross section of the sample was observed using a SEM.
  • concave recording marks were formed in the recording section. From these results, it is estimated that under the above evaluation conditions for recording and reproducing characteristics, the recording process proceeds by the same mechanism regardless of the type of dielectric layer used. It is also assumed that this mechanism proceeds in the same way whether it is a dynamic evaluation or a static evaluation.
  • the thickness of the recording layer satisfies the above relational expression (1). Therefore, in the example, as the thickness of the recording portion decreases due to the recording operation, the light reflected from the interface between the recording layer and the air layer and the light reflected from the interface between the recording layer and the glass substrate are reduced. It is estimated that the phase difference has decreased. As a result, it is estimated that in the recording medium of the example, the reproduced signal from the recorded portion was detected more strongly than from the unrecorded portion.
  • the thickness of the recording layer does not satisfy the above relational expression (1). Therefore, in the comparative example, as the thickness of the recording section decreases due to the recording operation, the light reflected from the interface between the recording layer and the air layer and the light reflected from the interface between the recording layer and the glass substrate are reduced. It is estimated that the phase difference has increased. As a result, it is estimated that in the recording medium of the comparative example, the reproduced signal from the recorded portion was detected weaker than from the unrecorded portion.
  • the recording medium of the present disclosure can be used for applications such as three-dimensional optical memory.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

本開示の一態様における記録媒体100は、第1誘電体層20A、第2誘電体層20B及び記録層10を備える。記録層10は、光が照射されることによって情報を記録する記録領域を有する。情報が記録された記録領域における光の反射率は、情報が記録される前の記録領域における光の反射率よりも高い。記録層10の厚さD(nm)、記録層10の屈折率n1、第1誘電体層20Aの屈折率n2、及び第2誘電体層20Bの屈折率n3は、関係式(1)から(3)を満たす。 (1.33-0.15n1){405(m+1/2)/(2n1)}<D≦(1.33-0.15n1){405(m+1)/(2n1)} (1) n1>n2 (2) n1>n3 (3) 式(1)において、mは、0から4の整数である。

Description

記録媒体、情報の記録方法及び情報の読出方法
 本開示は、記録媒体、情報の記録方法及び情報の読出方法に関する。
 光情報記録媒体の記録容量を増加させるための技術として、多層体に情報を記録する3次元記録が知られている。3次元記録の分野では、記録密度を向上させるために、より微細な集光スポットを実現する必要がある。集光させたレーザー光の回折限界の観点から、より微細な集光スポットを実現するために、短い波長を有するレーザー光が用いられる。このレーザー光としては、Blu-ray(登録商標)ディスクの規格である405nmの中心波長を有するレーザー光が挙げられる。このように、405nmの中心波長を有するレーザー光を用いた記録媒体が知られている。
 特許文献1には、樹脂層同士の界面を反射面とする記録媒体が開示されている。特許文献1の記録媒体では、反射膜を別途設ける必要がない。特許文献2には、記録層に対して記録光を照射し、その屈折率を変化させることによって情報を記録する記録媒体が開示されている。特許文献2において、記録層は、色素と高分子バインダーとを有している。特許文献3には、互いに異なる波長を有する記録光及び再生光を利用する記録媒体が開示されている。
特許第4890507号公報 特許第5357114号公報 特許第4712798号公報 特許第5553723号公報
 情報の記録及び読出に適した新たな記録媒体が求められている。
 本開示の一態様における記録媒体は、
 第1誘電体層と、
 第2誘電体層と、
 光が照射されることによって情報を記録する記録領域を有し、かつ前記第1誘電体層と前記第2誘電体層との間に位置する記録層と、
を備え、
 前記記録層は、色素材料を含み、
 前記記録層における波長405nmの光の透過率は、95%以上であり、
 情報が記録された前記記録領域における光の反射率は、情報が記録される前の前記記録領域における光の反射率よりも高く、
 前記記録層の厚さD(nm)、波長405nmの光に対する前記記録層の屈折率n1、波長405nmの光に対する前記第1誘電体層の屈折率n2、及び波長405nmの光に対する前記第2誘電体層の屈折率n3は、下記関係式(1)から(3)を満たす。
(1.33-0.15n1){405(m+1/2)/(2n1)}<D≦(1.33-0.15n1){405(m+1)/(2n1)}  (1)
1>n2  (2)
1>n3  (3)
 前記式(1)において、mは、0から4の整数である。
 本開示は、情報の記録及び読出に適した新たな記録媒体を提供する。
図1は、本開示の一実施形態にかかる記録媒体の概略構成を示す断面図である。 図2は、関係式(1)を説明するためのグラフである。 図3Aは、本開示の一実施形態にかかる記録媒体を用いた情報の記録方法に関するフローチャートである。 図3Bは、本開示の一実施形態にかかる記録媒体を用いた情報の読出方法に関するフローチャートである。 図4は、変形例に係る記録媒体の概略構成を示す断面図である。 図5は、実施例で用いた化合物Bの1H-NMRスペクトルを示すグラフである。 図6Aは、実施例4の記録媒体の記録層に形成された記録マークを示す光学顕微鏡画像である。 図6Bは、実施例4の記録媒体の記録層に形成された記録マークの再生信号を示すグラフである。 図6Cは、実施例4の記録媒体の記録層に形成された記録マークの変調度を示すグラフである。 図7は、実施例2の記録媒体について、記録光の照射平均エネルギーと凹形状の記録マークの変形量との関係を示すグラフである。
 (本開示の基礎となった知見)
 [記録層及び誘電体層の特性]
 複数の記録層と複数の誘電体層とが交互に積層された多層の光記録媒体では、各層での光の吸収、及び、各層の界面での光の反射が大きいと、光源からより離れた位置に存在する記録層、すなわち奥層、まで到達した光が減衰する傾向がある。光が減衰すると、奥層での記録感度が低下する。そのため、各記録層では、記録層自体の記録感度が良好であるとともに、記録再生波長での線形光吸収が小さいこと、光の反射率が適切な値に調整されるように誘電体層との屈折率差が適切に設定されていること、記録マークの形状の安定性が高いことなどが成立していることが望ましい。記録層の線形光吸収を小さくして、記録感度を向上させる観点からは、非線形光吸収の大きい色素材料を利用することが望ましい。多層の記録媒体では、記録層の数が多ければ多いほど、容量が増加する傾向がある。そのため、記録層の厚さは、薄いと有利である。各誘電体層についても同様に、記録再生波長での光の透過率が高いこと、記録層との屈折率差が適切に設定されていること、クロストークが生じない程度に厚さが薄いことなどが成立していることが望ましい。
 [非線形光学材料]
 複数の記録層を備えた記録媒体では、情報の記録又は情報の読出を行うために利用される光について、各記録層での一光子吸収が大きい場合、光が各記録層を通過するにつれて光の強度が低下する。この場合、光源から離れた位置に配置された記録層において、記録及び読出の感度が大きく低下する傾向がある。そのため、情報の記録又は情報の読出を行うために利用される光に対する一光子吸収が小さい記録層が求められている。本明細書では、情報の読出を情報の再生と呼ぶことがある。一光子吸収を線形光吸収と呼ぶことがある。
 記録媒体における記録層の数をより増加させるためには、1つの記録層当たりの線形光吸収を低下させて、記録又は再生を行うべき記録層以外の他の記録層による影響を最小限に留める必要がある。しかし、記録層の線形光吸収を低下させると、所望の記録層について、記録に必要な光量が増加する。そのため、記録層の線形光吸収を過度に低下させると、一般的に入手可能な光源を用いて記録層に記録を行うことが難しい。このように、記録層の記録感度と、奥層まで到達するための光の光量とのバランスを適切に調整する必要がある。そこで、非線形光学効果を有する色素、特に非線形光吸収を行うことができる色素、を含む記録層の検討が行われている。
 なお、非線形光学効果とは、レーザー光などの強い光が物質に照射された場合に、その物質において、照射光の電場の2乗又は2乗より高次に比例した光学現象が生じることを意味する。光学現象としては、吸収、反射、散乱、発光などが挙げられる。照射光の電場の2乗に比例する二次の非線形光学効果としては、第二高調波発生(SHG)、ポッケルス効果、パラメトリック効果などが挙げられる。照射光の電場の3乗に比例する三次の非線形光学効果としては、二光子吸収などの多光子吸収、第三高調波発生(THG)、カー効果などが挙げられる。特に、複数の記録層を備えた記録媒体では、二光子吸収などの多光子吸収が利用されうる。本明細書では、二光子吸収などの多光子吸収を非線形光吸収と呼ぶことがある。非線形光吸収を行うことができる材料を非線形光吸収材料と呼ぶことがある。なお、非線形光吸収は非線形吸収と呼ばれることもある。
 これまでに、非線形光学材料として、単結晶を容易に調製できる無機材料が開発されている。一方、近年では、有機材料からなる非線形光学材料の開発が期待されている。有機材料は、無機材料と比較して、高い設計自由度を有するだけでなく、大きい非線形光学定数を有する。さらに、有機材料では、非線形応答が高速で行われる。
 有機非線形光学材料では、二光子吸収材料が特に注目を集めている。二光子吸収とは、化合物が2つの光子をほとんど同時に吸収して励起状態へ遷移する現象を意味する。二光子吸収としては、同時二光子吸収及び段階二光子吸収が知られている。同時二光子吸収は、非共鳴二光子吸収と呼ばれることもある。同時二光子吸収は、一光子の吸収帯が存在しない波長域での二光子吸収を意味する。段階二光子吸収は、共鳴二光子吸収と呼ばれることもある。段階二光子吸収では、化合物が1つ目の光子を吸収してから、2つ目の光子をさらに吸収することによって、より高次の励起状態に遷移する。段階二光子吸収では、化合物は、2つの光子を逐次的に吸収する。
