WO2006109479A1 - 遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2-デオキシ-シロ-イノソースの製造方法及び2-デオキシ-シロ-イノソースの精製方法 - Google Patents

遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2-デオキシ-シロ-イノソースの製造方法及び2-デオキシ-シロ-イノソースの精製方法 Download PDF

Info

Publication number
WO2006109479A1
WO2006109479A1 PCT/JP2006/305782 JP2006305782W WO2006109479A1 WO 2006109479 A1 WO2006109479 A1 WO 2006109479A1 JP 2006305782 W JP2006305782 W JP 2006305782W WO 2006109479 A1 WO2006109479 A1 WO 2006109479A1
Authority
WO
WIPO (PCT)
Prior art keywords
deoxy
inosose
gene
doi
btrc
Prior art date
Application number
PCT/JP2006/305782
Other languages
English (en)
French (fr)
Inventor
Masamichi Takagi
Takahisa Kogure
Naoki Wakisaka
Hiroaki Takaku
Katsumi Ajisaka
Tatsuo Miyazaki
Masao Hirayama
Original Assignee
Niigata Bio-Research Park, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37086767&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006109479(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Niigata Bio-Research Park, Inc. filed Critical Niigata Bio-Research Park, Inc.
Priority to DE602006019835T priority Critical patent/DE602006019835D1/de
Priority to EP06729749A priority patent/EP1865056B1/en
Priority to US11/887,445 priority patent/US8758741B2/en
Priority to BRPI0607623-8A priority patent/BRPI0607623B1/pt
Priority to CN2006800107712A priority patent/CN101151368B/zh
Priority to JP2007512466A priority patent/JP4598826B2/ja
Publication of WO2006109479A1 publication Critical patent/WO2006109479A1/ja
Priority to US14/178,496 priority patent/US20140256960A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01009Glucose-6-phosphate isomerase (5.3.1.9)

