WO2006112543A1 - 検査装置および導電パターン検査方法 - Google Patents

検査装置および導電パターン検査方法 Download PDF

Info

Publication number
WO2006112543A1
WO2006112543A1 PCT/JP2006/308683 JP2006308683W WO2006112543A1 WO 2006112543 A1 WO2006112543 A1 WO 2006112543A1 JP 2006308683 W JP2006308683 W JP 2006308683W WO 2006112543 A1 WO2006112543 A1 WO 2006112543A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
signal
inspection
level
inspected
Prior art date
Application number
PCT/JP2006/308683
Other languages
English (en)
French (fr)
Inventor
Hiroshi Hamori
Shuji Yamaoka
Shogo Ishioka
Original Assignee
Oht Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oht Inc. filed Critical Oht Inc.
Publication of WO2006112543A1 publication Critical patent/WO2006112543A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present invention relates to, for example, an inspection apparatus and a conductive pattern inspection method capable of inspecting the quality of a conductive pattern formed on a glass substrate.
  • a pin is brought into contact with both ends of the conductor pattern to be inspected, an inspection signal is supplied from one end side, and the other end side is supplied.
  • a contact method is known in which the inspection signal is received to conduct a continuity test of the conductor pattern. This method (also called the pin contact method, the details of which are described in, for example, Patent Document 1) is that if the inspection signal is detected at the receiving end, the connection is secured and the pattern to be inspected. If the inspection signal is not detected, the conductor pattern is judged to be disconnected.
  • an inspection probe is also placed in the pattern adjacent to the conductor pattern to be inspected, and inspection is performed from that adjacent pattern. There is also a method of determining the short-circuit state between the conductor pattern to be inspected and the adjacent pattern based on whether or not a signal is detected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6 2-2 6 9 0 7 5
  • a probe card composed of multiple probes with a narrow pitch increases the manufacturing cost.
  • an open detection sensor for inspecting a disconnection state and a short sensor for inspecting a short-circuit state (short-circuit state) with an adjacent pattern are provided separately for the analysis result analysis program and the configuration of the inspection device.
  • the complexity of the sensor unit there is a limit to the miniaturization of the sensor unit itself, so efficient inspection cannot be performed.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an inspection apparatus and a conductive pattern inspection method that can detect an open state and a short state of a conductive pattern with high accuracy.
  • Another object of the present invention is to provide an inspection device and a conductive pattern inspection method capable of detecting an open state Z short state of a conductive pattern on a TFT substrate with a simple device configuration.
  • the present invention is an inspection apparatus for inspecting a state of a conductive pattern arranged on a substrate, and a signal supply means for supplying an inspection signal to one end of the conductive pattern to be inspected.
  • the signal detection means moves in the scanning direction in synchronization with the signal supply means, and the inspection signal is contacted without contact via capacitive coupling with the conductive pattern. Is detected.
  • the signal detection means sequentially indicates two signals out of the inspection signals sequentially detected from the conductive pattern to be inspected by the signal detection means, and the signal level is higher than the signal level in a normal state. And determining that the conductive pattern is short-circuited with an adjacent pattern.
  • the identification unit determines that the conductive pattern is disconnected when the signal detection unit does not detect the inspection signal from the conductive pattern to be inspected.
  • the identification unit determines that the conductive pattern is disconnected in a region other than the region sandwiched between the signal detection unit and the signal supply unit.
  • the identifying means identifies a disconnection of a conductive pattern to be inspected and a short circuit between conductive patterns based on a result of comparing a signal level of the detected inspection signal with a predetermined threshold value. It is characterized by. For example, for each of the detected inspection signals, the identification unit obtains a level change tendency of the entire inspection signal from a level difference from the preceding and succeeding signals, and changes the level of the inspection signal detected from the conductive pattern to be inspected. If is not consistent with the above-mentioned level change tendency, it is determined that the conductive pattern is disconnected or short-circuited with the adjacent pattern.
  • the present invention is a conductive pattern inspection method in an inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, and at least a width equal to or less than the arrangement pitch width of the conductive pattern.
  • a step of supplying an inspection signal to one end portion of the conductive pattern to be inspected from a signal supply means having a signal supply terminal, and at least the conductive pattern and its conductivity at the other end portion of the conductive pattern to be inspected A step of detecting the inspection signal in a non-contact manner through capacitive coupling with the conductive pattern by a signal detecting means having a size covering a conductive pattern adjacent to the pattern; and the signal supply terminal is connected to the conductive pattern.
  • the signal detection means is synchronized with the signal supply means and the other end of the conductive pattern is sequentially traced. Wherein said signal supply means to sequentially scan the signal And a step of identifying the state of the conductive pattern based on a change in the signal detected in the signal detection step.
  • the identification step when two signals among the inspection signals sequentially detected from the conductive pattern to be inspected by the signal detection unit continuously show a level higher than a signal level in a normal state If the signal detection means does not detect the inspection signal from the conductive pattern to be inspected, it is determined that the conductive pattern is disconnected. It is characterized by that.
  • the identification step when the conductive pattern is arranged on two different wiring layers, the level of the inspection signal detected by the signal detection means is lower than the signal level in a normal state. It is characterized in that it is judged that the conductive pattern is short-circuited with the conductive pattern of the other layer.
  • the signal detection unit detects a single signal among the inspection signals sequentially detected from the conductive pattern to be inspected.
  • the level is higher than the signal level in the normal state, it is determined that the conductive pattern is disconnected in a region other than the region sandwiched between the signal detection unit and the signal supply unit.
  • the identifying step identifies a disconnection of the conductive pattern to be inspected and a short circuit between the conductive patterns based on a result of comparing a signal level of the detected inspection signal with a predetermined threshold value. To do. Further, for example, in the identification step, for each of the detected inspection signals, a level change tendency of the entire inspection signal is obtained from a level difference from the signal before and after the inspection signal, and the inspection signal detected from the conductive pattern to be inspected Level When the level change does not coincide with the level change tendency, it is determined that the conductive pattern has a disconnection or a short circuit with an adjacent pattern.
  • FIG. 1 is a diagram for explaining the principle of a conductive pattern inspection method in a substrate inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a specific configuration of the substrate inspection apparatus according to the embodiment.
  • FIG. 3 is a flow chart showing an inspection procedure in the substrate inspection apparatus according to the embodiment.
  • FIG. 4 is a flowchart showing a procedure for determining whether or not a conductive pattern is good in the substrate inspection apparatus according to the embodiment.
  • FIG. 5 is a diagram showing an example of the inspection result in the substrate inspection apparatus according to the embodiment.
  • FIG. 6 is a diagram showing an example of the inspection result of the TFT substrate in the substrate inspection apparatus according to the embodiment.
  • FIG. 7 is a diagram for explaining a detection signal level determination method in the substrate inspection apparatus according to the embodiment.
  • FIG. 1 is a diagram for explaining the principle of a method for inspecting a conductive pattern in a substrate inspection apparatus according to the present embodiment.
  • the board inspection system shown in Fig. 1 The substrate to be inspected 10 is, for example, a liquid crystal display panel or an evening type panel.
  • the row-shaped conductive patterns 15 regularly arranged on the glass substrate (good or bad of the conductive pattern). Status and short-circuit state between wiring patterns).
  • Each of the columnar conductive patterns 15 is, for example, a wiring pattern before pasting in these panels, and has almost the same pattern shape.
  • the conductive material for example, chromium, silver, aluminum ITO is used.
  • the probe 30 is an inspection signal supply terminal having a diameter sufficiently smaller than the pitch of the row conductive patterns 15.
  • the tip of the probe 30 has flexibility, for example, and is configured to contact only one of the conductive patterns. Then, when the tip portion contacts the columnar conductive pattern 15, the inspection signal is supplied to the conductive pattern.
  • the probe 30 is scanned in the direction of the arrow in the figure from one end of the substrate 10 to the other end. In the meantime, the inspection signal is continuously supplied to the probe 30 from the supply unit (AC signal generation unit) 3 5.
  • the sensor unit 20 is positioned at a position separated from the column-shaped conductive pattern 15 of the liquid crystal display panel by a predetermined distance, and is scanned in the arrow direction in the drawing in synchronization with the probe 30.
  • the sensor unit 20 is, for example, a rectangular electrode plate having a size extending over these two wiring patterns (covering at least two wiring patterns).
  • the inspection signal is supplied from the probe 30 to any one of the two wiring patterns straddled by the sensor unit 20. Therefore, the inspection signal supplied to the columnar conductive pattern 15 reaches the sensor unit 20 via capacitive coupling (electrostatic coupling) between the conductive pattern and the sensor unit 20.
  • the above scanning is performed by synchronizing the sensor unit 20 and the probe 30.
  • the substrate moves so as to move relative to the substrate (liquid crystal display panel) 10 in the direction of the arrow in FIG.
  • a stage (not shown) on which 10 is placed (for example, one capable of three-dimensional position control by four-axis control of XYZ 0 angle) may be moved in m order.
  • the position control and scanning control of the sensor unit 20 and the probe 30 are performed so that the inspection signal is always supplied from the probe 30 to any one of the two wiring patterns that the sensor unit 20 straddles. Done.
  • the signal detected by the sensor unit 20 is a minute signal, it is sent to the amplifier 25 in order to amplify it with a predetermined amplification degree.
  • the amplifier 25 is composed of, for example, an operational amplifier (op amp) having an input impedance Z.
  • the signal amplified by the amplifier 25 is input to a display device 26 that displays the detection result.
  • the influence of external noise or the like on the detection signal is eliminated by arranging the amplifier 25 immediately after the sensor unit 20.
  • An AC inspection signal is supplied from 5, and an electrostatic coupling is formed by using the column-shaped conductive pattern 15 to which the inspection signal is supplied as one electrode and the sensor unit 20 as the other electrode.
  • the detection signal from section 20 is amplified by amplifier 25, and the obtained inspection signal is examined. As a result, the open state or the like of the conductive patterns 15 arranged in a row on the substrate 10 can be individually inspected.
  • the capacitance formed by the conductive pattern and the opposing portion of the conductive pattern of the sensor unit 20 is It will be almost the same.
  • detection signals of almost the same level can be obtained for each conductive pattern as will be described later.
  • the conductive pattern to be inspected is not limited to the above-described columnar conductive pattern.
  • the conductive pattern is a comb-shaped conductive pattern in which one end of the conductive pattern is opened and the base is short-circuited by a short bar. By sequentially scanning them, the quality of the pattern can be determined based on the same principle as described above.
  • FIG. 2 shows a specific configuration example of an inspection apparatus that realizes the inspection method described above.
  • the same components as those in FIG. 1 are given the same reference numerals.
  • the liquid crystal panel 10 to be inspected is positioned at the inspection position, and at one end of the conductive pattern to be inspected on the liquid crystal panel 10, the sensor unit 20 is not in contact with the conductive pattern to be inspected. Is arranged.
  • the probe 30 is positioned at the other end of the conductive pattern so that the tip thereof is in contact with the conductive pattern.
  • the sensor unit 20 is provided with a metal electrode (for example, an aluminum (A 1) electrode) at least on the surface.
  • a metal electrode for example, an aluminum (A 1) electrode
  • a 1 electrode for example, an electrostatic capacitance between the sensor unit 20 and the conductive pattern Configure to increase capacity. It is made.
  • the signal detected by the sensor unit 20 is sent to the analog signal processing circuit 50.
  • the signal subjected to the analog signal processing by the analog signal processing circuit 50 is sent to the control unit 60, and the quality of the wiring pattern is determined.
  • the control unit 60 also performs control to supply an inspection signal to the inspection signal supply terminal 30 as described later.
  • the analog signal processing circuit 50 removes noise components of the detection signal amplified by the amplifier 51 and amplifier 51 that amplify the detection signal from the sensor unit 20 and passes only the detection signal.
  • the control unit 60 controls the entire inspection apparatus including the overall control of the inspection sequence described later, for example, a control procedure for the central processing unit (CPU) 61 and CPU 61 including a microprocessor. Storing board inspection procedures, etc. as a program overnight ROM 6 2, CPU 61 RAM processing information (control data, inspection data), etc. RAM 6 3 used as a work area temporarily, analog signal A / D converter 64 that converts the analog signal from the processing circuit 50 into the corresponding digital signal, the signal supply unit 65 that supplies the inspection signal to the inspection signal supply terminal 30, inspection results, operation instruction guidance, etc.
  • a display unit 66 including a CRT or a liquid crystal display is provided.
  • the signal supply unit 65 generates, for example, a sine wave signal having a signal level of 10 Vp-p, 100 kHz as the inspection signal, and supplies it to the inspection signal supply terminal 30.
