WO2006109790A1 - 成形機監視装置、方法及びプログラム - Google Patents

成形機監視装置、方法及びプログラム Download PDF

Info

Publication number
WO2006109790A1
WO2006109790A1 PCT/JP2006/307625 JP2006307625W WO2006109790A1 WO 2006109790 A1 WO2006109790 A1 WO 2006109790A1 JP 2006307625 W JP2006307625 W JP 2006307625W WO 2006109790 A1 WO2006109790 A1 WO 2006109790A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding machine
numerical value
value
relationship
threshold value
Prior art date
Application number
PCT/JP2006/307625
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Tsukihara
Original Assignee
Sumitomo Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries, Ltd. filed Critical Sumitomo Heavy Industries, Ltd.
Priority to US11/887,823 priority Critical patent/US20090051064A1/en
Priority to DE112006000906T priority patent/DE112006000906T5/de
Publication of WO2006109790A1 publication Critical patent/WO2006109790A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/768Detecting defective moulding conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76939Using stored or historical data sets
    • B29C2945/76943Using stored or historical data sets compare with thresholds

Definitions

  • the present invention relates to a molding machine monitoring apparatus, method, and program.
  • a screw is advanced in a heating cylinder, heated and melted resin is injected at a high pressure and filled in the mold apparatus cavity ( Then, the molded product is formed by cooling and solidifying the resin in the cavity.
  • a method for monitoring the molding state is proposed based on changes in the numerical value indicating the molding state such as the filling pressure of the resin, the measurement time, etc. (for example, see Patent Document 1). .)
  • the molded molding is performed based on the actual value of the numerical value indicating the molding state.
  • the numerical value range is set when the product is non-defective. When the detected numerical value is within the numerical range, it is determined that a non-defective product has been molded.When the detected numerical value exceeds the upper limit value or the lower limit value of the numerical range, a defective product has been molded. Therefore, the molding state is monitored.
  • Patent Document 1 JP-A-7-52207
  • the threshold value set for discriminating between a good product and a defective product is fixed. If the threshold value is difficult to set and the threshold value is not set appropriately, the defect rate as the probability that a defective product is discriminated becomes unreasonably high or conversely low. In addition, while the molding is continued, the numerical value indicating the selected molding state may fluctuate. In this case, the defect rate fluctuates, resulting in erroneous discrimination.
  • the present invention solves the above-described conventional problems and determines a threshold value for discriminating between a good product and a defective product. By calculating and setting the value for each molding shot, the operator of the molding machine can easily set the threshold value, and can discriminate between good and defective products using an appropriate threshold value.
  • An object of the present invention is to provide a molding machine monitoring apparatus, method and program capable of setting a defect rate to an appropriate value and capable of discriminating a molded product with high accuracy.
  • a numerical value detection unit that detects a numerical value indicating the molding state of the molding machine, and a relationship between the threshold value and the defect rate is derived based on the detected numerical value.
  • a threshold value setting unit that sets a threshold value corresponding to a preset target value of the defect rate according to the derived relationship, and the detected numerical value is compared with the set threshold value.
  • a discriminating unit for discriminating between non-defective products and defective products.
  • the relationship deriving unit derives the relationship for each molding shot of the molding machine.
  • the relationship deriving unit derives the relationship based on the numerical value detected in a predetermined number of molding shots of the molding machine.
  • the relationship between the threshold value and the defect rate is derived based on the detected numerical value indicating the molding state of the molding machine, and the preset defect rate is calculated.
  • a threshold value corresponding to a target value is set according to the derived relationship, and the detected numerical value is compared with the set threshold value to discriminate between a non-defective product and a defective product.
  • a computer for monitoring the molding machine, a numerical value detection unit for detecting a numerical value indicating the molding state of the molding machine, and a threshold value and a defect based on the detected numerical value
  • a relationship deriving unit for deriving a relationship with the rate
  • a threshold setting unit for setting a threshold corresponding to a preset target value of the defective rate according to the derived relationship, and the detected numerical value being set Compared with the threshold value, it functions as a discriminator for discriminating non-defective products from defective products.
  • the molding machine monitoring apparatus calculates and sets a threshold value for discriminating between a non-defective product and a defective product for each molding shot. Therefore, the operator of the molding machine
  • the threshold can be easily set, and a good threshold value can be determined using an appropriate threshold value.
  • the defect rate can be set to an appropriate value, so that a molded product can be identified with high accuracy. You can do another.
  • FIG. 1 is a schematic view of an injection molding machine according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing actual numerical values indicating the molding state in the embodiment of the present invention.
  • FIG. 3 is a graph showing the relationship between the defect rate and the threshold value width of the actual value in the embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the molding machine monitoring apparatus in the embodiment of the present invention.
  • FIG. 1 is a schematic view of an injection molding machine according to an embodiment of the present invention.
  • 11 is an injection device
  • 12 is a mold clamping device arranged to face the injection device
  • 13 is a molding machine frame that supports the injection device 11 and the mold clamping device 12
  • 14 is An injection device frame that is supported by the molding machine frame 13 and supports the injection device 11
  • 15 is a guide disposed in the longitudinal direction of the injection device frame 14
  • 70 is a fixed mold 73 and a movable mold This is a mold apparatus comprising a mold 71.
  • the mold device 70 is formed with a cavity.
  • the ball screw shaft 21 is rotatably supported by the injection device frame 14, and one end of the ball screw shaft 21 is connected to the motor 22. Further, the ball screw shaft 21 and the ball screw nut 23 are screwed together, and the ball screw nut 23 and the injection device 11 are connected via a bracket 25. Therefore, the motor 22 is moved forward and backward. , The rotational motion of the motor 22 is converted into a linear motion by a combination of the ball screw shaft 21 and the ball screw nut 23, that is, a ball screw transmission, and the linear motion is transmitted to the bracket 25. . Then, the bracket 25 is moved along the guide 15, and the injection device 11 is advanced and retracted.
  • a heating cylinder 51 is fixed to the bracket 25 toward the front (left side in the drawing), and an injection nozzle is disposed at the front end (left end in the drawing) of the heating cylinder 51.
  • a hopper 52 is disposed in the heating cylinder 51, and a screw 53 is disposed in the heating cylinder 51 so as to be movable forward and backward (movable in the left-right direction in the figure) and rotatable.
  • the rear end (right end in the figure) of the screw 53 is supported by the support member 50.
  • a screw rotation motor 55 is attached to the support member 50, and a rotational force generated by driving the screw rotation motor 55 is transmitted to the screw 53 via a timing belt 56. It has become.
  • a first pulse encoder 62 is attached to the screw rotation motor 55 to detect the rotation of the rotation shaft 61 of the screw rotation motor 55.
  • a load cell 54 is attached to the support member 50 to detect the pressure received by the screw 53.
  • a ball screw shaft 57 is rotatably supported on the injection device frame 14 in parallel with the screw 53, and the ball screw shaft 57 and the injection motor 59 are connected via a timing belt 58. Connected. The front end of the ball screw shaft 57 is screwed with a ball screw nut 60 fixed to the support member 50. Therefore, when the injection motor 59 is driven, the rotational motion of the injection motor 59 is converted into a linear motion by the combination of the ball screw shaft 57 and the ball screw nut 60, that is, the ball screw transmission, and the linear motion Motion is transmitted to the support member 50.