Definitions

  • the present invention relates to a gene expression cassette and a transformant, a method for producing 2-deoxy siro-ino source using the transformant, and a method for purifying 2-deoxy siro-ino source.
  • Carbon 6-membered ring compounds have been conventionally produced in the petrochemical field using petroleum as a raw material.
  • a butyrosine-producing bacterium Bacillus circulans, 2-deoxyshiroinosose (hereinafter referred to as DOI), a carbon 6-membered ring compound, using glucose-6-phosphate (G-6-P) as a substrate.
  • DOI synthase 2-deoxy-sucrose-inosose synthase
  • Fig. 1, Patent Document 1 2-deoxy-sucrose-inosose synthase
  • DOI synthase is an enzyme involved in the biosynthesis of aminoglycoside antibiotics containing 2 doxystreptamine as an aglycone, and its product DOI is a raw material for pharmaceuticals and industrial resources. As a useful substance.
  • the method of chemically synthesizing DOI uses multi-step reactions and harmful or expensive metals, whereas DOI synthase can efficiently produce DOI in a short process. it can. So far, a method has been established for producing DOI in a short process with a Darucose 6-phosphate power using recombinant DOI synthase obtained by expressing DOI synthase in E. coli (Patent Document 1). ).
  • D OI can be synthesized by a two-step enzyme reaction that causes hexokinase and DOI synthase to act on glucose, and a one-step enzyme reaction that causes DOI synthase to act on glucose 6-phosphate.
  • Patent Document 1 Non-Patent Document 1
  • DOI can be converted to force-teol without purification by concentrating the enzyme reaction solution and allowing hydrogen iodide to act as an acetic acid solution
  • Patent Document 1 a method for synthesizing DOI by fermentation using D-glucose derived from biomass using Escherichia coli incorporating DOI synthase has not been raised as an issue.
  • DOI is synthesized by enzymatic reaction to convert DOI in the reaction composition, but a method for purifying and isolating DOI itself is still reported. It has not been. Furthermore, DOI is purified from a microbial culture solution containing amino acids derived from peptone and various metal ions in addition to a large amount of medium components and carbon source, dalcose, from the enzyme reaction solution. There is no information about what to do. In other words, there are no reports of purifying DOI from the presence of contaminants such as enzyme reaction solution and microbial culture solution, but it has been established as an industrially applicable purification method! Currently.
  • Patent Document 1 JP 2000-236881 (Patent No. 3122762)
  • Non-Patent Document 1 K. Kakinuma ⁇ E. Nango, F. Kudo, Y. Matsushima ⁇ and T .. guchi, Tetrahedron Letters 2000, 41 ⁇ , p. 1935— 1938
  • Non-patent document 2 Ota, Y. et al., Antibiot., 2000, 53 ⁇ , lp. 158-1167
  • Non-patent document 3 Kudo, F. et al., Antibiot., 1999, 52 ⁇ , p. 559 -571 Disclosure of the Invention
  • the present invention has been made in view of the above-mentioned problems, and a gene expression cassette capable of realizing a system capable of producing DOI on an industrial scale, and a transformation having this gene expression cassette And a method for producing 2-deoxyshiroinosose and a method for purifying 2-deoxyshiroinosose.
  • the gene expression cassette according to the present invention is characterized in that it comprises a gene involved in the synthesis of 2-deoxyshiroinosource.
  • the gene expression cassette according to the present invention is characterized in that the gene involved in the synthesis of the 2-deoxyshiroinosose is a 2-deoxyshiroinosose synthase. These make it possible to obtain transformants capable of industrially producing DOI.
  • the transformant according to the present invention is characterized in that the above-described gene expression cassette is introduced into a host cell.
  • the host cell comprises an E. coli species and a host cell (as of March 2006) described in the GILSP gene recombinant microorganism list. It is characterized by being a host cell made. These make it possible to implement a method that allows industrial production of DOI.
  • the host cell comprises a pgi gene encoding a phosphodarcose isomerase, a zwf gene encoding glucose-6-phosphate 1-dehydrogenase, a phosphodarco Group power consisting of pgm gene encoding mutase and rmf gene encoding ribosome modifier protein responsible for modification of protein synthesis in stationary phase
  • the method for producing 2-deoxyshiroinosose according to the present invention is characterized by having a step of bringing the above-mentioned transformant into contact with a carbon source. This makes it possible to manufacture DOI industrially.
  • the carbon source can obtain D-glucose, oligosaccharides, polysaccharides, starch, cellulose, rice bran and waste molasses, and D-dulcose. At least one selected from the group of biomass biomass It is a kind of carbon source. As a result, in addition to the above, the DOI can be manufactured for general use.
  • a 2-deoxy-shiro ino sauce according to the present invention is obtained by the above-described method for producing a 2-deoxy-shiro ino source. As a result, it is possible to obtain 2-deoxysyl-inosose with vigorous characteristics of the production method using transformants.
  • the above transformant is brought into contact with a carbon source to obtain a composition having 2-deoxy-head-in-no-source.
  • a step of treating the composition with a mixed bed type or two bed type column having a hydrogen ion type strongly acidic cation exchange resin and an organic acid ion type basic anion exchange resin. To do. This makes it possible to industrially obtain a high-purity DOI.
  • the organic acid ion type basic anion exchange resin is an acetate ion type anion exchange resin.
  • a 2-deoxy shiro inosource according to the present invention is obtained by the above-described method for purifying 2-deoxy sino-inosose. This makes it possible to obtain 2-deoxysyl-inosose with vigorous characteristics using transformants with high purity.
  • a method for purifying a 2-deoxy-sylloinosose by reacting the above-mentioned 2-deoxy-sylloinosose with trialkoxymethane to obtain a 2-deoxy-siroino-diose ketal. And a step of hydrolyzing the 2-deoxysylinosose dialkyl ketal in the presence of an acid.
  • the trialkoxymethane is trimethoxymethane.
  • the methanol produced in the subsequent hydrolysis step can be easily removed by a concentration operation, so that it can be preferably used practically.
  • the 2-deoxy shiro inosource according to the present invention is obtained by the above-described method for purifying 2-deoxy sino-inosose. As a result, in terms of purity, etc. Excellent 2-deoxy shiroino sauce is obtained.
  • D-glucose force is also a diagram showing a reaction pathway in which DOI is generated and a reaction catalyzed by DOI synthase.
  • FIG. 2A is a diagram showing the structure of pLEX-btrC.
  • FIG. 2B is a diagram showing the structure of pGAP-btrC.
  • FIG. 2C is a diagram showing the structure of pGAD-btrC.
  • FIG. 2D is a diagram showing the structure of pGAP-btrCZpGAD-btrC.
  • FIG. 3A is a diagram showing an SDS-PAGE pattern of bacterial cell extracts when E. coli GI724 Apgi strain containing pLEX-btrC is cultured in 2 XYT medium or rice bran medium for each time.
  • FIG. 3B Escherichia coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm containing pGAP—btrC / pGAD—btrC
  • FIG. 4A HPLC chart of the oximation reaction product of E. coli GI724 A pgi strain containing pLEX—btrC (2 XYT 3L, 30 ° C, pH 7.5, 5% D-glucose, 24 hours culture) It is.
  • FIG.5 Accompanying culture of E. coli GI724Apgi strain containing pLEX—btrC (2 XYT + 2% glucose ( ⁇ ) or 2 XYT + 5% D—glucose ( ⁇ ), 3L, 30 ° C, pH 7.5)
  • FIG. 6 (A) Medium turbidity associated with culture of E. coli GI724ApgiAzwf strain containing pLEX-btrC (2 XYT + 3% mannitol + 5% D glucose, 3 L, 30 ° C, pH 7.5,) (B) D—glucose concentration, and (C) DOI production time course (horizontal axis is elapsed time after glucose addition).
  • FIG.7 Accompanying cultivation of E. coli strain GI724 ⁇ pgi ⁇ zwf ⁇ pgm containing pLEX—btrC (2 X YT + 5% D glucose + 0.5% mannitol, 3L, 25 ° C, pH 7) (left) It is a graph showing the turbidity of cells, (middle) D glucose concentration in the medium, and (right) time course of DOI production (the horizontal axis is the elapsed time after addition of D-glucose).
  • FIG. 8 Culture of Escherichia coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain ( ⁇ ) containing pLEX—btrC and pGAP—btrC ZpGAD—btrC containing E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain (country) (2 XYT + 5% D —Glucose + 0.5% mannitol, 3L, 25 ° C, pH6— 7) (Left) Cell turbidity, (Medium) D glucose concentration in the medium, (Right) Time course of DOI production (The horizontal axis is D—the elapsed time after the addition of glucose).
  • FIG. 9 Culture of Escherichia coli GI724 wild type strain ( ⁇ ) containing pLEX—btrC and GI724 Armf strain (country) containing pLEX—btrC (2 XYT + 3% D-glucose, 10 mL, 30 ° C, pH 7) (Left) Cell turbidity, (Medium) D glucose concentration in medium, (Right) DOI production time course (horizontal axis is elapsed time after addition of D-glucose).
  • FIG. 10 is a graph plotting the pH, conductivity, and DOI concentration of fractions obtained by flowing a culture solution through an ion exchange resin by the method of Example 8.
  • FIG. 11 is a 13 C-NMR ⁇ vector of DOI obtained by purification by the method of Example 8.
  • FIG. 12 is a graph plotting the pH, conductivity, and DOI concentration of fractions obtained by flowing a culture solution through an ion exchange resin by the method of Example 9.
  • FIG. 13 is a 13 C-NMR ⁇ vector of DOI obtained by purification by the method of Example 9.
  • FIG. 14 is a schematic diagram showing the principle of the second embodiment of the method for purifying 2-deoxy shiroino sauce according to the present invention.
  • FIG. 15 is a 1 H-NMR spectrum of DOI obtained by purification by the method of Example 10.
  • FIG. 16 is a 1 H-NMR spectrum of DOI obtained by purification by the method of Example 11.
  • FIG. 17 is a 1 H-NMR spectrum of DOI obtained by purification by the method of Example 12. BEST MODE FOR CARRYING OUT THE INVENTION
  • DOI synthase by introducing the enzyme into other microorganisms, D-dalose derived from abundant nitrogen is used as a raw material, and DOI, which is a useful resource, can be efficiently and quickly processed. There is a possibility that it can be produced.
  • the present inventors have intensively studied in order to develop a method for producing DOI by a fermentation method in a simple and inexpensive manner using E. coli as a host cell as a novel DOI synthesis method, thereby forming the present invention. It came to.
  • the gene expression cassette according to the present invention is characterized in that it comprises a gene involved in the synthesis of 2-deoxy, single, and inosource. That is, the gene expression cassette according to the present invention is not particularly limited as long as it is composed of a gene involved in the synthesis of 2-deoxysilino source and a gene such as a vector that can express the gene.
  • the gene involved in the synthesis of 2-deoxysyl-inosose may be a gene encoding a known protein capable of synthesizing 2-deoxysyl-inosose.
  • An example of this is the btrC gene encoding the 42 kDa subunit of DOI synthase derived from Bacillus circulans, which synthesizes DOI from D-glucose (Patent Document 1, Non-Patent Document). See Table 1 and Genbank AB066276. ;).
  • genes derived from organisms other than Bacillus circulans can be used as long as they encode an enzyme having DOI synthase activity.
  • the base sequence of the gene is a gene that synthesizes an enzyme having DOI synthase activity of the present invention, the base sequence of the gene may have mutations such as deletion, substitution, insertion, etc. Yo ...
  • a gene capable of expressing the gene involved in the synthesis of the above-mentioned 2-deoxy-one-inosose in the host cell described below may be used.
  • the gene structure of the gene expression cassette include a promoter, a sequence involved in transcription activity, RBS (ribosome binding site), and a terminator.
  • RBS ribosome binding site
  • a terminator for example, in a large-scale protein expression system using Escherichia coli as a host cell, a 5 'upstream of the gene, a promoter, a sequence involved in transcriptional activity, a DNA sequence such as RBS (ribosome binding site), Connect a DNA sequence such as a terminator on the 3 'downstream side.
  • DNA sequences may be any sequences that function in E. coli.
  • promoters that express constitutively and those that express inducibly. Any promoter can be used, and preferably the expression can be controlled.
  • IPTG isopropyl-thio-galactopyranoside
  • inducers are generally used because of their comparatively high cost.
  • an expression system that provides high expression of the target gene without using an expensive inducer such as IPTG.
  • Examples of host's vector systems for this purpose include P Expression System (Invitogen), GAP promoter and GAD promoter.
  • An expression system using can be used.
  • the system is controlled by the concentration of tributophan in the medium, and the expression is induced in the medium when the concentration of tributophan is high.
  • a vector Expression of the gene incorporated on the pUC-derived ampicillin resistance marker results in constitutively strong expression in the vegetative growth phase or stationary phase.
  • the gapA promoter, the gadA promoter, etc. no special reagent or operation is required, and the expression is induced during normal culture.
  • the P Expression System system uses a complete medium normally used for culturing E. coli.
  • the transformant according to the present invention is characterized by introducing the above-described gene expression cassette into a host cell.
  • the host cell in the present invention will be described.
  • a bacterium deposited in a depository organization for example, IFO, ATCC, etc.
  • examples of such include E. coli.
  • Bacillus amyloliquefaciens Bacillus amyloliquefaciens
  • Bacillus brevis HPD31 Bacillus brevis HPD31—M3
  • Bacillus ricche-forumis DN2461 Bacillus ricche-forumis DN271 7
  • Bacillus sachiris K2A1 Basilis satiris M168 strain, Corynebaterum dartalumicam, Escherichia K12-derived strain, Geobacillus' stearothermophilus
  • GILSP Good Industrial Large Scale Practice
  • the above host cell is 2-deoxyshiroino.
  • strains in which various chromosome z plasmid genes are disrupted may be used.
  • genes encoding phosphodarcose isomerase, glucose-6-phosphate 1-dehydrogenase and phosphodalcomtase, which are enzymes involved in the metabolism of glucose 6-phosphate possessed by host cells are either disrupted alone, or two are disrupted simultaneously (pgi gene and zwf gene and pgi gene and pgm gene), or three are disrupted simultaneously ing.
  • the gene encoding the RMF protein (rmf gene) involved in the regulation of protein synthesis in the stationary phase is singly disrupted, and encodes the above-mentioned force or enzyme involved in glucose monophosphate metabolism.
  • the rmf gene has been disrupted against various gene-disrupted strains in which the gene has been disrupted.
  • the gene encoding the enzyme involved in catabolism of D-Dalcos is phosphoglucose isomerase, which is involved in the conversion of glucose-6-phosphate to fructose 6-phosphate in the glycolysis.
  • Encoding (pgi) residue 1zS and glucose 6-phosphate dehydrogenase (Gluxose-6-phosphate dehydrogenase), an enzyme involved in the conversion of glucose 6-phosphate to phosphodarconolatatone through the pentose phosphate pathway
  • pgm genes that encode the enzyme phosphoglucomutase, which is involved in the conversion of zwf gene coding for) to 6-phosphate and 6-phosphate to gnolecose 1 phosphate.
  • a method known in the art may be used as a method for producing a gene disrupted strain in which a specific gene of a host cell is disrupted.
  • methods of inducing mutations methods of natural breeding, addition of mutation agents, UV irradiation, irradiation, etc.
  • methods of random mutations methods of insertion sequence (IS), transposon (Tn), etc.
  • Examples include site-specific gene disruption methods (single and double crossover methods).
  • a site-specific gene disruption method that can insert a fragment containing a gene exhibiting drug resistance into a gene to be disrupted is preferable in terms of screening a desired gene disruption strain.
  • the host cell subjected to the gene disruption used in the transformant according to the present invention is not limited to the force produced using the Gene Bridges Quick and Easy BAC Modification Kit. .
  • the transformant according to the present invention may be prepared by introducing the above gene expression cassette into the above host cell.
  • Examples of the introduction method include a method using a competence method and an endocytosis via a receptor.
  • the method for producing 2-deoxy scyllo-inosose according to the present invention is characterized in that the above-mentioned transformant is contacted with a carbon source in a medium suitable for the growth of the transformant.
  • Carbon sources include nitrogen-containing monosaccharides such as D-glucose, D-darcosamine and D-galactosamine, disaccharides or oligosaccharides or carbohydrates such as these monosaccharides (starch, rice bran, waste Monosaccharides derived from polysaccharides such as molasses) can be used.
  • nitrogen-containing monosaccharides such as D-glucose, D-darcosamine and D-galactosamine
  • disaccharides or oligosaccharides or carbohydrates such as these monosaccharides (starch, rice bran, waste Monosaccharides derived from polysaccharides such as molasses) can be used.
  • the medium for carrying out the method for producing the 2-deoxyshiroinosose according to the present invention is not limited in any form, such as solid or liquid, as long as it is a known medium that can proliferate and grow the host cells.
  • Examples thereof include agar medium, RMG medium, 2 XYT medium, LB medium, M9 minimal medium, SOB medium, and the like.
  • These media include carbon sources, nitrogen sources, You may have organic salt and other organic nutrient sources. In addition to the above, this carbon source may be one shown in Table 1 such as mannitol.
  • this nitrogen source include salt ammonium, casamino acid, peptone, and yeast extract.
  • the inorganic salts include sodium hydrogen phosphate, potassium dihydrogen phosphate, magnesium chloride, sodium chloride salt, and the like.
  • the medium may further have an appropriate additive depending on the growth of the host or the like.
  • the medium may have a compound that increases the promoter activity, such as IPTG or tributophan, for example, in order to express a gene involved in the synthesis of 2-deoxy-sucrose / inosose introduced into the above-described gene expression cassette. Good.
  • the gene expression by the promoter is inducible, add an inducer in a timely manner.
  • the temperature, time, atmosphere, etc. for bringing the transformant into contact with the carbon source are in an environment suitable for growth of the transformant. If there is, it will not be specifically limited.
  • the temperature is more preferably 20 ° C to 37 ° C.
  • This time is not particularly limited, but it may be from 1 to 7 days.
  • the above-mentioned transformant is obtained by using E. coli assimilated as a carbon source (for example, D-glucose etc.). Contact in medium. Thereafter, DOI is recovered from the obtained culture supernatant. In this way, DOI can be obtained industrially by the method for producing 2-deoxy-sucrose / inosose according to the present invention using the transformant.
  • a carbon source for example, D-glucose etc.
  • the above-mentioned plasmids pGAP-btrC, pGAD—btrC, pGAP—btrCZpGAD—btrC and pLEX—btrC have GI724 ⁇ transformation, GI724 A pgi ArnJ transformation ⁇ 3 ⁇ 4, GI724 A pgi transformation ⁇ 3 ⁇ 4, GI724 A pg i ⁇ zw; f transformation, GI724 ⁇ pgi ⁇ zwf ⁇ pgm transformation, etc. are prepared and cultured According to the method, as shown in FIG. 1, DOI is produced from D-glucose through glucose-6 phosphate and further through a five-step reaction catalyzed by DOI synthase.
  • DOI may be collected from the culture supernatant.
  • DOI can be recovered from the culture solution by a known extraction method in consideration of the physical Z-chemical properties of 2-deoxysilo-inosose, the composition of the medium, and the like. Innosource can be recovered. For example, the following method can be used.
