WO2006117920A1 - スズめっき液、そのスズめっき液を用いためっき方法、スズめっき液調整方法及びそのスズめっき液を用いてスズめっき層を形成したチップ部品 - Google Patents

スズめっき液、そのスズめっき液を用いためっき方法、スズめっき液調整方法及びそのスズめっき液を用いてスズめっき層を形成したチップ部品 Download PDF

Info

Publication number
WO2006117920A1
WO2006117920A1 PCT/JP2006/303124 JP2006303124W WO2006117920A1 WO 2006117920 A1 WO2006117920 A1 WO 2006117920A1 JP 2006303124 W JP2006303124 W JP 2006303124W WO 2006117920 A1 WO2006117920 A1 WO 2006117920A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin plating
plating solution
tin
acid
salt
Prior art date
Application number
PCT/JP2006/303124
Other languages
English (en)
French (fr)
Inventor
Satoshi Kawashima
Hiroyuki Tashiro
Shigenori Emura
Takamitsu Nashiyama
Hideyuki Sampei
Original Assignee
Meltex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meltex Inc. filed Critical Meltex Inc.
Priority to KR1020077024412A priority Critical patent/KR100934401B1/ko
Publication of WO2006117920A1 publication Critical patent/WO2006117920A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin

Definitions

  • Tin plating solution plating method using the tin plating solution, tin plating solution adjustment method, and chip component having a tin plating layer formed using the tin plating solution
  • the present invention relates to a tin plating solution, a plating method using the tin plating solution, and a chip component having a tin plating layer formed using the tin plating solution.
  • the present invention relates to a tin plating solution that does not generate sludge as found in conventional tin plating solutions.
  • the tinned layer of the external electrode of the multilayer ceramic capacitor has excellent solder wettability, and functions as a useful one when surface-mounted on a printed wiring board through a surface mounting process such as solder reflow.
  • the tin plating solution has conventionally suffered from the deposition of tin oxide (hereinafter referred to simply as "sludge"), and lacks long-term stability. There was a drawback. Therefore, the tin plating solution had to be used immediately after bathing. However, the tin plating solution that lacks long-term storage stability causes the composition to change every time during the plating operation, and the properties of the plating solution change, thus stabilizing the quality of the resulting plating film. It was difficult to guarantee the quality of the plating solution. The shortest-life tin plating solution was found to generate sludge immediately after the building bath, and when the tin plating solution became cloudy, the phenomenon of erosion occurred.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-245694
  • Patent Document 2 JP-A-2-170996
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2001-110666
  • a tin plating layer formed using a tin plating solution in which sludge is generated has a common defect that solder wetting phenomenon (dewetting) is generally caused by poor solder wettability to the tin plating layer. It can be seen.
  • solder wetting phenomenon solder wetting phenomenon
  • the tin plating solution in which sludge is generated continues to be used in the mating device, clogging of various pipes will occur and the maintenance of the device will become complicated.
  • the disadvantage of tin plating solution using a large amount of ammonia component is the odor caused by the ammonia, which directly deteriorates the working environment, and at the same time, the copper products and copper parts in the vicinity of the plating tank.
  • problems such as accelerating corrosion, and it was difficult to actively use the equipment because it required capital investment to strengthen the mist ventilation of the plating tank.
  • Tin plating solution is a tin plating solution for performing tin plating by an electrolytic method, and a tin salt that is a tin ion supply source is converted to 5 g / L to 30 g / in tin. Contains a chelating agent and a PH regulator that chelate and stabilize this tin ion.
  • the sludge is not generated for more than 7 days.
  • the tin salt used in the tin plating solution according to the present invention is preferably one or more selected from a stannous salt power that is soluble in water.
  • the chelating agent includes one or more selected from dalconic acid, dalconic acid salt, succinic acid, succinic acid salt, pyrophosphoric acid, pyrophosphate power.
  • the pH adjuster is an alkaline pH adjuster, and one or more selected from sodium hydroxide, potassium hydroxide, and aqueous ammonia. It is preferable to include 5gZL to 140gZL concentration.
  • tin plating solution Nio according to the present invention Te shall apply in acidic P H adjusting agent, methanesulfonic acid, ethanesulfonic acid, sulfuric acid, isethionic Sankakara one selected Or it is preferable to contain 10 gZL to 300 gZL of two or more.
  • an anti-oxidation agent in the tin plating solution according to the present invention, it is preferable to contain an anti-oxidation agent at a concentration of 0.1 lgZL to 30 gZL.
  • the concentration of lgZL to 150gZL is one or more selected from sodium sulfate and ammonium sulfate.
  • one or more selected from the group consisting of a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant as a brightening agent is added in an amount of 0.lgZL to 30 g. It is preferable to include it to achieve a / L concentration.
  • Tin plating method As a tin plating method using the tin plating solution according to the present invention, it is preferable to perform electrolysis under conditions of a bath temperature of 10 ° C to 40 ° C.
  • Tin plating solution adjustment method A tin plating solution adjustment method according to the present invention, wherein the tin plating solution adjustment method is adjusted according to the following procedures A) and B). Things are preferable.
  • a tin salt is added to the preconditioning solution, and the tin content is added to a concentration of 5 gZL to 30 gZL and stirred sufficiently to form a tin chelate complex to obtain a tin plating solution.
  • a method for adjusting a tin plating solution according to the present invention wherein a step of adding a conductive salt is further added to the tin plating solution prepared by the above method.
  • a method for adjusting a tin plating solution according to the present invention comprising adding a step of adding a brightener to the tin plating solution prepared by the above method.
  • Chip Component The tin plating solution according to the present invention described above is suitable for forming a tin plating layer of a chip component such as a multilayer ceramic capacitor that is frequently used for tin plating among electronic components.
  • the tin plating solution according to the present invention does not contain a large amount of the ammonia component, the solution life after the bathing in which precipitation of tin oxide is difficult to occur becomes long and management as a plating solution is facilitated.
  • this tin plating solution can be used as a neutral region, so it does not damage ceramics and electrodes in electronic components.
  • tin plating using the tin plating solution according to the present invention can be used at a bath temperature exceeding 30 ° C, and since there is appropriate liquid evaporation, the amount of waste liquid is remarkably increased. Therefore, the burden of waste liquid treatment can be reduced.
  • the tin plating solution adjustment method does not require a special apparatus and method.
  • a pH adjusting agent and a chelating agent are mixed, and methane gas as a conductive salt is mixed here.
  • methane gas as a conductive salt is mixed here.
  • the film thickness is excellent and stable on the surface of a chip component such as a multilayer ceramic capacitor during a long plating operation.
  • a quality tin plating layer can be formed.
  • the tin plating solution according to the present invention contains 5 g / L to 30 g / L of tin salt as a tin ion supply source in terms of tin, and chelate and stabilize this tin ion. It contains a chelating agent and a pH adjusting agent, and is characterized by no sludge generation for more than 7 days. Except for the tin plating solution that uses a large amount of ammonia among the tin plating solutions supplied to the conventional plant, sludge is generated within 5 days after the bathing, and the properties of the tin plating bath are changed.
  • the tin plating solution according to the present invention will be described in detail in the following tin plating solution adjustment method, but it contains a chelating agent and a PH adjusting agent that chelate and stabilize tin ions, so that the neutral region ⁇ Chelating in the alkaline region (pH 6 to pH 12) results in containing most of the tin ions as a tin complex chelate.
  • any combination of the components described below can be achieved with a conventional tin plating solution. Sludge does not occur for more than 7 days even in the temperature range of ° C. In the examples described later, a tin plating solution that is most excellent in solution stability and does not generate sludge even after 365 days at a temperature of 40 ° C is disclosed.
  • a tin salt that is a tin ion supply source of the tin plating solution used here is soluble in water.
  • tin salt one or two selected from tin methanesulfonate, tin sulfate, tin sulfamate, and tin pyrophosphate It is preferable to use more than one species.
  • the tin salt content in the tin plating solution according to the present invention is preferably 5 gZL to 30 gZL in terms of tin.
  • the tin salt content is less than 5 gZL in terms of tin, the current efficiency will decrease and the speed of lashing will not satisfy the industrially required productivity, and at the same time the smoothness and film thickness uniformity of the tin plating layer will be impaired. Be made.
  • the tin salt content exceeds 30 g / L in terms of tin, the amount of tin in the plating solution will increase, and the electrodeposition rate of tin will be too fast, making it difficult to control the thickness of the plating layer. Therefore, it becomes impossible to avoid the precipitation of tin oxide.
  • the tin salt content in the tin plating solution according to the present invention is more preferably 10 g / L to 20 g / L in terms of tin.
  • the chelating agent stabilizes tin ions supplied with tin salt in a tin plating solution as a chelate complex.
  • the chelating agent referred to in the present invention has a concentration of 30 g / L to 300 g / L of one or more selected from darconic acid, dalconic acid salt, succinic acid, succinic acid salt, pyrophosphoric acid, pyrophosphate salt Like to include, This is because the chelating agent described here efficiently forms a chelate complex with ionized tin ions in a tin salt solution that is a tin ion supply source.
  • the concentration of the chelating agent in the tin plating solution is originally determined according to the type of the chelating agent and the amount of tin in the plating solution.
  • the chelating agent concentration has an appropriate amount in the range of 100 gZL to 200 gZL.
  • the total concentration of the two or more chelating agents may be in the range of 100 g / L to 200 g / L.
  • the chelating agent concentration is less than lOOgZL, it is difficult to form a chelate complex with all of the tin ions in the plating solution, assuming the amount of tin in the plating solution, and free tin The presence of tin cannot prevent the formation of tin oxide precipitates.
  • the chelating agent concentration exceeds 2 OOgZL, the amount becomes excessive for the formation of a chelate complex with tin ions in the plating solution, which wastes resources.
  • the pH adjuster means that the solution is neutral so that the tin ions supplied from the tin salt in the tin plating solution react with the chelating agent to form a tin chelate complex.
  • the tin plating solution according to the present invention is suitable for tin plating. It includes two implications used to adjust pH. Therefore, for convenience of explanation, the former is simply referred to as “pH adjuster”, and the latter is referred to as “fine adjust pH adjuster”. This “pH adjuster” and “pH adjuster for fine adjustment” are not added at the same time.
  • the pH adjusting agent includes an alkaline pH adjusting agent and an acidic pH adjusting agent. The method of using these pH adjusting agents will be described in detail in the adjusting method described later. Only the types and functions of pH adjusters are described here.
  • alkaline pH adjuster one or more selected from sodium hydroxide, potassium hydroxide and ammonia hydropower are used. These were chosen as the alkaline P H modifier without affecting the plating solution properties when performing the tin plating, because it is formed of a good tin flashing can layer. These alkaline pH adjusters promote the ring opening of the chelating agent so that chelation between the chelating agent and tinion can be facilitated. More specifically, alkaline pH adjusting agents can be used at 5 g / L to Include 140g / L concentration. If the alkaline pH adjuster is less than 5 gZL, the ring opening of the chelating agent cannot be promoted.
  • an alkaline pH adjuster is contained so as to have a concentration of 30 g / L to 70 g / L. Within this range, stable tin ion chelation with the tin salt added later is possible, and pH adjustment with the acidic pH adjuster described below becomes easy.
  • an acidic pH adjusting agent used in combination with alkaline P H modifier, methanesulfonic acid, ethacrylic Nsuruhon acid, sulfuric acid, isethionic acid strength also include 10gZL ⁇ 300g / L 1 or two or more selected. Flashing when performing the tin plating was selected such as acidic P H modifier This is because a good tin plating layer can be formed without affecting the liquid properties.
  • This acidic pH adjuster generates tin chelates from the neutral region to the weakly alkaline region, with the pH value of the plating solution being adjusted with the alkaline pH adjuster being adjusted to the alkaline region in the range of 6-12. It is used to stabilize.
  • an acidic pH adjuster is added in an amount of 300 gZL or more and the pH of the plating solution being adjusted is below pH 6, the tin ion chelate cannot be stabilized, and sludge is generated early in the final tin plating solution.
  • the acidic pH adjuster is less than lOgZL, the pH of the plating solution in the middle of adjustment will be a strong alkaline region of pH 12 or higher, and subsequent fine adjustment of the tin plating solution will be difficult, and erosion with the ceramic will be easy. The tin plating solution.
  • a pH adjuster for fine adjustment a pH adjuster for finely adjusting the pH of the tin plating solution according to the present invention to the acidic side (hereinafter referred to as “acid pH adjuster for fine adjustment”). And a pH adjuster for finely adjusting the pH of the tin plating solution according to the present invention to the alkaline side (hereinafter referred to as “alkaline pH adjuster for fine adjustment”).
  • alkaline pH adjuster for fine adjustment a pH adjuster for finely adjusting the pH of the tin plating solution according to the present invention to the alkaline side
  • an acidic pH adjuster for fine adjustment one or two of methanesulfonic acid and sulfuric acid are added, and the plating solution has a pH value in the range of 4 to 10, more preferably a pH value of 6 to 8. It is preferable to be in the range.
  • the fine adjustment alkalinity P H adjusting agent sodium hydroxide, and ⁇ Ka ⁇ the Mizusani ⁇ potassium, one or two of ammonia water
  • the range of the plating solution pH values from 4 to 10, more preferably The pH value is preferably in the range of 6-8.
  • the range specified as more preferable is to prevent the ceramic erosion by the tin plating solution and to ensure the long life of the tin plating solution. This is close to the neutral region.
  • the tin plating solution according to the present invention contains an anti-oxidation agent from the viewpoint of extending the life of the tin plating solution. This is to prevent the generation of tin oxide efficiently by preventing natural oxidation due to contact between the atmosphere and the plating solution.
  • an antioxidant so as to have a concentration of 0.1 lgZL to 30 gZL.
  • the antioxidants it is preferable to use one or more selected from catechol, hydroquinone, ascorbic acid, ascorbate, and phenol-diamine power. When the antioxidant concentration is less than 0.1 lgZL, sufficient antioxidant effect cannot be obtained.
  • the concentration of the antioxidant exceeds 30 gZL, it is not possible to obtain an anti-oxidation effect, and the life of the tin plating solution cannot be expected. Moreover, excessive addition of an antioxidant is not preferable because the quality of the tin plating solution changes. Therefore, more preferably, the antioxidant concentration is used in the range of lgZL to 10 gZL. This is because a reliable antioxidant effect can be obtained, and the quality change of the tin plating solution due to the excessive addition of the antioxidant is reliably prevented.
  • tin plating solution it is possible to perform electrolysis without any special addition of conductive salt even with the composition described above. However, if it is necessary to further stabilize the energized state when electrolyzing the tin plating solution, increase the current efficiency of tin deposition, and increase productivity, it is possible to add an additional conductive salt. preferable.
  • addition of a conductive salt it is preferable to include one or more selected from sodium sulfate and ammonium sulfate power so as to have a concentration of lgZ L to 150 gZL.
  • the reason why sodium sulfate and ammonium sulfate were used as the conductive salt is that they have the smallest quality change of the tin plating solution and there is no impurity residue in the tin plating layer.
  • the addition amount of this conductive salt is less than lgZL, the effect of improving the current-carrying stability during electrolysis cannot be obtained. And even if the amount of added salt of this conductive salt exceeds 150 gZL, the current-carrying stability during electrolysis does not improve any further, which wastes resources.
  • one or more selected from the group consisting of a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant as a brightening agent can be added in an amount of 0.1 lg / It is also preferable to include L to a concentration of 30 to 30 g / L.
  • This brightener electrolyzes tin plating solution The resulting tin plating layer is made smooth and contributes to the improvement of film thickness uniformity.
  • the brightener referred to here is a non-ionic (nonionic) surfactant, which is a surfactant that does not ionize in water and has a hydrophilic group. It can be used in combination with all other surfactants that are difficult to be affected by the hardness and electrolytes. Non-ionic surfactants are classified into ester type, ether type, ester-ether type and others depending on their structure.
  • the tin plating solution according to the present invention includes higher alcohols, alkyl phenols, fatty acids, amines. In addition, it is preferable to use one or two or more kinds of shift force of alkylene diamine, fatty acid amide, sulfonamide, polyhydric alcohol, and dalcoxide-containing polyoxyalkylene.
  • a cationic (cationic) surfactant is a surfactant having a property that a portion having a hydrophobic group in water is ionized into a cation. Therefore, the cationic surfactant is generally negatively charged. It has the property of strongly adsorbing to the body surface.
  • Specific examples of the cationic (cationic) surfactant that can be used in the tin plating solution according to the present invention are lauryl trimethyl ammonium salt, cetyl trimethyl ammonium salt, stearyl trimethyl.
  • Ammo-um salt Lauryl dimethyl ether ammonium salt, Octadecyl dimethyl ether ammonium salt, Lauryl dimethyl ammonium umbetaine, Stearyl dimethyl ammonium umbetaine, Dimethyl-benzyl lauryl ammonium Salt, cetyldimethylbenzyl ammonium salt, octadecyldimethylbenzyl ammonium salt, trimethylbenzyl ammonium salt, triethylbenzyl ammonium salt, hexadecyl bilidine salt, laurylpyridium salt Salt, dodecylpicolinium salt, lauryl imidazolinium salt, oleirimida Li two ⁇ unsalted, stearyl amine acetate, lauryl amine acetate, O Kuta decyl ⁇ Min acetate !, preferably be used singly or two or Zureka.
  • amphoteric surfactant is a surfactant that exhibits the properties of an anionic surfactant in the alkaline region and the properties of a cationic surfactant in the acidic region when dissolved in water.
  • amphoteric surfactant that can be used in the tin plating solution according to the present invention is one or more selected from alkylcarboxybetaine type, alkylaminocarboxylic acid type, and alkylimidazoline type power. It is preferable to use it.
  • lauryl dimethylamino acetate betaine poly Most preferred is the use of either oxyethylene lauryl ether.
  • These surface active agents are excellent in stability in tin plating solution, and have a long effect of improving the solution life as a tin plating solution, and also have a high effect of obtaining film thickness uniformity of the formed plating film. is there
  • the concentration of the surfactant as a brightener in the tin plating solution is less than 0.1 gZL, the tin plating layer is smoothed and the effect of improving the film thickness uniformity is obtained. I can't. On the other hand, even if the brightener concentration exceeds 30 gZL, neither the smoothing effect of the tin plating layer nor the effect of improving the film thickness uniformity is improved further.
  • Embodiment of Tin Plating Method The tin plating method using the tin plating solution according to the present invention is preferably electrolyzed at a bath temperature of 10 ° C. to 40 ° C.
  • a bath temperature 10 ° C. to 40 ° C.
  • the plating operation can be performed in the bath temperature range of 10 ° C to 40 ° C.
  • the bath temperature is less than 10 ° C, coarse tin-plated crystals with a high built-in strain are deposited, and a smooth and excellent film thickness uniformity is obtained.
  • the bath temperature is higher than 40 ° C, evaporation of the plating solution moisture becomes noticeable, and the solution life in which the composition variation of the tin plating solution is severe is shortened.
  • the conventional tin plating solution lacks the solution stability as the plating solution and has a short solution life, so that it is necessary to perform the plating operation at a bath temperature of about room temperature.
  • the tin plating solution according to the present invention it is possible to operate tin plating in a high temperature range where the bath temperature exceeds 30 ° C.
  • the bath temperature exceeds 30 ° C.
  • moderate evaporation of the plating solution moisture occurs within a range that does not deteriorate the quality of the tin plating solution. It is possible to reduce the amount of plating waste liquid and reduce the load of waste water treatment.
  • the current density at this time 0. 05AZdm 2 ⁇ 0. 5AZdm
  • the adopted child the range of 2. If the current density is less than 0.05 AZdm 2 , it does not satisfy industrial productivity where the deposition rate of tin is naturally slow. On the other hand, if a current density exceeding 0.5 AZdm 2 is adopted, the smoothness of the tin plating film is impaired.
  • a method for adjusting a tin plating solution according to the present invention is characterized by being adjusted by the following procedures A and B.
  • a tin salt is added to an aqueous solution in an alkaline region such as a neutral catalyst containing a chelating agent. It is characterized in that it is added to form a tin chelate complex.