  • the node pass filter 52 has a band for passing a signal of ⁇ ⁇ ⁇ ⁇ ⁇ .
  • Inspection signal supply terminal (probe) 30 has its tip crossing the signal supply terminal (connection terminal) etc. of the conductive pattern to be inspected.
  • the test signal is sequentially supplied to each conductive pattern.
  • the tip of the probe 30 is formed of, for example, a flexible tungsten alloy and has a size that is less than the pattern pitch of the pattern to be inspected (the pattern width of the conductive pattern and the pattern gap). To do. For example, by setting the base wire diameter to 150 im and the tip (race) diameter to 15 jm, it is a conductive pattern with an inspection target width of 30 m, and its pattern gap is about 20 zm. The conductive pattern of the substrate can be inspected.
  • the mouth pot controller 70 controls the scalar mouth pot 80 under the control of the control unit 60.
  • the scalar port pot 80 positions and holds the liquid crystal panel 10 at the inspection position, and the tip of the inspection signal supply terminal 30 is placed on all of the liquid crystal panel 10 under the control of the robot controller 70. Hold it in contact with the connection terminal, and scan the tip so that it sequentially traces all the connection terminals.
  • FIG. 3 is a flowchart showing the inspection procedure of the present embodiment.
  • step S1 of FIG. 3 the liquid crystal panel 10 to be inspected is transported and set to a predetermined position (inspection position) of the substrate inspection apparatus along a transport path (not shown).
  • step S2 the flag (NG flag) indicating that there is a defective portion in the inspection target pattern is reset, and the N flag indicating the inspection target conductive pattern is set to "1", and the first conductive pattern It will be in a state where it can be judged whether or not.
  • the preparation for starting the inspection is completed.
  • the control unit 60 waits for a start instruction input indicating the start of the inspection.
  • step S4 an instruction is given to the robot controller 70 to control the scalar port pot 80, and the inspection signal supply terminal ( (Probe) 30 is moved to the inspection start position of the conductive pattern to be inspected.
  • step S 5 the signal supply unit 65 is activated, an inspection signal is output to the inspection signal supply terminal (probe) 30, and its tip is brought into contact with the inspection target conductive pattern to obtain a predetermined conductive property.
  • the inspection signal from the signal supply unit 65 is transmitted and supplied to the pattern.
  • the analog signal processing circuit 50 is activated and reading of the inspection signal from the sensor unit 20 is started. Thereafter, until the “tracing” by the inspection signal supply terminal 30 is completed, the detection data for every fixed time is taken in sequentially and stored in, for example, R A M 63.
  • the process proceeds to step S7, and the signal supply unit 65 is turned off. Thereafter, the process proceeds to a conductive pattern pass / fail judgment process described later.
  • FIG. 4 is a flowchart showing a procedure for determining whether or not the conductive pattern is acceptable in the substrate inspection apparatus according to the present embodiment.
  • the sensor unit 2 when supplying the inspection signal to the conductive pattern (nth) in step S11 of FIG. Read 0 detection voltage value. If it is the first pattern (first), read the detection voltage value by the sensor unit 20 when the inspection signal is supplied to the conductive pattern at the position where the inspection signal supply terminal 30 started tracing. put out.
  • step S 1 2 whether or not the detection voltage (output voltage) at the sensor unit 20 is equal to or higher than a predetermined threshold based on the detection level when the pattern is in a normal state, and the inspection target wiring Check whether signals are detected from adjacent patterns other than the pattern. If it is less than the specified threshold and no signal is detected from the adjacent pattern, the wiring pattern is assumed to be normal, and the process proceeds to step S13. On the other hand, if the value of the signal detected by the sensor unit 20 is equal to or greater than the specified threshold value in Step SI 2 and a signal is detected from an adjacent pattern other than the wiring pattern to be inspected, the process proceeds to Step S 15 and n The first wiring pattern is judged to be short-circuited with the wiring pattern adjacent to it.
  • step S 16 the NG flag is set to “1”, and then the process proceeds to step S 17.
  • the inspection time can be further shortened by stopping further “tracing control” and immediately proceeding to the next process assuming that the target board is defective. .
  • step S 17 the inspection result is displayed. For example, when the NG flag is checked and the NG flag is set, the display unit 6 6 indicates that the liquid crystal panel 10 is a defective panel in which the wiring pattern is short-circuited (NG display). ) I do. If the NG flag is not set, the LCD panel 10 is displayed as normal (OK display) In step SI 8, remove the liquid crystal panel from the board inspection device (drop the liquid crystal panel to the transport position and place it on the transport path and transport it to the next stage, or remove the defective panel from the transport path, etc.) Process).
  • step S 19 it is checked whether or not the liquid crystal panel inspection has been completed. If there is a liquid crystal panel to be inspected next, the process returns to step S1 shown in Fig. 3 to set a new liquid crystal panel. However, if there is no next panel to be inspected, the inspection is terminated in step S 19 and the process is terminated.
  • control is performed so as to determine whether the pattern is in a short-circuit state or the like.
  • the present invention is not limited to this.
  • a single inspection board After collecting the inspection results from all the inspection target patterns of the liquid crystal panel, the quality of the substrate may be determined by performing data processing or the like in a lump.
  • the setting of the liquid crystal panel to be inspected and the removal thereof are not limited to the above example.
  • the liquid crystal panel is automatically set and removed, and the removed liquid crystal panel is accepted or rejected.
  • the product may be automatically stored in a good product storage unit or a defective product storage unit.
  • the above inspection process may be incorporated into a part of the production line, the liquid crystal panel sent from the upstream side may be inspected, and only non-defective products may be conveyed downstream.
  • FIG. 5 shows an example of inspection results when the inspection target is a columnar conductive pattern in the substrate inspection apparatus according to the present embodiment.
  • the probe 30 moves in the direction of the arrow while supplying an AC inspection signal to each of the conductive patterns 15 a, 15 b, and the sensor unit 20 also synchronizes with the probe 30. Liquid to be inspected by moving in the direction The inspection signal is detected in a non-contact manner from the conductive pattern 15 of the crystal panel. If the conductive pattern to be inspected is a normal pattern with no short circuit such as the conductive patterns 15a and 15b in Fig.
  • the inspection signal is sequentially applied to these conductive patterns 15a and 15b. Is supplied, there is a capacitance (capacitance) that is equivalently connected between each conductive pattern and a stage (not shown). Detection signals SG 1 and SG 2 are obtained.
  • the probe 30 when there is a short circuit 9 0 between patterns, such as conductive patterns 15 c and 15 d, the probe 30 is not only short-circuited with the conductive pattern 15 c that supplies the AC test signal.
  • the inspection signal also flows into the conductive pattern 15 d.
  • detection signals S G 3 and S G 4 can be obtained from both conductive patterns 15 c and 15 d.
  • the intensity of the detection signal is different from that when there is no short circuit, and the voltage level sensed by the sensor 20 also changes.
  • a signal with a level higher than that obtained from other normal conductive patterns is detected from the short-circuited conductive patterns 15 c and 15 d.
  • the high-level signal is detected in this way when there is a short circuit in a part of the conductive pattern, and the area of the conductive pattern facing the sensor unit 20 is almost double that of one conductive pattern when the pattern is normal. This is because the output of the amplifier 25 increases significantly compared to the case where there is no short circuit.
  • Fig. 6 shows an example of pattern inspection results when a TFT (thin film transistor) built-in liquid crystal display panel with a two-layer structure (hereinafter also simply referred to as a TFT substrate) is to be inspected.
  • the first wiring layer and the second wiring layer are formed in a stacked state in a positional relationship between the upper layer and the lower layer, and the first wiring layer is a TFT transistor arranged on a liquid crystal display.
  • a conductive pattern 15 as a data line (not shown) is formed on the lower glass substrate, and the second wiring layer is formed so that the conductive pattern 17 as a gate line is orthogonal to the conductive pattern 15. It is formed on a substrate.
  • the conductive pattern 15 has a configuration in which one end is opened and the base is short-circuited by a short-circuit 19 through a tab (TAB) region 18.
  • TAB tab
  • the probe 30 is moved in the direction of the arrow to supply an AC inspection signal to each of the conductive patterns 15a, 15b ...
  • the sensor unit 20 is moved in the same direction in synchronization with the probe 30.
  • the sensor unit 20 detects the inspection signal in a non-contact manner from the conductive pattern 15.
  • detection signals of almost the same level can be obtained from those patterns, such as S G 1, S G 4, S G 6, S G 7.
  • the inspection signal also flows into the conductive pattern 1 5 b and the conductive pattern 15 c that is short-circuited therewith.
  • the detection signals SG2 and SG3 are obtained from the above. At this time, similar to the case shown in FIG. 5, the signal strength is different from the signal level when there is no short circuit, and is higher than the normal level. Two bell signals (SG 2 and SG 3) are detected in succession.
  • a short-circuit between the conductive pattern 15 e of the first wiring layer and the conductive pattern 17 d of the second wiring layer (also referred to as a short between the eyebrows or a cross short) 9 5 If there is, the alternating current for inspection i supplied to the conductive pattern 1 5 e from the probe 30 is shunted at the short-circuited point 9 5, and the conductive pattern 1 7 of the second wiring layer is obtained as currents i ′ and i ⁇ . flowing into d.
  • the inspection signal current is shunted from the conductive pattern of one layer to the conductive pattern of the other layer at the short circuit point. Therefore, in FIG. 6, the signal level detected by the sensor unit 20 located on the conductive pattern 15 e is higher than the normal level when there is no short circuit, as shown by the detection signal SG 5 in FIG. Lower. Therefore, it is easy to determine the presence or absence of a short circuit between layers simply by detecting this level.
  • the tab (TAB) region 18 if there is an open portion 96 in part of the conductive pattern 15 h, even if an inspection signal is supplied from the probe 30 to one end of the conductive pattern 15 h Most of the inspection current flows to the sensor 20 side through capacitive coupling with the conductive pattern. This is because if there is an open part in the tab area, the ground (G N D) is removed. Therefore, in this case, the signal level detected by the sensor 20 becomes higher than the normal level as the signal S G 8 in FIG.
  • a fixed threshold is set for the output of the amplifier 25, and if the level of the detection signal is equal to or higher than the threshold, Based on the position of the probe 30 at that time, it is determined that the conductive pattern has a short-circuit portion with another pattern. This is because there is a large difference in the level of the detection waveform of the short-circuited conductive pattern from the normal detection waveform.
  • the average detection level during normal operation is the difference between the detection signal during normal operation and short-circuiting. Short-circuiting can be detected even if the value obtained by adding half the values is set as the threshold value for short-circuiting.
  • the sensor unit is arranged in a non-contact state with the conductive pattern to be inspected.
  • the voltage level detected by the sensor unit varies. For example, when fluctuation occurs with respect to the entire level of the measured voltage as shown by the dotted line in Fig. 7 (b), a constant threshold value A lh is set in the output voltage waveform of the amplifier as shown in Fig. 7 (a).
  • a constant threshold value A lh is set in the output voltage waveform of the amplifier as shown in Fig. 7 (a).
  • Fig. 7 (b) for each signal waveform, the level difference from the signal waveform before and after it is obtained, and the change tendency of the entire output voltage waveform is obtained from the increasing or decreasing tendency of the level difference.
  • the change trend indicated by the level difference is judged as the change trend of the entire output voltage waveform indicated by the dotted line in Fig. 7 (b).
  • Fig. 7 (b) shows an example when the change trend of the entire output voltage waveform is different from Fig. 7 (b), that is, when the change trend is slow, as shown by the dotted line.
  • the method of detecting the presence / absence of a short circuit of a conductive pattern by performing a relative comparison based on the change tendency of the level difference of the detection signal of the adjacent pattern, the detection data from each conductive pattern is stored in RAM, etc.
  • This method is in conformity with the inspection method in which all the conductive patterns are stored in a row, and all conductive patterns are scanned at once.
  • the tip of the probe is brought into contact with only one of the regularly arranged conductive patterns, and the conductive pattern is adjacent to the conductive pattern.
  • a sensor unit having a size straddling the pattern is positioned in a non-contact state at a position spaced apart from the pattern by a predetermined distance, and the probe and the sensor unit are synchronized to move on the inspection target substrate.
  • the conductive pattern can be reliably detected by simply scanning the inspection probe so that the trace position of the inspection probe crosses the pattern to be inspected without any special control. Can be detected.
  • the normal detection signal level that is the target of detection and Not only is there a clear difference in the level to be detected in the event of an abnormality, but in particular when there is a short circuit, two high-level signals are detected in succession in the time-series signal, ensuring reliable and reliable High test results can be obtained.
  • connection terminal portion of the inspection target pattern it is only necessary to sequentially scan the connection terminal portion of the inspection target pattern. Therefore, even if the pattern arrangement state of the inspection target pattern changes, it is not necessary to accurately position the inspection pin.
  • By simply controlling the scanning route it is possible to perform short-circuit inspection of conductive patterns without any complicated positioning control even if the wiring is complicated or the pattern interval of the pattern to be inspected varies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