  • the culture is removed from the culture with a centrifuge or a filtration device to obtain a culture supernatant. Thereafter, the culture supernatant is further filtered to remove solids such as cells, and the filtrate is added to ion exchange resin and eluted with distilled water. While measuring the refractive index, pH, and conductivity, fractions containing no impurities can be collected, and the solvent of the aqueous solution can be removed to recover DOI. The obtained DOI is analyzed by, for example, high performance liquid chromatography or nuclear magnetic resonance.
  • the method for purifying 2-deoxy sinoinosose according to the present invention comprises a step of contacting the above-mentioned transformant with a carbon source to obtain a composition having 2-deoxy sinoinosose, And a process using a mixed bed type or two bed type column having a hydrogen ion type strongly acidic cation exchange resin and an organic acid ion type basic anion exchange resin.
  • the step of bringing the transformant into contact with the carbon source is carried out according to the above-described method for producing 2-deoxy sylino source according to the present invention.
  • This step yields a composition containing 2-deoxy sylino source.
  • This composition has the above-mentioned medium strength.
  • a medium is used as the medium will be described.
  • the culture broth after culturing the transformant in the medium having a carbon source contains various components of the medium in addition to glucose as the remaining carbon source. These various components Examples of the component include various amino acids or peptides, and various metal ions. In order to obtain DOI, it is necessary to remove these various components, and the method for purifying 2-deoxy-siro-inosose according to the present invention provides a method for solving this.
  • the impurities to be removed contained in the medium include D-glucose, various amino acids or peptides, and various metal ions as the remaining carbon source.
  • various amino acids or peptides and various metal ions as remaining impurities.
  • amino acids there are basic amino acids with multiple amino groups such as lysine, histidine and tryptophan, and there are acidic amino acids with multiple carboxyl groups such as glutamic acid and aspartic acid.
  • Metal ions are naturally cations, but at the same time, chloride ions and sulfate ions as counter ions are also present in the medium. Therefore, if all such impurities are adsorbed and DOI is not adsorbed, it will be possible to search for a substrate.
  • ion exchange resins that are widely used, for example, sodium ion type or hydrogen ion type strongly acidic cation exchange
  • DOI could not be purified with high yield.
  • Amino acids bind to either of two types of ion exchange resins.
  • DOI metal ions bind to cation exchange resins
  • DOI has no ionic functional group, so it does not bind to V and misaligned ion exchange resins! .
  • amino acid and metal salts were bound to the ion exchange resin, and the force results presumed that only DOI was eluted without adsorbing were different.
  • the DOI recovery rate was 50% or less, and varied greatly depending on the use conditions of the ion exchange resin. In order to be compatible with industrial methods for mass processing, higher recoveries and stable results are required.
  • DOI can be obtained by using organic acid ions as the counter ion of the resin, that is, by using a mixed bed type or two bed type column using organic acid ion type anion exchange resin and hydrogen ion type cation exchange resin.
  • organic acid acetic acid can be preferably used among the powers such as acetic acid, propionic acid, and oxalic acid.
  • acetic acid as the organic acid is preferred in that it is stable only under weakly acidic conditions of pH 3 to 5 where DOI is extremely easily decomposed in an alkaline region of pH 8 or higher.
  • the culture solution is flowed through a two-bed column that is packed with separate anion exchange resin and cation exchange resin. This method can also remove the above impurities.
  • both regions have the same stability as fructose, they can be purified with a mixed bed column.
  • the present inventors are the first to find that DOI is unstable in an alkaline region so that decomposition occurs even when a mixed column is used as well as a double bed column.
  • the DOI can be purified by passing the culture solution through an ion exchange column prepared by mixing a hydrogen ion type cation exchange resin and an organic acid ion type anion exchange resin.
  • an ion exchange column prepared by mixing a hydrogen ion type cation exchange resin and an organic acid ion type anion exchange resin.
  • the method for purifying 2-deoxy silo-inosose according to the present invention comprises a step of reacting the above-mentioned 2-deoxy-cyllo-inosose with trialkoxymethane to obtain 2-deoxy-chiro-inosose dialkyl ketal. And the step of hydrolyzing the 2-deoxysylloinosose dialkyl ketal in the presence of an acid.
  • the 2-deoxy syl-inosose obtained can be used in addition to the above-mentioned composition containing 2-deoxysiro-inosose, as well as the 2-deoxy-siro-inosose obtained in the first embodiment. Etc.
  • this second aspect will be described.
  • FIG. 14 is a schematic diagram showing the principle of the second embodiment of the method for purifying 2-deoxy siroino sauce according to the present invention.
  • the reaction conditions for converting DOI and the reaction conditions for restoring can be carried out under acidic conditions where DOI is not decomposed, and that the derivatized material is easily crystallized and DOI. It is necessary to restore the system to an industrial scale and to implement these on an industrial scale.
  • Various methods that meet these requirements were studied. As a result, we have found a method for crystallizing the DOI by reacting it with trialkoxymethane under stable acidic conditions to convert it into 2-deoxy-innoose dialkyl ketal (DOI-dak).
  • R is an alkyl having 1 to 4 carbon atoms.
  • cans examples include methane, ethane, propane, butane and the like, which are not particularly restricted.
  • alkoxymethane trimethylmethane is most preferable because alcohol generated in the subsequent hydrolysis step can be easily removed.
  • trimethylmethane it is deoxy-single and ino-source dimethyl keter Le (DOI-dmk) power will be obtained.
  • Crystallization of 2-deoxyshiroinosose alkyl ketal reduces the hydrophilicity of the liquid phase after dissolving 2-deoxyshiroinosose alkyl ketal in an appropriate solvent (eg, methanol, ethanol, water, etc.)
  • an appropriate solvent eg, methanol, ethanol, water, etc.
  • a medium for example, black mouth form, hexane, ethers, etc.
  • crystals of 2-deoxy, innocose and alkyl ketal are obtained.
  • the 2-deoxyshiroinosose alkyl ketal thus obtained is hydrolyzed to 2-deoxysuccinosinosose in the presence of an acid.
  • This hydrolysis reaction may be carried out in the presence of a suitable catalyst such as tosylic acid, hydrochloric acid, sulfuric acid and the like. After hydrolysis, 2 deoxy shiroino sauce is obtained.
  • the method for purifying 2-deoxy, single, and ino sauce according to the present invention is a method that can be sufficiently applied to industrial mass production.
  • the carbohydrate cyclase gene is a btrC gene that encodes the 42 kDa subunit of 2-deoxysiroinosose (DOI) synthase derived from Bacillus circulans (Patent Document 1, Genbank AB066276, non-patent document 1). (See Patent Document 2 etc.).
  • DOI 2-deoxysiroinosose
  • Plasmid pDS4 (Non-patent Document 3) containing the full length of the btrC gene is used as a saddle and using primer 1 shown in SEQ ID NO: 1 and primer 2 shown in SEQ ID NO: 2, and KOD polymerase (TOYOBO) is used for PCR amplification of the btrC gene.
  • the PCR reaction conditions were 94 ° CX for 30 seconds, 52 ° CX for 30 seconds, and 68 ° CX for 1 minute for 30 cycles.
  • the gapA promoter gene was synthesized by PCR amplification using the chromosomal DNA of Escherichia coli as a saddle and the primer shown in SEQ ID NO: 17 and the primer shown in SEQ ID NO: 18.
  • the gapA promoter gene was amplified by PCR using KOD polymerase under the following reaction conditions to obtain a gapA promoter fragment.
  • the gadA promoter gene was synthesized by PCR amplification using the chromosomal DNA of E. coli as a saddle and using the primer shown in SEQ ID NO: 19 and the primer shown in SEQ ID NO: 20. PCR amplification of this gadA promoter gene was performed using KOD polymerase under the following reaction conditions to obtain a gadA promoter fragment.
  • the aspA terminator gene is a plasmid pLEX containing the aspA terminator gene.
  • gapA promoter fragment, btrC fragment, and aspA terminator fragment amplified above were reacted at 16 ° C for 30 minutes using 2 X Ligation mix.
  • Ligation product thus obtained as a saddle type PCR amplification was performed using the primer shown in SEQ ID NO: 3 and the primer shown in SEQ ID NO: 8 using KOD polymerase under the following conditions.
  • One fragment of gapA promoter and one fragment of btrC-aspA terminator were obtained.
  • pGAP btrC / pGAD btrC was constructed by inserting this fragment digested with BamHI into the BamHI site of the cloning site of the vector pLEX (Invitrogen) into which gadA—btrC was inserted (Fig. Five).
  • Gene disruption was performed using the Quick and Easy BAC Modification Kit of Gene Bridges based on the method described in the attached instructions.
  • the sequence of the PCR primer set used for the preparation of the cassette used for single disruption of the pgi gene is shown in SEQ ID NO: 3 and SEQ ID NO: 4.
  • the sequences of the PCR primer set used for amplification of the cassette used for the single disruption of the zwf gene are shown in SEQ ID NO: 5 and SEQ ID NO: 6.
  • the sequence of the PCR primer set for preparation of the cassette used for the single disruption of the pgm gene is SEQ ID NO: 7, SEQ ID NO: 8, shown in SEQ ID NO: 9 and SEQ ID NO: 10.
  • the sequence of the PCR primer set used to amplify the cassette for disrupting the pgi gene relative to the single disruption strain of the zwf gene is SEQ ID NO: 11 And SEQ ID NO: 12.
  • the sequence of the PCR primer set used to amplify the cassette for disrupting the pgm gene relative to the single disruption strain of the pgi gene is SEQ ID NO: 7 SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10.
  • pSClOl-BAD-gbaA-tetra a vector encoding the group of enzymes that promote homologous recombination in E. coli, attached to the kit, was introduced into the host cell E. coli strain (GI724). .
  • the strain was pre-cultured overnight in LB medium supplemented with 3 gZmL tetracycline.
  • each gene disruption cassette was transformed to induce gene disruption of the target gene.
  • the target gene disruption strain pgi gene disruption
  • Strain ⁇ pgi strain
  • zwf gene disruption strain ⁇ zwf strain
  • pgm gene disruption strain ⁇ pgm strain
  • pgiZzwf double gene disruption strain ⁇ pgi ⁇ zwf strain
  • pgiZpgm double gene disruption strain ⁇ pgi ⁇ pgm strain
  • pgiZzwfZpgm triple gene disruption strain ⁇ pgi ⁇ zwf ⁇ pgm strain
  • rmf disruption strains for the various disruption strains described above were obtained using the same method as described above.
  • Table 1 shows the growth level of wild-type strains and gene-disrupted strains obtained with various single carbon sources.
  • the ⁇ pgi, ⁇ zwf and ⁇ pgm strains can use D-glucose as a carbon source.
  • the growth rate of D-glucose was significantly slower than that of the wild-type strain, suggesting that the consumption of D-glucose by the cells was suppressed.
  • the A pgi A zwf strain, the A pgi A pgm strain and the ⁇ pgi ⁇ zwf ⁇ pgm strain are extremely difficult to grow using D-glucose as a single carbon source. It was thought that acid degradation was almost completely suppressed. Therefore, using these disrupted strains can be expected to increase DOI production and DOI conversion efficiency compared to wild-type strains.
  • each double-gene-disrupted strain and triple-gene-disrupted strain can be improved in growth by supplementing non-fermentable carbon sources such as mannitol and dalconate (Table 1).
  • non-fermentable carbon sources such as mannitol and dalconate (Table 1).
  • the carbon source in the rmf gene-disrupted strain showed growth levels similar to those of various disrupted strains in which the glucose 6-phosphate metabolizing enzyme gene was disrupted.
  • GI724ZPLEX was obtained by transforming the host E. coli strain (GI724) with pLEX-btrC obtained as described above according to the protocol described in the Gene Bridges kit's instructions and selecting it in a medium containing ampicillin. — Obtained btrC strain. Similarly, by transforming pGAP-btrCZpGAD-btrC into a host E. coli strain (GI724) and selecting it in a medium containing ampicillin, the GI724ZPGAP-btrC / pGAD-btrC strain is obtained. Obtained.
  • pGAP-btrC was similarly applied to the GI724Armf ⁇ GI724Apgi ⁇ GI724Azwf, GI724Apgm, GI724 ⁇ pgi ⁇ rmf, GI724 ⁇ pgi ⁇ zwf, GI724 ⁇ pgi ⁇ pgm and GI724 ⁇ pgi ⁇ zwf ⁇ ⁇ gm gene disruption strains.
  • GI724Armf / pGAP— btrC / pGAD— btrC strain GI724 Apgi / pGAP— btr CZpGAD— btrC strain, GI724AzwfZpGAP— btrCZpGAD— btrC strain, GI724 ⁇ pgm / trGAP— btrC / pGAP— GI724 ⁇ pgi ⁇ rmf / pGAP-btrC / pGAD— btrC strain, GI724ApgiAzwf / pGAP— btrC / pGAD— btrC strain, GI7 24 ⁇ pgi ⁇ pgm / pGAP— btrC / pGAD— btrC strain, GI7 24 ⁇ pgi
  • GI724ApgiZpLEX— BtrC strain in induction medium (6% sodium hydrogen phosphate, 3% potassium dihydrogen phosphate, 0.5% sodium chloride, 1% sodium salt, 0.2% casamino acid, 0.5% D Glucose and ImM magnesium chloride), cultured at 30 ° C until O.D600nm 0.7, then transferred to 2XYT medium (E. coli complete medium, 1.6% tributophan, 1% yeast extract, 0.5% sodium chloride sodium) After further culturing at 37 ° C for 6 hours, the cells were collected, and the expression of Btr C protein was confirmed by 12% SDS polyacrylamide gel electrophoresis. The results are shown in Figure 3A. 2 It was confirmed that BtrC was expressed in large quantities by culturing in XYT medium for 6 hours. Each lane in Fig. 3A is as follows.
  • Extract of bacterial cells cultured in rice bran medium composition: 20% rice bran enzyme treatment solution
  • 2 X YT medium supplemented with tryptophan for 6 hours
  • Lane 1 Molecular weight marker
  • Lane 2 Cell extract extracted after 0 hours of main culture
  • Lane 3 Cell extract extracted after 12 hours of main culture
  • Lane 4 Cell extract collected after 36 hours of main culture
  • Lane 5 Cell extract extracted after 72 hours of main culture
  • the culture temperature was 30 ° C
  • the stirring speed was 3 OOrpm
  • the air was 10L / min
  • the pH was 7.7
  • the OD force of 600nm was 0.7
  • D-glucose was added at 2% or 5% concentration.
  • the culture was further performed for 48 hours.
  • the culture fluid force at a predetermined time was also centrifuged to remove the cells, and the culture supernatant 1 was recovered.
  • the cells were inoculated at a concentration of 1% into 2 XYT medium containing 3 liters of 3% mannitol (in a 10 liter culture tank), 30 ° C, stirring speed 300 rpm, air 10 LZ, PH 7.7
  • 3% concentration of glucose was added, and the culture was further continued.
  • the cells were removed from the culture solution at a predetermined time by centrifugation, and the culture supernatant 2 was collected.
  • pLEX The GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing btrC is added to a 300 mL Erlenmeyer flask in a 50 mL pre-culture solution (0.6% disodium hydrogen phosphate, 0.3% potassium dihydrogen phosphate, 0.05% Sodium chloride, 0.1% ammonium chloride, 2% casamino acid, 1% glycerol, ImM sodium chloride) and cultured for 15 hours. 1% of this preculture was inoculated into a 10-L culture tank (Maruhyo Biotechnology MDL-6C type) containing 3 L of 2XYT medium.
  • This was cultured under the conditions of a culture temperature of 25 ° C, a stirring speed of 300 rpm, an inflow of air of 10 LZ, and a pH of 7.0, and when OD600 nm 0.7, D-glucose was added to a concentration of 5%.
  • GI724 ⁇ pgi ⁇ zwf ⁇ pgm containing pGAP—btrC / pGAD—btrC is added to a 300 mL Erlenmeyer flask in a 50 mL pre-culture solution (0.6% disodium hydrogen phosphate, 0.3% potassium dihydrogen phosphate, 0 05% salt sodium, 0.1% salt ammonium, 2% casamino acid, 1% daricerol, ImM magnesium chloride) and cultured for 15 hours. 1% of this preculture was inoculated into a 10 L culture tank containing 3 L of 2XYT medium.
  • This was cultured at 25 ° C, stirring speed 300rpm, inflowing air 10LZ, ⁇ 6.0, and when OD600nm 0.7, D-glucose was added to a concentration of 5%. The culture was further continued for 72 hours. The culture fluid force for a predetermined time was also centrifuged to remove the bacterial cells, and the culture supernatant 4 was collected.
  • GI724 Armf strain containing pLEX—btrC is added to a test tube in 3 mL of pre-culture solution (0.6% disodium hydrogen phosphate, 0.3% potassium dihydrogen phosphate, 0.05% sodium chloride salt, 0. 1% ammonium chloride, 2% casamino acid, 1% glycerol, ImM magnesium chloride) and cultured for 15 hours. 1% of this preculture was inoculated into a 1 ⁇ type test tube containing 101! ⁇ 2 Kencho medium. This was cultured under the conditions of a culture temperature of 30 ° C, a shaking speed of 160 rpm, and a pH of 7.0.
  • the DOI accumulated in the culture supernatant was quantified according to the following procedure. For each of the culture supernatants 1 and 2, the culture solution was collected at each time, and the same amount of water as the supernatant, methanol twice as much as the supernatant, and a final concentration of 1.5 mgZmL O— ( 4-Isoguchi benzyl) hydroxylamine (NBHA) was mixed and incubated at 60 ° C for 1 hour to induce DOI oximation.
  • NBHA 4-Isoguchi benzyl) hydroxylamine
  • DOI oxime obtained in this way, the solvent was evaporated using the Speep Vac System (Thermo I SSI 10), and then the oximed DOI was dissolved in an appropriate amount of methanol, and a part of it was analyzed by HPLC (high-performance liquid). Chromatography) analysis was performed to detect and quantify DOI.
  • HPLC high-performance liquid. Chromatography
  • SHIMADZU LC-10AT was used, Phrnomenex Luna 5u C18 (column length 150 mm, column inner diameter 4.6 mm) was used, and 20% methanol was used as the eluent. Ultraviolet absorption at 262 nm was measured.
  • the amount of O— (4-trobenzyl) oxime derivative of D OI was quantified by the standard curve method. Glucose assay procedure kit (Megazyme: ⁇ ) was used to determine the amount of glucose.
  • FIGS. 4A and 4B in the HPLC analysis, a peak corresponding to an oxime form of DOI was confirmed.
  • Figures 5 to 7 show the time course of DOI production, medium turbidity, and D-dalcose concentration.
  • RMG medium 0.6% sodium hydrogen phosphate, 0.3% potassium dihydrogen phosphate, 0.05% Sodium chloride, 0.1% salt ammonium, 2% casamino acid, 1% glycerin, ImM salt magnesium
  • GI724 wild-type strain containing pLEX—btrC was added to 3 mL of pre-culture solution (0.6% nitric acid hydrogen phosphate, 0.3% potassium dihydrogen phosphate, 0.05% sodium chloride sodium salt, 0.1% Inoculated into a test tube containing salt ammonium, 2% casamino acid, 1% glycerol, ImM salt magnesium, and cultured for 15 hours. 1% of this preculture was inoculated into a 1 ⁇ -type test tube containing 101! 11 ⁇ 2 ⁇ clove medium.
  • the DOI accumulated in the culture supernatants 11 to 14 obtained as described above was quantified according to the following procedure.
  • FIG. 11 shows the 13 C-NMR spectrum of the obtained purified DOI.
  • the 13 C-NMR ⁇ vector was measured using a Bruker DPX-250 NMR instrument ( 13 C nuclei resonated at 67.5 MHz) on samples dissolved in heavy water.
  • the DOI-containing culture solution (DOI content: 22. lg / 850 mL) was loaded onto a cation exchange resin column (Amberlite 200CT, hydrogen ion type, 400 mL) and eluted with water.
  • the fraction containing DOI by TLC analysis of the eluate was passed through an anion exchange resin column (Amberlite IR A96SB, acetate ion type, 600 mL), followed by elution with water.
  • an anion exchange resin column Amberlite IR A96SB, acetate ion type, 600 mL
  • the display of the deposited microorganisms used in the present invention is as follows.
  • various carbon 6-membered ring compounds can be produced by fermentation using biomass-derived raw materials such as starch, which are renewable resources, instead of conventional petroleum-derived chemical substances. It has become possible to produce high-purity DOI as a starting material for the production.
  • biomass-derived raw materials such as starch, which are renewable resources, instead of conventional petroleum-derived chemical substances. It has become possible to produce high-purity DOI as a starting material for the production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