 同時二光子吸収において、化合物による光の吸収量は、通常、照射光強度の2乗に比例し、非線形性を示す。化合物による光の吸収量は、二光子吸収の効率の指標として利用できる。化合物による光の吸収量が非線形性を示す場合、例えば、高い電界強度を有するレーザー光の焦点付近のみで化合物による光の吸収を生じさせることができる。すなわち、二光子吸収材料を含む試料において、所望の位置のみで化合物を励起することができる。このように、同時二光子吸収が生じる化合物は、極めて高い空間分解能をもたらすため、三次元光メモリの記録層、光造形用の光硬化性樹脂組成物などの用途への応用が検討されている。二光子吸収材料が蛍光特性をさらに有する場合、二光子吸収材料は、二光子蛍光顕微鏡などに用いられる蛍光色素材料に応用することも可能である。この二光子吸収材料を三次元光メモリに利用すれば、二光子吸収材料からの蛍光の変化に基づいて、記録層のON/OFFの状態を読み取る方式を採用できる可能性もある。現行の光メモリでは、二光子吸収材料における光の反射率の変化及び光の吸収率の変化に基づいて、記録層のON/OFFの状態を読み取る方式が採用されている。しかし、この方式を三次元光メモリに適用した場合、従来の二光子吸収材料では一光子吸収効率に対して二光子吸収効率が小さいため、ON/OFFの状態を読み取るべき記録層とは異なる他の記録層に基づいて、クロストークが発生することがある。
 二光子吸収材料では、二光子吸収の効率を示す指標として、二光子吸収断面積(GM値)が用いられる。二光子吸収断面積の単位は、GM(10-50cm4・s・molecule-1・photon-1)である。これまでに、大きい二光子吸収断面積を有する有機二光子吸収材料が数多く提案されている。
 光源としては、例えば、チタンサファイアレーザーなどのフェムト秒レーザー、又は、半導体レーザーなどのピコ秒からナノ秒のパルス幅を有するパルスレーザーを用いることができる。小型で汎用性が高く、動作が安定であるという観点から、産業用途には半導体レーザーが適している。パルス幅がピコ秒からナノ秒又はそれ以上のレーザーを用い、レンズで集光して光子密度を高めた光を有機非線形光学材料に照射した場合、電子はフェムト秒オーダーで一光子励起又は二光子励起を経て、数百フェムト秒からピコ秒で最低励起状態へと緩和する。電子が最低励起状態に緩和した時点でもパルス照射の最中である。そのため、最低励起状態からさらに高次の励起状態への励起が起こることがある。この現象を励起状態吸収(ESA:Excited State Absorption)と呼ぶ。その後、パルス照射が続く限り、励起状態吸収と最低励起状態への緩和とが繰り返される。この緩和は、アズレン等の特殊な場合を除いては、遅くともピコ秒のオーダーで完了する非常に速い過程であり、かつ無輻射失活である。つまり、蛍光又は燐光といった光を放射することによる失活ではなく、熱を発することにより失活が起こる。このように、パルス幅がピコ秒からナノ秒又はそれ以上のレーザーを用いて非線形光吸収材料を局所的に励起させた際、非線形光吸収材料がさらに励起状態吸収を生じる場合には、局所的に熱を発生させることが可能になる。このことは、例えば、記録媒体を局所的に変質させるための熱源として非線形光吸収材料を利用することを可能にし、ひいては三次元記録を可能にする。
 [記録メカニズム]
 記録媒体への情報の記録方法としては、例えば、記録光の照射により記録層又は下層基板を変形させる方法、記録層において、光の吸収率、屈折率などの光学特性を変化させる方法、及びこれらの組み合わせが挙げられる。記録層の変形は、記録層に含まれる色素が光を吸収し、発熱することによって、周辺の樹脂が変形することに起因していると考えられている。例えば、特許文献4には、記録層と中間層との界面に凸形状を形成することによって情報を記録する記録媒体が開示されている。形成された凸形状の熱安定性は、樹脂のガラス転移温度に依存する。
 記録媒体は、通常、記録領域を有する。記録領域とは、記録層に存在し、光が照射されることによって情報を記録できるスポットを意味する。本明細書では、情報が記録された記録領域を記録部と呼び、情報が記録される前の記録領域を未記録部と呼ぶことがある。記録部及び未記録部は、再生光を照射したときの反射率の変化、蛍光特性の違いなどによって検出することができる。反射率の変化は、例えば、記録部及び未記録部で、形状、光の吸収、屈折率などが互いに異なることに起因している。
 反射率の変化を利用した記録方式は、LTH(Low To High)型とHTL(High To Low)型との2つに大別できる。LTH型では、記録により、記録領域での光の反射率が上昇する。HTL型では、記録により、記録領域での光の反射率が低下する。多層記録媒体では、奥層での記録感度の観点から、奥層まで届く光の強度が大きいことが望ましい。そのため、記録層は、高い透過率を有することが望ましい。記録感度を確保する観点から、記録層において、未記録部は、ある程度の線形光吸収を示す必要もある。そのため、未記録部での光の反射率は、フォーカスなどの制御に問題が生じない範囲で低いことが望ましい。さらに、HTL型の記録に比べて、LTH型の記録は、信号振幅を大きく調整できる可能性がある。信号振幅は、未記録部での反射率と記録部での反射率との差に比例する。以上を考慮すると、多層記録媒体には、未記録部の反射率が低いLTH型の記録が適している。
 (光の反射及び光の位相)
 一般に、屈折率が異なる媒体に光が入射するときに、光の反射が生じる。光が入射する態様としては、屈折率が低い媒体から屈折率が高い媒体に光が入射する態様と、屈折率が高い媒体から屈折率が低い媒体に光が入射する態様とが考えられる。屈折率が高い媒体に光が入射する態様では、固定端反射が生じ、反射光において、光の位相がπだけずれる。屈折率が低い媒体に光が入射する態様では、自由端反射が生じ、反射光において、光の位相にずれが生じない。なお、光は、波の性質を有するため、2つの光が同位相で重なると互いに強め合い、逆位相で重なると互いに弱め合うことが知られている。
 本発明者らは、鋭意検討の結果、記録層及び誘電体層における屈折率の大小関係に着目し、さらに、記録層の屈折率に応じて記録層の厚さを設計することによって、反射光の干渉を利用したLTH型の記録再生が可能であることを新たに見出した。この知見によれば、簡便な装置構成で記録再生操作を行うことができる高容量の記録媒体を実現できる。
 (本開示に係る一態様の概要)
 本開示の第1態様にかかる記録媒体は、
 第1誘電体層と、
 第2誘電体層と、
 光が照射されることによって情報を記録する記録領域を有し、かつ前記第1誘電体層と前記第2誘電体層との間に位置する記録層と、
を備え、
 前記記録層は、色素材料を含み、
 前記記録層における波長405nmの光の透過率は、95%以上であり、
 情報が記録された前記記録領域における光の反射率は、情報が記録される前の前記記録領域における光の反射率よりも高く、
 前記記録層の厚さD(nm)、波長405nmの光に対する前記記録層の屈折率n1、波長405nmの光に対する前記第1誘電体層の屈折率n2、及び波長405nmの光に対する前記第2誘電体層の屈折率n3は、下記関係式(1)から(3)を満たす。
(1.33-0.15n1){405(m+1/2)/(2n1)}<D≦(1.33-0.15n1){405(m+1)/(2n1)}  (1)
1>n2  (2)
1>n3  (3)
 前記式(1)において、mは、0から4の整数である。
 第1態様によれば、情報の記録及び読出に適した新たな記録媒体を提供できる。この記録媒体では、LTH型の記録再生が可能であり、再生操作によって大きい再生信号が得られる傾向がある。
 本開示の第2態様において、例えば、第1態様にかかる記録媒体では、前記屈折率n1と前記屈折率n2との差が0.2以上であってもよく、前記屈折率n1と前記屈折率n3との差が0.2以上であってもよい。
 第2態様によれば、小型の半導体レーザーを用いた場合であっても、反射光について、干渉が生じ、十分な反射光量を確保できる傾向がある。そのため、簡便に、より小型の記録媒体を実現できる。
 本開示の第3態様において、例えば、第1又は第2態様にかかる記録媒体では、前記屈折率n1が1.65以上であってもよい。
 第3態様によれば、記録層と、第1誘電体層及び第2誘電体層との屈折率差を大きく調整しやすい。これにより、第1誘電体層及び第2誘電体層について、材料の選択肢が広がる。例えば、第1誘電体層及び第2誘電体層について、その作製時に、塗布プロセスを利用できる材料を選択することができる。塗布プロセスによれば、簡便に記録媒体を作製できる傾向がある。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つにかかる記録媒体において、前記記録層では、記録光が照射されることにより凹形状の記録マークが形成されてもよい。
 第4態様によれば、記録マークの変形量によって、記録部での光の反射率を調整できる。そのため、信頼性の高い記録媒体を実現できる。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つにかかる記録媒体では、前記色素材料は、ポリマーP1を含んでいてもよく、前記ポリマーP1は、非線形光吸収特性を有する基を含んでいてもよい。
 本開示の第6態様において、例えば、第5態様にかかる記録媒体では、前記ポリマーP1は、ビニルカルバゾール類に由来する構成単位を有していてもよい。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つにかかる記録媒体では、前記記録層は、ポリマーP2をさらに含んでいてもよい。
 本開示の第8態様において、例えば、第7態様にかかる記録媒体では、前記ポリマーP2は、ビニルカルバゾール類に由来する構成単位を有していてもよい。
 第5から第8態様によれば、記録層について、波長390nmから410nmの光の透過率を維持しつつ、屈折率を上昇させやすい。ビニルカルバゾール類に由来する構成単位を有するポリマーP1又はP2は、高いガラス転移温度を有する傾向もある。ポリマーP1又はP2は、溶剤に対する適切な溶解性を有する傾向もあるため、塗布成膜によって簡便に記録層を作製できる。
 本開示の第9態様にかかる情報の記録方法は、
 390nm以上410nm以下の波長を有する光を発する光源を準備し、
 前記光源からの前記光を集光して、第1から第8態様のいずれか1つにかかる記録媒体における前記記録層に照射する、
ことを含む。
 第9態様によれば、高い記録密度で記録媒体に情報を記録することができる。
 本開示の第10態様にかかる情報の読出方法は、例えば、第9態様にかかる記録方法によって記録された情報の読出方法であって、
 前記読出方法は、
 前記記録媒体における前記記録層に対して光を照射することによって、前記記録層の光学特性を測定し、
 前記記録層から情報を読み出す、
ことを含む。
 本開示の第11態様において、例えば、第10態様にかかる情報の読出方法では、前記光学特性は、前記記録層で反射した光の強度であってもよい。
 第10又は第11態様によれば、記録媒体から容易に情報を読み出すことができる。
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
 (実施形態)
 図1は、本開示の一実施形態にかかる記録媒体100の概略構成を示す断面図である。図1に示すように、記録媒体100は、記録層10、第1誘電体層20A及び第2誘電体層20Bを備えている。記録層10は、第1誘電体層20Aと第2誘電体層20Bとの間に位置し、例えば、第1誘電体層20A及び第2誘電体層20Bのそれぞれに直接接している。一例として、記録媒体100を記録装置にセットしたときに、第1誘電体層20Aは、第2誘電体層20Bよりも、記録装置の光源側に位置する。本明細書では、第1誘電体層20A及び第2誘電体層20Bを単に誘電体層20と呼ぶことがある。
 記録層10は、色素材料を含み、かつ記録領域を有する。上述のとおり、記録領域は、光が照射されることによって情報を記録できるスポットである。記録領域に照射される光は、例えば、短波長域の波長を有する。本明細書において、短波長域は、405nmを含む波長域を意味し、例えば、390nm以上420nm以下の波長域を意味する。記録層10において、情報が記録された記録領域における光の反射率は、情報が記録される前の記録領域における光の反射率よりも高い。言い換えると、記録層10において、記録領域では、情報が記録されることによって光の反射率が上昇する。
 記録層10における波長405nmの光の透過率は、95%以上である。さらに、記録媒体100において、記録層10の厚さD(nm)、波長405nmの光に対する記録層10の屈折率n1、波長405nmの光に対する第1誘電体層20Aの屈折率n2、及び波長405nmの光に対する第2誘電体層20Bの屈折率n3は、下記関係式(1)から(3)を満たす。
