WO2018180568A1 - 変異型2-デオキシ-シロ-イノソース合成酵素 - Google Patents

変異型2-デオキシ-シロ-イノソース合成酵素 Download PDF

Info

Publication number
WO2018180568A1
WO2018180568A1 PCT/JP2018/010349 JP2018010349W WO2018180568A1 WO 2018180568 A1 WO2018180568 A1 WO 2018180568A1 JP 2018010349 W JP2018010349 W JP 2018010349W WO 2018180568 A1 WO2018180568 A1 WO 2018180568A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
doi
glucose
transformant
gene
Prior art date
Application number
PCT/JP2018/010349
Other languages
English (en)
French (fr)
Inventor
洋暁 高久
晴丈 山崎
光史 和田
大輔 宮澤
Original Assignee
学校法人 新潟科学技術学園
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 新潟科学技術学園, 三井化学株式会社 filed Critical 学校法人 新潟科学技術学園
Priority to JP2019509266A priority Critical patent/JP6989746B2/ja
Priority to EP18777395.7A priority patent/EP3604526A4/en
Priority to CN201880020313.XA priority patent/CN110462041B/zh
Priority to KR1020197029474A priority patent/KR102336516B1/ko
Priority to US16/497,970 priority patent/US11499175B2/en
Publication of WO2018180568A1 publication Critical patent/WO2018180568A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/031242-Deoxy-scyllo-inosose synthase (4.2.3.124)