宿主細胞としての大腸菌に、2-デオキシ-シロ-イノソースの合成に関与する遺伝子からなる遺伝子発現カセットを少なくとも1種類導入して形質転換体を調製し、この形質転換体を用いて、D-グルコース、オリゴ糖、多糖、でんぷんまたは米ぬかから2-デオキシ-シロ-イノソースを合成する。この2-デオキシ-シロ-イノソースを含有する培養液を、水素イオン型強酸性陽イオン交換樹脂と有機酸イオン型塩基性陰イオン交換樹脂からなる混床式または二床式カラムで処理する。この精製された2-デオキシ-シロ-イノソースを、トリメトキシメタンと反応させて、2-デオキシ-シロ-イノソースジメチルケタールに変換して結晶化・精製した後、酸の存在下加水分解して高度に精製する。  

Description

明 細 書
遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた 2 -デォキシ一シロ一イノソースの製造方法及び 2 -デォキシ一シロ一イノソース の精製方法
技術分野
[0001] 本発明は、遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた 2 デォキシ シローイノソースの製造方法及び 2—デォキシ シローイノソースの 精製方法に関する。
背景技術
[0002] 炭素 6員環化合物は、従来石油化学の分野にお!、て、石油を原料として生産され てきた。一方、ブチロシン生産菌バチルス'サーキュランス(Bacillus circulans)に おいて、グルコースー6 リン酸 (G— 6— P)を基質として、炭素 6員環化合物である 2 デォキシーシローイノソース(以下、 DOIともいう)を合成する反応を触媒する、 2- デォキシ―シ口—イノソース合成酵素 (DOI合成酵素)が見い出された(図 1、特許文 献 1)。
[0003] DOI合成酵素は、 2 デォキシストレプタミンをァグリコンとして含有するアミノグリコ シド抗生物質の生合成に関与する酵素であり、その生成物である DOIは、医薬原料 やィ匕学工業資源として有用な物質である。 DOIをィ匕学的に合成する方法は、多段階 の反応と有害又は高価な金属とを使用するのに対し、 DOI合成酵素を用いれば、効 率的に短工程で DOIを生産することができる。これまでに、 DOI合成酵素を大腸菌 に発現させることによって得られる組換え DOI合成酵素を用 、て、ダルコース一 6— リン酸力も短工程で DOIを生産する方法が確立されている(特許文献 1)。さらに、 D OIは、グルコースにへキソキナーゼと DOI合成酵素とを作用させる二段階の酵素反 応力、、グルコース 6—リン酸に DOI合成酵素を作用させる一段階の酵素反応で合 成できることが知られている (特許文献 1、非特許文献 1)。また、酵素反応液を濃縮し て酢酸溶液としてヨウ化水素を作用させることにより、 DOIを精製することなく力テコー ルに変換できることも報告されて 、る (特許文献 1)。 [0004] し力しながら、 DOI合成酵素を組込んだ大腸菌を用いた、バイオマス由来の D—グ ルコースを原料とする、発酵による DOIの合成方法は、課題として提起されていなか つた o
[0005] また、現在までに、酵素反応により DOIを合成して、反応組成物のままの DOIを変 換することは、報告されているが、 DOIそのものを精製 ·単離する方法は未だ報告さ れていない。更に、酵素反応液中より多種多量の培地成分、炭素源であるダルコ一 スの他、ペプトンなどに由来するアミノ酸類や、各種の金属イオン類が含まれている 微生物培養液中から DOIを精製することに関する情報は、全く無い。すなわち、酵素 反応液及び微生物培養液等の夾雑物存在下から DOIを精製する報告はなぐ況ゃ 工業的に応用可能な精製方法につ!、ては全く確立されて!、な!、のが現状である。
[0006] 微生物培養液等の夾雑物存在下力 DOIを精製するには、実験室的には HPLC による分取あるいは活性炭カラムクロマトグラフィーによる方法が知られている。しかし 、 HPLCによる分取が工業的生産には適さないことはいうまでもない。また、活性炭力 ラムによる方法では、培地中の有機化合物を一度活性炭に吸着させた後、アルコー ルなどの有機溶媒の濃度を変化させながら、吸着力の差を利用して順次溶出させる ことになる。したがって、大量の DOIを生産する場合、培地中の大部分の有機化合 物を吸着させるだけの量の活性炭が必要となり、この方法も大量精製には不向きで ある。そのようなことから、これまでは工業的方法で DOIを精製する適切な方法は確 立されていなかった。
特許文献 1 :特開 2000— 236881号公報 (特許第 3122762号)
非特許文献 1 :K. Kakinumaゝ E. Nango、 F. Kudo, Y. Matsushimaゝ及び T. Ε guchi著、 Tetrahedron Letters 2000年、 41卷、 p. 1935— 1938
非特許文献 2 : Ota, Y.ら著、 Antibiot.、 2000年、 53卷、 lp. 158- 1167 非特許文献 3 :Kudo, F.ら著、 Antibiot.、 1999年、 52卷、 p. 559- 571 発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上述の問題に鑑みてなされたものであり、 DOIを工業的規模で製造可 能な系を実現し得る遺伝子発現カセット、この遺伝子発現カセットを有する形質転換 体並びに 2—デォキシーシローイノソースの製造方法及び 2—デォキシーシローイノ ソースの精製方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明による遺伝子発現カセットは、 2—デォキシーシローイノソースの合成に関与 する遺伝子からなることを特徴とする。
[0009] 本発明による遺伝子発現カセットにおいて、前記の 2—デォキシーシローイノソース の合成に関与する遺伝子は、 2—デォキシ一シ口一イノソース合成酵素であることを 特徴とする。これらにより、 DOIを工業的に製造可能な形質転換体を取得可能となる
[0010] また、本発明による形質転換体は、宿主細胞に、上述の遺伝子発現カセットを導入 してなることを特徴とする。
[0011] 本発明による形質転換体において、前記宿主細胞は、大腸菌種、及び GILSP遺 伝子組換え微生物リストに記載されている宿主細胞(平成 18年 3月現在のもの)から なる群力 選択された宿主細胞であることを特徴とする。これらにより、 DOIを工業的 に製造可能な方法を実施することが可能となる。
[0012] 本発明による形質転換体にお!、て、前記宿主細胞は、ホスホダルコースイソメラー ゼをコードする pgi遺伝子、グルコース— 6—リン酸 1—デヒドロゲナーゼをコードす る zwf遺伝子、ホスホダルコムターゼをコードする pgm遺伝子及び定常期におけるタ ンパク質合成の修飾を担うリボソーム修飾因子タンパク質をコードする rmf遺伝子か らなる群力 選択された少なくとも 1つの遺伝子が破壊された宿主細胞であることを特 徴とする。これにより、上述に加え、より効率的に DOIを工業的に製造可能な方法を 実施することが可能となる。
[0013] 一方、本発明による 2—デォキシーシローイノソースの製造方法は、上述の形質転 換体と、炭素源とを接触させる工程を有することを特徴とする。これにより、 DOIを工 業的に製造することが可能となる。
[0014] 本発明による 2—デォキシーシローイノソースの製造方法において、前記炭素源は 、 D—グルコース、オリゴ糖、多糖、でんぷん、セルロース、米ぬか及び廃糖蜜並びに D -ダルコースを得ることが可能なバイオマスカゝらなる群カゝら選択された少なくとも 1 種類の炭素源であることを特徴とする。これにより、上述に加え、 DOIを汎用的に製 造することが可能となる。
[0015] 本発明による 2 デォキシーシローイノソースは、上述の 2 デォキシーシローイノ ソースの製造方法により得たことを特徴とする。これにより、形質転換体を利用した製 造方法の特質を生力した 2 -デォキシ シロ一イノソースを得ることが可能となる。
[0016] さらに、本発明による、 2 デォキシ一シ口一イノソースの精製方法は、上述の形質 転換体と、炭素源とを接触させて 2—デォキシ一シ口一イノソースを有する組成物を 得る工程と、該組成物を、水素イオン型強酸性陽イオン交換樹脂と有機酸イオン型 塩基性陰イオン交換樹脂とを有する混床式又は二床式カラムで処理する工程と、を 有することを特徴とする。これにより、純度の高い DOIを工業的に取得可能となる。
[0017] 本発明による 2 デォキシ一シ口一イノソースの精製方法において、前記有機酸ィ オン型塩基性陰イオン交換榭脂は、酢酸イオン型陰イオン交換榭脂であることを特 徴とする。これにより、酢酸が濃縮操作により除去できるので、実用的に好ましく使用 できる。
[0018] 本発明による 2 デォキシーシローイノソースは、上述の 2 デォキシーシローイノ ソースの精製方法により得たことを特徴とする。これにより、純度が高ぐ形質転換体 を利用した特質を生力した 2—デォキシ シロ一イノソースを得ることが可能となる。
[0019] 本発明による 2 デォキシーシローイノソースの精製方法は、上述の 2 デォキシ —シ口一イノソースを、トリアルコキシメタンと反応させて、 2—デォキシ一シ口一イノソ ースジアルキルケタールを得る工程と、該 2—デォキシーシロ イノソースジアルキル ケタールを、酸の存在下で加水分解する工程と、を有することを特徴とする。これによ り、上述に加え、夾雑物を効率的に分離可能となる。
[0020] 本発明による 2—デォキシ一シ口一イノソースの精製方法において、前記トリアルコ キシメタンは、トリメトキシメタンであることを特徴とする。これにより、後続の加水分解 工程で生成するメタノールを濃縮操作により容易に除去できるので、実用的に好まし く使用できる。
[0021] 本発明による 2 デォキシーシローイノソースは、上述の 2 デォキシーシローイノ ソースの精製方法により得たことを特徴とする。これにより、純度等の点で実用的にも 優れた 2—デォキシ シローイノソースが得られる。
発明の効果
[0022] 医薬品原料やィ匕学工業原料として重要な炭素 6員環化合物は、これまで、石油を 原料とする石油化学によって製造されていた。し力しながら、本発明の技術を用いる ことにより、再生可能な植物資源 (バイオマス)由来の D グルコースを原料として炭 素 6員環化合物である 2 デォキシ シローイノソース (DOI)を細菌により合成する ことが可能となった。また、培養液を処理して、精製された DOIを回収することができ る。
図面の簡単な説明
[0023] [図 1]D—グルコース力も DOIが生成する反応経路及び DOI合成酵素が触媒する反 応を示す図である。
[図 2A]pLEX— btrCの構造を示す図である。
[図 2B]pGAP— btrCの構造を示す図である。
[図 2C]pGAD—btrCの構造を示す図である。
[図 2D]pGAP—btrCZpGAD—btrCの構造を示す図である。
[図 3A]pLEX—btrCを含む大腸菌 GI724 A pgi株を 2 XYT培地、または米ぬか培 地で各時間培養したときの菌体抽出物の SDS— PAGEパターンを示す図である。
[図 3B]pGAP— btrC/pGAD— btrCを含む大腸菌 GI724 Δ pgi Δ zwf Δ pgm株を
2 XYT培地で各時間培養したときの菌体抽出物の SDS— PAGEパターンを示す図 である。
[図 4A]pLEX— btrCを含む大腸菌 GI724 A pgi株の培養(2 XYT 3L、 30°C、 pH 7. 5、 5%D—グルコース、培養 24時間)上清のォキシム化反応物の HPLCチャート である。
[図 4B]pLEX— btrCを含む大腸菌 GYI724 Armf株の培養(2 XYT、 10mL、 30°C 、 pH7, 3%D—グルコース、培養 48時間)上清のォキシム化反応物で HPLCチヤ一 ト(左のチャートは培養 0時間)である。
[図 5]pLEX— btrCを含む大腸菌 GI724Apgi株の培養 (2 XYT+ 2%グルコース( ♦)、または、 2 XYT+ 5%D—グルコース(■)、 3L、 30°C、 pH7. 5)に伴う(A)培 地の濁度、(B) D—グルコース濃度、及び (C) DOI生産量のタイムコース (横軸は、 グルコース添加後の経過時間)を示す図である。
[図 6]pLEX—btrCを含む大腸菌 GI724ApgiAzwf株の培養(2 XYT+ 3%マン- トール + 5%D グルコース、 3L、 30°C、 pH7. 5、)に伴う(A)培地の濁度、(B) D —グルコース濃度、及び (C) DOI生産量のタイムコース (横軸は、グルコース添加後 の経過時間)を示す図である。
[図 7]pLEX— btrCを含む大腸菌 GI724 Δ pgi Δ zwf Δ pgm株の培養 (2 X YT+ 5 %D グルコース + 0. 5%マン-トール、 3L、 25°C、pH7)に伴う(左)菌体濁度、( 中)培地中の D グルコース濃度、(右) DOI生産量のタイムコース(横軸は、 D—グ ルコース添加後の経過時間)を示す図である。
[図 8]pLEX— btrCを含む大腸菌 GI724 Δ pgi Δ zwf Δ pgm株(♦)と pGAP— btrC ZpGAD— btrCを含む大腸菌 GI724 Δ pgi Δ zwf Δ pgm株 (國 )の培養 (2 XYT+ 5%D—グルコース + 0. 5%マン-トール、 3L、 25°C、 pH6— 7)に伴う(左)菌体濁 度、(中)培地中の D グルコース濃度、(右) DOI生産量のタイムコース (横軸は、 D —グルコース添加後の経過時間)を示す図である。
[図 9]pLEX— btrCを含む大腸菌 GI724野生型株(♦)と pLEX— btrCを含む大腸 菌 GI724 Armf株(國)の培養(2 XYT+ 3%D—グルコース、 10mL、 30°C、 pH7) に伴う(左)菌体濁度、(中)培地中の D グルコース濃度、(右) DOI生産量のタイム コース (横軸は、 D—グルコース添加後の経過時間)を示す図である。
[図 10]実施例 8の方法で培養液をイオン交換樹脂に流して得られたフラクションの p H、伝導度、 DOI濃度をプロットした図である。
[図 11]実施例 8の方法で精製して得られた DOIの13 C— NMR ^ベクトルである。
[図 12]実施例 9の方法で培養液をイオン交換樹脂に流して得られたフラクションの p H、伝導度、 DOI濃度をプロットした図である。
[図 13]実施例 9の方法で精製して得られた DOIの13 C— NMR ^ベクトルである。
[図 14]本発明による 2 デォキシ シローイノソースの精製方法の第二の態様の原 理を示す概略図である。
[図 15]実施例 10の方法で精製して得られた DOIの1 H— NMRスペクトルである。 [図 16]実施例 11の方法で精製して得られた DOIの1 H— NMRスペクトルである。
[図 17]実施例 12の方法で精製して得られた DOIの1 H - NMRスペクトルである。 発明を実施するための最良の形態
[0024] DOI合成酵素の特性を考えると、当該酵素を他の微生物に導入することにより、豊 富に存在するノィォマス由来の D ダルコースを原料として、有用資源である DOIを 効率的に、短工程で生産できる可能性がある。
[0025] そこで本発明者らは、 DOIの新規な合成方法として、大腸菌を宿主細胞として DOI を発酵法により簡便安価な方法で生産する方法を開発するために鋭意検討を行い、 本発明をなすに至った。
[0026] また、工業的方法で DOIを精製する系を考えた場合、好ま 、方法として、例えば 培養液をカラムの上部力 流すと、下部力 精製された DOIが流出してくるような原 理に基づく方法、及び DOIまたはその誘導体を結晶化させて分離する方法、並びに これらを組み合わせた方法が例示される。このような観点から、 DOI以外の物質を吸 着し、且つ DOIは吸着されずに最初に流出してくるようなカラム基材を探索すること により、且つ結晶化 ·分離後に効率よく DOIを取得可能な DOI誘導体を探索すること により、本発明をなすに至った。
[0027] 以下、本発明の好適な実施形態につき説明する。
[0028] <本発明による遺伝子発現カセット >
本発明による遺伝子発現カセットは、 2—デォキシ一シ口一イノソースの合成に関与 する遺伝子からなることを特徴とする。つまり、本発明による遺伝子発現カセットは、 2 -デォキシ シロ イノソースの合成に関与する遺伝子と、この遺伝子の発現させ得 る例えばベクター等の遺伝子とからなるものであれば、特に制限されな 、。
[0029] (2 デォキシーシローイノソースの合成に関与する遺伝子)
本発明による遺伝子発現カセットにお ヽて、 2—デォキシ シロ一イノソースの合成 に関与する遺伝子としては、 2 -デォキシ シロ一イノソースを合成し得る公知のタン パク質をコードする遺伝子であればよい。この例としては、 D—グルコースからの DOI を合成する、バチルス'サーキュランス(Bacillus circulans)由来の DOI合成酵素 の 42kDaサブユニットをコードする btrC遺伝子が例示される(特許文献 1、非特許文 献 1及び Genbank AB066276等参照。;)。もちろん、 DOI合成酵素活性を有する 酵素をコードする遺伝子であれば、バチルス ·サーキュランス以外の生物に由来する 遺伝子も利用できる。また、上記遺伝子の塩基配列は、本発明の DOIの合成酵素活 性を有する酵素を合成する遺伝子であれば、その遺伝子の塩基配列に欠失、置換、 挿入等の変異が生じて 、てもよ 、。
[0030] (本発明による遺伝子発現カセットの構築)
本発明による遺伝子発現カセットの構築には、上述の 2—デォキシ一シ口一イノソ ースの合成に関与する遺伝子を、下述する宿主細胞内で発現させ得る遺伝子を用 いればよい。遺伝子発現カセットの遺伝子構成としては、プロモーター、転写活性ィ匕 に関与する配列、 RBS (リボソーム結合部位)、ターミネータ一等が例示される。例え ば、大腸菌を宿主細胞とするタンパク質の大量発現系においては、当該遺伝子の 5' 上流にプロモーター、転写活性ィ匕に関与する配列、 RBS (リボソーム結合部位)等の DNA配列の連結、当該遺伝子の 3'下流にターミネータ一等の DNA配列を連結す ればよ 、。これらの DNA配列は大腸菌内で機能する配列であればどのような配列で もよい。プロモーターには構成的に発現を行うものや誘導的に発現を行うものがある 力 いずれのプロモーターを用いてもよぐ好ましくは発現の制御が可能なものである 。また、大腸菌を宿主とする遺伝子発現においては、通常、 IPTG (イソプロピルーチ ォ―ガラクトピラノシド; isopropyl— thio― galactopyranoside)をはじめとする比較 的コストの高 、誘導物質が一般的に用いられる。