  • a second pulse encoder 64 is attached to the injection motor 59 so as to detect the rotation of the rotary shaft 63 of the injection motor 59.
  • the screw rotation motor 55 is driven, the screw 53 is rotated via the timing belt 56, and the screw 53 is retracted to a predetermined position (moved in the right direction in the figure). .
  • the resin supplied from the hopper 52 is put into the heating cylinder 51. It is heated and melted, and is accumulated in front of the screw 53 as the screw 53 moves backward.
  • the injection nozzle of the heating cylinder 51 is pressed against the fixed mold 73, the injection motor 59 is driven, and the ball screw shaft 57 is rotated via the timing belt 58.
  • the support member 50 is moved in accordance with the rotation of the ball screw shaft 57 and moves the screw 53 forward (moves in the left direction in the figure), so that the grease accumulated in front of the screw 53 is
  • the fuel is injected from the injection nozzle cover, passes through the resin flow path formed in the fixed mold 73, and is filled in the cavity formed between the fixed mold 73 and the movable mold 71.
  • the mold clamping device 12 is disposed so as to face the fixed platen 74, the toggle support 76, the tie bar 75 laid between the fixed platen 74 and the toggle support 76, and the fixed platen 74, A movable platen 72 arranged to be movable forward and backward along the tie bar 75, and a toggle mechanism arranged between the movable platen 72 and the toggle support 76 are provided. Then, the fixed mold 73 and the movable mold 71 are respectively attached to the fixed platen 74 and the movable platen 72 so as to face each other.
  • the toggle mechanism moves the movable platen 72 forward and backward along the tie bar 75 by moving the crosshead 80 forward and backward between the toggle support 76 and the movable platen 72 by a mold clamping motor 78.
  • the mold 71 is brought into and out of contact with the fixed mold 73 to perform mold closing, mold clamping, and mold opening!
  • the toggle mechanism includes a first toggle lever that is swingably supported with respect to the cross head 80, a second toggle lever that is swingably supported with respect to the toggle support 76, and The toggle plate 77 is swingably supported with respect to the movable platen 72. Between the first toggle lever and the second toggle lever and between the second toggle lever and the toggle arm 77. Each is linked.
  • the ball screw shaft 79 is rotatably supported with respect to the toggle support 76, and the ball screw shaft 79 and the ball screw nut 81 fixed to the cross head 80 are screwed together.
  • the ball screw shaft 79 A pulley 82 is attached to the end opposite to the ball screw nut 81, and the pulley 82 is rotated by a mold clamping motor 78 via a timing belt 84.
  • a third pulse encoder 85 is attached to the mold clamping motor 78 to detect the rotation of the rotary shaft 83 of the mold clamping motor 78.
  • the rotational movement of the mold clamping motor 78 is transmitted to the ball screw shaft 79 via the timing belt 84, and the ball screw shaft 79 and the ball screw nut are transmitted.
  • the linear motion is transmitted to the crosshead 80, and the crosshead 80 is moved back and forth.
  • an ejector device is disposed on the back surface of the movable platen 72.
  • the ejector device extends through the movable mold 71, and the front end (right end in the figure) faces the cavity (not shown).
  • the rotational motion force of the servo motor is converted into a linear motion by a combination of a ball screw shaft and a ball screw nut, that is, a ball screw transmission device, and the linear motion Is transmitted to the ejector rod, and the ejector rod and the ejector pin are advanced and retracted.
  • the injection molding machine includes a control unit 17 that controls operations of a mold clamping motor 78, a screw rotation motor 55, and an injection motor 59.
  • the control unit 17 is a kind of computer having a calculation means such as a CPU and MPU, a storage means such as a magnetic disk and a semiconductor memory, an input / output interface, etc., and the mold clamping motor 78, the screw rotation motor 55 and All the operations of the injection molding machine are controlled by the injection motor 59 alone.
  • the control unit 17 includes a load cell 54, a first pulse encoder 62, a second pulse encoder 64, The pressure received by the screw 53 upon receiving the output signal from the third pulse encoder 85, the rotation of the rotation shaft 61 of the screw rotation motor 55, the rotation of the rotation shaft 63 of the injection motor 59, the rotation of the mold clamping motor 78 Various numerical values indicating the molding state in an injection molding machine that only rotates the shaft 83 are detected.
  • the management device 18 includes an arithmetic unit such as a CPU and an MPU, a storage unit such as a magnetic disk and a semiconductor memory, an input / output interface, a keyboard, a joystick, a touch panel, an input unit, a CRT, a liquid crystal display, an LED ( Light Emitting Diode)
  • a kind of computer having a display unit with a display or the like.
  • it may be a device such as a personal computer, a server, a workstation, or the like.
  • control unit 17 and the management device 18 function as a molding machine monitoring device for monitoring the injection molding machine.
  • the control unit 17 and the management device 18 as the molding machine monitoring device are a numerical value detection unit for detecting a numerical value indicating the molding state of the injection molding machine, and the numerical value detected by the numerical value detection unit.
  • a threshold deriving unit for deriving a relationship between the threshold and the defect rate, a threshold setting unit for setting a threshold corresponding to a preset target value of the defect rate according to the relationship derived by the relationship deriving unit, and It has a discriminator for comparing the detected numerical value with a set threshold value to discriminate between a non-defective product and a defective product.
  • the management device 18 monitors the molding state of the injection molding machine based on the change in the numerical value indicating the molding state, and when the detected numerical value is within the threshold width as the set threshold value, It is determined that the molded product is a non-defective product. When the detected numerical value is not within the threshold range, that is, when the threshold value is exceeded, it is determined that the molded product is a defective product.
  • the management device 18 determines that the molded product is defective, it is placed in a place different from the molded product that is determined to be a non-defective product by a molded product take-out device (not shown). It is desirable to transport. In addition, the operator operates the input unit to set a threshold value for discriminating between non-defective products and defective products. Then, the management device 18 calculates and sets a threshold value for each molding shot, and discriminates a good product and a defective product based on the set threshold value. [0037] Next, the operation of the molding machine monitoring apparatus having the above configuration will be described.
  • FIG. 2 is a diagram showing the actual value of the numerical value showing the molding state in the embodiment of the present invention
  • FIG. 3 shows the relationship between the defect rate and the threshold width of the actual value of the numerical value in the embodiment of the present invention
  • FIG. 4 is a flowchart showing the operation of the molding machine monitoring apparatus according to the embodiment of the present invention.
  • the vertical axis represents the actual value
  • the horizontal axis represents the number of shots
  • the vertical axis in FIG. 3 represents the defect rate
  • the horizontal axis represents the threshold width.
  • the operator operates the input unit of the management device 18 to input various items.
  • the input items are the number of calculation shots, the center value, the threshold width, the target discrimination rate, and the like.
  • the number of calculation shots is the number of molding shots at which the management device 18 starts calculating the threshold, and is 100, for example, but can be arbitrarily set.
  • the central value is a central value of a numerical value indicating the molding state of the injection molding machine, and is, for example, an arithmetic average value or a median (median value) of the numerical value.
  • the numerical value indicating the molding state may be any kind of numerical value, for example, the filling peak pressure of the resin, the measuring time of the resin, the pressure holding completion position, the minimum cushion position, and the like.
  • One or more of these numerical values can be used as numerical values indicating the molding state. It is also possible to perform multivariate analysis using the Maharanobis Distance based on many types of numerical values. Here, a description will be made assuming that a dimensionless number calculated by performing multivariate analysis based on eight kinds of numerical values is used as a numerical value indicating the molding state.