導電パターンのオープン/ショートを検出可能な検査装置と検査方法を提供する。規則的に配列された導電パターン15a,15bのいずれか一つの一方端のみにプローブ30の先端部を接触させるとともに、その配線パターンと隣接パターンに跨る大きさを有するセンサ部20を、それらのパターンから所定距離離間した位置に非接触で位置決めし、それらプローブ30とセンサ部20とを同期させて検査対象基板上を移動させる。そして、例えば、正常時の検出信号レベルと異常時の検出対象レベルの差や、検出信号間のレベル変化の傾向をもとにパターンの短絡等を判断する。

Description

明細書 検査装置および導電パターン検査方法 技術分野
本発明は、 例えば、 ガラス基板に形成された導電パターンの良否を検 査可能な検査装置および導電パターン検査方法に関するものである。 背景技術
回路基板上に形成された導電パターン (導体パターン) を検査する方 法としては、 検査対象とする導体パターンの両端にピンを接触させて、 その一端側より検査信号を供給し、 他端側よりその検査信号を受電する ことで、 その導体パターンの導通試験等を行う接触方式が知られている 。 この方法 (ピンコンタクト方式とも呼ばれ、 その詳細は、 例えば、 特 許文献 1に記載されている) は、 受電端で検査信号が検出されれば、 導 通が確保されたとして、 被検査パターンが正常状態にあり、 逆に検査信 号が検出されなければ、 導体パターンが断線状態にあると判断するもの である。
また、 被検査導体パターンに供給した検査信号が、 その導体パターン を正常に通過したことを確認するだけでなく、 被検査導体パターンに隣 接するパターンにも検査プローブを配置し、 その隣接パターンから検査 信号が検出されたか否かに基づいて、 被検査導体パターンと隣接パタ一 ンとの短絡 (ショート) 状態を判定する方法もある。
特許文献 1 特開昭 6 2— 2 6 9 0 7 5号公報
しかしながら、 上記のピンコンタクト方式による検査では、 検査対象 とする基板の全端子に、 例えば、 金属'' I生のピンプローブを立てて、 これ らのプローブを経由して導電パターンへ電気信号を送り込んでいる。 そ のため、 検査信号について良好な S / N比 (信号対雑音比) が得られる という利点はあるものの、 近時における高密度化した導体パターンの検 査に対応できないという問題がある。
例えば、 配線ピッチ幅が 5 0 以下の高細密なパターンを検査する 場合、 狭ピッチ多本数プローブで構成されるプローブカードは製造コス トが高くなる。 また、 断線状態を検査するためのオープン検出センサと 、 隣接パターンとの短絡状態 (ショート状態) を検査するためのショー トセンサを個別に設けることは、 検査結果の解析用プログラムや検査装 置の構成が複雑化するだけでなく、 センサユニットそのものの小型化に 限界があるため、 効率的な検査ができない。
一方、 T F T (薄膜トランジスタ) を組み込んでなる液晶表示パネル におけるデータラインのパターンとゲートラインのパターン間の短絡 ( 層間ショート、 あるいはクロスショートともいう) については、 従来よ りパターンの画像処理に基づく検査を行っていた。 しかし、 解像度ゃ処 理速度等の点から、 このような層間ショートを確実かつ高速に検出する ことが困難であるという問題があった。 発明の開示
本発明は、 上述した課題に鑑みてなされたもので、 その目的とすると ころは、 導電パターンのオープン状態 ショート状態を高精度で検出で きる検査装置および導電パターン検査方法を提供することである。
また、 本発明の他の目的は、 簡易な装置構成で T F T基板における導 電パターンのオープン状態 Zショート状態を検出可能な検査装置および 導電パターン検査方法を提供することである。
かかる目的を達成し、 上述した課題'を解決する一手段として、 例えば 、 以下の構成を備える。 すなわち、 本発明は、 基板に配された導電パタ ーンの状態を検査する検査装置であって、 検査対象とする前記導電パ夕 —ンの一方端部に検査信号を供給する信号供給手段と、 前記検査対象と する導電パターンの他方端部において、 少なくとも前記導電パターンと その導電パターンに隣接する導電パターンとを覆う大きさの信号検出手 段と、 前記導電パターンを順次走査するよう前記信号供給手段と前記信 号検出手段を位置決め移動させる走査手段と、 前記信号検出手段で検出 された信号の変化に基づいて前記導電パターンの良否を識別する識別手 段とを備え、 前記信号供給手段は少なくとも前記導電パターンの配設ピ ツチ幅と同等あるいはそれ以下の幅の信号供給端子を有し、 その信号供 給端子で前記導電パターンの一方端部を順次なぞりながら前記走査方向 へ移動し、 前記信号検出手段は前記信号供給手段と同期して前記走査方 向へ移動するとともに、 前記導電パターンとの間の容量結合を介して非 接触で前記検査信号を検出することを特徴とする。
例えば、 前記識別手段は、 前記信号検出手段が前記検査対象とする導 電パターンより順次検出した前記検査信号のうち 2つの信号が連続して 正常状態時の信号レベルよりも高いレベルを示した場合に前記導電パ夕 ーンが隣接パターンと短絡していると判断することを特徴とする。
また、 例えば、 前記識別手段は、 前記信号検出手段が前記検査対象と する導電パターンより前記検査信号を検出しない場合、 その導電パター ンが断線していると判断することを特徴とする。
例えば、 前記導電パターンが 2つの異なる配線層に配されているとき 、 前記信号検出手段により検出された前記検査信号のレベルが正常状態 時の信号レベルよりも低い場合、 前記識別手段は、 一方の配線層の導電 パターンが他方の配線層の導電パターンと層間短絡していると.判断する ことを特徴とする。 例えば、 前記導電パターンが 2つの異なる配線層に配されているとき 、 前記信号検出手段が前記検査対象とする導電パターンより順次検出し た前記検査信号のうち単独の信号レベルが正常状態時の信号レベルより も高い場合、 前記識別手段は、 その導電パターンが、 前記信号検出手段 と前記信号供給手段で挟まれた領域以外に領域において断線していると 判断することを特徴とする。
また、 例えば、 前記識別手段は、 前記検出した検査信号の信号レベル と所定の閾値とを比較した結果をもとに前記検査対象とする導電パター ンの断線および導電パターン相互の短絡を識別することを特徴とする。 例えば、 前記識別手段は、 前記検出した検査信号各々について、 その 前後の信号とのレベル差より検査信号全体のレベル変化傾向を求め、 前 記検査対象とする導電パターンより検出した検査信号のレベル変化が前 記レベル変化傾向と一致しない場合、 その導電パターンに断線または隣 接パターンとの短絡があると判断することを特徴とする。
上述した課題を解決する他の手段として、 例えば、 以下の構成を備え る。 すなゎぢ、 本発明は、 基板に配された導電パターンの状態を検査す る検査装置における導電パターン検査方法であって、 少なくとも前記導 電パターンの配設ピッチ幅と同等あるいはそれ以下の幅の信号供給端子 を有する信号供給手段より検査対象とする前記導電パターンの一方端部 に検査信号を供給するステップと、 前記検査対象とする導電パターンの 他方端部において、 少なくとも前記導電パターンとその導電パターンに 隣接する導電パターンとを覆う大きさの信号検出手段によって、 前記導 電パターンとの間の容量結合を介して非接触で前記検査信号を検出する ステップと、 前記信号供給端子が前記導電パターンの一方端部を順次な ぞるとともに、 前記信号検出手段が前記信号供給手段と同期して前記導 電パターンの他方端部を順次走査するように前記信号供給手段と前記信 号検出手段を位置決め移動させるステップと、 前記信号検出ステップで 検出された信号の変化に基づいて前記導電パターンの状態を識別するス テツプとを備えることを特徴とする。
例えば、 前記識別ステップは、 前記信号検出手段が前記検査対象とす る導電パターンより順次検出した前記検査信号のうち 2つの信号が連続 して正常状態時の信号レベルよりも高いレベルを示した場合に前記導電 パターンが隣接パターンと短絡していると判断し、 前記信号検出手段が 前記検査対象とする導電パターンより前記検査信号を検出しない場合に は、 その導電パターンが断線していると判断することを特徴とする。 例えば、 前記識別ステップは、 前記導電パターンが 2つの異なる配線 層に配されているとき、 前記信号検出手段により検出された前記検査信 号のレベルが正常状態時の信号レベルよりも低い場合、 その導電パター ンが他層の導電パターンと層間短絡していると判断することを特徴とす る。
また、 例えば、 前記識別ステップは、 前記導電パターンが 2つの異な る配線層に配されているとき、 前記信号検出手段が前記検査対象とする 導電パターンより順次検出した前記検査信号のうち単独の信号レベルが 正常状態時の信号レベルよりも高い場合、 その導電パターンが、 前記信 号検出手段と前記信号供給手段で挟まれた領域以外に領域において断線 していると判断することを特徴とする。
例えば、 前記識別ステップは、 前記検出した検査信号の信号レベルと 所定の閾値とを比較した結果をもとに前記検査対象とする導電パターン の断線および導電パターン相互の短絡を識別することを特徴とする。 また、 例えば、 前記識別ステップは、 前記検出した検査信号各々につ いて、 その前後の信号とのレベル差より検査信号全体のレベル変化傾向 を求め、 前記検査対象とする導電パターンより検出した検査信号のレべ ル変化が前記レベル変化傾向と一致しない場合、 その導電パターンに断 線または隣接パターンとの短絡があると判断することを特徴とする。 図面の簡単な説明