  • P H value is 6 to 12 of the premixed solution. Since the types and contents of the “pH adjusting agent” and “chelating agent” mentioned here have been described above, explanations thereof will be omitted to avoid redundant description. Therefore, the adjustment procedure will be mainly explained.
  • a pH adjuster and a chelating agent are introduced into a predetermined amount of water such as ion-exchanged water or pure water, and sufficiently stirred and mixed.
  • water such as ion-exchanged water or pure water
  • the pH adjuster mentioned here includes an alkaline pH adjuster and an acidic pH adjuster as described above. Accordingly, there is no particular limitation on the order of addition of these, but it is preferable to add them in the order of an alkaline pH adjuster and an acidic pH adjuster.
  • the alkaline pH adjuster promotes the ring opening of the chelating agent so that chelation between the chelating agent and tin ions is facilitated. Therefore, after the ring opening of the chelating agent, the pH value of the plating solution being adjusted with an acidic pH adjuster and adjusted to the alkali region is adjusted to a range of 6 to 12, and the tin chelate is adjusted from the neutral region to the weakly alkaline region. It is preferable to generate and stabilize.
  • a tin salt is added to the preconditioning solution, and the tin content is added to a concentration of 5 gZL to 30 g ZL and stirred sufficiently to form a tin chelate complex to form a tin plating.
  • Use liquid the tin plating solution according to the present invention having the basic configuration can be prepared by adding a tin salt to the premixed solution so that the concentration is 10 gZL to 30 gZL in terms of tin, and sufficiently stirring and mixing. Complete.
  • the tin plating solution adjustment process described above is premised on being performed at room temperature. After that, it is desirable to additionally provide the following steps.
  • a step of adding an antioxidant to the tin plating solution prepared as described above.
  • the anti-oxidation agent is as described above, and is added so that the concentration of the anti-oxidation agent in the tin plating solution is 0.1 lgZL to 30 gZL. There is no particular limitation on the method of addition.
  • the pH value of the tin plating solution obtained by the above process deviates from an appropriate range.
  • the acidic pH adjuster for fine adjustment mentioned here includes the above-mentioned alkaline pH adjuster for fine adjustment and the acidic pH adjuster for fine adjustment.
  • the tin plating solution according to the present invention needs to further stabilize the energization state when electrolyzing the tin plating solution, increase the current efficiency of tin deposition, and increase productivity.
  • the conductive salt contains one or more selected from the above-mentioned sodium sulfate and ammonium sulfate strength so as to have a concentration of lg / L to 150 g / L.
  • a subsequent brightening agent is added. It is also preferable to provide a process.
  • the brightener mentioned here may contain one or more selected from the above-mentioned nonionic surfactants, cationic surfactants, and amphoteric surfactants so as to have a concentration of 0.lgZL to 30 gZL. Favored ,.
  • Embodiments of Chip Parts The above-described tin plating solution according to the present invention includes a chip-type multilayer ceramic capacitor, a chip-type ceramic coil, a chip-type ceramic resistor, and an inductor that are frequently used in tin plating among electronic parts. It is suitable for forming tin plating layers of chip parts such as NORISTERS and resistors.
  • a tin plating solution was prepared through the following steps I to V.
  • Step I Sodium dalconate as a chelating agent was added to ion-exchanged water to dissolve granular sodium hydroxide as an alkaline pH adjuster. Further, 70 wt% methanesulfonic acid was added as an acidic pH adjuster to obtain a pH 12 premixed solution.
  • Step II Tin methanesulfonate was added to the premixed solution and a chelate reaction was performed to form a tin chelate complex, thereby obtaining a tin plating solution having a basic composition.
  • Step ⁇ In this step, sodium hydroxide was added as a fine-tuning alkaline pH adjusting agent among the fine-tuning pH adjusting agents so that the final tin plating solution had a pH of 4.0.
  • Step IV Ascorbic acid as an antioxidant was added to the tin plating solution and mixed and stirred.
  • Step V Thereafter, lauryldimethylaminoacetic acid betaine was added as a brightener and mixed and stirred. As a result, a tin plating solution having the following composition was obtained.
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was not generated even after 365 days.
  • the tin plating solution had no sludge even after 365 days even when sodium hydroxide was added to adjust the pH value to 10. Even when the liquid temperature was 40 ° C, sludge was not generated under the same conditions.
  • a 2 m thick nickel layer is provided on the surface of the copper external electrode in the 2012 size (2 mm x l. 2 mm) multilayer ceramic capacitor, and the current density is 0.1 lA on the surface of the nickel layer.
  • Electrolysis was performed under the conditions of / dm 2 and a bath temperature of 30 ° C. to form a tin plating layer having a thickness of 5 m, and used as a test sample.
  • the surface of this tin plating layer was observed with an SEM (scanning electron microscope), and the observed image is shown in FIG. As is clear from comparison with the comparative example, no abnormal precipitation was observed and a uniform surface coating was achieved.
  • solder wettability is very important when considering that these chip components are surface-mounted on a printed wiring board or the like.
  • 20% rosin is added to the above test sample as a flux.
  • -An isopropanol solution was applied, and a test using the solder paste equilibrium method (rapid heating mode) was performed using SWET-2100 (solder bath temperature 215 ° C, 6Z4 solder) manufactured by Tarchin Kester Co., Ltd.
  • Example 1 is compared with Comparative Example 1 described later. Therefore, Table 1 summarizes the tin plating solution adjustment procedure of Comparative Example 1 and Example 1 and the presence / absence of sludge generation and solder wettability.
  • Example 2 the same steps I to V as in Example 1 were performed, and ion-exchanged water was mixed with sodium dalconate as a chelating agent, sodium hydroxide sodium hydroxide as an alkaline pH adjuster, acidic p Mix in the order of H adjuster methanesulfonic acid in order to make a pH 12 premixed solution, where tin salt is tin methanesulfonate, alkaline pH adjuster for sodium hydroxide and sodium hydroxide, antioxidant Were added in the order of ascorbic acid and brightener lauryldimethylaminoacetic acid betaine to prepare a tin plating solution having the following composition.
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was not generated even after 365 days. In addition, even when the tin plating solution was added with sulfuric acid or sodium hydroxide and the pH value was varied in the range of 4 to 10, no sludge was generated after 365 days. Even if the liquid temperature is 40 ° C, the slurry under the same conditions is used. There was no power to generate wedges.
  • Example 2 The surface state was observed using SEM in the same manner as in Example 1, but it had a very good uniform surface. Since this observation image is the same as that of Example 1, the description is omitted.
  • Example 2 In the same manner as in Example 1, the characteristics were evaluated before and after the pressure tacker test, and both showed good solder wetting with a zero cross time of 2 seconds or less.
  • Example 2 is compared with Comparative Example 2 described later. Therefore, the tin plating solution adjustment procedure of Comparative Example 2 and Example 2 can be compared with the presence or absence of sludge generation, solder wettability, etc.
  • Example 2 the same steps I to V as in Example 1 were performed, and ion-exchanged water was mixed with sodium dalconate as a chelating agent, sodium hydroxide sodium hydroxide as an alkaline pH adjusting agent, acidic p Mix in order of H adjuster methanesulfonic acid in order to make a pH 12 pre-mixed solution, which includes tin salt tin methanesulfonate, alkaline pH adjuster sodium hydroxide, acid salt
  • a tin plating solution having the following composition was prepared by adding ascorbic acid as an inhibitor and betaine lauryldimethylaminoacetate as a brightening agent in this order.
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, 365 days have passed Even later, sludge was not generated. Even when the liquid temperature was 40 ° C, sludge was not generated under the same conditions.
  • Example 2 The surface state was observed using SEM in the same manner as in Example 1, but it had a very good uniform surface. Since this observation image is the same as that of Example 1, the description is omitted.
  • Example 2 In the same manner as in Example 1, the characteristics were evaluated before and after the pressure tacker test, and both showed good solder wetting with a zero cross time of 2 seconds or less.
  • Example 3 is compared with Comparative Example 3 described later. Therefore, the tin plating solution adjustment procedure of Comparative Example 3 and Example 3 can be compared with the presence or absence of sludge generation, solder wettability, etc.
  • a tin solution having the following composition was prepared through steps I to V similar to those of example 1.
  • the difference is that instead of sodium dalconate as a chelating agent, citrate was used. That is, the ion-exchanged water is mixed in the order of chelate, citrate, alkaline pH adjuster, sodium hydroxide, and acidic pH adjuster, methanesulfonic acid, to prepare a premixed solution of pH 6.0,
  • the tin salt is tin methanesulfonate
  • the alkaline pH adjuster is sodium hydroxide
  • the acid inhibitor is ascorbic acid
  • the brightener is lauryldimethylaminoacetic acid betaine.
  • the tin plating solution was adjusted.
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was not generated even after 365 days. Even when the liquid temperature was 40 ° C, sludge was not generated under the same conditions.
  • Fig. 2 shows the observed image of the surface of this tin plating layer with an SEM (scanning electron microscope).
  • Example 4 is compared with Comparative Example 4 described later. Therefore, the tin plating solution adjustment procedure of Comparative Example 4 and Example 4 can be compared with the presence or absence of sludge generation, solder wettability, etc.
  • a tin solution having the following composition was prepared through steps I to V similar to those of example 1.
  • the difference was that polyoxyethylene lauryl ether was used in place of the brightener lauryl dimethylamino acetate betaine. That is, the ion-exchanged water is mixed with sodium dalconate, which is a chelating agent, sodium hydroxide, which is an alkaline pH adjusting agent, and methanesulfonic acid, which is an acidic pH adjusting agent, in this order to obtain a pH 12 premixed solution.
  • sodium dalconate which is a chelating agent
  • sodium hydroxide which is an alkaline pH adjusting agent
  • methanesulfonic acid which is an acidic pH adjusting agent
  • tin methane sulfonate a tin salt
  • sodium hydroxide an alkaline pH adjuster for fine adjustment
  • ascorbic acid an anti-oxidation agent
  • polyoxyethylene lauryl ether a brightener
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was not generated even after 365 days. Even when the liquid temperature was 40 ° C, sludge was not generated under the same conditions.
  • Example 2 The surface state was observed using SEM in the same manner as in Example 1, but it had a very good uniform surface. Since this observation image is the same as that of Example 1, the description is omitted.
  • Example 2 In the same manner as in Example 1, the characteristics were evaluated before and after the pressure tacker test, and both showed good solder wetting with a zero cross time of 2 seconds or less.
  • a tin solution having the following composition was prepared through steps I to V similar to those of example 1. The difference was that tin sulfate was used in place of the tin salt tin methanesulfonate, and polyoxyethylene lauryl ether was used in place of the brightener lauryldimethylaminoacetic acid betaine.
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was not generated even after 365 days. Even when the liquid temperature was 40 ° C, sludge was not generated under the same conditions.
  • Example 2 In the same manner as in Example 1, the surface state was observed using SEM. The surface of this tin plating layer was observed with a scanning electron microscope (SEM), and the observed image is shown in FIG. As is clear from comparison with the comparative example, no abnormal precipitation was observed and a uniform surface coating was achieved.
  • SEM scanning electron microscope
  • Example 2 In the same manner as in Example 1, the characteristics were evaluated before and after the pressure tacker test, and both showed good solder wetting with a zero cross time of 2 seconds or less.
  • a tin solution having the following composition was prepared through steps I to V similar to those of example 1.
  • catechol was used in place of ascorbic acid which is an anti-oxidation agent
  • polyoxyethylene lauryl ether was used in place of betaine lauryldimethylaminoacetate which was a brightener.
  • the ion-exchanged water contains a chelating agent, dalconic acid sodium.
  • Thorium, alkaline sodium hydroxide, pH adjuster, and methanesulfonic acid, acidic pH adjuster are mixed in this order to prepare a pH 12 pre-mixed solution, which contains tin sulfate, tin sulfate, and alkaline for fine adjustment.
  • the tin plating solution was adjusted by adding sodium hydroxide as a pH adjuster, catechol as an acid inhibitor, and polyoxyethylene lauryl ether as a brightener in this order.
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was not generated even after 365 days. Even when the liquid temperature was 40 ° C, sludge was not generated under the same conditions.
  • Example 2 The surface state was observed using SEM in the same manner as in Example 1, but it had a very good uniform surface. Since this observation image is the same as that of Example 1, the description is omitted.
  • Example 2 In the same manner as in Example 1, the characteristics were evaluated before and after the pressure tacker test, and both showed good solder wetting with a zero cross time of 2 seconds or less.
  • Example 8 [0109] In this example, a tin solution having the following composition was prepared through steps I to V similar to those of example 1. The difference is that ascorbic acid, an anti-oxidation agent, is added and sodium sulfate, a conductive salt, is added at the same time. That is, the ion-exchanged water is mixed with sodium dalconate, which is a chelating agent, sodium hydroxide, which is an alkaline pH adjuster, and methanesulfonic acid, which is an acidic pH adjuster, in this order to prepare a premixed solution of ⁇ 12.
  • sodium dalconate which is a chelating agent
  • sodium hydroxide which is an alkaline pH adjuster
  • methanesulfonic acid which is an acidic pH adjuster
  • tin methane sulfonate which is a tin salt
  • sodium hydroxide as an alkaline pH adjuster for fine adjustment
  • ascorbic acid as an antioxidant
  • sodium sulfate as a conductive salt
  • lauryl dimethyla as a brightener.
  • a tin plating solution was prepared by adding minoacetic acid betaine in this order.
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was not generated even after 365 days. Even when the liquid temperature was 40 ° C, sludge was not generated under the same conditions.
  • Example 2 The surface state was observed using SEM in the same manner as in Example 1, but it had a very good uniform surface. Since this observation image is the same as that of Example 1, the description is omitted.
  • Example 8 In the same manner as in Example 1, the characteristics were evaluated before and after the pressure tacker test, and both showed good solder wetting with a zero cross time of 2 seconds or less. [0114]
  • the above Example 8 is compared with Comparative Example 8 described later. Therefore, Table 8 summarizes the tin plating solution adjustment procedure of Comparative Example 8 and Example 8 and the presence / absence of sludge generation and solder wettability.
  • Example 1 In Comparative Example 1, the tin plating solution adjustment order of Example 1 was changed, and the tin plating solution was adjusted through the following steps i) to V).
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, 2 days after construction Sludge generation was observed after the past.
  • Fig. 4 shows the observation image of the surface of this tin plating layer with an SEM (scanning electron microscope).
  • SEM scanning electron microscope
  • Comparative Example 2 the same steps i to V as in Comparative Example 1 were followed, and ion-exchanged water was mixed with sodium dalconate, which is a chelating agent, and methanesulfonic acid, which is an acidic pH adjuster, in this order.
  • a strongly acidic premixed liquid of Lucinic acid Sodium hydroxide, pH adjuster, ascorbic acid, acid inhibitor, and lauryldimethylaminoacetate betaine, a brightening agent, are added in this order to prepare a tin solution with the following composition. The liquid was adjusted.
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was generated 1 day after the bathing.
  • the surface state was observed using SEM in the same manner as in Example 1. However, as in Comparative Example 1, abnormal precipitation was observed on the tin plating surface, and a uniform surface coating could not be formed. However, it was divided. Since this observation image is the same as that of Comparative Example 1, the description is omitted.
  • the tin plating layer observed here was formed using a tin plating solution in which sludge was generated.
  • Tin methanesulfonate (converted to tin) 20 g / L
  • Sludge generation 36 Sludge generation after 5 days and 1 day after sludge generation No occurrence
  • Solder wetting evaluation Solder paste equilibrium method (rapid heating mode)
  • Comparative Example 3 the same steps i to V as in Comparative Example 1 were performed, and ion-exchanged water was mixed in the order of sodium dalconate as a chelating agent and methanesulfonic acid as an acidic pH adjusting agent in order of p HI or less.
  • This is a strong acid premixed solution of tin methane sulfonate, a tin salt, sodium hydroxide, an alkaline pH adjuster, ascorbic acid, an anti-oxidant agent, and lauryl, a brightener.
  • a tin solution having the following composition was prepared by adding betaine in the order of dimethylaminoacetic acid betaine.
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, the Sludge generation was observed.
  • the surface state was observed using SEM in the same manner as in Example 1. However, as in Comparative Example 1, abnormal precipitation was observed on the tin plating surface, and a uniform surface coating could not be formed. However, it was divided. Since this observation image is the same as that of Comparative Example 1, the description is omitted.
  • the tin plating layer observed here was formed using a tin plating solution in which sludge was generated.
  • Solder wetting evaluation Solder pace ⁇ equilibrium method (rapid heating mode)
  • Comparative Example 4 a tin plating solution having the following composition was prepared through Steps i to V similar to those in Comparative Example 1. The difference was that cenoic acid was used as a chelating agent instead of sodium dalconate. That is, it is a chelating agent such as citrate and an acidic pH adjuster in ion-exchanged water.
  • tin salt is methane sulfonic acid tin
  • alkaline pH adjuster is sodium hydroxide
  • antioxidant is ascorbic acid
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was already generated during bathing.
  • Example 2 In the same manner as in Example 1, the surface state was observed using SEM. The surface of this tin plating layer was observed with an SEM (scanning electron microscope), and the observation image was shown in FIG. As apparent from comparison with Example 4, it can be seen that abnormal precipitation was observed on the surface of the tin plating, and a uniform surface coating could not be formed. In addition, the tin plating layer observed here was formed using a tin plating solution in which sludge was generated.
  • Solvent ion exchange water
  • Solvent ion exchange water
  • a tin plating solution having the following composition was prepared through Steps i to V similar to those in Comparative Example 1.
  • the difference was that polyoxyethylene lauryl ether was used in place of the brightener lauryl dimethylamino acetate betaine.
  • the ion-exchanged water is mixed with chelate, which is a chelating agent, and methanesulfonic acid, which is an acidic pH adjuster, in this order to form a strongly acidic premixed liquid having a pH of 1 or less.
  • chelate which is a chelating agent
  • methanesulfonic acid which is an acidic pH adjuster
  • sodium hydroxide as an alkaline pH adjuster, ascorbic acid as an anti-oxidation agent, and polyoxyethylene lauryl ether as a brightener were added in this order to prepare a tin plating solution having the following composition. .
  • the surface state was observed using SEM in the same manner as in Example 1. However, as in Comparative Example 1, abnormal precipitation was observed on the tin plating surface, and a uniform surface coating could not be formed. However, it was divided. Since this observation image is the same as that of Comparative Example 1, the description is omitted.
  • the tin plating layer observed here was formed using a tin plating solution in which sludge was generated.
  • Solder wetting evaluation Solder paste equilibrium method (rapid heating mode)
  • a tin plating solution having the following composition was prepared through Steps i to V similar to those in Comparative Example 1.
  • the difference is that tin sulfate is used instead of tin methane sulfonate.
  • Polyoxyethylene lauryl ether was used in place of the brightener lauryldimethylaminoacetic acid betaine.
  • ion-exchanged water is mixed with sodium dalconate, which is a chelating agent, and methanesulfonic acid, which is an acidic pH adjuster, in this order to form a strongly acidic premixed solution having a pH of 1 or less.
  • alkaline sodium hydroxide as pH adjuster
  • ascorbic acid as acid inhibitor
  • polyoxyethylene lauryl as brightener
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was observed 2 days after the bathing.
  • Example 2 In the same manner as in Example 1, the surface state was observed using SEM. The surface of this tin plating layer was observed with a scanning electron microscope (SEM), and the observed image is shown in FIG. As apparent from comparison with Example 6, it can be seen that abnormal precipitation was observed on the surface of the tin plating, and a uniform surface coating could not be formed. In addition, the tin plating layer observed here was formed using a tin plating solution in which sludge was generated.
  • SEM scanning electron microscope
  • Solder wetting evaluation Solder paste equilibrium method (rapid heating moat ')
  • a tin plating solution having the following composition was prepared through Steps i to V similar to those in Comparative Example 1. The difference was that catechol was used in place of ascorbic acid, which is an antioxidant, and polyoxyethylene lauryl ether was used in place of betaine, lauryldimethylaminoacetic acid, which was a brightener. That is, sodium ion, which is a chelating agent, and methanesulfonic acid, which is an acidic pH adjuster, are mixed with ion-exchanged water in this order to form a strongly acidic premixed solution having a pH of 1 or less.