  • the threshold width is a width of a numerical range from a lower limit value as a threshold value of the numerical value to an upper limit value set with the central value as a center, and the detected numerical value is the threshold value.
  • the target discrimination rate is a target value of the failure rate as a probability that a defective product is discriminated, and is 2 [%], for example, but can be arbitrarily set.
  • the management device 18 When the input of various items is completed and molding by the injection molding machine is started, the management device 18 performs the number of molding shots performed by the injection molding machine, that is, a shot. It is determined whether the power is less than the number of calculation shots. When the number of shots is equal to or less than the number of calculated shots, the management device 18 performs a discrimination process with a plurality of threshold values, and determines whether the molded product is a non-defective product. In other words, based on a plurality of preset threshold widths, if the detected numerical value is within the threshold width, it is determined that the molded product is non-defective, and the detected numerical value is within the threshold width. Determines that the molded product is defective.
  • the plurality of threshold widths are, for example, five threshold widths (1) to (5) set around the center value as shown in FIG.
  • the threshold width of (1) is the narrowest
  • the threshold width increases as the numerical value within 0 increases
  • the threshold width of (5) is the widest.
  • FIG. 2 for the threshold width (5), only the upper half is displayed and the lower half is omitted for the sake of space.
  • FIG. 2 shows the actual value of the numerical value indicating the molding state in the present embodiment, and it can be seen from FIG. 2 that the numerical value indicating the molding state varies for each molding shot.
  • the numerical value in 0 is smaller and the threshold width is narrower, there are more cases where the numerical value indicating the molding state is not within the threshold width, that is, in many cases, it is determined as a defective product.
  • the larger the numerical value of and the wider the threshold width the smaller the number of cases where the numerical value indicating the molding state is not within the threshold width, that is, the number of cases judged as defective products.
  • the management device 18 stores the determination result in the storage means, and again determines whether or not the number of shots is equal to or less than the number of calculation cases.
  • the discrimination result is stored in correspondence with the threshold width.
  • the management device 18 calculates a discrimination rate at each threshold value. That is, the defect rate corresponding to each threshold width is calculated based on the determination result stored in the storage means. If the number of shots is less than or equal to the calculated number of shots and the number of shots is not less than or equal to the calculated number of shots, that is, the number of molding shots exceeds the number of calculated shots entered by the operator. In this case, the management device 18 calculates a discrimination rate at each threshold without performing discrimination processing at a plurality of thresholds.
  • the management device 18 calculates a discrimination rate formula based on the discrimination rate at each threshold value.
  • the relationship between the threshold and the defect rate is derived by calculating the equation showing curve A as shown in Fig. 3.
  • the curve A has five threshold widths (1) to (5) set, It is a curve showing the relationship between the defect rate corresponding to each threshold width of (1) to (5), that is, the relationship between the threshold value and the failure rate. From the curve A, it can be seen that the defect rate increases as the threshold width decreases, and the defect rate decreases as the threshold width increases.
  • the management device 18 sets a threshold value corresponding to a preset target value of the defect rate according to the relationship between the derived threshold value and the defect rate, that is, calculates an upper and lower limit width. . More specifically, the upper and lower limit width is calculated from the curve A as shown in FIG. 3 as a threshold width that can obtain the target discrimination rate input by the operator. For example, when the target value of the defect rate as the target discrimination rate is 2 [%], the threshold width value indicated by the point on the curve A corresponding to the failure rate of 2 [%] is calculated as the upper and lower limit width . Thereby, the upper limit value and lower limit value of the threshold with the set center value as the center can be calculated. Then, the management device 18 outputs the upper limit value and the lower limit value of the threshold value and ends the process.
  • the management device 18 detects the detected component.
  • the numerical value indicating the shape state is compared with the set threshold value to determine whether the product is good or defective.
  • the numerical value indicating the detected molding state is between the upper limit value and the lower limit value of the threshold value, it is determined that the product is non-defective, and when the numerical value exceeds the upper limit value or lower limit value of the threshold value. Is determined to be defective.
  • the defect rate as the probability that a defective product is discriminated becomes the input target value, which is an appropriate value.
  • a non-defective product and a defective product can be discriminated using a predetermined number in the latest past, for example, an upper limit value and a lower limit value of a threshold value based on 100 shots of molding shots.
  • the injection molding machine started molding the process described above, and after a predetermined number of shots of force, for example, after the injection molding machine stopped due to an error, the operation was restarted and 100 shots of force were replaced, and the mold unit was replaced. It is possible to output the upper and lower threshold values by restarting the operation later and performing only 100 shots of power.
  • Step S1 The operator operates the management device 18 and inputs various items.
  • Step S2 The management device 18 determines whether or not the shot number is less than or equal to the calculated shot number. If the number of shots is equal to or less than the number of calculated shots, the process proceeds to step S3. If the number of shots is not equal to or less than the number of calculated shots, the process proceeds to step S5.
  • Step S3 The management device 18 performs a discrimination process with a plurality of threshold values.
  • Step S4 The management device 18 stores the determination result in the storage means.
  • Step S5 The management device 18 calculates the discrimination rate at each threshold value.
  • Step S6 The management device 18 calculates the discrimination rate formula.
  • Step S7 The management device 18 calculates the upper and lower limit width.
  • Step S8 The management device 18 outputs the upper and lower threshold values and ends the process.
  • a numerical value indicating the molding state of the injection molding machine is detected, and a relationship between the threshold width and the defect rate is derived based on the detected numerical value. Therefore, a threshold value corresponding to a desired defect rate is set, and a non-defective product and a defective product are discriminated using the set threshold value. Therefore, the threshold width as a threshold for discriminating between non-defective products and defective products can be calculated and set for each molding shot, so if the numerical value indicating the molding state fluctuates while molding is continued Even so, it is possible to prevent misjudgment that the defect rate does not fluctuate.
  • an operator of an injection molding machine can easily set a threshold value for discriminating between a non-defective product and a defective product simply by inputting the number of calculation shots, a center value, a threshold width, a target discrimination rate, and the like.
  • a defect rate as a probability that a defective product is discriminated can be set to an appropriate value.
  • the threshold width is set to increase when the defect rate determined based on the detected numerical value increases, and conversely, the threshold width decreases as the defect rate determined based on the detected numerical value decreases.
  • the target discrimination rate as the target value of the defect rate can be maintained. Therefore, it is possible to discriminate the molded product with high accuracy without reducing the productivity of the injection molding machine.
  • the present invention can be applied to a molding machine monitoring apparatus, method, and program.