第 1図は、 本発明の実施の形態例に係る基板検査装置における導電パ ターンの検査方法の原理を説明するための図である。
第 2図は、 実施の形態例に係る基板検査装置の具体的な構成を示すブ ロック図である。
第 3図は、 実施の形態例に係る基板検査装置での検査手順を示すフロ 一チヤ一卜である。
第 4図は、 実施の形態例に係る基板検査装置での導電パターンの良否 判断処理手順を示すフローチャートである。
第 5図は、 実施.の形態例に係る基板検査装置における検査結果の一例 を示す図である。
第 6図は、 実施の形態例に係る基板検査装置における T F T基板の検 査結果の一例を示す図である。
第 7図は、 実施の形態例に係る基板検査装置における検出信号のレべ ル判定方法を説明するための図である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明に係る実施の形態例を詳細に説明 する。 なお、 本発明は、 以下に説明する構成要素の相対配置、 数値等に 何ら限定されるものではなく、 特定的な記載がない限り本発明の範囲を 以下の記載の限定する趣旨ではない。
図 1は、 本実施の形態例に係る基板検査装置における導電パターンの 検査方法の原理を説明するための図で'ある。 図 1に示す基板検査装置の 検査対象基板 1 0は、 例えば、 液晶表示パネルや夕ツチ式パネルであり 、 ここでは、 ガラス製の基板上に規則的に配設された列状導電パターン 1 5の良否 (その導電パターンの断線状態、 および配線パターン相互の 短絡状態) を検査する。 なお、 各列状導電パターン 1 5は、 例えば、 こ れらのパネルにおける張り合わせ前の配線パターンであって、 ほぼ同一 のパターン形状を有し、 その導電性材料として、 例えば、 クロム、 銀、 アルミニウム、 I T O等が使用されている。
プローブ 3 0は、 列状導電パターン 1 5のピッチより十分小径の検査 信号供給端子である。 プローブ 3 0の先端部は、 例えば可撓性を有して おり、 導電パターンのいずれか一つのみに接触するように構成されてい る。 そして、 その先端部が列状導電パターン 1 5に接触することで、 検 査用信号がその導電パターンに供給される。 ここでは、 検査対象のパタ ーンに順次、 検査用信号を供給するため、 基板 1 0の一方端部より他方 端部まで、 図中の矢印方向にプローブ 3 0が走査される。 その間、 供給 部 (交流信号発生部) 3 5からは、 プローブ 3 0に対して検査信号が供 給され続ける。
センサ部 2 0は、 液晶表示パネルの列状導電パターン 1 5と所定距離 離間した位置に位置決めされており、 プローブ 3 0に同期して、 図中の 矢印方向に走査される。 センサ部 2 0は、 例えば、 これらの配線パター ン 2本分に跨る (少なくとも 2本の配線パターンを覆う) 大きさを有す る長方形状の電極板である。 検査時には、 センサ部 2 0が跨ぐ 2本の配 線パターンのうち、 いずれか 1本の配線パターンにプローブ 3 0から検 査信号が供給される。 よって、 列状導電パターン 1 5に供給された検査 信号は、 それらの導電パターンとセンサ部 2 0間の容量結合 (静電結合 ) を介して、 センサ部 2 0へ到達する。
なお、 上記の走査は、 センサ部 2 0とプローブ 3 0を同期させて移動 させるか、 あるいは、 センサ部 2 0とプローブ 3 0の位置を固定したま ま、 それらが基板 (液晶表示パネル) 1 0に対して、 図 1の矢印方向へ 相対的に移動するように、 基板 1 0が載置された不図示のステージ (例 えば、 X Y Z 0角度の 4軸制御により三次元位置制御が可能なもの) を mオーダーで移動させるようにしてもよい。 いずれの場合でも、 セン サ部 2 0が跨ぐ 2本の配線パターンのいずれかに常にプローブ 3 0から 検査信号が供給されるよう、 センサ部 2 0とプローブ 3 0の位置制御、 および走査制御が行われる。
センサ部 2 0で検出した信号は微小な信号であることから、 それを所 定の増幅度で増幅するために増幅器 2 5へ送られる。 増幅器 2 5は、 例 えば、 入力インピーダンスが Zの演算増幅器 (オペアンプ) 等で構成さ れている。 増幅部 2 5で増幅された信号は、 検出結果を表示する表示装 置 2 6へ入力される。 ここでは、 センサ部 2 0の直後に増幅器 2 5を配 することで、 検出信号に対する外来ノイズ等の影響を排除している。 上記の構成により、 検査信号供給端子 (プローブ) 3 0に交流電源 3
5から交流検査信号を供給し、 検査信号の供給されている列状導電パ夕 ーン 1 5を一方の電極とし、 センサ部 2 0を他方の電極とする静電結合 を形成して、 センサ部 2 0よりの検出信号を増幅器 2 5で増幅して、 得 られた検査信号を調べる。 その結果、 基板 1 0上に列状に配された導電 パターン 1 5のオープン状態等を個別に検査できる。
すなわち、 列状導電パターン 1 5のうち、 検査対象の導電パターンに 検査信号が供給されると、 その導電パターン幅の導体とセンサ部 2 0の 対向部分 (電極板) とで形成される静電容量を介して、 交流電流である 検査信号が増幅器 2 5側へ供給される。 このため、 増幅器 2 5の出力端 からは所定振幅の交流電圧が出力される。 よって、 この出力電圧は、 主 にセンサ部 2 0の対向部位の面積、 および導体とセンサ部間の距離 (ギ ヤップ) により定まる。
例えば、 液晶パネル等、 隣接する導電パターンがすべて同じピッチで 配設されているような場合には、 導電パターンとセンサ部 2 0の導電パ ターンの対向部分とで形成される静電容量は、 ほぼ同じとなる。 その結 果、 パターンに短絡等がない場合には、 後述するように各導電パターン に対して、 ほぼ同レベルの検出信号が得られる。
一方、 導電パターンに短絡があれば、 検査対象の導電パターンと、 そ れと短絡している導電パターンの両方に検査信号が供給される。 そこで 、 増幅器 2 5の出力波形を監視して導電パターンが短絡しているかどう かを判断する。 このようにすることで、 プローブの特 な位置合わせ等 を行わなくても、 簡単な構成で確実に不良品を検出し、 不良箇所を特定 できる。
なお、 検査対象とする導電パターンは、 上記の列状導電パターンに限 定されず、 例えば、 導電パターンの一端が開放され、 その基部がショー トバーで短絡された櫛歯状導電パターンであっても、 それらを順次、 走 査することによって、 上記と同じ原理でパターンの良否を判定できる。
図 2は、 上述した検査方法を実現する検査装置の具体的な構成例であ る。 図 2において、 図 1と同じ構成要素には同一の参照番号を付してい る。 図 2において、 検査対象である液晶パネル 1 0が検査位置に位置決 めされ、 液晶パネル 1 0上の検査対象導電パターンの一端において、 検 査対象の導電パターンと非接触状態でセンサ部 2 0が配されている。 ま た、 その導電パターンの他端には、 プローブ 3 0が、 その先端部が導電 パターンに接触するよう位置決めされている。
センサ部 2 0は、 少なくとも表面に金属電極 (例えば、 アルミニウム ( A 1 ) 電極) が配設されており、 例えば、 半導体を電極として使用し た場合に比べて、 導電パターンとの間の静電容量が大きくなるように構 成されている。 センサ部 2 0が検出した信号は、 アナログ信号処理回路 5 0に送られる。 そして、 アナログ信号処理回路 5 0でアナログ信号処 理された信号は制御部 6 0に送られ、 配線パターンの良否が判断される 。 なお、 制御部 6 0は、 後述するように、 検査信号供給端子 3 0に検査 信号を供給する制御も行う。
アナログ信号処理回路 5 0は、 センサ部 2 0からの検出信号を増幅す る増幅器 5 1、 増幅器 5 1で増幅した検出信号の雑音成分を除去し、 検 査信号のみを通過させるためのバンドパスフィルタ 5 2、 そのバンドパ スフィル夕 5 2からの信号を全波整流する整流回路 5 3、 整流回路 5 3 で全波整流された検出信号を平滑する平滑回路 54を有している。
制御部 6 0は、 後述する検査シーケンス等の統括的な制御を含む、 検 査装置全体の制御を司る、 例えばマイクロプロセッサからなる中央処理 部 (C PU) 6 1、 C PU 6 1の制御手順、 基板検査手順等をコンビュ 一夕プログラムとして記憶する ROM6 2、 C PU 6 1の処理情報 (制 御データ、 検査データ) 等を一時的に記憶する作業領域として使用され る RAM 6 3、 アナログ信号処理回路 5 0からのアナログ信号を対応す るデジタル信号に変換する A/Dコンバータ 64、 検査信号供給端子 3 0に検査信号を供給する信号供給部 6 5、 検査結果や操作指示ガイダン ス等を可視表示する、 例えば、 C RTや液晶表示器等からなる表示部 6 6を備えている。
なお、 信号供給部 6 5は、 例えば、 検査信号として信号レベル 1 0 V p— p, 1 0 0 KH zの正弦波信号を生成し、 それを検査信号供給端子 3 0に供給する。 この場合、 ノ ンドパスフィルタ 5 2は、 Ι Ο Ο ΚΗ ζ の信号を通過させるための帯域を有する。
検査信号供給端子 (プローブ) 3 0は、 その先端部が検査対象である 導電パターンのうち、 信号の供給端子部 (接続端子) 等を横断するよう になぞりながら移動し、 各導電パターンに順次、 検査信号を供給する。 プローブ 3 0の先端部は、 例えば、 可撓性のあるタングステン合金で形 成され、 検査対象パターンのパターンピッチ以下 (導電パターンのパタ ーン幅、 およびパターン間隙以下) の大きさのものを使用する。 例えば 、 基部の線径を 1 5 0 i m、 先端部 (なぞり部分) 径を 1 5 j mとする ことにより、 検査対象パターン幅が 3 0 mの導電パターンで、 そのパ ターン間隙が 2 0 z m程度の基板の導電パターンを検査することができ る。