Definitions

  • the present disclosure includes, for example, a modified 2-deoxy-siro-inosose (hereinafter referred to as “DOI”) synthase, a gene encoding the modified DOI synthase, an expression cassette including the gene, a vector including the expression cassette,
  • DOI 2-deoxy-siro-inosose
  • the present invention relates to a transformant containing the vector, a method for producing a modified DOI synthase using the transformant, and a method for producing DOI.
  • DOI a chiral compound having a carbon 6-membered ring skeleton
  • DOI can be synthetically converted into dihydric phenols such as catechol and droquinone, and hydroxyhydroquinone.
  • catechol and droquinone dihydric phenols
  • hydroxyhydroquinone dihydric phenols
  • Kakinuma et al., Tetrahedron Letters, 2000, vol.41, p.1935 discloses synthesizing and converting DOI to catechol.
  • Catechol is used as a raw material for neurological drugs, raw materials for food fragrances, antioxidants for hair care products, etc.
  • hydroquinone is used for raw materials such as hemostatics and analgesics, and cosmetics such as whitening agents. It is a high substance.
  • DOI can also be converted into carbaglucose, which is a pseudo sugar, and is a versatile intermediate material.
  • Japanese Patent Application Laid-Open No. 2005-053899 discloses synthesizing carbaglucose using DOI as a raw material.
  • DOI synthase gene (glucose-6-phosphate as DOI) from microorganisms belonging to Bacillus circulans. It describes that a large amount of recombinant DOI synthase was obtained by cloning btrC) encoding an enzyme that catalyzes the conversion reaction, and expressing and purifying the gene in E. coli. Further, Japanese Patent Application Laid-Open No.
  • 2014-066453 discloses a two-stage enzyme reaction in which hexokinase or polyphosphate glucokinase and DOI synthase are allowed to act on glucose, or a one-stage enzyme in which DOI synthase is allowed to act on glucose-6-phosphate. It discloses that DOI can be synthesized by reaction.
  • Hirayama et al., J. Antibiot., 2005, vol.58, p.766 disclose DOI synthase derived from Streptomyces fradiae, Subba et al., Mol.Cells, 2005, vol.
  • DOI synthase derived from Streptomyces ribosidiphycus and Khale et al., Arch.Biochem.Biophys., 2004, vol.429, p.204 are Streptomyces kanamyceticus.
  • Unwin et al., J. Antibiot., 2004, vol.57, p.436 disclose DOI synthase derived from micromonospora and echinospora, and Kharel et al., FEMS Microbiol. Lett., 2004, vol.230, p.185 disclose DOI synthase derived from Streptomyces teneblarius, and Hirayama et al., J. Antibiot., 2006, vol.59, p.358 Disclosed is DOI synthase derived from Aroteicus hindustanus.
  • JP2013-135597A discloses a thermostable DOI synthetase having a specific amino acid sequence. Tamigai et al., Biosci. Biotechnol. Biochem., 2010, vol.74, p.1215 are Bacillus Circus. It describes the role of the BtrC2 protein associated with Lance's DOI synthase.
  • WO 2006/109479 and Kogure et al., J. Biotechnol., 2007, vol.129, p.502 disclose an expression cassette consisting of a gene for DOI synthase, which is an engineering of intracellular sugar metabolism. Attempts have also been made to increase production by modification.
  • WO 2010/053052 has a gene encoding at least sucrose hydrolase (CscA) among the sucrose non-PTS genes, and a 2-deoxy-siro-inosose (DOI) production system is provided or enhanced.
  • CscA sucrose hydrolase
  • DOI 2-deoxy-siro-inosose
  • DOI-producing E. coli further having a system for enhancing sugar uptake ability is disclosed.
  • the present inventors succeeded in modifying DOI synthase into an enzyme having higher DOI synthesizing activity by using an evolutionary engineering technique. Moreover, it succeeded in manufacturing DOI more efficiently than before using the transformant containing the gene which codes the modified enzyme obtained by this method.
  • An expression cassette comprising the polynucleotide according to (4), a promoter sequence linked upstream of the polynucleotide, and a terminator sequence linked downstream of the polynucleotide.
  • a transformant transformed with the vector according to (6) A method for producing a polypeptide having an enzymatic activity for producing 2-deoxy-siro-inosose from glucose-6-phosphate, comprising culturing the transformant according to (7).
  • Mutant DOI synthetase gene clone in the process from preparation of mutant DOI synthase gene clone library using error-prone PCR to isolation of DOI high production DOI synthase gene mutant clone (1, 2 and 3) It is a figure which shows preparation of a library. It is a figure which shows the primary selection in the process from preparation of the mutant
  • coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain ( ⁇ ) containing pGADP-btrC ( ⁇ ) and E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain ( ⁇ ) containing one of pGADP-mbtrC (later known as pGADP-btrC (W293R)) (2 ⁇ YT + 2% manure , 30 ° C.) is a diagram showing a time course of the DOI production amount in the culture medium. It is a figure which shows DOI synthetase activity of (left) wild type DOI synthetase (WT) and (right) mutant type DOI synthetase (W293R). E.
  • coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain ( ⁇ ) containing pGADP-mbtrC (later known as pGADP-btrC (W293R / Y37F)), pGADP-mbtrC (later known as ⁇ GAipGg7 including ⁇ GAipgg7 including ⁇ gg7, including pGADP-btrC (W293R / A290T) + ), E.
  • coli GI7 containing pGADP-mbtrC (later identified as pGADP-btrC (W293R / H319R)) 4 ⁇ pgi ⁇ zwf ⁇ pgm strain ( ⁇ ) of the culture is a diagram showing the time course of the DOI production in the medium due to (2 ⁇ YT + 2% glucose + 2% mannitol, 50ml, 30 °C).
  • the DOI production rate can be improved by high DOI synthesis activity, and glucose-6-phosphate can be efficiently converted into DOI in a short time.
  • a modified synthase having high DOI synthesis activity can be produced by expressing a modified DOI synthase gene in a host cell.
  • DOI can be manufactured from glucose with high efficiency using this modified DOI synthetase gene.
  • DOI can be synthetically converted into dihydric phenols such as catechol and hydroquinone and hydroxyhydroquinone (see FIG. 1). According to one embodiment of the present disclosure, it is possible to easily and efficiently produce DOI, which is expected to be widely used as a raw material for producing pharmaceuticals and industrial products, simply and in large quantities. For example, 1,2,4-trihydroxybenzene, which is expected to be widely used as a raw material for producing pharmaceuticals and industrial products, can be produced from the DOI thus produced.
  • the modified DOI synthase according to the present disclosure is a polypeptide having at least one amino acid mutation of the following (a) to (e) in the following amino acid sequence (A1) or (A2).
  • A1 Amino acid sequence of SEQ ID NO: 1
  • A2) Amino acid sequence of a polypeptide having an enzymatic activity to produce 2-deoxy-siro-inosose from glucose-6-phosphate, and the amino acid sequence of SEQ ID NO: 1
  • amino acid sequence having 80% or more sequence identity (a) amino acid mutation in which the amino acid residue corresponding to the 14th asparagine residue from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with threonine
  • b) An amino acid mutation in which the amino acid residue corresponding to the 37th tyrosine residue from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with phenylalanine
  • c) 290th alanine
  • No acid mutation An amino acid mutation in which the amino acid residue corresponding to the 293th tryptophan residue from the N-terminal in the amino acid sequence of SEQ ID NO: 1 is substituted with arginine (e) N-terminal in the amino acid sequence of SEQ ID NO: 1 Amino acid mutation in which an amino acid residue corresponding to the 319th histidine residue from arginine is substituted with arginine in the alignment.
  • a modified DOI synthase having a specific amino acid residue substitution is improved by the amino acid residue substitution.
  • Has DOI synthesis activity has DOI synthesis activity.
  • the modified DOI synthase according to the present disclosure is referred to as a polypeptide having an amino acid sequence in which at least one amino acid mutation is introduced from the following (a) to (e) with respect to the amino acid sequence of (A1) or (A2):
  • “at least one amino acid mutation in the following (a) to (e) is introduced into the amino acid sequence of (A1) or (A2)” means the final amino acid sequence. It is used only for identification, and does not limit the amino acid sequence serving as a starting point and the actual sequence modification process.
  • the amino acid sequence of SEQ ID NO: 1 is the amino acid sequence of DOI synthase derived from Bacillus circulans, and is encoded by the btrC gene.
  • the modified DOI synthase has an amino acid sequence different from the amino acid sequence of SEQ ID NO: 1, and is also referred to as a mutant DOI synthase in the present disclosure.
  • the amino acid sequence of SEQ ID NO: 1 is shown in Table 1 below.
  • Enzyme activity to produce 2-deoxy-siro-inosose from glucose-6-phosphate is 50 mM Phosphate Buffer (pH 7.7), 5 mM glucose-6-phosphate, 5 mM ⁇ -NAD + , 0.2 mM CoCl 2.
  • a solution consisting of 6H 2 O and 10 ⁇ g of DOI synthase to be measured is reacted at 46 ° C. for 5 minutes. After the reaction, the reaction solution is treated with phenol / chloroform to remove proteins, and the aqueous layer fraction after centrifugation is 10 ⁇ l. Can be measured by quantifying DOI by HPLC and calculating activity.
  • sequence identity of amino acid sequences can be evaluated with default parameters using, for example, the BLAST (registered trademark, National Library of Medicine) program.
  • the amino acid residue corresponding to the amino acid residue at a specific position in the amino acid sequence of SEQ ID NO: 1 is, for example, BLAST (registered trademark, National Library of Medicine)
  • BLAST registered trademark, National Library of Medicine
  • the amino acid sequence of SEQ ID NO: 1 was aligned with the amino acid sequence of (A1) or (A2) by the program (default parameter), it was found to correspond to the amino acid residue at a specific position in SEQ ID NO: 1. It refers to an amino acid residue in the amino acid sequence of (A1) or (A2).
  • the sequence identity with the amino acid sequence of SEQ ID NO: 1 contained in the amino acid sequence (A2) may be 85% or more, 90% or more, or 95% or more.
  • the amino acid sequence of (A2) may be an amino acid sequence having a sequence modification within a range that does not lose DOI synthase activity in the amino acid sequence of SEQ ID NO: 1. That is, it may be an amino acid sequence obtained by modifying the amino acid sequence of SEQ ID NO: 1 within a range that does not lose DOI synthase activity. Such modifications include insertion, deletion, substitution of amino acid residues and addition of additional amino acid residues at the N-terminal or C-terminal or both of the amino acid sequence.
  • each of the insertions, deletions and substitutions is, for example, 1 to 30 amino acid residues, or 1 to 20 amino acid residues.
  • 1 to 10 amino acid residues, alternatively 1 to 5 amino acid residues, and the total number of insertions, deletions and substitutions of amino acid residues is, for example, 1 to 50 amino acid residues, or 1 to 30 amino acid residues Alternatively, it may be 1 to 10 amino acid residues, alternatively 1 to 5 amino acid residues.
  • the number of amino acid residues added to the terminal is, for example, 1 to 50 amino acid residues, alternatively 1 to 30 amino acid residues, alternatively 1 to 10 amino acid residues, or 1 to 5 per terminal if present. It may be an amino acid residue. Such additional amino acid residues may form a signal sequence for extracellular secretion or the like. Examples of signal sequences include E. coli OmpA signal sequences.
  • All of the amino acid mutations (a) to (e) are amino acid mutations that increase DOI synthase activity.
  • the modified DOI synthetase according to the present disclosure may have only one of the amino acid mutations (a) to (e) or may have two or more.
  • the modified DOI synthase may have two of the amino acid mutations (a) to (e), may have three, or may have four. You may have five.
  • the modified DOI synthase has at least one of the amino acid mutations of (d) and (e), and further comprises at least one of the amino acid mutations of (a) to (c). You may have.
  • the modified DOI synthase has the amino acid mutation of (d), and further has at least one of the amino acid mutations of (a), (b), (c) and (e). In yet another embodiment, the modified DOI synthase has an amino acid mutation of (d) and further has at least one of the amino acid mutations of (a), (b), and (e). In this case, the amino acid mutation (c) may be further included. In yet another embodiment, the modified DOI synthase has an amino acid mutation of (d) and further has at least one of the amino acid mutations of (a) and (e). In this case, it may further have at least one of the amino acid mutations (b) and (c).
  • the modified DOI synthase has an amino acid mutation of (d) and an amino acid mutation of (e). In this case, it may further have at least one of the amino acid mutations (a) to (c). Further, a polypeptide having 80% or more sequence identity with the amino acid sequence of SEQ ID NO: 1 and having an enzyme activity for producing 2-deoxy-siro-inosose from glucose-6-phosphate is related to the function of the enzyme.
  • the amino acid mutations (a) to (e) described above have the effect of increasing the DOI synthase activity even for such a polypeptide. Play.
  • a modified DOI synthetase having improved DOI synthetase activity can be obtained by having one or more of the amino acid mutations (a) to (e).
  • the modified DOI synthetase preferably has higher DOI synthesizing activity than the DOI synthetase having the amino acid sequence of SEQ ID NO: 1 (also referred to as wild-type DOI synthetase in the present disclosure).
  • the modified DOI synthetase preferably has a DOI synthesizing activity that is 1.1 times or more higher than that of the DOI synthetase having the amino acid sequence of SEQ ID NO: 1, more preferably a DOI synthesizing activity that is 1.2 times or more higher.
  • DOI synthetic activity More preferably 1.3 times higher DOI synthetic activity, more preferably 1.4 times higher DOI synthetic activity, more preferably 1.5 times higher DOI synthetic activity, Preferably, it has a DOI synthesis activity 1.6 times higher, more preferably 1.7 times higher DOI synthesis activity, more preferably 1.8 times higher DOI synthesis activity.
  • amino acid mutations (a) to (e) above were obtained by evolution engineering modification of DOI synthase.
  • Evolutionary engineering modification means that a gene that encodes a target protein is artificially mutagenized in vitro to select a protein that has been modified to a desired property, and then the target protein molecule is modified. Refers to technology.
  • the introduction of random mutations into the target enzyme gene can be achieved by treating the microorganism carrying the target enzyme gene with an alkylating reagent (N-methyl-N'-nitro-N-nitrosoguanidine, etc.), oxidative nucleobase It can be performed by treatment with a deamination reagent (nitrous acid, etc.), irradiation with radiation (ultraviolet rays, X-rays, etc.), or random mutagenesis using PCR.
  • an alkylating reagent N-methyl-N'-nitro-N-nitrosoguanidine, etc.
  • oxidative nucleobase oxidative nucleobase
  • a deamination reagent nitrogen acid, etc.
  • irradiation with radiation ultraviolet rays, X-rays, etc.
  • random mutagenesis using PCR.
  • a DNA fragment containing the target enzyme gene is used as a template, and in the amplification process of the gene, a PCR reaction is performed under conditions that reduce the accuracy of DNA replication by DNA polymerase. This can be done by performing error-prone PCR that accumulates errors in the sequence. In error-prone PCR, the accuracy of DNA polymerase is reduced and mutations are introduced by adding manganese ions to the reaction solution or breaking the balance of the concentrations of the four types of deoxyribonucleic acid (dNTP). be able to.
  • dNTP deoxyribonucleic acid
  • a plasmid containing the gene for example, pLEX-btrC described in WO 2006/109479
  • DNA PCR may be carried out under conditions that reduce the accuracy of DNA polymerase using the gene amplification primer with the fragment as a template. Examples of conditions for reducing the accuracy of the DNA polymerase include conditions described in Example 1 described later.
  • the modified enzyme gene group obtained by random mutagenesis can be screened using as an index whether or not it has an improved function with respect to a desired property. For example, by measuring the DOI synthetic activity of the modified enzyme group expressed by the modified enzyme gene group, the modified enzyme having improved DOI synthetic activity than before the introduction of mutation can be selected. In this way, a modified enzyme with improved activity for the desired properties can be obtained. By further introducing random mutations into the gene encoding the obtained modified enzyme and screening in the same manner as described above, a modified enzyme having further improved activity with respect to the desired properties can be obtained.
  • Evolutionary engineering modification makes it possible to obtain a modified enzyme having improved properties without knowing the position of the active center in the enzyme.
  • such an improvement can be achieved cumulatively by amino acid mutations or combinations thereof at amino acid residue positions whose relationship with function is not known in advance. From this, the modification
  • the gene encoding the modified DOI synthetase according to the present disclosure may be any nucleic acid encoding the modified DOI synthetase.
  • the nucleotide sequence of a nucleic acid encoding a particular amino acid sequence can be varied within the codon degeneracy. In this case, it is preferable from the viewpoint of gene expression efficiency to use a codon that is frequently used in the microorganism that is the host of the recombinant microorganism.
  • a polynucleotide having a base sequence encoding the amino acid sequence of the modified DOI synthase is provided.
  • the nucleotide sequence of the gene can also be designed based on the codon table from the amino acid sequence to be encoded.
  • the designed nucleotide sequence may be obtained by modifying a known nucleotide sequence using a gene recombination technique, or may be obtained by chemically synthesizing the nucleotide sequence. Examples of the method for modifying the nucleotide sequence include site-directed mutagenesis (Kramer, W. and Frita, HJ, Methods in Enzymology, vol. 154, P.
  • a host / vector system a system such as bacteria or yeast can be used, but is not particularly limited as long as a gene having a mutation can be efficiently expressed and produced.
  • the obtained mutated PCR fragment is ligated to an expression vector having a promoter and terminator necessary for expression and capable of being expressed in the host, and introduced into the host.
  • the gene expression cassette according to the present disclosure is not particularly limited as long as the gene encoding the above-mentioned modified DOI synthase can be expressed in the host cell described below.
  • the gene expression cassette may contain, for example, one or more of a promoter, an enhancer, RBS (ribosome binding sequence), a terminator and the like in addition to the nucleic acid sequence encoding the modified DOI synthase.
  • the gene expression cassette preferably contains a promoter upstream of the nucleic acid sequence and a terminator downstream of the nucleic acid sequence in addition to the nucleic acid sequence encoding the modified DOI synthase.
  • a DNA sequence such as a promoter, an enhancer, and an RBS (ribosome binding site) upstream of the DNA sequence encoding the modified DOI synthase
  • a terminator DNA sequence may be linked downstream (3 ′ end side) of the DNA sequence encoding the modified DOI synthase.
  • Each of these elements is not particularly limited as long as it is a sequence that exhibits a desired function in E. coli.
  • a promoter capable of inducing expression with an inducer such as IPTG (isopropylthiogalactopyranoside) may be used.
  • examples of the promoter include lactose operon promoter, tryptophan operon promoter, previous two fusion promoters, lambda phage promoter, glyceraldehyde-3-phosphate dehydrogenase gene promoter, glutamate
  • examples include a decarboxylase gene promoter, a gadA promoter, and an alcohol dehydrogenase (ADH1) promoter.
  • the terminator is not particularly limited, and for example, an rrn terminator, an AspA terminator, or the like can be used.
  • examples of the ribosome binding site include AGGAG having a Shine-Dalgarno (SD) sequence.
  • a known enhancer can be used as the enhancer.
  • the modified DOI synthetase gene expression vector according to the present disclosure is not particularly limited as long as it has a gene encoding the above-mentioned modified DOI synthetase and can be expressed in the host cell described below.
  • the modified DOI synthetase gene expression vector preferably comprises the modified DOI synthetase gene expression cassette.
  • E. coli when E. coli is used, various expression vectors have been constructed for efficient gene expression. Lactose operon promoter, tryptophan operon promoter, previous two fusion promoters, ⁇ phage promoter, glyceraldehyde-3-phosphate dehydrogenase gene promoter, glutamate decarboxylase gene promoter, gadA promoter, alcohol dehydrogenase (ADH1) promoter, etc.
  • a modified DOI synthase expression vector can be constructed in which a mutation-treated gene is connected downstream of the gene and a terminator is connected downstream of the gene. As the terminator, an rrn terminator, an AspA terminator, or the like can be used, but is not particularly limited.
  • a vector constructed for gene recombination from a phage or plasmid capable of autonomously growing in a host cell is suitable.
  • the phage include Lambda gt10 and Lambda gt11 when Escherichia coli is used as a host cell.
  • plasmids for example, when Eschencia coli is used as a host cell, pBTrp2, pBTac1, pBTac2 (Boehringer Mannheim), pKK233-2 (Pharmacia), pSE280 (Invitrogen-1), pGEM-1 Promega), pQE-8, pQE-30 (QIAGEN), pBluescript II SK (+), pBluescript II SK (-) (Stratagene), pET-3 (Novagen), pUC18, pSTV28, pSTV, pSTV28 Examples include pUC118 (Takara Shuzo), pLEX (Invitrogen), pQE80L (QIAGEN), pBR322, and the like.
  • the modified DOI synthetase gene expression vector may have a promoter for transcription of DNA encoding the modified DOI synthetase.
  • the promoter include the promoters described above.
  • the modified DOI synthase gene expression vector may contain a ribosome binding sequence.
  • ribosome binding sequences include Shine-Dalgarno sequences, and it is preferable to use a plasmid in which the SD sequence and the start codon are adjusted to an appropriate distance (eg, 6 to 18 nucleotides).
  • the N-terminus of the target protein may be fused to the N-terminal portion of another protein encoded by the expression vector.
  • a terminator is not necessarily required for expression of the target protein, but it is desirable to place a terminator directly under the structural gene.
  • a vector DNA fragment can be obtained by cleaving the above-mentioned vector with the restriction enzyme used for excision of the inserted DNA, but it is not necessarily the same as the restriction enzyme used for excision of the inserted DNA. It is not necessary to use the restriction enzyme.
  • the method for binding the inserted DNA fragment and the vector DNA fragment may be a method using a known DNA ligase. For example, after annealing of the sticky end of the inserted DNA fragment and the sticky end of the vector DNA fragment, Recombinant DNA of a DNA fragment to be inserted and a vector DNA fragment is prepared by using an appropriate DNA ligase. If necessary, after annealing, it can be transferred to a host cell such as a microorganism and recombinant DNA can be produced using in vivo DNA ligase.
  • a transformant expressing the modified DOI synthase gene can be obtained by introducing the expression vector thus prepared into a host capable of replicating and maintaining. Subsequently, the modification
  • the transformant according to the present disclosure is a transformant including the modified DOI synthase gene expression vector according to the present disclosure.
  • the host cell used for the preparation of the transformant may be any host cell as long as the recombinant DNA can be stably and autonomously propagated and a foreign DNA trait can be expressed.
  • the host cell is preferably a microbial cell.
  • the microorganism cell may be a eukaryotic cell (for example, yeast) or a prokaryotic cell. Examples of host cells include Escherichia coli cells, but are not particularly limited to E.
  • coli cells cells of Escherichia bacteria, cells of Bacillus bacteria such as Bacillus subtilis, Pseudomonas Bacteria cells such as genus bacteria, yeast cells such as Saccharomyces genus, Pichia genus, Candida genus, filamentous fungi cells such as Aspergillus can be used.
  • the host cell is preferably a host cell that accumulates a large amount of glucose-6-phosphate serving as a substrate for DOI synthase.