(1.33-0.15n1){405(m+1/2)/(2n1)}<D≦(1.33-0.15n1){405(m+1)/(2n1)}  (1)
1>n2  (2)
1>n3  (3)
 式(1)において、mは、0から4の整数である。本明細書において、記録層10における波長405nmの光の透過率、記録層10の厚さD、及び記録層10の屈折率n1は、詳細には、情報が記録される前の記録層10についての値である。
 記録媒体100において、光が第1誘電体層20A側から入射した場合、当該光は、第1誘電体層20A中を進行する。この光の一部は、第1誘電体層20Aと記録層10との界面30Aにて反射する。第1誘電体層20Aから記録層10に入射した光は、記録層10中を進行する。この光の一部は、記録層10と第2誘電体層20Bとの界面30Bにて反射する。
 上述のとおり、屈折率が低い媒体から屈折率が高い媒体に光が入射する場合、固定端反射が生じ、反射光において、光の位相がπだけずれる。屈折率が高い媒体から屈折率が低い媒体に光が入射する場合、自由端反射が生じ、反射光において、光の位相にずれが生じない。そのため、上記の関係式(2)及び(3)が成立する記録媒体100において、光が第1誘電体層20A側から入射した場合、界面30Aでの反射は、固定端反射に相当し、界面30Bでの反射は、自由端反射に相当する。
 界面30Aからの反射光Aと、界面30Bからの反射光Bとは、記録層10よりも光源側の位置にて重なり、互いに干渉する。記録媒体100に入射した光の波長が405nmである場合、記録層10の厚さDが(1.33-0.15n1){405(m+1/2)/(2n1)}であるときに、反射光A及びBが同位相で重なり、その強度が最も増加する傾向がある。一方、記録層10の厚さDが(1.33-0.15n1){405(m+1)/(2n1)}であるときに、反射光A及びBが逆位相で重なり、その強度が最も減少する傾向がある。なお、これらの現象は、NA0.85の集光系でのシミュレーション及び実験での検証結果に基づいている。
 図2は、関係式(1)を説明するためのグラフである。図2のグラフは、記録層10の屈折率n1が1.65であり、かつ波長405nmの光が記録媒体100に入射した場合における記録層10の厚さDと反射率との関係の一例を示している。図2からわかるとおり、厚さD及び反射率の関係を示すグラフは、波の形状を有し、複数の極大点及び複数の極小点を有する。複数の極大点に対応する厚さDは、(1.33-0.15n1){405(m+1/2)/(2n1)}に相当する。複数の極小点に対応する厚さDは、(1.33-0.15n1){405(m+1)/(2n1)}に相当する。図2のグラフにおいて、関係式(1)を満たしている範囲が実線で示され、関係式(1)を満たさない範囲が破線で示されている。
 図2のグラフからわかるとおり、関係式(1)が満たされる場合、記録領域に情報が記録されたときに、当該記録領域における厚さが減少すれば、当該記録領域からの光の反射率が上昇する傾向がある。そのため、記録領域は、記録光が照射されたときに凹形状の記録マークを形成するものであってもよい。言い換えると、記録層10では、記録光が照射されることにより凹形状の記録マークが形成されてもよい。本明細書において、記録マークは、記録領域に情報を記録したときに形成されるマークを意味し、当該マークが記録部として機能する。
 記録層10の厚さD(nm)は、関係式(1)を満たす限り、(1.33-0.15n1){405(m+0.53)/(2n1)}以上であってもよく、(1.33-0.15n1){405(m+0.55)/(2n1)}以上であってもよい。厚さD(nm)は、(1.33-0.15n1){405(m+0.8)/(2n1)}以下であってもよく、(1.33-0.15n1){405(m+0.7)/(2n1)}以下であってもよい。
 なお、上記の関係式(1)では、記録層10の表面に対して記録層10の厚み方向に波長405nmの光が入射することを想定している。ただし、記録媒体100に光が照射される場合、当該光は、通常、レンズなどで集光される。そのため、記録層10の厚み方向に光が照射された場合であっても、一部の光は、角度を持って記録層10に入射する。関係式(1)において、(1.33-0.15n1)は、上記の入射角による影響を調整するために、特性マトリクス法を用いて導出した補正係数である。詳細には、補正係数は、次の方法によって導出した。まず、入射角θの平面波に対して、Maxwell方程式を多層膜の境界条件で解いて角度θ毎の反射率を求めた。この反射率について、対物レンズ上の入射光強度で重みづけして積分した値からトータルの反射率を導出した。このトータルの反射率を記録層10の膜厚に対してプロットした。記録層10の屈折率を変え、同様のプロットを作成した。その結果、極大点に対応する膜厚の値、及び極小点に対応する膜厚の値は、記録層10の屈折率n1に依存した。この依存性に基づいて、上記の補正係数を導出した。
 仮に、上記の関係式(2)及び(3)が成立せず、n1<n2及びn1<n3が成立する場合、界面30Aにて自由端反射が生じ、界面30Bにて固定端反射が生じる。この場合であっても、記録層10の厚さDが(1.33-0.15n1){405(m+1/2)/(2n1)}であるときに、界面30Aからの反射光Aと、界面30Bからの反射光Bとが同位相で重なり、その強度が最も増加する傾向がある。一方、記録層10の厚さDが(1.33-0.15n1){405(m+1)/(2n1)}であるときに、反射光A及びBが逆位相で重なり、その強度が最も減少する傾向がある。
 仮に、界面30A及び30Bの両方において、固定端反射が生じる場合、又は、界面30A及び30Bの両方において、自由端反射が生じる場合には、記録層10の厚さDが(1.33-0.15n1){405(m+1/2)/(2n1)}であるときに、反射光A及びBが逆位相で重なり、その強度が最も減少する傾向がある。一方、記録層10の厚さDが(1.33-0.15n1){405(m+1)/(2n1)}であるときに、反射光A及びBが同位相で重なり、その強度が最も増加する傾向がある。
 [記録層]
 上述のとおり、記録層10は、色素材料を含む。色素材料は、ポリマーP1を含んでいてもよい。ポリマーP1は、例えば、非線形光吸収特性を有する基Gを含む。基Gは、典型的には、短波長域の波長を有する光に対して、非線形光吸収特性を有する。一例として、ポリマーP1は、上記の基Gを側鎖に有する。
 ポリマーP1に含まれる基が非線形光吸収特性を有するかどうかは、次の方法によって判断することができる。まず、ポリマーP1に含まれる基と同じ構造を有する化合物を準備する。この化合物について、光吸収特性を測定し、非線形光吸収特性を有するかどうかを特定する。この化合物が非線形光吸収特性を有する場合、ポリマーP1に含まれる基も非線形光吸収特性を有していると判断できる。なお、ポリマーP1自体が非線形光吸収特性を有する場合についても、ポリマーP1は、非線形光吸収特性を有する基Gを含んでいると判断できる。
 非線形光吸収特性を有する基Gとしては、例えば、炭素-炭素二重結合、炭素-炭素三重結合及び芳香環からなる群より選ばれる少なくとも1つを含む基が挙げられる。基Gの具体例としては、ピレン骨格を有する基、ジフェニルアセチレン骨格を有する基、stiff-stilbene骨格を有する基などが挙げられる。
 ポリマーP1は、詳細には、上記の基Gを有する構成単位Aを含んでいる。構成単位Aとしては、スチレン類に由来し、かつ基Gを有する構成単位A1、スチルベン類に由来し、かつ基Gを有する構成単位A2などが挙げられる。本明細書では、構成単位A1を、単に、スチレン類に由来する構成単位A1と呼ぶことがある。構成単位A2を、単に、スチルベン類に由来する構成単位A2と呼ぶことがある。ポリマーP1は、例えば、スチレン類に由来する構成単位A1、及びスチルベン類に由来する構成単位A2からなる群より選ばれる少なくとも1つの構成単位Aを含む。ポリマーP1は、スチレン類に由来する構成単位A1を含んでいてもよい。
 上記の構成単位Aは、例えば、下記式(1)で表される。
 式(1)において、R1からR8は、互いに独立して、H、B、C、N、O、F、Si、P、S、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R4からR8からなる群より選ばれる少なくとも1つは、非線形光吸収特性を有する基Gを含む。
 R1からR8は、互いに独立して、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、酸素原子を含む基、窒素原子を含む基、硫黄原子を含む基、ケイ素原子を含む基、リン原子を含む基、又はホウ素原子を含む基であってもよい。R4からR8からなる群より選ばれる少なくとも1つは、炭化水素基、ハロゲン化炭化水素基、酸素原子を含む基、窒素原子を含む基、硫黄原子を含む基、ケイ素原子を含む基、リン原子を含む基、又はホウ素原子を含む基に、非線形光吸収特性を有する基Gが置換した基であってもよい。
 ハロゲン原子としては、F、Cl、Br、Iなどが挙げられる。本明細書では、ハロゲン原子をハロゲン基と呼ぶことがある。
 炭化水素基の炭素数は、特に限定されず、例えば1以上10以下であり、1以上8以下であってもよく、1以上5以下であってもよい。炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。
 炭化水素基としては、脂肪族飽和炭化水素基、脂環式炭化水素基、脂肪族不飽和炭化水素基などが挙げられる。脂肪族飽和炭化水素基は、アルキル基であってもよい。脂肪族飽和炭化水素基としては、-CH3、-CH2CH3、-CH2CH2CH3、-CH(CH32、-CH(CH3)CH2CH3、-C(CH33、-CH2CH(CH32、-(CH23CH3、-(CH24CH3、-C(CH2CH3)(CH32、-CH2C(CH33、-(CH25CH3、-(CH26CH3、-(CH27CH3、-(CH28CH3、-(CH29CH3などが挙げられる。脂環式炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。脂肪族不飽和炭化水素基としては、-CH=CH2、-C≡CH、-C≡CCH3、-C(CH3)=CH2、-CH=CHCH3、-CH2CH=CH2などが挙げられる。
 ハロゲン化炭化水素基とは、炭化水素基に含まれる少なくとも1つの水素原子がハロゲン原子によって置換された基を意味する。ハロゲン化炭化水素基は、炭化水素基に含まれる全ての水素原子がハロゲン原子によって置換された基であってもよい。ハロゲン化炭化水素基としては、ハロゲン化アルキル基、ハロゲン化アルケニル基などが挙げられる。
 ハロゲン化アルキル基としては、-CF3、-CH2F、-CH2Br、-CH2Cl、-CH2I、-CH2CF3などが挙げられる。ハロゲン化アルケニル基としては、-CH=CHCF3などが挙げられる。
 酸素原子を含む基は、例えば、ヒドロキシル基、カルボキシル基、アルデヒド基、エーテル基、アシル基及びエステル基からなる群より選ばれる少なくとも1つを有する置換基である。
 ヒドロキシル基を有する置換基としては、例えば、ヒドロキシル基そのもの、及び、ヒドロキシル基を有する炭化水素基が挙げられる。ヒドロキシル基を有する炭化水素基としては、-CH2OH、-CH(OH)CH3、-CH2CH(OH)CH3、-CH2C(OH)(CH32などが挙げられる。
 カルボキシル基を有する置換基としては、例えば、カルボキシル基そのもの、及び、カルボキシル基を有する炭化水素基が挙げられる。カルボキシル基を有する炭化水素基としては、-CH2CH2COOH、-C(COOH)(CH32などが挙げられる。
 アルデヒド基を有する置換基としては、例えば、アルデヒド基そのもの、及び、アルデヒド基を有する炭化水素基が挙げられる。アルデヒド基を有する炭化水素基としては、-CH=CHCHOなどが挙げられる。
 エーテル基を有する置換基としては、例えば、アルコキシ基、ハロゲン化アルコキシ基、アルケニルオキシ基、オキシラニル基、及び、これらの官能基のうち少なくとも1つを有する炭化水素基が挙げられる。アルコキシ基に含まれる少なくとも1つの水素原子は、N、O、P及びSからなる群より選ばれる少なくとも1つの原子を含む基によって置換されていてもよい。アルコキシ基としては、メトキシ基、エトキシ基、2-メトキシエトキシ基、ブトキシ基、2-メチルブトキシ基、2-メトキシブトキシ基、4-エチルチオブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基などが挙げられる。ハロゲン化アルコキシ基としては、-OCHF2、-OCH2F、-OCH2Clなどが挙げられる。アルケニルオキシ基としては、-OCH=CH2などが挙げられる。アルコキシ基などの官能基を有する炭化水素基としては、-CH2OCH3、-C(OCH33、2-メトキシブチル基、6-メトキシヘキシル基などが挙げられる。
