WO2006103921A1 - 無線受信装置 - Google Patents

無線受信装置 Download PDF

Info

Publication number
WO2006103921A1
WO2006103921A1 PCT/JP2006/305031 JP2006305031W WO2006103921A1 WO 2006103921 A1 WO2006103921 A1 WO 2006103921A1 JP 2006305031 W JP2006305031 W JP 2006305031W WO 2006103921 A1 WO2006103921 A1 WO 2006103921A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
converter
local oscillation
bandpass
Prior art date
Application number
PCT/JP2006/305031
Other languages
English (en)
French (fr)
Inventor
Yuji Yamamoto
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007510370A priority Critical patent/JP4516116B2/ja
Priority to EP06729065A priority patent/EP1863185A4/en
Publication of WO2006103921A1 publication Critical patent/WO2006103921A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain

Definitions

  • the present invention relates to a radio receiving apparatus that receives, for example, radio broadcasts, and more particularly to a radio receiving apparatus that processes a received signal output from a receiving antenna by performing AZD conversion on the side closer to the receiving antenna. .
  • radio receivers that receive radio broadcasts, etc., perform A / D conversion (analog / digital conversion) on received signals closer to the receiving antenna, and perform subsequent processing such as detection and demodulation in the digital domain. Attracted attention to do in.
  • processing is performed in the analog domain as shown in FIG.
  • a pre-stage and a demodulator that performs processing in the digital domain are provided, and when the pre-stage down-converts a high-frequency RF (Radio Frequency) signal and outputs an IF signal (intermediate frequency signal), ADC (sigma-delta analog-to-digital converter) converts the IF signal into a sampnore series IF signal by AZD conversion by oversampling, and the digital signal processor demodulates the sampnore series IF signal by digital signal processing. It is the composition which performs etc.
  • the receiver disclosed in Patent Document 1 basically has the configuration shown in FIG. 1 (a). Then, the mixer as the frequency converter mixes the RF signal from the RF amplifier unit and the local oscillation signal of the frequency FL from the local oscillator unit, thereby frequency-converting (down-converting) the IF signal to the intermediate frequency Fo, Furthermore, although the processing up to band limitation by the IF filter is performed in the analog domain, subsequent detection and demodulation processes can be performed in the digital domain.
  • Patent Document 1 Japanese Patent Publication No. 2001-526487
  • Fig. 1 (a) is changed to the configuration shown in Fig. 1 (b), and a ⁇ A ADC is provided between the RF amplifier section and the mixer, and the RF signal output from the RF amplifier section.
  • a / D conversion it can be considered that the subsequent processing including the mixer is performed in the digital domain.
  • the ⁇ ADC is effective when the signal frequency bandwidth is sufficiently narrow with respect to the oversampling frequency, as can be seen from the oversampling and noise sibling characteristics. It works. Because of this, it is possible to A / D-convert a narrow-band IF signal band-limited by an IF filter based on the oversampling frequency as in the conventional receiver shown in Fig. 1 (a). If the force S is simply the configuration shown in Fig. 1 (b), a wideband RF signal must be A / D converted at an extremely high sampling frequency, which is not feasible.
  • the IF filter band-limits the IF signal down-converted to the intermediate frequency Fo (10.7 MHz) by the mixer.
  • the bandwidth (maximum frequency deviation) of the IF signal output from the IF filter is, for example, as narrow as ⁇ 75 kHz, so the oversampling frequency (for example, 40 MHz) is about 256 times that of the IF signal.
  • the band rejection characteristic force S is applied to the quantization noise, etc., and the IF within the signal frequency bandwidth ( ⁇ 75 kHz), which is the stop band of the quantization noise, etc. It is possible to A / D convert the signal.
  • the present invention has been made in view of such a problem, and is a wireless reception device that can substantially perform A / D conversion on an RF signal and perform reception processing by digital signal processing.
  • the purpose is to provide.
  • the invention according to claim 1 is a radio reception apparatus having an A / D converter for A / D converting a received signal having a desired channel frequency included in an RF signal, wherein the A / D conversion is performed.
  • a band pass type A / D converter comprising a band pass filter having a pass bandwidth corresponding to the signal frequency bandwidth of the received signal centered on a center frequency lower than the channel frequency, and the channel frequency
  • a local oscillation signal having a lower local oscillation frequency by the center frequency of the bandpass filter is supplied to the A / D converter, and the RF signal is supplied to the A / D converter as an A / D converter using the local oscillation frequency as a sampling frequency. It has a local oscillation means for D conversion.
  • the invention according to claim 2 is the wireless receiving device according to claim 1, further comprising: filter means for passing a desired component of the received signal included in the output signal of the A / D converter; Rate converting means for down-sampling the desired component that has passed through the filter means.
  • the invention according to claim 3 is the wireless receiver according to claim 1, wherein the band-pass A / D converter is a band-pass ⁇ A AZD converter having the band-pass filter. It is characterized by being.