Abstract

 良品と不良品とを判別するための閾(しきい)値を成形ショット毎に演算して設定することによって、成形機のオペレータが閾値の設定を容易に行うことができるとともに、適切な閾値を使用して、良品と不良品とを判別することができ、不良率を適切な値とすることができ、高い精度で成形品の判別を行うことができるようにする。そのため、成形機の成形状態を示す数値を検出する数値検出部と、検出された前記数値に基づき、閾値と不良率との関係を導出する関係導出部と、あらかじめ設定された前記不良率の目標値に対応する閾値を導出された前記関係に従って設定する閾値設定部と、検出された前記数値を設定された前記閾値と比較して、良品と不良品との判別を行う判別部とを有する。

Description

明 細 書
成形機監視装置、方法及びプログラム
技術分野
[0001] 本発明は、成形機監視装置、方法及びプログラムに関するものである。
背景技術
[0002] 従来、射出成形機のような成形機においては、加熱シリンダ内においてスクリュを前 進させ、加熱され、溶融させられた榭脂を高圧で射出して金型装置のキヤビティ内に 充填 (てん)し、該キヤビティ内において榭脂を冷却し、固化させることによって成形 品を成形するようになっている。そして、榭脂の充填圧、計量時間等のような成形状 態を示す数値の変化に基づ!ヽて、成形状態を監視する方法が提案されて!ヽる (例え ば、特許文献 1参照。)。
[0003] このように、成形状態を示す数値の変化に基づ!/、て成形状態を監視する方法にお いては、例えば、前記成形状態を示す数値の実績値に基づき、成形された成形品が 良品である場合における数値範囲を設定するようになっている。そして、検出された 数値が前記数値範囲内にあるときには良品が成形されたものと判断し、検出された 数値が前記数値範囲の上限値又は下限値を越えたときには不良品が成形されたも のと判断することによって、成形状態を監視するようになっている。
特許文献 1 :特開平 7— 52207号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、前記従来の監視方法においては、上限値及び下限値、すなわち、良 品と不良品とを判別するために設定された閾(しきい)値が固定されているので、閾値 の設定が困難であり、閾値が適切に設定されない場合、不良品が判別される確率と しての不良率が不当に高くなつたり、逆に、低くなつたりしてしまう。また、成形が継続 されている間に選択された成形状態を示す数値が変動することがあるが、この場合に は不良率が変動し、誤判別が生じてしまう。
[0005] 本発明は、前記従来の問題点を解決して、良品と不良品とを判別するための閾値 を成形ショット毎に演算して設定することによって、成形機のオペレータが閾値の設 定を容易に行うことができるとともに、適切な閾値を使用して良品と不良品とを判別す ることができ、不良率を適切な値とすることができ、高い精度で成形品の判別を行うこ とができる成形機監視装置、方法及びプログラムを提供することを目的とする。
課題を解決するための手段
[0006] そのために、本発明の成形機監視装置においては、成形機の成形状態を示す数 値を検出する数値検出部と、検出された前記数値に基づき、閾値と不良率との関係 を導出する関係導出部と、あらかじめ設定された前記不良率の目標値に対応する閾 値を導出された前記関係に従って設定する閾値設定部と、検出された前記数値を設 定された前記閾値と比較して、良品と不良品との判別を行う判別部とを有する。
[0007] 本発明の他の成形機監視装置においては、さらに、前記関係導出部は前記成形 機の成形ショット毎に前記関係を導出する。
[0008] 本発明の更に他の成形機監視装置においては、さらに、前記関係導出部は前記 成形機の所定数の成形ショットにおいて検出された前記数値に基づき、前記関係を 導出する。
[0009] 本発明の成形機監視方法にお!ヽては、検出された成形機の成形状態を示す数値 に基づき、閾値と不良率との関係を導出し、あらかじめ設定された前記不良率の目 標値に対応する閾値を導出された前記関係に従って設定し、検出された前記数値を 設定された前記閾値と比較して、良品と不良品との判別を行う。
[0010] 本発明の成形機監視プログラムにおいては、成形機の監視のためにコンピュータを 、成形機の成形状態を示す数値を検出する数値検出部、検出された前記数値に基 づき、閾値と不良率との関係を導出する関係導出部、あらかじめ設定された前記不 良率の目標値に対応する閾値を導出された前記関係に従って設定する閾値設定部 、及び、検出された前記数値を設定された前記閾値と比較して、良品と不良品との判 別を行う判別部として機能させる。
発明の効果
[0011] 本発明によれば、成形機監視装置は、良品と不良品とを判別するための閾値を成 形ショット毎に演算して設定するようになっている。そのため、成形機のオペレータが 閾値の設定を容易に行うことができるとともに、適切な閾値を使用して良品と不良品と を判別することができ、不良率を適切な値とすることができ、高い精度で成形品の判 別を行うことができる。
図面の簡単な説明
[0012] [図 1]本発明の実施の形態における射出成形機の概略図である。
[図 2]本発明の実施の形態における成形状態を示す数値の実績値を示す図である。
[図 3]本発明の実施の形態における不良率と数値の実績値の閾値幅との関係を示す グラフである。
[図 4]本発明の実施の形態における成形機監視装置の動作を示すフローチャートで ある。
符号の説明
[0013] 17 制御部
18 管理装置
発明を実施するための最良の形態
[0014] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、 本発明は、各種の成形機に適用することができるものであるが、本実施の形態にお いては、説明の都合上、射出成形機に適用した場合について説明する。
[0015] 図 1は本発明の実施の形態における射出成形機の概略図である。
[0016] 図において、 11は射出装置、 12は該射出装置 11と対向させて配設された型締装 置、 13は前記射出装置 11及び型締装置 12を支持する成形機フレーム、 14は該成 形機フレーム 13によって支持されるとともに、射出装置 11を支持する射出装置フレ ーム、 15は該射出装置フレーム 14の長手方向に配設されたガイド、 70は固定金型 73及び可動金型 71から成る金型装置である。なお、該金型装置 70にはキヤビティ が形成されている。