[0031] 本発明では、 IPTGのような高価な誘導物質を用いずに目的遺伝子の高発現をも たらす発現系を用いることが望ましい。そのための宿主'ベクター系としては、例えば 、 P Expression System (Invitogen)、 GAPプロモーターや GADプロモーター
L
を用いた発現システムなどを利用することができる。
[0032] P Expression System系において、ベクター(pLEX、アンピシリン而性マーカ
L
一)上に組込んだ遺伝子の発現は、 λファージ由来の、構成的に強力な発現をもた らすプロモーターである ρプロモーターによる制御を受ける。また、 P Expression
L L
Systemは、培地中のトリブトファン濃度によって発現制御を受け、トリブトファン濃 度の高 、培地で発現が誘導される仕組みになって 、る。 [0033] 一方、 gapA (グリセルアルデヒド 3 リン酸デヒドロゲナーゼ Aをコードする遺伝 子)プロモーターや gadA (グルタメートデカルボキシラーゼ Aをコードする遺伝子)プ 口モーターを単独または両方を用いた発現系において、ベクター(pUC由来、アンピ シリン耐性マーカー)上に組込んだ遺伝子の発現は、栄養増殖期または定常期に構 成的に強力な発現をもたらす。このような gapAプロモーターや gadAプロモーター等 を用いた発現系では、特殊な試薬や操作を必要とせず、通常培養時おいて発現が 誘導される仕組みになっている。
[0034] 一方、 P Expression System系では、大腸菌の培養に通常用いる完全培地に
はプロモーター活性を誘導するのに十分な量のトリブトファンがあり、誘導発現のため にトリプトファンを別途カ卩える必要はない。また、 gapAプロモーターや gadAプロモー ターを用いた発現系も同様に誘導発現のために誘導物質を加える必要はな!、。すな わち、高価な誘導物質を用いずに、目的遺伝子の高発現が可能である。
[0035] <本発明による形質転換体 >
本発明による形質転換体は、宿主細胞に、上述の遺伝子発現カセットを導入してな ることを特徴とする。以下、本発明における宿主細胞について、説明する。
[0036] (宿主細胞)
本発明による形質転換体に使用し得る宿主細胞としては、特に制限はなぐ菌株の 寄託機関(例えば IFO、 ATCC等)に寄託されている菌を使用することができる。この ような例としては、例えば、大腸菌が挙げられる。また、大腸菌以外の宿主細胞として 、 GILSP (Good Industrial Large Scale Practice (優良工業規範) )遺伝子 組換え微生物リストに記載されている宿主細胞(平成 18年 3月現在のもの、バシラス' アミロリケファシエンス、バシラス.ブレビス HPD31、バシラス'ブレビス HPD31— M3、バシラス'リシェ-フオルミス DN2461、バシラス'リシェ-フオルミス DN271 7、バシラス'サチリス K2A1、バシラス'サチリス M168由来株、コリネバタテリゥム 'ダルタミカム、ェシエリキア'コリ K12由来株、ゲォバシラス'ステアロサーモフィラス )を用いてもよい。
[0037] (本発明における遺伝子破壊株)
本発明による形質転換体において、上述の宿主細胞は、 2—デォキシーシローイノ ソースの合成を考慮して、種々の染色体 zプラスミド遺伝子を破壊した株を用いても よい。本発明の好ましい態様では、宿主細胞が保有する、グルコース 6—リン酸の 代謝に関わる酵素である、ホスホダルコースイソメラーゼ、グルコース— 6 リン酸 1 ーデヒドロゲナーゼおよびホスホダルコムターゼをコードする遺伝子(それぞれ、 pgi 遺伝子、 zwf遺伝子および pgm遺伝子)がそれぞれ単独で遺伝子破壊されているか 、または 2つが同時に遺伝子破壊されている(pgi遺伝子と zwf遺伝子および pgi遺伝 子と pgm遺伝子)、もしくは 3つが同時に遺伝子破壊されている。さらに、定常期にお けるタンパク合成の制御に関わる RMFタンパク質をコードする遺伝子 (rmf遺伝子) が単独で遺伝子破壊されて 、る力 または上記のグルコース一 6—リン酸の代謝に 関わる酵素をコードする遺伝子が破壊されている各種遺伝子破壊株に対して rmf遺 伝子破壊されている。上記のこれによつて、 DOI生産のための直接の基質となるダル コース 6—リン酸の菌による分解代謝が抑制され、また定常期におけるタンパク質 合成により DOI生産能が飛躍的に高まった。
[0038] [グルコース 6 リン酸の分解に関与する遺伝子の破壊株]
DOIを可能な限り高収率で合成するためには、菌体による D グルコースの異化 代謝をできる限り抑制する必要があると考えられる。大腸菌において、 D ダルコ一 スの異化代謝に関わる酵素をコードする遺伝子としては、解糖系においてグルコース - 6—リン酸からフルクトース 6—リン酸への変換に関わるホスホグルコース 'イソメ フーセ (phosphoglucose isomerase) コードする (pgi)遺 1zS子と、ペントースリン 酸経路にぉ 、て、グルコース 6—リン酸からホスホダルコノラタトンへの変換に関与 する酵素であるグルコース 6—リン酸デヒドロゲナーゼ(Gluxose - 6 -phosphate dehydrogenase)をコードする zwf遺伝子ゃグノレコース一 6—リン酸力らグノレコース 1 リン酸への変換に関わる酵素ホスホダルコムターゼ(phosphoglucomutase) をコードする pgm遺伝子の 3種が存在する。これらの遺伝子を破壊することによって、 DOI合成酵素の基質となるグルコース 6—リン酸の、菌体の増殖に伴う異化分解を 抑制することが可能であると考えられる。
[0039] [定常期におけるタンパク質合成に関与する遺伝子の破壊株]
定常期における BtrCタンパク質合成の抑制を解除するためには、これに関与する RMFタンパク質の産生を抑制する必要があると考えられる。そこで、 RMFタンパク質 をコードする rmf遺伝子を破壊することによって、定常期以降も BtrCタンパク質の合 成が継続し、さらに DOI合成が続くものと思われる。
[0040] (本発明における遺伝子破壊株の作製)
本発明にお ヽて、宿主細胞の特定の遺伝子を破壊した遺伝子破壊株を作製する 方法としては、本技術分野公知の方法を用いればよい。例えば、突然変異を誘発さ せる方法(自然育種による方法、変異剤添加、紫外線照射、放射線照射等)、ランダ ムな突然変異による方法 (Insertion Sequence (IS)、トランスポゾン (Tn)等による 方法)、部位特異的な遺伝子破壊法 (シングル及びダブルクロスオーバー法によるも の)等が例示される。なかでも、破壊対象の遺伝子に、薬剤耐性を示す遺伝子を含 む断片を挿入し得る部位特異的な遺伝子破壊法は、所望する遺伝子破壊株のスクリ 一ユングの点で、好ましい。なお、下述するように、本発明による形質転換体に用い る遺伝子破壊を行った宿主細胞は、 Gene Bridges社の Quick and Easy BAC Modification Kitを用いて作製した力 これに限定されるものではない。
[0041] (本発明における形質転換体の作製方法)
本発明による形質転換体は、上述の遺伝子発現カセットを、上述の宿主細胞に導 入して作製すればよい。この導入方法としては、コンビテンス法や受容体を介したェ ンドサイト一シスを用いた方法などを挙げられる。
[0042] <本発明による 2 -デォキシ シロ一イノソースの製造方法 >
本発明による 2 -デォキシ シロ—イノソースの製造方法は、上述の形質転換体と 、炭素源とを、形質転換体の成長等に適当な媒体中で接触させることを特徴とする。
[0043] 炭素源としては、 D—グルコースや D ダルコサミン、 D—ガラクトサミンなどの含窒 素単糖類、これらの単糖類カゝらなる二糖以上の糖類又はオリゴ糖類または炭水化物 (でんぷん、米ぬか、廃糖蜜など)の多糖類に由来する単糖類を用いることができる。
[0044] 本発明による 2 デォキシーシローイノソースの製造方法を行う媒体としては、宿主 細胞を増殖 Z成長等させ得る公知の培地であれば、固形、液体等、媒体の形態は 限定されない。このような例としては、寒天培地、 RMG培地、 2 XYT培地、 LB培地 、 M9最少培地や SOB培地などが例示される。これらの媒体は、炭素源、窒素源、無 機塩類、その他有機栄養源を有してもよい。この炭素源は、上述の他、マン-トール などの表 1に示すものなどであってもよい。この窒素源として、例えば、塩ィ匕アンモ- ゥム、カザミノ酸、ペプトン、酵母エキスが挙げられる。この無機塩類としては、例えば 、リン酸水素ナトリウム、リン酸二水素カリウム、塩化マグネシウム、塩ィ匕ナトリウムなど が挙げられる。前述のように、宿主 'ベクター系として GAP— GAD発現システムや P
L
Expression System (Invitrogen)を用いると、高価な誘導物質を用いなくてもよ い。
[0045] 一方、媒体は、宿主の成長等に応じて、適当な添加剤をさらに有してもよい。媒体 は、上述の遺伝子発現カセットに導入した 2—デォキシ一シ口一イノソースの合成に 関与する遺伝子を発現させるため、例えば、 IPTGやトリブトファン等の、プロモータ 一活性を上昇させる化合物を有してもよい。特に、プロモーターによる遺伝子の発現 が誘導型である場合には、適時誘導物質を添加すればょ ヽ。
[0046] 本発明による 2—デォキシーシローイノソースの製造方法において、上述の形質転 換体と炭素源とを接触させる温度、時間、雰囲気等は、形質転換体の成長等に適し た環境であれば、特に限定されない。例えば、この温度としては、 20°C乃至 37°Cが より好ましい。また、この時間としては、特に制限はないが、 1日乃至 7日程度であって ちょい。
[0047] 例えば、本発明による 2—デォキシーシローイノソースの製造方法は、まず、上述の 形質転換体に、炭素源として、大腸菌が資化し得るもの (例えば、 D—グルコース等) とを培地中で接触させる。その後、得られた培養上清液カゝら DOIを回収する。このよ うにして、形質転換体を用いた、本発明による 2—デォキシ一シ口一イノソースの製造 方法により、工業的に DOIを得ることが可能となる。
[0048] 本発明による 2—デォキシーシローイノソースの製造方法は、上述のような構成から なるので、 D—グルコースからへキソキナーゼ(hexokinase)と DOI合成酵素を介す ことで DOIを高収率で合成できる。また、上述したプラスミド pGAP—btrC、 pGAD — btrC、 pGAP— btrCZpGAD— btrCや pLEX— btrCを有する GI724 Δ 形 質転^ tt、 GI724 A pgi ArnJ形質転^ ¾、 GI724 A pgi形質転^ ¾、 GI724 A pg i Δ zw;f形質転赚や GI724 Δ pgi Δ zwf Δ pgm形質転赚などを作製し、培養する 方法により、図 1に示すように、 D—グルコースからグルコースー6 リン酸を経て、さ らに DOI合成酵素が触媒する 5段階の反応を経て、 DOIが生産される。
[0049] 本発明による 2 デォキシーシローイノソースの製造方法において、上述の通り、形 質転換体と炭素源とを接触させると、 2—デォキシーシローイノソースを有する組成物
(例えば、 2—デォキシーシローイノソースを含む培地、宿主細胞等)が得られる。例 えば、 2—デォキシ シロ イノソースを含む培地を 2—デォキシ シロ イノソース の原料とする場合、培養上清から、 DOIを採取すればよい。本発明において、 DOI の培養液からの回収法としては、 2—デォキシ シロ イノソースの物理的 Z化学的 性質や、培地の組成等を考慮して、公知の抽出法により、 2—デォキシーシローイノ ソースを回収すればよい。例えば、次のような方法が使用できる。つまり、まず、培養 終了後、培養液を遠心分離器や濾過装置などで菌体を除き、培養上清液を得る。そ の後、この培養上清液をさらに濾過処理し、菌体等の固形物を除き、その濾液をィォ ン交換樹脂に添加し、蒸留水で溶出を行う。屈折率、 pH、伝導率を測定しながら不 純物を含まないフラクションを分取して、その水溶液の溶媒を取り除いて DOIを回収 することができる。得られた DOIの分析は、例えば、高速液体クロマトグラフィーや核 磁気共鳴法などにより行う。
[0050] <本発明による 2 -デォキシ シロ一イノソースの精製方法の第一の態様 >
本発明による 2 -デォキシ シロ一イノソースの精製方法は、上述の形質転換体と 、炭素源とを接触させて 2—デォキシ一シ口一イノソースを有する組成物を得る工程と 、該組成物を、水素イオン型強酸性陽イオン交換樹脂と有機酸イオン型塩基性陰ィ オン交換樹脂とを有する混床式又は二床式カラムで処理する工程と、を有することを 特徴とする。本発明による 2—デォキシーシローイノソースの精製方法において、形 質転換体と炭素源とを接触させるステップは、上述の本発明による 2—デォキシ一シ ローイノソースの製造方法に準じて行う。このステップにより、 2—デォキシーシローイ ノソースを含む組成物が得られる。この組成物は、上述の媒体力 なるものであるが、 以下、媒体として培地を用いた場合について、述べる。
[0051] 炭素源を有する培地中での形質転換体の培養が終了した培養液中には、残存し ている炭素源としてのグルコースの他、培地の各種成分が含まれる。これらの各種成 分としては、各種アミノ酸あるいはペプチド類、および各種の金属イオン類などが挙 げられる。 DOIを得るには、これら各種成分を除去することが必要で、本発明による 2 —デォキシ—シロ—イノソースの精製方法では、これを解決する方法を提供する。
[0052] 培地に含まれる除去すべき不純物としては、上述の通り、残存している炭素源とし ての D—グルコース、各種アミノ酸あるいはペプチド類、および各種の金属イオン類 がある。このうち培養条件の検討により、 D—グルコースが完全に消費されるまで培 養を続けることが可能であることが分力つた。このようにして得た培地には、残存する 不純物として、各種アミノ酸あるいはペプチド類、および各種の金属イオン類となった 。アミノ酸類の中には、リジンやヒスチジン、トリプトファンのようにァミノ基が複数個ある 塩基性アミノ酸もあれば、グルタミン酸ゃァスパラギン酸のようにカルボキシル基を複 数個持っている酸性アミノ酸も存在する。また、金属イオンは当然カチオンであるが、 同時にそのカウンターイオンとしての塩素イオンや硫酸イオンなども培地中には存在 している。したがって、そのような不純物をすベて吸着させて、かつ、 DOIを吸着させ な 、基材を探索すればょ 、ことになる。
[0053] 本発明者らは、そのような考えに基づいて基材の探索と溶出条件を検討した結果、 汎用されるイオン交換榭脂、例えば、ナトリウムイオン型または水素イオン型強酸性 陽イオン交換榭脂および塩素イオン型または水酸イオン型塩基性陰イオン交換榭脂 を用いる方法では DOIを収率よく精製することはできな力つた。すなわち、それぞれ を連結した二床式カラム、または両者を混合した混床式カラムを用いても、その目的 を達成することはできない結果となった。アミノ酸は、 2種類のイオン交換榭脂のどち らかに結合する。また金属イオンは陽イオン交換樹脂に結合するのに対し、 DOIはィ オン性の官能基を持たな 、ために、 V、ずれのイオン交換榭脂にも結合しな!、特性を 持っている。従って、アミノ酸類および金属塩類は、イオン交換樹脂に結合し、 DOI のみが吸着せずに溶離してくると推察される力 結果は異なっていた。 DOIの回収率 は 50%以下となり、かつイオン交換樹脂の使用条件により大きく変動した。大量処理 する工業的方法に適合するためには、回収率がより高く加えて安定した成績が必要 とされる。
[0054] 本発明者らは、基材と精製条件を更に拡大して鋭意検討した結果、陰イオン交換 榭脂のカウンターイオンとして有機酸イオンを用いる方法、すなわち有機酸イオン型 陰イオン交換樹脂と水素イオン型陽イオン交換樹脂とを用いた混床式または二床式 カラムをを用いることにより、 DOIを効率よく精製できることを見いだした。有機酸とし ては、酢酸、プロピオン酸、シユウ酸などが挙げられる力 なかでも、酢酸が好ましく 使用できる。有機酸として酢酸を用いると、 DOIが pH8以上のアルカリ性領域で極め て分解し易ぐ pH3〜5の弱酸性条件下でのみ安定である点で好ましい。すなわち、 DOIが酸性とアルカリ性の両領域で完全に安定であれば、汎用されて!ヽる陰イオン 交換樹脂と陽イオン交換樹脂とを別々のカラムに充填した二床式カラムに培養液を 流すという方法でも上記の不純物を除くことができる。また、両領域でフルクトースと 同等の安定性を有していれば、混合ベッド型カラムで精製が可能である。 DOIが二 床式カラムはもちろん、混合式カラムを使用しても分解が起こるほどアルカリ領域で 不安定であることを見いだしたのは本発明者らが初めてである。
[0055] この問題を解決するために、用いるイオン交換樹脂に結合するカウンターイオンの 選択を検討した結果、本発明者らは、陰イオン交換樹脂のカウンターイオンとして有 機酸イオンを用いる方法を見いだした。これにより、溶離液中には有機酸が残り、 DO Iの溶離画分にも混入するが、これは溶離液を PH4前後に保つのに有効である。有 機酸のなかでも、酢酸は濃縮により除去できる長所を有している。
[0056] これにより、水素イオン型の陽イオン交換樹脂と有機酸イオン型の陰イオン交換榭 脂とを混合して作成したイオン交換カラムに、培養液を通過させることにより、 DOIを 精製できることが明らかになり、本発明が完成された。これは工業的大量生産にも十 分叶う方法である。
[0057] 混床式または二床式イオン交換榭脂カラムを用いる精製方法にぉ 、ては、ダルコ ースが完全に消費させた培養液中に残される原料由来の荷電性不純物、各種アミノ 酸あるいはペプチド類、および各種の金属イオン類を吸着除去できる。従って、吸着 しない中性物質の DOIを溶出することにより精製できた。但し、培養の条件によって は、この DOIに微量の中性物質が混入する可能性があり、イオン交換榭脂カラムから 溶出した DOIを更に高度に精製する方法についても更に検討した。 NMRなどの測 定から、 DOIはケトン型とハイドレート型とが混在した構造で存在すると推定でき、 D OIの結晶化は困難に考えられた。現在までに、 DOIは勿論その誘導体の結晶ィ匕も 未だ報告されていないのが実情である。以下、 DOIを更に高度に精製する方法につ いて、説明する。