  • host cells include strains in which the pgi gene encoding glucose phosphate isomerase is disrupted in E. coli (for example, the E. coli GI724 ⁇ pgi strain described in WO 2006/109479), the pgi gene and glucose- A strain in which the zwf gene encoding 6-phosphate dehydrogenase is disrupted (for example, E.
  • a disrupted strain see FIG. 2 (for example, E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain described in WO 2006/109479).
  • the host cell is preferably a cell having a gene encoding an enzyme that produces glucose-6-phosphate from glucose, such as glk. Further, the host cell may be further given the ability to take extracellular glucose into the cell as it is, and for this purpose, for example, a glucose transport promoting protein gene may be further introduced. Examples of the glucose transport promoting protein gene include glf derived from Zymomonas mobilis. In addition, the host cell may be further provided with improved utilization of fructose and sucrose. For this purpose, for example, a sucrose hydrolase gene may be further introduced. Examples of the sucrose hydrolase gene include cscA derived from E. coli O-157. An example of a vector having such a gene is the plasmid vector pGAP-btrC-cscA-glf described in International Publication No. 2010/053052.
  • a competent cell method using calcium treatment, an electroporation method, or the like can be used.
  • competent cells E. coli DH5 ⁇ competent cells and the like can be used.
  • the culture conditions for the transformant are the same as those for the original host microorganism, and known conditions can be used.
  • various carbon sources, nitrogen sources, inorganic salts and organic nutrient sources can be arbitrarily used.
  • carbon sources that can be used include glucose, sucrose, molasses, and fats.
  • nitrogen source include ammonium salts such as ammonia, ammonium chloride, ammonium sulfate, and ammonium phosphate, peptone, meat extract, yeast extract, and the like.
  • inorganic salts include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, and sodium chloride.
  • examples of other organic nutrient sources include amino acids such as glycine, alanine, serine, threonine, and proline, and vitamins such as vitamin B1, vitamin B12, and vitamin C.
  • the medium contains appropriate amounts of carbon source, nitrogen source, inorganic substance and other nutrients
  • a synthetic medium or a natural medium can be used.
  • the medium include LB liquid medium, RM liquid medium, 2 ⁇ YT liquid medium, L agar medium, RMM liquid medium, and the like.
  • an LB agar plate may be used.
  • a medium containing the corresponding drug is used, and the selection marker is nutrient-free. If required, use a medium that does not contain the corresponding nutrients.
  • the culture conditions may be appropriately selected depending on the type of culture medium and the culture method, and are not particularly limited as long as the transformant grows.
  • the culture temperature may be any temperature at which the transformant can grow.
  • the pH at the time of culture may be a pH at which the transformant can grow.
  • the culture time is not particularly limited as long as it can efficiently produce DOI synthase.
  • the culture temperature may be, for example, a temperature in the range of 20 ° C. to 45 ° C., a temperature in the range of 25 ° C. to 35 ° C., or a temperature in the range of 24 ° C. to 37 ° C. Good.
  • the pH of the medium may be selected, for example, in the range of 4 to 8, may be in the range of 5 to 8, and may be in the range of 6.5 to 8.
  • the culture may be performed aerobically or anaerobically depending on the type of microorganism.
  • the culture period may be, for example, 1 hour to 7 days, 6 hours to 60 hours, or 12 hours to 30 hours.
  • the culture period may be set so that the production amount of the modified DOI synthase is maximized.
  • the time required for the cultivation is It may be within 48 hours.
  • the culture time may be in the range of 0.5 hours to 30 hours. Culturing can be performed in a liquid medium containing the above-described culture components by using a normal culture method such as shaking culture, aeration-agitation culture, continuous culture, or fed-batch culture.
  • the obtained transformant is cultured under conditions where DOI can be produced, and the production state of DOI in the culture solution is examined.
  • the production status of DOI can be examined with a gas chromatograph mass spectrometer or a high performance liquid chromatograph analyzer.
  • Such production amount analysis can be performed with reference to Kogure et al., J. Biotechnol., 2007, vol.129, p.502.
  • an expression vector possessed by the transformant is extracted, and a base sequence of a gene encoding the enzyme is determined.
  • the predicted amino acid sequence of the enzyme can then be compared with the amino acid sequence of the wild-type enzyme to identify which amino acids contribute to the modification of the enzyme properties.
  • site-directed mutagenesis is performed to determine how much each amino acid substitution contributes to the modification of the properties of the enzyme. Any one amino acid can be replaced with another amino acid by the method and examined.
  • Enzymological properties of the mutant enzymes obtained above are as follows: after separation and purification of each mutant enzyme, the specific activity, substrate specificity, optimum temperature, optimum pH, etc. are examined and compared with the wild-type enzyme. This makes it possible to verify changes in the properties of the enzyme.
  • the modified DOI synthase produced by the transformant can be used by directly collecting a culture solution containing the transformant in the culture.
  • a transformant can also be extract
  • the collected transformant is disrupted by a mechanical method or an enzymatic method such as lysozyme, and if necessary, a chelating agent such as Ethylenediaminetic acid (EDTA) and / or a surfactant is added to solubilize the polypeptide, It can be separated and collected as a solution.
  • EDTA Ethylenediaminetic acid
  • the method for producing a polypeptide having DOI synthesis activity according to the present disclosure includes culturing the transformant according to the present disclosure.
  • the medium used for culturing the transformant, the culture conditions, the culture method, and the like are as described in the description of the transformant according to the present disclosure.
  • the culture conditions are not particularly limited as long as the host cells can grow and produce a protein having DOI synthesis activity.
  • the gene encoding the modified DOI synthase on the vector according to the present disclosure is expressed, and the modified DOI synthase is generated.
  • the modified DOI synthase can be obtained by culturing within 48 hours at a pH in the range of 6 to 8 and a temperature in the range of 25 to 40 ° C. in an appropriate medium under aerobic conditions.
  • the produced modified DOI synthase is contained in at least one of the transformant cells (for example, Escherichia coli cells) and the culture medium.
  • the cells and medium of the transformant may be used directly in the DOI synthesis reaction without purification, or the modified DOI synthase may be purified from the medium.
  • the modified DOI synthase in the cell can also be recovered by disrupting or dissolving the cell.
  • the cells may be separated from the medium by centrifugation or the like, and the separated cells may be used for the DOI synthesis reaction, or the cells may be dried, frozen or lyophilized and stored.
  • the separated cells may be disrupted or lysed, and the released DOI synthase may be used as it is for the DOI synthesis reaction, or the released DOI synthase may be purified.
  • general purification methods such as centrifugation, salting-out, desalting, chromatography, electrophoresis, ultrafiltration, etc. can be used under appropriately controlled conditions.
  • DOI synthase can be purified by lysis of cells using Lysis buffer, fixation of DOI synthase to Ni-NTA agarose, and elution with elution buffer.
  • the DOI production method includes a modified DOI synthase according to the present disclosure, a transformant according to the present disclosure, a culture of the transformant, or a transformant or a processed product of the culture.
  • a method for producing DOI comprising converting glucose or glucose-6-phosphate to DOI by contacting with 6-phosphate.
  • the culture of the transformant refers to a product obtained by culturing the transformant and comprising cells and the surrounding medium.
  • the culture may not be used.
  • dried or frozen transformant cells prepared in advance may be added directly to the reaction system.
  • the medium, culture conditions, culture method, and the like for obtaining a transformant culture are the same as the culture medium, culture conditions, culture method, and the like that can be used for culturing the transformant.
  • the culture conditions are not particularly limited as long as the host cells can grow and produce a protein having DOI synthesis activity.
  • the treated product of the transformant refers to a product obtained by subjecting the transformant to any treatment within a range not losing the activity of the modified DOI synthase produced by the transformant.
  • treatment include heat treatment, cooling treatment, mechanical destruction, ultrasonic treatment, freeze-thaw treatment, drying treatment, pressurization or decompression treatment, osmotic pressure treatment, self-digestion, surfactant treatment and enzyme treatment.
  • the treated product of the culture refers to a product obtained by subjecting the cultured product of the transformant to any treatment within a range not losing the activity of the modified DOI synthase produced by the transformant.
  • treatment include heat treatment, cooling treatment, cell mechanical destruction, ultrasonic treatment, freeze-thaw treatment, drying treatment, pressurization or decompression treatment, osmotic pressure treatment, cell autolysis, surfactant treatment,
  • the treatment include one or more selected from the group consisting of enzyme treatment (for example, cell destruction treatment), cell separation treatment, purification treatment, and extraction treatment.
  • the transformant cells may be separated from the medium or the like, and the separated cells may be added to the reaction system.
  • separation means such as filtration or centrifugation can be used.
  • separating a modified DOI synthetase from a contaminant may be performed, and the solution containing the enzyme obtained by this refinement
  • an extract obtained by extracting the culture with an organic solvent such as methanol or acetonitrile or a mixed solvent of an organic solvent and water may be added to the reaction system.
  • Such a purified product or extract may be free from transformant cells. Even if the cells of the transformant do not exist, it can be used for the reaction as long as the enzyme activity remains.
  • the above-mentioned cell disruption or lysis treatment can be performed by disrupting the cell membrane of the transformant according to a known method such as lysozyme treatment, freeze-thawing, or ultrasonic disruption.
  • the contact of the transformant according to the present disclosure, the culture of the transformant or the treated product of the transformant or the culture with glucose or glucose-6-phosphate is performed under the following conditions. Is preferred.
  • the contact is preferably performed in a solution containing glucose or glucose-6-phosphate as a substrate.
  • the solution may contain both glucose and glucose-6-phosphate.
  • the reaction is preferably performed in the presence of a coenzyme such as NAD or NADP in view of reaction efficiency.
  • Reaction conditions are not particularly limited as long as the above reaction proceeds.
  • the pH of the solution is not particularly limited as long as the enzyme activity of the modified DOI synthase is maintained.
  • the pH during the reaction is preferably in the range of 4.0 to 9.0.
  • the pH is preferably in the range of 5.0 to 8.0, and more preferably in the range of 6.0 to 8.0.
  • the temperature of the solution is not particularly limited as long as the enzyme activity of the modified DOI synthase is maintained, but is preferably a temperature in the range of 10 ° C to 50 ° C, more preferably a temperature in the range of 20 ° C to 45 ° C. Even more preferred is a temperature within the range of 30 ° C to 42 ° C.
  • the solution medium water or an aqueous medium, an organic solvent, or a mixed solution of water or an aqueous medium and an organic solvent is used.
  • aqueous medium for example, a buffer solution such as a phosphate buffer solution, a HEPES (N-2-hydroxyethylpiperazine-N-ethanesulfonic acid) buffer solution, or a tris [tris (hydroxymethyl) aminomethane] hydrochloric acid buffer solution is used.
  • Any organic solvent may be used as long as it does not inhibit the reaction. For example, acetone, ethyl acetate, dimethyl sulfoxide, xylene, methanol, ethanol, butanol and the like are used.
  • the solution may be a liquid medium.
  • the contact of the transformant according to the present disclosure, the culture of the transformant or the treated product of the transformant or the culture with glucose or glucose-6-phosphate is performed under shaking or stirring.
  • such contact can be done in solution.
  • glucose or glucose-6-phosphate in the form of a substrate solution or in the form of a solid It may be added.
  • An acid or an alkali may be added at the start of the reaction or during the reaction in order to maintain the pH of the reaction solution within an appropriate range.
  • alkalis examples include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, as well as ammonium hydroxide, calcium hydroxide, dipotassium phosphate, and disodium phosphate. , Potassium pyrophosphate, ammonia and the like which are dissolved in water to make the liquid basic.
  • acids examples include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, phosphoric acid and the like.
  • the contact may be performed, for example, in an air atmosphere or a deoxygenated atmosphere.
  • the deoxygenated atmosphere can be achieved by substitution with an inert gas, reduced pressure, boiling, or a combination thereof. It is preferable to use at least substitution with an inert gas, that is, an inert gas atmosphere.
  • the inert gas include nitrogen gas, helium gas, argon gas, carbon dioxide gas, and the like, preferably nitrogen gas.
  • the transformant, the transformant culture, or the transformant or the treated product of the transformant used contains the modified DOI synthase.
  • the modified DOI synthetase present in the reaction solution acts to produce DOI with high production efficiency.
  • a substance involved in the reaction is continuously supplied by metabolism. From the standpoint of being able to do, it is preferable to include the transformant in a living state.
  • the transformant, the culture of the transformant or the treated product of the transformant or the culture may be added all at once at the start of the reaction, or divided or continuously during the reaction. You may add.
  • glucose or glucose-6-phosphate as a raw material may be added all at once at the start of the reaction, or may be added dividedly or continuously during the reaction.
  • the concentration of glucose or glucose-6-phosphate in the reaction solution is, for example, 0.1% by mass to 20% by mass, alternatively 0.5% by mass to 15% by mass, or alternatively 2% by mass to 10% by mass. It may be.
  • Examples of the method of bringing the transformant, the transformant culture, or the transformant or the treated product of the transformant into contact with glucose or glucose-6-phosphate include the transformant, the transformation A culture of the body or the transformant or a treated product of the culture is added to a solution containing glucose or glucose-6-phosphate, and the reaction is allowed to proceed with stirring, the culture of the transformant or the trait A method of allowing a transformant or a treated product of the culture to be added to a solution containing glucose or glucose-6-phosphate and allowing the reaction to proceed while shaking, the transformant, the culture of the transformant, or the transformation Examples thereof include a method in which a body or a processed product of the culture and pyridoxine or a salt thereof are sufficiently mixed in a solution and then allowed to stand to allow the reaction to proceed.
  • the transformant, the culture of the transformant, or the transformant or a processed product of the culture is added to a solution containing glucose or glucose-6-phosphate and stirred. And a method of allowing the reaction to proceed.
  • reaction vessel that can be used for the reaction.
  • the transformant added, the transformant culture, or the transformant or the treated product of the transformant and the solution containing pyridoxine or a salt thereof can be stirred and mixed so that they are sufficiently mixed.
  • the reaction vessel has a temperature control function so that it can be kept within the optimum temperature range of DOI synthase.
  • the contact time (reaction time) between the transformant, the transformant culture, or the transformant or the treated product of the transformant and glucose or glucose-6-phosphate is the enzyme of the modified DOI synthase.
  • reaction time There is no particular limitation as long as the activity is maintained, but it may be, for example, 30 minutes to 100 hours, or 2 hours to 50 hours.
  • the reaction may be performed in a batch mode, or in the course of the reaction, it may be performed in a semi-batch mode in which one or both of the substrate and the microorganism, the culture or the treated product are sequentially added, or performed in a continuous mode. Also good.
  • the upper limit of the reaction time is not particularly limited. Not.
  • glucose or glucose-6-phosphate may be added continuously.
  • the method for producing DOI includes culturing a transformant according to the present disclosure in a medium.
  • the medium is preferably a liquid medium and preferably contains glucose or glucose-6-phosphate.
  • the medium may further contain fructose.
  • the medium, culture conditions, culture method, and the like that can be used the above-described culture medium, culture conditions, culture method, and the like that can be used for culturing the transformant can be applied.
  • a 2 ⁇ YT liquid medium can be used.
  • Glucose or glucose-6-phosphate may be added to such a medium so that a desired concentration of glucose or glucose-6-phosphate is included in the medium.
  • the culture temperature may be, for example, a temperature within the range of 25 ° C. to 35 ° C., and the culture time may be, for example, 5 hours to 30 hours.
  • the concentration of glucose or glucose-6-phosphate in the medium is, for example, 0.1% by mass to 20% by mass, alternatively 0.5% by mass to 15% by mass, alternatively 1.5% by mass to 10% by mass. %.
  • Such culture also produces DOI due to the presence of the transformant.
  • pre-culture Prior to culture for DOI production (hereinafter also referred to as main culture), pre-culture may be performed on the transformant.
  • the medium used for the pre-culture may be a medium different from the medium used for the culture for DOI production.
  • the difference in the medium may be a difference in the basic medium or a difference in the concentration of glucose or glucose-6-phosphate.
  • the medium, culture conditions, culture method, and the like used for the preculture the above-described medium, culture conditions, culture method, and the like that can be used for culturing the transformant can be applied.
  • the medium used for the pre-culture may be a medium containing neither glucose nor glucose-6-phosphate.
  • Examples of the medium used for the preculture include an RM liquid medium and an RMM liquid medium, but may be a 2 ⁇ YT liquid medium.
  • the preculture may be performed until the state of the transformant is stabilized, but the preculture time is, for example, 3 hours to 48 hours, or may be 8 hours to 30 hours.
  • the transformant after the preculture may be added as it is to the medium for main culture as it is, separated from the medium used for the preculture by centrifugation or the like, and then added to the medium for main culture. Also good.
  • the amount of the culture solution in the main culture can be larger than the amount of the culture solution in the preculture, for example, 10 times or more by volume, or 20 times or more.
  • the main culture may be performed in a batch mode, or may be performed in a semi-batch mode in which glucose or glucose-6-phosphate is sequentially added during the reaction, or glucose or glucose-6-phosphate is continuously added. You may carry out by a continuous type. In the case of a semi-batch type or a continuous type, an operation such as supplying a new raw material is performed, and thus the upper limit of the reaction time is not particularly limited.
  • the use of the transformant according to the present disclosure, the culture, or the processed product of the transformant or the culture using glucose or glucose-6-phosphate as a raw material enables high production efficiency of DOI.
  • the DOI obtained by the above method can be converted into catechol and used as a raw material for neurological drugs, raw materials for food fragrances, antioxidants for hair care products, etc., and converted into hydroquinone to stop hemostatics, analgesics, etc. It can be used as a raw material for cosmetics and cosmetics such as whitening agents.
  • TAB 1,2,4-trihydroxybenzene
  • TGB 1,2,4-triglycidyloxybenzene
  • TGB is excellent in heat resistance and is a low-viscosity liquid at room temperature, and can be used over a wide range of materials such as sealing materials for electronic components, circuit substrates, adhesives, coating materials, paints, and matrix resins for composite materials.
  • process is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used if the intended purpose of the process is achieved. included.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. It means the total amount of substance.
  • Example 1 ⁇ Construction of mutant DOI synthase gene clone library by error-prone PCR> 3A to 3D show the steps from the preparation of a mutant DOI synthase gene clone library using error-prone PCR to the isolation (1, 2, and 3 selection) of DOI high-production DOI synthase gene mutant clones. It was.
  • a mutation was randomly introduced into the gene (btrC) encoding the amino acid sequence of DOI synthase derived from Bacillus circulans shown in SEQ ID NO: 1 by error-prone PCR.
  • Primer 1 (5′-acgcgtcgacatgacgactaaacaaatttg-3 ′) corresponding to the nucleotide sequence obtained by adding the SalI restriction enzyme site upstream of the start codon of the btrC gene using the NdeI-XbaI site of the site as a template
  • primer 2 (5′-aaaactgcagttacagcccttccgga-3
  • PCR is held at 94 ° C for 2 minutes and 30 seconds, followed by 30 cycles of heat denaturation at 94 ° C for 20 seconds, annealing at 50 ° C for 25 seconds, and DNA extension reaction at 72 ° C for 1 minute and 10 seconds. The mixture was further kept at 72 ° C. for 3 minutes, and the resulting PCR amplification product was kept at 4 ° C.
  • the DNA fragment thus PCR amplified was treated with phenol / chloroform, centrifuged, and the supernatant was ethanol precipitated to recover the DNA fragment.
  • the recovered DNA fragment was digested with restriction enzymes SalI and PstI, and purified and isolated by agarose gel electrophoresis to obtain a DNA fragment of a mutant DOI synthase gene.
  • an expression vector for expressing the DNA fragment of the mutant DOI synthase gene in a host cell was constructed.
  • pLEX vector Invitrogen
  • primer 3 5′-atggtaccgagctcggatcc-3 ′
  • primer 4 shown in SEQ ID NO: 5 corresponding to the nucleotide sequence added with an XbaI restriction enzyme site on the 5 ′ side
  • PCR amplification was performed using 5′-ctagtctagactaggagataatttatcaccgcag-3 ′.
  • KOD polymerase TOYOBO
  • PCR reaction conditions were maintained at 94 ° C. for 2 minutes, followed by 30 cycles of heat denaturation at 94 ° C. for 30 seconds, annealing at 52 ° C. for 30 seconds, and DNA extension at 68 ° C. for 1 minute. Further, it was kept at 68 ° C. for 2 minutes, and the obtained PCR amplification product was kept at 4 ° C.
  • the DNA fragment thus amplified by PCR was treated with phenol / chloroform, centrifuged, and the supernatant was ethanol precipitated to recover the DNA fragment.
  • the recovered DNA fragment was digested with restriction enzymes SalI and XbaI and purified and isolated by agarose gel electrophoresis to obtain an expression vector DNA fragment.
  • a gadA promoter was obtained as a promoter for expressing a DNA fragment of the mutant DOI synthase gene in a host cell (E. coli). Specifically, the gadA promoter was obtained as follows. Using a chromosomal DNA of E.
  • a primer 5 (5′-ctagtctagagtcgtttttctgct-3 ′) shown in SEQ ID NO: 6 corresponding to a nucleotide sequence added with an XbaI restriction enzyme site on the 5 ′ side and a SalI restriction enzyme site on the 5 ′ side PCR amplification was performed using the primer 6 (5′-acgcgtcgacttcgaactccttaaatttattttgaaggc-3 ′) shown in SEQ ID NO: 7 corresponding to the added nucleotide sequence.