口ポットコントローラ 7 0は、 制御部 6 0の制御を受けてスカラー口 ポット 8 0を制御する。 スカラー口ポット 8 0は、 液晶パネル 1 0を検 査位置に位置決めして保持するとともに、 ロボットコントローラ 7 0の 制御に従って、 検査信号供給端子 3 0の先端部が液晶パネル 1 0のすベ ての接続端子に接触する状態で保持し、 先端部がすべての接続端子を順 次、 なぞるように走査する。
次に、 本実施の形態例に係る基板検査装置における検査方法を説明す る。 図 3は、 本実施の形態例の検査手順を示すフローチャートである。 最初に、 図 3のステップ S 1で、 検査対象である液晶パネル 1 0を不図 示の搬送路に従って、 基板検査装置の所定位置 (検査位置) に搬送して セットする。 続いて、 ステップ S 2において、 検査対象パターンに不良 箇所があることを示すフラグ (N Gフラグ) をリセットし、 検査対象導 電パターンを示す Nフラグに 「 1」 をセットして、 最初の導電パターン の良否判断を行える状態にする。 これにより検査開始準備が終了したこ とになるため、 続くステップ S 3において、 制御部 6 0は、 検査開始を 示すスタート指示入力を待つ。
スタート指示があればステップ S 4に進み、 ロボッ トコントローラ 7 0に指示を与えてスカラー口ポット 8 0を制御し、 検査信号供給端子 ( プローブ) 3 0を検査対象の導電パターンの検査開始位置に移動させる 。 そして、 ステップ S 5において、 信号供給部 6 5を起動して、 検査信 号供給端子 (プローブ) 3 0に検査信号を出力し、 その先端部を検査対 象導電パターンに接触させ、 所定の導電パターンに信号供給部 6 5から の検査信号が伝達、 供給される状態に維持する。
それと同時にアナログ信号処理回路 5 0を起動して、 センサ部 2 0か らの検査信号の読込みを開始する。 以後、 検査信号供給端子 3 0による "なぞり" が終了するまで、 順次、 一定時間ごとの検出デ一夕を取り込 んで、 それを、 例えば R A M 6 3に順次、 格納する。 検査信号供給端子 3 0による検査対象の導電パターンに対する走査がすべて終了すると、 ステップ S 7に進み、 信号供給部 6 5を消勢する。 その後、 後述する導 電パターンの良否判断処理に移行する。
図 4は、 本実施の形態例における基板検査装置での導電パターンの良 否判断処理手順を示すフローチャートである。 基板検査装置が、 例えば n本目の導電パターンを検査している場合、 図 4のステップ S 1 1にお いて、 その導電パターン (n本目) に検査信号を供給しているときのセ ンサ部 2 0の検出電圧値を読み出す。 それが最初のパターン ( 1本目) であれば、 検査信号供給端子 3 0がなぞりを開始した位置の導電パター ンに検査信号を供給している場合のセンサ部 2 0による検出電圧値を読 み出す。
続いて、 ステップ S 1 2において、 センサ部 2 0での検出電圧 (出力 電圧) が、 パターンが正常状態にあるときの検出レベルを基準とした規 定閾値以上か否か、 また、 検査対象配線パターン以外の隣接パターンか らも信号検出されたか否かを調べる。 それが規定閾値以下で、 隣接パ夕 ーンからも信号検出がない場合には、 その配線パターンは正常であると して、 ステップ S 1 3に進む。 一方、 ステップ S I 2において、 センサ部 2 0で検出した信号の値が 規定閾値以上であり、 検査対象配線パターン以外の隣接パターンからも 信号検出された場合には、 ステップ S 1 5に進み、 n本目の配線パター ンは、 それに隣接する配線パターンと短絡していると判定する。 そして 、 続くステップ S 1 6において、 N Gフラグに 「 1」 をセットしてから ステップ S 1 7に進む。 すなわち、 検査の途中で短絡が検出された場合 には、 それ以上の "なぞり制御" を中止し、 直ちに対象基板が不良であ るとして、 次の処理に移行すれば、 より検査時間を短縮できる。
ステップ S 1 3では、 Nフラグの値を調べ、 それが検査すべき配線パ ターンの最後の配線パターンを示しているか否かを判断する。 1枚の液 晶パネル 1 0の検査対象配線パターンすべてに対して、 その良否判断が 終了していない場合には、 ステップ S 1 4に進み、 次に検査する配線パ ターンを特定するため、 Nフラグを 1だけインクリメントする ( n = n + D o そして、 処理をステツプ S 1 1に戻す。 検査対象とするすべて の配線パターンについて検査が終了したかどうかの判定は、 例えば、 セ ンサ部 2 0や検査対象基板 (液晶パネル 1 0 ) の移動距離が、 すべての 配線パターン幅の合計と、 それらのパターン間隔の合計とを合算して得 た距離に合致しているか否かに基づいて行うようにする。
一方、 ステップ S 1 3で、 検査対象の配線パターンの良否判定が最後 まで終了していると判断された場合には、 処理をステップ S 1 7に進め る。 ステップ S 1 7では、 検査結果の表示を行う。 例えば、 N Gフラグ を調べ、 その N Gフラグがセットされている場合には、 表示部 6 6に、 液晶パネル 1 0がその配線パターンに短絡を生じている不良パネルであ る旨の表示 (N G表示) を行う。 N Gフラグがセッ トされていない場合 には、 液晶パネル 1 0が正常であることを示す表示 (O K表示) を行う ステップ S I 8では、 基板検査装置より液晶パネルを取り外す (液晶 パネルを搬送位置まで下降させて搬送路上に載置し、 次のステージに搬 送するか、 あるいは、 不良パネルを搬送路から外す等の処理を行う)。 そして、 続くステップ S 1 9で、 液晶パネルの検査が終了したか否かを 調べる。 次に検査すべき液晶パネルがある場合には、 処理を図 3に示す ステップ S 1に戻し、 新たな液晶パネルのセットを行う。 しかし、 次に 検査すべきパネルがないときには、 ステップ S 1 9で検査終了として、 本処理を終了する。
なお、 上記の例では、 検査結果が得られる毎に逐一、 パターンが短絡 状態等か否かを判断するように制御しているが、 これに限定されず、 例 えば、 一枚の検査基板 (液晶パネル) のすベての検査対象パターンから の検査結果を収集してから、 一括してデータ処理等を行うことで基板の 良否を判定するようにしてもよい。
また、 検査対象である液晶パネルのセットやその取り外しについては 、 上記の例に限定されるものではなく、 例えば、 自動的に液晶パネルの セッ トおよび取り外しを行い、 取り外した液晶パネルを、 その良否判断 に従って自動的に良品収納部、 あるいは不良品収納部に収納するように してもよい。 また、 上記の検査工程を製造ラインの一部に組み込み、 上 流側から送られてきた液晶パネルを検査し、 良品のみを下流に搬送する ようにしてもよい。
次に、 本実施の形態例に係る基板検査装置における検査結果について 具体的に説明する。 図 5は、 本実施の形態例に係る基板検査装置におい て、 検査対象が列状導電パターンであるときの検査結果の一例を示して いる。 図 5に示すように、 プローブ 3 0は、 各導電パターン 1 5 a , 1 5 b…に交流検査信号を供給しながら矢印方向へ移動し、 センサ部 2 0 もプローブ 3 0と同期して同方向へ移動することで、 検査対象である液 晶パネルの導電パターン 1 5より非接触で検査信号を検知する。 検査対 象の導電パターンが、 図 5の導電パターン 1 5 a, 1 5 bのように短絡 等のない正常なパターンである場合、 これらの導電パターン 1 5 a , 1 5 bに順次、 検査信号が供給されると、 各導電パターンと不図示のステ —ジとの間に等価的に接続された容量 (キャパシ夕) があるため、 セン サ部 2 0より、 どのパターンからもほぼ同レベルの検出信号 S G 1 , S G 2が得られる。
一方、 導電パターン 1 5 c, 1 5 dのように、 パターン間に短絡 9 0 がある場合、 プローブ 3 0が交流検査信号を供給している導電パターン 1 5 cのみならず、 それと短絡している導電パターン 1 5 dにも検査信 号が流れ込む。 その結果、 導電パターン 1 5 c, 1 5 dの両方から検出 信号 S G 3, S G 4が得られることになる。 また、 導電パターン間に短 絡がある場合、 短絡のない場合と比較して検出信号の強度に差異が生じ 、 センサ 2 0が感知する電圧レベルにも変化が生じる。
つまり、 図 5に示すように、 短絡している導電パターン 1 5 c, 1 5 dからは、 他の正常な導電パターンから得られるレベルよりも高いレべ ルの信号が検出される。 しかも、 パターン間に短絡がある場合、 高レべ ルの信号 (S G 3, S G 4 ) が時系列で 2本続けて検出されるという特 徴を有する。 このように高レベル信号が検出されるのは、 導電パターン の一部に短絡がある場合、 センサ部 2 0に対向する導電パターンの面積 がパターンが正常なときの導電パターン 1本分のほぼ倍の 2本分の面積 となるため、 増幅器 2 5の出力は、 短絡のない場合に比し大幅に上昇す るからである。