 アシル基を有する置換基としては、例えば、アシル基そのもの、及びアシル基を有する炭化水素基が挙げられる。アシル基としては、-COCH3などが挙げられる。アシル基を有する炭化水素基としては、-CH=CHCOCH3などが挙げられる。
 エステル基を有する置換基としては、例えば、アルコキシカルボニル基、アシルオキシ基、及び、これらの官能基のうち少なくとも1つを有する炭化水素基が挙げられる。アルコキシカルボニル基としては、-COOCH3、-COO(CH23CH3、-COO(CH27CH3などが挙げられる。アシルオキシ基としては、-OCOCH3などが挙げられる。アシルオキシ基などの官能基を有する炭化水素基としては、-CH2OCOCH3などが挙げられる。
 窒素原子を含む基は、例えば、アミノ基、イミノ基、シアノ基、アミド基、カルバメート基、ニトロ基、シアナミド基、イソシアネート基及びオキシム基からなる群より選ばれる少なくとも1つを有する置換基である。
 アミノ基を有する置換基としては、例えば、1級アミノ基、2級アミノ基、3級アミノ基、及び、これらの官能基のうち少なくとも1つを有する炭化水素基が挙げられる。3級アミノ基としては、-N(CH32などが挙げられる。1級アミノ基などの官能基を有する炭化水素基としては、-CH2NH2、-CH2N(CH32、-(CH24N(CH32などが挙げられる。
 イミノ基を有する置換基としては、例えば、イミノ基そのもの、及びイミノ基を有する炭化水素基が挙げられる。イミノ基としては、-N=CCl2などが挙げられる。
 シアノ基を有する置換基としては、例えば、シアノ基そのもの、及びシアノ基を有する炭化水素基が挙げられる。シアノ基を有する炭化水素基としては、-CH2CN、-CH=CHCNなどが挙げられる。
 アミド基を有する置換基としては、例えば、アミド基そのもの、及びアミド基を有する炭化水素基が挙げられる。アミド基としては、-CONH2、-NHCHO、-NHCOCH3、-NHCOCF3、-NHCOCH2Cl、-NHCOCH(CH32などが挙げられる。アミド基を有する炭化水素基としては、-CH2CONH2、-CH2NHCOCH3などが挙げられる。
 カルバメート基を有する置換基としては、例えば、カルバメート基そのもの、及びカルバメート基を有する炭化水素基が挙げられる。カルバメート基としては、-NHCOOCH3、-NHCOOCH2CH3、-NHCO2(CH23CH3などが挙げられる。
 ニトロ基を有する置換基としては、例えば、ニトロ基そのもの、及びニトロ基を有する炭化水素基が挙げられる。ニトロ基を有する炭化水素基としては、-C(NO2)(CH32などが挙げられる。
 シアナミド基を有する置換基としては、例えば、シアナミド基そのもの、及びシアナミド基を有する炭化水素基が挙げられる。シアナミド基は、-NHCNで表される。
 イソシアネート基を有する置換基としては、例えば、イソシアネート基そのもの、及びイソシアネート基を有する炭化水素基が挙げられる。イソシアネート基は、-N=C=Oで表される。
 オキシム基を有する置換基としては、例えば、オキシム基そのもの、及びオキシム基を有する炭化水素基が挙げられる。オキシム基は、-CH=NOHで表される。
 硫黄原子を含む基は、例えば、チオール基、スルフィド基、スルフィニル基、スルホニル基、スルフィノ基、スルホン酸基、アシルチオ基、スルフェンアミド基、スルホンアミド基、チオアミド基、チオカルバミド基及びチオシアノ基からなる群より選ばれる少なくとも1つを有する置換基である。
 チオール基を有する置換基としては、例えば、チオール基そのもの、及び、チオール基を有する炭化水素基が挙げられる。チオール基は、-SHで表される。
 スルフィド基を有する置換基としては、例えば、アルキルチオ基、アルキルジチオ基、アルケニルチオ基、アルキニルチオ基、チアシクロプロピル基、及び、これらの官能基のうち少なくとも1つを有する炭化水素基が挙げられる。アルキルチオ基に含まれる少なくとも1つの水素原子は、ハロゲン基によって置換されていてもよい。アルキルチオ基としては、-SCH3、-S(CH2)F、-SCH(CH32、-SCH2CH3などが挙げられる。アルキルジチオ基としては、-SSCH3などが挙げられる。アルケニルチオ基としては、-SCH=CH2、-SCH2CH=CH2などが挙げられる。アルキニルチオ基としては、-SC≡CHなどが挙げられる。アルキルチオ基などの官能基を有する炭化水素基としては、-CH2SCF3などが挙げられる。
 スルフィニル基を有する置換基としては、例えば、スルフィニル基そのもの、及びスルフィニル基を有する炭化水素基が挙げられる。スルフィニル基としては、-SOCH3などが挙げられる。
 スルホニル基を有する置換基としては、例えば、スルホニル基そのもの、及びスルホニル基を有する炭化水素基が挙げられる。スルホニル基としては、-SO2CH3などが挙げられる。スルホニル基を有する炭化水素基としては、-CH2SO2CH3、-CH2SO2CH2CH3などが挙げられる。
 スルフィノ基を有する置換基としては、例えば、スルフィノ基そのもの、及びスルフィノ基を有する炭化水素基が挙げられる。
 スルホン酸基を有する置換基としては、例えば、スルホン酸基そのもの、及びスルホン酸基を有する炭化水素基が挙げられる。
 アシルチオ基を有する置換基としては、例えば、アシルチオ基そのもの、及びアシルチオ基を有する炭化水素基が挙げられる。アシルチオ基としては、-SCOCH3などが挙げられる。
 スルフェンアミド基を有する置換基としては、例えば、スルフェンアミド基そのもの、及びスルフェンアミド基を有する炭化水素基が挙げられる。スルフェンアミド基としては、-SN(CH32などが挙げられる。
 スルホンアミド基を有する置換基としては、例えば、スルホンアミド基そのもの、及びスルホンアミド基を有する炭化水素基が挙げられる。スルホンアミド基としては、-SO2NH2、-NHSO2CH3などが挙げられる。
 チオアミド基を有する置換基としては、例えば、チオアミド基そのもの、及びチオアミド基を有する炭化水素基が挙げられる。チオアミド基としては、-NHCSCH3などが挙げられる。
 チオカルバミド基を有する置換基としては、例えば、チオカルバミド基そのもの、及びチオカルバミド基を有する炭化水素基が挙げられる。チオカルバミド基としては、-NHCSNHCH2CH3などが挙げられる。
 チオシアノ基を有する置換基としては、例えば、チオシアノ基そのもの、及びチオシアノ基を有する炭化水素基が挙げられる。チオシアノ基を有する炭化水素基としては、-CH2SCNなどが挙げられる。
 ケイ素原子を含む基は、例えば、シリル基及びシロキシ基からなる群より選ばれる少なくとも1つを有する置換基である。
 シリル基を有する置換基としては、シリル基そのもの、及び、シリル基を有する炭化水素基が挙げられる。シリル基としては、-Si(CH33、-SiH(CH32、-Si(OCH33、-Si(OCH2CH33、-SiCH3(OCH32、-Si(CH32OCH3、-Si(N(CH323、-SiF(CH32、-Si(OSi(CH333、-Si(CH32OSi(CH33などが挙げられる。シリル基を有する炭化水素基としては、-(CH22Si(CH33などが挙げられる。
 シロキシ基を有する置換基としては、シロキシ基そのもの、及び、シロキシ基を有する炭化水素基が挙げられる。シロキシ基を有する炭化水素基としては、-CH2OSi(CH33などが挙げられる。
 リン原子を含む基は、例えば、ホスフィノ基及びホスホリル基からなる群より選ばれる少なくとも1つを有する置換基である。
 ホスフィノ基を有する置換基としては、例えば、ホスフィノ基そのもの、及び、ホスフィノ基を有する炭化水素基が挙げられる。ホスフィノ基としては、-PH2、-P(CH32、-P(CH2CH32、-P(C(CH332、-P(CH(CH322などが挙げられる。
 ホスホリル基を有する置換基としては、例えば、ホスホリル基そのもの、及び、ホスホリル基を有する炭化水素基が挙げられる。ホスホリル基を有する炭化水素基としては、-CH2PO(OCH2CH32などが挙げられる。
 ホウ素原子を含む基は、例えば、ボロン酸基を有する置換基である。ボロン酸基を有する置換基としては、例えば、ボロン酸基そのもの、及び、ボロン酸基を有する炭化水素基が挙げられる。
 式(1)において、R4からR8からなる群より選ばれる少なくとも1つは、下記式(4)で表されてもよい。
-L-RA  (4)
 式(4)において、Lは、C、N、O及びSからなる群より選ばれる少なくとも1つの原子を含む連結基である。Lは、例えば、炭素-炭素二重結合などの共役系に影響を与える結合を含まない。Lは、エーテル基を含んでいてもよく、-CH2-O-CH2-であってもよい。Lは、アルキレン基であってもよい。
 RAは、例えば、非線形光吸収特性を有する基Gであり、ピレン骨格を有する基であってもよい。RAは、下記式(4A)で表されてもよい。
 式(4A)において、R28からR37は、互いに独立して、H、B、C、N、O、F、Si、P、S、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R28からR37のうちの1つは、上記の式(4)のLと結合している。式(4)のLは、R28からR37のうちの1つの位置において、式(4A)で表されたピレン環と直接結合していてもよい。
 R28からR37は、互いに独立して、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、酸素原子を含む基、窒素原子を含む基、硫黄原子を含む基、ケイ素原子を含む基、リン原子を含む基、又はホウ素原子を含む基であってもよい。これらの基としては、R1からR8について上述したものが挙げられる。
 構成単位Aの具体例としては、例えば、下記式(A-1)で表される構成単位A-1が挙げられる。
 ポリマーP1における構成単位Aの含有率は、例えば5モル%以上であり、7モル%以上であってもよく、10モル%以上であってもよく、15モル%以上であってもよく、20モル%以上であってもよい。構成単位Aの含有率の上限値は、特に限定されず、例えば65モル%である。
 ポリマーP1は、上記の構成単位A以外の他の構成単位をさらに含んでいてもよい。他の構成単位としては、スチレン類に由来し、かつ上記の基Gを有さない構成単位B1、スチルベン類に由来し、かつ基Gを有さない構成単位B2などが挙げられる。本明細書では、構成単位B1を、単に、スチレン類に由来する構成単位B1と呼ぶことがある。構成単位B2を、単に、スチルベン類に由来する構成単位B2と呼ぶことがある。ポリマーP1は、例えば、スチレン類に由来する構成単位B1、及びスチルベン類に由来する構成単位B2からなる群より選ばれる少なくとも1つの構成単位Bを含む。ポリマーP1は、スチレン類に由来する構成単位B1を含んでいてもよい。
 上記の構成単位Bは、例えば、下記式(2)で表される。
 式(2)において、R9からR16は、互いに独立して、H、B、C、N、O、F、Si、P、S、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含み、かつ、非線形光吸収特性を有する基G以外の他の基である。
 R9からR16は、互いに独立して、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、酸素原子を含む基、窒素原子を含む基、硫黄原子を含む基、ケイ素原子を含む基、リン原子を含む基、又はホウ素原子を含む基であってもよい。これらの基としては、R1からR8について上述したものが挙げられる。
 R12からR16からなる群より選ばれる少なくとも1つは、求核置換反応に利用可能な脱離基又は極性官能基を含んでいてもよい。脱離基としては、ハロゲン基などが挙げられる。極性官能基としては、ヒドロキシ基、アミノ基、チオール基などが挙げられる。
 構成単位Bの具体例としては、例えば、下記式(B-1)で表される構成単位B-1から、式(B-8)で表される構成単位B-8が挙げられる。
 ポリマーP1における構成単位Bの含有率は、特に限定されず、例えば70モル%以下であり、60モル%以下であってもよく、50モル%以下であってもよく、40モル%以下であってもよく、30モル%以下であってもよく、20モル%以下であってもよく、10モル%以下であってもよい。構成単位Bの含有率の下限値は、特に限定されず、例えば1モル%である。
 ポリマーP1は、カルバゾール骨格及びナフタレン骨格からなる群より選ばれる少なくとも1つを側鎖に有していてもよい。言い換えると、ポリマーP1は、構成単位A以外の他の構成単位として、カルバゾール骨格及びナフタレン骨格からなる群より選ばれる少なくとも1つを側鎖に有する構成単位Cを含んでいてもよい。ポリマーP1は、構成単位Cとして、ビニルカルバゾール類に由来する構成単位を有していてもよい。なお、ポリマーP1において、カルバゾール骨格又はナフタレン骨格は、主鎖に含まれていてもよい。ただし、カルバゾール骨格又はナフタレン骨格を主鎖に含むポリマーP1は、390nmから410nmの範囲の波長の光に対して、一光子吸収特性を示す場合がある。