  • a tin plating solution having the following composition was prepared by adding tin sulfonate, sodium hydroxide as an alkaline pH adjuster, catechol as an antioxidant, and polyoxyethylene lauryl ether as a brightener in this order.
  • Polyoxyethylene lauryl ether lgZL pH: 4.0
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was observed 2 days after the bathing.
  • the surface state was observed using SEM in the same manner as in Example 1. However, as in Comparative Example 1, abnormal precipitation was observed on the tin plating surface, and a uniform surface coating could not be formed. However, it was divided. Since this observation image is the same as that of Comparative Example 1, the description is omitted.
  • the tin plating layer observed here was formed using a tin plating solution in which sludge was generated.
  • Solder wetting evaluation Solder paste equilibrium method (Rapid heating mode '[0169] [Comparative Example 8]
  • a tin plating solution having the following composition was prepared through Steps i to V similar to those in Comparative Example 1. The difference is that ascorbic acid, an antioxidant, is added, and sodium sulfate, a conductive salt, is added at the same time.
  • ion-exchanged water is mixed with sodium dalconate, which is a chelating agent, and methanesulfonic acid, which is an acidic pH adjuster, in this order to form a strongly acidic premixed solution having a pH of 1 or less.
  • Add acid oxide, sodium hydroxide pH adjuster, ascorbic acid antioxidant, sodium sulfate conductive salt, brightener lauryl dimethylaminoacetate betaine in this order.
  • a tin plating solution having the following composition was prepared.
  • Tin methane sulphonate (converted to tin): 20g / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was generated 1 day after the bathing.
  • the surface state was observed using SEM in the same manner as in Example 1. However, as in Comparative Example 1, abnormal precipitation was observed on the tin plating surface, and a uniform surface coating could not be formed. However, it was divided. Since this observation image is the same as that of Comparative Example 1, the description is omitted.
  • the tin plating layer observed here was formed using a tin plating solution in which sludge was generated.
  • Solder wetting evaluation Solder paste equilibrium method (rapid heating mode)
  • This comparative example 9 was the following composition completely different from the above-mentioned comparative examples 1 to 8, and a tin plating solution having a conceivable composition was prepared.
  • the mixing order of the following components was not particularly problematic, and each component was dissolved in water as a solvent to a predetermined concentration, and the pH was adjusted with aqueous ammonia.
  • Alkylamine type surfactant 0. lg / L
  • pH adjusted with aqueous ammonia: 7.0
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, 1 day after the bath Sludge generation was observed after the past.
  • This comparative example 10 was prepared by preparing a tin plating solution having the following composition which is completely different from the above-described comparative examples 1 to 8 and having a possible composition.
  • the mixing order of the following components was not particularly problematic, and each component was dissolved in water as a solvent to a predetermined concentration, and the pH was adjusted with sodium hydroxide.
  • Alkylamine type surfactant 0. lg / L
  • the tin plating solution was stored at room temperature in an air atmosphere. As a result, sludge was generated 5 hours after the bathing.
  • Example 1 Comparison between Example 1 and Comparative Example 1: As is clear from Table 1, the tin plating solutions of Example 1 and Comparative Example 1 are identical if simply seen in composition and pH force. What is different is the mixing procedure of the components. That is, in Example 1, sodium dalconate as a chelating agent, sodium hydroxide sodium hydroxide as an alkaline pH adjuster, and methane sulfonic acid as an acidic pH adjuster were added in this order to ion-exchanged water, and the solution pH was set to 12. In addition, methanesulfonic acid tin, which is a tin salt, is added to ensure the production of tin chelate complexes. After that, the alkaline pH adjusting agent for fine adjustment, sodium hydroxide, the acid prevention agent ascorbic acid, and the brightening agent lauryl dimethylamino acetate betaine are added in this order. .
  • Comparative Example 1 is a strongly acidic solution having a pH of 1 or less in the order of ion-exchanged water, sodium dalconate as a chelating agent, and methanesulfonic acid as an acidic pH adjuster.
  • tin methanesulfonate which is a tin salt
  • a method of adding a tin salt in the acidic region has been adopted.
  • alkaline pH adjustment Add sodium hydroxide as the agent, ascorbic acid as the anti-oxidation agent, and betaine lauryl dimethylaminoacetate as the brightening agent.
  • Example 1 and Comparative Example 1 are merely different in the mixing order of the constituent forces.
  • the solution properties are completely different. Accordingly, it can be said that even though the amounts of the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different. This is supported by the following contents.
  • Example 1 even when stored in an air atmosphere at room temperature to 40 ° C, no sludge is observed even after 365 days.
  • Comparative Example 1 generation of sludge was confirmed after only 2 days.
  • sludge is generated even when the solution pH is raised to 10 using sodium hydroxide and stored in an air atmosphere of room temperature to 40 ° C or after 365 days. Is not seen at all.
  • solder wettability in the case of the tin plating solution of Example 1, a tin plating layer having good solder wettability can be formed even after 365 days. On the other hand, in the case of the tin plating solution of Comparative Example 1, when the generation of sludge is recognized, the solder wettability deteriorates.
  • Example 2 and Comparative Example 2 The relationship between Example 2 and Comparative Example 2 is basically the same as the relationship between Example 1 and Comparative Example 1. Fundamentally, the mixing procedure of the components is different. However, in this Example 2 and Comparative Example 2, since it is there to different ⁇ methanesulfonic acid is acid P H adjusting agent which contains, pH of the final tin plating solution 6. The amount of the alkaline pH adjuster added is also changed so that it becomes zero. That is, the components of the tin plating solution of Example 2 are the same as those of Example 1, and the mixing order is also the same. The constituent components of the tin plating solution of Comparative Example 2 are the same as those of Comparative Example 1, and the mixing order is also the same. However, Example 2 and Example 1, and Comparative Example 2 and Comparative Example 1 are different from each other in the amount of constituent components as shown in Table 2.
  • Example 2 and Comparative Example 2 simply differ in the mixing order of the constituent forces.
  • the solution properties are completely different. Therefore, as in the case of Example 1, it can be said that although the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different. This is supported by the following contents.
  • Example 2 even when stored in an air atmosphere of room temperature to 40 ° C., no sludge is observed even after 365 days.
  • Comparative Example 2 the generation of sludge was confirmed after only 1 day.
  • Example 2 even if the solution pH was arbitrarily changed between 4 and 10 using sodium hydroxide, or stored in an air atmosphere at room temperature to 40 ° C, 365 days Even after a while, no sludge was seen.
  • solder wettability in the case of the tin plating solution of Example 2, it is possible to form a tin plating layer having good solder wettability even after 365 days. On the other hand, in the case of the tin plating solution of Comparative Example 2, if the generation of sludge is observed, the solder wettability deteriorates.
  • Example 3 and Comparative Example 3 The relationship between Example 3 and Comparative Example 3 is basically the same as the relationship between Example 1 and Comparative Example 1. Fundamentally, the mixing procedure of the components is different. However, in Comparative Example 3 and Example 3, since it is there to ⁇ methanesulfonic acid is acid P H modifiers different to include, pH of the final tin plating solution 8. The amount of the alkaline pH adjuster added is also changed so that it becomes zero.
  • Example 3 the components of the tin plating solution of Example 3 are the same as in Example 1 and the mixing order is the same. It is like.
  • the constituent components of the tin plating solution of Comparative Example 3 are the same as those of Comparative Example 1, and the mixing order is also the same.
  • Example 3 and Example 1, and Comparative Example 3 and Comparative Example 1 are different from each other in the amount of constituent components as shown in Table 3.
  • Example 3 and Comparative Example 3 simply differ in the mixing order of the constituent forces.
  • the solution properties are completely different. Therefore, as in the case of Example 1, it can be said that although the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different. This is supported by the following contents.
  • Example 3 even when stored in an air atmosphere of room temperature to 40 ° C., no sludge is observed even after 365 days.
  • Comparative Example 3 the generation of sludge was already confirmed during the bathing.
  • solder wettability in the case of the tin plating solution of Example 3, a tin plating layer having good solder wettability can be formed even after 365 days. On the other hand, in the case of the tin plating solution of Comparative Example 3, if the generation of sludge is recognized, the solder wettability deteriorates.
  • Example 4 cenoic acid was used as the chelating agent of Example 1 in place of sodium dalconate. That is, in Example 4, a solution pH was added to ion-exchanged water in the order of citrate as a chelating agent, sodium hydroxide as an alkaline pH adjuster, and methanesulfonic acid as an acidic pH adjuster. No. 0 is used, and tin methanesulfonate tin, which is a tin salt, is added to it to produce a tin chelate complex. Then, add alkaline hydroxide for fine adjustment, sodium hydroxide, ascorbic acid as antioxidant, and betaine lauryldimethylaminoacetate as brightener. The pH of the tin plating solution was 6.0.
  • Comparative Example 4 the ion-exchanged water, the chelating agent citrate, and the acidic pH adjustment The solution is added in the order of methanesulfonic acid, and the solution is made into a strongly acidic solution with a pH of 1 or less, and tin methanesulfonate, a soot salt, is stored here.
  • a method for producing a tin plating solution a method of adding a tin salt in the acidic region has been adopted.
  • the alkaline pH adjuster sodium hydroxide, the antioxidant ascorbic acid, and the brightener lauryl dimethylamino acetate betaine are used. Then, the pH of the final tin plating solution was adjusted to 6.0. However, in Comparative Example 4 and Example 4, since the added Caro amount of methanesulfonic acid and the different acidic P H adjusting agent to be contained therein, pH of the final tin plating solution 6.0 Change the amount of pH-adjusting agent so that
  • Example 4 and Comparative Example 4 the mixing order of the constituent components is merely different, but the solution properties are completely different. Therefore, as in the case of Example 1, it can be said that even though the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different.
  • the power to support this is as follows. In the case of Example 4, even when stored in an air atmosphere at room temperature to 40 ° C., no sludge is observed even after 365 days. On the other hand, in the case of Comparative Example 4, the generation of sludge was already confirmed during bathing.
  • solder wettability in the case of the tin plating solution of Example 4, a tin plating layer having good solder wettability can be formed even after 365 days.
  • the solder wettability deteriorates.
  • Example 5 Comparison between Example 5 and Comparative Example 5:
  • polyoxyethylene lauryl ether was used in place of the lauryldimethylaminoacetic acid betaine which is the brightener of Example 1. That is, in Example 5, the ion-exchanged water was mixed with the chelating agent sodium dalconate, alkaline p Calorie solution of sodium hydroxide as H adjuster and methane sulfonate as acidic pH adjuster in order of solution pH is set to 12, and tin methane sulfonate as a tin salt is carved there, and a tin chelate complex is generated reliably. The technique to do is adopted. After that, ascorbic acid as an antioxidant and polyoxyethylene lauryl ether as a brightener were added in this order, and the pH of the final tin plating solution was adjusted to 4.0.
  • Comparative Example 5 is a strongly acidic solution having a calorie solution pH of 1 or less in the order of ion-exchanged water, sodium dalconate as a chelating agent, and methanesulfonic acid as an acidic pH adjuster.
  • tin methanesulfonate which is a tin salt
  • the alkaline pH adjuster, sodium hydroxide, ascorbic acid, the acid inhibitor, and the polyoxyethylene lauryl agent, the brightener was adjusted to 4.0.
  • Example 5 and Comparative Example 5 the mixing order of the constituent components is merely different, but the solution properties are completely different. Therefore, as in the case of Example 1, it can be said that even though the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different.
  • the power to support this is as follows. In the case of Example 5, even when stored in an air atmosphere at room temperature to 40 ° C., no sludge is observed even after 365 days. On the other hand, in the case of Comparative Example 5, the generation of sludge was confirmed after a lapse of only 2 days.
  • solder wettability in the case of the tin plating solution of Example 5, it is possible to form a tin plating layer having good solder wettability even after 365 days. On the other hand, in the case of the tin plating solution of Comparative Example 5, when the generation of sludge is recognized, the solder wettability deteriorates.
  • Example 6 methanesulfuric acid, which is the tin salt of Example 1, was used. Tin sulfate was used in place of tin phonate, and polyoxyethylene lauryl ether was used in place of the brightener lauryldimethylaminoacetic acid betaine. That is, in Example 6, the pH of the solution in the order of sodium dalconate as a chelating agent, sodium hydroxide as an alkaline pH adjusting agent, and methanesulfonic acid as an acidic pH adjusting agent in order of ion-exchanged water.
  • a tin salt As an example, a tin salt, tin sulfate, is added to ensure the production of a tin chelate complex. After that, ascorbic acid as an anti-oxidation agent and polyoxyethylene lauryl ether as a brightener were added in this order, and the final tin plating solution had a pH of 4.0.
  • Comparative Example 6 is a strongly acidic solution having a pH of 1 or less in the order of ion-exchanged water, sodium dalconate as a chelating agent, and methanesulfonic acid as an acidic pH adjuster.
  • tin sulfate which is a tin salt
  • the alkaline pH adjuster sodium hydroxide, ascorbic acid as the antioxidant, and polyoxyethylene lauryl ether as the brightener are added in this order.
  • the final tin plating solution had a pH of 4.0.
  • Example 6 and Comparative Example 6 the mixing order of the constituent components is merely different, but the solution properties are completely different. Therefore, as in the case of Example 1, it can be said that even though the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different.
  • the power to support this is as follows. In the case of Example 6, even when stored in an air atmosphere of room temperature to 40 ° C., no sludge is observed even after 365 days. On the other hand, in the case of Comparative Example 6, the generation of sludge was confirmed after only 2 days after the laying power.
  • solder wettability in the case of the tin plating solution of Example 6, a tin plating layer having good solder wettability can be formed even after 365 days. On the contrary In the case of the tin plating solution of Comparative Example 6, if the generation of sludge is observed, the solder wettability deteriorates.
  • Example 7 Comparison of Example 7 and Comparative Example 7: In this Example 7, catechol was used in place of the ascorbic acid, which is the antioxidant of Example 1, and a lauryl dimethylaminoacetic acid solid, which was a brightener, was used. Instead of in, polyoxyethylene lauryl ether was used. That is, in Example 7, the pH of the solution was changed to ion exchanged water in the order of sodium dalconate, a chelating agent, sodium hydroxide, an alkaline pH adjusting agent, and methanesulfonic acid, an acidic pH adjusting agent. No. 12, a tin salt, tin methanesulfonate, is added to ensure the formation of a tin chelate complex. After that, catechol, which is an anti-oxidation agent, and polyoxyethylene lauryl ether, which is a brightener, are added in this order, and the final tin plating solution has a pH of 4.0.
  • Comparative Example 7 is a strongly acidic solution having a calorie solution pH of 1 or less in the order of ion-exchanged water, sodium dalconate as a chelating agent, and methanesulfonic acid as an acidic pH adjuster.
  • tin methanesulfonate which is a tin salt
  • the alkaline pH adjuster, sodium hydroxide, catechol, the acid inhibitor, and the polyoxyethylene lauryl ether, the brightener are used. Then, the pH of the final tin plating solution was adjusted to 4.0.
  • Example 7 and Comparative Example 7 the mixing order of the constituent components is merely different, but the solution properties are completely different. Therefore, as in the case of Example 1, it can be said that even though the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different.
  • the power to support this is as follows. In the case of Example 7, even when stored in an air atmosphere of room temperature to 40 ° C., no sludge is observed even after 365 days. In contrast, in the case of Comparative Example 7, the generation of sludge was confirmed after only 2 days after the build bathing power.
  • solder wettability in the case of the tin plating solution of Example 7, a tin plating layer having good solder wettability can be formed even after 365 days. On the other hand, in the case of the tin plating solution of Comparative Example 7, if the generation of sludge is recognized, the solder wettability deteriorates.
  • Example 8 includes ion-exchanged water, sodium dalconate as a chelating agent, sodium hydroxide sodium hydroxide as an alkaline pH adjusting agent, and acidic pH adjusting agent. A method is adopted in which a methanesulfonic acid is added in this order, and the solution pH is set to 12, and then tin methanesulfonate, which is a tin salt, is added thereto to reliably produce a tin chelate complex.
  • ascorbic acid which is an anti-oxidation agent
  • sodium sulfate which is a conductive salt
  • the pH was 6.0.
  • Comparative Example 8 is a strongly acidic solution having a pH of 1 or less in the order of ion-exchanged water, sodium dalconate as a chelating agent, and methanesulfonic acid as an acidic pH adjuster.
  • tin methanesulfonate which is a tin salt
  • a method of adding a tin salt in the acidic region has been adopted.
  • Example 8 and Comparative Example 8 only the mixing order of the constituent components is different, but the solution properties are completely different. Therefore, as in the case of Example 1, it can be said that even though the constituent components are the same, the manner in which the tin component contained in the tin plating solution exists is completely different.
  • the power to support this is as follows. In the case of Example 8, even when stored in an air atmosphere at room temperature to 40 ° C, no sludge was observed even after 365 days. I can't. On the other hand, in the case of Comparative Example 8, the generation of sludge was confirmed after only 2 days after the laying power.
  • solder wettability in the case of the tin plating solution of Example 8, a tin plating layer having good solder wettability can be formed even after 365 days. On the other hand, in the case of the tin plating solution of Comparative Example 8, if the generation of sludge is recognized, the solder wettability deteriorates.
  • Comparative Example 9 and Comparative Example 10 do not have any examples to be directly compared, they are listed as possible tinplate liquid compositions, and are intended to compare the solution life until sludge generation with each of the above examples. It is. As described above, the tin plating solution of Comparative Example 9 shows sludge generation after 1 day from the bathing. In addition, the tin plating solution of Comparative Example 10 shows sludge generation after 5 hours of bathing. Furthermore, it was also confirmed that a uniform tin-plated film could not be formed with the tin plating solutions of Comparative Example 9 and Comparative Example 10 after the generation of sludge was confirmed. That is, it can be easily understood that the solution life of the tin plating solutions of Comparative Example 9 and Comparative Example 10 is extremely short when compared with the above-described tin plating solution according to the present invention.
  • the tin plating solution according to the present invention does not generate sludge even after a period of one year, and the plating solution management has a significantly longer life after the bathing compared to the conventional tin plating solution. Is easy and economical.
  • the tin plating solution according to the present invention can be operated in the range of 10 ° C to 40 ° C, and since there is appropriate liquid evaporation, it does not cause a significant increase in the amount of waste solution, so The load can be reduced, and the total cost can be reduced.
  • the tin plating solution adjustment method according to the present invention employs a certain adjustment procedure. Therefore, existing equipment that does not require special equipment and methods can be used effectively.
  • FIG. 1 is an SEM observation image of a tin plating layer formed using a tin plating solution according to the present invention 365 days after the bathing.
  • FIG. 2 is an SEM observation image of a tin plating layer formed using a tin plating solution according to the present invention 365 days after the bathing.
  • FIG. 3 is an SEM observation image of a tin plating layer formed using the tin plating solution according to the present invention 365 days after the bathing.
  • FIG. 4 SEM observation image of a tin plating layer formed using a tin plating solution with sludge generated after 2 days from the bath.
  • FIG. 5 SEM observation image of a tin plating layer formed using a tin plating solution with sludge generated at the stage of building bath.
  • FIG. 6 is an SEM observation image of a tin plating layer formed using a tin plating solution in which sludge is generated after 2 days from the bathing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 長期保管してもスラッジの生成を起こしにくく溶液寿命が飛躍的に長いスズめっき液の提供を目的とする。この目的を達成するため、電解法でスズめっきを行うためのスズめっき液であって、スズイオン供給源であるスズ塩をスズ換算で5g/L~30g/L含有し、このスズイオンをキレート化し安定化させるキレート剤及びpH調整剤を含むことを特徴とするもの等を採用する。そして、このスズめっき液の調整方法は、中性からアルカリ性の溶液中にメタンスルホン酸スズを添加し、スズキレート錯体を形成させる点に特徴を有する。