[0058] <本発明による 2 -デォキシ シロ一イノソースの精製方法の第二の態様 >
本発明による 2—デォキシ シローイノソースの精製方法は、上述の 2—デォキシ —シ口一イノソースを、トリアルコキシメタンと反応させて、 2—デォキシ一シ口一イノソ ースジアルキルケタールを得る工程と、該 2—デォキシーシロ イノソースジアルキル ケタールを、酸の存在下で加水分解する工程と、を有することを特徴とする。この態 様にぉ 、て用 、得る 2 -デォキシ シロ一イノソースとしては、 2—デォキシ シロ イノソースを含む上述の組成物の他、第一の態様で得た 2—デォキシ―シ口—イノソ ースなどが挙げられる。以下、この第二の態様について説明する。
[0059] 本発明者らは、溶出した DOIを結晶性の物質に誘導変換して結晶化し、分離,精 製した後、効率よく DOIに復元する原理に基づき、この原理に叶う物質の探索と精製 方法の検討を行った。この原理の概略を示したの力 図 14である。図 14は、本発明 による 2—デォキシ シローイノソースの精製方法の第二の態様の原理を示す概略 図である。
[0060] この要件を満たすためには、 DOIを変換する反応条件及び復元する反応条件が、 DOIが分解しない酸性条件下で実施できること、および、誘導変換された物質が容 易に結晶化しかつ DOIに復元すること、更にこれらの実施が工業的規模で実施でき ることが必要要件となる。これらの要件に合致する方法を種々検討した。その結果、 DOIを安定な酸性条件化で、トリアルコキシメタンと反応させて、 2—デォキシ―シ口 —イノソース ジアルキルケタール (DOI— dak)に変換して結晶ィ匕 '精製する方法を 見出した。
[0061] このトリアルコキシメタン((RO) CH)において、 Rとしては、炭素数が 1〜4のアル
3
カン類であれば、特に制約がなぐ例えば、メタン、ェタン、プロパン、ブタン等が挙げ られる。本発明において、このアルコキシメタンとしては、後続の加水分解工程で生 成するアルコールが容易に除去され得る点で、トリメチルメタンが最も好ましい。なお 、トリメチルメタンを用いて行った場合、デォキシ一シ口一イノソース ジメチルケター ル(DOI - dmk)力得られることとなる。
[0062] 2 デォキシーシローイノソース アルキルケタールの結晶化は、 2 デォキシーシ ローイノソース アルキルケタールを、適当な溶媒(例えば、メタノール、エタノール、 水等)に溶解した後、液相の親水性を低下させる媒体 (例えば、クロ口ホルム、へキサ ン、エーテル類等)を用いて行えばよい。このようにして、 2—デォキシ一シ口一イノソ ース アルキルケタールの結晶が得られる。
[0063] このようにして得た 2 デォキシーシローイノソース アルキルケタールは、酸の存 在下で、加水分解して、 2—デォキシ―シ口—イノソースとなる。この加水分解反応に は、トシル酸、塩酸、硫酸など、適当な触媒の存在下で行ってもよい。加水分解後、 2 デォキシ シローイノソースが得られる。
[0064] このことから、本発明による 2 デォキシ一シ口一イノソースの精製方法は、工業的 大量生産にも十分叶う方法である。
実施例
[0065] 以下、実施例により本発明を具体的に説明する。ただし、本発明は、これら実施例 にその技術範囲が限定されるものではない。
[0066] (実施例 1)
< < DOI合成酵素遺伝子 > >
糖質環化酵素遺伝子としては、バチルス ·サーキュランス (Bacillus circulans)由 来の、 2 デォキシ シローイノソース(DOI)合成酵素の 42kDaサブユニットをコー ドする btrC遺伝子 (特許文献 1、 Genbank AB066276,非特許文献 2等参照)を 利用した。
[0067] (実施例 2)
< <組換えプラスミド及び組換え株の構築 > >
< btrC遺伝子及び pLEX—btrC >
btrC遺伝子全長を含むプラスミド pDS4 (非特許文献 3)を铸型として配列番号 1に 示すプライマー 1と配列番号 2に示すプライマー 2とを用い、 btrC遺伝子の PCR増幅 には、 KODポリメラーゼ (TOYOBO)を用い、 PCRの反応条件は、 94°C X 30秒、 5 2°C X 30秒、 68°C X 1分を 1サイクルとして、 30サイクル行った。このように PCR増幅 した DNA断片を、 Ndelと Xbalとで消化し、これをベクター pLEX(Invitrogen)のマ ルチクロ一-ングサイトの Ndel— Xbal部位に挿入することによって、 pLEX— btrC を構築した (図 2A)。
[0068] < pGAP - btrC/p - GAD - btrC >
gapAプロモーター遺伝子は、大腸菌の染色体 DNAを铸型として配列番号 17〖こ 示すプライマーと配列番号 18に示すプライマーとを用い、 PCR増幅により、合成した 。この gapAプロモーター遺伝子の PCR増幅には、 KODポリメラーゼを用い、以下の 反応条件で、行い、 gapAプロモーター断片を得た。
[0069] 94°C X 30秒
50°C X 30秒
68°C X 1分を 1サイクルとして、 30サイクル
[0070] gadAプロモーター遺伝子は、大腸菌の染色体 DNAを铸型として配列番号 19に 示すプライマーと配列番号 20に示すプライマーとを用い、 PCR増幅により、合成した 。この gadAプロモーター遺伝子の PCR増幅は、 KODポリメラーゼを用い、以下の反 応条件で、行い、 gadAプロモーター断片を得た。
[0071] 94°C X 30秒
52。C X 30秒
68°C X 1分を 1サイクルとして、 30サイクル
[0072] aspAターミネータ一遺伝子は、 aspAターミネータ一遺伝子を含むプラスミド pLEX
(Invitrogen)を铸型として配列番号 21に示すプライマーと配列番号 22に示すブラ イマ一とを用い、 PCR増幅により、合成した。この aspAターミネータ一遺伝子の PCR 増幅は、 KODポリメラーゼ(TOYOBO)を用い、以下の反応条件で、行い、 aspAタ ーミネーター断片を得た。
[0073] 94°C X 30秒
55。C X 30秒
68°C X 1分を 1サイクルとして、 30サイクル
[0074] PCR増幅した gadAプロモーター断片と、上述の btrC断片とを、 2 X Ligation mi x (TAKARA)を用い、 16°C、 30分で反応させた。このようにして得た Ligation産物 を铸型として、配列番号 2に示すプライマーと配列番号 5に示すプライマーとを用い、 KODポリメラーゼを用いた、以下の条件の PCR増幅を行い、 2つの断片を 1つにした 断片 gadA— btrC断片を得た。
[0075] 94°C X 30秒
52。C X 30秒
68°C X 1分を 1サイクルとして、 30サイクル
[0076] この断片を Xbalで消化したものを、ベクター pLEX(Invitrogen)のマルチクロー- ングサイトの Xbal部位に挿入した。
[0077] 次に、上記で増幅させた gapAプロモーター断片と、 btrC断片と、 aspAターミネ一 ター断片とを、 2 X Ligation mixを用い、 16°C、 30分で反応させた。このようにして 得た Ligation産物を铸型として、配列番号 3に示すプライマーと配列番号 8に示す プライマーとを用い、 KODポリメラーゼを用いた、以下の条件の PCR増幅を行い、 3 つの断片を 1つにした断片 gapAプロモータ一一 btrC— aspAターミネータ一断片を 得た。
[0078] 94°C X 30秒
50°C X 30秒
68°C X 1分を 1サイクルとして、 30サイクル
[0079] この断片を BamHIで消化したものを、 gadA— btrCを挿入したベクター pLEX(Inv itrogen)のマルチクロー-ングサイトの BamHI部位に挿入することによって、 pGAP btrC/pGAD btrCを構築した(図 5)。
[0080] (実施例 3)
< <宿主細胞の調製 > >
遺伝子破壊は、 Gene Bridges社の Quick and Easy BAC Modification Kitを用い、その添付説明書の方法に基づいて行った。 pgi遺伝子の単独破壊に用 いるカセットの作製のために使用した PCRプライマーセットの配列を配列番号 3と配 列番号 4とに示す。 zwf遺伝子の単独破壊に用いるカセットの増幅に用いた PCRプ ライマーセットの配列を配列番号 5と配列番号 6とに示す。 pgm遺伝子の単独破壊に 用いるカセットの作製のための PCRプライマーセットの配列を配列番号 7、配列番号 8、配列番号 9及び配列番号 10に示す。 pgi遺伝子と zwf遺伝子の二重破壊株を得 るために、 zwf遺伝子の単独破壊株に対して、 pgi遺伝子を破壊するためのカセット を増幅するために用いた PCRプライマーセットの配列を配列番号 11と配列番号 12と に示す。 pgi遺伝子と pgm遺伝子の二重破壊株を得るために、 pgi遺伝子の単独破 壊株に対して、 pgm遺伝子を破壊するためのカセットを増幅するために用いた PCR プライマーセットの配列を配列番号 7、配列番号 8、配列番号 9及び配列番号 10に示 す。さらに、 pgi遺伝子と zwf遺伝子と pgm遺伝子の三重破壊株を得るために、 pgi遺 伝子と pgm遺伝子の二重破壊株に対して、 zwf遺伝子を破壊するためのカセットを 増幅するために用いた PCRプライマーセットの配列を配列番号 5と配列番号 6とに示 す。また、 rmf遺伝子の破壊力セットに用いたプライマーは、配列番号 13、配列番号 14、配列番号 15及び配列番号 16に示す。
[0081] Kitに添付されている、大腸菌内での相同組換えを促進する酵素群をコードするべ クタ一、 pSClOl— BAD— gbaA— tetraを宿主細胞である大腸菌株(GI724)に導 入した。その株を 3 gZmLのテトラサイクリンを添加した LB培地で一夜前培養を行 つた。前培養菌体を、 3 gZmLを添加した LB培地に 1%濃度植菌し、 30°Cで O. D. =0. 2まで培養した。その時点で、ァラビノースを終濃度 0. 2%添加し、さらに 37 °C 1時間培養することにより、相同組換えの促進に関与する酵素群を誘導発現した。 さらに遺伝子破壊用カセットをそれぞれ形質転換し、ターゲット遺伝子の遺伝子破壊 を誘導した。形質転換体を、クロラムフエ-コール、ネオマイシン (カナマイシン)若しく はストレプトマイシン若しくはその 2つ又は 3つを含有する、 37°Cの LB培地で選択す ることにより、目的の遺伝子破壊株 (pgi遺伝子破壊株 ( Δ pgi株)、 zwf遺伝子破壊株 ( Δ zwf株)、 pgm遺伝子破壊株 ( Δ pgm株)、 pgiZzwf二重遺伝子破壊株 ( Δ pgi Δ zwf株)、 pgiZpgm二重遺伝子破壊株( Δ pgi Δ pgm株)及び pgiZzwfZpgm三 重遺伝子破壊株( Δ pgi Δ zwf Δ pgm株) )を得た。 rmf遺伝子破壊株 ( Δ rmf株)に ついては、上記の各種破壊株に対しての rmf破壊株を上記と同様の手法を用 ヽて得 た。このようにして得た野生型株および各遺伝子破壊株の各種単一炭素源での生育 レべノレを表 1に示す。
[0082] Δ pgi株、 Δ zwf株および Δ pgm株は、 D—グルコースを炭素源として利用できるが 、 D グルコースによる生育速度は野生型株よりも顕著に遅くなつており、菌体による D—グルコースの消費を抑えられていると考えられた。また、 A pgi A zwf株、 A pgi A pgm株および Δ pgi Δ zwf Δ pgm株は、 D—グルコースを単一炭素源として生育して いくことが非常に困難なことから、グルコース一 6—リン酸の分解はほぼ完全に抑制さ れていることが考えられた。このことから、これらの破壊株を用いることで、野生型株よ りも DOI生産量、および DOI変換効率が高まることが期待できる。また、各二重遺伝 子破壊株および三重遺伝子破壊株は、マン-トールやダルコネートなどの非発酵性 炭素源を補助的に加えることで、生育を改善させることが可能である(表 1)。また、 rm f遺伝子破壊株での炭素源にっ 、ては、グルコース 6—リン酸代謝酵素遺伝子を 破壊させた各種破壊株と同様の生育レベルを示した。
[表 1]
Figure imgf000024_0001
(実施例 4)
< <形質転換体 > >
Gene Bridges社の Kitの添付説明書に記載されているプロトコールに従って、上 述の通り得た pLEX—btrCにより宿主大腸菌株 (GI724)を形質転換し、アンピシリ ンを含む培地で選択することにより、 GI724ZPLEX— btrC株を得た。また、同様に 、 pGAP—btrCZpGAD—btrCを宿主大腸菌株(GI724)に形質転換し、アンピシ リンを含む培地で選択することにより、 GI724ZPGAP - btrC/pGAD - btrC株を 得た。さらに、 GI724Armfゝ GI724Apgiゝ GI724Azwf、 GI724Apgm、 GI724 Δ pgi Δ rmf、 GI724 Δ pgi Δ zwf、 GI724 Δ pgi Δ pgm及び GI724 Δ pgi Δ zwf Δ ρ gmの各遺伝子破壊株に対しても同様に pGAP— btrC/pGAD btrCを形質転換 し、 GI724Armf/pGAP— btrC/pGAD— btrC株、 GI724 Apgi/pGAP— btr CZpGAD— btrC株、 GI724AzwfZpGAP— btrCZpGAD— btrC株、 GI724 Δ pgm/pGAP— btrC/pGAD— btrC株、 GI724 Δ pgi Δ rmf /pGAP - btrC /pGAD— btrC株、 GI724ApgiAzwf/pGAP— btrC/pGAD— btrC株、 GI7 24 Δ pgi Δ pgm/pGAP— btrC/pGAD— btrC株や GI724 Δ pgi Δ zwf Δ pgm ZpGAP - btrC/pGAD - btrC株をそれぞれ得た。
[0085] (実施例 5)
< <DOI合成酵素の発現の確認 > >
く GI724 Δ pgi/pLEX— btrC株 >
GI724ApgiZpLEX— btrC株を誘導培地(6%リン酸水素ナトリウム、 3%リン酸 二水素カリウム、 0.5%塩ィ匕ナトリウム、 1%塩ィ匕アンモ-ゥム、 0.2%カザミノ酸、 0. 5%D グルコース、 ImM塩化マグネシウム)にて、 30°Cで O. D600nm=0.7まで 培養した後、 2XYT培地 (大腸菌用完全培地、 1.6%トリブトファン、 1%酵母エキス 、 0.5%塩ィ匕ナトリウム)に移し、 37°Cでさらに 6時間培養した後、菌体を回収し、 Btr Cタンパク質の発現を 12%SDSポリアクリルアミドゲル電気泳動により確認した。その 結果を図 3Aに示す。 2 XYT培地で 6時間培養することにより、 BtrCが大量発現する ことが確認された。なお、図 3Aの各レーンは、以下の通りである。
[0086] レーン M:
分子量マーカー(商品名:プレジシヨン Plusプロテインスタンダード(BIO— RAD 社製、カタログ番号: 161— 0374)、以下同様)
レーン 1:
pLEX— btrCを含む GI724株を最少栄養培地(M9最少培地: 0.6%リン酸水素 ナトリウム、 0.3%リン酸二水素カリウム、 0.05%塩ィ匕ナトリウム、 0.1%塩ィ匕アンモ 二ゥム)で 6時間培養して得た菌体の抽出物(IX SDS Loding Buffer :50mM Tris— HCl(pH6.8) ;2%SDS;0. l%Bromophenolblue; 10%Glvcerol; 100 mMDithioyhreitol溶液で抽出、以下同様)
レーン 2 :
pLEX—btrCを含む GI724株を、トリプトファンを添カ卩した誘導培地で、 6時間培 養した菌体の抽出物
レーン 3 :
pLEX—btrCを含む GI724株を、トリプトファンを添カ卩しない誘導培地で、 6時間 培養した菌体の抽出物
レーン 4 :
米ぬか培地 (組成: 20%米ぬか酵素処理液)で 2時間培養した菌体の抽出物 レーン 5 :
トリプトファンを添カ卩した 2 X YT培地で米ぬか培地 (組成: 20%米ぬか酵素処理 液)で 6時間培養した菌体の抽出物
[0087] 2 XYT培地を用いた場合、トリブトファンを添加しなくても BtrCが高発現した。また 、米ぬ力培地を用いて培養した菌体においても、 BtrCが高発現した。これらのことか ら、これらの発現系を用いることで、高価な誘導物質を使わずに DOI合成酵素遺伝 子の高発現が可能であることが示された。
[0088] く GI724 Δ pgi Δ zwf Δ pgm/pGAP— btrC/pGAD— btrC株〉
GI724 Δ pgi Δ zwf Δ pgmZpGAP— btrCZpGAD— btrC株を前培養培地(0. 6%リン酸水素ニナトリウム、 0. 3%リン酸二水素カリウム、 0. 05%塩ィ匕ナトリウム、 0 . 1%塩化アンモ-ゥム、 2%カザミノ酸、 1%グリセリン、 ImM塩化マグネシウム)に て、 30°Cで一晩培養した。この前培養液を本培養培地として 2 XYT培地(大腸菌用 完全培地; 1. 6%トリプトン、 1%酵母エキス、 0. 5%塩ィ匕ナトリウム)に 1%植菌し、さ らに 30°Cで O. D. 600nm=0. 7まで培養した後、菌体を回収し、 BtrCタンパク質 の発現を 12%SDSポリアクリルアミドゲル電気泳動で確認した。その結果を図 3Bに 示す。なお、図 3Bの各レーンは、以下の通りある。
[0089] レーン 1 :分子量マーカー
レーン 2:本培養 0時間後に採取した菌体抽出物
レーン 3:本培養 12時間後に採取した菌体抽出物 レーン 4:本培養 36時間後に採取した菌体抽出物
レーン 5:本培養 72時間後に採取した菌体抽出物
[0090] 図 3Bより、 2 XYT培地で 6時間培養することにより、 BtrCが大量発現することが確 認された。この結果から、この発現系を用いることで、高価な誘導物質を添加せずに DOI合成酵素遺伝子の高発現が可能であることが示された。