[0017] そして、前記射出装置フレーム 14によってボールねじ軸 21が回転自在に支持され 、該ボールねじ軸 21の一端がモータ 22に連結される。また、前記ボールねじ軸 21と ボールねじナット 23とが螺(ら)合させられ、該ボールねじナット 23と前記射出装置 11 とがブラケット 25を介して連結される。したがって、前記モータ 22を正方向及び逆方 向に駆動すると、モータ 22の回転運動は、ボールねじ軸 21とボールねじナット 23と の組み合わせ、すなわち、ボールねじ伝動装置によって直線運動に変換され、該直 線運動が前記ブラケット 25に伝達される。そして、該ブラケット 25が前記ガイド 15に 沿って移動させられ、前記射出装置 11が進退させられる。
[0018] また、前記ブラケット 25には、前方(図における左方)に向けて加熱シリンダ 51が固 定され、該加熱シリンダ 51の前端(図における左端)に射出ノズルが配設される。そし て、前記加熱シリンダ 51にホッパ 52が配設されるとともに、加熱シリンダ 51の内部に はスクリュ 53が進退(図における左右方向に移動)自在に、かつ、回転自在に配設さ れ、前記スクリュ 53の後端(図における右端)は支持部材 50によって支持される。
[0019] 該支持部材 50にはスクリュ回転用モータ 55が取り付けられ、該スクリュ回転用モー タ 55を駆動することによって発生させられた回転力 タイミングベルト 56を介して前記 スクリュ 53に伝達されるようになっている。また、前記スクリュ回転用モータ 55には第 1パルスエンコーダ 62が取り付けられ、前記スクリュ回転用モータ 55の回転軸 61の 回転を検出するようになっている。なお、前記支持部材 50にはロードセル 54が取り 付けられ、前記スクリュ 53が受ける圧力を検出する。
[0020] また、前記射出装置フレーム 14には、スクリュ 53と平行にボールねじ軸 57が回転 自在に支持されるとともに、該ボールねじ軸 57と射出用モータ 59とがタイミングベル ト 58を介して連結される。そして、前記ボールねじ軸 57の前端は、支持部材 50に固 定されたボールねじナット 60と螺合させられる。したがって、前記射出用モータ 59を 駆動すると、該射出用モータ 59の回転運動は、ボールねじ軸 57とボールねじナット 6 0との組み合わせ、すなわち、ボールねじ伝動装置によって直線運動に変換され、該 直線運動が支持部材 50に伝達される。また、前記射出用モータ 59には第 2パルスェ ンコーダ 64が取り付けられ、前記射出用モータ 59の回転軸 63の回転を検出するよう になっている。
[0021] 次に、前記構成の射出装置 11の動作の概略について説明する。
[0022] まず、計量工程においては、スクリュ回転用モータ 55を駆動し、タイミングベルト 56 を介してスクリュ 53を回転させ、該スクリュ 53を所定の位置まで後退(図における右方 向に移動)させる。このとき、ホッパ 52から供給された榭脂は、加熱シリンダ 51内にお いて加熱されて、溶融させられ、スクリュ 53の後退に伴ってスクリュ 53の前方に溜(た )められる。
[0023] 次に、射出工程においては、前記加熱シリンダ 51の射出ノズルを固定金型 73に押 し付け、前記射出用モータ 59を駆動し、タイミングベルト 58を介してボールねじ軸 57 を回転させる。このとき、支持部材 50は前記ボールねじ軸 57の回転に伴って移動さ せられ、前記スクリュ 53を前進(図における左方向に移動)させるので、スクリュ 53の 前方に溜められた榭脂は前記射出ノズルカゝら射出され、固定金型 73内に形成され た榭脂流路を通って、固定金型 73と可動金型 71との間に形成されたキヤビティに充 填される。
[0024] 次に、前記型締装置 12について説明する。
[0025] 該型締装置 12は、固定プラテン 74、トグルサポート 76、前記固定プラテン 74とトグ ルサポート 76との間に架設されたタイバー 75、前記固定プラテン 74と対向して配設 され、前記タイバー 75に沿って進退自在に配設された可動プラテン 72、及び、該可 動プラテン 72と前記トグルサポート 76との間に配設されたトグル機構を備える。そし て、前記固定プラテン 74及び可動プラテン 72に互いに対向させて、前記固定金型 7 3及び可動金型 71がそれぞれ取り付けられる。
[0026] 前記トグル機構は、型締用モータ 78によってクロスヘッド 80をトグルサポート 76と可 動プラテン 72との間で進退させることにより、前記可動プラテン 72をタイバー 75に沿 つて進退させ、可動金型 71を固定金型 73に対して接離させて、型閉、型締、及び、 型開を行うようになって!/、る。
[0027] そのため、前記トグル機構は、前記クロスヘッド 80に対して揺動自在に支持された 第 1トグルレバー、前記トグルサポート 76に対して揺動自在に支持された第 2トグルレ バー、及び、前記可動プラテン 72に対して揺動自在に支持されたトグルアーム 77か ら成り、前記第 1トグルレバーと第 2トグルレバーとの間、及び、前記第 2トグルレバー とトグルアーム 77との間がそれぞれリンク結合される。
[0028] また、ボールねじ軸 79が前記トグルサポート 76に対して回転自在に支持され、前 記ボールねじ軸 79と、前記クロスヘッド 80に固定されたボールねじナット 81とが螺合 させられる。そして、前記ボールねじ軸 79を回転させるために、該ボールねじ軸 79の ボールねじナット 81と反対側の端部にプーリ 82とが取り付けられ、該プーリ 82は、タ イミングベルト 84を介して、型締用モータ 78によって回転させられる。また、該型締用 モータ 78には第 3パルスエンコーダ 85が取り付けられ、前記型締用モータ 78の回転 軸 83の回転を検出するようになって 、る。
[0029] したがって、前記型締用モータ 78を駆動すると、該型締用モータ 78の回転運動が 、タイミングベルト 84を介して前記ボールねじ軸 79に伝達され、該ボールねじ軸 79と ボールねじナット 81との組み合わせ、すなわち、ボールねじ伝動装置によって直線 運動に変換され、該直線運動がクロスヘッド 80に伝達され、該クロスヘッド 80が進退 させられる。そして、該クロスヘッド 80を前進(図における右方向に移動)させると、ト ダル機構が伸展して可動プラテン 72が前進させられ、型閉及び型締が行われ、前記 クロスヘッド 80を後退(図における左方向に移動)させると、トグル機構が屈曲して可 動プラテン 72が後退させられ、型開が行われる。