 上記の構成単位Cは、例えば、下記式(3)で表される。
 式(3)において、R17からR27は、互いに独立して、H、B、C、N、O、F、Si、P、S、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。
 R17からR27は、互いに独立して、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、酸素原子を含む基、窒素原子を含む基、硫黄原子を含む基、ケイ素原子を含む基、リン原子を含む基、又はホウ素原子を含む基であってもよい。これらの基としては、R1からR8について上述したものが挙げられる。
 構成単位Cの具体例としては、例えば、下記式(C-1)で表される構成単位C-1から、式(C-17)で表される構成単位C-17が挙げられる。
 ポリマーP1における構成単位Cの含有率は、特に限定されず、例えば10モル%以上であり、35モル%以上であってもよく、50モル%以上であってもよく、70モル%以上であってもよく、90モル%以上であってもよい。構成単位Cの含有率の上限値は、特に限定されず、例えば95モル%である。
 ポリマーP1は、例えば、上記の式(1)で表される構成単位Aと、式(2)で表される構成単位B及び式(3)で表される構成単位Cからなる群より選ばれる少なくとも1つとを含む。ポリマーPは、構成単位AからCを含んでいてもよい。一例として、ポリマーP1は、下記式(5)で表されるランダム共重合体であってもよい。
 式(5)において、R1からR27は、式(1)、式(2)及び式(3)について上述したものと同じである。x、y及びzは、互いに独立して、任意の整数である。
 ポリマーP1において、構成単位Aの数x、構成単位Bの数y、及び構成単位Cの数zは、0.35≦z/(x+y+z)を満たしていてもよく、0.07≦x/(x+y+z)≦0.65を満たしていてもよい。
 上述のとおり、ポリマーP1は、典型的には、ランダム共重合体である。ただし、ポリマーP1は、ブロック共重合体、グラフト共重合体などであってもよい。
 ポリマーP1の具体例としては、例えば、下記式(P1-1)で表されるランダム共重合体P1-1が挙げられる。
 式(P1-1)において、x、y及びzは、互いに独立して、任意の整数である。式(P1-1)において、x:y:zの具体例は、7:3:90、20:45:35などである。
 ポリマーP1の合成方法は、特に限定されない。ポリマーP1は、前駆体ポリマーに対して非線形光吸収色素を反応させることによって合成してもよい。ポリマーP1は、非線形光吸収特性を有する基Gを有するモノマーを予め準備し、当該モノマーを含むモノマー群を重合させることによって合成してもよい。前駆体ポリマーに非線形光吸収色素を結合させる反応としては、脱離基と極性官能基とを反応させる求核置換反応、遷移金属触媒などを用いたクロスカップリング反応などを利用できる。脱離基としては、ハロゲン基などが挙げられる。極性官能基としては、ヒドロキシ基、アミノ基、チオール基などが挙げられる。一例として、スチレン類又はスチルベン類に由来し、かつ脱離基を有する構成単位を含む前駆体ポリマーと、極性官能基を有する非線形光吸収色素との反応によって、ポリマーP1を合成してもよい。スチレン類又はスチルベン類に由来し、かつ極性官能基を有する構成単位を含む前駆体ポリマーと、脱離基を有する非線形光吸収色素との反応によって、ポリマーP1を合成してもよい。
 色素材料は、ポリマーP1に代えて、又はポリマーP1とともに、光吸収特性を有する有機化合物Eを含んでいてもよい。有機化合物Eは、例えば、分子量1000以下の低分子化合物である。
 有機化合物Eは、短波長域の波長を有する光に対して、線形光吸収特性を有していてもよく、非線形光吸収特性を有していてもよい。有機化合物Eは、励起状態吸収による非線形光吸収現象を利用するものであってもよい。有機化合物Eは、記録層10について、光の透過率を高い値に維持しつつ、記録感度を向上させる観点から、非線形光吸収が大きくてもよい。
 有機化合物Eは、炭素-炭素二重結合、炭素-窒素二重結合及び炭素-炭素三重結合からなる群より選ばれる少なくとも1つを含む。有機化合物Eは、芳香環をさらに含んでいてもよい。有機化合物Eに含まれる芳香環は、炭素原子から構成されているものであってもよく、酸素原子、窒素原子、硫黄原子などのヘテロ原子を含む複素芳香環であってもよい。有機化合物Eに含まれる芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フラン環、ピロール環、ピリジン環、チオフェン環などが挙げられる。有機化合物Eは、芳香環としてベンゼン環を含んでいてもよい。有機化合物Eに含まれる芳香環の数は、特に限定されず、例えば2以上であり、3以上であってもよく、5以上であってもよい。芳香環の数の上限値は、特に限定されず、例えば15である。有機化合物Eにおいて、複数の芳香環が、炭素-炭素二重結合、炭素-窒素二重結合及び炭素-炭素三重結合からなる群より選ばれる少なくとも1つの結合によって連結していてもよい。有機化合物Eに含まれる複数の芳香環は、互いに同じであってもよく、異なっていてもよい。
 有機化合物Eの具体例としては、下記式(E1)で表される化合物E1などが挙げられる。
 有機化合物Eの他の例としては、下記式(E2)で表される化合物E2、下記式(E3)で表される化合物E3などが挙げられる。これらの化合物E2及びE3は、短波長域の波長を有する光に対して、大きい非線形光吸収を示す傾向がある。
 記録層10における波長405nmの光の透過率が95%以上に調整される限り、色素材料は、1種のポリマーP1又は1種の有機化合物Eを含んでいてもよく、2種以上のポリマーP1又は2種以上の有機化合物Eを含んでいてもよい。
 色素材料は、記録再生波長において、線形光吸収が小さく、かつ適切な非線形光吸収量を有していてもよい。例えば、波長405nmのレーザーを記録再生に用いる場合、色素材料の二光子吸収断面積は、1GMを上回っていてもよく、10GM以上であってもよく、20GM以上であってもよく、100GM以上であってもよい。二光子吸収断面積の上限値は、特に限定されず、例えば1000GMである。二光子吸収断面積は、例えば、J.Opt. Soc. Am. B, 2003, Vol. 20, p. 529.に記載されたZスキャン法によって測定することができる。Zスキャン法は、非線形光学定数を測定するための方法として広く用いられている。Zスキャン法では、レーザービームが集光する焦点付近において、当該ビームの照射方向に沿って測定試料を移動させる。このとき、測定試料を透過した光の光量の変化を記録する。Zスキャン法では、測定試料の位置に応じて、入射光のパワー密度が変化する。そのため、測定試料が非線形光吸収を行う場合、測定試料がレーザービームの焦点付近に位置すると、透過光の光量が減衰する。入射光の強度、測定試料の厚さ、測定試料における化合物の濃度などから予測される理論曲線に対して、透過光量の変化についてフィッティングを行うことによって二光子吸収断面積を算出することができる。一例として、ピレン誘導体の二光子吸収断面積は、50GMから300GM程度である。
 二光子吸収断面積は、計算化学による計算値であってもよい。二光子吸収断面積を計算化学によって見積もる方法がいくつか提案されている。例えば、J. Chem. Theory Comput. 2018, Vol. 14, p. 807.に記載された二次非線形応答理論に基づいて、二光子吸収断面積の計算値を算出することができる。
 記録層10は、ポリマーP1とは異なるポリマーP2をさらに含んでいてもよい。一例として、記録層10は、ポリマーP2と、有機化合物Eとを含んでいてもよい。この場合、有機化合物Eは、ポリマーP2を含むマトリクス中に分散していてもよい。
 ポリマーP2は、例えば、ポリマーP1について上述した構成単位Cを含む。ポリマーP2は、構成単位Cとして、ビニルカルバゾール類に由来する構成単位を有していてもよく、ビニルナフタレン類に由来する構成単位を有していてもよい。なお、ポリマーP2において、カルバゾール骨格又はナフタレン骨格は、主鎖に含まれていてもよい。ただし、カルバゾール骨格又はナフタレン骨格を主鎖に含むポリマーP2は、390nmから410nmの範囲の波長の光に対して、一光子吸収特性を示す場合がある。
 ポリマーP2は、構成単位Cを含んでいなくてもよく、ポリカーボネートであってもよい。
 ポリマーP1及びP2では、例えば、390nmから410nmの範囲の波長の光の透過率、屈折率、及びガラス転移温度が高い。ポリマーP1及びP2のガラス転移温度は、例えば、200℃以上である。この程度に高いガラス転移温度を有するポリマーP1及びP2は、熱的に安定である。このポリマーP1又はP2を含む記録層10では、光の照射によって形成された記録マークの形状が変化することを抑制できる傾向がある。すなわち、ポリマーP1及びP2によれば、記録マークの形状の安定性を向上できる傾向がある。一方、ポリマーP1及びP2のガラス転移温度が高すぎると、記録層10の記録感度が低下することがある。そのため、熱的安定性と記録感度とを両立させる観点から、ポリマーP1及びP2のガラス転移温度は、例えば、200℃以上300℃以下である。ポリマーP1及びP2のガラス転移温度は、200℃以上250℃以下であってもよい。
 ポリマーP1及びP2のガラス転移温度は、次の方法によって特定することができる。まず、ポリマーP1及びP2について、以下の条件で熱重量・示差熱(TG-DTA)測定を行い、DTA曲線を作成する。DTA曲線における熱容量の変曲点からガラス転移温度を特定することができる。
・測定条件
 雰囲気:窒素雰囲気
 測定範囲:25℃から400℃
 加熱速度:15℃/min
 ポリマーP1及びP2の重量平均分子量がある程度大きい場合、記録層10を容易に成膜できる傾向がある。一方、ポリマーP1及びP2の重量平均分子量が大きすぎると、当該ポリマーの溶解性が低下し、塗布法によって記録層10を成膜することが難しい場合がある。そのため、ポリマーP1及びP2の重量平均分子量は、4000以上、100000以下であってもよい。ポリマーP1及びP2の重量平均分子量は、4000以上、50000以下であってもよい。
 記録層10は、例えば、1nm以上1μm以下の厚さを有する薄膜である。ただし、記録層10の厚さは、490nm未満であってもよく、場合によっては、1μmを上回っていてもよい。記録層10の厚さが1μmを上回ると、界面30Aからの反射光Aと、界面30Bからの反射光Bとの干渉の効果が得られにくい傾向がある。これは、記録媒体100に対して、集光された光が照射されることに起因していると考えられる。集光された光を用いる場合、入射角度により光路長に差が生じるため、様々な角度から入射された光の成分を足し合わせる必要がある。記録層10の厚さが1μm程度を上回ると、入射角度による光路長差が増加するため、干渉の効果が得られにくいと考えられる。
 上述のとおり、記録層10における波長405nmの光の透過率は、95%以上であり、97%以上であってもよく、99%以上であってもよい。
 上記の透過率は、記録層10自体を測定試料として用いて、JIS K0115:2004の規定に準拠した方法で測定することができる。詳細には、まず、405nmの波長を有する光を記録層10に照射する。光の照射は、記録層10の厚さ方向に光が進行するように行う。光源としては、記録層10について、非線形光吸収がほとんど生じない光子密度の光を照射するものを用いる。次に、記録層10を透過した光から、405nmの波長に対する記録層10の吸光度Aを読み取る。吸光度Aに基づいて、下記式(I)によって、記録層10における波長405nmの光の透過率Tを算出することができる。
透過率T=10(-A)   (I)
 なお、上記の測定において、記録層10が薄膜である場合、膜の干渉が生じることで正確な吸光度Aが測定できないことがある。この場合、エリプソメータを用いて消衰係数を測定することで透過率を算出してもよい。記録層10の材料を適切な溶媒に溶解させ、溶液の状態で測定した吸光度の値を用いて透過率を算出してもよい。
 記録層10の屈折率n1は、1.65以上であってもよく、1.68以上であってもよく、1.70以上であってもよい。記録層10の屈折率n1の上限値は、特に限定されず、例えば1.90である。記録層10の屈折率は、エリプソメータを用いて測定することができる。なお、第1誘電体層20Aの屈折率n2、及び第2誘電体層20Bの屈折率n3もエリプソメータを用いて測定することができる。