Description

明 細 書
スズめっき液、そのスズめっき液を用いためっき方法、スズめっき液調整 方法及びそのスズめっき液を用いてスズめっき層を形成したチップ部品
技術分野
[0001] 本件発明は、スズめっき液、そのスズめっき液を用いためっき方法及びそのスズめ つき液を用いてスズめっき層を形成したチップ部品に関する。特に、従来のスズめつ き液に見られたスラッジの発生しないスズめっき液に関する。
背景技術
[0002] 従来から、スズめっき液は、電子部品材料の分野で端子めつき、酸化腐食防止めつ きとして広く使用されてきた。近年は、鉛フリー半田に対する要求から、半田の代替え として使用されることも行われて 、る。
[0003] スズめっき液を使用する技術分野の中でも、チップ部品である積層セラミックコンデ ンサの分野では、当該積層セラミックコンデンサの外部電極の表面にスズめっき層を 形成することが一般ィ匕して 、る。当該積層セラミックコンデンサの外部電極のスズめ つき層は、半田濡れ性に優れ、半田リフロー等の表面実装プロセスを経て、プリント配 線板に表面実装する際に有用なものとして機能する。
[0004] ところ力 当業者間の周知の事実として、従来からスズめっき液には酸化スズの沈 殿 (以上及び以下において、単に「スラッジ」と称する。)が発生し、長期安定性に欠 けるという欠点が存在した。従って、スズめっき液は、建浴後に直ちに使用する必要 があった。し力も、長期保存性に欠けるスズめっき液は、めっき操業の途中に於いて も刻々と、その組成変動を起こし、めっき液性状が変化しているため、得られるめっき 被膜の品質を安定化させることが困難で、めっき液としての品質保証が極めて困難 であった。最も短命なスズめっき液は、建浴直後にスラッジの発生が認められ、スズ めっき液が白濁すると 、う現象が発生して 、た。
[0005] 従来から、特許文献 1に開示されて!ヽるような組成を持つスズめっき液が存在する
1S めっき液としての溶液寿命が短ぐ浴管理が困難で管理コストが増大する欠点が あった。また、特許文献 2で用いられているようなスズめっき液も存在する。そして、こ れらの特許文献に開示の製造方法を基に実験的に調整したスズめっき液は、室温レ ベルの環境下で、平均的に 24時間が経過すると、ほぼ確実にスラッジの発生が認め られる。
[0006] 特許文献 1 :特開平 10— 245694号公報
特許文献 2 :特開平 2— 170996号公報
特許文献 3:特開 2001— 110666号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、スラッジの発生したスズめっき液を用いて形成したスズめっき層には、 共通した欠点として、そのスズめっき層に対する半田濡れ性が劣るため半田の弾き 現象 (Dewetting)が一般的に見られる。また、スラッジの発生した状態でのスズめつ き液を使用していると、スズめっき層の均一な被膜形成が困難となる。更に、スラッジ の発生したスズめっき液をめつき装置で使用し続けると、各種配管の目詰まりを生じ、 装置のメンテナンスが煩雑化する。
[0008] 従来から、当業者間において、スズめっき液のスラッジの発生を無くすため種々の 方法が検討されてきた。その結果、上記特許文献 3に開示のような、多量にアンモ- ァ成分を用いるような手法以外では、有効な解決手法を見いだせず、スズめっき液 の持つ特徴として認識し、半ば諦められてきた問題でもあった。
[0009] そして、多量にアンモニア成分を用いたスズめっき液の欠点は、そのアンモニアに より生ずる臭気が問題であり、作業環境を直接悪化させると同時に、めっき槽近傍に ある銅製品、銅製部品の腐食を促進する等の不具合があり、めっき槽のミスト換気を 強化するための設備投資を要する等して、積極的使用が困難なものであった。
[0010] これらのことから、建浴後の溶液寿命が長ぐ長期保存性に優れ、長期間のめっき 操業の中で品質変化のないスズめっき液を巿場に供給出来れば、社会に受ける技 術的恩恵は計り知れな 、ものとなる。
課題を解決するための手段
[0011] そこで、本件発明者等は、鋭意研究の結果、以下に述べるスズめっき液に想到した [0012] スズめっき液: 本件発明に係るスズめっき液は、電解法でスズめっきを行うためのス ズめっき液であって、スズイオン供給源であるスズ塩をスズ換算で 5g/L〜30g/L 含有し、このスズイオンをキレート化し安定化させるキレート剤及び PH調整剤を含み
、スラッジが 7日以上発生しないことを特徴とするものである。
[0013] そして、本件発明に係るスズめっき液に用いる前記スズ塩は、水に対して可溶性の 第 1スズ塩力 選ばれる 1種又は 2種以上を用いることが好ましい。
[0014] 本件発明に係るスズめっき液にぉ 、て、前記キレート剤は、ダルコン酸、ダルコン酸 塩、クェン酸、クェン酸塩、ピロリン酸、ピロリン酸塩力 選ばれる 1種又は 2種以上を
30gZL〜300gZL濃度となるよう含むことが好ましい。
[0015] 本件発明に係るスズめっき液にぉ 、て、前記 pH調整剤は、アルカリ性 pH調整剤 であって、水酸化ナトリウム、水酸ィ匕カリウム、アンモニア水から選ばれる 1種又は 2種 以上を 5gZL〜 140gZL濃度となるように含ませることが好ま 、。
[0016] 本件発明に係るスズめっき液にぉ 、て、前記 PH調整剤は、酸性 PH調整剤であつ て、メタンスルホン酸、エタンスルホン酸、硫酸、イセチオン酸カゝら選ばれる 1種又は 2 種以上を 10gZL〜300gZL含ませることが好まし 、。
[0017] 本件発明に係るスズめっき液において、酸ィ匕防止剤を 0. lgZL〜30gZL濃度と なるよう含ませることが好まし 、。
[0018] 本件発明に係るスズめっき液の pHを酸性側に微調整するための pH調整剤であつ て、必要に応じてメタンスルホン酸、硫酸の 1種又は 2種を添カ卩し、 pH4〜pH10の範 囲とすることが好ましい。
[0019] 本件発明に係るスズめっき液の pHをアルカリ性側に微調整するための pH調整剤 であって、必要に応じて水酸ィ匕ナトリウム、水酸ィ匕カリウム、アンモニア水の 1種又は 2 種を添カ卩し、 pH4〜pH10の範囲とすることが好まし!/、。
[0020] 本件発明に係るスズめっき液にぉ 、て、導電塩の添加を必要とする場合は、硫酸 ナトリウム、硫酸アンモ-ゥムカも選ばれる 1種又は 2種以上を lgZL〜150gZL濃 度となるよう含ませることが好ま 、。
[0021] 本件発明に係るスズめっき液にぉ 、て、光沢剤としてノ-オン界面活性剤、カチォ ン界面活性剤、両性界面活性剤力も選ばれる 1種又は 2種以上を 0. lgZL〜30g /L濃度となるよう含ませることが好ま 、。
[0022] スズめっき方法: 本件発明に係るスズめっき液を用いたスズめっき方法として、浴 温 10°C〜40°Cの条件で電解することが好ましい。
[0023] スズめっき液の調整方法: 本件発明に係るスズめっき液の調整方法であって、以下 の A)及び B)の手順により調整されることを特徴としたスズめっき液調整方法を採用 する事が好ましい。
[0024] A)水と pH調整剤とキレート剤とを混合し、 pH値が 6〜 12の予備混合溶液とする。
B)前記予備調整液にスズ塩を、添加してスズ含有量を 5gZL〜30gZL濃度とな るよう添加し十分に攪拌し、スズキレート錯体を形成させスズめっき液とする。
[0025] 本件発明に係るスズめっき液の調整方法において、上記方法で調整したスズめつ き液に酸ィ匕防止剤を添加する工程を付加することが好ましい。
[0026] 本件発明に係るスズめっき液の調整方法において、上記方法で調整したスズめつ き液に、更に導電塩を添加する工程を付加したスズめっき液調整方法。
[0027] 本件発明に係るスズめっき液の調整方法であって、上記方法で調整したスズめっき 液に、光沢剤を添加する工程を付加したスズめっき液調整方法。
[0028] チップ部品: 以上に述べた本件発明に係るスズめっき液は、電子部品の中でもスズ めっきの多用される積層セラミックコンデンサ等のチップ部品のスズめっき層の形成 に好適である。
発明の効果
[0029] 本件発明に係るスズめっき液は、アンモニア成分を多量に含まなくとも、スズ酸化物 の沈殿が起きにくぐ建浴後の溶液寿命が長くなり、めっき液としての管理も容易とな る。し力も、このスズめっき液は、中性領域として使用出来るため、電子部品における セラミック、電極等への損傷を与えない。
[0030] そして、本件発明に係るスズめっき液を用いてのスズめっきは、 30°Cを超える浴温 での使用が可能であり、適度な液蒸発があるため、廃液量の顕著な増加を引き起こ さな 、ため廃液処理の負荷が軽減出来る。
[0031] また、本件発明に係るスズめっき液の調整方法は、特殊な装置及び手法を必要と するものではなぐ pH調整剤とキレート剤とを混合し、ここに導電塩としてのメタンス ルホン酸を添加し混合攪拌し、中性〜アルカリ性の予備混合溶液を予め調製し、ここ にメタンスルホン酸スズを添加することで、中性〜アルカリ性領域でスズキレート錯体 を効率よく形成するため、酸化スズの沈殿の起こらな ヽ溶液寿命の長 ヽスズめっき液 を得ることが出来る。
[0032] 更に、本件発明に係るスズめっき液及びスズめっき方法を用いることで、長時間の めっき操業の中で、積層セラミックコンデンサ等のチップ部品の表面へ膜厚均一性に 優れ、且つ安定した品質のスズめっき層の形成が可能となる。
発明を実施するための最良の形態
[0033] 以下、本件発明に係る実施の形態に関して、スズめっき液、スズめっき方法、スズめ つき液の調整方法、チップ部品の順に説明する。
[0034] スズめっき液の実施形態: 本件発明に係るスズめっき液は、上述のようにスズイオン 供給源であるスズ塩をスズ換算で 5g/L〜30g/L含有し、このスズイオンをキレート 化し安定化させるキレート剤及び pH調整剤を含み、スラッジが 7日以上発生しないこ とを特徴とするものである。従来の巿場に供給されているスズめっき液の内、多量の アンモニアを使用したスズめっき液以外は、建浴後 5日以内にはスラッジが発生し、ス ズめっき浴の性状を変化させ、スラッジの発生した状態でスズめっきを継続すると、ス ズめっき層としての品質劣化を引き起こす。従って、短期間でのスズめっき液の更新 作業が求められ、コストの上昇、スズめっきの安定操業の観点力 大きな問題となる。 これに対し、本件発明に係るスズめっき液は、以下のスズめっき液の調整方法の中で 詳説するが、スズイオンをキレートイ匕し安定化させるキレート剤及び PH調整剤を含む ことで、中性領域〜アルカリ性領域 (pH6〜pH12)の領域でキレートイ匕を行うことで、 スズイオンの殆どをスズ錯体キレートとして含有したものとなる。従って、スズめっき液 中で、スズがスズ錯体キレートとして安定であるため、以下に述べる構成成分のいか なる組み合わせを行っても、従来のスズめっき液では達成出来な力つた、 10°C〜40 °Cの温度領域でもスラッジが 7日以上発生しない。後述する実施例では、最も溶液安 定性に優れ、 40°Cの温度で 365日経過しても、スラッジ発生のないスズめっき液を開 示している。
[0035] ここで用いるスズめっき液のスズイオン供給源であるスズ塩とは、水に対して可溶性 の第 1スズ塩である(以下、単に「スズ塩」と称する。 ) oそして、当該スズ塩の中でも、 メタンスルホン酸スズ、硫酸スズ、スルファミン酸スズ、ピロリン酸スズから選ばれる 1種 又は 2種以上を用いることが好ましい。そして、本件発明に係るスズめっき液中のスズ 塩の含有量は、スズ換算で 5gZL〜30gZL含有させることが好ましい。スズ塩含有 量がスズ換算で 5gZL未満の場合には、電流効率が下がりめつき速度が工業的に 要求される生産性を満足しなくなると同時にスズめっき層の平滑性、膜厚均一性が損 なわれる。一方、スズ塩の含有量がスズ換算で 30g/Lを超える場合には、めっき液 中のスズ量が多くなり、スズの電着速度が速すぎてめっき層の膜厚制御が困難となる と共に、スズの酸ィ匕物の沈殿生成を回避出来なくなる。そして、本件発明に係るスズ めっき液中のスズ塩の含有量は、スズ換算で 10g/L〜20g/L含有させることがより 好ましい。工業生産的に見て、スズめっきを行う際のめっき条件に一定のレベルでの 変動が有るのが通常であり、めっき条件の管理し得ない不可避的変動を考えると、よ り安定した品質のスズめっき層を形成出来るからである。
次に、前記キレート剤は、スズめっき液中でスズ塩力 供給されたスズイオンをキレ ート錯体として安定ィ匕させるものである。本件発明に言うキレート剤は、ダルコン酸、 ダルコン酸塩、クェン酸、クェン酸塩、ピロリン酸、ピロリン酸塩カゝら選ばれる 1種又は 2種以上を 30g/L〜300g/L濃度となるよう含ませることが好ま 、。ここに記載し たキレート剤が、スズイオン供給源であるスズ塩力 溶液中に電離したスズイオンと効 率よくキレート錯体を形成するからである。中でも、ダルコン酸ナトリウム又はクェン酸 を用いることで、最も安定したスズキレート錯体を形成し、酸化スズの沈殿防止効果 が最も顕著で、溶液寿命の最も長いスズめっき液を得ることが出来る。ここで、スズめ つき液中のキレート剤の濃度は、本来、キレート剤の種類、めっき液中のスズ量に応 じて定められるものである。しかしながら、上述のいずれのキレート錯体を用いても、 キレート剤濃度は、 100gZL〜200gZLの範囲に適正量が存在するため、一般ィ匕 した標記を採用している。そして、 2種以上のキレート剤を併用する場合には、 2種以 上のキレート剤のトータル濃度が 100g/L〜200g/L濃度の範囲となればよい。キ レート剤濃度が lOOgZL未満の場合には、上記めつき液中のスズ量を前提として、 めっき液中のスズイオンの全てとのキレート錯体形成が困難となり、遊離したスズィォ ンが存在するため、酸化スズ沈殿の生成を防止出来ない。一方、キレート剤濃度が 2 OOgZLを超えるものとしても、上記めつき液中のスズイオンとのキレート錯体の形成 には過剰な量となり、資源の無駄遣いとなる。
[0037] そして、前記 pH調整剤とは、スズめっき液中でスズ塩カゝら供給されたスズイオンとキ レート剤とが反応してスズキレート錯体を形成するのに適するよう、溶液を中性力ゝらァ ルカリ性の領域になるように用い、ー且生成したスズキレート錯体の安定ィ匕を図るた めと、最終的に本件発明に係るスズめっき液がスズめっきを行うのに適した pHとする 為に用いる二つの意味合いを含んだものである。そこで、説明の都合上、前者を単 なる「pH調整剤」と称し、後者を「微調整用 pH調整剤」と称する。この「pH調整剤」と 「微調整用 pH調整剤」とは、同時に添加するものではない。そして、 pH調整剤には、 アルカリ性 pH調整剤と酸性 pH調整剤とがある。これらの pH調整剤の使用方法等に 関しては、後述の調整方法の中で詳述する。ここでは、 pH調整剤の種類及び機能 に関してのみ述べる。
[0038] 本件発明に言うアルカリ性 pH調整剤とは、水酸化ナトリウム、水酸ィ匕カリウム、アン モ-ァ水力も選ばれる 1種又は 2種以上を用いる。これらをアルカリ性 PH調整剤とし て選択したのはスズめっきを行う際のめっき液性状に影響を与えず、良好なスズめつ き層の形成が出来るからである。これらのアルカリ性 pH調整剤は、キレート剤とスズィ オンとのキレートイ匕が容易となるよう、キレート剤の開環を促進するものであり、より具 体的にはアルカリ性 pH調整剤を 5g/L〜140g/L濃度となるように含ませる。アル カリ性 pH調整剤を 5gZL未満の場合には、キレート剤の開環を促進出来ない。一方 、アルカリ性 PH調整剤を 140gZLを超える量添加しても、キレート剤の開環効率は 向上せず、上記スズ塩量の範囲を考慮すると過剰添加となる。そして、より好ましくは 、アルカリ性 pH調整剤を 30g/L〜70g/L濃度となるように含ませる。この範囲にお いて、事後的に添加するスズ塩との安定したスズイオンのキレートイ匕が可能で、以下 の述べる酸性 pH調整剤による pH調整も容易となる。
[0039] そして、アルカリ性 PH調整剤と併用する酸性 pH調整剤は、メタンスルホン酸、エタ ンスルホン酸、硫酸、イセチオン酸力も選ばれる 1種又は 2種以上を 10gZL〜300g /L含ませる。これらを酸性 PH調整剤として選択したのはスズめっきを行う際のめつ き液性状に影響を与えず、良好なスズめっき層の形成が出来るからである。そして、 この酸性 pH調整剤は、アルカリ性 pH調整剤でー且アルカリ領域にした調整途中の めっき液の pH値を 6〜 12の範囲として、中性領域から弱アルカリ領域でスズキレート を生成し、安定ィ匕させるために用いるものである。酸性 pH調整剤を 300gZL以上添 加し、調整途中のめっき液の pH6未満となると、スズイオンキレートを安定ィ匕させるこ とが出来ず、最終的なスズめっき液に早期にスラッジ発生が認められる。一方、酸性 pH調整剤を lOgZL未満の添カ卩量とすると、調整途中のめっき液の pH12以上の強 アルカリ領域となり、事後的なスズめっき液の微調整が困難で、セラミックとの浸食の 容易なスズめっき液となる。
[0040] 次に、微調整用 pH調整剤には、本件発明に係るスズめっき液の pHを酸性側に微 調整するための pH調整剤 (以下、「微調整用酸性 pH調整剤」と称する。)と、本件発 明に係るスズめっき液の pHをアルカリ性側に微調整するための pH調整剤(以下、「 微調整用アルカリ性 pH調整剤」と称する。)とがある。これらの微調整用 pH調整剤は 、必要に応じて添加するものであり、スズめっき液としての最終的な pH調整に用いる ものである。従って、添カ卩のタイミングとしては、スズキレートを生成し、安定化した後 の!、ずれかの段階で用いる者である。
[0041] そして、微調整用酸性 pH調整剤としては、メタンスルホン酸、硫酸の 1種又は 2種を 添加し、めっき液 pH値を 4〜10の範囲、より好ましくは pH値が 6〜8の範囲とするこ とが好ましい。また、微調整用アルカリ性 PH調整剤として、水酸化ナトリウム、水酸ィ匕 カリウム、アンモニア水の 1種又は 2種を添カ卩し、めっき液 pH値を 4〜10の範囲、より 好ましくは pH値が 6〜8の範囲とすることが好ましい。スズめっき液の pH値が 4未満 の強酸性領域になると、スズめっきを施す積層セラミックコンデンサ等のチップ部品に 使用されたセラミック部分を侵食する可能性が高くなる。そして、スズめっき液の pH 値が 10を超える強アルカリ性領域になると、やはりセラミック部分を浸食する場合もあ る。そして、同時に生成したスズキレート錯体の安定性が損なわれ、スズの固定化が 出来ずスズイオンとなり、酸化スズの沈殿生成が起こるためスズめっき液としての溶液 寿命が短命化するのである。従って、より好ましくとして明記した範囲は、スズめっき 液によるセラミック浸食を確実に防止して、スズめっき液の長寿命化を確実にするた め中性領域に近づけたものである。
[0042] そして、本件発明に係るスズめっき液に酸ィ匕防止剤を含ませることが、スズめっき液 としての長寿命化を図る観点から好ましい。大気とめっき液との接触による自然酸ィ匕 を防止して、スズ酸化物の沈殿発生を効率良く防止するためである。ここで酸化防止 剤を 0. lgZL〜30gZL濃度となるよう含ませることが好ましい。そして、酸化防止剤 の中でも、カテコール、ヒドロキノン、ァスコルビン酸、ァスコルビン酸塩、フエ-レンジ ァミン力 選ばれる 1種又は 2種以上を用いることが好ましい。酸化防止剤濃度が 0. lgZL未満の場合には十分な酸化防止効果が得られない。そして、酸化防止剤濃 度を 30gZLを超えて添加しても、それ以上に酸ィ匕防止効果を得ることが出来ず、ス ズめっき液の長寿命化は期待出来ない。しかも、酸化防止剤を過剰に加えることで、 スズめっき液としての品質変化が起こるため好ましくない。従って、より好ましくは、上 記酸化防止剤の濃度は、 lgZL〜10gZL濃度の範囲として用いる。確実な酸化防 止効果を得ることが可能で、酸ィ匕防止剤の過剰添カ卩によるスズめっき液としての品質 変化を確実に防止出来るからである。
[0043] 本件発明に係るスズめっき液において、以上に述べてきた組成でも導電塩の添カロ を特に行うことなく電解することが可能である。し力しながら、スズめっき液を電解する 際の通電状態を更に安定化させ、スズ析出の電流効率を高くし、生産性を高める必 要のある場合には、導電塩を追加添加することが好ましい。導電塩の添加を必要と する場合は、硫酸ナトリウム、硫酸アンモ-ゥム力 選ばれる 1種又は 2種以上を lgZ L〜150gZL濃度となるよう含ませることが好ましい。ここで、導電塩として硫酸ナトリ ゥム、硫酸アンモ-ゥムを用いたのは、これらが最もスズめっき液の品質変化が小さく 、スズめっき層への不純物残留もないからである。この導電塩の添加量が lgZL未 満の場合には、電解を行ったときの通電安定性を向上させる効果は得られない。そし て、この導電塩の添カ卩量が 150gZLを超えるものとしても、電解時の通電安定性は それ以上に向上しないため、資源の無駄遣いとなる。
[0044] 更に、本件発明に係るスズめっき液にぉ 、て、光沢剤としてノ-オン界面活性剤、 カチオン界面活性剤、両性界面活性剤力 選ばれる 1種又は 2種以上を 0. lg/L 〜30g/L濃度となるよう含ませることも好ましい。この光沢剤は、スズめっき液を電解 して得られるスズめっき層を平滑にし、膜厚均一性の向上に寄与するものである。
[0045] ここで言う光沢剤をより具体的に言えば、ノ-オン (非イオン)界面活性剤とは、水中 でイオン化しな 、親水基を持って 、る界面活性剤であるため、水の硬度や電解質の 影響を受けにくぐ他の全ての界面活性剤との併用が可能なものである。ノ-オン界 面活性剤はその構造により、エステル型、エーテル型、エステル ·エーテル型及びそ の他に分類される力 本件発明に係るスズめっき液には、高級アルコール、アルキル フエノール、脂肪酸、ァミン、アルキレンジァミン、脂肪酸アミド、スルホンアミド、多価 アルコール、ダルコキシドのポリオキシアルキレン付カ卩物の 、ずれ力 1種又は 2種以 上を用いることが好ましい。
[0046] そして、カチオン(陽イオン)界面活性剤とは、水中で疎水基のついている部分が陽 イオンに電離する性質の界面活性剤であり、そのため一般的に負に帯電して 、る固 体表面に強く吸着する性質を備える。本件発明に係るスズめっき液にぉ 、て用いるこ との出来るカチオン(陽イオン)界面活性剤を具体的に言えば、ラウリルトリメチルアン モ -ゥム塩、セチルトリメチルアンモ -ゥム塩、ステアリルトリメチルアンモ -ゥム塩、ラ ゥリルジメチルェチルアンモ -ゥム塩、ォクタデセ-ルジメチルーェチルアンモ -ゥム 塩、ラウリルジメチルアンモ -ゥムベタイン、ステアリルジメチルアンモ -ゥムベタイン、 ジメチルーベンジルラウリルアンモ-ゥム塩、セチルジメチルベンジルアンモ-ゥム塩 、ォクタデシルジメチルベンジルアンモ -ゥム塩、トリメチルベンジルアンモ -ゥム塩、 トリェチルベンジルアンモ -ゥム塩、へキサデシルビリジ -ゥム塩、ラウリルピリジ-ゥ ム塩、ドデシルピコリニゥム塩、ラウリルイミダゾリニゥム塩、ォレイルイミダゾリ二ゥム塩 、ステアリルアミンアセテート、ラウリルアミンアセテート、ォクタデシルァミンアセテート の!、ずれか 1種又は 2種以上を用いることが好まし 、。