  • KOD polymerase (TOYOBO) was used for PCR amplification.
  • PCR reaction conditions were maintained at 94 ° C for 2 minutes, followed by 30 cycles of heat denaturation at 94 ° C for 30 seconds, annealing at 50 ° C for 30 seconds, and DNA extension at 68 ° C for 1 minute. Further, it was kept at 68 ° C. for 2 minutes, and the obtained PCR amplification product was kept at 4 ° C.
  • the DNA fragment thus amplified by PCR was treated with phenol / chloroform, centrifuged, and the supernatant was ethanol precipitated to recover the DNA fragment.
  • the recovered DNA fragment was digested with restriction enzymes SalI and XbaI, and purified and isolated by agarose gel electrophoresis to obtain a gadA promoter DNA fragment.
  • the expression vector pGADP (FIG. 4) was obtained by inserting into the fragment.
  • the expression vector pGADP obtained by the above operation is digested with the restriction enzymes SalI and PstI, purified and isolated by agarose gel electrophoresis, and the DNA fragment of the mutant DOI synthetase gene is ligated and inserted, thereby mutating the DOI synthetase.
  • a molecular population of the gene (mbtrC) was obtained.
  • the molecular population obtained by the above operation was transformed into competent cell cells of E. coli DH5 ⁇ to construct a mutant DOI synthase gene clone library.
  • Example 2 ⁇ Isolation of DOI high production DOI synthase gene mutant clone>
  • a mutant DOI synthetase gene library (pGADP-mbtrC, FIG. 5) is extracted from the mutant DOI synthetase gene clone library obtained by the above operation, and glucose-6-phosphate which is a substrate of DOI synthetase is extracted.
  • Highly accumulating E. coli GI724 ⁇ pgi strain (a strain in which the pgi gene in E. coli GI724 strain is disrupted as described in International Publication No. 2006/109479 and Kakinuma et al., Tetrahedron Letters, 2000, vol. 41, p. 1935) Cells were transformed.
  • the transformed cells were cultured in L agar medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl, 2% agar, 100 ⁇ g / ml ampicillin), and the grown clones were isolated from DOI synthase gene mutant clones. Selected for separation.
  • L agar medium 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 2% agar, 100 ⁇ g / ml ampicillin
  • the obtained clones to be selected were first selected from RM liquid medium (2% casamino acid, 1% glycerol, 0.6% Na 2 HPO 4 , 0.3% KH 2 PO 4 , 0.05% NaCl. , 0.1% NH 4 Cl, 1 mM MgCl 2 , 100 ⁇ g / ml ampicillin) was inoculated into a deep well plate 96-well round bottom containing 1 ml each, and shaken at 30 ° C. for 24 hours for preculture.
  • RM liquid medium 2% casamino acid, 1% glycerol, 0.6% Na 2 HPO 4 , 0.3% KH 2 PO 4 , 0.05% NaCl. , 0.1% NH 4 Cl, 1 mM MgCl 2 , 100 ⁇ g / ml ampicillin
  • the secondary selection was performed on candidate clones obtained in the primary selection.
  • the candidate clones obtained in the primary selection were inoculated into a test tube containing 3 ml of RM liquid medium, shaken at 30 ° C. for 24 hours, and precultured.
  • 500 ml triangle containing 50 ml each of 2 ⁇ YT liquid medium for secondary selection (1.6% tryptone, 1% yeast extract, 0.5% NaCl, 2% glucose, 100 ⁇ g / ml ampicillin) was used as the preculture.
  • the culture solution at 0, 12, 24, and 36 hours after the start of the main culture was centrifuged, and 10 ⁇ l of the supernatant from which the bacterial cells were removed was subjected to the same operation as the DOI concentration measurement operation in the primary selection, whereby the DOI concentration was selected by HPLC, and a candidate clone having a higher DOI production amount than a clone having a wild type DOI synthase gene having the amino acid sequence of SEQ ID NO: 1 was selected.
  • a tertiary selection was performed on candidate clones obtained in the secondary selection.
  • a plasmid vector was purified and isolated from a clone obtained by secondary selection, and E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain (International Publication No. 2006/109479 and Kakinuma et al., Tetrahedron) in which glucose-6-phosphate which is a substrate of DOI synthase is highly accumulated.
  • Competent cell cells of pgi gene, zwf gene and pgm gene in E. coli GI724 strain described in Letters, 2000, vol.41, p.1935 were transformed.
  • the transformed cells were cultured in L agar medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl, 2% agar, 100 ⁇ g / ml ampicillin), and the grown clones were used for the third selection.
  • L agar medium 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 2% agar, 100 ⁇ g / ml ampicillin
  • the third selection first, the obtained clones to be selected were placed in RMM liquid medium (2% casamino acid, 0.5% mannitol, 0.6% Na 2 HPO 4 , 0.3% KH 2 PO 4 , 0.05 % NaCl, 0.1% NH 4 Cl, 1 mM MgCl 2 , 100 ⁇ g / ml ampicillin) was inoculated into a test tube containing 3 ml each, shaken at 30 ° C. for 24 hours, and precultured.
  • RMM liquid medium 2% casamino acid, 0.5% mannitol, 0.6% Na 2
  • the data series represented by ⁇ represents the amount of DOI produced by a clone having the wild-type DOI synthetase gene having the amino acid sequence of SEQ ID NO: 1, and the data series represented by ⁇ represents a clone having the wild-type DOI synthase gene. It is the DOI production amount by the candidate clone with much production amount of DOI.
  • Example 3 ⁇ Analysis of nucleotide sequence of mutant DOI synthase gene> In order to determine the mutation point of the DOI synthetase gene, the base sequence analysis of the DOI synthetase gene of the clone obtained in the third selection was performed.
  • Primers for analysis were primer 7 shown in SEQ ID NO: 8 (5′-ggagccaaccgaagaacc-3 ′), primer 8 shown in SEQ ID NO: 9 (5′-ctagtctagagtcgtttttctgct-3 ′), primer 9 shown in SEQ ID NO: 10 (5′- Using a total of four types of primers, acctgatgcccgaacatg-3 ′) and primer 10 (5′-agatcgaatccgggtccg-3 ′) shown in SEQ ID NO: 11, a PCR reaction was performed using DTCS Quick Start Kit manufactured by Beckman Coulter. The reaction sample was analyzed using a CEQ8000 genetic analyzer manufactured by Beckman Coulter.
  • the 877th T from the start codon of the DOI synthase gene (btrC) was base-substituted. That is, the amino acid substitution of 293th tryptophan from the N-terminal was performed with arginine.
  • a gene (btrC (W293R)) encoding a mutant DOI synthase that improves DOI productivity was obtained as compared with the wild-type DOI synthase having the amino acid sequence of SEQ ID NO: 1.
  • Example 4 Provide and purification of wild type and mutant DOI synthase> A BamHI restriction enzyme site was added upstream of the start codon of the btrC gene using the plasmid vector pLEX-btrC (described in WO 2006/109479) containing the wild-type DOI synthetase of the amino acid sequence of SEQ ID NO: 1 as a template.
  • Primer 11 (5′-cgcggatccatgacgactaaacaaattt-3 ′) shown in SEQ ID NO: 12 corresponding to the nucleotide sequence thus obtained
  • Primer 12 shown in SEQ ID NO: 13 corresponding to the nucleotide sequence added with a HindIII restriction enzyme site upstream of the stop codon of the btrC gene ( 5'-cccaagcttttacagcccttccccgatc-3 ')
  • the nucleotide sequence of the btrC gene was amplified by PCR method, ligated to E. coli recombinant protein high expression vector pQE80L (QIAGEN), transformed into E.
  • the plasmid vector containing the mutant DOI synthetase (btrC (W293R)) obtained above is used as a template and the BamHI restriction enzyme upstream of the start codon of the btrC gene.
  • Primer 11 (5′-cgcggatccatgacgactaaacaaattt-3 ′) shown in SEQ ID NO: 12 corresponding to the nucleotide sequence added with the site, and shown in SEQ ID NO: 13 corresponding to the nucleotide sequence added with a HindIII restriction enzyme site upstream of the stop codon of the btrC gene
  • the nucleotide sequence of btrC (W293R) gene was amplified by PCR using primer 12 (5′-cccaagcttttacagcccttccccgatc-3 ′), ligated to E. coli recombinant protein high expression vector pQE80L (QIAGEN), and transformed into E. coli DH5 ⁇ .
  • plasmid pQE80L-btrC (W293R) was obtained.
  • Recombinant mutant DOI synthase was produced and purified in the same manner.
  • Example 5 ⁇ Measurement of wild-type and mutant DOI synthase activity> The enzyme activities of the wild-type and mutant DOI synthases purified in Example 4 were measured using glucose-6-phosphate and NAD + .
  • the reaction solution is treated with phenol / chloroform, deproteinized, and a method using HPLC used for measuring DOI concentration in the primary selection in Example 2 using 10 ⁇ l of the aqueous layer fraction after centrifugation as a sample.
  • the DOI was quantified and the activity was calculated.
  • the amount of DOI synthesized per 1 minute by 1 mg of DOI synthase was defined as the specific activity.
  • the DOI synthetase activity of the mutant DOI synthetase (W293R) was 1.5 times higher than that of the wild-type DOI synthetase of the amino acid sequence of SEQ ID NO: 1 (FIG. 7).
  • Example 6 In order to obtain a mutant DOI synthetase gene that further improves DOI productivity, a new mutation is obtained by the error-prone PCR method shown in Example 1 using a plasmid containing the mutant DOI synthetase gene (W293R) as a template. Type DOI synthase gene clone library was constructed. Subsequently, the first, second and third selections shown in the isolation of the DOI synthetase gene mutant clone of Example 2 were performed, and the DOI productivity was further improved as compared with the clone containing the mutant DOI synthetase gene (W293R). A clone was obtained (FIG. 8). In FIG.
  • the data series represented by ⁇ represents the DOI production by the E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing pGADP-btrC
  • the data series represented by ⁇ is the DOI production by the E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing pGADP-btrC (W293R).
  • the data series represented by ⁇ , the data series represented by ⁇ , the data series represented by +, and the data series represented by ⁇ are each an E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing different mutant DOI synthase genes. Represents the DOI production by.
  • Table 5 shows the clones containing the wild-type DOI synthase gene, the clones containing the mutant DOI synthase gene having the W293R mutation, and the DOI production (shown in FIG. 8) by each clone shown in Table 4. Indicates a numerical value.
  • the DOI synthetase activity of the mutant DOI synthetase (W293R / N14T) is 1.92 times higher than the activity of the wild-type DOI synthetase of the amino acid sequence of SEQ ID NO: 1 (FIG. 9),
  • the DOI synthetase activity of the mutant DOI synthetase (W293R / Y37F) is 1.57 times higher than the activity of the wild-type DOI synthetase of the amino acid sequence of SEQ ID NO: 1 (FIG.
  • the DOI synthetase activity of the mutant DOI synthetase (W293R / A290T) is 1.45 times higher than the activity of the wild-type DOI synthetase of the amino acid sequence of SEQ ID NO: 1 (FIG. 9)
  • the DOI synthetase activity of the mutant DOI synthetase (W293R / H319R) is 1.83 times higher than the activity of the wild-type DOI synthetase of the amino acid sequence of SEQ ID NO: 1 (FIG. 9)
  • the above four mutant DOI synthetase genes were all more active than the wild-type DOI synthetase having the amino acid sequence of SEQ ID NO: 1.
  • Example 7 ⁇ DOI Fermentation Productivity by Transformant Introducing Mutant DOI Synthase Gene (btrC (W293R / H319R))> An expression vector for expressing a DNA fragment of a mutant DOI synthase gene (btrC (W293R / H319R)) in a host cell (E. coli) was constructed.
  • primer 3 (5′-atggtaccgagctcggatcc-3 ′) shown in SEQ ID NO: 4 and primer 13 (5′-BggHI restriction enzyme site on the 5 ′ side)
  • primer 13 5′-BggHI restriction enzyme site on the 5 ′ side
  • KOD polymerase (TOYOBO) was used for PCR reaction conditions. PCR reaction conditions were maintained at 94 ° C for 2 minutes, followed by 30 cycles of heat denaturation at 94 ° C for 30 seconds, annealing at 50 ° C for 30 seconds, and DNA extension at 68 ° C for 1 minute.
  • the DNA fragment thus amplified by PCR was treated with phenol / chloroform, centrifuged, and the supernatant was ethanol precipitated to recover the DNA fragment.
  • the recovered DNA fragment was digested with restriction enzymes BamHI and PstI, and purified and isolated by agarose gel electrophoresis to obtain an expression vector DNA fragment.
  • a gapA promoter was obtained as a promoter for expressing a DNA fragment of the mutant DOI synthase gene (btrC (W293R / H319R)) in a host cell (E. coli).
  • the gapA promoter was obtained as follows.
  • a primer 14 (5′-cgcggatccgcgggaagagtgaggcgagtc-3 ′) shown in SEQ ID NO: 15 having a BamHI restriction enzyme site on the 5 ′ side and a phosphate group added on the 5 ′ side using a chromosomal DNA of E. coli as a template is shown in SEQ ID NO: 16.
  • PCR amplification was performed using primer 15 (5′-atattccaccacctatttg-3 ′).
  • KOD polymerase TOYOBO
  • PCR reaction conditions were maintained at 94 ° C for 2 minutes, followed by 30 cycles of heat denaturation at 94 ° C for 30 seconds, annealing at 50 ° C for 30 seconds, and DNA extension at 68 ° C for 1 minute. Further, it was kept at 68 ° C. for 2 minutes, and the obtained PCR amplification product was kept at 4 ° C.
  • the DNA fragment thus PCR amplified was treated with phenol / chloroform, centrifuged, and the supernatant was ethanol precipitated to recover the gapA promoter DNA fragment.
  • primer 16 (5′-atgacgactaaacaaatttgttttgcgg-3 ′) shown in SEQ ID NO: 17 with a phosphate group added to the 5 ′ side; PCR amplification was performed using primer 17 (5′-aaaactgcagttacagcccttccggatc-3 ′) shown in SEQ ID NO: 18 having a PstI restriction enzyme site on the 5 ′ side.
  • KOD polymerase TOYOBO
  • PCR reaction conditions were maintained at 94 ° C for 2 minutes, followed by 30 cycles of heat denaturation at 94 ° C for 30 seconds, annealing at 50 ° C for 30 seconds, and DNA extension at 68 ° C for 1 minute. Further, it was kept at 68 ° C. for 2 minutes, and the obtained PCR amplification product was kept at 4 ° C.
  • the PCR-amplified DNA fragment was treated with phenol / chloroform, centrifuged, and the supernatant was ethanol precipitated to recover the DNA fragment of the mutant DOI synthase gene (btrC (W293R / H319R)).
  • PCR reaction conditions were maintained at 94 ° C for 2 minutes, followed by 30 cycles of heat denaturation at 94 ° C for 30 seconds, annealing at 50 ° C for 30 seconds, and DNA extension at 68 ° C for 1 minute. Further, it was kept at 68 ° C. for 2 minutes, and the obtained PCR amplification product was kept at 4 ° C.
  • the DNA fragment thus amplified by PCR was treated with phenol / chloroform, centrifuged, and the supernatant was ethanol precipitated to recover the DNA fragment.
  • the recovered DNA fragment was digested with restriction enzymes BamHI and PstI, and purified and isolated by agarose gel electrophoresis to obtain an expression vector DNA fragment.
  • This DNA fragment was ligated and inserted into the above-described expression vector DNA fragment to obtain plasmid pGAPP-btrC (W293R / H319R) (FIG. 10). Further, pGAPP-btrC in which the wild type DOI synthase gene having the amino acid sequence of SEQ ID NO: 1 was inserted was obtained in the same manner (FIG. 11).
  • Plasmids pGAPP-btrC (W293R / H319R) and pGAPP-btrC were purified and isolated, and E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain (International Publication No. 2006/109479 and Kakinuma et al.) In which glucose-6-phosphate which is a substrate of DOI synthase is highly accumulated. Tetrahedron Letters, 2000, vol.41, p.1935).
  • the transformed cells are inoculated into a test tube containing 3 ml of 2 ⁇ YT liquid medium (1.6% tryptone, 1% yeast extract, 100 ⁇ g / ml ampicillin), shaken at 30 ° C.
  • the DOI concentration was determined by HPLC.
  • the turbidity of the cells, the glucose concentration in the medium, and the mannitol concentration were also measured.
  • Cellular turbidity is measured at 600 nm using a spectrophotometer, glucose concentration is measured according to glucose CII-Test Wako manufactured by Wako Pure Chemical Industries, and mannitol concentration is measured according to Mannitol Assay Kit manufactured by Magazzyme. did.
  • FIG. 12A shows the time course of the turbidity of the medium
  • FIG. 12B shows the time course of the glucose concentration in the medium
  • FIG. 12C shows the time course of the mannitol concentration in the medium
  • FIG. 12D shows the time course of the DOI production amount.
  • the E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing pGAPP-btrC (W293R / H319R) (data series indicated by ⁇ in FIGS. 12A to 12D) is the E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing pGAPP-btrC (in FIG. 12A to FIG.
  • the DOI production rate was about twice that of the data series.
  • Example 8 ⁇ DOI Fermentation Productivity by Transformant Introducing Mutant DOI Synthase Gene (btrC (H319R))> An expression vector for expressing a DNA fragment of the mutant DOI synthase gene (btrC (H319R)) in a host cell (E. coli) was constructed. Using pGAPP-btrC (FIG.
  • primer 18 (5′-ttccattatttaatccgcgataacaagagg-3 ′) shown in SEQ ID NO: 19 and SEQ ID NO: 20 PCR amplification was performed using primer 19 (5′-cctcttgttatcgcggattaaataatggaa-3 ′).
  • KOD polymerase TOYOBO
  • PCR reaction conditions were maintained at 94 ° C for 2 minutes, followed by 20 cycles of heat denaturation at 98 ° C for 15 seconds, annealing at 55 ° C for 30 seconds, and DNA extension at 68 ° C for 6 minutes. Further, it was kept at 68 ° C. for 3 minutes, and the obtained PCR amplification product was kept at 4 ° C.
  • the DNA fragment thus amplified by PCR was digested with restriction enzyme DpnI and transformed into E. coli DH5 ⁇ to obtain plasmid pGAPP-btrC (H319R) (FIG. 13).
  • Plasmids pGAPP-btrC (H319R) and pGAPP-btrC were purified and isolated, and Escherichia coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain (International Publication No. 2006/109479 and Kakinuma et al., Tetrahedron Letters) in which glucose-6-phosphate which is a substrate of DOI synthase is highly accumulated. , 2000, vol.41, p.1935)).
  • the transformed cells are inoculated into a test tube containing 3 ml of 2 ⁇ YT liquid medium (1.6% tryptone, 1% yeast extract, 100 ⁇ g / ml ampicillin), shaken at 30 ° C.
  • the DOI concentration was determined by HPLC.
  • the turbidity of the cells, the glucose concentration in the medium, and the mannitol concentration were also measured. Cellular turbidity is measured at 600 nm using a spectrophotometer, glucose concentration is measured according to glucose CII-Test Wako manufactured by Wako Pure Chemical Industries, and mannitol concentration is measured according to Mannitol Assay Kit manufactured by Magazzyme. did.
  • FIG. 14A shows the time course of turbidity of the medium
  • FIG. 14B shows the time course of the glucose concentration in the medium
  • FIG. 14C shows the time course of the mannitol concentration in the medium
  • FIG. 14D shows the time course of the DOI production amount.
  • the E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing pGAPP-btrC (H319R) (data series represented by ⁇ in FIGS. 14A to 14D) is represented by the E. coli GI724 ⁇ pgi ⁇ zwf ⁇ pgm strain containing pGAPP-btrC ( ⁇ in FIGS. 14A to 14D).
  • the DOI production rate was about 1.2 times that of the data series.
  • Example 9 ⁇ Evaluation of DOI Fermentation Productivity in Jar Fermenter Using Transformants Introduced with Mutant DOI Synthase Genes (btrC (W293R / N14T), (W293R / H319R))>
  • a host and an expression vector different from those in Example 8 were used.
  • E. coli MG1655 ⁇ pgi ⁇ zwf strain in which glucose-6-phosphate which is a DOI synthase substrate is highly accumulated in the host (a strain in which the pgi gene and the zwf gene in E. coli MG1655 strain described in International Publication No. 2010/053052 are disrupted) was used.
  • the expression vector was prepared as follows.
  • Plasmid vector pGAP-btrC-cscA-glf containing DOI synthase gene (btrC) (GATPH promoter described in International Publication No. 2010/053052, btrC which is a DOI synthase gene of Bacillus circulans, E. coli O
  • cscA which is a sucrose hydrolase gene derived from the -157 strain
  • glf which is a glucose transport promoting protein gene derived from Zymomonas mobilis
  • SEQ ID NO: PCR amplification was performed using the primer 20 (5′-catacaggcttttaaataaaatcggg -3 ′) shown in No. 21 and the primer 21 (5′- taaaagcctgtaatgggcggacacgtc-3 ′) shown in SEQ ID NO: 22.
  • PrimeSTAR Max DNA Polymerase (TAKARA) was used for PCR amplification.
  • PCR reaction conditions were 30 cycles of heat denaturation at 98 ° C. for 10 seconds, annealing at 55 ° C. for 15 seconds, and DNA extension reaction at 72 ° C. for 40 seconds as one cycle.
  • the PCR product thus amplified was transformed into E.
  • Primer 22 (5′- tgttttacctttgcattcggcgaacat-3 ′) shown in SEQ ID NO: 23 using the plasmid vector pGAPP-btrC (W293R) -cscA-glf containing the mutant DOI synthase gene (btrC (W293R)) as a template, SEQ ID NO: 24 PCR amplification was performed using the primer 23 (5′-tgcaaaggtaaaacaccggtccgcaaa-3 ′) shown in FIG. PrimeSTAR Max DNA Polymerase (TAKARA) was used for PCR amplification. PCR reaction conditions were 30 cycles of heat denaturation at 98 ° C.
  • primer 24 (5′- ttaatccgcgataacaagaggggctac-3 ′) shown in SEQ ID NO: 25 using the plasmid vector pGAPP-btrC (W293R) -cscA-glf containing the mutant DOI synthase gene (btrC (W293R)) as a template, sequence PCR amplification was performed using primer 25 (5′- ttatcgcggattaaataatggaagat-3 ′) indicated by No. 26. PrimeSTAR Max DNA Polymerase (TAKARA) was used for PCR amplification. PCR reaction conditions were 30 cycles of heat denaturation at 98 ° C.
  • coli MG1655 ⁇ pgi ⁇ zwf strain (described in WO2010 / 053052) in which glucose-6-phosphate which is a substrate of DOI synthase is highly accumulated
  • the three plasmids pGAPP-btrC (W293R) -cscA- were cultured overnight at 37 ° C. on LB agar plates containing 100 ⁇ g / ml ampicillin.
  • lf including pGAPP-btrC (W293R / N14T) -cscA-glf, the pGAPP-btrC (W293R / H319R) -cscA-glf respectively, to obtain three kinds of MG1655 ⁇ pgi ⁇ zwf strains.
  • Various types of MG1655 ⁇ pgi ⁇ zwf strains were inoculated into 0.1 ml of the above-mentioned conical baffle flasks, and agitated and cultured at 120 rpm overnight at 28 ° C.
  • 1 L culture tank (manufactured by ABLE) containing 350 g of medium component 1 (0.2% K 2 HPO 4, 0.2% KH 2 PO 4 , 0.01% FeSO 4 ⁇ 7H 2 O, 0.03% adecanol) Cultivating tank BML-01KP3), 15 g of medium component 2 (10% (NH 4 ) 2 SO 4 , 4.6% NH 4 Cl, 4.6% MgSO 4 .7H 2 O), 50% corn steep 5 g of liquor and 700 ⁇ l of 50% phytic acid were added, 10 g of the preculture was inoculated, and culture was started.
  • medium component 1 (0.2% K 2 HPO 4, 0.2% KH 2 PO 4 , 0.01% FeSO 4 ⁇ 7H 2 O, 0.03% adecanol Cultivating tank BML-01KP3
  • medium component 2 10% (NH 4 ) 2 SO 4 , 4.6% NH 4 Cl, 4.6% MgSO 4 .7H 2 O
  • a reagent sugar solution (21% Glc, 21% Fru, 1% Xyl) was fed at a rate of 0.13 g / min for 30 hours.
  • the reagent sugar solution was prepared by autoclaving and mixing a glucose solution, a fructose solution, and a xylose solution separately.
  • Culturing was performed under atmospheric pressure for 32 hours at an aeration rate of 0.5 L / min, a stirring speed of 800 rpm, a culture temperature of 30 ° C., and a pH of 6.0 (adjusted with a 12.5% ammonia solution). Centrifugation was performed at 0, 8, 24, 27, and 32 hours after the start of the culture, and the supernatant from which the cells had been removed was diluted 100-fold with sterile distilled water and filtered (Mirex-GV, 0.22 ⁇ m, PVDF 4 mm), and the DOI, glucose, fructose, and xylose concentrations were measured using HPLC according to the conditions in Table 7.
  • 18A shows the time course of DOI production ( ⁇ ), glucose concentration ( ⁇ ), fructose concentration ( ⁇ ), and xylose concentration ( ⁇ ) in MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R) -cscA-glf.
  • 18B shows the time course of DOI production ( ⁇ ), glucose concentration ( ⁇ ), fructose concentration ( ⁇ ), and xylose concentration ( ⁇ ) in MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R / N14T) -cscA-glf.
  • 18C shows the time course of DOI production ( ⁇ ), glucose concentration ( ⁇ ), fructose concentration ( ⁇ ), and xylose concentration ( ⁇ ) in MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R / H319R) -cscA-glf. It was.
  • Table 6 shows MG1655 ⁇ pgi32w of strain MG1655 ⁇ pgi32z containing 3 types of plasmids pGAPP-btrC (W293R) -cscA-glf, pGAPP-btrC (W293R / N14T) -cscA-glf, pGAPP-btrC (W293R / H319R) -cscA-glf, respectively.
  • the DOI concentration at the hour is shown.
  • E. coli MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R) -cscA-glf E.
  • the DOI concentration at 32 hours was 56.6 g / L for MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R) -cscA-glf, and 30.6 g for MG1655 ⁇ pgi ⁇ zwL strain containing pGAPP-btrC (W293R / N14T) -cscA-glf.
  • MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R / H319R) -cscA-glf was 70.5 g / L.
  • the MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R / H319R) -cscA-glf showed about 1.2 times the DOI productivity of the MG1655 ⁇ pgi ⁇ zwf strain containing pGAPP-btrC (W293R) -cscA-glf.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