[0030] また、前記可動プラテン 72の背面にはェジェクタ装置が配設され、該ェジェクタ装 置は、前記可動金型 71を貫通して延び、前端(図における右端)をキヤビティに臨ま せる図示されないェジェクタピン、該ェジェクタピンの後方(図における左方向)に配 設された図示されないェジ工クタロッド、該ェジ工クタロッドの後方に配設され、図示さ れないサーボモータによって回転させられるボールねじ軸及び該ボールねじ軸と螺 合させられるボールねじナットとを有する。
[0031] したがって、前記サーボモータを駆動すると、該サーボモータの回転運動力 ボー ルねじ軸とボールねじナットとの組み合わせ、すなわち、ボールねじ伝動装置によつ て直線運動に変換され、該直線運動が前記ェジ クタロッドに伝達され、該ェジ タ タロッド及びェジ クタピンが進退させられる。
[0032] なお、前記射出成形機は、型締用モータ 78、スクリュ回転用モータ 55及び射出用 モータ 59の動作を制御する制御部 17を有する。該制御部 17は、 CPU, MPU等の 演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備 える一種のコンピュータであり、前記型締用モータ 78、スクリュ回転用モータ 55及び 射出用モータ 59だけでなぐ前記射出成形機のすべての動作を制御する。また、前 記制御部 17は、ロードセル 54、第 1パルスエンコーダ 62、第 2パルスエンコーダ 64、 第 3パルスエンコーダ 85等の出力信号を受信して、スクリュ 53が受ける圧力、スクリュ 回転用モータ 55の回転軸 61の回転、射出用モータ 59の回転軸 63の回転、型締用 モータ 78の回転軸 83の回転等だけでなぐ射出成形機における成形状態を示す各 種の数値を検出する。
[0033] そして、前記制御部 17には、管理装置 18が接続されている。該管理装置 18は、 C PU、 MPU等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インタ 一フェイス、キーボード、ジョイスティック、タツチパネル等を備える入力部、 CRT、液 晶ディスプレイ、 LED (Light Emitting Diode)ディスプレイ等を備える表示部等 を備える一種のコンピュータであり、例えば、パーソナルコンピュータ、サーバ、ワーク ステーション等である力 V、かなる装置であってもよ 、。
[0034] 本実施の形態において、前記制御部 17及び管理装置 18は、射出成形機を監視 するための成形機監視装置として機能する。この場合、機能の観点から、成形機監 視装置としての制御部 17及び管理装置 18は、射出成形機の成形状態を示す数値 を検出する数値検出部、該数値検出部によって検出された数値に基づき、閾値と不 良率との関係を導出する関係導出部、あらかじめ設定された不良率の目標値に対応 する閾値を、前記関係導出部によって導出された関係に従って設定する閾値設定部 、及び、検出された数値を設定された閾値と比較して良品と不良品との判別を行う判 別部を有する。
[0035] そして、前記管理装置 18は、成形状態を示す数値の変化に基づいて射出成形機 の成形状態を監視し、検出された数値が設定された閾値としての閾値幅内にあるとき は、成形された成形品が良品であると判断し、検出された数値が閾値幅内にないとき 、すなわち、閾値を超えたときは、成形された成形品が不良品であると判断する。
[0036] なお、成形品が不良であると管理装置 18が判断した場合には、図示されない成形 品取り出し装置等によって、当該成形品を良品であると判断された成形品とは相違 する場所に移送することが望ましい。また、オペレータは、前記入力部を操作して、良 品と不良品とを判別するための閾値を設定する。そして、前記管理装置 18は、閾値 を成形ショット毎に演算して設定し、設定された閾値に基づいて良品と不良品とを判 別する。 [0037] 次に、前記構成の成形機監視装置の動作について説明する。
[0038] 図 2は本発明の実施の形態における成形状態を示す数値の実績値を示す図、図 3 は本発明の実施の形態における不良率と数値の実績値の閾値幅との関係を示すグ ラフ、図 4は本発明の実施の形態における成形機監視装置の動作を示すフローチヤ ートである。なお、図 2において縦軸には実績値を、横軸にはショット数を採ってあり、 図 3において縦軸には不良率を、横軸には閾値幅を採ってある。
[0039] まず、オペレータは、管理装置 18の入力部を操作して各種項目の入力を行う。この 場合、入力される項目は、演算ショット数、中心値、閾値幅、目標判別率等である。こ こで、前記演算ショット数は、管理装置 18が閾値の演算を開始する成形ショットの数 であり、例えば、 100であるが、任意に設定することができる。
[0040] また、前記中心値は、射出成形機の成形状態を示す数値の中心値であり、例えば 、前記数値の算術平均値、メディアン(中央値)等である。なお、成形状態を示す数 値は、例えば、榭脂の充填ピーク圧、榭脂の計量時間、保圧完了位置、最小クッショ ン位置等である力 いかなる種類の数値であってもよい。そして、これら数値のうちの 一種類又は複数種類の数値を成形状態を示す数値として使用することができる。ま た、多数種類の数値に基づき、マハラノビス距離(Maharanobis Distance)を利用 した多変量解析を行うこともできる。ここでは、 8種類の数値に基づいて多変量解析を 行って算出された無次元数を、前記成形状態を示す数値として使用するものとして 説明する。
[0041] さらに、前記閾値幅は、前記中心値を中心として設定される、前記数値の閾値とし ての下限値カゝら上限値までの数値範囲の幅であり、検出された数値が前記閾値幅内 にあるとき、すなわち、前記下限値力も上限値までの間にあるときは、成形された成 形品が良品であると判断され、検出された数値が閾値幅内にないとき、すなわち、前 記下限値又は上限値を超えたときは、成形された成形品が不良品であると判断され る。また、前記目標判別率は、不良品が判別される確率としての不良率の目標値で あり、例えば、 2〔%〕であるが、任意に設定することができる。
[0042] そして、各種項目の入力が終了して、射出成形機による成形が開始されると、前記 管理装置 18は、前記射出成形機によって行われた成形ショットの数、すなわち、ショ ット数が演算ショット数以下である力否かを判断する。そして、ショット数が演算ショット 数以下である場合、前記管理装置 18は複数の閾値での判別処理を行い、成形され た成形品が良品であるカゝ否かを判断する。すなわち、あらかじめ設定された複数の 閾値幅に基づき、検出された数値が閾値幅内にあるときは成形された成形品が良品 であると判断し、検出された数値が閾値幅内にな 、ときは成形された成形品が不良 品であると判断する。なお、前記複数の閾値幅は、例えば、図 2に示されるように、中 心値を中心として設定された(1)〜(5)の五つの閾値幅である。この場合、(1)の閾 値幅が最も狭ぐ 0内の数値が増加するとともに閾値幅が増大し、(5)の閾値幅が最 も広くなつている。なお、図 2において、閾値幅(5)は、スペースの都合上、上側半分 だけが表示され、下側半分は省略されている。