 記録層10の屈折率n1が高ければ高いほど、隣接する誘電体層20の屈折率との差を大きく調整しやすい。例えば、記録層10と第1誘電体層20Aとの屈折率の差が大きい場合、界面30Aからの反射光の強度が増加する傾向がある。記録層10と第2誘電体層20Bとの屈折率の差が大きい場合、界面30Bからの反射光の強度が増加する傾向がある。これにより、記録媒体100から良好な再生信号を得ることができる傾向がある。一例として、記録層10の屈折率n1と、第1誘電体層20Aの屈折率n2との差は、0.2以上であってもよい。同様に、記録層10の屈折率n1と、第2誘電体層20Bの屈折率n3との差は、0.2以上であってもよい。この場合、界面30Aからの反射光Aと、界面30Bからの反射光Bとの干渉の効果が十分に得られる。これにより、405nmの中心波長を有する小型の半導体レーザーを用いて、LTH型の記録再生を実現できる。小型の半導体レーザーとしては、例えば、従来のBlu-ray(登録商標)ディスクの記録再生に利用される光ピックアップを用いることができる。
 [誘電体層]
 第1誘電体層20A及び第2誘電体層20Bでは、厚さ、組成などが互いに同じであってもよく、異なっていてもよい。これらの誘電体層20では、例えば、記録層10との屈折率差を適切な値に調整でき、かつ記録再生波長での光透過率が高い材料が用いられる。また、記録媒体100が複数の記録層10を備える場合、誘電体層20によれば、その厚さを調整することによって、記録層10同士の層間距離を適切に調整することができる。
 上述のとおり、記録層10と誘電体層20との屈折率差は、例えば、0.2程度以上である。記録層10の屈折率をn1で表し、誘電体層20の屈折率をn2で表したとき、記録層10と誘電体層20との界面での反射率は、((n2-n1)/(n2+n1))2で算出される値程度であることが知られている。すなわち、記録層10の屈折率が1.65であり、誘電体層20の屈折率が1.45である場合、これらの層の界面の反射率は、0.004程度である。
 誘電体層20は、例えば、高分子材料を含む。一般に、誘電体層20に用いられる高分子材料の屈折率は、1.4から1.6程度であり、特に1.45から1.5程度である。そのため、記録層10の屈折率が1.65より高い場合、誘電体層20との屈折率差を0.1から0.2程度以上に調整しやすい。記録層10と誘電体層20との屈折率差を上記の範囲に調整することによって、界面での反射光の強度を向上でき、良好なフォーカスサーボ特性が得られうる。
 誘電体層20の材料としては、例えば、セルロースアセテート、アクリル樹脂、メタクリル樹脂などが挙げられる。
 誘電体層20の厚さは、特に限定されず、例えば5nm以上100μm以下である。ただし、誘電体層20の厚さは、100μmを上回っていてもよい。
 [記録媒体の作製方法]
 記録媒体100は、例えば、次の方法によって作製できる。まず、記録層10の材料を溶剤と混合して塗布液を作製する。この塗布液をスピンコートなどの方法で基材に塗布し、得られた塗布膜を乾燥させることによって薄膜の記録層10を作製する。
 次に、記録層10の上に誘電体層20を形成する。誘電体層20が樹脂材料を含む場合、まず、樹脂材料を溶剤と混合して塗布液を作製する。この塗布液をスピンコートなどの方法で記録層10の上に塗布し、得られた塗布膜を乾燥させることによって誘電体層20を作製できる。なお、塗布液が感光性モノマーなどを含んでいてもよく、光又は熱によって当該モノマーを重合させることによって誘電体層20を作製してもよい。誘電体層20として機能する薄膜を予め作製し、当該薄膜を記録層10に貼り合わせることによって誘電体層20を作製してもよい。必要に応じて、複数の記録層10と複数の誘電体層20とを交互に作製することによって記録媒体100を得ることができる。
 [記録媒体の使用方法]
 本実施形態の記録媒体100は、例えば、短波長域の波長を有する光を利用する。一例として、記録媒体100は、390nm以上410nm以下の波長を有する光を利用する。記録媒体100で利用される光は、例えば、その焦点付近において、高い光子密度を有する。記録媒体100で利用される光の焦点付近でのパワー密度は、例えば、0.1W/cm2以上1.0×1020W/cm2以下である。この光の焦点付近でのパワー密度は、1.0W/cm2以上であってもよく、1.0×102W/cm2以上であってもよく、1.0×105W/cm2以上であってもよい。記録媒体100で利用される光源としては、例えば、チタンサファイアレーザーなどのフェムト秒レーザー、又は、半導体レーザーなどのピコ秒からナノ秒のパルス幅を有するパルスレーザーを用いることができる。
 次に、記録媒体100を用いた情報の記録方法について説明する。図3Aは、記録媒体100を用いた情報の記録方法に関するフローチャートである。まず、ステップS11において、390nm以上410nm以下の波長を有する光を発する光源を準備する。光源としては、例えば、チタンサファイアレーザーなどのフェムト秒レーザー、又は、半導体レーザーなどのピコ秒からナノ秒のパルス幅を有するパルスレーザーを用いることができる。次に、ステップS12において、光源からの光をレンズなどで集光して、記録媒体100における記録層10に照射する。詳細には、光源からの光をレンズなどで集光して、記録媒体100における記録領域に照射する。集光に用いるレンズのNA(開口数)は、特に制限されない。一例として、NAが0.8以上0.9以下の範囲のレンズを用いてもよい。この光の焦点付近でのパワー密度は、例えば、0.1W/cm2以上1.0×1020W/cm2以下である。この光の焦点付近でのパワー密度は、1.0W/cm2以上であってもよく、1.0×102W/cm2以上であってもよく、1.0×105W/cm2以上であってもよい。
 上記の光が照射された記録領域では、物理変化又は化学変化が生じる。一例として、記録領域において、凹形状の記録マークが形成される。凹形状の記録マークの深さは、特に限定されず、例えば1nm以上100nm以下である。物理変化又は化学変化が生じることによって、記録領域の光学特性が変化する。例えば、記録領域で反射する光の強度、記録領域での光の反射率、記録領域での光の吸収率、記録領域での光の屈折率、記録領域から放射される蛍光の光の強度、蛍光の光の波長などが変化する。一例として、記録領域で反射する光の強度が増加する。言い換えると、記録領域における光の反射率が上昇する。これにより、記録層10、詳細には記録領域、に情報を記録することができる(ステップS13)。
 次に、記録媒体100を用いた情報の読出方法について説明する。図3Bは、記録媒体100を用いた情報の読出方法に関するフローチャートである。まず、ステップS21において、記録媒体100における記録層10に対して光を照射する。詳細には、記録媒体100における記録領域に対して光を照射する。ステップS21で用いる光は、記録媒体100に情報を記録するために利用した光と同じであってもよく、異なっていてもよい。例えば、ステップS21で用いる再生光の波長が、ステップS12で用いる記録光の波長と同じであってもよい。次に、ステップS22において、記録層10の光学特性を測定する。詳細には、記録領域の光学特性を測定する。ステップS22では、例えば、記録領域の光学特性として、記録領域で反射した光の強度、又は、記録領域から放射された蛍光の光の強度を測定する。ステップS22では、記録領域の光学特性として、記録領域での光の反射率、記録領域での光の吸収率、記録領域での光の屈折率、記録領域から放射された蛍光の光の波長などを測定してもよい。次に、ステップS23において、記録層10、詳細には記録領域、から情報を読み出す。
 情報の読出方法において、情報が記録された記録領域、すなわち記録部、は、次の方法によって探すことができる。まず、記録媒体の特定の領域に対して光を照射する。この光は、記録媒体に情報を記録するために利用した光と同じであってもよく、異なっていてもよい。次に、光が照射された領域の光学特性を測定する。光学特性としては、例えば、当該領域で反射した光の強度、当該領域での光の反射率、当該領域での光の吸収率、当該領域での光の屈折率、当該領域から放射された蛍光の光の強度、当該領域から放射された蛍光の光の波長などが挙げられる。測定された光学特性に基づいて、光が照射された領域が記録部であるか否かを判定する。例えば、当該領域で反射した光の強度が特定の値を上回っている場合に、当該領域が記録部であると判定してもよい。また、当該領域で反射した光の強度が特定の値以下である場合に、当該領域が記録部ではないと判定してもよい。記録部ではないと判定した場合、記録媒体の他の領域に対して同様の操作を行う。これにより、記録部を探すことができる。
 記録媒体100を用いた情報の記録方法及び読出方法は、例えば、公知の記録装置によって行うことができる。記録装置は、例えば、記録媒体100における記録領域に光を照射する光源と、記録領域の光学特性を測定する測定器と、光源及び測定器を制御する制御器と、を備えている。本実施形態では、記録媒体100に照射される記録光及び再生光の波長が互いに同じであってもよい。この場合、記録装置は、1種類の光源を用いて、記録媒体100の記録操作及び再生操作を行うことができる。この記録装置は、例えば、複数種類の光源を備えておらず、簡便な構成である。
 (変形例)
 図4は、変形例に係る記録媒体110の概略構成を示す断面図である。図4に示すように、記録媒体110は、複数の記録層10及び複数の誘電体層20を備えている。このことを除き、変形例に係る記録媒体110の構造は、上記の記録媒体100と同じである。したがって、上記の記録媒体100と変形例の記録媒体110とで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。
 複数の記録層10は、例えば、記録媒体110の厚さ方向に並んでいる。記録媒体110において、記録層10の数は、特に限定されず、例えば2以上1000以下である。複数の記録層10の組成は、互いに同じであってもよく、異なっていてもよい。複数の記録層10を備えた記録媒体110は、三次元光メモリとして機能する。記録媒体110の具体例は、三次元光ディスクである。
 記録媒体110では、例えば、複数の記録層10のそれぞれについて、波長405nmの光の透過率が95%以上である。このような記録媒体110では、光源からより離れた位置に存在する記録層10、すなわち奥層、まで到達した光の強度が低下しにくい。
 記録媒体110において、複数の記録層10と複数の誘電体層20とは、例えば、交互に並んでいる。言い換えると、複数の記録層10と複数の誘電体層20とが交互に積層されている。一例として、複数の記録層10は、それぞれ、2つの誘電体層20の間に配置されており、2つの誘電体層20のそれぞれに直接接している。記録媒体110において、誘電体層20の数は、特に限定されず、例えば3以上1001以下である。複数の誘電体層20の組成及び厚さは、互いに同じであってもよく、異なっていてもよい。
 記録媒体110では、複数の誘電体層20のうち、特定の記録層10の上面に最も近い誘電体層20を第1誘電体層20Aとみなし、さらに、当該記録層10の下面に最も近い誘電体層20を第2誘電体層20Bとみなしたときに、当該記録層10の厚さD(nm)、当該記録層10の屈折率n1、第1誘電体層20Aの屈折率n2、及び第2誘電体層20Bの屈折率n3が、上述した関係式(1)から(3)を満たしている。記録媒体110では、例えば、各記録層10について、上記の条件が成立する。この条件が成立する限り、複数の記録層10の厚さは、互いに同じであってもよく、異なっていてもよい。記録媒体110の各記録層10について上記の条件が成立する場合、各記録層10の厚さが比較的小さいため、記録層10の数が多く、記録容量の大きい記録媒体110を容易に作製することができる。
 以下、実施例により本開示をさらに詳細に説明する。なお、以下の実施例は一例であり、本開示は以下の実施例に限定されない。
 まず、記録層の色素材料として、下記の化合物A(東京化成工業社製)、化合物B及び化合物C(シグマアルドリッチ社製)を準備した。化合物AからCは、それぞれ、上述した化合物E1からE3に相当する。
 [化合物Bの合成]
 まず、1,3,5-トリス(4-ホルミルフェニル)ベンゼン(東京化成工業社製)541mg(3.3mmol)及び4-メトキシフェノール(東京化成工業社製)16mg(0.13mmol)をジクロロメタン20mLに溶解させた。ここに、別途調製した4-アミノスチレン(東京化成工業社製)1199mg(10mmol)のジクロロメタン5mL溶液を室温にて加え、4時間撹拌した。反応溶液から溶媒を留去することで黄色固体を得た。得られた固体をエタノールで洗浄した。その後、エタノール、アセトンを用いて再結晶することで化合物Bを得た。化合物Bは、1H-NMRにより同定した。図5は、化合物Bの1H-NMRスペクトルを示すグラフである。化合物Bの1H-NMRスペクトルは、以下のとおりであった。
1H-NMR(600MHz, CHLOROFORM-D) δ5.26 (d, J=10.8Hz, 3H), 5.78 (d, J=18.0Hz, 3H), 6.75 (dd, J=10.8, 18.0Hz, 3H), 7.25 (d, J=13.8Hz, 6H), 7.48 (d, J=9.0Hz, 6H), 8.57 (s, 3H), 8.64 (s, 3H).