[0047] 更に、両性界面活性剤とは、水に溶けたとき、アルカリ性領域では陰イオン界面活 性剤の性質を、酸性領域では陽イオン界面活性剤の性質を示す界面活性剤である 。本件発明に係るスズめっき液にお ヽて用いることの出来る両性界面活性剤を具体 的に言えば、アルキルカルボキシベタイン型、アルキルアミノカルボン酸型、アルキル イミダゾリン型力も選ばれる 1種又は 2種以上を用いることが好ましい。
[0048] 上記光沢剤としての界面活性剤の中でも、ラウリルジメチルァミノ酢酸べタイン、ポリ ォキシエチレンラウリルエーテルの 、ずれかを用いることが最も好まし 、。これらの界 面活性剤は、スズめつき液中での安定性に優れスズめっき液としての溶液寿命の向 上効果が高ぐしかも形成するめつき被膜の膜厚均一性を得る効果も高いからである
[0049] そして、スズめっき液に光沢剤として上記界面活性剤を含ませる場合の濃度が 0. 1 gZL未満の場合には、スズめっき層を平滑にし、膜厚均一性の向上させる効果を得 ることが出来ない。一方、光沢剤濃度が 30gZLを超えるものとしても、スズめっき層 の平滑化効果及び膜厚均一性向上の効果とも、それ以上に向上しない。
[0050] スズめっき方法の実施形態: 本件発明に係るスズめっき液を用いたスズめっき方法 は、浴温 10°C〜40°Cの条件で電解することが好ましい。このめつき方法で特徴的な ことは、浴温 10°C〜40°Cの範囲でのめっき操業が可能な点にある。浴温が 10°C未 満の場合には、内蔵歪みが高ぐ粗いスズめっき結晶が析出し、平滑で膜厚均一性 に優れたスズめっき層を得に《なる。一方、浴温が 40°Cを超えるものとした場合に は、めっき液水分の蒸発気散が顕著になり、スズめっき液の組成変動が激しぐ溶液 寿命も短くなる。
[0051] 従来のスズめっき液は、めっき液としての溶液安定性に欠け、溶液寿命が短いため 、室温程度の浴温でめっき操業を行わざるを得な力つた。これに対して、本件発明に 係るスズめっき液を用いることで、浴温が 30°Cを超える高温域でのスズめっき操業が 可能となる。この浴温が 30°C〜40°Cでのめつき操業を行うことにより、スズめっき液と しての品質を劣化させることのない範囲で、適度なめっき液水分の蒸発気散が起こり 、めっき廃液量を減少させ、廃水処理の負荷を軽減することが可能となる。
[0052] そして、このときの電流密度は、 0. 05AZdm2〜0. 5AZdm2の範囲を採用するこ とが好ましい。当該電流密度が 0. 05AZdm2未満の場合には、スズの析出速度が 当然に遅ぐ工業的生産性を満足しない。これに対し、 0. 5AZdm2を超える電流密 度を採用すると、スズめっき被膜の平滑性が損なわれる。
[0053] スズめっき液の調整方法の実施形態: 本件発明に係るスズめっき液の調整方法は 、以下の A及び Bの手順により調整されることを特徴としたものである。このスズめっき 液調整方法は、キレート剤を含んだ中性カゝらアルカリ性領域の水溶液中にスズ塩を 添加し、スズキレート錯体を形成させる点に特徴を有する。
[0054] A)の工程では、水と PH調整剤とキレート剤とを混合し、 PH値が 6〜12の予備混合 溶液とする。ここで言う「pH調整剤」、「キレート剤」の種類及び含有量に関しては、上 述したので重複した記載を避けるために、ここでの説明は省略する。従って、調整手 順に関して主に説明する。
[0055] 即ち、イオン交換水、純水等の純度の所定量の水に、 pH調整剤とキレート剤とを投 入し、十分に攪拌し混合する。このときの pH調整剤とキレート剤との投入順序に関し て特に厳密な制限はない。しかし、水酸ィ匕ナトリウム粒を用いるときには、溶解に一定 に時間の力かる水酸ィ匕ナトリウム粒を先に溶解させ、その後キレート剤を添加するの が一般的である。ここで言う pH調整剤は、上述のようにアルカリ性 pH調整剤と酸性 p H調整剤とがある。従って、これらの添加順序等に関して特に制限はないが、アル力 リ性 pH調整剤、酸性 pH調整剤の順で添加する事が好ましい。アルカリ性 pH調整剤 は、キレート剤とスズイオンとのキレートイ匕が容易となるよう、キレート剤の開環を促進 するものである。従って、キレート剤の開環を行った後に、酸性 pH調整剤でー且アル カリ領域にした調整途中のめっき液の pH値を 6〜12の範囲として、中性領域から弱 アルカリ領域でスズキレートを生成し、安定ィ匕させることが好まし 、からである。
[0056] B)の工程では、前記予備調整液にスズ塩を、添カ卩してスズ含有量を 5gZL〜30g ZL濃度となるよう添加し十分に攪拌し、スズキレート錯体を形成させスズめっき液と する。このとき前記予備混合溶液に、スズ換算で 10gZL〜30gZL濃度となるように 、スズ塩を添加して、十分に攪拌混合することにより、基本的構成をもつ本件発明に 係るスズめっき液の調整が完了する。以上に述べてきた、スズめっき液の調整工程は 、室温で行うことを前提としている。その後、以下のような工程を付加的に設けることも 望ましい。
[0057] 以上のようにして調整したスズめっき液に、酸化防止剤を添加する工程を付加する ことも好ましい。酸ィ匕防止剤に関しては上述のとおりであり、スズめっき液中での酸ィ匕 防止剤濃度が 0. lgZL〜30gZL濃度となるよう添加する。添加の手法に関しては 特に限定はない。
[0058] また、上述の工程により得られたスズめっき液の pH値が適正な範囲から逸脱する 場合には、上述の微調整用酸性 pH調整剤を用いて、めっき液 pH値を 4〜: LOの範 囲、より好ましくは pH値が 6〜8の範囲とする pH微調整工程を設けることが好ましい 。ここで言う微調整用酸性 pH調整剤には、上述の微調整用アルカリ性 pH調整剤と 微調整用酸性 pH調整剤とが含まれる。
[0059] 本件発明に係るスズめっき液にぉ 、て、スズめっき液を電解する際の通電状態を 更に安定ィ匕させ、スズ析出の電流効率を高くし、生産性を高める必要のある場合に は、事後的に導電塩を追加添加する工程を設けることが好ましい。このときの導電塩 には、上述の硫酸ナトリウム、硫酸アンモ-ゥム力 選ばれる 1種又は 2種以上を lg /L〜 150g/L濃度となるよう含ませることが好ま U、。
[0060] 更に、本件発明に係るスズめっき液にぉ 、て、スズめっき液を電解して得られるスズ めっき層を平滑にし、膜厚均一性の向上を図るため、事後的な光沢剤の添加工程を 設けることも好ましい。ここで言う光沢剤は、上述のノニオン界面活性剤、カチオン界 面活性剤、両性界面活性剤カゝら選ばれる 1種又は 2種以上を 0. lgZL〜30gZL濃 度となるよう含ませることが好ま 、。
[0061] チップ部品の実施形態: 以上に述べた本件発明に係るスズめっき液は、電子部品 の中でもスズめっきの多用されるチップ型積層セラミックコンデンサ、チップ型セラミツ クコイル、チップ型セラミツクサ一ミスタ、インダクタ、ノ リスタ、抵抗器等のチップ部品 のスズめっき層の形成に好適である。
実施例 1
[0062] この実施例では、以下の I工程〜 V工程を経て、スズめっき液を調整した。
[0063] I工程: イオン交換水に、キレート剤としてのダルコン酸ナトリウムを添加し、アルカリ 性 pH調整剤としての粒状の水酸ィ匕ナトリウムを溶解させた。そして、更に、酸性 pH 調整剤として 70wt%濃度のメタンスルホン酸を添加し、 pH12の予備混合液を得た
[0064] II工程: 前記予備混合溶液に、メタンスルホン酸スズを添加し、キレートイ匕反応を行 わせスズキレート錯体を形成させ、基本的組成を持つスズめっき液とした。
[0065] ΙΠ工程: この工程では、最終的なスズめっき液 pHが 4. 0となるように、微調整用 pH 調整剤の内、微調整用アルカリ性 pH調整剤として水酸化ナトリウムを添加した。 [0066] IV工程: 当該スズめっき液に、酸ィ匕防止剤としてのァスコルビン酸を添カ卩して、混合 攪拌した。
[0067] V工程: その後、光沢剤としてラウリルジメチルァミノ酢酸べタインを添加して混合攪 拌した。その結果、以下に示す組成のスズめっき液を得た。
[0068] (スズめっき液糸且成)
メタンスノレホン酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン: lgZL
pH : 4. 0
[0069] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。なお、上記スズめっき液は、水酸化ナトリウ ムを添カ卩して pH値を 10としても、 365日経過後においてもスラッジの発生はなかった 。また、液温を 40°Cとしても、同様の条件でのスラッジ発生はなかった。
[0070] (スズめっき層の観察)
上記スズめっき液を用いて、 2012サイズ(2mmX l. 2mm)の積層セラミックコンデ ンサにおける銅製外部電極の表面に 2 m厚さのニッケル層を設け、そのニッケル層 の表面に、電流密度 0. lA/dm2,浴温 30°Cの条件で電解して、 5 m厚さのスズ めっき層を形成し、試験用サンプルとした。そして、このスズめっき層の表面を SEM ( 走査型電子顕微鏡)により観察し、その観察像を示したのが図 1である。比較例と対 比すると明らかであるが、異常析出が見られず、均一な表面被覆が出来ている。
[0071] (半田濡れ性評価)
積層セラミックコンデンサの外部電極等の表面に形成したスズめっき層の場合、こ れらチップ部品が、プリント配線基板等に表面実装されることを考えるに、半田濡れ 性が非常に重要となる。ここでは、上記試験用サンプルにフラックスとして 20%ロジン —イソプロパノール溶液を塗布し、タルチンケスター株式会社製の SWET— 2100 ( 半田槽温度 215°C、 6Z4半田)を用いて、ソルダペースト平衡法 (急加熱モード)で の試験を行った。ここでは、上記試験用サンプルに、プレッシャータッカー試験(2at m、 105°C、 100%RH、 4時間)を行い、その前後での特性評価を行った力 いずれ もゼロクロスタイム 2秒以下で良好な半田濡れを示した。
[0072] 以上の実施例 1は、後述する比較例 1と対比する。従って、比較例 1と当該実施例 1 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように 、表 1に纏めて示している。
実施例 2
[0073] この実施例では、実施例 1と同様の I工程〜 V工程を経て、イオン交換水に、キレー ト剤であるダルコン酸ナトリウム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 p H調整剤であるメタンスルホン酸の順で混合し pH 12の予備混合液とし、ここにスズ塩 であるメタンスルホン酸スズ、微調整用アルカリ性 pH調整剤である水酸ィ匕ナトリウム、 酸化防止剤であるァスコルビン酸、光沢剤であるラウリルジメチルァミノ酢酸べタイン の順に添カ卩して、以下の組成のスズめっき液を調整した。
[0074] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 31gZL
ダルコン酸ナトリウム : 150gZL
メタンスノレホン酸 : 68g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン : lgZL
pH : 6. 0
[0075] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。なお、上記スズめっき液は、硫酸又は水酸 化ナトリウムを添カ卩して pH値を 4〜10の範囲で変動させてみても、 365日経過後に おいてもスラッジの発生はなかった。また、液温を 40°Cとしても、同様の条件でのスラ ッジ発生はな力 た。
[0076] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、極めて良好な均 一表面を備えていた。この観察像に関しては、実施例 1と同様であるため、掲載を省 略する。
[0077] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれもゼロクロスタイム 2秒以下で良好な半田濡れを示した。
[0078] 以上の実施例 2は、後述する比較例 2と対比する。従って、比較例 2と当該実施例 2 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように
、表 2に纏めて示している。
実施例 3
[0079] この実施例では、実施例 1と同様の I工程〜 V工程を経て、イオン交換水に、キレー ト剤であるダルコン酸ナトリウム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 p H調整剤であるメタンスルホン酸の順で混合し pH 12の予備混合液とし、ここに、スズ 塩であるメタンスルホン酸スズ、微調整用アルカリ性 pH調整剤である水酸化ナトリウ ム、酸ィ匕防止剤であるァスコルビン酸、光沢剤であるラウリルジメチルァミノ酢酸ベタ インの順に添カ卩して、以下の組成のスズめっき液を調整した。
[0080] (スズめっき液糸且成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 35gZL
ダルコン酸ナトリウム : 150gZL
メタンスノレホン酸 : 68g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン : lgZL
pH : 8. 0
[0081] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。また、液温を 40°Cとしても、同様の条件で のスラッジ発生はなかった。
[0082] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、極めて良好な均 一表面を備えていた。この観察像に関しては、実施例 1と同様であるため、掲載を省 略する。
[0083] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれもゼロクロスタイム 2秒以下で良好な半田濡れを示した。
[0084] 以上の実施例 3は、後述する比較例 3と対比する。従って、比較例 3と当該実施例 3 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように
、表 3に纏めて示している。
実施例 4
[0085] この実施例では、実施例 1と同様の I工程〜 V工程を経て、以下の組成のスズめつ き液を調整した。異なるのは、キレート剤としてダルコン酸ナトリウムに代えて、クェン 酸を用いた。即ち、イオン交換水に、キレート剤であるクェン酸、アルカリ性 pH調整 剤である水酸化ナトリウム、酸性 pH調整剤であるメタンスルホン酸の順で混合し pH6 . 0の予備混合液とし、ここに、スズ塩であるメタンスルホン酸スズ、微調整用アルカリ 性 pH調整剤として水酸ィ匕ナトリウム、酸ィ匕防止剤であるァスコルビン酸、光沢剤であ るラウリルジメチルァミノ酢酸べタインの順に添カ卩して、スズめっき液を調整した。
[0086] (スズめっき液糸且成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 31gZL
クェン酸 : 150gZL
メタンスノレホン酸 : 68g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン : lgZL
pH : 6. 0 [0087] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。また、液温を 40°Cとしても、同様の条件で のスラッジ発生はなかった。
[0088] (スズめっき層の外観)
実施例 1と同様にして SEMを用いた表面状態の観察を行った。そして、このスズめ つき層の表面を SEM (走査型電子顕微鏡)により観察し、その観察像を示したのが 図 2である。比較例と対比すると明らかであるが、異常析出が見られず、均一な表面 被覆が出来ている。
[0089] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれもゼロクロスタイム秒以下で良好な半田濡れを示した。
[0090] 以上の実施例 4は、後述する比較例 4と対比する。従って、比較例 4と当該実施例 4 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように
、表 4に纏めて示している。
実施例 5
[0091] この実施例では、実施例 1と同様の I工程〜 V工程を経て、以下の組成のスズめつ き液を調整した。異なるのは、光沢剤であるラウリルジメチルァミノ酢酸べタインに代 えて、ポリオキシエチレンラウリルエーテルを用いた。即ち、イオン交換水に、キレート 剤であるダルコン酸ナトリウム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 p H調整剤であるメタンスルホン酸の順で混合し pH 12の予備混合液とし、ここに、スズ 塩であるメタンスルホン酸スズ、微調整用アルカリ性 pH調整剤である水酸化ナトリウ ム、酸ィ匕防止剤であるァスコルビン酸、光沢剤であるポリオキシエチレンラウリルエー テルの順に添カ卩して、スズめっき液を調整した。
[0092] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ポリオキシエチレンラウリルエーテル : lgZL
pH : 4. 0
[0093] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。また、液温を 40°Cとしても、同様の条件で のスラッジ発生はなかった。
[0094] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、極めて良好な均 一表面を備えていた。この観察像に関しては、実施例 1と同様であるため、掲載を省 略する。
[0095] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれもゼロクロスタイム 2秒以下で良好な半田濡れを示した。
[0096] 以上の実施例 5は、後述する比較例 5と対比する。従って、比較例 5と当該実施例 5 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように 、表 5に纏めて示している。
実施例 6
[0097] この実施例では、実施例 1と同様の I工程〜 V工程を経て、以下の組成のスズめつ き液を調整した。異なるのは、スズ塩であるメタンスルホン酸スズに代えて硫酸スズを 用い、光沢剤であるラウリルジメチルァミノ酢酸べタインに代えて、ポリオキシエチレン ラウリルエーテルを用いた。即ち、イオン交換水に、キレート剤であるダルコン酸ナトリ ゥム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 PH調整剤であるメタンスル ホン酸の順で混合し pH 12の予備混合液とし、ここに、スズ塩である硫酸スズ、微調 整用アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸ィ匕防止剤であるァスコルビン酸 、光沢剤であるポリオキシエチレンラウリルエーテルの順に添カ卩して、スズめっき液を 調整した。 [0098] (スズめっき液糸且成)
硫酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ポリオキシエチレンラウリルエーテル: lgZL
pH : 4. 0
[0099] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。また、液温を 40°Cとしても、同様の条件で のスラッジ発生はなかった。
[0100] (スズめっき層の外観)
実施例 1と同様にして SEMを用いた表面状態の観察を行った。そして、このスズめ つき層の表面を SEM (走査型電子顕微鏡)により観察し、その観察像を示したのが 図 3である。比較例と対比すると明らかであるが、異常析出が見られず、均一な表面 被覆が出来ている。
[0101] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれもゼロクロスタイム 2秒以下で良好な半田濡れを示した。
[0102] 以上の実施例 6は、後述する比較例 6と対比する。従って、比較例 6と当該実施例 6 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように 、表 6に纏めて示している。
実施例 7
[0103] この実施例では、実施例 1と同様の I工程〜 V工程を経て、以下の組成のスズめつ き液を調整した。異なるのは、酸ィ匕防止剤であるァスコルビン酸に代えてカテコール を用い、光沢剤であるラウリルジメチルァミノ酢酸べタインに代えて、ポリオキシェチレ ンラウリルエーテルを用いた。即ち、イオン交換水に、キレート剤であるダルコン酸ナ トリウム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 pH調整剤であるメタンス ルホン酸の順で混合し pH 12の予備混合液とし、ここに、スズ塩である硫酸スズ、微 調整用アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸ィ匕防止剤であるカテコール、 光沢剤であるポリオキシエチレンラウリルエーテルの順に添カ卩して、スズめっき液を調 整した。
[0104] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL
メタンスノレホン酸 : 135g/L
力テコーノレ : 3g/L
ポリオキシエチレンラウリルエーテル: lgZL
pH : 4. 0
[0105] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。また、液温を 40°Cとしても、同様の条件で のスラッジ発生はなかった。
[0106] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、極めて良好な均 一表面を備えていた。この観察像に関しては、実施例 1と同様であるため、掲載を省 略する。
[0107] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれもゼロクロスタイム 2秒以下で良好な半田濡れを示した。
[0108] 以上の実施例 7は、後述する比較例 7と対比する。従って、比較例 7と当該実施例 7 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように 、表 7に纏めて示している。
実施例 8 [0109] この実施例では、実施例 1と同様の I工程〜 V工程を経て、以下の組成のスズめつ き液を調整した。異なるのは、酸ィ匕防止剤であるァスコルビン酸を添加すると同時に 導電塩である硫酸ナトリウムを添加した点である。即ち、イオン交換水に、キレート剤 であるダルコン酸ナトリウム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 pH 調整剤であるメタンスルホン酸の順で混合し ρΗ 12の予備混合液とし、ここに、スズ塩 であるメタンスルホン酸スズ、微調整用アルカリ性 pH調整剤である水酸ィ匕ナトリウム、 酸化防止剤であるァスコルビン酸及び導電塩である硫酸ナトリウム、光沢剤であるラ ゥリルジメチルァミノ酢酸べタインの順に添カ卩して、スズめっき液を調整した。