配列番号1のアミノ酸配列又はその類似配列において、配列番号1のアミノ酸配列におけるN末端から14番目、37番目、290番目、293番目及び319番目のアミノ酸残基のうち少なくとも1つに特定のアミノ酸変異を有するポリペプチド、前記ポリペプチドが有するアミノ酸配列をコードする塩基配列を有するポリヌクレオチド、発現カセット、ベクター、及び形質転換体、前記ポリペプチドの製造方法、並びに2-デオキシ-シロ-イノソースの製造方法。

Description

変異型2-デオキシ-シロ-イノソース合成酵素
 本開示は、例えば、改変2-デオキシ-シロ-イノソース(以下、「DOI」という。)合成酵素、該改変DOI合成酵素をコードする遺伝子、該遺伝子を含む発現カセット、該発現カセットを含むベクター、該ベクターを含む形質転換体、該形質転換体を用いた改変DOI合成酵素の製造方法、及びDOIの製造方法に関する。
 プラスチックや洗剤など私達の日常生活において身近な製品の多くは、化石資源を原料として製造されている。これらの化成品原料となる炭素6員環化合物は、石油化学工業により、原油から生産されている。しかし、石油から化学製品原料を製造する従来からの石油化学プロセスを用いた場合には、有限な資源である石油の枯渇とそれに伴う価格の高騰、多量の二酸化炭素の排出による地球温暖化など、地球的規模の問題が生じる懸念がある。
 炭素6員環骨格を持つキラルな化合物であるDOIは、医薬、農薬、酸化抑制剤や香料等の各種有用化学品の合成のための非常に重要な中間原料である。DOIはカテコールやドロキノンなどの2価フェノールやヒドロキシヒドロキノンに合成変換することができる。例えば、Kakinuma等, Tetrahedron Letters, 2000, vol.41, p.1935は、DOIをカテコールに合成変換することを開示している。カテコールは神経系医薬品などの原料、食品香料原料、ヘアケア商品などの酸化防止剤などに使用され、ヒドロキノンは止血剤、鎮痛剤等の原料、美白剤等の化粧品に使用され、世界的に需要の高い物質である。DOIは、さらには、擬似糖であるカルバグルコースにも変換ができ、用途の広い中間原料である。例えば、特開2005-053899号公報は、DOIを原料としてカルバグルコースを合成することを開示している。
 多数の臨床医学的に重要な化学療法剤である2-デオキシストレプタミン含有アミノグリコシド系抗生物質の生合成過程に関与する酵素の1つに、初発の糖質を炭素環化する酵素が見出された。ブチロシン生産菌バチルス・サーキュランスに属する微生物より精製されたこの酵素は、グルコース-6-リン酸を基質、ニコチンアミドアデニンジヌクレオチド(NAD+)を補酵素として、多段階の反応を触媒し、最終的にDOIを生合成した。Kudo等, J.Antibiot., 1999, vol.52, p.559及び特開2000-236881号公報は、バチルス・サーキュランスに属する微生物よりそのDOI合成酵素遺伝子(グルコース-6-リン酸をDOIに変換する反応を触媒する酵素をコードするbtrC)をクローニングし、大腸菌内でその遺伝子を発現、精製することで組換えDOI合成酵素を大量に得たことを記載している。さらに、特開2014-064513号公報は、グルコースにヘキソキナーゼ又はポリリン酸グルコキナーゼとDOI合成酵素を作用させる二段階の酵素反応か、グルコース-6-リン酸にDOI合成酵素を作用させる一段階の酵素反応でDOIが合成できることを開示している。さらにこの他にもHirayama等, J.Antibiot., 2005, vol.58, p.766はストレプトマイセス・フラジアエ由来のDOI合成酵素を開示しており、Subba等, Mol.Cells, 2005, vol.20, p.90はストレプトマイセス・リボシジフィカス由来のDOI合成酵素を開示しており、Kharel等, Arch.Biochem.Biophys., 2004, vol.429, p.204はストレプトマイセス・カナマイセティカス由来のDOI合成酵素を開示しており、Unwin等, J.Antibiot., 2004, vol.57, p.436はミクロモノスポラ・エキノスポラ由来のDOI合成酵素を開示しており、Kharel等, FEMS Microbiol.Lett., 2004, vol.230, p.185はストレプトマイセス・テネブラリウス由来のDOI合成酵素を開示しており、Hirayama等, J.Antibiot., 2006, vol.59, p.358はストレプトアロテイカス・ヒンダスタヌス由来のDOI合成酵素を開示している。
 そのほか、特開2013-135697号公報は特定のアミノ酸配列を有する耐熱性DOI合成酵素を開示しており、Tamegai等, Biosci.Biotechnol.Biochem., 2010, vol.74, p.1215はバチルス・サーキュランスのDOI合成酵素に付随するBtrC2タンパク質の役割を記載している。国際公開第2006/109479号及びKogure等, J.Biotechnol., 2007, vol.129, p.502は、DOI合成酵素の遺伝子からなる発現カセットを開示しており、細胞内の糖代謝の工学的改変による生産量の増強も試みられている。国際公開第2010/053052号は、スクロース非PTS遺伝子群の中で少なくともスクロース加水分解酵素(CscA)をコードする遺伝子を有すると共に、2-デオキシ-シロ-イノソース(DOI)生産系が付与又は強化され、好ましくは糖取り込み能力強化系を更に有するDOI生産大腸菌が開示している。
 上記の特許文献及び非特許文献に記載された技術は、DOI合成酵素のアミノ酸配列を改変することにより、DOI合成酵素活性を増強することを試みたものではない。DOI合成酵素を用いてDOIを高効率で生産できるシステムを構築するためには、酵素の改変による酵素活性の増強も有効な手段である。DOIの生産効率を向上できれば、DOIをより安価で、短時間に多量に生産することが可能になる。酵素の活性を高める手法として、酵素の基質と結合する活性中心のアミノ酸を改変し、高活性の酵素を選択する方法がある。また、目的の酵素をコードする遺伝子に試験管内で迅速に人工的に変異を誘発し、多数の変異遺伝子群の中から、目的の活性に改変された酵素をコードする遺伝子を選抜する進化工学的手法もある。後者の方法は、洗剤用酵素、生分解性プラスチック生産用酵素等の改変に適用されているが、DOI合成酵素の改変への応用は知られていない。
 本発明者等は、DOI合成酵素の活性に着目し、向上したDOI合成活性を有するDOI合成酵素を用いてグルコース-6-リン酸を効率よくDOIに変換することにより、短時間で大量のDOIが製造できる可能性があるとの着想を得た。本開示に係る一実施形態は、上記状況に鑑み、配列番号1のアミノ酸配列からなる野生型DOI合成酵素よりも高いDOI合成活性を有する改変DOI合成酵素、該改変DOI合成酵素をコードする遺伝子、該遺伝子を含む発現カセット、該発現カセットを含むベクター、該ベクターを含む形質転換体、該形質転換体を用いた改変DOI合成酵素の製造方法、及びDOIの製造方法を提供することを課題とする。
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、進化工学的手法を用いることにより、DOI合成酵素をよりDOI合成活性が高い酵素へと改変することに成功した。また、該手法で得られた改変酵素をコードする遺伝子を含む形質転換体を用いて、従来よりも効率的にDOIを製造することに成功した。
 本開示によれば、以下の(1)~(9)が提供される。
(1)下記(A1)又は(A2)のアミノ酸配列において、下記(a)~(e)のうち少なくとも1つのアミノ酸変異を有するポリペプチド。
 (A1)配列番号1のアミノ酸配列
 (A2)グルコース-6-リン酸から2-デオキシ-シロ-イノソースを生成する酵素活性を有するポリペプチドのアミノ酸配列であって、且つ、配列番号1のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列
 (a)配列番号1のアミノ酸配列におけるN末端から14番目のアスパラギン残基にアラインメント上対応するアミノ酸残基がトレオニンに置換されるアミノ酸変異
 (b)配列番号1のアミノ酸配列におけるN末端から37番目のチロシン残基にアラインメント上対応するアミノ酸残基がフェニルアラニンに置換されるアミノ酸変異
 (c)配列番号1のアミノ酸配列におけるN末端から290番目のアラニン残基にアラインメント上対応するアミノ酸残基がトレオニンに置換されるアミノ酸変異
 (d)配列番号1のアミノ酸配列におけるN末端から293番目のトリプトファン残基にアラインメント上対応するアミノ酸残基がアルギニンに置換されるアミノ酸変異
 (e)配列番号1のアミノ酸配列におけるN末端から319番目のヒスチジン残基にアラインメント上対応するアミノ酸残基がアルギニンに置換されるアミノ酸変異
(2)前記(A1)又は(A2)のアミノ酸配列において、前記(d)及び前記(e)のアミノ酸変異のうち少なくとも1つを有する、前記(1)に記載のポリペプチド。
(3)前記(A1)又は(A2)のアミノ酸配列において、前記(d)のアミノ酸変異と、前記(a)、(b)、(c)及び(e)から選ばれる少なくとも1つのアミノ酸変異を有する、前記(1)に記載のポリペプチド。
(4)前記(1)~前記(3)のいずれか1つに記載のポリペプチドが有するアミノ酸配列をコードする塩基配列を有する、ポリヌクレオチド。
(5)前記(4)に記載のポリヌクレオチド、前記ポリヌクレオチドの上流に連結されたプロモーター配列、及び前記ポリヌクレオチドの下流に連結されたターミネーター配列を含む発現カセット。
(6)前記(5)に記載の発現カセットを含有するベクター。
(7)前記(6)に記載のベクターによって形質転換された形質転換体。
(8)前記(7)に記載の形質転換体を培養することを含む、グルコース-6-リン酸から2-デオキシ-シロ-イノソースを生成する酵素活性を有するポリペプチドの製造方法。
(9)前記(1)~前記(3)のいずれか1つに記載のポリペプチド、前記(7)に記載の形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物をグルコース又はグルコース-6-リン酸と接触させることにより、グルコース又はグルコース-6-リン酸を2-デオキシ-シロ-イノソースへ変換することを含む、2-デオキシ-シロ-イノソースの製造方法。
 本開示によれば、配列番号1のアミノ酸配列からなる野生型DOI合成酵素よりも高いDOI合成活性を有する改変DOI合成酵素、該改変DOI合成酵素をコードする遺伝子、該遺伝子を含む発現カセット、該発現カセットを含むベクター、該ベクターを含む形質転換体、該形質転換体を用いた改変DOI合成酵素の製造方法、及びDOIの製造方法を提供することができる。
DOIから合成変換可能な芳香族化合物を示す図である。 解糖系のホスホグルコースイソメラーゼ遺伝子(pgi)、ペントースリン酸経路のグルコース-6-リン酸デヒドロゲナーゼ遺伝子(zwf)、及びグリコーゲン生合成経路に向かうホスホグルコムターゼ遺伝子(pgm)を遺伝子破壊し、グルコース-6-リン酸を優先的にDOI合成酵素(btrC遺伝子にコードされるタンパク質)が利用するように代謝工学的改変をしたΔpgiΔzwfΔpgm株を示す図である。 エラープローンPCRを用いた変異型DOI合成酵素遺伝子クローンライブラリーの作製からDOI高生産DOI合成酵素遺伝子変異クローンの単離(1,2,3次選抜)までの工程における変異型DOI合成酵素遺伝子クローンライブラリーの作製を示す図である。 エラープローンPCRを用いた変異型DOI合成酵素遺伝子クローンライブラリーの作製からDOI高生産DOI合成酵素遺伝子変異クローンの単離までの工程における1次選抜を示す図である。 エラープローンPCRを用いた変異型DOI合成酵素遺伝子クローンライブラリーの作製からDOI高生産DOI合成酵素遺伝子変異クローンの単離までの工程における2次選抜を示す図である。 エラープローンPCRを用いた変異型DOI合成酵素遺伝子クローンライブラリーの作製からDOI高生産DOI合成酵素遺伝子変異クローンの単離までの工程における3次選抜を示す図である。 pGADPの構造を示す図である。 pGADP-mbtrCの構造を示す図である。 pGADP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(◆)とpGADP-mbtrCの1つ(後にpGADP-btrC(W293R)と判明)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)の培養(2×YT+2%グルコース+2%マンニトール、50ml、30℃)に伴う培地中のDOI生産量のタイムコースを示す図である。 (左)野生型DOI合成酵素(WT)、(右)変異型DOI合成酵素(W293R)のDOI合成酵素活性を示す図である。 pGADP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(◆)、pGADP-btrC(W293R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)、pGADP-mbtrC(後にpGADP-btrC(W293R/N14T)と判明)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)、pGADP-mbtrC(後にpGADP-btrC(W293R/Y37F)と判明)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(×)、pGADP-mbtrC(後にpGADP-btrC(W293R/A290T)と判明)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(+)、pGADP-mbtrC(後にpGADP-btrC(W293R/H319R)と判明)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(●)の培養(2×YT+2%グルコース+2%マンニトール、50ml、30℃)に伴う培地中のDOI生産量のタイムコースを示す図である。 左から野生型DOI合成酵素(WT)、変異型DOI合成酵素(W293R)、変異型DOI合成酵素(W293R/N14T)、変異型DOI合成酵素(W293R/Y37F)、変異型DOI合成酵素(W293R/A290T)、変異型DOI合成酵素(W293R/H319R)のDOI合成酵素活性を示す図である。 pGAPP-btrC(W293R/H319R)の構造を示す図である。 pGAPP-btrCの構造を示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(W293R/H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+5%グルコース+5%マンニトール、50ml、30℃)に伴う培地の濁度のタイムコースを示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(W293R/H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+5%グルコース+5%マンニトール、50ml、30℃)に伴う培地中のグルコース濃度のタイムコースを示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(W293R/H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+5%グルコース+5%マンニトール、50ml、30℃)に伴う培地中のマンニトール濃度のタイムコースを示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(W293R/H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+5%グルコース+5%マンニトール、50ml、30℃)に伴うDOI生産量のタイムコースを示す図である。 pGAPP-btrC(H319R)の構造を示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+3%グルコース+4%マンニトール、30ml、30℃)に伴う培地の濁度のタイムコースを示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+3%グルコース+4%マンニトール、30ml、30℃)に伴う培地中のグルコース濃度のタイムコースを示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+3%グルコース+4%マンニトール、30ml、30℃)に伴う培地中のマンニトール濃度のタイムコースを示す図である。 pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(■)とpGAPP-btrC(H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(▲)の培養(2×YT+3%グルコース+4%マンニトール、30ml、30℃)に伴うDOI生産量のタイムコースを示す図である。 pGAPP-btrC(W293R)-cscA-glfの構造を示す図である。 pGAPP-btrC(W293R/N14T)-cscA-glfの構造を示す図である。 pGAPP-btrC(W293R/H319R)-cscA-glfの構造を示す図である。 pGAPP-btrC(W293R)-cscA-glfを含む大腸菌MG1655ΔpgiΔzwf株でのDOI生産量(▲)、グルコース濃度(●)、フルクトース濃度(◆)、キシロース濃度(■)のタイムコースを示す図である。 pGAPP-btrC(W293R/N14T)-cscA-glfを含む大腸菌MG1655ΔpgiΔzwf株でのDOI生産量(▲)、グルコース濃度(●)、フルクトース濃度(◆)、キシロース濃度(■)のタイムコースを示す図である。 pGAPP-btrC(W293R/H319R)-cscA-glfを含む大腸菌MG1655ΔpgiΔzwf株でのDOI生産量(▲)、グルコース濃度(●)、フルクトース濃度(◆)、キシロース濃度(■)のタイムコースを示す図である。
 本開示によれば、配列番号1のアミノ酸配列からなる野生型DOI合成酵素よりも高いDOI合成活性を有する改変DOI合成酵素、該改変DOI合成酵素をコードする遺伝子、該遺伝子を含む発現カセット、該発現カセットを含むベクター、該ベクターを含む形質転換体、該形質転換体を用いた改変DOI合成酵素の製造方法、及びDOIの製造方法を提供することができる。
 本開示に係る改変DOI合成酵素によれば、高いDOI合成活性によりDOI生産速度を向上することが可能であり、短時間で効率よくグルコース-6-リン酸をDOIへ変換することができる。本開示に係る改変DOI合成酵素の製造方法によれば、改変DOI合成酵素遺伝子を宿主細胞で発現させることにより、DOI合成活性が高い改変合成酵素を製造することができる。また、本開示に係るDOIの製造方法によれば、該改変DOI合成酵素遺伝子を利用して、高い効率でグルコースからDOIを製造することができる。
 前述のとおり、DOIはカテコールやヒドロキノンなどの2価フェノールやヒドロキシヒドロキノンに合成変換することができる(図1参照)。本開示における一実施形態によれば、医薬品、工業品の製造原料として広く普及することが期待されているDOIを、簡便かつ大量に効率よく製造することが可能である。このようにして製造したDOIから、例えば、医薬品、工業品の製造原料として広く普及することが期待されている1,2,4-トリヒドロキシベンゼンを、製造することも可能である。
 <改変DOI合成酵素>
 本開示に係る改変DOI合成酵素は、下記(A1)又は(A2)のアミノ酸配列において、以下の(a)~(e)のうち少なくとも1つのアミノ酸変異を有するポリペプチドである。
(A1)配列番号1のアミノ酸配列
(A2)グルコース-6-リン酸から2-デオキシ-シロ-イノソースを生成する酵素活性を有するポリペプチドのアミノ酸配列であって、且つ、配列番号1のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列
(a)配列番号1のアミノ酸配列におけるN末端から14番目のアスパラギン残基にアラインメント上対応するアミノ酸残基がトレオニンに置換されるアミノ酸変異
(b)配列番号1のアミノ酸配列におけるN末端から37番目のチロシン残基にアラインメント上対応するアミノ酸残基がフェニルアラニンに置換されるアミノ酸変異
(c)配列番号1のアミノ酸配列におけるN末端から290番目のアラニン残基にアラインメント上対応するアミノ酸残基がトレオニンに置換されるアミノ酸変異
(d)配列番号1のアミノ酸配列におけるN末端から293番目のトリプトファン残基にアラインメント上対応するアミノ酸残基がアルギニンに置換されるアミノ酸変異
(e)配列番号1のアミノ酸配列におけるN末端から319番目のヒスチジン残基にアラインメント上対応するアミノ酸残基がアルギニンに置換されるアミノ酸変異
 このような、特定のアミノ酸残基の置換を有する改変DOI合成酵素は、当該アミノ酸残基置換により向上したDOI合成活性を有する。本開示に係る改変DOI合成酵素は、(A1)又は(A2)のアミノ酸配列に対して、下記(a)~(e)のうち少なくとも1つのアミノ酸変異を導入したアミノ酸配列を有するポリペプチドと言うこともできるが、この表現において「(A1)又は(A2)のアミノ酸配列に対して、下記(a)~(e)のうち少なくとも1つのアミノ酸変異を導入した」とは最終的なアミノ酸配列を特定するためだけに用いられているものであって、スタートポイントとなるアミノ酸配列及び実際の配列改変操作の過程を限定するものではない。
 配列番号1のアミノ酸配列は、バチルス・サーキュランス由来のDOI合成酵素のアミノ酸配列であり、btrC遺伝子によってコードされている。改変DOI合成酵素は、配列番号1のアミノ酸配列とは異なるアミノ酸配列を有しており、本開示においては変異型DOI合成酵素とも呼ばれる。配列番号1のアミノ酸配列を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 グルコース-6-リン酸から2-デオキシ-シロ-イノソースを生成する酵素活性は、50mM Phosphate Buffer(pH7.7)、5mM グルコース-6-リン酸、5mM β-NAD、0.2mM CoCl・6HO、及び測定対象のDOI合成酵素10μgからなる溶液を46℃で5分間反応させ、反応後に反応溶液をフェノール/クロロホルム処理をして、除蛋白を行い、遠心後の水層画分10μlをサンプルとして、HPLCでDOIを定量し、活性を算出することにより測定できる。また、DOI合成酵素1mgが1分間あたりに合成するDOIの量を比活性とする。HPLCの条件は、
 カラム  :Phenomenex Kinetex XB-C18 100Å(Phenomenex社製)
 溶離液  :HO/メタノール(80/20)
 流量   :0.7ml/min
 カラム温度:40℃
 検出   :UV262nm
 注入量  :2μl
 とする。
 また、アミノ酸配列の配列同一性は、例えばBLAST(登録商標、National Library of Medicine)プログラムを用いてデフォールトパラメータで評価することができる。
 また、(A1)又は(A2)のアミノ酸配列において、配列番号1のアミノ酸配列における特定の位置のアミノ酸残基にアラインメント上対応するアミノ酸残基とは、例えばBLAST(登録商標、National Library of Medicine)プログラム(デフォールトパラメータ)によって配列番号1のアミノ酸配列と(A1)又は(A2)のアミノ酸配列とをアラインメントした場合に、配列番号1中の特定位置のアミノ酸残基と対応することが見いだされた、(A1)又は(A2)のアミノ酸配列中のアミノ酸残基のことを指す。
 前記(A2)のアミノ酸配列が有する、配列番号1のアミノ酸配列との配列同一性は、85%以上、あるいは90%以上、あるいは95%以上の配列同一性であってもよい。
 ここで、前記(A2)のアミノ酸配列は、配列番号1のアミノ酸配列においてDOI合成酵素活性を失わない範囲での配列の改変を有するアミノ酸配列であってもよい。つまり、配列番号1のアミノ酸配列に対してDOI合成酵素活性を失わない範囲で配列の改変を加えたアミノ酸配列であってもよい。このような改変としては、アミノ酸残基の挿入、欠失、置換及びアミノ酸配列N末端若しくはC末端若しくはその両方への追加のアミノ酸残基の付加が挙げられる。アミノ酸残基の挿入、欠失及び置換のうち1つ以上がある場合は、挿入、欠失及び置換の各々は、存在する場合は、例えば1~30アミノ酸残基、あるいは1~20アミノ酸残基、あるいは1~10アミノ酸残基、あるいは1~5アミノ酸残基であってもよく、アミノ酸残基の挿入、欠失及び置換の総数は例えば1~50アミノ酸残基、あるいは1~30アミノ酸残基、あるいは1~10アミノ酸残基、あるいは1~5アミノ酸残基であってもよい。また、末端に付加されるアミノ酸残基の数としては、存在する場合は一末端当たり例えば1~50アミノ酸残基、あるいは1~30アミノ酸残基、あるいは1~10アミノ酸残基、あるいは1~5アミノ酸残基であってもよい。このような追加のアミノ酸残基は、細胞外への分泌等のためのシグナル配列を形成していてもよい。シグナル配列の例としては、大腸菌のOmpAシグナル配列などが挙げられる。
 前記(a)~(e)のアミノ酸変異は、いずれも、DOI合成酵素活性を上昇させるアミノ酸変異である。本開示に係る改変DOI合成酵素は、前記(a)~(e)のアミノ酸変異のうちいずれか1つのみを有していてもよく、2つ以上を有していてもよい。例えば、改変DOI合成酵素は、前記(a)~(e)のアミノ酸変異のうち2つを有していてもよく、3つを有していてもよく、4つを有していてもよく、5つを有していてもよい。一実施形態においては、改変DOI合成酵素は、(d)及び(e)のアミノ酸変異のうち少なくとも1つを有し、この場合さらに(a)~(c)のアミノ酸変異のうち少なくとも1つを有していてもよい。別の実施形態においては、改変DOI合成酵素は、(d)のアミノ酸変異を有し、さらに(a)、(b)、(c)及び(e)のアミノ酸変異のうち少なくとも1つを有する。さらに別の実施形態においては、改変DOI合成酵素は、(d)のアミノ酸変異を有し、さらに(a)、(b)、及び(e)のアミノ酸変異のうち少なくとも1つを有する。この場合はさらに(c)のアミノ酸変異を有してもよい。さらに別の実施形態においては、改変DOI合成酵素は、(d)のアミノ酸変異を有し、さらに(a)及び(e)のアミノ酸変異のうち少なくとも1つを有する。この場合はさらに(b)及び(c)のアミノ酸変異のうち少なくとも1つを有してもよい。さらに別の実施形態においては、改変DOI合成酵素は、(d)のアミノ酸変異及び(e)のアミノ酸変異を有する。この場合はさらに(a)~(c)のアミノ酸変異のうち少なくとも1つを有してもよい。
 また、配列番号1のアミノ酸配列と80%以上の配列同一性を有し、グルコース-6-リン酸から2-デオキシ-シロ-イノソースを生成する酵素活性を有するポリペプチドは、酵素の機能に関係する構造について配列番号1のアミノ酸と高度に類似する構造を有するため、このようなポリペプチドに対しても上記の(a)~(e)のアミノ酸変異はそれぞれDOI合成酵素活性を上昇させる効果を奏する。
 上記のように、(a)~(e)のアミノ酸変異のうち1つ以上を有することにより、向上したDOI合成酵素活性を有する改変DOI合成酵素が得られる。改変DOI合成酵素は、配列番号1のアミノ酸配列を有するDOI合成酵素(本開示においては、野生型DOI合成酵素ともいう)よりも高いDOI合成活性を有することが好ましい。改変DOI合成酵素は、配列番号1のアミノ酸配列を有するDOI合成酵素に対し、好ましくは1.1倍以上高いDOI合成活性を有し、より好ましくは1.2倍以上高いDOI合成活性を有し、より好ましくは1.3倍以上高いDOI合成活性を有し、より好ましくは1.4倍以上高いDOI合成活性を有し、より好ましくは1.5倍以上高いDOI合成活性を有し、より好ましくは1.6倍以上高いDOI合成活性を有し、より好ましくは1.7倍以上高いDOI合成活性を有し、一層好ましくは1.8倍以上高いDOI合成活性を有する。
 上記(a)~(e)のアミノ酸変異は、DOI合成酵素の進化工学的改変により得られたものである。
 <DOI合成酵素の進化工学的改変>
 進化工学的改変とは、目的のタンパク質をコードする遺伝子に対して、試験管内で人工的に突然変異を誘発させて、所望の性質に改変されたタンパク質を選抜し、該目的タンパク質分子を改変する技術をいう。
 目的酵素遺伝子へのランダムな変異の導入は、目的の酵素遺伝子を保有する微生物に対して、アルキル化試薬(N-メチル-N’-ニトロ-N-ニトロソグアニジン等)処理、核酸塩基の酸化的脱アミノ化試薬(亜硝酸等)処理、放射線(紫外線、X線等)照射、又はPCRを利用したランダムな変異導入、を行うことによって行うことができる。
 PCRを利用したランダムな変異の導入は、目的酵素遺伝子を含むDNA断片を鋳型として、該遺伝子の増幅過程において、DNAポリメラーゼによるDNA複製の正確性を低める条件下でPCR反応を行い、増幅したDNA配列中にエラーを蓄積させるエラープローンPCRを行うことでできる。エラープローンPCRにおいては、反応溶液中にマンガンイオンを添加したり、4種類のデオキシリボ核酸(dNTP)の各濃度のバランスを崩したりすることによって、DNAポリメラーゼの正確性を低下させ、変異を導入することができる。
 例えば、バチルス・サーキュランス由来のDOI合成酵素遺伝子(btrC)をエラープローンPCRで変異させる場合には、当該遺伝子を有するプラスミド(例えば、国際公開第2006/109479号に記載のpLEX-btrC)やDNA断片を鋳型として、当該遺伝子増幅用のプライマーを利用して、DNAポリメラーゼの正確性を低下させる条件下において、PCRを実施すればよい。DNAポリメラーゼの正確性を低下させる条件としては、後述の実施例1に記載の条件などが挙げられる。
 また、ランダムな変異導入により得られた改変酵素遺伝子群は、所望の性質について向上した機能を有するかどうかを指標にしてスクリーニングすることができる。例えば、改変酵素遺伝子群が発現する改変酵素群のDOI合成活性を測定して、変異導入前よりもDOI合成活性が向上した改変酵素を選抜することができる。このようにして、所望の性質について向上した活性を有する改変酵素を得ることができる。得られた改変酵素をコードする遺伝子に対してさらにランダムな変異導入を行い、上記と同様にスクリーニングをすることにより、所望の性質について一層向上した活性を有する改変酵素を得ることができる。
 進化工学的改変により、酵素中における活性中心の位置が分からなくても、向上した性質を有する改変酵素を得ることが可能となる。また、このような向上は、進化工学的改変によれば、機能との関係が事前には知られていないアミノ酸残基位置におけるアミノ酸変異あるいはその組み合わせにより、累積的に達成することができる。このことから、本開示に係るDOI合成酵素が有する改変及びそれによるDOI合成活性の向上は、当業者が予想することができないものである。
 <改変DOI合成酵素をコードする遺伝子>
 本開示に係る改変DOI合成酵素をコードする遺伝子は、前記改変DOI合成酵素をコードする任意の核酸であってよい。特定のアミノ酸配列をコードする核酸のヌクレオチド配列は、コドンの縮重の範囲内で変化させることができる。この場合、組換え微生物の宿主となる微生物において使用頻度が高いコドンを使用した方が、遺伝子の発現効率の点からは好ましい。本開示によれば、改変DOI合成酵素が有するアミノ酸配列をコードする塩基配列を有するポリヌクレオチドが提供される。
 なお、遺伝子のヌクレオチド配列は、コードすべきアミノ酸配列からコドン表を元に設計することもできる。設計したヌクレオチド配列は、既知のヌクレオチド配列を遺伝子組み換え技術を利用して改変することで得てもよいし、ヌクレオチド配列を化学的に合成することで得てもよい。
 ヌクレオチド配列を改変する方法としては、例えば、部位特異的変異法(Kramer,W. and Frita,H.J., Methods in Enzymology,vol.154,P.350(1987))、リコンビナントPCR法(PCR Technology,Stockton Press(1989))、特定の部分のDNAを化学合成する方法、遺伝子をヒドロキシアミン処理する方法、遺伝子を保有する菌株を紫外線照射処理、又は、ニトロソグアニジンや亜硝酸などの化学薬剤で処理する方法、市販の突然変異導入キットを使用する方法などが挙げられる。