[0091] (実施例 6)
< < 001の合成> >
く pLEX— btrCを含む GI724 A pgi株を用いた DOIの合成〉
GI724 A pgiZpLEX— btrC株を 300mL三角フラスコに入れた 35mLの前培養 液 (RMG培地、 0. 6%リン酸水素ナトリウム、 0. 3%リン酸二水素カリウム、 0. 05% 塩ィ匕ナトリウム、 0. 1%塩ィ匕アンモ-ゥム、 2%カザミノ酸、 1%グリセリン、 ImM塩ィ匕 マグネシウム)に接種し、 15時間培養した。次いで、 3リットルの 2 XYT培地を入れた 10リットル培養槽に 1%の濃度で菌体を植菌した。これを培養温度 30°C、攪拌速度 3 OOrpm、空気 10L/分、 pH7. 7の条件で、 600nmの O. D.力 0. 7になった時, で D—グルコースを 2%または 5%濃度添加し、さらに 48時間培養を行った。所定の時 間における培養液力も遠心分離して菌体を除き、培養上清液 1を回収した。
[0092] く pLEX— btrCを含む GI724ApgiAzwf株を用いた DOIの合成〉
GI724ApgiAzwfZpLEX— btrC株を 35mLの 1%マン-トールを含む RMG培 地(0. 6%リン酸水素ナトリウム、 0. 3%リン酸二水素カリウム、 0. 05%塩ィ匕ナトリウム 、 0. 1%塩化アンモ-ゥム、 2%カザミノ酸、 1%グリセリン、 ImM塩化マグネシウム) に植菌し、 1晚前培養を行った。次いで、 3リットルの 3%マン-トールを含む 2 XYT 培地(10リットル培養槽内)に 1%の濃度で菌体を植菌し、 30°C、攪拌速度 300rpm 、空気 10LZ分、 PH7. 7の条件で、培養し、 600nmの O. D.が 0. 7となった時点 でグルコースを 3%濃度添加し、さらに培養を続けた。所定時間における培養液から 遠心分離により菌体を除去し、培養上清液 2を回収した。
[0093] < pLEX— btrCを含む GI724 Δ pgi Δ zwf Δ pgm株を用いた DOIの合成 >
pLEX— btrCを含む GI724 Δ pgi Δ zwf Δ pgm株を 300mL三角フラスコに 50mL の前培養液 (0. 6%リン酸水素ニナトリウム、 0. 3%リン酸二水素カリウム、 0. 05% 塩化ナトリウム、 0. 1%塩化アンモ-ゥム、 2%カザミノ酸、 1%グリセロール、 ImM塩 ィ匕マグネシウム)に接種し、 15時間培養した。この前培養液を、 3Lの 2 XYT培地を 入れた 10L培養槽 (丸菱バイオェンジ社 MDL— 6C型)に 1%植菌した。これを培養 温度 25°C、攪拌速度 300rpm、流入空気 10LZ分、 pH7. 0の条件で培養を行い、 OD600nm=0. 7になった時点で D—グルコースを 5%濃度になるように添カロし、さ らに 72時間培養を行った。所定の時間における培養液を遠心分離して菌体を除去 し、培養上清液 3を回収した。
[0094] く pGAP— btrC/pGAD— btrCを含む GI724 Δ pgi Δ zwf Δ pgm株を用いた D OIの合成 >
pGAP— btrC/pGAD— btrCを含む GI724 Δ pgi Δ zwf Δ pgm株を 300mL三 角フラスコに 50mLの前培養液 (0. 6%リン酸水素ニナトリウム、 0. 3%リン酸二水素 カリウム、 0. 05%塩ィ匕ナトリウム、 0. 1%塩ィ匕アンモ-ゥム、 2%カザミノ酸、 1%ダリ セロール、 ImM塩化マグネシウム)に接種し、 15時間培養した。この前培養液を、 3 Lの 2 XYT培地を入れた 10L培養槽に 1%植菌した。これを培養温度 25°C、攪拌速 度 300rpm、流入空気 10LZ分、 ρΗ6. 0の条件で培養を行い、 OD600nm=0. 7 になった時点で D—グルコースを 5%濃度になるように添加し、さらに 72時間培養を 行った。所定時間における培養液力も遠心分離して菌体を除去し、培養上清液 4を 回収した。
[0095] く pLEX— btrCを含む GI724 Armf株を用いた DOIの合成〉
pLEX—btrCを含む GI724 Armf株を試験管に 3mLの前培養液(0. 6%リン酸水 素ニナトリウム、 0. 3%リン酸二水素カリウム、 0. 05%塩ィ匕ナトリウム、 0. 1%塩化ァ ンモ-ゥム、 2%カザミノ酸、 1%グリセロール、 ImM塩化マグネシウム)に接種し、 15 時間培養した。この前培養液を、 101!^の2 丫丁培地を入れた1^型試験管に1%植 菌した。これを培養温度 30°C、振とう速度 160rpm、 pH7. 0の条件で培養を行い、 OD600nm=0. 7になった時点で D—グルコースを 3%濃度になるように添カロし、さ らに 72時間培養を行った。所定時間における培養液力も遠心分離して菌体を除去し 、培養上清液 5を回収した。
[0096] (実施例 7) < < DOI生産量の測定 > >
く DOIのォキシム化〉
培養上清中に蓄積する DOIの定量を以下に示す手順に従って行った。培養上清 液 1及び 2については、各時間において、培養液を採取し、上清液と等量の水、上清 液の 2倍量のメタノール、及び終濃度 1. 5 mgZmLの O— (4 -卜口ベンジル)ヒ ドロキシルァミン (NBHA)をカ卩ぇ混合し、 60°Cで 1時間インキュベートすることにより DOIのォキシム化を誘導した。
[0097] また、培養上清液 3、 4及び 5については、 9倍量の滅菌蒸留水を混ぜ、さらにこの 溶液と等量のメタノールをカ卩えた後、 30mgZmLの o— (4 -トロベンジル)ヒドロキ シルァミン塩酸塩 (NBHA)をカ卩ぇ混合し、 60°Cで 1時間インキュベートすることによ り DOIのォキシム体を誘導した。
[0098] く DOIの検出〉
このようにして得た DOIォキシム体について、 Speep Vac System (Thermo社 I SSI 10)で溶媒を蒸発させた後、ォキシム化 DOIを適当量のメタノールに溶解し、そ の一部を HPLC (高速液体クロマトグラフィー)分析法にて分析し、 DOIの検出及び 定量を行った。高速液体クロマトグラフィーでは SHIMADZU社 LC—10AT、カラム は Phrnomenex社 Luna 5u C18 (カラム長 150mm、カラム内径 4. 6mm)を用い 、溶離液として 20%メタノールを用いた。 262nmにおける紫外線吸収を測定した。 D OIの O—(4 -トロベンジル)ォキシム誘導体の量を標準曲線法により定量した。な お、グルコ ~~スの疋量は、 Glucose assay procedure kit (Megazyme社:^)を 用いて、行った。
[0099] 図 4A及び 4Bに示すように、 HPLC分析においては、 DOIのォキシム体に相当す るピークが確認された。また、図 5乃至 7に DOI生産量、培地の濁度、及び D—ダル コース濃度のタイムコースを示す。
[0100] (参考例 1)
く pLEX— btrCを含む GI724 A pgi株を用いた DOIの合成〉
GI724 A pgiZpLEX— btrC株を 300mL三角フラスコに入れた 35mLの前培養 液 (RMG培地: 0. 6%リン酸水素ナトリウム、 0. 3%リン酸二水素カリウム、 0. 05% 塩ィ匕ナトリウム、 0. 1%塩ィ匕アンモ-ゥム、 2%カザミノ酸、 1%グリセリン、 ImM塩ィ匕 マグネシウム)に接種し、 15時間培養した。次いで、 3リットルの 2 XYT培地を入れた 10リットル培養槽に 1%の濃度で菌体を植菌した。これを培養温度 30°C、攪拌速度 3 OOrpm、空気 10L/分、 pH7. 7の条件で、 600nmの O. D.力 0. 7となった時点、で D—グルコースを 2%または 5%濃度添加し、さらに 24時間培養を行った。所定時間 における培養液力も遠心分離して菌体を除き、培養上清液 11を回収した。
[0101] (参考例 2)
< pLEX— btrCを含む GI724 Δ pgi Δ zwf Δ pgm株を用いた DOIの合成 > pLEX— btrCを含む GI724 Δ pgi Δ zwf Δ pgm株を 300mL三角フラスコに 50mL の前培養液 (0. 6%リン酸水素ニナトリウム、 0. 3%リン酸二水素カリウム、 0. 05% 塩化ナトリウム、 0. 1%塩化アンモ-ゥム、 2%カザミノ酸、 1%グリセロール、 ImM塩 ィ匕マグネシウム)に接種し、 15時間培養した。この前培養液を、 3Lの 2 XYT培地を 入れた 10L培養槽 (丸菱バイオェンジ社 MDL— 6C型)に 1%植菌した。これを培養 温度 25°C、攪拌速度 300rpm、流入空気 10LZ分、 pH7. 0の条件で培養を行い、 OD600nm=0. 7になった時点で D—グルコースを 5%濃度になるように添カロし、さ らに 72時間培養を行った。 D -グルコース添加前及び D—グルコース添加後の培養 液をそれぞれ回収し、この培養液を遠心分離して菌体を除去し、それぞれ培養上清 液 12及び 13を回収した。
[0102] (参考例 3)
<pLEX—btrCを含む GI724野生型株を用いた DOIの合成 >
pLEX—btrCを含む GI724野生型株を、 3mLの前培養液(0. 6%リン酸水素ニナ トリウム、 0. 3%リン酸二水素カリウム、 0. 05%塩ィ匕ナトリウム、 0. 1%塩ィ匕アンモ- ゥム、 2%カザミノ酸、 1%グリセロール、 ImM塩ィ匕マグネシウム)を有する試験管に 接種し、 15時間培養した。この前培養液を、 101!11^の2 ¥丁培地を入れた1^型試験 管に 1%植菌した。これを培養温度 30°C、振とう速度 160rpm、 pH7. 0の条件で培 養を行い、 OD600nm=0. 7になった時点で D—グルコースを 3%濃度になるように 添加し、さらに 72時間培養を行った。所定時間における培養液から遠心分離して菌 体を除去し、培養上清液 14を回収した。 [0103] (参考例 4)
< DOI生産量の測定 >
上述の通り得た培養上清液 11乃至 14中に蓄積する DOIの定量を以下に示す手 順に従って行った。
[0104] 培養上清液 11につ 、ては、この上清液と等量の水、上清液の 2倍量のメタノール、 及び終濃度 1. 5mgZmLの O— (4 -卜口ベンジル)ヒドロキシルァミン(NBHA) をカロえ混合し、 60°Cで 1時間インキュベートすることにより DOIのォキシム化を誘導し た。
[0105] 培養上清液 12、 13及び 14については、これら上清液に対して 9倍量の滅菌蒸留 水を混ぜ、さらにこの溶液と等量のメタノールを加えた後、 30mgZmLの o—(4一- トロベンジル)ヒドロキシルァミン塩酸塩 (NBHA)をカロえ混合し、 60°Cで 1時間インキ ュペートすることにより DOIのォキシム体を誘導した。
[0106] 上述の通り誘導体ィ匕した培養上清液 11乃至 14に由来する液を、 Speep Vac S ystem (Thermo社 ISS 110)で溶媒を蒸発させた後、ォキシム化 DOIを適当量のメ タノールに溶解し、その一部を HPLC (高速液体クロマトグラフィー)分析法にて分析 し、 DOIの検出及び定量を行った。高速液体クロマトグラフィーでは SHIMADZU社 LC— 9A、カラムは Phrnomenex社 Luna 5u C18 (カラム長 150mm、カラム内径 4. 6mm)を用い、溶離液として 20%メタノールを用いた。 262nmにおける紫外線吸 収を測定した。 DOIの O—(4 -トロベンジル)ォキシム誘導体の量を標準曲線法 により定量した。
[0107] (実施例 8)
くアンバーライト IR120とアンバーライト IRA410の混床式カラムを用いる方法〉 水素イオン型のアンバーライト IR120と酢酸イオン型のアンバーライト IRA410とを 各 200mLずつ混合した後、カラム( φ 5cm X 25cm)に充填し、カラムを pH2. 96に 調整した、参考例 1の培養液 lOOmUl. 4gの DOIを含む)を添加した後、蒸留水を 流速 2mLZ分で流すことにより溶離を行った。 6mLずつのフラクションを集め、得ら れたフラクションについて 1本おきに pHおよび伝導度を測定した。また、 3本おきに D OIの定量も行った。 DOIの定量は、 O—(4—nitrobenzvl) oximeに誘導した後、 H PLCで面積を測定した後、検量線より計算した。このときの結果を図 10に示す。また 、フラクションを 4つのブロックに分けて集めて凍結乾燥した後、それぞれのブロック 中の DOIの純度および量を測定した。結果を表 2に示す。得られた精製 DOIの13 C — NMRスペクトルを図 11に示す。 13C— NMR ^ベクトルは、重水に溶解した試料を Bruker社の DPX— 250NMR装置(13C核は、 67. 5MHzで共鳴)を用いて測定し た。
[0108] (実施例 9)
くアンバーライト IR200とアンバーライト IRA410の混床式カラムを用いる方法 > 水素イオン型のアンバーライト IR200と酢酸イオン型のアンバーライト IRA410とを 各 200mLずつ混合した後、カラム( φ 5cm X 25cm)に充填した。これ〖こ pH2. 97に 調整した、参考例 1の培養液 50mL (562mgの DOIを含む)を添加した後、蒸留水を 流速 2mLZ分で流すことにより溶出を行った。 6mLずつのフラクションを集め、得ら れたフラクションについて 1本おきに pHおよび伝導度を測定した。また、 3本おきに D OIの定量も行った。このときの結果を図 12に示す。また、フラクションを 4つのブロック に分けて集めて凍結乾燥した後、それぞれのブロック中の DOIの純度および量を測 定した。結果を表 3に示す。得られた精製 DOIの13 C— NMR ^ベクトルを図 13に示 す。 DOIの定量方法および13 C— NMR ^ベクトルの測定方法は実施例 8と同様にし て行った。
[0109] [表 2]
Figure imgf000032_0001
[0110] [表 3] 重量 (mg) DOI ft (mg) 純度 (%)
85,フ 7L.4
120 114.1
25.1
11.9 1.3
249.2 211.9 85.0
[0111] (実施例 10)
<アンバーライト 200CTとアンバーライト IRA 96SBの二床式カラムを用いる方法
>
DOI含有培養液 (DOI含有量: 22. lg/850mL)を陽イオン交換榭脂カラム (アン バーライト 200CT、水素イオン型、 400mL)に負荷し、水で溶出させた。溶出液の T LC分析により DOIが含まれて 、る画分を陰イオン交換榭脂カラム (アンバーライト IR A96SB、酢酸イオン型、 600mL)に通液し、続いて水で溶出させた。溶出液の TLC 分析により DOIが含まれている画分を減圧濃縮すると、図 15の1 H— NMRに示す純 度の DOIが 20.8g得られた。その純度は混床式カラムによる精製法の場合とほぼ同 程度であった。 H— NMRは、重水に溶解した試料を Bruker社の DPX—250NM R装置を用いて測定した。 1
[0112] (実施例 11)
<ジメチルケタール誘導体に変換して結晶化 ·精製した後、 2—デォキシ シロ イノソースを復元する方法 >
実施例 10の精製 DOI (17.8g)をメタノール(835mL)に溶解し、トリメトキシメタン( 310mL)、トシル酸一水和物(2.12g)をカ卩ぇ 3時間攪拌した後、重曹(30.6g)によ り反応液を中和し、濾過後に減圧濃縮を行った。残渣をメタノールに溶解し、その 3 倍量のシリカゲル (C 200 60g)を加えて減圧濃縮することで DOIをシリカゲル表 面上に吸着させた。その DOIを吸着させたシリカゲルを酢酸ェチル:メタノール =5: 1で作成したシリカゲルカラムに充填した。その後、酢酸ェチル:メタノール =5:1の 混合溶媒を用い DOIを溶出させた。 DOIが含まれている溶出液魏めて減圧濃縮 すると、ジメチルケタール誘導体(20.7g)を得た。続いて、メタノールを 25mL加えて 溶かした溶液に、クロ口ホルム lOOmLとへキサン 7. 5mLとを加熱しながら加えて冷 却して析出する白色結晶を分離すると、 2—デォキシーシローイノソース ジメチルケ タール結晶 9. lgを得た。図 16に示す1 H— NMRにおいて、不純物のシグナルは検 出されていない。
[0113] ジメチルケタール体の結晶(995mg)をアセトン(22mL)〖こ溶力し、トシル酸一水和 物(280mg)と蒸留水(6mL)を加え 5時間攪拌した。 TLCにより原料の消失を確認 後、減圧濃縮した。水に溶解した残渣を陰イオン交換榭脂カラム (IRA96SB、酢酸 イオン型、 lOmL)に通液し、含有画分を濃縮することより高度に精製した DOI (770 mg)を定量的に得た。図 17に示す1 H— NMRにおいて、不純物のシグナルは検出 されていない。
[0114] [寄託微生物の表示]
本発明にお 、て使用される寄託微生物の表示は、以下のとおりである。
[0115] Escherichia coll
GI724 Δ pgi Δ zwf Δ pgm/pGAP - btrC/pGAD - btrC
FERM AP- 20809
1.受領機関名: 独立行政法人産業技術総合研究所 特許生物寄託センター
2.受領日: 平成 18年 2月 24日
3.受領番号: FERM AP- 20809
[0116] Escherichia coll
GI724 Armf A pgi/pLEX-btrC
FERM AP- 20808
1.受領機関名: 独立行政法人産業技術総合研究所 特許生物寄託センター
2.受領日: 平成 18年 2月 24日
3.受領番号: FERM AP- 20808
産業上の利用の可能性
[0117] 本発明により、従来の石油由来の化学物質に代わり、再生可能な資源である、でん ぶんなどのバイオマス由来の原料を用いて、発酵により、様々な炭素 6員環化合物の 製造のための出発原料となる高純度 DOIを製造することが可能となった。 以上、本発明の好適な実施の形態により本発明を説明した。ここでは特定の具体 例を示して本発明を説明したが、特許請求の範囲に定義された本発明の広範な趣 旨および範囲力 逸脱することなぐこれら具体例に様々な修正および変更を加える ことができることは明らかである。すなわち、具体例の詳細および添付の図面により本 発明が限定されるものと解釈してはならない。