[0110] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 31gZL
ダルコン酸ナトリウム : 150gZL
メタンスノレホン酸 : 68g/L
ァスコノレビン酸 : 3g/L
硫酸ナトリウム : 70gZL
ラウリルジメチルァミノ酢酸べタイン : lgZL
pH : 6. 0
[0111] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、 365日経過 後においてもスラッジの発生はな力つた。また、液温を 40°Cとしても、同様の条件で のスラッジ発生はなかった。
[0112] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、極めて良好な均 一表面を備えていた。この観察像に関しては、実施例 1と同様であるため、掲載を省 略する。
[0113] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれもゼロクロスタイム 2秒以下で良好な半田濡れを示した。 [0114] 以上の実施例 8は、後述する比較例 8と対比する。従って、比較例 8と当該実施例 8 のスズめっき液調整手順とスラッジ発生の有無、半田濡れ性等の対比が可能なように 、表 8に纏めて示している。
比較例
[0115] [比較例 1]
この比較例 1は、実施例 1のスズめっき液調整順序を変更して、以下の i)工程〜ェ 程 V)を経て、スズめっき液を調整した。
[0116] i)工程: イオン交換水に、キレート剤としてのダルコン酸ナトリウムを添加し、酸性 PH 調整剤として 70wt%濃度のメタンスルホン酸の順で混合し pHl以下の強酸性の予 備混合液とした。
[0117] ii)工程: 上記予備混合液に、前記予備混合溶液に、メタンスルホン酸スズを添加し 、十分に混合した。
[0118] iii)工程: メタンスルホン酸スズを添加した予備混合液に、アルカリ性 PH調整剤とし ての粒状の水酸ィ匕ナトリウムを溶解させ、基本的構成のスズめっき液とした。
[0119] iv)工程: 当該スズめっき液に、酸ィ匕防止剤としてのァスコルビン酸を添カ卩して、混 合攪拌した。
[0120] V)工程: その後、光沢剤としてラウリルジメチルァミノ酢酸べタインを添加して混合攪 拌した。その結果、以下に示す組成のスズめっき液を得た。
[0121] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン: lgZL
pH : 4. 0
[0122] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 2日経 過後においてスラッジの発生が見られた。
[0123] (スズめっき層の外観)
実施例 1と同様にして SEMを用いた表面状態の観察を行った。そして、このスズめ つき層の表面を SEM (走査型電子顕微鏡)により観察し、その観察像を示したのが 図 4である。実施例 1と対比すると明らかであるが、スズめっき表面に異常析出が見ら れ、均一な表面被覆の形成が出来ていないことが分かる。なお、ここで観察したスズ めっき層は、スラッジの発生したスズめっき液を用いて形成したものである。
[0124] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0125] 以上の比較例 1と実施例 1とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 1に同時掲載した。
[0126] [表 1]
Figure imgf000026_0001
半田濡れ評価: ソルダぺ一スト平衡法 (急加熱モード) [比較例 2]
この比較例 2は、比較例 1と同様の i工程〜 V工程を経て、イオン交換水に、キレート 剤であるダルコン酸ナトリウム、酸性 pH調整剤であるメタンスルホン酸の順で混合し p HI以下の強酸性の予備混合液とし、ここに、スズ塩であるメタンスルホン酸スズ、ァ ルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸ィ匕防止剤であるァスコルビン酸、光沢 剤であるラウリルジメチルァミノ酢酸べタインの順に添カ卩して、以下の組成のスズめつ き液を調整した。
[0128] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 46gZL
ダルコン酸ナトリウム : 150gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン : lgZL
pH : 6. 0
[0129] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 1日経 過後においてスラッジの発生が見られた。
[0130] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、比較例 1の場合 と同様に、スズめっき表面に異常析出が見られ、均一な表面被覆の形成が出来てい ないことが分力つた。この観察像に関しては、比較例 1と同様であるため、掲載を省略 する。なお、ここで観察したスズめっき層は、スラッジの発生したスズめっき液を用い て形成したものである。
[0131] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0132] 以上の比較例 2と実施例 2とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 2に同時掲載した。
[0133] [表 2] 実施例 2 比較例 2
溶媒: イオン交換水 溶媒:イオン交換水
①グルコン酸ナトリウム ①ダルコン酸ナトリウム
②水酸化ナトリウム ②メタンスルホン酸
混合順序 ③メタンスルホン酸 ③メタンスルホン酸スズ
④メタンスルホン酸スズ ④水酸化ナトリウム
⑤水酸化ナトリウム ⑤ァスコルビン酸
⑥ァスコルビン酸 ⑥ラウリルジメチルァミノ酢酸べタイン
⑦ラウリルジメチルアミノ齚酸べタイン
メタンスルホン酸スズ (スズ換算) 20 g/L
水酸化ナトリウム : 31 g/L (実施例 2), 46 g/L (比較例 2) スズメツキ液と ダルコン酸ナトリウム 1 50 g/L
しての組成 メタンスルホン酸 : 68 g/L (実施例 2), 1 35 gZL (比較例 2)
ァスコルビン酸 3 g/L
ラウリルジメチルァミノ酢酸べタイン: 1 g/L
p H : 6. 0
スラッジ発生状 36 5日経過後に於いてスラッジの 1 日経過後に於いてスラッジ発生 況 発生無し
S E M観察結果 異常析出の無い均一表面 異常析出のある粗れた表面 半田濡れ性評価 2秒以下 3秒以上
半田濡れ評価: ソルダペースト平衡法 (急加熱モード)
[0134] [比較例 3]
この比較例 3は、比較例 1と同様の i工程〜 V工程を経て、イオン交換水に、キレート 剤であるダルコン酸ナトリウム、酸性 pH調整剤であるメタンスルホン酸の順で混合し p HI以下の強酸性の予備混合液とし、ここに、スズ塩であるメタンスルホン酸スズ、ァ ルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸ィ匕防止剤であるァスコルビン酸、光沢 剤であるラウリルジメチルァミノ酢酸べタインの順に添カ卩して、以下の組成のスズめつ き液を調整した。
[0135] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 50gZL
ダルコン酸ナトリウム : 150gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン : lgZL
pH : 8.0
[0136] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴時に既 にスラッジの発生が見られた。
[0137] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、比較例 1の場合 と同様に、スズめっき表面に異常析出が見られ、均一な表面被覆の形成が出来てい ないことが分力つた。この観察像に関しては、比較例 1と同様であるため、掲載を省略 する。なお、ここで観察したスズめっき層は、スラッジの発生したスズめっき液を用い て形成したものである。
[0138] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0139] 以上の比較例 3と実施例 3とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 3に同時掲載した。
[0140] [表 3]
Figure imgf000029_0001
半田濡れ評価: ソルダペース卜平衡法 (急加熱モード)
[比較例 4]
この比較例 4は、比較例 1と同様の i工程〜 V工程を経て、以下の組成のスズめっき 液を調整した。異なるのは、キレート剤としてダルコン酸ナトリウムに代えて、クェン酸 を用いた。即ち、イオン交換水に、キレート剤であるクェン酸、酸性 pH調整剤である メタンスルホン酸の順で混合し pHl以下の強酸性の予備混合液とし、ここに、スズ塩 であるメタンスルホン酸スズ、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸化防止 剤であるァスコルビン酸、光沢剤であるラウリルジメチルァミノ酢酸べタインの順に添 加して、以下の組成のスズめっき液を調整した。
[0142] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 46gZL
クェン酸 : 150gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ラウリルジメチルァミノ酢酸べタイン : lgZL
pH : 6. 0
[0143] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴時に既 にスラッジの発生が見られた。
[0144] (スズめっき層の外観)
実施例 1と同様にして SEMを用いた表面状態の観察を行った。そして、このスズめ つき層の表面を SEM (走査型電子顕微鏡)により観察し、その観察像を示したのが 図 5である。実施例 4と対比すると明らかであるが、スズめっき表面に異常析出が見ら れ、均一な表面被覆の形成が出来ていないことが分かる。なお、ここで観察したスズ めっき層は、スラッジの発生したスズめっき液を用いて形成したものである。
[0145] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0146] 以上の比較例 4と実施例 4とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 4に同時掲載した。
[0147] [表 4] 実施例 4 比較例 4
溶媒:イオン交換水 溶媒:イオン交換水
①クェン酸 ①クェン酸
②水酸化ナトリウム ②メタンスルホン酸
混合順序 ③メタンスルホン酸 ③メタンスルホン酸スズ
④メタンスルホン酸スズ ④水酸化ナトリウム
⑤ァスコルビン酸 ⑤ァスコルビン酸
⑥ラウリルジメチルァミノ酢酸べタイン ⑥ラウリルジメチルァミノ酢酸べタイン メタンスルホン酸スズ (スズ換算) : 20 gZL
水酸化ナトリウム : 3 1 g/L (実施例 4), 46 g/L (比較例 4) スズメツキ液と クェン酸 1 50 g/L
しての組成 メタンスルホン酸 : 68 gノ L (実施例 4), 1 35 gZL (比較例 4)
ァスコルビン酸 3 g/L
ラウリルジメチルァミノ 6ΐ酸べ夕イン: 1 gZL
p H : 6. 0
スラッジ発生状 3 6 5日経過後に於いてスラッジの 建浴時にスラッジ発生 況 発生無し
S E M観察結果 異常析出の無い均一表面 異常析出のある粗れた表面 半田濡れ性評価 2秒以下 3秒以上 半田濡れ評価: ソルダペースト平衡法 (急加熱モード)
[0148] [比較例 5]
この比較例 5は、比較例 1と同様の i工程〜 V工程を経て、以下の組成のスズめっき 液を調整した。異なるのは、光沢剤であるラウリルジメチルァミノ酢酸べタインに代え て、ポリオキシエチレンラウリルエーテルを用いた。即ち、イオン交換水に、キレート剤 であるクェン酸、酸性 pH調整剤であるメタンスルホン酸の順で混合し pHl以下の強 酸性の予備混合液とし、ここに、スズ塩であるメタンスルホン酸スズ、アルカリ性 pH調 整剤である水酸化ナトリウム、酸ィ匕防止剤であるァスコルビン酸、光沢剤であるポリオ キシエチレンラウリルエーテルの順に添カ卩して、以下の組成のスズめっき液を調整し た。
[0149] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ポリオキシエチレンラウリルエーテル : lgZL
pH : 4.0
[0150] (スズめっき液の長期保存性評価) 上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 2日経 過後においてスラッジの発生が見られた。
[0151] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、比較例 1の場合 と同様に、スズめっき表面に異常析出が見られ、均一な表面被覆の形成が出来てい ないことが分力つた。この観察像に関しては、比較例 1と同様であるため、掲載を省略 する。なお、ここで観察したスズめっき層は、スラッジの発生したスズめっき液を用い て形成したものである。
[0152] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0153] 以上の比較例 5と実施例 5とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 5に同時掲載した。
[0154] [表 5]
Figure imgf000032_0001
半田濡れ評価: ソルダペースト平衡法 (急加熱モード)
[比較例 6]
この比較例 6は、比較例 1と同様の i工程〜 V工程を経て、以下の組成のスズめっき 液を調整した。異なるのは、スズ塩であるメタンスルホン酸スズに代えて硫酸スズを用 い、光沢剤であるラウリルジメチルァミノ酢酸べタインに代えて、ポリオキシエチレンラ ゥリルエーテルを用いた。即ち、イオン交換水に、キレート剤であるダルコン酸ナトリウ ム、酸性 pH調整剤であるメタンスルホン酸の順で混合し pHl以下の強酸性の予備 混合液とし、ここに、スズ塩である硫酸スズ、アルカリ性 pH調整剤である水酸ィ匕ナトリ ゥム、酸ィ匕防止剤であるァスコルビン酸、光沢剤であるポリオキシエチレンラウリルェ 一テルの順に添カ卩して、以下の組成のスズめっき液を調整した。
[0156] (スズめっき液組成)
硫酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
ポリオキシエチレンラウリルエーテル: lgZL
pH : 4. 0
[0157] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 2日経 過後においてスラッジの発生が見られた。
[0158] (スズめっき層の外観)
実施例 1と同様にして SEMを用いた表面状態の観察を行った。そして、このスズめ つき層の表面を SEM (走査型電子顕微鏡)により観察し、その観察像を示したのが 図 6である。実施例 6と対比すると明らかであるが、スズめっき表面に異常析出が見ら れ、均一な表面被覆の形成が出来ていないことが分かる。なお、ここで観察したスズ めっき層は、スラッジの発生したスズめっき液を用いて形成したものである。
[0159] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0160] 以上の比較例 6と実施例 6とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 6に同時掲載した。 [0161] [表 6]
Figure imgf000034_0001
半田濡れ評価: ソルダペースト平衡法 (急加熱モート')
[0162] [比較例 7]
この比較例 7は、比較例 1と同様の i工程〜 V工程を経て、以下の組成のスズめっき 液を調整した。異なるのは、酸ィ匕防止剤であるァスコルビン酸に代えてカテコールを 用い、光沢剤であるラウリルジメチルァミノ酢酸べタインに代えて、ポリオキシエチレン ラウリルエーテルを用いた。即ち、イオン交換水に、キレート剤であるダルコン酸ナトリ ゥム、酸性 pH調整剤であるメタンスルホン酸の順で混合し pHl以下の強酸性の予備 混合液とし、ここに、スズ塩であるメタンスルホン酸スズ、アルカリ性 pH調整剤である 水酸化ナトリウム、酸化防止剤であるカテコール、光沢剤であるポリオキシエチレンラ ゥリルエーテルの順に添カ卩して、以下の組成のスズめっき液を調整した。
[0163] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 14g/L
水酸ィ匕ナトリウム : 42gZL
ダルコン酸ナトリウム : 120gZL
メタンスノレホン酸 : 135g/L
力テコーノレ : 3g/L
ポリオキシエチレンラウリルエーテル: lgZL pH : 4. 0
[0164] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 2日経 過後においてスラッジの発生が見られた。
[0165] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、比較例 1の場合 と同様に、スズめっき表面に異常析出が見られ、均一な表面被覆の形成が出来てい ないことが分力つた。この観察像に関しては、比較例 1と同様であるため、掲載を省略 する。なお、ここで観察したスズめっき層は、スラッジの発生したスズめっき液を用い て形成したものである。
[0166] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0167] 以上の比較例 7と実施例 7とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 7に同時掲載した。
[0168] [表 7]
Figure imgf000035_0001
半田濡れ評価: ソルダペースト平衡法 (急加熱モ' [0169] [比較例 8] この比較例 8は、比較例 1と同様の i工程〜 V工程を経て、以下の組成のスズめっき 液を調整した。異なるのは、酸化防止剤であるァスコルビン酸を添加すると同時に導 電塩である硫酸ナトリウムを添加した点である。即ち、イオン交換水に、キレート剤で あるダルコン酸ナトリゥム、酸性 pH調整剤であるメタンスルホン酸の順で混合し pH 1 以下の強酸性の予備混合液とし、ここに、スズ塩であるメタンスルホン酸スズ、アル力 リ性 pH調整剤である水酸化ナトリウム、酸化防止剤であるァスコルビン酸及び導電 塩である硫酸ナトリウム、光沢剤であるラウリルジメチルァミノ酢酸べタインの順に添カロ して、以下の組成のスズめっき液を調整した。
[0170] (スズめっき液組成)
メタンスノレホン酸スズ (スズ換算) : 20g/L
水酸ィ匕ナトリウム : 46gZL
ダルコン酸ナトリウム : 150gZL
メタンスノレホン酸 : 135g/L
ァスコノレビン酸 : 3g/L
硫酸ナトリウム : 70gZL
ラウリルジメチルァミノ酢酸べタイン: lgZL
pH : 6. 0
[0171] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 1日経 過後においてスラッジの発生が見られた。
[0172] (スズめっき層の観察)
実施例 1と同様にして SEMを用いた表面状態の観察を行ったが、比較例 1の場合 と同様に、スズめっき表面に異常析出が見られ、均一な表面被覆の形成が出来てい ないことが分力つた。この観察像に関しては、比較例 1と同様であるため、掲載を省略 する。なお、ここで観察したスズめっき層は、スラッジの発生したスズめっき液を用い て形成したものである。
[0173] (半田濡れ性評価)
実施例 1と同様にして、プレッシャータッカー試験前後での特性評価を行ったが、い ずれも良好な半田濡れ性を示すにはゼロクロスタイム 3秒以上を要した。
[0174] 以上の比較例 8と実施例 8とを対比するため、それぞれのスズめっき液調整手順と スラッジ発生の有無、半田濡れ性の対比が容易となるよう、表 8に同時掲載した。
[0175] [表 8]
Figure imgf000037_0001
半田濡れ評価: ソルダペースト平衡法 (急加熱モード)
[0176] [比較例 9]
この比較例 9は、上述の比較例 1〜比較例 8とは、全く異なる以下の組成であって、 考え得る組成のスズめっき液を調整した。ここでは、以下の成分の混合順序は特に 問題にせず、溶媒としての水に各成分を所定濃度となるように溶解させ、アンモニア 水で pHの調整を行った。
[0177] (スズめっき液基本組成)
硫酸第 1スズ (スズ換算) : 25g/L
クェン酸水素 2アンモ-ゥム : 95gZL
アルキルアミン型界面活性剤 : 0. lg/L
硫酸アンモニゥム : 13g/L
pH (アンモニア水で調整) : 7. 0
[0178] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 1日経 過後においてスラッジの発生が見られた。
[0179] [比較例 10]
この比較例 10は、上述の比較例 1〜比較例 8とは、全く異なる以下の組成であって 、考え得る組成のスズめっき液を調整した。ここでは、以下の成分の混合順序は特に 問題にせず、溶媒としての水に各成分を所定濃度となるように溶解させ、水酸化ナト リウムで pHの調整を行った。
[0180] (スズめっき液基本組成)
スルフアミン酸第 1スズ (スズ換算) : 50gZL
リンゴ酸 : 450gZL
アルキルアミン型界面活性剤 : 0. lg/L
pH (水酸化ナトリウムで調整) : 6. 0
[0181] (スズめっき液の長期保存性評価)
上記スズめっき液を、室温且つ大気雰囲気中で保管した。その結果、建浴後 5時間 経過後においてスラッジの発生が見られた。
[0182] <実施例と比較例との対比 >
実施例 1と比較例 1との対比: 表 1から明らかなように、実施例 1と比較例 1とのスズ めっき液を、単純に組成及び pH力 見れば同一である。異なるのは、その構成成分 の混合手順である。即ち、実施例 1は、イオン交換水に、キレート剤であるダルコン酸 ナトリウム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 pH調整剤であるメタン スルホン酸の順に加え溶液 pHを 12として、そこに、スズ塩であるメタンスルホン酸ス ズを加え、スズキレート錯体を確実に生成する手法を採用している。そして、その後、 微調整用アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸ィ匕防止剤であるァスコルビ ン酸、光沢剤であるラウリルジメチルァミノ酢酸べタインの順に添カ卩して 、る。