 目的の遺伝子にランダムに変異を有する遺伝子の発現を行うため、種々の宿主・ベクター系を利用することができる。宿主・ベクター系として細菌、酵母等の系を利用することができるが、ランダムに変異を有する遺伝子を効率よく発現、製造できれば特に制限されない。得られた変異導入されたPCR断片を、発現に必要なプロモーター、ターミネーターを有し、かつ宿主内で発現できる発現ベクターに連結し、宿主に導入する。
 <改変DOI合成酵素遺伝子発現カセット>
 本開示に係る遺伝子発現カセットは、前述の改変DOI合成酵素をコードする遺伝子を、後述の宿主細胞内で発現させ得るものであれば特に限定されない。遺伝子発現カセットは、改変DOI合成酵素をコードする核酸配列に加えて、例えば、プロモーター、エンハンサー、RBS (リボソーム結合配列)、ターミネーター等のうち1つ以上を含んでいてもよい。遺伝子発現カセットは、改変DOI合成酵素をコードする核酸配列に加えて、該核酸配列の上流にプロモーター及び該核酸配列の下流にターミネーターを含むことが好ましい。例えば、大腸菌を宿主細胞とするタンパク質の大量発現系においては、改変DOI合成酵素をコードするDNA配列の上流側(5’末端側)にプロモーター、エンハンサー、及びRBS (リボソーム結合部位)等のDNA配列を連結し、改変DOI合成酵素をコードするDNA配列の下流側(3’末端側)に、例えばターミネーターのDNA配列を連結した構成を採用できる。これら各要素は、大腸菌内で所望の機能を発揮する配列であれば特に限定されない。プロモーターには構成的に発現を行うプロモーター及び誘導的に発現を行うプロモーターがある。本開示に係るDOI遺伝子発現カセットにおいては、いずれのタイプのプロモーターを用いてもよい。また、大腸菌を宿主細胞とする場合には、IPTG (イソプロピルチオガラクトピラノシド)等の誘導物質により発現を誘導できるプロモーターを用いてもよい。 
 一例として大腸菌を利用する場合、前記プロモーターの例としては、ラクトースオペロンのプロモーター、トリプトファンオペロンのプロモーター、前2種類の融合プロモーター、λファージのプロモーター、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子プロモーター、グルタメートデカルボキシラーゼ遺伝子プロモーター、gadAプロモーター、アルコールデヒドロゲナーゼ(ADH1)プロモーター等が挙げられる。ターミネーターは特に限定されず、例えばrrnターミネーター、AspAターミネーターなどを利用可能である。
 また、リボソーム結合部位の例としては、シャインダルガノ(SD)配列のAGGAGなどが挙げられる。エンハンサーとしては、公知のエンハンサーが使用可能である。
 <改変DOI合成酵素遺伝子発現ベクター>
 本開示に係る改変DOI合成酵素遺伝子発現ベクターは、前述の改変DOI合成酵素をコードする遺伝子を有し、後述の宿主細胞内で発現させ得るものであれば特に限定されない。改変DOI合成酵素遺伝子発現ベクターは好ましくは前記改変DOI合成酵素遺伝子発現カセットを含む。
 一例として大腸菌を利用する場合、効率よく遺伝子発現を行なうために種々の発現ベクターが構築されている。ラクトースオペロンのプロモーター、トリプトファンオペロンのプロモーター、前2種類の融合プロモーター、λファージのプロモーター、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子プロモーター、グルタメートデカルボキシラーゼ遺伝子プロモーター、gadAプロモーター、アルコールデヒドロゲナーゼ(ADH1)プロモーター等の下流に変異処理遺伝子を接続し、該遺伝子の下流にターミネーターを接続した改変DOI合成酵素発現ベクターを構築することができる。ターミネーターにはrrnターミネーター、AspAターミネーターなどが利用されうるが、特に制限されるものではない。
 ベクターとしては、宿主細胞内で自律的に増殖し得るファージ又はプラスミドから遺伝子組換え用として構築されたものが適している。ファージとしては、例えばEscherichia coliを宿主細胞とする場合にはLambda gt10、Lambda gt11などを例示することができる。また、プラスミドとしては、例えばEschenchia coliを宿主細胞とする場合には、pBTrp2、pBTac1、pBTac2(Boehringer Mannheim社製)、pKK233-2(Pharmacia社製)、pSE280(Invitrogen社製)、pGEMEX-1(Promega社製)、pQE-8、pQE-30(QIAGEN社製)、pBluescriptII SK(+)、pBluescriptII SK(-)(Stratagene社製)、pET-3(Novagen社製)、pUC18、pSTV28、pSTV29、pUC118(宝酒造社製)、pLEX(Invitrogen社製)、pQE80L(QIAGEN社製)、pBR322等を例示することができる。
 改変DOI合成酵素遺伝子発現ベクターは、改変DOI合成酵素をコードするDNAを転写させるためのプロモーターを有していてもよい。プロモーターの例としては、上述のプロモータが挙げられる。また、改変DOI合成酵素遺伝子発現ベクターは、リボソーム結合配列を含んでいてもよい。リボソーム結合配列の例としては、シャイン-ダルガノ(Shine-Dalgarno)配列が挙げられ、SD配列と開始コドンとの間を適当な距離(例えば6~18ヌクレオチド)に調節したプラスミドを用いることが好ましい。
 転写及び翻訳を効率的に行うため、目的のタンパク質のN末端は発現ベクターのコードする別のタンパク質のN末端部分に融合されていてもよい。
 目的とするタンパク質の発現にはターミネーターは必ずしも必要ではないが、構造遺伝子直下にターミネーターを配置することが望ましい。
 クローニングの際、前記のようなベクターを、挿入されるDNAの切り出しに使用した制限酵素で切断してベクターDNA断片を得ることができるが、必ずしも挿入されるDNAの切り出しに使用した制限酵素と同一の制限酵素を用いる必要はない。挿入されるDNA断片とベクターDNA断片とを結合させる方法は、公知のDNAリガーゼを用いる方法であればよく、例えば挿入されるDNA断片の付着末端とベクターDNA断片の付着末端とのアニーリングの後、適当なDNAリガーゼの使用により挿入されるDNA断片とベクターDNA断片との組換えDNAを作製する。必要に応じて、アニーリングの後、微生物等の宿主細胞に移入して生体内のDNAリガーゼを利用し組換えDNAを作製することもできる。
 本開示に係る組換えDNAを宿主細胞に導入するには、Sambrook,J.,et.al.,”Molecular Cloning: A Laboratory Manual, 3rd Edition”,Cold Spring Harbor Laboratory Press,(2001)等に記載されている分子生物学、生物工学及び遺伝子工学の分野において公知の一般的な方法を利用することができる。例えばコンピテントセルを用いる方法や、エレクトロポレーションを用いる方法が挙げられる。
 このようにして作製された発現ベクターを複製、維持することができる宿主内に導入することにより改変DOI合成酵素遺伝子を発現する形質転換体を得ることができる。次いで得られた形質転換体の発現するDOI合成酵素の性質を検証することにより該酵素の改変を検証する。
 <形質転換体>
 本開示に係る形質転換体は、本開示に係る改変DOI合成酵素遺伝子発現ベクターを含む形質転換体である。
 形質転換体作製に使用する宿主細胞としては、組換えDNAが安定かつ自律的に増殖可能で、さらに外来性DNAの形質が発現できるものであればよい。宿主細胞は、微生物の細胞であることが好ましい。前記微生物の細胞は、真核生物(例えば酵母)の細胞であっても、原核生物の細胞であってもよい。宿主細胞の例として大腸菌(Escherichia coli)の細胞が挙げられるが、特に大腸菌の細胞に限定されるものではなく、エシェリヒア属細菌の細胞、枯草菌(Bacillus subtilis)などのバチルス属細菌の細胞、シュードモナス属細菌などの細菌類の細胞、サッカロミセス属、ピキア属、カンジダ属などの酵母類の細胞、アスペルギルス属などの糸状菌類の細胞などが使用できる。
 宿主細胞は、DOI合成酵素の基質となるグルコース-6-リン酸を多量に蓄積する宿主細胞であることが好ましい。このような宿主細胞としては、例えば、大腸菌においてグルコースリン酸イソメラーゼをコードするpgi遺伝子を破壊した株(例えば、国際公開第2006/109479号に記載の大腸菌GI724Δpgi株)、大腸菌においてpgi遺伝子及びグルコース-6-リン酸デヒドロゲナーゼをコードするzwf遺伝子を破壊した株(例えば、国際公開第2010/053052号に記載の大腸菌MG1655ΔpgiΔzwf株)、並びに大腸菌においてpgi遺伝子、zwf遺伝子及びホスホグルコムターゼをコードするpgm遺伝子を破壊した株(図2参照)(例えば、国際公開第2006/109479号に記載の大腸菌GI724ΔpgiΔzwfΔpgm株)がある。
 宿主細胞はグルコースからグルコース-6-リン酸を生成する酵素をコードする遺伝子、例えばglk、を有する細胞であることが好ましい。
 また、宿主細胞には、細胞外のグルコースをそのまま細胞内に取り込む能力をさらに付与してもよく、このために例えばグルコース輸送促進タンパク質遺伝子をさらに導入してもよい。グルコース輸送促進タンパク質遺伝子としては、例えば、ザイモモナス・モビリス由来のglfなどがある。また、宿主細胞には、フルクトース及びスクロースの向上した利用能をさらに付与してもよく、このために例えばスクロース加水分解酵素遺伝子をさらに導入してもよい。スクロース加水分解酵素遺伝子としては、例えば、大腸菌O-157由来のcscAなどがある。このような遺伝子を有するベクターの例として、国際公開第2010/053052号に記載されているプラスミドベクターpGAP-btrC-cscA-glfなどがある。
 宿主細胞に組換えDNAを移入する方法としては、例えば宿主細胞が大腸菌の場合には、カルシウム処理によるコンピテントセル法やエレクトロポレーション法などが用いることができる。コンピテントセルとしては、大腸菌DH5αのコンピテントセルなどが利用できる。このようにして得られた形質転換体は、培養されることにより、改変DOI合成酵素を安定に生産することができる。前記形質転換体の培養の条件は、元々の宿主微生物の培養条件と同様であり、公知の条件を用いることができる。
 該形質転換体の培養には、種々の炭素源、窒素源、無機塩類及び有機栄養源を任意に用いることができる。炭素源としては、例えばグルコース、ショ糖、糖蜜、油脂などが利用できる。窒素源としては、例えばアンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩の他、ペプトン、肉エキス、酵母エキス等が挙げられる。無機塩類としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。その他の有機栄養源としては、例えばグリシン、アラニン、セリン、スレオニン、プロリン等のアミノ酸、ビタミンB1、ビタミンB12、ビタミンC等のビタミン等が挙げられる。
 炭素源、窒素源、無機物及びその他の栄養素を適量含有する培地ならば、合成培地又は天然培地のいずれでも使用できる。培地の例として、例えば、LB液体培地、RM液体培地、2×YT液体培地、L寒天培地、RMM液体培地などが挙げられる。あるいはLB寒天プレートなどであってもよい。なお、選択マーカーを含む発現ベクターにより形質転換した形質転換体の培養においては、例えば、前記選択マーカーが薬剤耐性である場合には、それに対応する薬剤を含む培地を使用し、前記選択マーカーが栄養要求性である場合には、それに対応する栄養素を含まない培地を使用する。
 培養条件は、培地の種類、培養方法により適宜選択すればよく、形質転換体が生育する条件であれば特に制限はない。
 培養温度は、該形質転換体が生育可能な温度であればよい。培養の際のpHは、該形質転換体が生育可能なpHであればよい。培養時間はDOI合成酵素を効率よく生産できる時間であれば特に制限はない。
 培養温度は例えば20℃~45℃の範囲内の温度であってもよく、25℃~35℃の範囲内の温度であってもよく、24℃~37℃の範囲内の温度であってもよい。培地のpHは、例えば4~8の範囲で選べばよく、5~8の範囲であってもよく、6.5~8の範囲であってもよい。培養は、微生物の種類に応じて、好気的に行ってもよいし、嫌気的に行ってもよい。
 培養期間は例えば1時間~7日間であってもよく、6時間~60時間であってもよく、12時間~30時間であってもよい。培養期間は、改変DOI合成酵素の産生量が最大になるように設定してもよい。例えば、好気条件下でpHは6以上8以下のpH、温度は25℃以上40℃以下の範囲内の温度で、pHと温度を適切に制御しながら培養した場合、培養に必要な時間は48時間以内としてもよい。培養時間は0.5時間~30時間の範囲内であってもよい。
 培養は前記培養成分を含有する液体培地中で、振とう培養、通気攪拌培養、連続培養又は流加培養などの通常の培養方法を用いて行うことができる。
 得られた形質転換体を、DOIが生産可能な条件下で培養し、培養液中のDOIの生産量状況を調べる。例えば、DOIの生産量状況は、ガスクロマトグラフ質量分析計や高速液体クロマトグラフ分析計で調べることができる。このような生産量分析は、Kogure等, J.Biotechnol., 2007, vol.129, p.502を参照して行うことができる。
 上記において、DOIの生産量状況に変化が認められた形質転換体については、該形質転換体が有する発現ベクターを抽出し、該酵素をコードする遺伝子の塩基配列を決定する。次いで、該酵素の推定アミノ酸配列を野生型酵素のアミノ酸配列と比較し、どのアミノ酸が該酵素の性質の改変に寄与しているかを特定することができる。
 性質が改変された酵素の推定アミノ酸配列上に複数のアミノ酸置換が見出された場合には、それぞれのアミノ酸の置換が酵素の性質の改変にどの程度寄与しているかを、部位特異的変異導入法で任意の1つのアミノ酸を他のアミノ酸へ置換し、調べることができる。
 上記で得られた変異型酵素の酵素学的性質は、各変異型酵素を分離・精製後、比活性、基質特異性、至適温度、至適pH等を調べ、野生型酵素と比較することにより、酵素の性質の変化を検証することができる。
 形質転換体が産生した改変DOI合成酵素は、培養物中の形質転換体を含む培養液をそのまま採取して利用することもできる。また、得られた培養物から濾過又は遠心分離などの手段により形質転換体を採取して利用することもできる。採取した形質転換体を機械的方法又はリゾチームなどの酵素的方法で破壊し、また必要に応じてEthylenediaminetetraacetic acid(EDTA)等のキレート剤及び又は界面活性剤を添加してポリペプチドを可溶化し、溶液として分離採取することができる。
 <改変DOI合成酵素の製造方法>
 本開示に係るDOI合成活性を有するポリペプチド(改変DOI合成酵素)の製造方法は、本開示に係る形質転換体を培養することを含む。形質転換体の培養に用いる培地及び培養条件、培養方法等については、本開示に係る形質転換体の説明で述べた通りである。培養条件は、宿主細胞が生育しDOI合成活性を有するタンパク質を産生できる条件であれば特に制限はない。
 本開示に係る形質転換体を培養することにより、本開示に係るベクター上の改変DOI合成酵素をコードする遺伝子が発現し、改変DOI合成酵素が生成する。例えば、適切な培地中、好気条件下、pH6~8の範囲内のpH、温度25℃~40℃の範囲内の温度において、48時間以内の培養により改変DOI合成酵素を得ることができる。
 生成した改変DOI合成酵素は、形質転換体の細胞(例えば大腸菌の菌体)内及び培地のうち少なくとも1つに含まれた状態にある。この形質転換体の細胞及び培地を精製せずにそのままDOI合成反応に用いてもよく、あるいは培地から改変DOI合成酵素を精製してもよい。この際には、細胞を破砕あるいは溶解することで、細胞内の改変DOI合成酵素も回収することができる。あるいは、遠心分離等によって培地から細胞を分離し、この分離した細胞をDOI合成反応に用いてもよく、あるいはこの細胞を乾燥、凍結又は凍結乾燥して保存してもよい。あるいは分離した細胞を破砕又は溶解して、放出されたDOI合成酵素をそのままDOI合成反応に用いてもよく、あるいは放出されたDOI合成酵素を精製してもよい。酵素の精製には、遠心分離、塩析、脱塩、クロマトグラフィー、電気泳動、限外ろ過等の、一般的な精製法を、適切に調節した条件下で用いることができる。例えば、Lysis bufferを用いた細胞の溶解、Ni-NTAアガロースへのDOI合成酵素の固定、及び溶出bufferによる溶出によりDOI合成酵素を精製することもできる。
 <DOIの製造方法>
 本開示に係るDOI製造方法は、本開示に係る改変DOI合成酵素、本開示に係る形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物をグルコース又はグルコース-6-リン酸と接触させることにより、グルコース又はグルコース-6-リン酸をDOIへ変換することを含む、DOIの製造方法である。 
 形質転換体の培養物とは、形質転換体を培養して得られる、細胞と周囲の培地等からなる産物を指す。培養物は使用しなくともよく、例えば、予め調製された乾燥若しくは凍結させた形質転換体の細胞を、直接反応系に添加してもよい。
 形質転換体の培養物を得るための培地、培養条件、培養方法等は、上記の形質転換体の培養に用いることができる培地、培養条件、培養方法等と同様である。培養条件は、宿主細胞が生育しDOI合成活性を有するタンパク質を産生できる条件であれば特に制限はない。
 また、前記形質転換体の処理物とは、形質転換体が産生する改変DOI合成酵素の活性を失わない範囲で、形質転換体に対して任意の処理を行った産物を指す。このような処理としては、例えば、加熱処理、冷却処理、機械的破壊、超音波処理、凍結融解処理、乾燥処理、加圧又は減圧処理、浸透圧処理、自己消化、界面活性剤処理及び酵素処理(例えば細胞溶解処理)からなる群から選択される1つ以上を含む処理などが挙げられる。たとえ、このような処理によって形質転換体自体が死滅したとしても、当該形質転換体が産生した酵素の活性が残存していれば、反応に用いることが可能である。
 前記培養物の処理物とは、形質転換体が産生する改変DOI合成酵素の活性を失わない範囲で、形質転換体の培養物に対して任意の処理を行った産物を指す。このような処理としては、加熱処理、冷却処理、細胞の機械的破壊、超音波処理、凍結融解処理、乾燥処理、加圧又は減圧処理、浸透圧処理、細胞の自己消化、界面活性剤処理、酵素処理(例えば細胞破壊処理)、細胞分離処理、精製処理及び抽出処理からなる群から選択される1つ以上を含む処理が挙げられる。例えば、形質転換体の細胞を培地等から分離して、分離された細胞を反応系に添加してもよい。このような分離には、濾過又は遠心分離などの手段が使用可能である。あるいは、改変DOI合成酵素を夾雑物から分離するための精製処理を行い、該精製処理により得られた酵素を含む溶液を反応系に添加してもよい。あるいは、培養物を、メタノールやアセトニトリル等の有機溶媒又は有機溶媒と水との混合溶媒を用いて抽出した抽出物を反応系に添加してもよい。このような精製物又は抽出物は、形質転換体の細胞を含まないものであってもよい。当該形質転換体の細胞が存在しなくても、酵素の活性が残存していれば、反応に用いることが可能である。
 上記のような細胞の破砕あるいは溶解処理は、リゾチーム処理、凍結融解、超音波破砕などの公知の方法に従い形質転換体の細胞膜を破壊することにより、行うことができる。
 本開示に係る形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物と、グルコース又はグルコース-6-リン酸との接触は、以下のような条件で行うことが好ましい。
 接触は基質としてのグルコース又はグルコース-6-リン酸を含む溶液中で行うことが好ましい。もちろん、溶液はグルコースとグルコース-6-リン酸の両方を含んでいてもよい。反応は、反応の効率等から、NAD、NADP等の補酵素の存在下で行うことが好ましい。
 反応条件は、上記反応が進む限り、特に限定されない。例えば、溶液のpHは、改変DOI合成酵素の酵素活性が維持される限りは特に制限されないが、例えば、反応時のpHは、4.0~9.0の範囲内のpHであることが好ましく、好ましくは5.0~8.0の範囲内のpHであり、6.0~8.0の範囲内のpHであることがより好ましい。溶液の温度も、改変DOI合成酵素の酵素活性が維持される限りは特に制限されないが、好ましくは10℃~50℃の範囲内の温度、より好ましくは20℃~45℃の範囲内の温度、更により好ましくは30℃~42℃の範囲内の温度である。
 溶液の媒体としては、水若しくは水性媒体、有機溶媒又は水若しくは水性媒体と有機溶媒の混合液が用いられる。水性媒体としては、例えばリン酸緩衝液、HEPES(N-2-ヒドロキシエチルピペラジン-N-エタンスルホン酸)緩衝液、トリス[トリス(ヒドロキシメチル)アミノメタン]塩酸緩衝液等の緩衝液が用いられる。有機溶媒としては反応を阻害しないものであればいずれでもよく、例えばアセトン、酢酸エチル、ジメチルスルホキシド、キシレン、メタノール、エタノール、ブタノール等が用いられる。あるいは溶液は液体培地であってもよい。
 本開示に係る形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物と、グルコース又はグルコース-6-リン酸との接触は、振盪若しくは攪拌下で行うのが好ましい。例えば、このような接触は溶液中で行うことができる。例えば、前記形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物を含む溶液に、グルコース又はグルコース-6-リン酸を基質溶液の形態であるいは固体の形態で添加してもよい。
 反応開始時若しくは反応途中において、反応液のpHを適切な範囲に維持するため、酸やアルカリを添加してもよい。反応溶液に添加可能なアルカリの例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の他、水酸化アンモニウム、水酸化カルシウム、リン酸二カリウム、リン酸二ナトリウム、ピロリン酸カリウム、アンモニアなど水に溶解して、液性を塩基性とするものが挙げられる。反応溶液に添加可能な酸の例としては、塩酸、硫酸、硝酸、酢酸、リン酸などが挙げられる。
 上記接触は、例えば、空気雰囲気下で行ってもよく、脱酸素雰囲気下で行ってもよい。脱酸素雰囲気は、不活性ガスによる置換、減圧、沸騰やこれらを組み合わせることにより達成できる。少なくとも、不活性ガスによる置換、即ち、不活性ガス雰囲気を用いるのが好適である。上記不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス、炭酸ガス等を挙げることができ、好ましくは窒素ガスである。
 好ましい実施形態では、使用される、形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物は、前記改変DOI合成酵素を含んでいる。このため、前記接触により、反応溶液中に共に存在している前記改変DOI合成酵素が作用し、DOIを高い生産効率で生産する。なお、前記形質転換体の処理物若しくは前記培養物の処理物が生きた状態の前記形質転換体を含んでいることは必須ではないが、反応に関与する物質を代謝により継続的に供給することができるという観点からは、生きた状態の前記形質転換体を含むことが好ましい。
 形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物の添加時期は、反応開始時に一括で添加しても構わないし、反応中に分割して又は連続して添加しても構わない。同様に、原料となるグルコース又はグルコース-6-リン酸も、反応開始時に一括で添加しても構わないし、反応中に分割して又は連続して添加しても構わない。
 グルコース又はグルコース-6-リン酸の反応溶液中における濃度は、例えば0.1質量%~20質量%であり、あるいは0.5質量%~15質量%であり、あるいは2質量%~10質量%であってもよい。
 前記形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物と、グルコース又はグルコース-6-リン酸とを接触させる方法としては、前記形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物をグルコース又はグルコース-6-リン酸を含む溶液に加え、攪拌しながら反応を進行させる方法、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物をグルコース又はグルコース-6-リン酸を含む溶液に加え、振とうしながら反応を進行させる方法、前記形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物とピリドキシン又はその塩とを溶液中で充分に混和の後、静置して反応を進行させる方法などが挙げられる。好ましくは、反応効率の観点より、前記形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物をグルコース又はグルコース-6-リン酸を含む溶液に加え、攪拌しながら反応を進行させる方法が挙げられる。
 反応に使用可能な反応容器としては特に制限はない。好ましくは、添加した前記形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物とピリドキシン又はその塩を含む溶液とが十分混和されるように攪拌できるとともに、改変DOI合成酵素の最適温度範囲内に保てるように温度調節機能を有する反応容器であることが好ましい。
 前記形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物と、グルコース又はグルコース-6-リン酸との接触時間(反応時間)は、改変DOI合成酵素の酵素活性が維持される限りは特に制限されないが、例えば30分間~100時間であり、あるいは2時間~50時間であってもよい。また、反応はバッチ式で行ってもよく、反応途中で、基質及び前記微生物、前記培養物若しくは前記処理物のうち一方又は両方を逐次添加するセミバッチ式で行ってもよく、連続式で行ってもよい。セミバッチ式や連続式の場合は、新たな原料及び前記形質転換体、前記培養物若しくは前記処理物のうち一方又は両方が供給される等の操作が行われるため、反応時間の上限は特に限定はされない。例えば、グルコース又はグルコース-6-リン酸を連続的に添加してもよい。
 一実施形態においては、DOIの製造方法は、本開示に係る形質転換体を培地中で培養することを含む。培地は好ましくは液体培地であり、また、好ましくはグルコース又はグルコース-6-リン酸を含む。cscAの導入等によりフルクトース利用能が向上している形質転換体の場合には、培地はさらにフルクトースを含んでいてもよい。使用できる培地及び培養条件、培養方法等については、上述の、形質転換体の培養に使用できる培地、培養条件、培養方法等を適用できる。例えば、2×YT液体培地等を用いることができる。このような培地に、グルコース又はグルコース-6-リン酸を添加して、所望の濃度のグルコース又はグルコース-6-リン酸を培地中に含むようにしてもよい。培養温度は例えば25℃~35℃の範囲内の温度でもよく、培養時間は例えば5時間~30時間であってもよい。グルコース又はグルコース-6-リン酸の培地中における濃度は、例えば0.1質量%~20質量%であり、あるいは0.5質量%~15質量%であり、あるいは1.5質量%~10質量%であってもよい。このような培養によっても、形質転換体の存在によりDOIが産生される。
 DOI生産のための培養(以下本培養とも呼ぶ)の前に、形質転換体に対し前培養を行ってもよい。前培養に用いる培地は、DOI生産のための培養に用いる培地とは異なる培地であってもよい。培地の差異は、基本培地の差異であってもよいし、グルコース又はグルコース-6-リン酸の濃度における差異であってもよい。前培養に用いる培地、培養条件、培養方法等については、上述の、形質転換体の培養に使用できる培地、培養条件、培養方法等を適用できる。前培養に用いる培地は、グルコースもグルコース-6-リン酸も含まない培地であってもよい。前培養に用いる培地の例としては、RM液体培地やRMM液体培地が挙げられるが、2×YT液体培地であってもよい。前培養は形質転換体の状態が安定するまで行えばよいが、前培養時間は例えば3時間~48時間であり、あるいは8時間~30時間であってもよい。前培養後の形質転換体は、そのまま培地ごと本培養のための培地に添加してもよく、遠心処理等で前培養に用いた培地から分離してから本培養のための培地に添加してもよい。通常は、本培養の培養液量は、前培養の培養液量よりも大きな培養用量、例えば体積で10倍以上、あるいは20倍以上、とすることができる。
 本培養は、バッチ式で行ってもよく、反応途中で、グルコース又はグルコース-6-リン酸を逐次添加するセミバッチ式で行ってもよく、グルコース又はグルコース-6-リン酸を連続的に添加する連続式で行ってもよい。セミバッチ式や連続式の場合は、新たな原料が供給される等の操作が行われるため、反応時間の上限は特に限定はされない。
 上記の方法においては、グルコース又はグルコース-6-リン酸を原料として本開示に係る形質転換体若しくは前記培養物又は前記形質転換体若しくは前記培養物の処理物を用いることにより、DOIを高い生産効率で製造することができる。上記の方法により得られたDOIは、例えばカテコールに変換して神経系医薬品などの原料、食品香料原料、ヘアケア商品などの酸化防止剤などに利用でき、ヒドロキノンに変換して止血剤、鎮痛剤等の原料、美白剤等の化粧品などに利用可能である。上記の方法で得られたDOIを脱水することにより1,2,4-トリヒドロキシベンゼン(THB)を得ることができる。さらに上記の方法で得られたTHBの水酸基をグリシジルエーテル化して1,2,4-トリグリシジルオキシベンゼン(TGB)を得ることができる。TGBは耐熱性に優れ、かつ常温で低粘度の液状であり、電子部品の封止材、回路基材、接着剤、コーティング材、塗料、複合材料のマトリックス樹脂など広い範囲に渡って利用できる。
 なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 以下、実施例により実施形態を具体的に説明するが、本開示は、これらの実施例によりその技術的範囲を限定されるものではない。なお、実施例において、特に断らない限り、物質の含有量又は添加量を表す「%」は「質量%」を意味する。
(実施例1)
<エラープローンPCRによる変異型DOI合成酵素遺伝子クローンライブラリーの構築>
 エラープローンPCRを用いた変異型DOI合成酵素遺伝子クローンライブラリーの作製からDOI高生産DOI合成酵素遺伝子変異クローンの単離(1,2,3次選抜)までの工程を図3A~図3Dに示した。
 配列番号1に示すバチルス・サーキュランス由来のDOI合成酵素のアミノ酸配列をコードする遺伝子(btrC)に、エラープローンPCRでランダムに変異を導入した。btrC遺伝子全長を含むプラスミドpLEX-btrC(国際公開第2006/109479号に記載されている、バチルス・サーキュランス由来のDOI合成酵素の42kDaサブユニットをコードするbtrC遺伝子をベクターpLEX(Invitrogen)のマルチクローニングサイトのNdeI-XbaI部位に挿入したもの)を鋳型として、btrC遺伝子の開始コドン上流にSalI制限酵素サイトを付加したヌクレオチド配列に相当する配列番号2に示すプライマー1(5’-acgcgtcgacatgacgactaaacaaatttg-3’)とbtrC遺伝子の終止コドン上流にPstI制限酵素サイトを付加したヌクレオチド配列に相当する配列番号3に示すプライマー2(5’-aaaactgcagttacagcccttcccgga-3’)を用い、DNAポリメラーゼの正確性を低下させる条件(表2)でPCRを実施することで、変異箇所を限定することなくbtrC遺伝子全領域へのランダムな変異の導入を実施した。
Figure JPOXMLDOC01-appb-T000002