 さらに、記録層の色素材料として、下記の化合物D及びEを準備した。化合物D及びEは、上述したランダム共重合体P1-1に相当する。
 [化合物D及びEの合成]
 まず、化合物D及びEの前駆体F及びGを合成した。前駆体F及びGは、Macromolecules 2006, 39, 3140-3146に記載された方法に準拠して、下記反応式のように合成した。前駆体F及びGは、1H-NMRにより同定した。
 [化合物Dの合成]
 まず、1-ヒドロキシメチルピレン(東京化成工業社製)をテトラヒドロフラン(THF、富士フィルム和光純薬社製)に溶解させ、過剰量の炭酸カリウム(富士フィルム和光純薬社製)及び少量のN,N-ジメチルホルムアミド(DMF、富士フィルム和光純薬社製)を加えて、窒素雰囲気下、80℃で1時間加熱還流した。ここに、前駆体FのTHF溶液をさらに加え、撹拌しながら80℃で48時間加熱還流を行った。添加した前駆体Fの重量は、1-ヒドロキシメチルピレンの重量と同じであった。次に、室温まで放冷した反応溶液を大量のメタノール中に加えることによって白色沈殿を得た。得られた固体を濾過により回収し、洗浄操作を行った。洗浄操作では、洗浄液として、エタノール、水及びジエチルエーテルをこの順で用いた。固体を真空乾燥させることによって、化合物Dを得た。化合物Dは、1H―NMRにより同定した。
 [化合物Eの合成]
 前駆体Fに代えて前駆体Gを用いたことを除き、化合物Dと同じ方法によって化合物Eを合成した。化合物Eは、1H―NMRにより同定した。
 さらに、記録層の材料として、ポリビニルカルバゾール(シグマアルドリッチ社製、分子量25,000から50,000)、ポリメタクリル酸メチル(PMMA:シグマアルドリッチ社製、分子量120,000以下)を準備した。
 <記録媒体の作製>
 [実施例1]
 まず、化合物A及びポリビニルカルバゾールを測り取り、クロロベンゼンに溶解させた。化合物Aの配合量は、ポリビニルカルバゾール99.1質量部に対して0.9質量部であった。得られた溶液における溶質の濃度は、約3wt%であった。次に、スピンコート法によって、得られた溶液をガラス基板に塗布した。ガラス基板は、20mm角、厚さ1cmであった。スピンコートは、3000rpm、30秒の条件で行った。次に、得られた塗布膜を80℃で30分間乾燥させることによって記録層を作製した。これにより、実施例1の記録媒体を得た。
 [実施例2]
 化合物Aに代えて化合物Bを用いたこと、化合物Bの配合量をポリビニルカルバゾール95質量部に対して5質量部に変更したこと、及び、クロロベンゼン溶液における溶質の濃度を約5wt%に変更したことを除き、実施例1と同じ方法によって、実施例2の記録媒体を作製した。
 [実施例3]
 化合物Aに代えて化合物Cを用いたこと、化合物Cの配合量をポリビニルカルバゾール80質量部に対して20質量部に変更したこと、及び、クロロベンゼン溶液における溶質の濃度を約5wt%に変更したことを除き、実施例1と同じ方法によって、実施例3の記録媒体を作製した。
 [実施例4]
 まず、化合物Dをクロロベンゼンに溶解させた。得られた溶液における化合物Dの濃度は、約5wt%であった。次に、スピンコート法によって、得られた溶液をガラス基板に塗布した。ガラス基板は、20mm角、厚さ1cmであった。スピンコートは、3000rpm、30秒の条件で行った。次に、得られた塗布膜を80℃で30分間乾燥させることによって記録層を作製した。これにより、実施例4の記録媒体を得た。
 [実施例5]
 化合物Dに代えて化合物Eを用いたことを除き、実施例4と同じ方法によって、実施例5の記録媒体を作製した。
 [比較例1]
 クロロベンゼンの配合量を調整して、クロロベンゼン溶液における溶質の濃度を約5wt%に変更したことを除き、実施例1と同じ方法によって、比較例1の記録媒体を作製した。
 [比較例2]
 クロロベンゼンの配合量を調整して、クロロベンゼン溶液における溶質の濃度を約7wt%に変更したことを除き、実施例2と同じ方法によって、比較例2の記録媒体を作製した。
 [比較例3]
 まず、化合物A及びPMMAを測り取り、クロロホルムに溶解させた。化合物Aの配合量は、PMMA96.9質量部に対して3.1質量部であった。得られた溶液における溶質の濃度は、約4wt%であった。次に、スピンコート法によって、得られた溶液をガラス基板に塗布した。ガラス基板は、20mm角、厚さ1cmであった。スピンコートは、3000rpm、30秒の条件で行った。次に、得られた塗布膜を80℃で30分間乾燥させることによって記録層を作製した。これにより、比較例3の記録媒体を得た。
 なお、実施例及び比較例の記録媒体は、いずれもガラス基板及び記録層の積層体である。これらの記録媒体については、記録層に接している空気の層を第1誘電体層とみなし、ガラス基板を第2誘電体層とみなした。
 <特性評価>
 (1)記録層における波長405nmの光の透過率の評価
 実施例及び比較例について、上述の方法によって、記録層における波長405nmの光の透過率を評価した。詳細には、まず、分光光度計及びエリプソメータを用いて、記録層の線形光吸収の特性を評価した。分光光度計での測定では、ガラスのみを測定した場合に得られる測定値によってベースラインを補正した。得られたスペクトルから、波長405nmにおける透過率を算出した。実施例及び比較例の記録媒体において、記録層における波長405nmの光の透過率は、いずれも95%以上であった。
 次に、化合物BからEをクロロベンゼンに溶解させて溶液を作製し、当該溶液について、分光光度計を用いて測定を行った。その結果、いずれも、線形光吸収の極大吸収波長が350nm付近であり、405nmの波長には線形光吸収の吸収帯が存在しなかった。
 次に、化合物Aをクロロベンゼンに溶解させて溶液を作製し、当該溶液について、分光光度計を用いて測定を行った。その結果、線形光吸収の極大吸収波長は、440nmから460nm付近であった。この線形光吸収の吸収帯の一部は、405nmの波長と重複していた。この結果から、化合物Aを用いて記録層を作製する場合、記録層における波長405nmの光の透過率を95%以上に調整するためには、化合物Aの配合量、記録層の厚さなどを適切に調整する必要があることがわかる。
 (2)記録層の厚さ及び屈折率の評価
 実施例及び比較例について、エリプソメータを用いて、記録層の厚さD及び屈折率n1を評価した。詳細には、測定により得られたスペクトルから波長405nmにおける屈折率n1を読み取った。さらに、屈折率n1と、第1誘電体層としての空気の層の屈折率n2との差、及び、屈折率n1と、第2誘電体層としてのガラス基板の屈折率n3との差を算出した。なお、波長405nmの光に対する空気の層の屈折率n2は1であった。波長405nmの光に対するガラス基板の屈折率n3は1.47であった。
 (3)記録再生特性の評価
 <動的評価>
 実施例1、2、4及び5、並びに、比較例1及び3の記録媒体をサンプルとして用いて、以下の操作により記録再生特性を評価した。
 [記録操作]
 まず、サンプルに対して、中心波長405nm、ピークパワー100mW、繰り返し周波数100kHzのパルス光をNAが0.85のレンズを通して照射した。パルス光は、ガラス基板よりも記録層側から、ガラス基板上の記録層に焦点を合わせて照射した。このとき、パルス光の照射は、サンプルを10μm/secで平行移動させながら行った。パルス光のパルス幅は、10ナノ秒から1000ナノ秒の間で調整した。
 図6Aは、実施例4の記録媒体の記録層に形成された記録マークを示す光学顕微鏡画像である。図6Aからわかるとおり、記録操作によって、記録層には、記録線の形態で記録マークが形成されていた。
 [再生操作]
 次に、記録操作を行ったサンプルについて、再生操作を行った。詳細には、記録層の記録線を横切るように、中心波長405nm、ピークパワー3mW、パルス幅200ナノ秒、繰り返し周波数100Hzの光をNAが0.85のレンズを通して照射し、未記録部及び記録部での反射光信号強度を取得した。このとき、パルス光の照射は、サンプルを10μm/secで平行移動させながら行った。図6Aには、再生操作での光の照射方向、すなわち再生方向、が示されている。
 図6Bは、実施例4の記録媒体の記録層に形成された記録マークの再生信号を示すグラフである。図6Bからは、上記の再生操作によって、記録マークの位置において、反射光の光量が増加していることを確認できた。
 <静的評価>
 実施例3及び比較例2の記録媒体をサンプルとして用いて、以下の操作により記録再生特性を評価した。なお、以下の操作は、サンプルを静止した状態で行った。
 [記録前の再生操作]
 まず、サンプルに対して、中心波長405nm、ピークパワー3mW、パルス幅200ナノ秒、繰り返し周波数100Hzのパルス光をNAが0.85のレンズを通して照射した。光は、ガラス基板よりも記録層側から、ガラス基板上の記録層に焦点を合わせて照射した。これにより、未記録部の反射光信号強度を取得した。
 [記録操作]
 次に、サンプルに対して、中心波長405nm、ピークパワー100mWのパルス光をNAが0.85のレンズを通して1パルス照射して、記録操作を行った。パルス光のパルス幅は、10ナノ秒から5ミリ秒の間で調整した。パルス光は、ガラス基板よりも記録層側から、ガラス基板上の記録層に焦点を合わせて照射した。
 [再生操作]
 次に、記録操作を行ったサンプルについて、再生操作を行った。詳細には、記録操作を行った位置に、中心波長405nm、ピークパワー3mW、パルス幅200ナノ秒、繰り返し周波数100Hzのパルス光をNAが0.85のレンズを通して照射し、記録部での反射光信号強度を取得した。
 上記の動的評価及び静的評価の結果から、下記式に基づいて、変調度を算出した。
変調度=(記録部での反射光信号強度-未記録部での反射光信号強度)/(未記録部での反射光信号強度)
 さらに、縦軸を変調度とし、横軸を記録操作時の照射平均エネルギー(mW)とするグラフを作成した。図6Cは、実施例4の記録媒体の記録層に形成された記録マークの変調度を示すグラフである。なお、照射平均エネルギーは、下記式にて計算した。
照射平均エネルギー=(ピークパワー)×(パルス幅)×(繰り返し周波数)
 図6Cからわかるとおり、実施例4の記録媒体では、照射平均エネルギーが0.1mWを上回る光によって記録操作が可能であった。すなわち、閾値を持った記録特性が得られた。さらに、照射平均エネルギーを調整することによって、必要な変調度に応じた記録操作を実施することができた。
 [記録再生特性の評価]
 後述の表1からわかるとおり、実施例の記録媒体では、LTH型の記録再生特性が確認された。すなわち、実施例の記録媒体では、記録操作によって、記録領域における光の反射率が上昇した。一方、比較例の記録媒体では、HTL型の記録再生特性が確認された。すなわち、比較例の記録媒体では、記録操作によって、記録領域における光の反射率が低下した。これらの結果、特に実施例1及び比較例1の結果、から、記録層の厚さは、記録媒体の記録再生特性に影響を与えることがわかる。なお、実施例1及び比較例1の記録媒体は、記録層の厚さが異なることを除き、互いに同じ構成を有する。
 次に、上述の動的評価を行った後の実施例2の記録媒体について、記録部の断面を走査型電子顕微鏡(SEM)で観察した。その結果、記録部では、凹形状の記録マークが形成されていた。この記録マークの深さは、記録操作で照射した光の照射エネルギーに比例していた。図7は、実施例2の記録媒体について、記録光の照射平均エネルギーと凹形状の記録マークの変形量との関係を示すグラフである。なお、記録マークの変形量は、記録マークの深さを意味する。
 図7からわかるとおり、実施例2の記録媒体では、記録操作で照射した光の照射エネルギーが大きければ大きいほど、記録マークの変形量が増加した。図7のグラフの傾きは、色素材料による光吸収、すなわち線形光吸収及び非線形光吸収、の大きさが大きいほど増加することが推定される。