他方、 図 5の導電パターン 1 5 f のように、 その一部にオープン箇所 9 1があるときは、 プローブ 3 0がその導電パターン 1 5 f に接触し、 検査信号が供給されていても、 センサ 2 0は、 そのパターンからは全く 信号を検出しない。 そのため、 増幅器 2 5の出力端には検出信号が現れ ない。
次に、 本実施の形態例に係る基板検査装置における検査結果について の他の例を説明する。 図 6は、 TFT (薄膜トランジスタ) を組み込ん でなる、 配線層が 2層構造の液晶表示パネル等 (以下、 単に T F T基板 ともいう) を検査対象とした場合のパターン検査結果の一例を示してい る。 この TFT基板には、 第 1の配線層と第 2の配線層が上層ノ下層の 位置関係で積層状態に形成されており、 その第 1の配線層は、 液晶ディ スプレイに配された T F Tトランジスタ (不図示) のデータラインとし ての導電パターン 1 5が下部ガラス基板上に形成され、 第 2の配線層は 、 ゲートラインとしての導電パターン 1 7が導電パターン 1 5と直交す るよう上部ガラス基板上に形成されてなる。 また、 導電パターン 1 5は 、 その一端が開放され、 基部は、 タブ (TAB) 領域 1 8を介してショ —トパー 1 9で短絡された構成を有する。
図 6に示す 2層の導電パターンを有する T F T基板においても、 その 導電パターンの検査において、 プローブ 3 0を矢印方向へ移動させて各 導電パターン 1 5 a, 1 5 b…に交流検査信号を供給しながら、 センサ 部 2 0をプローブ 3 0と同期して同方向へ移動させる。 センサ部 2 0は 、 導電パターン 1 5より非接触で検査信号を検知する。 導電パターンに 短絡等がない場合、 それらのパターンからは、 S G 1, S G 4, S G 6 , S G 7等のように、 ほぼ同レベルの検出信号が得られる。
導電パターン 1 5 b, 1 5 c間に短絡箇所 94がある場合、 導電パタ ーン 1 5 bと、 それと短絡している導電パターン 1 5 cにも検査信号が 流れ込むため、 それら両方の導電パターンから検出信号 S G 2, S G 3 が得られる。 このとき、 図 5に示す場合と同様、 短絡のないときの信号 レベルと比較して信号強度に差異が生じ、 正常時のレベルよりも高いレ ベルの信号 (S G 2, S G 3 ) が 2本続けて検出される。
一方、 図 6において X印で示すように、 第 1の配線層の導電パターン 1 5 eと第 2の配線層の導電パターン 1 7 d間に短絡 (眉間ショート、 あるいはクロスショートともいう) 9 5がある場合、 プローブ 3 0より 導電パターン 1 5 eに供給された検査用交流電流 iは、 その短絡箇所 9 5で分流し、 電流 i ' , i〃 として第 2の配線層の導電パターン 1 7 d に流れる。 これは、 導電パターン 1 7各々に、 不図示のステージとの間 に容量 (キャパシ夕) C ,, C 2が等価的に接続されているため、 給電部 としてのプローブ 3 0からの信号電流が、 各導電パターンを介して、 こ れらの容量へ流れ込むからである。
このように、 T F T基板に層間ショートがある場合、 その短絡箇所で 検査信号電流が一方の層の導電パターンから他層の導電パターンへ分流 する。 そのため、 図 6において、 導電パターン 1 5 e上に位置するセン サ部 2 0で検出される信号レベルは、 図 6の検出信号 S G 5のように、 短絡がないときの正常時のレベルよりも低くなる。 従って、 このレベル を検出するだけで、 層間における短絡の有無の判定を容易に行える。 他方、 タブ (T A B ) 領域 1 8において、 導電パターン 1 5 hの一部 にオープン箇所 9 6があるときは、 その導電パターン 1 5 hの一方端に プローブ 3 0より検査信号が供給されても、 その検査電流のほとんどが 、 導電パターンとの容量結合を介してセンサ 2 0側へ流れる。 これは、 タブ領域にオープン箇所があると、 グランド (G N D ) が取れた状態に なるからである。 よって、 この場合、 センサ 2 0で検出される信号レべ ルは、 図 6における信号 S G 8のように、 正常時のレベルよりも高くな る。
なお、 図 5および図 6に示す検査では、 増幅器 2 5の出力に対して一 定の閾値を設定して、 検出信号のレベルがその閾値以上であれば、 その ときのプローブ 30の位置をもとに、 その導電パターンに他のパターン との短絡箇所があると判断している。 これは、 短絡している導電パター ンでの検出波形が正常時の検出波形とレベルに大きな差異があるため、 例えば、 正常時の平均検出レベルに、 正常時と短絡時の検出信号の差分 の半分 (1/2) の値を加算した値を短絡か否かの閾値に設定しても短 絡を検出できる。
しかし、 上述したように、 本実施の形態例に係る基板検査装置では、 検査対象の導電パターンと非接触状態でセンサ部が配されているため、 実際にはギヤップ変動等の測定条件や個々の検査対象物 (液晶表示パネ ル等) によって、 そのセンサ部で検出される電圧レベルに変動が生じる 。 例えば、 図 7 (b) において点線で示すように測定電圧のレベル全体 に対して変動が生じる場合、 図 7 (a) に示すように増幅器の出力電圧 波形に一定の閾値 A lhを設定しても、 正常な導電パターンと短絡等のあ るパターンを、 測定電圧のレベルだけに基づいて正確に識別することは 困難になる。
そこで、 '図 7 (b) に示すように、 各信号波形について、 その前後の 信号波形とのレベル差を求め、 そのレベル差の増加あるいは減少傾向よ り出力電圧波形全体の変化傾向を求める。 例えば、 図 7 (b) において 、 各々の信号波形について、 その前後の信号波形とのレベル差 ΔΑ,〜 ΔΑ8を求める。 そして、 それらのレベル差が示す変化傾向を、 図 7 ( b) の点線で示す出力電圧波形全体の変化傾向と判断する。
図 7 (b) に示す例では、 信号 S G aと信号 S G bのレベル差 Δ A3 と、 信号 S G bと信号 S G cのレベル差 Δ A4が、 他の信号間における レベル差 (変化傾向) と大きく異なっている。 そのため、 信号間のレべ ル差の変化傾向が、 信号 SGbについては、 点線で示す全体の変化傾向 と一致しないと判断できる。 従って、 この場合は、 信号 SGbが、 短絡 等の る導電パターンに対応した信号であると判定することができる。 図 7 ( c ) は、 出力電圧波形全体の変化傾向が図 7 ( b ) とは異なる ときの例、 すなわち、 点線で示すように、 変化傾向が緩やかである場合 を示している。 この場合においても、 各々の信号波形について、 その前 後の信号波形とのレベル差を求め、 それらの変化傾向が、 点線で示す出 力電圧波形全体の変化傾向と一致するかどうかをもとに、 短絡等のある 導電パターンの有無を判定する。
このように、 隣接パターンの検出信号のレベル差の変化傾向に基づい て相対的な比較をすることで、 導電パターンの短絡等の有無を検出する 方法は、 各導電パターンからの検出データを R A M等に順次、 格納し、 すべての導電パターンの走査終了後、 一括して、 それら導電パターンの 良否判断処理を行う検査方法に合致するものである。
以上説明したように、 本実施の形態例によれば、 規則的に配列された 導電パターンのいずれか一つの一方端のみにプローブの先端部を接触さ せるとともに、 その導電パターンと、 それに隣接するパターンとに跨る 大きさのセンサ部を、 それらのパターンから所定距離離間した位置に非 接触状態で位置決めし、 それらプローブとセンサ部とを同期させて検査 対象基板上を移動させる。 こうすることで、 従来のように検査対象の導 電パターン各々に位置決めして検査ピンを接触させる必要がなく、 単に 検査対象パターンをなぞり走査するだけで、 導電パターンの短絡ゃォー プン状態を検出できる。 そのため、 検査装置を簡略化できるとともに、 確実かつ信頼性の高いパターン検査を実現することが可能となる。
また、 検査すべき導電パターンのピッチが異なっていても、 特別の制 御を行うことなく、 単に検査プローブのなぞり位置が確実に検査対象パ ターンを横切るように走査させるのみで、 確実に導電パターンの短絡を 検出できる。 しかも、 検出の判断対象となる正常時の検出信号レベルと 異常時の検出対象レベルの差が明確に出るだけでなく、 特に、 短絡があ る場合、 時系列で並べた信号中に高レベルの信号が 2本続けて検出され るため、 確実かつ信頼性の高い検査結果が得られる。
さらには、 検査対象パターンのうち、 例えば、 その接続端子部を順次 、 走査するだけで足りるため、 検査対象パターンのパターン配設状況が 変更しても、 検査ピンの正確な位置決め等が不要で、 単に走査するルー トを制御するのみで、 複雑な配線であっても、 また検査対象パターンの パターン間隔がまちまちであっても、 何ら複雑な位置決め制御なしに導 電パターンの短絡検査が行える。
また、 配線層が 2層構造の T F T基板が検査対象のときでも、 第 1の 配線層の導電パターンと第 2の配線層の導電パターンとの間で層間ショ 一卜がある場合、 そのパターンからの検出信号のレベルが、 短絡のない 正常時のレベルよりも低くなるため、 そのレベルを検出するだけで、 層 間における短絡の有無の判定を容易に行うことができる。 産業上の利用可能性
本発明によれば、 検査対象である基板上の導電パターンの短絡状態等 を精度よく、 かつ簡単に検出できる。
また、 本発明によれば、 T F T基板における層間ショート等を含む、 種々の仕様の導体パターンの短絡等を、 簡単かつ簡易な制御で確実に検 出することができる。