[0043] 図 2は本実施の形態における成形状態を示す数値の実績値を示すものであるが、 前記成形状態を示す数値は、図 2から成形ショット毎に変動することが分かる。そして 、 0内の数値が小さく閾値幅が狭いほど、前記成形状態を示す数値が閾値幅内に ないケースが多くなり、すなわち、不良品と判断されるケースが多くなり、逆に、()内 の数値が大きく閾値幅が広いほど、前記成形状態を示す数値が閾値幅内にないケ ースが少なくなる、すなわち、不良品と判断されるケースが少なくなることが分かる。そ して、前記管理装置 18は、判別結果を記憶手段に格納し、再び、ショット数が演算シ ヨット数以下であるか否かを判断する。なお、判別結果は、閾値幅に対応して格納さ れる。
[0044] 続 、て、前記管理装置 18は各閾値での判別率を計算する。すなわち、記憶手段 に格納された判別結果に基づき、各閾値幅に対応した不良率を計算する。なお、シ ヨット数が演算ショット数以下である力否かを判断して、ショット数が演算ショット数以 下でない場合、すなわち、成形ショットの数がオペレータによって入力された演算ショ ット数を超えた場合、前記管理装置 18は、複数の閾値での判別処理を行うことなぐ 各閾値での判別率を計算する。
[0045] 続いて、前記管理装置 18は、各閾値での判別率に基づき、判別率の式を演算する 。すなわち、図 3に示されるような曲線 Aを示す式を演算することによって、閾値と不 良率との関係を導出する。前記曲線 Aは、設定された(1)〜(5)の五つの閾値幅と、 (1)〜 (5)の各閾値幅に対応した不良率との関係、すなわち、閾値と不良率との関係 を示す曲線である。前記曲線 Aから、閾値幅を狭くするほど不良率が高くなり、閾値 幅を広く設定するほど不良率が低くなることが分かる。
[0046] 続いて、前記管理装置 18は、あらかじめ設定された不良率の目標値に対応する閾 値を導出された閾値と不良率との関係に従って設定する、すなわち、上下限幅を演 算する。より具体的には、図 3に示されるような曲線 Aから、オペレータによって入力さ れた目標判別率を得ることができる閾値幅としての上下限幅を演算する。例えば、目 標判別率としての不良率の目標値が 2〔%〕である場合、 2〔%〕の不良率に該当する 曲線 A上の点が示す閾値幅の値を上下限幅として演算する。これにより、設定された 中心値を中心とした閾値の上限値及び下限値を算出することができる。そして、前記 管理装置 18は、前記閾値の上限値及び下限値を出力して処理を終了する。
[0047] これにより、成形ショット毎に、成形品を良品又は不良品であると判別するための閾 値としての上限値及び下限値を得ることができ、前記管理装置 18は、検出された成 形状態を示す数値を、設定された前記閾値と比較して良品と不良品との判別を行う。 そして、検出された成形状態を示す数値が前記閾値の上限値と下限値との間にある ときは、良品であると判断し、前記数値が前記閾値の上限値又は下限値を超えたとき には、不良品であると判断する。これにより、成形が継続されている間に成形状態を 示す数値が変動した場合であっても、不良率が変動することがなぐ誤判別の発生を 防止することができる。そのため、不良品が判別される確率としての不良率は、入力 された目標値となり、適正な値となる。
[0048] また、直近の過去における所定数、例えば、 100ショットの成形ショットに基づく閾値 の上限値及び下限値を使用して、良品と不良品とを判別することができる。さらに、前 述の処理を射出成形機が成形を開始して力 の所定数のショット、例えば、射出成形 機がエラーで停止した後に運転を再開して力もの 100ショット、金型装置を交換した 後に運転を再開して力もの 100ショット等についてのみ行うことによって、閾値の上限 値及び下限値を出力することもできる。
[0049] 次に、フローチャートについて説明する。
ステップ S1 オペレータ一は、管理装置 18を操作して各種項目の入力を行う。 ステップ S2 管理装置 18は、ショット数が演算ショット数以下である力否かを判断す る。ショット数が演算ショット数以下である場合は、ステップ S3に進み、ショット数が演 算ショット数以下でない場合は、ステップ S5に進む。
ステップ S3 管理装置 18は、複数の閾値で判別処理を行う。
ステップ S4 管理装置 18は、判別結果を記憶手段に格納する。
ステップ S5 管理装置 18は、各閾値での判別率を計算する。
ステップ S6 管理装置 18は、判別率の式を演算する。
ステップ S7 管理装置 18は、上下限幅を演算する。
ステップ S8 管理装置 18は、閾値の上限値及び下限値を出力して処理を終了する
[0050] このように、本実施の形態においては、射出成形機の成形状態を示す数値を検出 し、検出された前記数値に基づき、閾値幅と不良率との関係を導出し、該関係に従つ て所望の不良率に対応する閾値を設定し、設定された閾値を使用して良品と不良品 とを判別するようになっている。そのため、良品と不良品とを判別するための閾値とし ての閾値幅を成形ショット毎に演算して設定することができるので、成形が継続され ている間に成形状態を示す数値が変動した場合であっても、不良率が変動すること がなぐ誤判別の発生を防止することができる。
[0051] また、射出成形機のオペレータは、演算ショット数、中心値、閾値幅、目標判別率 等を入力するだけで、良品と不良品とを判別する閾値の設定を容易に行うことができ る。
[0052] さらに、適切な閾値を使用して良品と不良品とを判別することができるので、不良品 が判別される確率としての不良率を適切な値とすることができる。すなわち、検出され た数値に基づいて判別された不良率が高くなると閾値幅が広くなるように設定し、逆 に、検出された数値に基づいて判別された不良率が低くなると閾値幅が狭くなるよう に設定するので、不良率の目標値としての目標判別率を維持することができる。その ため、射出成形機の生産性を低下させることなぐ高い精度で成形品の判別を行うこ とがでさる。
[0053] なお、本発明は前記実施の形態に限定されるものではなぐ本発明の趣旨に基づ いて種々変形させることが可能であり、それらを本発明の範囲力 排除するものでは ない。
産業上の利用可能性
この発明は、成形機監視装置、方法及びプログラムに適用することができる。