 次に、実施例2で作製した記録媒体について、記録層の上に剥離フィルム(寺岡製作所製、フィルムマスキングテープ605#50)を配置し、サンプルを準備した。このサンプルに対して、上述した静的評価の記録操作を行った。次に、サンプルから剥離フィルムを引き剥がし、原子間力顕微鏡(AFM)を用いて記録部を観察した。その結果、記録部では、凹形状の記録マークが形成されていた。
 さらに、実施例2で作製した記録媒体について、記録層の上に酢酸セルロースのカバー層を配置し、サンプルを準備した。カバー層は、塗布法によって作製した。このサンプルに対して、上述した静的評価の記録操作を行った。次に、サンプルの断面をSEMで観察した。その結果、記録部では、凹形状の記録マークが形成されていた。これらの結果から、上記の記録再生特性の評価条件では、用いる誘電体層の種類によらず、同じメカニズムで記録処理が進行することが推定される。また、このメカニズムは、動的評価及び静的評価のいずれであっても、同様に進行すると推定される。
 後述の表1からわかるとおり、実施例の記録媒体では、記録層の厚さが上記の関係式(1)を満たしている。そのため、実施例では、記録操作により記録部での厚さが減少することによって、記録層と空気の層との界面からの反射光と、記録層とガラス基板との界面からの反射光との位相差が減少したと推定される。これにより、実施例の記録媒体では、未記録部よりも記録部からの再生信号が強く検出されたと推定される。
 後述の表1からわかるとおり、比較例の記録媒体では、記録層の厚さが上記の関係式(1)を満たさない。そのため、比較例では、記録操作により記録部での厚さが減少することによって、記録層と空気の層との界面からの反射光と、記録層とガラス基板との界面からの反射光との位相差が増加したと推定される。これにより、比較例の記録媒体では、未記録部よりも記録部からの再生信号が弱く検出されたと推定される。
 なお、比較例3では、記録層とガラス基板との屈折率差が小さいため、これらの界面からの反射光の光量が小さかった。
 本開示の記録媒体は、三次元光メモリなどの用途に利用できる。
10 記録層
20A 第1誘電体層
20B 第2誘電体層
100,110 記録媒体

Claims (11)

  1.  第1誘電体層と、
     第2誘電体層と、
     光が照射されることによって情報を記録する記録領域を有し、かつ前記第1誘電体層と前記第2誘電体層との間に位置する記録層と、
    を備え、
     前記記録層は、色素材料を含み、
     前記記録層における波長405nmの光の透過率は、95%以上であり、
     情報が記録された前記記録領域における光の反射率は、情報が記録される前の前記記録領域における光の反射率よりも高く、
     前記記録層の厚さD(nm)、波長405nmの光に対する前記記録層の屈折率n1、波長405nmの光に対する前記第1誘電体層の屈折率n2、及び波長405nmの光に対する前記第2誘電体層の屈折率n3は、下記関係式(1)から(3)を満たす、記録媒体。
    (1.33-0.15n1){405(m+1/2)/(2n1)}<D≦(1.33-0.15n1){405(m+1)/(2n1)}  (1)
    1>n2  (2)
    1>n3  (3)
     前記式(1)において、mは、0から4の整数である。
  2.  前記屈折率n1と前記屈折率n2との差が0.2以上であり、
     前記屈折率n1と前記屈折率n3との差が0.2以上である、請求項1に記載の記録媒体。
  3.  前記屈折率n1が1.65以上である、請求項1に記載の記録媒体。
  4.  前記記録層では、記録光が照射されることにより凹形状の記録マークが形成される、請求項1に記載の記録媒体。
  5.  前記色素材料は、ポリマーP1を含み、
     前記ポリマーP1は、非線形光吸収特性を有する基を含む、請求項1に記載の記録媒体。
  6.  前記ポリマーP1は、ビニルカルバゾール類に由来する構成単位を有する、請求項5に記載の記録媒体。
  7.  前記記録層は、ポリマーP2をさらに含む、請求項1に記載の記録媒体。
  8.  前記ポリマーP2は、ビニルカルバゾール類に由来する構成単位を有する、請求項7に記載の記録媒体。
  9.  390nm以上410nm以下の波長を有する光を発する光源を準備し、
     前記光源からの前記光を集光して、請求項1から8のいずれか1項に記載の記録媒体における前記記録層に照射する、
    ことを含む、情報の記録方法。
  10.  請求項9に記載の記録方法によって記録された情報の読出方法であって、
     前記読出方法は、
     前記記録媒体における前記記録層に対して光を照射することによって、前記記録層の光学特性を測定し、
     前記記録層から情報を読み出す、
    ことを含む、情報の読出方法。
  11.  前記光学特性は、前記記録層で反射した光の強度である、請求項10に記載の読出方法。
PCT/JP2023/013662 2022-06-06 2023-03-31 記録媒体、情報の記録方法及び情報の読出方法 WO2023238487A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091602 2022-06-06
JP2022091602 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238487A1 true WO2023238487A1 (ja) 2023-12-14

Family

ID=89118006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013662 WO2023238487A1 (ja) 2022-06-06 2023-03-31 記録媒体、情報の記録方法及び情報の読出方法

Country Status (1)

Country Link
WO (1) WO2023238487A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334480A (ja) * 2001-05-01 2002-11-22 Fuji Photo Film Co Ltd 光情報記録媒体
WO2003085657A1 (fr) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement d'information et son procede de production, et appareil d'enregistrement/reproduction d'information optique
WO2006118164A1 (ja) * 2005-04-27 2006-11-09 Matsushita Electric Industrial Co., Ltd. 情報記録媒体及び光学情報記録再生装置
WO2007123065A1 (ja) * 2006-04-18 2007-11-01 Panasonic Corporation 光学情報記録再生装置
JP2010086568A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 2光子吸収光記録媒体
WO2012008293A1 (ja) * 2010-07-13 2012-01-19 富士フイルム株式会社 光情報記録媒体およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334480A (ja) * 2001-05-01 2002-11-22 Fuji Photo Film Co Ltd 光情報記録媒体
WO2003085657A1 (fr) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement d'information et son procede de production, et appareil d'enregistrement/reproduction d'information optique
WO2006118164A1 (ja) * 2005-04-27 2006-11-09 Matsushita Electric Industrial Co., Ltd. 情報記録媒体及び光学情報記録再生装置
WO2007123065A1 (ja) * 2006-04-18 2007-11-01 Panasonic Corporation 光学情報記録再生装置
JP2010086568A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 2光子吸収光記録媒体
WO2012008293A1 (ja) * 2010-07-13 2012-01-19 富士フイルム株式会社 光情報記録媒体およびその製造方法

Similar Documents

Publication Publication Date Title
TWI453743B (zh) 用於儲存全像術資料的方法
EP2601556A1 (en) Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum
JP2004078224A (ja) 光学記録材料
WO2023238487A1 (ja) 記録媒体、情報の記録方法及び情報の読出方法
CN115515942A (zh) 化合物、非线性光学材料、记录介质、信息的记录方法及信息的读出方法
US20030072250A1 (en) Optical recording material
JP4963367B2 (ja) 二光子吸収材料
JP5986437B2 (ja) 光データ記憶媒体へのデータ記録方法及び光データ記憶媒体
JP5229521B2 (ja) π共役系化合物とその用途、およびそれらを用いた素子、装置
WO2023223674A1 (ja) 記録媒体、情報の記録方法及び情報の読出方法
WO2023223673A1 (ja) 光記録媒体、情報の記録方法及び情報の読出方法
JP6994666B1 (ja) 非線形光学材料、光吸収材料、記録媒体、情報の記録方法及び情報の読出方法
US20130004887A1 (en) Holographic recording medium
WO2019167947A1 (ja) 化合物、ポリマー及び有機材料
JP6994667B1 (ja) 非線形光学材料、光吸収材料、記録媒体、情報の記録方法及び情報の読出方法
WO2023223693A1 (ja) 記録媒体、情報の記録方法及び情報の読出方法
JP7390676B1 (ja) 非線形光吸収材料、記録媒体、情報の記録方法及び情報の読出方法
JP5505748B2 (ja) π共役系化合物とその用途、およびそれらを用いた素子、装置
WO2022149460A1 (ja) 光吸収材料、記録媒体、情報の記録方法及び情報の読出方法
JP5578455B2 (ja) π共役系化合物とその用途、およびそれらを用いた素子、装置
WO2022149461A1 (ja) 非線形光吸収材料、記録媒体、情報の記録方法及び情報の読出方法
WO2023228544A1 (ja) 化合物、記録媒体、情報の記録方法及び情報の読出方法
JP4969881B2 (ja) 二光子吸収材料とその用途
CN117296096A (zh) 非线性光吸收材料、记录介质、信息的记录方法及信息的读出方法
US8703388B2 (en) Optical data storage media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819474

Country of ref document: EP

Kind code of ref document: A1