Claims

請求の範囲
1 . 基板に配された導電パターンの状態を検査する検査装置であって
5 検査対象とする前記導電パターンの一方端部に検査信号を供給する信 号供給手段と、
前記検査対象とする導電パターンの他方端部において、 少なくとも前 記導電パターンとその導電パターンに隣接する導電パターンとを覆う大 きさの信号検出手段と、
0 前記導電パターンを順次走査するよう前記信号供給手段と前記信号検 出手段を位置決め移動させる走査手段と、
前記信号検出手段で検出された信号の変化に基づいて前記導電パター ンの良否を識別する識別手段とを備え、
前記信号供給手段は少なくとも前記導電パターンの配設ピッチ幅と同5 等あるいはそれ以下の幅の信号供給端子を有し、 その信号供給端子で前 記導電パターンの一方端部を順次なぞりながら前記走査方向へ移動し、 前記信号検出手段は前記信号供給手段と同期して前記走査方向へ移動す るとともに、 前記導電パターンとの間の容量結合を介して非接触で前記 検査信号を検出することを特徴とする検査装置。
0 2 . 前記識別手段は、 前記信号検出手段が前記検査対象とする導電パ ターンより順次検出した前記検査信号のうち 2つの信号が連続して正常 状態時の信号レベルよりも高いレベルを示した場合に前記導電パターン が隣接パターンと短絡していると判断することを特徴とする請求項 1記 載の検査装置。
5 3 . 前記識別手段は、 前記信号検出手段が前記検査対象とする導電パ ' ターンより前記検査信号を検出しない場合、 その導電パターンが断線し ていると判断することを特徴とする請求項 1記載の検査装置。
4 . 前記導電パターンが 2つの異なる配線層に配されているとき、 前 記信号検出手段により検出された前記検査信号のレベルが正常状態時の 信号レベルよりも低い場合、 前記識別手段は、 一方の配線層の導電パタ
5 ーンが他方の配線層の導電パターンと層間短絡していると判断すること を特徴とする請求項 1記載の検査装置。
5 . 前記導電パターンが 2つの異なる配線層に配されているとき、 前 記信号検出手段が前記検査対象とする導電パターンより順次検出した前 記検査信号のうち単独の信号レベルが正常状態時の信号レベルよりも高0 い場合、 前記識別手段は、 その導電パターンが、 前記信号検出手段と前 記信号供給手段で挟まれた領域以外に領域において断線していると判断 することを特徴とする請求項 1記載の検査装置。
6 . 前記識別手段は、 前記検出した検査信号の信号レベルと所定の閾 値とを比較した結果をもとに前記検査対象とする導電パターンの断線お5 よび導電パターン相互の短絡を識別することを特徴とする請求項 1乃至 5のいずれかに記載の検査装置。
7 . 前記識別手段は、 前記検出した検査信号各々について、 その前後 の信号とのレベル差より検査信号全体のレベル変化傾向を求め、 前記検 查対象とする導電パターンより検出した検査信号のレベル変化が前記レ0 ベル変化傾向と一致しない場合、 その導電パターンに断線または隣接パ ターンとの短絡があると判断することを特徴とする請求項 1乃至 5のい ずれかに記載の検査装置。
8 . 基板に配された導電パターンの状態を検査する検査装置における 導電パターン検査方法であって、
5 少なくとも前記導電パターンの配設ピッチ幅と同等あるいはそれ以下
' の幅の信号供給端子を有する信号供給手段より検査対象とする前記導電 パターンの一方端部に検査信号を供給するステップと、
前記検査対象とする導電パターンの他方端部において、 少なくとも前 記導電パターンとその導電パターンに隣接する導電パターンとを覆う大 きさの信号検出手段によって、 前記導電パターンとの間の容量結合を介 して非接触で前記検査信号を検出するステップと、
前記信号供給端子が前記導電パターンの一方端部を順次なぞるととも に、 前記信号検出手段が前記信号供給手段と同期して前記導電パターン の他方端部を順次走査するように前記信号供給手段と前記信号検出手段 を位置決め移動させるステツプと、
前記信号検出ステップで検出された信号の変化に基づいて前記導電パ ターンの状態を識別するステップとを備えることを特徴とする導電パ夕 —ン検査方法。
9 . 前記識別ステップは、 前記信号検出手段が前記検査対象とする導 電パターンより順次検出した前記検査信号のうち 2つの信号が連続して5 正常状態時の信号レベルよりも高いレベルを示した場合に前記導電バタ ーンが隣接パターンと短絡していると判断し、 前記信号検出手段が前記 検査対象とする導電パターンより前記検査信号を検出しない場合には、 その導電パターンが断線していると判断することを特徴とする請求項 8 記載の導電パターン検査方法。
0 1 0 . 前記識別ステップは、 前記導電パターンが 2つの異なる配線層 に配されているとき、 前記信号検出手段により検出された前記検査信号 のレベルが正常状態時の信号レベルよりも低い場合、 その導電パターン が他層の導電パターンと層間短絡していると判断することを特徴とする 請求項 9記載の導電パターン検査方法。
5 1 1 . 前記識別ステップは、 前記導電パターンが 2つの異なる配線層 ' に配されているとき、 前記信号検出手段が前記検査対象とする導電パ夕 ーンより順次検出した前記検査信号のうち単独の信号レベルが正常状態 時の信号レベルよりも高い場合、 その導電パターンが、 前記信号検出手 段と前記信号供給手段で挟まれた領域以外に領域において断線している と判断することを特徴とする請求項 9記載の導電パターン検査方法。
1 2 . 前記識別ステップは、 前記検出した検査信号の信号レベルと所 定の閾値とを比較した結果をもとに前記検査対象とする導電パターンの 断線および導電パターン相互の短絡を識別することを特徴とする請求項 8乃至 1 1のいずれかに記載の導電パターン検査方法。
1 3 . 前記識別ステップは、 前記検出した検査信号各々について、 そ の前後の信号とのレベル差より検査信号全体のレベル変化傾向を求め、 前記検査対象とする導電パターンより検出した検査信号のレベル変化が 前記レベル変化傾向と一致しない場合、 その導電パターンに断線または 隣接パターンとの短絡があると判断することを特徴とする請求項 8乃至 1 1のいずれかに記載の導電パターン検査方法。
1 4 . 請求項 8乃至 1 3のいずれかに記載の導電パターン検査方法を コンピュータ制御で実現するためのコンピュータプログラムを記憶する コンピュータ可読記録媒体。
1 5 . 請求項 8乃至 1 3のいずれかに記載の導電パターン検査方法を コンピュータ制御で実現するためのコンピュータプログラム列。
PCT/JP2006/308683 2005-04-19 2006-04-19 検査装置および導電パターン検査方法 WO2006112543A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005121410A JP2006300665A (ja) 2005-04-19 2005-04-19 検査装置および導電パターン検査方法
JP2005-121410 2005-04-19