Claims

請求の範囲
[1] (a)成形機の成形状態を示す数値を検出する数値検出部と、
(b)検出された前記数値に基づき、閾値と不良率との関係を導出する関係導出部と
(c)あらかじめ設定された前記不良率の目標値に対応する閾値を導出された前記関 係に従って設定する閾値設定部と、
(d)検出された前記数値を設定された前記閾値と比較して、良品と不良品との判別 を行う判別部とを有することを特徴とする成形機監視装置。
[2] 前記関係導出部は前記成形機の成形ショット毎に前記関係を導出する請求項 1に記 載の成形機監視装置。
[3] 前記関係導出部は前記成形機の所定数の成形ショットにおいて検出された前記数 値に基づき、前記関係を導出する請求項 1に記載の成形機監視装置。
[4] (a)検出された成形機の成形状態を示す数値に基づき、閾値と不良率との関係を導 出し、
(b)あらかじめ設定された前記不良率の目標値に対応する閾値を導出された前記関 係に従って設定し、
(c)検出された前記数値を設定された前記閾値と比較して、良品と不良品との判別を 行うことを特徴とする成形機監視方法。
[5] (a)成形機の監視のためにコンピュータを、
(b)成形機の成形状態を示す数値を検出する数値検出部、
(c)検出された前記数値に基づき、閾値と不良率との関係を導出する関係導出部、
(d)あらかじめ設定された前記不良率の目標値に対応する閾値を導出された前記関 係に従って設定する閾値設定部、及び、
(e)検出された前記数値を設定された前記閾値と比較して、良品と不良品との判別を 行う判別部として機能させることを特徴とする成形機監視プログラム。
PCT/JP2006/307625 2005-04-11 2006-04-11 成形機監視装置、方法及びプログラム WO2006109790A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/887,823 US20090051064A1 (en) 2005-04-11 2006-04-11 Molding Machine Monitoring Apparatus, Method, and Program
DE112006000906T DE112006000906T5 (de) 2005-04-11 2006-04-11 Formmaschinenüberwachungsvorrichtung, -verfahren und -programm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-113309 2005-04-11
JP2005113309A JP4364828B2 (ja) 2005-04-11 2005-04-11 成形機監視装置、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2006109790A1 true WO2006109790A1 (ja) 2006-10-19

Family

ID=37087061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307625 WO2006109790A1 (ja) 2005-04-11 2006-04-11 成形機監視装置、方法及びプログラム

Country Status (7)

Country Link
US (1) US20090051064A1 (ja)
JP (1) JP4364828B2 (ja)
KR (1) KR20070120526A (ja)
CN (1) CN101155678A (ja)
DE (1) DE112006000906T5 (ja)
TW (1) TW200642827A (ja)
WO (1) WO2006109790A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232561B2 (ja) * 2008-07-30 2013-07-10 本田技研工業株式会社 品質検査方法
JP5232560B2 (ja) * 2008-07-30 2013-07-10 本田技研工業株式会社 品質予測方法
US20130030862A1 (en) * 2011-07-30 2013-01-31 International Business Machines Corporation Trend-based target setting for process control
JP6800798B2 (ja) * 2017-03-31 2020-12-16 住友重機械工業株式会社 射出成形機、および射出成形用情報処理装置
JP6773738B2 (ja) * 2018-09-19 2020-10-21 ファナック株式会社 状態判定装置及び状態判定方法
JP7201533B2 (ja) * 2019-05-23 2023-01-10 ファナック株式会社 表示装置および表示方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121820A (ja) * 1988-10-31 1990-05-09 Sumitomo Heavy Ind Ltd 射出成形機の成形品判別方式
JPH06231327A (ja) * 1993-01-28 1994-08-19 Konica Corp 成形不良自動判別装置
JPH0752207A (ja) * 1993-08-10 1995-02-28 Seikosha Co Ltd 射出成形品の良否判定方法とこの方法を使用した射出成形システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814397A (en) * 1995-09-13 1998-09-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for waterproofing ceramic materials
JP2001315179A (ja) * 2000-05-10 2001-11-13 Nissei Plastics Ind Co 射出成形機の入力装置
US6646660B1 (en) * 2000-09-29 2003-11-11 Advanced Micro Devices Inc. Method and apparatus for presenting process control performance data
JP4677679B2 (ja) * 2001-03-27 2011-04-27 株式会社デンソー 製品の製造プロセスにおける特性調整方法
US7149597B2 (en) * 2001-05-29 2006-12-12 John Billings Process control system and method
US20040205523A1 (en) * 2001-12-03 2004-10-14 Methode Electronics, Inc. Control chart with single display
JP3756872B2 (ja) * 2002-11-07 2006-03-15 日精樹脂工業株式会社 成形品の判別条件設定方法
JP2006021470A (ja) * 2004-07-09 2006-01-26 Fanuc Ltd 射出成形機のモニタリング装置及びモニタリング方法
US7465417B2 (en) * 2004-07-19 2008-12-16 Baxter International Inc. Parametric injection molding system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121820A (ja) * 1988-10-31 1990-05-09 Sumitomo Heavy Ind Ltd 射出成形機の成形品判別方式
JPH06231327A (ja) * 1993-01-28 1994-08-19 Konica Corp 成形不良自動判別装置
JPH0752207A (ja) * 1993-08-10 1995-02-28 Seikosha Co Ltd 射出成形品の良否判定方法とこの方法を使用した射出成形システム

Also Published As

Publication number Publication date
KR20070120526A (ko) 2007-12-24
CN101155678A (zh) 2008-04-02
JP2006289773A (ja) 2006-10-26
DE112006000906T5 (de) 2008-02-28
TWI305173B (ja) 2009-01-11
JP4364828B2 (ja) 2009-11-18
TW200642827A (en) 2006-12-16
US20090051064A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US8636495B2 (en) Abnormality detector for an injection molding machine
US9724863B2 (en) Injection molding machine
WO2006109790A1 (ja) 成形機監視装置、方法及びプログラム
JP5770249B2 (ja) 従動機構の傾きを画像計測装置を用いて計測する手段を備えた射出成形機
CN108688107B (zh) 注射成型机及注射成型用信息处理装置
US20180147765A1 (en) Controller and management system for injection molding machine
JP6591260B2 (ja) 射出成形用情報管理装置、および射出成形機
EP3168028B1 (en) Injection molding information management device and injection molding machine
JP3785393B2 (ja) 射出成形機の型締め工程における異常検知方法
JP3562582B2 (ja) 射出成形機の制御方法及び制御装置
JP5289528B2 (ja) 射出成形機のノズルタッチ制御装置
JP4263661B2 (ja) 成形機の監視表示方法
US20020015749A1 (en) Mold condition detecting device and method for injection molding machine
US5929583A (en) Method and apparatus for detecting aberrant motor operation in a plastics processing machine
JP7348022B2 (ja) 射出成形機管理装置及び射出成形機
US11701809B2 (en) Control device and control method for injection molding machine
WO2014189083A1 (ja) 成形診断装置
JP3410348B2 (ja) 電動式射出成形機の監視装置
JPH0310823A (ja) 射出成形機の監視装置
JP7392121B2 (ja) 射出成形機
WO2023149029A1 (ja) 寿命予測方法、寿命予測装置及びコンピュータプログラム
JP2649009B2 (ja) 射出成形機の計量値設定方法及び装置
JP4568261B2 (ja) 電動射出成形機の動力伝達手段の異常検出装置
JP2005343002A (ja) 成形機の監視表示方法
JP2023151551A (ja) 射出成形の表示装置、射出成形機、及び射出成形の管理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011681.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11887823

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077023261

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120060009060

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112006000906

Country of ref document: DE

Date of ref document: 20080228

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06731572

Country of ref document: EP

Kind code of ref document: A1