Claims

請求の範囲
[1] 2-デォキシ シロ一イノソースの合成に関与する遺伝子からなることを特徴とする 遺伝子発現カセット。
[2] 前記の 2—デォキシ―シ口—イノソースの合成に関与する遺伝子は、 2—デォキシ ーシローイノソース合成酵素であることを特徴とする請求項 1に記載の遺伝子発現力 セット。
[3] 宿主細胞に、請求項 1又は 2に記載の遺伝子発現カセットを導入してなることを特 徴とする形質転換体。
[4] 前記宿主細胞は、大腸菌種、及び GILSP遺伝子組換え微生物リストに記載されて いる宿主細胞(平成 18年 3月現在のもの)からなる群力も選択された宿主細胞である ことを特徴とする請求項 3に記載の形質転換体。
[5] 前記宿主細胞は、ホスホグルコースイソメラーゼをコードする pgi遺伝子、ダルコ一 スー6 リン酸 1ーデヒドロゲナーゼをコードする zwf遺伝子、ホスホダルコムターゼ をコードする pgm遺伝子及び定常期におけるタンパク質合成の修飾を担うリボソーム 修飾因子タンパク質をコードする rmf遺伝子カゝらなる群カゝら選択された少なくとも 1つ の遺伝子が破壊された宿主細胞であることを特徴とする請求項 3又は 4に記載の形 質転換体。
[6] 請求項 3乃至 5のいずれか一項に記載の形質転換体と、炭素源とを接触させるェ 程を有することを特徴とする 2—デォキシ シローイノソースの製造方法。
[7] 前記炭素源は、 D グルコース、オリゴ糖、多糖、でんぷん、セルロース、米ぬか及 び廃糖蜜並びに D グルコースを得ることが可能なバイオマスカもなる群力 選択さ れた少なくとも 1種類の炭素源であることを特徴とする請求項 6に記載の 2 デォキシ ーシローイノソースの製造方法。
[8] 請求項 6又は 7に記載の 2 デォキシ―シ口—イノソースの製造方法により得たこと を特徴とする 2 -デォキシ シロ イノソース。
[9] 請求項 3乃至 5のいずれか一項に記載の形質転換体と、炭素源とを接触させて 2— デォキシーシローイノソースを有する組成物を得る工程と、
該組成物を、水素イオン型強酸性陽イオン交換樹脂と有機酸イオン型塩基性陰ィ オン交換樹脂とを有する混床式又は二床式カラムで処理する工程と、 を有することを特徴とする 2—デォキシ一シ口一イノソースの精製方法。
[10] 前記有機酸イオン型塩基性陰イオン交換榭脂は、酢酸イオン型陰イオン交換榭脂 であることを特徴とする請求項 9に記載の 2 デォキシ シロ イノソースの精製方 法。
[11] 請求項 9又は 10に記載の 2 デォキシーシローイノソースの精製方法により得たこ とを特徴とする 2—デォキシ シロ一イノソース。
[12] 請求項 11に記載の 2—デォキシ一シ口一イノソースを、トリアルコキシメタンと反応さ せて、 2—デォキシーシロ イノソースジアルキルケタールを得る工程と、
該 2—デォキシ―シ口—イノソースジアルキルケタールを、酸の存在下で加水分解 する工程と、
を有することを特徴とする 2—デォキシ一シ口一イノソースの精製方法。
[13] 前記トリアルコキシメタンは、トリメトキシメタンであることを特徴とする請求項 12に記 載の 2—デォキシ一シ口一イノソースの精製方法。
[14] 請求項 12又は 13に記載の 2 デォキシ―シ口—イノソースの精製方法により得た ことを特徴とする 2 -デォキシ一シ口一イノソース。
PCT/JP2006/305782 2005-03-30 2006-03-23 遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2-デオキシ-シロ-イノソースの製造方法及び2-デオキシ-シロ-イノソースの精製方法 WO2006109479A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE602006019835T DE602006019835D1 (de) 2005-03-30 2006-03-23 Genexpressionskassette und transformante sowie verfahren zur herstellung von 2-desoxyscylloinosose unter verwendung der transformante
EP06729749A EP1865056B1 (en) 2005-03-30 2006-03-23 Gene expression cassette and transformant, and process for production of 2-deoxy-scyllo-inosose and process for purification of 2-deoxy-scyllo-inosose using the transformant
US11/887,445 US8758741B2 (en) 2005-03-30 2006-03-23 Gene expression cassette and a transformant, and a method for manufacturing 2-deoxy-scyllo-inosose and a method for purifying 2-deoxy-scyllo-inosose using said transformant
BRPI0607623-8A BRPI0607623B1 (pt) 2005-03-30 2006-03-23 escherichia coli transgênica
CN2006800107712A CN101151368B (zh) 2005-03-30 2006-03-23 基因表达盒及转化体、及使用该转化体的2-脱氧-青蟹肌糖的制备方法及2-脱氧-青蟹肌糖的精制方法
JP2007512466A JP4598826B2 (ja) 2005-03-30 2006-03-23 遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2−デオキシ−シロ−イノソースの製造方法及び2−デオキシ−シロ−イノソースの精製方法
US14/178,496 US20140256960A1 (en) 2005-03-30 2014-02-12 Gene expression cassette and a transformant, and a method for manufacturing 2-deoxy-scyllo-inosose and a method for purifying 2-deoxy-scyllo-inosose using said transformant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2005/006022 2005-03-30
PCT/JP2005/006022 WO2006112000A1 (ja) 2005-03-30 2005-03-30 大腸菌変異株による2-デオキシ-シロ-イノソースの合成および精製する方法並びに得られた2-デオキシ-シロ-イノソース

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/887,445 A-371-Of-International US8758741B2 (en) 2005-03-30 2006-03-23 Gene expression cassette and a transformant, and a method for manufacturing 2-deoxy-scyllo-inosose and a method for purifying 2-deoxy-scyllo-inosose using said transformant
US14/178,496 Division US20140256960A1 (en) 2005-03-30 2014-02-12 Gene expression cassette and a transformant, and a method for manufacturing 2-deoxy-scyllo-inosose and a method for purifying 2-deoxy-scyllo-inosose using said transformant

Publications (1)

Publication Number Publication Date
WO2006109479A1 true WO2006109479A1 (ja) 2006-10-19

Family

ID=37086767

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/006022 WO2006112000A1 (ja) 2005-03-30 2005-03-30 大腸菌変異株による2-デオキシ-シロ-イノソースの合成および精製する方法並びに得られた2-デオキシ-シロ-イノソース
PCT/JP2006/305782 WO2006109479A1 (ja) 2005-03-30 2006-03-23 遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2-デオキシ-シロ-イノソースの製造方法及び2-デオキシ-シロ-イノソースの精製方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006022 WO2006112000A1 (ja) 2005-03-30 2005-03-30 大腸菌変異株による2-デオキシ-シロ-イノソースの合成および精製する方法並びに得られた2-デオキシ-シロ-イノソース

Country Status (8)

Country Link
US (2) US8758741B2 (ja)
EP (1) EP1865056B1 (ja)
JP (1) JP4598826B2 (ja)
KR (1) KR101019759B1 (ja)
CN (1) CN101151368B (ja)
BR (1) BRPI0607623B1 (ja)
DE (1) DE602006019835D1 (ja)
WO (2) WO2006112000A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053052A1 (ja) * 2008-11-05 2010-05-14 三井化学株式会社 2-デオキシ-シロ-イノソース(doi)生産細菌及びこれを用いた2-デオキシ-シロ-イノソース(doi)生産方法
WO2010109916A1 (ja) * 2009-03-26 2010-09-30 旭化成ケミカルズ株式会社 新規2-デオキシ-シロ-イノソース合成酵素
JP2010227022A (ja) * 2009-03-27 2010-10-14 Asahi Kasei Chemicals Corp リン酸濃度制御による2−デオキシ−シロ−イノソースの製造方法
JP2010226976A (ja) * 2009-03-26 2010-10-14 Asahi Kasei Chemicals Corp 新規グルコース−6−リン酸定量方法および定量試薬
WO2013125666A1 (ja) * 2012-02-23 2013-08-29 株式会社日本触媒 イノシトール高生産微生物およびそれを用いたイノシトールの製造方法
EP2656839A1 (en) 2007-04-12 2013-10-30 Waratah Pharmaceuticals, Inc. Use of Cyclohexanehexol Derivatives in the Treatment of Ocular Diseases
US8859628B2 (en) 2003-02-27 2014-10-14 JoAnne McLaurin Method for preventing, treating and diagnosing disorders of protein aggregation
WO2015093320A1 (ja) 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 2-デオキシ-シロ-イノソース還元酵素
WO2017029353A1 (en) 2015-08-20 2017-02-23 Transition Therapeutics Ireland Limited Treatment of behaviors in dementia patients
WO2018180568A1 (ja) 2017-03-27 2018-10-04 学校法人 新潟科学技術学園 変異型2-デオキシ-シロ-イノソース合成酵素
WO2020085435A1 (ja) 2018-10-25 2020-04-30 株式会社Ihi トリヒドロキシベンゼンの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230198B1 (ko) 2008-04-11 2013-02-06 미쓰이 가가쿠 가부시키가이샤 카테콜의 제조 방법
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
CN102459139B (zh) 2009-04-28 2014-05-07 三井化学株式会社 多元酚的制备方法
WO2015005451A1 (ja) * 2013-07-12 2015-01-15 三井化学株式会社 2-デオキシ-シロ-イノソースの生産方法
KR101718508B1 (ko) * 2015-11-17 2017-03-21 고려대학교 산학협력단 2-데옥시-실로-이노소스 생합성 경로를 가지는 재조합 고초균 및 이를 이용한 2-데옥시-실로-이노소스의 제조방법
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
JP7260872B2 (ja) * 2018-10-25 2023-04-19 株式会社Ihi トリヒドロキシベンゼンを製造するためのシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236881A (ja) 1999-02-22 2000-09-05 Tokyo Inst Of Technol 2−デオキシ−シロ−イノソース合成酵素、アミノ酸配列、遺伝子塩基配列
JP2005000072A (ja) * 2003-06-11 2005-01-06 Hokko Chem Ind Co Ltd (−)−2−デオキシ−シロ−イノソースの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014546A1 (de) * 2000-03-23 2001-09-27 Degussa Für das dapC-Gen kodierende Nukleotidsequenzen und Verfahren zur Herstellung von L-Lysin
JP4019706B2 (ja) * 2000-12-22 2007-12-12 味の素株式会社 発酵法による目的物質の製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236881A (ja) 1999-02-22 2000-09-05 Tokyo Inst Of Technol 2−デオキシ−シロ−イノソース合成酵素、アミノ酸配列、遺伝子塩基配列
JP2005000072A (ja) * 2003-06-11 2005-01-06 Hokko Chem Ind Co Ltd (−)−2−デオキシ−シロ−イノソースの製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K.KAKINUMAE.NANGOF.KUDOY.MATSUSHIMAT.EGUCHI, TETRAHEDRON LETTERS, vol. 41, 2000, pages 1935 - 1938
KUDO F. ET AL.: "Molecular Cloning of the Gene for the Key Carbocycle-forming Enzyme in the Biosynthesis of 2-Deoxystreptamine-containing Aminocyclitol Antibiotics and Its Comparison with Dehydroquinate Synthase", J. ANTIBIOT., vol. 52, no. 6, 1999, pages 559 - 571, XP002990832 *
KUDO, F. ET AL., J. ANTIBIOT., vol. 52, 1999, pages 559 - 571
OTA, Y. ET AL., J. ANTIBIOT., vol. 53, 2000, pages 1158 - 1167
See also references of EP1865056A4
YAMAUCHI N. ET AL.: "Biochemical studies on 2-deoxy-scyllo-inosose, an early intermediate in the biosynthesis of 2-deoxystreptamine", J. ANTIBIOT., vol. 45, no. 5, 1992, pages 756 - 766, XP002990831 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833420B2 (en) 2003-02-27 2017-12-05 JoAnne McLaurin Methods of preventing, treating, and diagnosing disorders of protein aggregation
US8859628B2 (en) 2003-02-27 2014-10-14 JoAnne McLaurin Method for preventing, treating and diagnosing disorders of protein aggregation
EP2656839A1 (en) 2007-04-12 2013-10-30 Waratah Pharmaceuticals, Inc. Use of Cyclohexanehexol Derivatives in the Treatment of Ocular Diseases
JP5254353B2 (ja) * 2008-11-05 2013-08-07 三井化学株式会社 2−デオキシ−シロ−イノソース(doi)生産細菌及びこれを用いた2−デオキシ−シロ−イノソース(doi)生産方法
US9150868B2 (en) 2008-11-05 2015-10-06 Mitsui Chemicals, Inc. Bacterium producing 2-deoxy-scyllo-inosose (DOI) and method of producing 2-deoxy-scyllo-inosose (DOI) by using same
WO2010053052A1 (ja) * 2008-11-05 2010-05-14 三井化学株式会社 2-デオキシ-シロ-イノソース(doi)生産細菌及びこれを用いた2-デオキシ-シロ-イノソース(doi)生産方法
JPWO2010053052A1 (ja) * 2008-11-05 2012-04-05 三井化学株式会社 2−デオキシ−シロ−イノソース(doi)生産細菌及びこれを用いた2−デオキシ−シロ−イノソース(doi)生産方法
JP5579700B2 (ja) * 2009-03-26 2014-08-27 旭化成ケミカルズ株式会社 新規2−デオキシ−シロ−イノソース合成酵素
WO2010109916A1 (ja) * 2009-03-26 2010-09-30 旭化成ケミカルズ株式会社 新規2-デオキシ-シロ-イノソース合成酵素
CN103320401A (zh) * 2009-03-26 2013-09-25 旭化成化学株式会社 新型2-脱氧青蟹肌糖合成酶的制造方法
JP2013135697A (ja) * 2009-03-26 2013-07-11 Asahi Kasei Chemicals Corp 新規2−デオキシ−シロ−イノソース合成酵素
US8703466B2 (en) 2009-03-26 2014-04-22 Asahi Kasei Chemicals Corporation 2-deoxy-scyllo-inosose synthase
CN102361978A (zh) * 2009-03-26 2012-02-22 旭化成化学株式会社 新型2-脱氧青蟹肌糖合成酶
JP2010226976A (ja) * 2009-03-26 2010-10-14 Asahi Kasei Chemicals Corp 新規グルコース−6−リン酸定量方法および定量試薬
JP2010227022A (ja) * 2009-03-27 2010-10-14 Asahi Kasei Chemicals Corp リン酸濃度制御による2−デオキシ−シロ−イノソースの製造方法
WO2013125666A1 (ja) * 2012-02-23 2013-08-29 株式会社日本触媒 イノシトール高生産微生物およびそれを用いたイノシトールの製造方法
WO2015093320A1 (ja) 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 2-デオキシ-シロ-イノソース還元酵素
WO2017029353A1 (en) 2015-08-20 2017-02-23 Transition Therapeutics Ireland Limited Treatment of behaviors in dementia patients
WO2018180568A1 (ja) 2017-03-27 2018-10-04 学校法人 新潟科学技術学園 変異型2-デオキシ-シロ-イノソース合成酵素
KR20190127793A (ko) * 2017-03-27 2019-11-13 각코호진 니이가타기쥬츠카가쿠가쿠엔 변이형 2-데옥시-실로-이노소스 합성효소
KR102336516B1 (ko) 2017-03-27 2021-12-06 각코호진 니이가타기쥬츠카가쿠가쿠엔 변이형 2-데옥시-실로-이노소스 합성효소
JP6989746B2 (ja) 2017-03-27 2022-01-12 学校法人 新潟科学技術学園 変異型2-デオキシ-シロ-イノソース合成酵素
US11499175B2 (en) 2017-03-27 2022-11-15 Mitsui Chemicals, Inc. Mutant type 2-deoxy-scyllo-inosose synthase
WO2020085435A1 (ja) 2018-10-25 2020-04-30 株式会社Ihi トリヒドロキシベンゼンの製造方法
US11685704B2 (en) 2018-10-25 2023-06-27 Mitsui Chemicals, Inc. Trihydroxybenzene production method

Also Published As

Publication number Publication date
CN101151368B (zh) 2011-06-15
BRPI0607623A2 (pt) 2009-09-22
CN101151368A (zh) 2008-03-26
BRPI0607623B1 (pt) 2021-03-02
EP1865056B1 (en) 2011-01-26
US8758741B2 (en) 2014-06-24
KR20080005931A (ko) 2008-01-15
US20140256960A1 (en) 2014-09-11
KR101019759B1 (ko) 2011-03-04
JP4598826B2 (ja) 2010-12-15
US20100015672A1 (en) 2010-01-21
EP1865056A4 (en) 2008-04-16
DE602006019835D1 (de) 2011-03-10
JPWO2006109479A1 (ja) 2008-10-23
EP1865056A1 (en) 2007-12-12
WO2006112000A1 (ja) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4598826B2 (ja) 遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2−デオキシ−シロ−イノソースの製造方法及び2−デオキシ−シロ−イノソースの精製方法
KR20110046560A (ko) 2-히드록시-이소부티레이트 (2-hiba)의 효소적 생산
WO2014100173A1 (en) Biosynthetic pathways and methods
CA2909440C (en) A method of production of rare disaccharides
JP2016135135A (ja) シロ‐イノシトールの製造方法
EP2948545B1 (en) Method of production of monosaccharides
CN112779232B (zh) 一种手性胺醇化合物的合成方法
CN110607335B (zh) 一种烟酰胺腺嘌呤二核苷酸类化合物生物合成方法
KR20160043498A (ko) D-자일로스로부터 1,2,4-부탄트리올을 생산하는 재조합 대장균, 이의 제조방법 및 이를 이용하여 1,2,4-부탄트리올을 생산하는 방법
JP2006262846A (ja) 酵母による2−デオキシ−シロ−イノソースの合成および精製する方法並びに得られた2−デオキシ−シロ−イノソース
JP2015000015A (ja) パラアミノ安息香酸の生産方法
CN108949736B (zh) 一种高选择性头孢拉定合成酶突变体及其编码基因
JP6989746B2 (ja) 変異型2-デオキシ-シロ-イノソース合成酵素
KR101785150B1 (ko) 모듈식 스캐폴드를 이용한 감마 아미노부티르산의 생산방법
Thuy et al. Biosynthesis of dTDP-6-deoxy-β-d-allose, biochemical characterization of dTDP-4-keto-6-deoxyglucose reductase (GerKI) from Streptomyces sp. KCTC 0041BP
KR101533150B1 (ko) 모듈식 스캐폴드를 이용한 감마 아미노부틸산 생산방법
Sohng et al. Cloning, expression, and biological function of a dTDP-deoxyglucose epimerase (gerF) gene from Streptomyces sp. GERI-155
CN110373371B (zh) 过表达木糖转运蛋白基因提高1,2,4-丁三醇产量的方法及应用
CN117925548A (zh) 一种用于合成5-羟基-L-高亮氨酸的Fe(II)/α-KG双加氧酶突变体及应用
CN116622664A (zh) 一种生物催化生成c-糖苷的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010771.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512466

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11887445

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006729749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077024620

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0607623

Country of ref document: BR

Kind code of ref document: A2