Publications (1)

Publication Number Publication Date
WO2006112543A1 true WO2006112543A1 (ja) 2006-10-26

Family

ID=37115239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308683 WO2006112543A1 (ja) 2005-04-19 2006-04-19 検査装置および導電パターン検査方法

Country Status (3)

Country Link
JP (1) JP2006300665A (ja)
TW (1) TW200643434A (ja)
WO (1) WO2006112543A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964377A (zh) * 2009-07-22 2011-02-02 日本麦可罗尼克斯股份有限公司 薄膜特性测定装置及方法、以及薄膜加工装置及方法
WO2011021567A1 (ja) * 2009-08-17 2011-02-24 株式会社エフカム 導電パターン検査装置及び検査方法
CN102759679A (zh) * 2011-04-27 2012-10-31 株式会社联箭技术 导电图案检查装置
CN103197192A (zh) * 2013-03-15 2013-07-10 深圳市华星光电技术有限公司 短路检测方法及装置
CN108919023A (zh) * 2018-05-15 2018-11-30 北京航空航天大学 一种高密度封装键合丝瞬时触碰加电检测方法
CN112352164A (zh) * 2018-09-18 2021-02-09 国立大学法人东北大学 电容检测区域传感器以及具有该电容检测区域传感器的导电图案检查装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644745B2 (ja) * 2009-08-04 2011-03-02 オー・エイチ・ティー株式会社 回路パターン検査装置
JP5533169B2 (ja) * 2010-04-13 2014-06-25 日本電産リード株式会社 検査装置
TWI478018B (zh) * 2011-01-21 2015-03-21 Egalax Empia Technology Inc 觸控面板感測器斷線檢測方法及裝置
CN102760020B (zh) * 2012-06-29 2015-12-02 华为终端有限公司 一种检测电容式触摸屏的方法、装置和移动终端
KR101896224B1 (ko) * 2016-08-18 2018-09-11 스템코 주식회사 연성 회로 기판
CN106370967B (zh) * 2016-09-12 2019-06-28 京东方科技集团股份有限公司 一种触控结构、其测试方法、触摸屏及显示装置
TWI712317B (zh) * 2019-02-22 2020-12-01 興城科技股份有限公司 用於檢查玻璃基板的開路/短路檢查機及其檢查方法
TWI759724B (zh) * 2020-04-23 2022-04-01 興城科技股份有限公司 玻璃基板檢測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273468A (ja) * 1993-03-18 1994-09-30 Oputo Syst:Kk 導電膜検査装置
JPH08105926A (ja) * 1994-10-05 1996-04-23 Fujitsu Ltd 配線パターン検査装置及び配線パターン検査方法
JPH08226949A (ja) * 1995-02-21 1996-09-03 Okano Hightech Kk 基板検査用給電制御素子及び基板検査における給電方法並びに基板検査装置
JP2004191381A (ja) * 2002-11-30 2004-07-08 Oht Inc 回路パターン検査装置及び回路パターン検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273468A (ja) * 1993-03-18 1994-09-30 Oputo Syst:Kk 導電膜検査装置
JPH08105926A (ja) * 1994-10-05 1996-04-23 Fujitsu Ltd 配線パターン検査装置及び配線パターン検査方法
JPH08226949A (ja) * 1995-02-21 1996-09-03 Okano Hightech Kk 基板検査用給電制御素子及び基板検査における給電方法並びに基板検査装置
JP2004191381A (ja) * 2002-11-30 2004-07-08 Oht Inc 回路パターン検査装置及び回路パターン検査方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964377A (zh) * 2009-07-22 2011-02-02 日本麦可罗尼克斯股份有限公司 薄膜特性测定装置及方法、以及薄膜加工装置及方法
WO2011021567A1 (ja) * 2009-08-17 2011-02-24 株式会社エフカム 導電パターン検査装置及び検査方法
CN102759679A (zh) * 2011-04-27 2012-10-31 株式会社联箭技术 导电图案检查装置
CN102759679B (zh) * 2011-04-27 2014-08-06 株式会社联箭技术 导电图案检查装置
CN103197192A (zh) * 2013-03-15 2013-07-10 深圳市华星光电技术有限公司 短路检测方法及装置
CN108919023A (zh) * 2018-05-15 2018-11-30 北京航空航天大学 一种高密度封装键合丝瞬时触碰加电检测方法
CN112352164A (zh) * 2018-09-18 2021-02-09 国立大学法人东北大学 电容检测区域传感器以及具有该电容检测区域传感器的导电图案检查装置
CN112352164B (zh) * 2018-09-18 2023-08-18 国立大学法人东北大学 电容检测区域传感器及其装置、以及导电图案检查装置

Also Published As

Publication number Publication date
TW200643434A (en) 2006-12-16
JP2006300665A (ja) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2006112543A1 (ja) 検査装置および導電パターン検査方法
KR100799161B1 (ko) 비접촉 싱글사이드 프로브와 이를 이용한 패턴전극의 단선및 단락 검사장치 및 그 방법
TWI401452B (zh) Circuit pattern inspection device and inspection method
JP3978178B2 (ja) 回路パターン検査装置及び回路パターン検査方法
JP2006200993A (ja) 回路パターン検査装置およびその方法
CN101107537A (zh) 检查装置和检查方法及检查装置用传感器
US20060043153A1 (en) Circuit pattern inspection device and circuit pattern inspection method
KR101300962B1 (ko) 회로 패턴 검사 장치
TWI407126B (zh) Circuit pattern checking device and method thereof
JP4394980B2 (ja) 基板検査装置及び基板検査方法
JP2004184385A (ja) 回路パターン検査装置及びパターン検査方法
JP2004177256A (ja) 基板検査装置および基板検査方法
US6952104B2 (en) Inspection method and apparatus for testing fine pitch traces
JP4008949B2 (ja) 回路パターン検査装置及び回路パターン検査方法
KR20080098088A (ko) 비접촉 싱글사이드 프로브와 이를 이용한 패턴전극의 단선및 단락 검사장치 및 그 방법
JP2005208058A (ja) 回路パターン検査装置及び回路パターン検査方法
JP2008014918A (ja) 回路パターン検査装置及び回路パターン検査方法
JP5122512B2 (ja) 回路パターン検査装置
KR100982830B1 (ko) 회로 기판 패턴의 단락 검사 장치 및 단락 검사 방법
JP4394113B2 (ja) 回路パターン検査装置及び回路パターン検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732339

Country of ref document: EP

Kind code of ref document: A1