[0183] これに対し、比較例 1は、イオン交換水に、キレート剤であるダルコン酸ナトリウム、 酸性 pH調整剤であるメタンスルホン酸の順にカロえ溶液 pHを 1以下の強酸性溶液と して、ここにスズ塩であるメタンスルホン酸スズをカ卩えている。従来のスズめっき液の 製造方法は、このように酸性領域に於 、てスズ塩を添加する方法が採用されてきた。 そして、その後、スズめっき液の pHを中性領域に近づけるため、アルカリ性 pH調整 剤である水酸化ナトリウム、酸ィ匕防止剤であるァスコルビン酸、光沢剤であるラウリル ジメチルァミノ酢酸べタインの順に添カ卩して!/、る。
[0184] このように実施例 1と比較例 1とでは、単に構成成分の混合順序が異なるだけである 力 その溶液性状は全く異なるものとなる。従って、構成成分量は同じでも、スズめつ き液として中に含まれるスズ成分の存在の仕方が全く異なるものであると言える。この 裏付けとなるのが、以下の内容である。実施例 1の場合、室温〜 40°Cの大気雰囲気 中で保管しても、 365日経過後においてもスラッジの発生は全く見られない。これに 対し、比較例 1の場合には、僅か 2日経過後にスラッジの発生が確認された。また、実 施例 1の場合、水酸ィ匕ナトリウムを用いて、溶液 pHを 10に上げても、室温〜 40°Cの 大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は全く見られな い。
[0185] そして、実施例 1のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、析出粒子が平面的に 敷き詰められたような状態に見え極めて良好な表面が得られている(以上及び以下 において、これを単に「均一表面」と称している。 ) oこれに対して、比較例 1のスズめ つき液の場合、スラッジの発生が認められると、スズめっき層の表面は、析出粒子が 平面的に敷き詰められ且つその上に更に堆積したような析出粒子が認められ均一な 表面とは言えなくなる(以上及び以下において、このような状態を「異常析出」と称し ている。)。
[0186] 更に、半田濡れ性に関しても、実施例 1のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 1のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0187] 実施例 2と比較例 2との対比: この実施例 2と比較例 2との関係も、基本的に実施例 1と比較例 1との関係と同じである。根本的には、その構成成分の混合手順が異なる 。しかし、この実施例 2と比較例 2とでは、そこに含ませる酸性 PH調整剤であるメタン スルホン酸の添力卩量を異なるものとしているため、最終的なスズめっき液の pHが 6. 0 となるようにアルカリ性 pH調整剤の添加量も変えている。 [0188] 即ち、実施例 2のスズめっき液の構成成分は、実施例 1と同様で且つ混合順序も同 様である。そして、比較例 2のスズめっき液の構成成分は、比較例 1と同様で且つ混 合順序も同様である。但し、実施例 2と実施例 1と、比較例 2と比較例 1とは、それぞれ 構成成分量が表 2のように異なって 1ヽる。
[0189] このように実施例 2と比較例 2とでは、単に構成成分の混合順序が異なるだけである 力 その溶液性状は全く異なるものとなる。従って、実施例 1の場合と同様に、構成成 分は同じでも、スズめっき液として中に含まれるスズ成分の存在の仕方が全く異なる ものであると言える。この裏付けとなるのが、以下の内容である。実施例 2の場合、室 温〜 40°Cの大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は 全く見られない。これに対し、比較例 2の場合には、僅か 1日経過後にスラッジの発生 が確認された。また、実施例 2の場合、水酸ィ匕ナトリウムを用いて、溶液 pHを 4〜10 の間で任意に変化させても、室温〜 40°Cの大気雰囲気中で保管しても、 365日経 過後にお 、てもスラッジの発生は全く見られな 、。
[0190] そして、実施例 2のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、極めて良好な均一表面 が得られている。これに対して、比較例 2のスズめっき液の場合、スラッジの発生が認 められると、スズめっき層の表面に異常析出が見られ、明らかな不良状態になること が確認出来た。
[0191] 更に、半田濡れ性に関しても、実施例 2のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 2のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0192] 実施例 3と比較例 3との対比: この実施例 3と比較例 3との関係も、基本的に実施例 1と比較例 1との関係と同じである。根本的には、その構成成分の混合手順が異なる 。しかし、この実施例 3と比較例 3とでは、そこに含ませる酸性 PH調整剤であるメタン スルホン酸の添力卩量を異なるものとしているため、最終的なスズめっき液の pHが 8. 0 となるようにアルカリ性 pH調整剤の添加量も変えている。
[0193] 即ち、実施例 3のスズめっき液の構成成分は、実施例 1と同様で且つ混合順序も同 様である。そして、比較例 3のスズめっき液の構成成分は、比較例 1と同様で且つ混 合順序も同様である。但し、実施例 3と実施例 1と、比較例 3と比較例 1とは、それぞれ 構成成分量が表 3のように異なって 1ヽる。
[0194] このように実施例 3と比較例 3とでは、単に構成成分の混合順序が異なるだけである 力 その溶液性状は全く異なるものとなる。従って、実施例 1の場合と同様に、構成成 分は同じでも、スズめっき液として中に含まれるスズ成分の存在の仕方が全く異なる ものであると言える。この裏付けとなるのが、以下の内容である。実施例 3の場合、室 温〜 40°Cの大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は 全く見られない。これに対し、比較例 3の場合には、建浴時に既にスラッジの発生が 確認された。
[0195] そして、実施例 3のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、極めて良好な均一表面 が得られている。これに対して、比較例 3のスズめっき液の場合、スラッジの発生が認 められると、スズめっき層の表面に異常析出が見られ、明らかな不良状態になること が確認出来た。
[0196] 更に、半田濡れ性に関しても、実施例 3のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 3のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0197] 実施例 4と比較例 4との対比: この実施例 4では、実施例 1のキレート剤としてダルコ ン酸ナトリウムに代えて、クェン酸を用いた。即ち、実施例 4は、イオン交換水に、キレ ート剤であるクェン酸、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 pH調整剤 であるメタンスルホン酸の順に加え溶液 pHを 6. 0として、そこに、スズ塩であるメタン スルホン酸スズを加え、スズキレート錯体を確実に生成する手法を採用している。そし て、その後、微調整用アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸化防止剤であ るァスコルビン酸、光沢剤であるラウリルジメチルァミノ酢酸べタインの順に添カ卩し、最 終的なスズめっき液の pHを 6. 0とした
[0198] これに対し、比較例 4は、イオン交換水に、キレート剤であるクェン酸、酸性 pH調整 剤であるメタンスルホン酸の順に加え溶液 pHを 1以下の強酸性溶液として、ここにス ズ塩であるメタンスルホン酸スズをカ卩えている。従来のスズめっき液の製造方法は、こ のように酸性領域に於いてスズ塩を添加する方法が採用されてきた。そして、その後 、スズめっき液の pHを中性領域に近づけるため、アルカリ性 pH調整剤である水酸ィ匕 ナトリウム、酸化防止剤であるァスコルビン酸、光沢剤であるラウリルジメチルァミノ酢 酸べタインの順に添カ卩し、最終的なスズめっき液の pHを 6. 0とした。但し、この実施 例 4と比較例 4とでは、そこに含ませる酸性 PH調整剤であるメタンスルホン酸の添カロ 量を異なるものとしているため、最終的なスズめっき液の pHが 6. 0となるようにアル力 リ性 pH調整剤の添加量も変えて 、る。
[0199] この実施例 4と比較例 4でも、単に構成成分の混合順序が異なるだけであるが、そ の溶液性状は全く異なるものとなる。従って、実施例 1の場合と同様に、構成成分は 同じでも、スズめっき液として中に含まれるスズ成分の存在の仕方が全く異なるもので あると言える。この裏付けとなるの力 以下の内容である。実施例 4の場合、室温〜 4 0°Cの大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は全く見 られない。これに対し、比較例 4の場合には、建浴時に既にスラッジの発生が確認さ れた。
[0200] そして、実施例 4のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、極めて良好な均一表面 が得られている。これに対して、比較例 4のスズめっき液の場合、スラッジの発生が認 められると、スズめっき層の表面に異常析出が見られ、明らかな不良状態になること が確認出来た。
[0201] 更に、半田濡れ性に関しても、実施例 4のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 4のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0202] 実施例 5と比較例 5との対比: この実施例 5では、実施例 1の光沢剤であるラウリルジ メチルァミノ酢酸べタインに代えて、ポリオキシエチレンラウリルエーテルを用いた。即 ち、実施例 5は、イオン交換水に、キレート剤であるダルコン酸ナトリウム、アルカリ性 p H調整剤である水酸化ナトリウム、酸性 pH調整剤であるメタンスルホン酸の順にカロえ 溶液 pHを 12として、そこに、スズ塩であるメタンスルホン酸スズをカロえ、スズキレート 錯体を確実に生成する手法を採用している。そして、その後、酸化防止剤であるァス コルビン酸、光沢剤である光沢剤であるポリオキシエチレンラウリルエーテルの順に 添加し、最終的なスズめっき液の pHを 4. 0とした
[0203] これに対し、比較例 5は、イオン交換水に、キレート剤であるダルコン酸ナトリウム、 酸性 pH調整剤であるメタンスルホン酸の順にカロえ溶液 pHを 1以下の強酸性溶液と して、ここにスズ塩であるメタンスルホン酸スズをカ卩えている。そして、その後、スズめ つき液の pHを中性領域に近づけるため、アルカリ性 pH調整剤である水酸ィ匕ナトリウ ム、酸ィ匕防止剤であるァスコルビン酸、光沢剤であるポリオキシエチレンラウリルエー テルの順に添カ卩し、最終的なスズめっき液の pHを 4. 0とした。
[0204] この実施例 5と比較例 5でも、単に構成成分の混合順序が異なるだけであるが、そ の溶液性状は全く異なるものとなる。従って、実施例 1の場合と同様に、構成成分は 同じでも、スズめっき液として中に含まれるスズ成分の存在の仕方が全く異なるもので あると言える。この裏付けとなるの力 以下の内容である。実施例 5の場合、室温〜 4 0°Cの大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は全く見 られない。これに対し、比較例 5の場合には、建浴力 僅か 2日経過後にスラッジの発 生が確認された。
[0205] そして、実施例 5のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、極めて良好な均一表面 が得られている。これに対して、比較例 5のスズめっき液の場合、スラッジの発生が認 められると、スズめっき層の表面に異常析出が見られ、明らかな不良状態になること が確認出来た。
[0206] 更に、半田濡れ性に関しても、実施例 5のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 5のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0207] 実施例 6と比較例 6との対比: この実施例 6では、実施例 1のスズ塩であるメタンスル ホン酸スズに代えて硫酸スズを用い、光沢剤であるラウリルジメチルァミノ酢酸べタイ ンに代えて、ポリオキシエチレンラウリルエーテルを用いた。即ち、実施例 6は、イオン 交換水に、キレート剤であるダルコン酸ナトリウム、アルカリ性 pH調整剤である水酸ィ匕 ナトリウム、酸性 pH調整剤であるメタンスルホン酸の順にカ卩ぇ溶液 pHを 12として、そ こに、スズ塩である硫酸スズを加え、スズキレート錯体を確実に生成する手法を採用 している。そして、その後、酸ィ匕防止剤であるァスコルビン酸、光沢剤である光沢剤で あるポリオキシエチレンラウリルエーテルの順に添カ卩し、最終的なスズめっき液の pH を 4. 0とした
[0208] これに対し、比較例 6は、イオン交換水に、キレート剤であるダルコン酸ナトリウム、 酸性 pH調整剤であるメタンスルホン酸の順にカロえ溶液 pHを 1以下の強酸性溶液と して、ここにスズ塩である硫酸スズを加えている。そして、その後、スズめっき液の pH を中性領域に近づけるため、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸化防止 剤であるァスコルビン酸、光沢剤であるポリオキシエチレンラウリルエーテルの順に添 加し、最終的なスズめっき液の pHを 4. 0とした。
[0209] この実施例 6と比較例 6でも、単に構成成分の混合順序が異なるだけであるが、そ の溶液性状は全く異なるものとなる。従って、実施例 1の場合と同様に、構成成分は 同じでも、スズめっき液として中に含まれるスズ成分の存在の仕方が全く異なるもので あると言える。この裏付けとなるの力 以下の内容である。実施例 6の場合、室温〜 4 0°Cの大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は全く見 られない。これに対し、比較例 6の場合には、建浴力 僅か 2日経過後にスラッジの発 生が確認された。
[0210] そして、実施例 6のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、極めて良好な均一表面 が得られている。これに対して、比較例 6のスズめっき液の場合、スラッジの発生が認 められると、スズめっき層の表面に異常析出が見られ、明らかな不良状態になること が確認出来た。
[0211] 更に、半田濡れ性に関しても、実施例 6のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 6のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0212] 実施例 7と比較例 7との対比: この実施例 7では、実施例 1の酸化防止剤であるァス コルビン酸に代えてカテコールを用い、光沢剤であるラウリルジメチルァミノ酢酸ベタ インに代えて、ポリオキシエチレンラウリルエーテルを用いた。即ち、実施例 7は、ィォ ン交換水に、キレート剤であるダルコン酸ナトリウム、アルカリ性 pH調整剤である水酸 化ナトリウム、酸性 pH調整剤であるメタンスルホン酸の順にカ卩ぇ溶液 pHを 12として、 そこに、スズ塩であるメタンスルホン酸スズを加え、スズキレート錯体を確実に生成す る手法を採用している。そして、その後、酸ィ匕防止剤であるカテコール、光沢剤であ る光沢剤であるポリオキシエチレンラウリルエーテルの順に添加し、最終的なスズめ つき液の pHを 4. 0とした
[0213] これに対し、比較例 7は、イオン交換水に、キレート剤であるダルコン酸ナトリウム、 酸性 pH調整剤であるメタンスルホン酸の順にカロえ溶液 pHを 1以下の強酸性溶液と して、ここにスズ塩であるメタンスルホン酸スズをカ卩えている。そして、その後、スズめ つき液の pHを中性領域に近づけるため、アルカリ性 pH調整剤である水酸ィ匕ナトリウ ム、酸ィ匕防止剤であるカテコール、光沢剤であるポリオキシエチレンラウリルエーテル の順に添カ卩し、最終的なスズめっき液の pHを 4. 0とした。
[0214] この実施例 7と比較例 7でも、単に構成成分の混合順序が異なるだけであるが、そ の溶液性状は全く異なるものとなる。従って、実施例 1の場合と同様に、構成成分は 同じでも、スズめっき液として中に含まれるスズ成分の存在の仕方が全く異なるもので あると言える。この裏付けとなるの力 以下の内容である。実施例 7の場合、室温〜 4 0°Cの大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は全く見 られない。これに対し、比較例 7の場合には、建浴力 僅か 2日経過後にスラッジの発 生が確認された。
[0215] そして、実施例 7のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、極めて良好な均一表面 が得られている。これに対して、比較例 7のスズめっき液の場合、スラッジの発生が認 められると、スズめっき層の表面に異常析出が見られ、明らかな不良状態になること が確認出来た。
[0216] 更に、半田濡れ性に関しても、実施例 7のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 7のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0217] 実施例 8と比較例 8との対比: 実施例 8は、イオン交換水に、キレート剤であるダルコ ン酸ナトリウム、アルカリ性 pH調整剤である水酸ィ匕ナトリウム、酸性 pH調整剤である メタンスルホン酸の順に加え溶液 pHを 12として、そこに、スズ塩であるメタンスルホン 酸スズを加え、スズキレート錯体を確実に生成する手法を採用している。そして、その 後、酸ィ匕防止剤であるァスコルビン酸及び導電塩である硫酸ナトリウムを同時に添カロ し、光沢剤であるラウリルジメチルァミノ酢酸べタインの順に添加し、最終的なスズめ つき液の pHを 6. 0とした。
[0218] これに対し、比較例 8は、イオン交換水に、キレート剤であるダルコン酸ナトリウム、 酸性 pH調整剤であるメタンスルホン酸の順にカロえ溶液 pHを 1以下の強酸性溶液と して、ここにスズ塩であるメタンスルホン酸スズをカ卩えている。従来のスズめっき液の 製造方法は、このように酸性領域に於 、てスズ塩を添加する方法が採用されてきた。 そして、その後、スズめっき液の pHを中性領域に近づけるため、アルカリ性 pH調整 剤である水酸化ナトリウム、酸化防止剤であるァスコルビン酸及び導電塩である硫酸 ナトリウムを同時に添加し、光沢剤であるラウリルジメチルァミノ酢酸べタインの順に添 加し、最終的なスズめっき液の pHを 6. 0とした。但し、この実施例 8と比較例 8とでは 、そこに含ませる酸性 pH調整剤であるメタンスルホン酸の添加量を異なるものとして いるため、最終的なスズめっき液の pHが 6. 0となるようにアルカリ性 pH調整剤の添 加量も変えている。
[0219] この実施例 8と比較例 8でも、単に構成成分の混合順序が異なるだけであるが、そ の溶液性状は全く異なるものとなる。従って、実施例 1の場合と同様に、構成成分は 同じでも、スズめっき液として中に含まれるスズ成分の存在の仕方が全く異なるもので あると言える。この裏付けとなるの力 以下の内容である。実施例 8の場合、室温〜 4 0°Cの大気雰囲気中で保管しても、 365日経過後においてもスラッジの発生は全く見 られない。これに対し、比較例 8の場合には、建浴力 僅か 2日経過後にスラッジの発 生が確認された。
[0220] そして、実施例 8のスズめっき液の場合、 365日経過後に於いても、めっき試験を 行った試験用サンプルのスズめっき層を SEMで観察しても、極めて良好な均一表面 が得られている。これに対して、比較例 8のスズめっき液の場合、スラッジの発生が認 められると、スズめっき層の表面に異常析出が見られ、明らかな不良状態になること が確認出来た。
[0221] 更に、半田濡れ性に関しても、実施例 8のスズめっき液の場合、 365日経過後に於 いても、良好な半田濡れ性を備えるスズめっき層の形成が可能である。これに対して 、比較例 8のスズめっき液の場合、スラッジの発生が認められると、半田濡れ性が劣 化する。
[0222] そして、比較例 9及び比較例 10に関しての所見を述べる。この比較例 9及び比較 例 10は、直接対比すべき実施例は無いが、考え得るスズメツキ液組成として掲載し、 そのスラッジの発生するまでの溶液寿命を、上記各実施例と対比するためのものであ る。比較例 9のスズめっき液は、上述のように建浴後 1日経過後においてスラッジの発 生が見られる。また、比較例 10のスズめっき液は建浴後 5時間経過後においてスラッ ジの発生が見られている。更に、スラッジの発生の確認できた以降の比較例 9及び比 較例 10のスズメツキ液では、均一性のあるスズメツキ被膜の形成は出来な ヽことも確 認した。即ち、上述の本件発明に係るスズメツキ液と対比すると、比較例 9及び比較 例 10のスズメツキ液の溶液寿命が極めて短 、ことが容易に理解できる。
産業上の利用可能性
[0223] 本件発明に係るスズめっき液は、 1年の期間が経過してもスラッジが発生せず、従 来のスズめっき液と比較すると飛躍的に建浴後の溶液寿命が長ぐめっき液管理が 容易なため経済性に優れたものである。そして、本件発明に係るスズめっき液は、 10 °C〜40°Cの範囲でのめっき操業が可能であり、適度な液蒸発があるため、廃液量の 顕著な増加を引き起こさないため廃液処理の負荷も軽減でき、トータル的なコスト削 減を可能とする。
[0224] また、本件発明に係るスズめっき液の調整方法は、一定の調整手順を採用するだ けで、特殊な装置及び手法を必要とするものではなぐ既存の設備を有効に活用す ることが可能である。
図面の簡単な説明
[図 1]建浴から 365日経過後の本件発明に係るスズめっき液を用いて形成したスズめ つき層の SEM観察像である。
[図 2]建浴から 365日経過後の本件発明に係るスズめっき液を用いて形成したスズめ つき層の SEM観察像である。
[図 3]建浴から 365日経過後の本件発明に係るスズめっき液を用いて形成したスズめ つき層の SEM観察像である。
[図 4]建浴から 2日経過後にスラッジの発生したスズめっき液を用いて形成したスズめ つき層の SEM観察像である。
[図 5]建浴時の段階でスラッジの発生したスズめっき液を用いて形成したスズめっき層 の SEM観察像である。
[図 6]建浴から 2日経過後にスラッジの発生したスズめっき液を用いて形成したスズめ つき層の SEM観察像である。