 
 PCRは、94℃で2分30秒保持後、94℃で20秒の熱変性、50℃で25秒のアニーリング、72℃で1分10秒のDNA伸長の反応を1サイクルとして、30サイクル実施し、さらに72℃で3分保持し、得られたPCR増幅産物を4℃で保持した。
 このようにPCR増幅したDNA断片をフェノール/クロロホルムで処理し、遠心分離し、上清をエタノール沈殿して、DNA断片を回収した。回収したDNA断片を制限酵素SalIとPstIで消化し、アガロースゲル電気泳動によって精製・単離し、変異型DOI合成酵素遺伝子のDNA断片を取得した。
 次いで、変異型DOI合成酵素遺伝子のDNA断片を宿主細胞(大腸菌)で発現させるための発現ベクターを構築した。pLEXベクター(Invitrogen)を鋳型として、配列番号4に示すプライマー3(5’-atggtaccgagctcggatcc-3’)と5’側にXbaI制限酵素サイトを付加したヌクレオチド配列に相当する配列番号5に示すプライマー4(5’-ctagtctagactaggagataatttatcaccgcag-3’)を用い、PCR増幅を行った。PCR増幅には、KODポリメラーゼ(TOYOBO)を用いた。PCRの反応条件は、94℃で2分保持後、94℃で30秒の熱変性、52℃で30秒のアニーリング、68℃で1分のDNA伸長の反応を1サイクルとして、30サイクル実施し、さらに68℃で2分保持し、得られたPCR増幅産物を4℃で保持した。このようにPCR増幅したDNA断片をフェノール/クロロホルムで処理し、遠心分離し、上清をエタノール沈殿して、DNA断片を回収した。回収したDNA断片を制限酵素SalIとXbaIで消化し、アガロースゲル電気泳動によって精製・単離し、発現ベクターのDNA断片を取得した。
 次いで、変異型DOI合成酵素遺伝子のDNA断片を宿主細胞(大腸菌)で発現させるためのプロモーターとして、gadAプロモーターを取得した。gadAプロモーターは、具体的には以下のようにして取得した。大腸菌の染色体DNAを鋳型として、5’側にXbaI制限酵素サイトを付加したヌクレオチド配列に相当する配列番号6に示すプライマー5(5’-ctagtctagagtcgtttttctgct-3’)と5’側にSalI制限酵素サイトを付加したヌクレオチド配列に相当する配列番号7に示すプライマー6(5’-acgcgtcgacttcgaactccttaaatttatttgaaggc-3’)を用い、PCR増幅を行った。PCR増幅には、KODポリメラーゼ(TOYOBO)を用いた。PCRの反応条件は、94℃で2分保持後、94℃で30秒の熱変性、50℃で30秒のアニーリング、68℃で1分のDNA伸長の反応を1サイクルとして、30サイクル実施し、さらに68℃で2分保持し、得られたPCR増幅産物を4℃で保持した。このようにPCR増幅したDNA断片をフェノール/クロロホルムで処理し、遠心分離し、上清をエタノール沈殿して、DNA断片を回収した。回収したDNA断片を制限酵素SalIとXbaIで消化し、アガロースゲル電気泳動によって精製・単離し、gadAプロモーターのDNA断片を取得した。
 次いで、上記で増幅させた発現ベクターのDNA断片とgadAプロモーターのDNA断片を、2×Ligation mixを用い、16℃、30分で反応させ、連結することでgadAプロモーターのDNA断片を発現ベクターのDNA断片に挿入し、発現ベクターpGADP(図4)を取得した。
 上記操作によって得られた発現ベクターpGADPを制限酵素SalIとPstIで消化し、アガロースゲル電気泳動によって精製・単離し、変異型DOI合成酵素遺伝子のDNA断片を連結挿入することによって、変異型DOI合成酵素遺伝子(mbtrC)の分子集団を得た。
 上記操作によって取得した分子集団を大腸菌DH5αのコンピテントセル細胞に形質転換し、変異型DOI合成酵素遺伝子クローンライブラリーを構築した。
(実施例2)
<DOI高生産DOI合成酵素遺伝子変異クローンの単離>
 上記操作により取得された変異型DOI合成酵素遺伝子クローンライブラリーから変異型DOI合成酵素遺伝子ライブラリー(pGADP-mbtrC、図5)を抽出し、DOI合成酵素の基質であるグルコース-6-リン酸が高蓄積する大腸菌GI724Δpgi株(国際公開第2006/109479号及びKakinuma等, Tetrahedron Letters, 2000, vol.41, p.1935に記載されている、大腸菌GI724株におけるpgi遺伝子を破壊した株)のコンピテントセルに形質転換した。形質転換細胞をL寒天培地(1%トリプトン、0.5%酵母エキス、0.5%NaCl、2%寒天、100μg/mlアンピシリン)で培養し、生育したクローンをDOI合成酵素遺伝子変異クローンの単離の選抜対象とした。
 1次選抜では、まず、得られた選抜対象クローンをRM液体培地(2%カザミノ酸、1%グリセロール、0.6%NaHPO、0.3%KHPO、0.05%NaCl、0.1%NHCl、1mM MgCl、100μg/mlアンピシリン)が1mlずつ入ったディープウェルプレート96Well丸底に植菌し、30℃で24時間振とうし、前培養を行った。次に、前培養液を1次選抜用2×YT液体培地(1.6%トリプトン、1%酵母エキス、0.5%NaCl、1%グルコース、100μg/mlアンピシリン)が1mlずつ入ったディープウェルプレート96Well丸底に10μlずつ植菌し、30℃で15時間振とうし、本培養を行った。本培養後の培養液を遠心分離して菌体を除いた上清10μl、滅菌蒸留水90μl、メタノール100μl、オキシム化試薬NBHA(20mg/ml)を混合し、60℃で1時間オキシム化反応を行った。オキシム化反応後、減圧濃縮遠心機で乾固し、メタノール200μlで再溶解後、表3の条件でHPLC分析を行い、DOI濃度を決定し、野生型DOI合成酵素遺伝子を有するクローンよりもDOI生産量の多かった候補クローンを選抜した。
Figure JPOXMLDOC01-appb-T000003
 1次選抜において得られた候補クローンを対象として、2次選抜を実施した。2次選抜では、1次選抜において得られた候補クローンをRM液体培地が3mlずつ入った試験管に植菌し、30℃で24時間振とうし、前培養を行った。次に、前培養液を2次選抜用2×YT液体培地(1.6%トリプトン、1%酵母エキス、0.5%NaCl、2%グルコース、100μg/mlアンピシリン)が50mlずつ入った500ml三角フラスコに濁度OD600=0.1になるように植菌し、30℃で36時間振とうし、本培養を行った。本培養開始0、12、24、36時間後の培養液を遠心分離して菌体を除いた上清10μlに対し、1次選抜におけるDOI濃度測定操作と同様の操作を行うことで、DOI濃度をHPLCで決定し、配列番号1のアミノ酸配列の野生型DOI合成酵素遺伝子を有するクローンよりもDOI生産量の多かった候補クローンを選抜した。
 2次選抜において得られた候補クローンを対象として、3次選抜を実施した。2次選抜で得られたクローンから、プラスミドベクターを精製単離し、DOI合成酵素の基質であるグルコース-6-リン酸が高蓄積する大腸菌GI724ΔpgiΔzwfΔpgm株(国際公開第2006/109479号及びKakinuma等, Tetrahedron Letters, 2000, vol.41, p.1935に記載されている、大腸菌GI724株におけるpgi遺伝子、zwf遺伝子及びpgm遺伝子を破壊した株)のコンピテントセル細胞に形質転換した。形質転換細胞をL寒天培地(1%トリプトン、0.5%酵母エキス、0.5%NaCl、2%寒天、100μg/mlアンピシリン)で培養し、生育したクローンを3次選抜に用いた。3次選抜では、まず、得られた選抜対象クローンをRMM液体培地(2%カザミノ酸、0.5%マンニトール、0.6%NaHPO、0.3%KHPO、0.05%NaCl、0.1%NHCl、1mM MgCl、100μg/mlアンピシリン)が3mlずつ入った試験管に植菌し、30℃で24時間振とうし、前培養を行った。次に、前培養液を3次選抜用2×YT液体培地(1.6%トリプトン、1%酵母エキス、0.5%NaCl、2%グルコース、2%マンニトール、100μg/mlアンピシリン)が50mlずつ入った500ml三角バッフルフラスコに濁度OD600=0.1になるように植菌し、30℃で36時間振とうし、本培養を行った。本培養開始0、12、24、36時間後の培養液を遠心分離して菌体を除いた上清10μlに対し、1次選抜におけるDOI濃度測定操作と同様の操作を行うことで、DOI濃度をHPLCで決定し、配列番号1のアミノ酸配列の野生型DOI合成酵素遺伝子を有するクローンよりもDOI生産量の多かった候補クローンを選抜した(図6)。図6中、◆で表されるデータ系列は配列番号1のアミノ酸配列の野生型DOI合成酵素遺伝子を有するクローンによるDOI生産量、■で表されるデータ系列は野生型DOI合成酵素遺伝子を有するクローンよりもDOI生産量の多かった候補クローンによるDOI生産量である。
(実施例3)
<変異型DOI合成酵素遺伝子の塩基配列の解析>
 DOI合成酵素遺伝子の変異点を決定するために、上記3次選抜において得られたクローンのDOI合成酵素遺伝子の塩基配列解析を行った。解析用プライマーは、配列番号8に示すプライマー7(5’-ggagccaaccgaagaacc-3’)、配列番号9に示すプライマー8(5’-ctagtctagagtcgtttttctgct-3’)、配列番号10に示すプライマー9(5’-acctgatgcccgaacatg-3’)、配列番号11に示すプライマー10(5’-agatcgaatccgggtccg-3’)の計4種のプライマーを使用し、ベックマンコールター社製のDTCS Quick Start Kitを利用して、PCR反応を行い、その反応サンプルをベックマンコールター社製のCEQ8000ジェネティックアナライザーにより解析した。解析の結果、DOI合成酵素遺伝子(btrC)の開始コドンから877番目のTがAに塩基置換されていた。すなわち、N末端から293番目のトリプトファンがアルギニンにアミノ酸置換されていた。このようにして、配列番号1のアミノ酸配列の野生型DOI合成酵素と比較して、DOI生産性を向上させる変異型DOI合成酵素をコードする遺伝子(btrC(W293R))を取得した。
(実施例4)
<野生型及び変異型DOI合成酵素の生産及び精製>
 配列番号1のアミノ酸配列の野生型DOI合成酵素を含むプラスミドベクターpLEX-btrC(国際公開第2006/109479号に記載されている)をテンプレートとして、btrC遺伝子の開始コドン上流にBamHI制限酵素サイトを付加したヌクレオチド配列に相当する配列番号12に示すプライマー11(5’-cgcggatccatgacgactaaacaaattt-3’)、btrC遺伝子の終止コドン上流にHindIII制限酵素サイトを付加したヌクレオチド配列に相当する配列番号13に示すプライマー12(5’-cccaagcttttacagcccttccccgatc-3’)を用いてbtrC遺伝子のヌクレオチド配列をPCR法により増幅し、大腸菌組換え蛋白質高発現ベクターpQE80L(QIAGEN)に連結し、大腸菌DH5αに形質転換し、プラスミドpQE80L-btrCを得た。pQE80Lベクターに連結することによりヒスチジンタグ配列とDOI合成酵素が融合した組換えDOI合成酵素を生産することができる。組換え蛋白質としてDOI合成酵素を高発現させた大腸菌を遠心により回収後、Lysis  buffer(500mM Phosphate Buffer(pH7.7)、300mM NaCl、0.2mM CoCl・6HO)に懸濁した。懸濁液を超音波破砕機にかけ、大腸菌を破砕後、遠心をすることにより組換えDOI合成酵素を上清に回収した。上清液とヒスチジンタグ配列と特異的に結合するNi-NTAアガロースを混合して、Ni-NTAアガロースにDOI合成酵素を結合させた後、Wash buffer(500mM Phosphate Buffer(pH7.7)、30mM Imidazole、0.2mM CoCl・6HO)を加えて、洗浄し、遠心して上清を捨てた。組換えDOI合成酵素が結合したNi-NTAアガロースに溶出buffer(50mM Phosphate Buffer(pH7.7)、200mM Imidazole、0.2mM CoCl・6H0)を加えて、組換えDOI合成酵素を溶出させ、高純度の組換えDOI合成酵素を精製することができた。
 同様に、変異型DOI合成酵素(btrC(W293R))についても、上記で取得した変異型DOI合成酵素(btrC(W293R))を含むプラスミドベクターをテンプレートとして、btrC遺伝子の開始コドン上流にBamHI制限酵素サイトを付加したヌクレオチド配列に相当する配列番号12に示すプライマー11(5’-cgcggatccatgacgactaaacaaattt-3’)、btrC遺伝子の終止コドン上流にHindIII制限酵素サイトを付加したヌクレオチド配列に相当する配列番号13に示すプライマー12(5’-cccaagcttttacagcccttccccgatc-3’)を用いてbtrC(W293R)遺伝子のヌクレオチド配列をPCR法により増幅し、大腸菌組換え蛋白質高発現ベクターpQE80L(QIAGEN)に連結し、大腸菌DH5αに形質転換し、プラスミドpQE80L-btrC(W293R)を得た。同様な方法で組換え変異型DOI合成酵素の生産、精製を行った。
(実施例5)
<野生型及び変異型DOI合成酵素の活性測定>
 実施例4で精製した野生型及び変異型DOI合成酵素の酵素活性をグルコース-6-リン酸、NADを用いて測定した。アッセイの反応溶液の組成は、50mM Phosphate Buffer(pH7.7)、5mM グルコース-6-リン酸、5mM β-NAD、0.2mM CoCl・6HO、野生型又は変異型DOI合成酵素 10μgとし、46℃、5分間反応させた。反応後、反応溶液をフェノール/クロロホルム処理をして、除蛋白を行い、遠心後の水層画分10μlをサンプルとして、実施例2における1次選抜におけるDOI濃度測定に用いたHPLCを用いた方法でDOIを定量し、活性を算出した。また、DOI合成酵素1mgが1分間あたりに合成するDOIの量を比活性とした。変異型DOI合成酵素(W293R)のDOI合成酵素活性は、配列番号1のアミノ酸配列の野生型DOI合成酵素の活性よりも、1.5倍高活性であった(図7)。
(実施例6) 
 さらにDOI生産性を向上させる変異型DOI合成酵素遺伝子を取得するために、変異型DOI合成酵素遺伝子(W293R)を含むプラスミドをテンプレートとして、実施例1に示したエラープローンPCR法で、新たな変異型DOI合成酵素遺伝子クローンライブラリーを構築した。次いで、実施例2のDOI合成酵素遺伝子変異クローンの単離に示した1、2、3次選抜を実施し、変異型DOI合成酵素遺伝子(W293R)を含むクローンよりもさらにDOI生産性の向上したクローンを取得した(図8)。図8中、◆で表されるデータ系列はpGADP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株によるDOI生産量を表し、■で表されるデータ系列はpGADP-btrC(W293R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株によるDOI生産量を表し、▲で表されるデータ系列、×で表されるデータ系列、+で表されるデータ系列、及び●で表されるデータ系列は、それぞれ異なる変異型DOI合成酵素遺伝子を含む大腸菌GI724ΔpgiΔzwfΔpgm株によるDOI生産量を表す。
 次に実施例3の変異型DOI合成酵素遺伝子の塩基配列の解析と同様に塩基配列解析をした結果、表4に示すように、以下の4種の変異型DOI合成酵素遺伝子が得られた。
DOI合成酵素遺伝子(btrC)の開始コドンから877番目のTがAに塩基置換されたことにより、配列番号1におけるN末端から293番目のトリプトファンがアルギニンにアミノ酸置換され、且つDOI合成酵素遺伝子(btrC)の開始コドンから41番目のAがCに塩基置換されたことにより、配列番号1におけるN末端から14番目のアスパラギンがトレオニンにアミノ酸置換された変異型DOI合成酵素遺伝子(btrC(W293R/N14T))。
 DOI合成酵素遺伝子(btrC)の開始コドンから877番目のTがAに塩基置換されたことにより、配列番号1におけるN末端から293番目のトリプトファンがアルギニンにアミノ酸置換され、且つDOI合成酵素遺伝子(btrC)の開始コドンから110番目のAがTに塩基置換されたことにより、配列番号1におけるN末端から37番目のチロシンがフェニルアラニンにアミノ酸置換された変異型DOI合成酵素遺伝子(btrC(W293R/Y37F))。
 DOI合成酵素遺伝子(btrC)の開始コドンから877番目のTがAに塩基置換されたことにより、配列番号1におけるN末端から293番目のトリプトファンがアルギニンにアミノ酸置換され、且つDOI合成酵素遺伝子(btrC)の開始コドンから868番目のGがAに塩基置換されたことにより、配列番号1におけるN末端から290番目のアラニンがトレオニンにアミノ酸置換された変異型DOI合成酵素遺伝子(btrC(W293R/A290T))。
 DOI合成酵素遺伝子(btrC)の開始コドンから877番目のTがAに塩基置換されたことにより、配列番号1におけるN末端から293番目のトリプトファンがアルギニンにアミノ酸置換され、且つDOI合成酵素遺伝子(btrC)の開始コドンから956番目のAがGに塩基置換されたことにより、配列番号1におけるN末端から319番目のヒスチジンがアルギニンにアミノ酸置換された変異型DOI合成酵素遺伝子(btrC(W293R/H319R))。
Figure JPOXMLDOC01-appb-T000004
 野生型DOI合成酵素遺伝子を含むクローン、W293R変異を有する変異型DOI合成酵素遺伝子を含むクローン、及び表4に示した各クローンによるDOI生産(図8に示したもの)について、以下の表5に数値を示す。
Figure JPOXMLDOC01-appb-T000005
 次に実施例4と同様に上記4種の(btrC(W293R/N14T))、(btrC(W293R/Y37F))、(btrC(W293R/A290T))、(btrC(W293R/H319R))の変異型DOI合成酵素を生産、精製した。その後、実施例5と同様に野生型DOI合成酵素と各変異型DOI合成酵素のアッセイを行い、活性を比較した結果、
変異型DOI合成酵素(W293R/N14T)のDOI合成酵素活性は、配列番号1のアミノ酸配列の野生型DOI合成酵素の活性よりも、1.92倍高活性(図9)、
変異型DOI合成酵素(W293R/Y37F)のDOI合成酵素活性は、配列番号1のアミノ酸配列の野生型DOI合成酵素の活性よりも、1.57倍高活性(図9)、
変異型DOI合成酵素(W293R/A290T)のDOI合成酵素活性は、配列番号1のアミノ酸配列の野生型DOI合成酵素の活性よりも、1.45倍高活性(図9)、
変異型DOI合成酵素(W293R/H319R)のDOI合成酵素活性は、配列番号1のアミノ酸配列の野生型DOI合成酵素の活性よりも、1.83倍高活性(図9)、
であり、以上4種の変異型DOI合成酵素遺伝子は全て配列番号1のアミノ酸配列の野生型DOI合成酵素よりも高活性であった。
(実施例7)
<変異型DOI合成酵素遺伝子(btrC(W293R/H319R))を導入した形質転換体によるDOI発酵生産性>
 変異型DOI合成酵素遺伝子(btrC(W293R/H319R))のDNA断片を宿主細胞(大腸菌)で発現させるための発現ベクターを構築した。具体的には、pLEXベクター(Invitrogen)を鋳型として、配列番号4に示すプライマー3(5’-atggtaccgagctcggatcc-3’)と5’側にBamHI制限酵素サイトを有する配列番号14に示すプライマー13(5’-cgcggatccgagataatttatcaccgcag-3’)を用い、PCR増幅を行った。PCR増幅には、KODポリメラーゼ(TOYOBO)を用いた。PCRの反応条件は、94℃で2分保持後、94℃で30秒の熱変性、50℃で30秒のアニーリング、68℃で1分のDNA伸長の反応を1サイクルとして、30サイクル実施し、さらに68℃で2分保持し、得られたPCR増幅産物を4℃で保持した。このようにPCR増幅したDNA断片をフェノール/クロロホルムで処理し、遠心分離し、上清をエタノール沈殿して、DNA断片を回収した。回収したDNA断片を制限酵素BamHIとPstIで消化し、アガロースゲル電気泳動によって精製・単離し、発現ベクターのDNA断片を取得した。
 次いで、変異型DOI合成酵素遺伝子(btrC(W293R/H319R))のDNA断片を宿主細胞(大腸菌)で発現させるためのプロモーターとして、gapAプロモーターを取得した。gapAプロモーターは、具体的には以下のようにして取得した。大腸菌の染色体DNAを鋳型として、5’側にBamHI制限酵素サイトを有する配列番号15に示すプライマー14(5’-cgcggatccgcgggaagagtgaggcgagtc-3’)と5’側にリン酸基を付加した配列番号16に示すプライマー15(5’-atattccaccacctatttg-3’)を用い、PCR増幅を行った。PCR増幅には、KODポリメラーゼ(TOYOBO)を用いた。PCRの反応条件は、94℃で2分保持後、94℃で30秒の熱変性、50℃で30秒のアニーリング、68℃で1分のDNA伸長の反応を1サイクルとして、30サイクル実施し、さらに68℃で2分保持し、得られたPCR増幅産物を4℃で保持した。このようにPCR増幅したDNA断片をフェノール/クロロホルムで処理し、遠心分離し、上清をエタノール沈殿して、gapAプロモーターのDNA断片を回収した。
 次いで、変異型DOI合成酵素遺伝子(btrC(W293R/H319R))を含むプラスミドを鋳型として、5’側にリン酸基を付加した配列番号17に示すプライマー16(5’-atgacgactaaacaaatttgttttgcgg-3’)と5’側にPstI制限酵素サイトを有する配列番号18に示すプライマー17(5’-aaaactgcagttacagcccttcccggatc-3’)を用い、PCR増幅を行った。PCR増幅には、KODポリメラーゼ(TOYOBO)を用いた。PCRの反応条件は、94℃で2分保持後、94℃で30秒の熱変性、50℃で30秒のアニーリング、68℃で1分のDNA伸長の反応を1サイクルとして、30サイクル実施し、さらに68℃で2分保持し、得られたPCR増幅産物を4℃で保持した。このようにPCR増幅したDNA断片をフェノール/クロロホルムで処理し、遠心分離し、上清をエタノール沈殿して、変異型DOI合成酵素遺伝子(btrC(W293R/H319R))のDNA断片を回収した。
 次に、上記で増幅させたgapAプロモーターのDNA断片と、変異型DOI合成酵素遺伝子(btrC(W293R/H319R))のDNA断片とを、2×Ligation mixを用い、16℃、30分で反応させた。このようにして得たLigation産物を鋳型として、配列番号15に示すプライマー14と配列番号18に示すプライマー17とを用い、PCR増幅を行った。PCR増幅には、KODポリメラーゼ(TOYOBO)を用いた。PCRの反応条件は、94℃で2分保持後、94℃で30秒の熱変性、50℃で30秒のアニーリング、68℃で1分のDNA伸長の反応を1サイクルとして、30サイクル実施し、さらに68℃で2分保持し、得られたPCR増幅産物を4℃で保持した。このようにPCR増幅したDNA断片をフェノール/クロロホルムで処理し、遠心分離し、上清をエタノール沈殿して、DNA断片を回収した。回収したDNA断片を制限酵素BamHIとPstIで消化し、アガロースゲル電気泳動によって精製・単離し、発現ベクターのDNA断片を取得した。このDNA断片を、上記した発現ベクターのDNA断片に連結挿入し、プラスミドpGAPP-btrC(W293R/H319R)を得た(図10)。また、同様な方法で配列番号1のアミノ酸配列の野生型DOI合成酵素遺伝子が挿入されたpGAPP-btrCも得た(図11)。
 プラスミドpGAPP-btrC(W293R/H319R)及びpGAPP-btrCを精製単離し、DOI合成酵素の基質であるグルコース-6-リン酸が高蓄積する大腸菌GI724ΔpgiΔzwfΔpgm株(国際公開第2006/109479号及びKakinuma等, Tetrahedron Letters, 2000, vol.41, p.1935に記載されている)のコンピテントセルに形質転換した。形質転換細胞を2×YT液体培地(1.6%トリプトン、1%酵母エキス、100μg/mlアンピシリン)が3ml入った試験管に植菌し、30℃で24時間振とうし、前培養を行った。次に、前培養液を評価培養用2×YT液体培地(1.6%トリプトン、1%酵母エキス、0.5%NaCl、5%グルコース、5%マンニトール、100μg/mlアンピシリン)が50mlずつ入った500ml三角バッフルフラスコに濁度OD600=0.1になるように植菌し、30℃で60時間振とうし、本培養を行った。本培養開始0、12、24、36、48、60時間後の培養液を遠心分離して菌体を除いた上清10μlに対し、実施例2における1次選抜におけるDOI濃度測定操作と同様の操作を行うことで、DOI濃度をHPLCで決定した。また、菌体の濁度、培地中のグルコース濃度、マンニトール濃度もあわせて測定した。菌体濁度は分光光度計を用いて600nmで吸光度を測定し、グルコース濃度は和光純薬工業(株)製のグルコースCII-テストワコーに従い、マンニトール濃度は、Magazyme社製のMannitol Assay Kitに従って測定した。
 図12Aに培地の濁度のタイムコース、図12Bに培地中のグルコース濃度のタイムコース、図12Cに培地中のマンニトール濃度のタイムコース及び図12DにDOI生産量のタイムコースを示す。pGAPP-btrC(W293R/H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(図12A~図12D中における▲で示されるデータ系列)は、pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(図12A~図12D中における■で示されるデータ系列)の約2倍のDOI生産速度を示した。
(実施例8)
<変異型DOI合成酵素遺伝子(btrC(H319R))を導入した形質転換体によるDOI発酵生産性>
 変異型DOI合成酵素遺伝子(btrC(H319R))のDNA断片を宿主細胞(大腸菌)で発現させるための発現ベクターを構築した。配列番号1のアミノ酸配列の野生型DOI合成酵素遺伝子が挿入されたpGAPP-btrC(図11)を鋳型として、配列番号19に示すプライマー18(5’-ttccattatttaatccgcgataacaagagg-3’)と配列番号20に示すプライマー19(5’-cctcttgttatcgcggattaaataatggaa-3’)を用い、PCR増幅を行った。PCR増幅には、KODポリメラーゼ(TOYOBO)を用いた。PCRの反応条件は、94℃で2分保持後、98℃で15秒の熱変性、55℃で30秒のアニーリング、68℃で6分のDNA伸長の反応を1サイクルとして、20サイクル実施し、さらに68℃で3分保持し、得られたPCR増幅産物を4℃で保持した。このようにPCR増幅したDNA断片を制限酵素DpnIで消化し、大腸菌DH5αに形質転換し、プラスミドpGAPP-btrC(H319R)を得た(図13)。
 プラスミドpGAPP-btrC(H319R)及びpGAPP-btrCを精製単離し、DOI合成酵素の基質であるグルコース-6-リン酸が高蓄積する大腸菌GI724ΔpgiΔzwfΔpgm株(国際公開第2006/109479号及びKakinuma等, Tetrahedron Letters, 2000, vol.41, p.1935に記載されている)のコンピテントセルに形質転換した。形質転換細胞を2×YT液体培地(1.6%トリプトン、1%酵母エキス、100μg/mlアンピシリン)が3ml入った試験管に植菌し、30℃で24時間振とうし、前培養を行った。次に、前培養液を評価培養用2×YT液体培地(1.6%トリプトン、1%酵母エキス、0.5%NaCl、3%グルコース、4%マンニトール、100μg/mlアンピシリン)が30mlずつ入った200ml三角バッフルフラスコに濁度OD600=0.1になるように植菌し、30℃で48時間振とうし、本培養を行った。本培養開始0、12、24、36、48時間後の培養液を遠心分離して菌体を除いた上清10μlに対し、実施例2における1次選抜におけるDOI濃度測定操作と同様の操作を行うことで、DOI濃度をHPLCで決定した。また、菌体の濁度、培地中のグルコース濃度、マンニトール濃度もあわせて測定した。菌体濁度は分光光度計を用いて600nmで吸光度を測定し、グルコース濃度は和光純薬工業(株)製のグルコースCII-テストワコーに従い、マンニトール濃度は、Magazyme社製のMannitol Assay Kitに従って測定した。
 図14Aに培地の濁度のタイムコース、図14Bに培地中のグルコース濃度のタイムコース、図14Cに培地中のマンニトール濃度のタイムコース及び図14DにDOI生産量のタイムコースを示す。pGAPP-btrC(H319R)を含む大腸菌GI724ΔpgiΔzwfΔpgm株(図14A~図14D中における▲で表されるデータ系列)は、pGAPP-btrCを含む大腸菌GI724ΔpgiΔzwfΔpgm株(図14A~図14D中における■で表されるデータ系列)の約1.2倍のDOI生産速度を示した。
(実施例9)
 <変異型DOI合成酵素遺伝子(btrC(W293R/N14T)、(W293R/H319R))を導入した形質転換体によるジャーファーメンターでのDOI発酵生産性評価> 
 ジャーファーメンターの培養では実施例8とは異なる宿主と発現ベクターを用いた。宿主にはDOI合成酵素基質であるグルコース-6-リン酸が高蓄積する大腸菌MG1655ΔpgiΔzwf株(国際公開第2010/053052号に記載されている、大腸菌MG1655株におけるpgi遺伝子及びzwf遺伝子を破壊した株)を用いた。一方、発現ベクターについては以下のように作成した。
 DOI合成酵素遺伝子(btrC)を含むプラスミドベクターpGAP-btrC-cscA-glf(国際公開第2010/053052号に記載されている、GADPHプロモータ、バチルス・サーキュランスのDOI合成酵素遺伝子であるbtrC、大腸菌O-157株由来のスクロース加水分解酵素遺伝子であるcscA及びザイモモナス・モビリス由来のグルコース輸送促進タンパク質遺伝子であるglfの発現ユニットをpBR322(Genbank accession No.J01749)に組み込んだもの)を鋳型にして配列番号21に示すプライマー20(5’-cattacaggcttttaaataaaatcggg -3’)、配列番号22に示すプライマー21(5’- taaaagcctgtaatgggcggacacgtc -3’)を用い、PCR増幅を行った。PCR増幅にはPrimeSTAR Max DNA Polymerase(TAKARA)を用いた。PCRの反応条件は98℃で10秒間の熱変性、55℃で15秒間のアニーリング、72℃で40秒間のDNA伸長反応を1サイクルとして30サイクル実施した。このように増幅したPCR産物を大腸菌DH5αに形質転換し、変異型DOI合成酵素遺伝子(btrC(W293R))を含むプラスミドベクターpGAPP-btrC(W293R)-cscA-glfを得た。(図15)
 変異型DOI合成酵素遺伝子(btrC(W293R))を含むプラスミドベクターpGAPP-btrC(W293R)-cscA-glfを鋳型にして配列番号23に示すプライマー22(5’- tgttttacctttgcattcggcgaacat-3’)、配列番号24に示すプライマー23(5’-tgcaaaggtaaaacaccggtccgcaaa-3’)を用い、PCR増幅を行った。PCR増幅にはPrimeSTAR Max DNA Polymerase(TAKARA)を用いた。PCRの反応条件は98℃で10秒間の熱変性、58℃で15秒間のアニーリング、72℃で40秒間のDNA伸長反応を1サイクルとして30サイクル実施した。このように増幅したPCR産物を大腸菌DH5αに形質転換し、変異型DOI合成酵素遺伝子(btrC(W293R/N14T))を含むプラスミドベクターpGAPP-btrC(W293R/N14T)-cscA-glfを得た。(図16)
 また、変異型DOI合成酵素遺伝子(btrC(W293R))を含むプラスミドベクターpGAPP-btrC(W293R)-cscA-glfを鋳型にして配列番号25に示すプライマー24(5’- ttaatccgcgataacaagaggggctac-3’)、配列番号26に示すプライマー25(5’- ttatcgcggattaaataatggaagat-3’)を用い、PCR増幅を行った。PCR増幅にはPrimeSTAR Max DNA Polymerase(TAKARA)を用いた。PCRの反応条件は98℃で10秒間の熱変性、54.4℃で15秒間のアニーリング、72℃で40秒間のDNA伸長反応を1サイクルとして30サイクル実施した。このように増幅したPCR産物を大腸菌DH5αに形質転換し、変異型DOI合成酵素遺伝子(btrC(W293R/H319R)を含むプラスミドベクターpGAPP-btrC(W293R/H319R)-cscA-glfを得た。(図17)
 プラスミドpGAPP-btrC(W293R)-cscA-glf及びプラスミドpGAPP-btrC(W293R/N14T)-cscA-glf、pGAPP-btrC(W293R/H319R)-cscA-glfをMonarch(登録商標) Plasmid Miniprep kit(New England Biolabs)を用いて精製単離し、DOI合成酵素の基質であるグルコース-6-リン酸が高蓄積する大腸菌MG1655ΔpgiΔzwf株(国際公開第2010/053052号に記載されている)のコンピテントセルに形質転換し、アンピシリン100μg/mlを含むLB寒天プレートで37℃で一晩培養することによって3種類のプラスミドpGAPP-btrC(W293R)-cscA-glf、pGAPP-btrC(W293R/N14T)-cscA-glf、pGAPP-btrC(W293R/H319R)-cscA-glfをそれぞれ含む、3種類のMG1655ΔpgiΔzwf株を得た。
 3種類のプラスミドpGAPP-btrC(W293R)-cscA-glf、pGAPP-btrC(W293R/N14T)-cscA-glf、pGAPP-btrC(W293R/H319R)-cscA-glfをそれぞれ含むMG1655ΔpgiΔzwf株について、ジャーファーメンターを用いたDOI生産性評価を行った。
 前培養としてLB培地(1%ハイポリペプトンN、0.5%酵母エキス、0.5%NaCl、0.01%FeSO・7HO)が100gずつ入った500ml三角バッフルフラスコにアンピシリン100mg/mlを0.1ml加え、3種類のプラスミドpGAPP-btrC(W293R)-cscA-glf、pGAPP-btrC(W293R/N14T)-cscA-glf、pGAPP-btrC(W293R/H319R)-cscA-glfをそれぞれ含む3種類のMG1655ΔpgiΔzwf株を、0.1ml別々の上記三角バッフルフラスコに植菌し、一晩120rpm、28℃で撹拌培養を行った。
 培地成分1(0.2%KHPO4、0.2%KHPO、0.01%FeSO・7HO、0.03%アデカノール)350gが入った1L培養槽(ABLE社製造培養槽 BML-01KP3)を滅菌し、培地成分2(10%(NHSO、4.6%NHCl、4.6%MgSO・7HO)を15g、50%コーンスティープリカーを5g 、50%フィチン酸を700μl加え、前培養液を10g植菌し培養を開始した。培養開始とともに試薬糖液(21%Glc、21%Fru、1%Xyl)を0.13g/minの速度で30時間流加した。試薬糖液はグルコース溶液、フルクトース溶液、キシロース溶液をそれぞれ別々に高圧蒸気滅菌し混合して作製した。
 培養は大気圧下、通気量0.5L/min、撹拌速度800rpm、培養温度30℃、pH6.0(12.5%アンモニア溶液で調整)で32時間行った。培養開始0、8、24、27、32時間後の培養液を遠心分離して、菌体を取り除いた上清を滅菌蒸留水で100倍希釈し、フィルター(マイレクス-GV、0.22μm、PVDF、4mm)を用いてろ過し、表7の条件に従ってDOI、グルコース、フルクトース、キシロース濃度の測定をHPLCを用いて行った。
 図18AにpGAPP-btrC(W293R)-cscA-glfを含むMG1655ΔpgiΔzwf株でのDOI生産量(▲)、グルコース濃度(●)、フルクトース濃度(◆)、キシロース濃度(■)のタイムコースを示し、図18BにpGAPP-btrC(W293R/N14T)-cscA-glfを含むMG1655ΔpgiΔzwf株でのDOI生産量(▲)、グルコース濃度(●)、フルクトース濃度(◆)、キシロース濃度(■)のタイムコースを示し、図18CにpGAPP-btrC(W293R/H319R)-cscA-glfを含むMG1655ΔpgiΔzwf株でのDOI生産量(▲)、グルコース濃度(●)、フルクトース濃度(◆)、キシロース濃度(■)のタイムコースを示した。
 表6に3種類のプラスミドpGAPP-btrC(W293R)-cscA-glf、pGAPP-btrC(W293R/N14T)-cscA-glf、pGAPP-btrC(W293R/H319R)-cscA-glfをそれぞれ含むMG1655ΔpgiΔzwf株の32時間目のDOI濃度を示した。つまり、pGAPP-btrC(W293R)-cscA-glfを含む大腸菌MG1655ΔpgiΔzwf株、pGAPP-btrC(W293R/N14T)-cscA-glfを含む大腸菌MG1655ΔpgiΔzwf株、pGAPP-btrC(W293R/H319R)-cscA-glfを含む大腸菌MG1655ΔpgiΔzwf株それぞれの32時間培養を行った後のDOI濃度を示した図である。
Figure JPOXMLDOC01-appb-T000006
 32時間目のDOI濃度はpGAPP-btrC(W293R)-cscA-glfを含むMG1655ΔpgiΔzwf株で56.6g/L、pGAPP-btrC(W293R/N14T)-cscA-glfを含むMG1655ΔpgiΔzwf株で30.6g/L、pGAPP-btrC(W293R/H319R)-cscA-glfを含むMG1655ΔpgiΔzwf株で70.5g/Lとなった。
 よってpGAPP-btrC(W293R/H319R)-cscA-glfを含むMG1655ΔpgiΔzwf株でpGAPP-btrC(W293R)-cscA-glfを含むMG1655ΔpgiΔzwf株の約1.2倍のDOI生産性を示した。
Figure JPOXMLDOC01-appb-T000007
 2017年3月27日に出願された日本国特許出願2017-061572の開示はその全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  下記(A1)又は(A2)のアミノ酸配列において、下記(a)~(e)のうち少なくとも1つのアミノ酸変異を有するポリペプチド。
     (A1)配列番号1のアミノ酸配列
     (A2)グルコース-6-リン酸から2-デオキシ-シロ-イノソースを生成する酵素活性を有するポリペプチドのアミノ酸配列であって、且つ、配列番号1のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列
     (a)配列番号1のアミノ酸配列におけるN末端から14番目のアスパラギン残基にアラインメント上対応するアミノ酸残基がトレオニンに置換されるアミノ酸変異
     (b)配列番号1のアミノ酸配列におけるN末端から37番目のチロシン残基にアラインメント上対応するアミノ酸残基がフェニルアラニンに置換されるアミノ酸変異
     (c)配列番号1のアミノ酸配列におけるN末端から290番目のアラニン残基にアラインメント上対応するアミノ酸残基がトレオニンに置換されるアミノ酸変異
     (d)配列番号1のアミノ酸配列におけるN末端から293番目のトリプトファン残基にアラインメント上対応するアミノ酸残基がアルギニンに置換されるアミノ酸変異
     (e)配列番号1のアミノ酸配列におけるN末端から319番目のヒスチジン残基にアラインメント上対応するアミノ酸残基がアルギニンに置換されるアミノ酸変異
  2.  前記(A1)又は(A2)のアミノ酸配列において、前記(d)及び前記(e)のアミノ酸変異のうち少なくとも1つを有する、請求項1に記載のポリペプチド。
  3.  前記(A1)又は(A2)のアミノ酸配列において、
    前記(d)のアミノ酸変異と、前記(a)、(b)、(c)及び(e)から選ばれる少なくとも1つのアミノ酸変異を有する、請求項1に記載のポリペプチド。
  4.  請求項1~請求項3のいずれか1項に記載のポリペプチドが有するアミノ酸配列をコードする塩基配列を有する、ポリヌクレオチド。
  5.  請求項4に記載のポリヌクレオチド、前記ポリヌクレオチドの上流に連結されたプロモーター配列、及び前記ポリヌクレオチドの下流に連結されたターミネーター配列を含む発現カセット。
  6.  請求項5に記載の発現カセットを含有するベクター。
  7.  請求項6に記載のベクターによって形質転換された形質転換体。
  8.  請求項7に記載の形質転換体を培養することを含む、グルコース-6-リン酸から2-デオキシ-シロ-イノソースを生成する酵素活性を有するポリペプチドの製造方法。
  9.  請求項1~請求項3のいずれか1項に記載のポリペプチド、請求項7に記載の形質転換体、前記形質転換体の培養物又は前記形質転換体若しくは前記培養物の処理物をグルコース又はグルコース-6-リン酸と接触させることにより、グルコース又はグルコース-6-リン酸を2-デオキシ-シロ-イノソースへ変換することを含む、2-デオキシ-シロ-イノソースの製造方法。
PCT/JP2018/010349 2017-03-27 2018-03-15 変異型2-デオキシ-シロ-イノソース合成酵素 WO2018180568A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019509266A JP6989746B2 (ja) 2017-03-27 2018-03-15 変異型2-デオキシ-シロ-イノソース合成酵素
EP18777395.7A EP3604526A4 (en) 2017-03-27 2018-03-15 2-DEOXY-SCYLLO-INOSOSE MUTANT SYNTHASE
CN201880020313.XA CN110462041B (zh) 2017-03-27 2018-03-15 突变型2-脱氧-青蟹肌糖合酶
KR1020197029474A KR102336516B1 (ko) 2017-03-27 2018-03-15 변이형 2-데옥시-실로-이노소스 합성효소
US16/497,970 US11499175B2 (en) 2017-03-27 2018-03-15 Mutant type 2-deoxy-scyllo-inosose synthase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061572 2017-03-27
JP2017-061572 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180568A1 true WO2018180568A1 (ja) 2018-10-04