Claims

請求の範囲
[1] 電解法でスズめっきを行うためのスズめっき液であって、
スズイオン供給源であるスズ塩をスズ換算で 5g/L〜30g/L含有し、このスズィォ ンをキレート化し安定化させるキレート剤及び PH調整剤を含み、スラッジが 7日以上 発生しな!ヽことを特徴とするスズめっき液。
[2] 前記スズ塩は、水に対して可溶性の第 1スズ塩カゝら選ばれる 1種又は 2種以上を用い る請求項 1に記載のスズめっき液。
[3] 前記キレート剤は、ダルコン酸、ダルコン酸塩、クェン酸、クェン酸塩、ピロリン酸、ピ 口リン酸塩力も選ばれる 1種又は 2種以上を 30gZL〜300gZL濃度となるよう含む 請求項 1又は請求項 2に記載のスズめっき液。
[4] 前記 pH調整剤は、アルカリ性 pH調整剤であって、水酸化ナトリウム、水酸化カリウム
、アンモニア水から選ばれる 1種又は 2種以上を 5gZL〜140gZL濃度となるように 含ませた請求項 1〜請求項 3のいずれかに記載のスズめっき液。
[5] 前記 pH調整剤は、酸性 pH調整剤であって、メタンスルホン酸、エタンスルホン酸、 硫酸、イセチオン酸力も選ばれる 1種又は 2種以上を 10gZL〜300gZL含ませた 請求項 1〜請求項 4のいずれかに記載のスズめっき液。
[6] 酸化防止剤を 0. lgZL〜30gZL濃度となるよう含む請求項 1〜請求項 5のいずれ かに記載のスズめっき液。
[7] 請求項 1〜請求項 6に記載のスズめっき液の pHを酸性側に微調整するための pH調 整剤であって、必要に応じてメタンスルホン酸、硫酸の 1種又は 2種を添カ卩し、 pH4〜 pHIOの範囲とした請求項 1〜請求項 7のいずれかに記載のスズめっき液。
[8] 請求項 1〜請求項 7に記載のスズめっき液の pHをアルカリ側に微調整するための p
H調整剤であって、必要に応じて水酸ィ匕ナトリウム、水酸ィ匕カリウム、アンモニア水の
1種又は 2種を添カ卩し、 pH4〜pH10の範囲とした請求項 1〜請求項 7のいずれかに 記載のスズめっき液。
[9] 必要に応じて添加する導電塩であって、硫酸ナトリウム、硫酸アンモ-ゥム力 選ば れる 1種又は 2種以上を lgZL〜150gZL濃度となるよう含む請求項 1〜請求項 8の Vヽずれかに記載のスズめっき液。
[10] 光沢剤としてノニオン界面活性剤、カチオン界面活性剤、両性界面活性剤カゝら選ば れる 1種又は 2種以上を 0. lgZL〜30gZL濃度となるよう含む請求項 1〜請求項 9 の!、ずれかに記載のスズめっき液。
[11] 本件発明に係るスズめっき液を用いたスズめっき方法であって、浴温 10°C〜40°Cの 条件で電解することを特徴とするスズめっき方法。
[12] 本件発明に係るスズめっき液の調整方法であって、以下の A)及び B)の手順により 調整されることを特徴としたスズめっき液調整方法。
A)水と pH調整剤とキレート剤とを混合し、 pH値が 6〜 12の予備混合溶液とする。
B)前記予備調整液にスズ塩を、添加してスズ含有量を 5gZL〜30gZL濃度とな るよう添加し十分に攪拌し、スズキレート錯体を形成させスズめっき液とする。
[13] 本件発明に係るスズめっき液の調整方法であって、請求項 12に記載のスズめっき液 に酸化防止剤を添加する工程を付加したスズめっき液調整方法。
[14] 本件発明に係るスズめっき液の調整方法であって、請求項 12に記載のスズめっき液 の pH値を微調整する工程を付加したスズめっき液調整方法。
[15] 本件発明に係るスズめっき液の調整方法であって、請求項 12に記載の方法で得ら れたスズめっき液に、導電塩を添加する工程を付加したスズめっき液調整方法。
[16] 本件発明に係るスズめっき液の調整方法であって、請求項 12のいずれかに記載の 方法で得られたスズめっき液に、光沢剤を添加する工程を付カ卩したスズめっき液調 整方法。
[17] 本件発明に係るスズめっき液を用いてスズめっき層を形成したチップ部品。
PCT/JP2006/303124 2005-04-28 2006-02-22 スズめっき液、そのスズめっき液を用いためっき方法、スズめっき液調整方法及びそのスズめっき液を用いてスズめっき層を形成したチップ部品 WO2006117920A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077024412A KR100934401B1 (ko) 2005-04-28 2006-02-22 주석 도금액, 그 주석 도금액을 이용한 주석 도금 방법,주석 도금액 조정 방법 및 그 주석 도금액을 이용하여형성된 주석 도금층을 구비한 칩 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-132092 2005-04-28
JP2005132092 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006117920A1 true WO2006117920A1 (ja) 2006-11-09

Family

ID=37307726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303124 WO2006117920A1 (ja) 2005-04-28 2006-02-22 スズめっき液、そのスズめっき液を用いためっき方法、スズめっき液調整方法及びそのスズめっき液を用いてスズめっき層を形成したチップ部品

Country Status (4)

Country Link
JP (1) JP3878959B2 (ja)
KR (1) KR100934401B1 (ja)
TW (1) TW200706707A (ja)
WO (1) WO2006117920A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748425A (zh) * 2008-12-05 2010-06-23 宜兴方晶科技有限公司 甲基磺酸亚锡制备方法
CN113430592A (zh) * 2021-06-30 2021-09-24 广东德浩化工新材料有限公司 一种中性镀锡稳定剂及其制备方法
US20230383430A1 (en) * 2017-12-18 2023-11-30 New Mexico Tech University Research Park Corporation Tin-indium alloy electroplating solution

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632186B2 (ja) * 2007-08-01 2011-02-16 太陽化学工業株式会社 電子部品用錫電解めっき液、電子部品の錫電解めっき方法及び錫電解めっき電子部品
JP6127289B2 (ja) * 2012-03-02 2017-05-17 国立大学法人信州大学 リチウムイオン電池用負極材料およびその製造方法
CN103014786B (zh) * 2013-01-22 2016-01-20 广州博泉环保材料科技有限公司 电镀液、其制备方法及应用此电镀液的镀锡工艺
CN104109885B (zh) * 2013-04-22 2017-02-01 广东致卓精密金属科技有限公司 一种弱碱性焦磷酸盐电镀光亮锡溶液及工艺
EP3077578A4 (en) 2013-12-05 2017-07-26 Honeywell International Inc. Stannous methansulfonate solution with adjusted ph
CA2951437C (en) 2014-07-07 2022-03-15 Honeywell International Inc. Thermal interface material with ion scavenger
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
CN104593835B (zh) * 2015-02-04 2017-10-24 广东羚光新材料股份有限公司 用于片式元器件端电极电镀的中性镀锡液
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
CN105525312B (zh) * 2015-12-11 2017-12-29 广州市精利表面处理技术有限公司 一种镀锡溶液及其制备方法
CN109072051B (zh) 2016-03-08 2023-12-26 霍尼韦尔国际公司 相变材料
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
JP2022059731A (ja) 2020-10-02 2022-04-14 メルテックス株式会社 バレルめっき用スズめっき液
KR102664806B1 (ko) * 2021-11-18 2024-05-10 주식회사 에이엔씨코리아 적층세라믹 콘덴서용 주석도금액

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293186A (ja) * 2002-04-09 2003-10-15 Ishihara Chem Co Ltd 中性スズメッキ浴、当該浴を用いたバレルメッキ方法
JP2005126773A (ja) * 2003-10-24 2005-05-19 Murata Mfg Co Ltd めっき浴の作製方法、めっき浴、めっき方法、及び電子部品の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293186A (ja) * 2002-04-09 2003-10-15 Ishihara Chem Co Ltd 中性スズメッキ浴、当該浴を用いたバレルメッキ方法
JP2005126773A (ja) * 2003-10-24 2005-05-19 Murata Mfg Co Ltd めっき浴の作製方法、めっき浴、めっき方法、及び電子部品の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748425A (zh) * 2008-12-05 2010-06-23 宜兴方晶科技有限公司 甲基磺酸亚锡制备方法
CN101748425B (zh) * 2008-12-05 2014-07-09 宜兴方晶科技有限公司 甲基磺酸亚锡制备方法
US20230383430A1 (en) * 2017-12-18 2023-11-30 New Mexico Tech University Research Park Corporation Tin-indium alloy electroplating solution
CN113430592A (zh) * 2021-06-30 2021-09-24 广东德浩化工新材料有限公司 一种中性镀锡稳定剂及其制备方法

Also Published As

Publication number Publication date
JP2006328528A (ja) 2006-12-07
TWI325022B (ja) 2010-05-21
TW200706707A (en) 2007-02-16
JP3878959B2 (ja) 2007-02-07
KR20070116654A (ko) 2007-12-10
KR100934401B1 (ko) 2009-12-29

Similar Documents

Publication Publication Date Title
WO2006117920A1 (ja) スズめっき液、そのスズめっき液を用いためっき方法、スズめっき液調整方法及びそのスズめっき液を用いてスズめっき層を形成したチップ部品
CN111364074B (zh) 一种复合配位低浓度一价金无氰镀金电镀液的制备方法
US8043662B2 (en) Aqueous solution for surface treatment of metal and method for preventing discoloration of metal surface
JPS6254397B2 (ja)
EP0150439A1 (en) An acid bath for electrodeposition of gold or gold alloys, an electroplating method and the use of said bath
JP2007239076A (ja) スズめっき皮膜、そのスズめっき皮膜形成用のスズめっき液、そのスズめっき皮膜形成方法、及びそのスズめっき皮膜で電極形成したチップ型電子部品
CN112941575A (zh) 一种用于pcb孔金属化的铜盐弱碱性电镀液及其应用
US6743346B2 (en) Electrolytic solution for electrochemical deposit of palladium or its alloys
EP2350355B1 (en) Zinc alloy electroplating baths and processes
WO2012081274A1 (ja) ニッケルめっき液及びニッケルめっき方法
CN113930812B (zh) 片式电子元器件镀锡液和锡电镀方法
KR20080039796A (ko) 금―은 합금 도금액
EP1116804B1 (en) Tin-indium alloy electroplating solution
KR100368127B1 (ko) Sn-Bi합금 도금욕 및 이것을 사용한 도금 방법
US5326453A (en) Method and solution for electrodeposition of a dense, reflective tin or tin-lead alloy
KR20200142748A (ko) 철 전기도금용액 및 이를 이용하여 제조된 전기도금 강판
KR20210034979A (ko) 황산계 철 전기도금용액의 제2철 이온 제거 방법
CA2331750A1 (en) Method for electro copperplating substrates
CN110129842A (zh) 一种复合无氰电镀金镀液制备及使用其电镀金工艺
JP2980895B2 (ja) 銀の電解剥離液
EP4370732A1 (en) Electroplating compositions and methods for preparing the same
CN118256969A (zh) 一种连续环保型无氟雾状锡铜合金电镀工艺
CN1186127A (zh) 在铅框制造过程中所用的电解银溶脱剂
SE2250388A1 (en) Compositions, methods, and preparations of cyanide-free gold solutions, suitable for electroplating of gold deposits and alloys thereof
KR20050037785A (ko) 주석 양극의 용해속도가 증대된 주석 도금액

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077024412

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12007502397

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714264

Country of ref document: EP

Kind code of ref document: A1