Family

ID=63677123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010349 WO2018180568A1 (ja) 2017-03-27 2018-03-15 変異型2-デオキシ-シロ-イノソース合成酵素

Country Status (6)

Country Link
US (1) US11499175B2 (ja)
EP (1) EP3604526A4 (ja)
JP (1) JP6989746B2 (ja)
KR (1) KR102336516B1 (ja)
CN (1) CN110462041B (ja)
WO (1) WO2018180568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513056A (ja) * 2018-11-15 2022-02-07 バイオアプリケーションズ インコーポレイテッド 植物体でウイルス様粒子を発現する組み換えベクター及びこれを利用したサーコウイルス様粒子を含むワクチン組成物の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236881A (ja) 1999-02-22 2000-09-05 Tokyo Inst Of Technol 2−デオキシ−シロ−イノソース合成酵素、アミノ酸配列、遺伝子塩基配列
JP2005053899A (ja) 2003-07-23 2005-03-03 Hokko Chem Ind Co Ltd 新規カルバ糖誘導体および該新規カルバ糖誘導体を原料とする擬似アミノ糖誘導体の製造法
WO2006109479A1 (ja) 2005-03-30 2006-10-19 Niigata Bio-Research Park, Inc. 遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2-デオキシ-シロ-イノソースの製造方法及び2-デオキシ-シロ-イノソースの精製方法
WO2010053052A1 (ja) 2008-11-05 2010-05-14 三井化学株式会社 2-デオキシ-シロ-イノソース(doi)生産細菌及びこれを用いた2-デオキシ-シロ-イノソース(doi)生産方法
JP2013135697A (ja) 2009-03-26 2013-07-11 Asahi Kasei Chemicals Corp 新規2−デオキシ−シロ−イノソース合成酵素
JP2014064513A (ja) 2012-09-26 2014-04-17 Tokyo Institute Of Technology 2−デオキシ−scyllo−イノソースの調製法
JP2017061572A (ja) 2005-11-04 2017-03-30 ノバルティス アーゲー Raの処置のためのカルシトニンの使用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100132074A (ko) * 2008-04-14 2010-12-16 미쓰이 가가쿠 가부시키가이샤 글루코오스 제조용의 효모 및 이를 이용한 글루코오스 제조방법
EP2338979A4 (en) * 2008-09-16 2012-12-19 Mitsui Chemicals Inc BACTERIA CAPABLE OF PRODUCING LACTIC ACID AND METHOD FOR PRODUCING LACTIC ACID
WO2011052482A1 (ja) * 2009-10-29 2011-05-05 三井化学株式会社 イソプロピルアルコール生産細菌及びイソプロピルアルコール生産方法
JP7173538B2 (ja) * 2018-10-25 2022-11-16 株式会社Ihi トリヒドロキシベンゼンの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236881A (ja) 1999-02-22 2000-09-05 Tokyo Inst Of Technol 2−デオキシ−シロ−イノソース合成酵素、アミノ酸配列、遺伝子塩基配列
JP2005053899A (ja) 2003-07-23 2005-03-03 Hokko Chem Ind Co Ltd 新規カルバ糖誘導体および該新規カルバ糖誘導体を原料とする擬似アミノ糖誘導体の製造法
WO2006109479A1 (ja) 2005-03-30 2006-10-19 Niigata Bio-Research Park, Inc. 遺伝子発現カセット及び形質転換体、並びにこの形質転換体を用いた2-デオキシ-シロ-イノソースの製造方法及び2-デオキシ-シロ-イノソースの精製方法
JP2017061572A (ja) 2005-11-04 2017-03-30 ノバルティス アーゲー Raの処置のためのカルシトニンの使用
WO2010053052A1 (ja) 2008-11-05 2010-05-14 三井化学株式会社 2-デオキシ-シロ-イノソース(doi)生産細菌及びこれを用いた2-デオキシ-シロ-イノソース(doi)生産方法
JP2013135697A (ja) 2009-03-26 2013-07-11 Asahi Kasei Chemicals Corp 新規2−デオキシ−シロ−イノソース合成酵素
JP2014064513A (ja) 2012-09-26 2014-04-17 Tokyo Institute Of Technology 2−デオキシ−scyllo−イノソースの調製法

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"PCR Technology", 1989, STOCKTON PRESS
HIRAYAMA ET AL., J. ANTIBIOT., vol. 58, 2005, pages 766
HIRAYAMA ET AL., J. ANTIBIOT., vol. 59, 2006, pages 358
KAKINUMA ET AL., TETRAHEDRON LETTERS, vol. 41, 2000, pages 1935
KHAREL ET AL., ARCH. BIOCHEM. BIOPHYS., vol. 429, 2004, pages 204
KHAREL ET AL., FEMS MICROBIOL. LETT., vol. 230, 2004, pages 185
KOGURE ET AL., J. BIOTECHNOL., vol. 129, 2007, pages 502
KRAMER, W.FRITA, H. J., METHODS IN ENZYMOLOGY, vol. 154, 1987, pages 350
KUDO ET AL., J. ANTIBIOT., vol. 52, 1999, pages 559
NANGO ERIKO ET AL.: "Active site mapping of 2- deoxy-scyllo-inosose synthase, the key starter enzyme for the biosynthesis of 2-deoxystreptamine. Mechanism-based inhibition and identification of Lysine-141 as the entrapped nucleophile", JOURNAL OF ORGANIC CHEMISTRY, vol. 69, no. 3, 6 February 2004 (2004-02-06), pages 593 - 600, XP055558145 *
NANGO ERIKO ET AL.: "Structure of 2-deoxy-scyllo- inosose synthase, a key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside based inhibitor and NAD+", PROTEINS, vol. 70, no. 2, 24 August 2008 (2008-08-24), pages 517 - 527, XP002725704 *
SAMBROOK, J. ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
STREPTOMYCES KANAMYCETICUS, J. ANTIBIOT., vol. 57, 2004, pages 436
SUBBA ET AL., MOL. CELLS, vol. 20, 2005, pages 90
SUZUKI, RYOKO ET AL.: "2C23a04 Enhancement of 2-deoxy-scyllo-inosose (DOI) synthase activity by amino acid substitution", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2017; MARCH 17-20, 2017; KYOTO, JAPAN. JSBBA ANNUAL MEETING REPORT, vol. 2017, 5 March 2017 (2017-03-05), XP009516652, ISSN: 2186-7976 *
TAKAKU, HIROAKI ET AL.: "Laboratory of applied microbiology", NIIGATA UNIVERSITY OF PHARMACY AND APPLIED LIFE SCIENCES ANNUAL RESEARCH REPORT 2014, 2014, pages 31 - 37, XP009516793 *
TAMEGAI ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 74, 2010, pages 1215
WAKISAKA, NAOKI ET AL.: "Acquiring highly active mutants of aromatic compound precursor synthesis enzymes by evolutionary engineering techniques and the optimization of producing precursor synthesis enzymes", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2011. JSBBA ANNUAL MEETING REPORT, vol. 2011, no. 23, 5 March 2011 (2011-03-05), pages 1, XP009516655 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513056A (ja) * 2018-11-15 2022-02-07 バイオアプリケーションズ インコーポレイテッド 植物体でウイルス様粒子を発現する組み換えベクター及びこれを利用したサーコウイルス様粒子を含むワクチン組成物の製造方法
JP7212968B2 (ja) 2018-11-15 2023-01-26 バイオアプリケーションズ インコーポレイテッド 植物体でウイルス様粒子を発現する組み換えベクター及びこれを利用したサーコウイルス様粒子を含むワクチン組成物の製造方法

Also Published As

Publication number Publication date
CN110462041B (zh) 2023-09-19
JP6989746B2 (ja) 2022-01-12
US11499175B2 (en) 2022-11-15
EP3604526A4 (en) 2020-12-02
KR20190127793A (ko) 2019-11-13
JPWO2018180568A1 (ja) 2020-02-06
US20210002687A1 (en) 2021-01-07
EP3604526A1 (en) 2020-02-05
KR102336516B1 (ko) 2021-12-06
CN110462041A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN107690482B (zh) 用于2,4-二羟基丁酸的优化生产的经修饰的微生物
CN102066552A (zh) 细胞法产生葡糖二酸
CN107278232B (zh) 由核苷酸活化的糖产生游离形式的单糖的发酵方法
Yang et al. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum
CN108103039B (zh) 一组岩藻糖基转移酶突变体及其筛选方法和应用
KR101718681B1 (ko) 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용
US20180195051A1 (en) Methods and organism with increased ethanol production
CN111647616A (zh) 一种生产原儿茶酸的大肠杆菌工程菌构建方法及应用
KR101521045B1 (ko) 유기산을 생산하기 위한 재조합 미생물유기체
JP5142268B2 (ja) 改良型没食子酸合成酵素および没食子酸の製造法
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
KR20200134333A (ko) 발효에 의한 히스타민 생산을 위해 조작된 생합성 경로
WO2021187533A1 (ja) 3-ヒドロキシアジピン酸および/またはα-ヒドロムコン酸を生産するための遺伝子改変微生物および当該化学品の製造方法
WO2018180568A1 (ja) 変異型2-デオキシ-シロ-イノソース合成酵素
CN110607335B (zh) 一种烟酰胺腺嘌呤二核苷酸类化合物生物合成方法
KR20210132405A (ko) 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
Jeon et al. Production of tagatose by whole-cell bioconversion from fructose using Corynebacterium glutamicum
CN114591938B (zh) 羧化酶突变体及其制备方法和应用
EP3103877A1 (en) 4-amino cinnamic acid production method using enzyme
US8137946B2 (en) Recombinant GRAS strains expressing thermophilic arabinose isomerase as an active form and method of preparing food grade tagatose by using the same
KR20190097250A (ko) 신규한 효소를 사용한 메틸글리옥살의 히드록시아세톤으로의 전환 및 그의 적용
CN113122563A (zh) 构建r-3-氨基丁酸生产菌的方法
KR20230006803A (ko) 미생물 공정을 통한 nmn 및 이의 유도체 생산
KR20230003072A (ko) 조작된 효소 및 이의 이용 및 제조 방법
KR102017776B1 (ko) 휴면 세포 전환법을 이용한 d-카이로 이노시톨의 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029474

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018777395

Country of ref document: EP

Effective date: 20191028