  • the invention according to claim 4 is the radio reception apparatus according to claim 3, wherein the center frequency of the bandpass filter is a quarter of the channel frequency, and The local transmission frequency is 0.8 times the channel frequency.
  • the invention according to claim 5 is the wireless signal receiving apparatus according to claim 4, wherein the IQ signal that generates an I signal and a Q signal having a frequency that is a quarter of the local oscillation frequency and the local oscillation frequency. And a digital mixer means for multiplying the band-pass ⁇ / D converter power output bit stream signal, the I signal and the Q signal.
  • the invention according to claim 6 is the wireless reception device according to claim 5, wherein a digital bandpass filter that passes a desired component of the received signal included in an output signal of the digital mixer means; A down sampler that down-samples the desired component that has passed through the digital band pass filter.
  • FIG. 1 is a diagram for explaining the configuration and problems of a conventional radio receiving apparatus.
  • FIG. 2 is a block diagram showing a configuration of a radio reception apparatus according to an embodiment of the present invention and a diagram for explaining functions.
  • FIG. 3 is a block diagram illustrating a configuration of a wireless reception device according to an embodiment.
  • FIG. 4 is a diagram for explaining operations and functions of the wireless reception device shown in FIG. 3.
  • FIG. 2 (a) is a block diagram showing the configuration of the wireless receiver of this embodiment
  • FIG. 2 (b) is a block diagram showing the configuration of the bandpass A / D converter
  • FIG. d) is a diagram for explaining the functions of the wireless reception device and the band-pass A / D converter of the present embodiment.
  • the wireless receiver 1 includes a tracking filter 2 as a resonance circuit that passes a signal in the FM broadcast band from various broadcast waves received by an antenna ANT, and a tracking filter 2 RF amplifier 3 that amplifies the signal that passed through and outputs RF signal SRF, band-pass A / D converter 4, filter unit 5, rate converter 6, detector 7, local oscillator 8, control Part 9 is provided.
  • a tracking filter 2 as a resonance circuit that passes a signal in the FM broadcast band from various broadcast waves received by an antenna ANT
  • a tracking filter 2 RF amplifier 3 that amplifies the signal that passed through and outputs RF signal SRF, band-pass A / D converter 4, filter unit 5, rate converter 6, detector 7, local oscillator 8, control Part 9 is provided.
  • the control unit 9 is a channel selection control circuit for instructing a broadcast channel desired by the user or the like by supplying a channel selection control signal CNT to the local oscillation unit 8 in accordance with a channel selection operation from the user or the like.
  • the local oscillator 8 is formed of a synthesizer-tuned local oscillator circuit equipped with a VCO circuit (Voltage Controlled Oscillator) and a PLL circuit (Phase Locked Loop). Broadcast channel indicated by channel selection control signal CNT (broadcast channel selected by user etc.) Local oscillation frequency corresponding to CHi Generate and output local oscillation signal Svco of several Fsi.
  • VCO Voltage Controlled Oscillator
  • PLL circuit Phase Locked Loop
  • the band-pass A / D converter 4 operates in accordance with the local oscillation signal Svco, A / D-converts the RF signal SRF into the digital signal Sa using the local oscillation frequency Fsi as a sampling frequency, Supply.
  • the band-pass A / D converter 4 has a basic configuration shown in FIG. 2B as a specific example.
  • the bandpass AZD converter 4 calculates a difference (SRF ⁇ S3) between the RF signal SRF and a feedback signal S3 described later, and outputs the difference signal S1, and a predetermined center frequency.
  • the digital signal Sa is D / A converted (digital / analog converted) to generate the above-described feedback signal S3 and supply it to the subtractor 4a.
  • center frequency Fcv and the pass bandwidth BW of the bandpass filter 4b are determined as follows.
  • the passband width BW of the bandpass filter 4b is determined in accordance with the signal frequency bandwidth of the FM wave that is the desired wave. For example, it is determined according to the maximum frequency deviation of the FM wave. According to the Japanese FM broadcasting standard, the maximum frequency deviation of the FM wave is determined to be about ⁇ 75 kHz centered on the carrier frequency. Accordingly, the passband width BW is in the range of ⁇ 75 kHz centered on the center frequency Fcv. (Total of 150kHz). In addition, for example, in consideration of adjacent interference, the pass bandwidth BW is determined in a range of ⁇ 100 kHz (200 kHz in total) with the center frequency Fcv as the center.
  • the center frequency Fcv of the bandpass filter 4b is determined to be a difference frequency (Fchi_Fsi) between the channel frequency Fchi and the local oscillation frequency Fsi. That is, the channel frequency of each broadcast channel CHi (i is a natural number) assigned to the FM broadcast band is F chi (i is a natural number), and the local oscillation frequency for selecting each broadcast channel CHi is Fsi ( Assuming that i is a natural number), the center frequency Fcv is determined by the difference frequency (Fchi-Fsi) between the channel frequency Fchi and the local oscillation frequency Fsi as expressed by the following equation (1). Les.
  • the local oscillation frequency Fsi satisfies the condition of the above equation (1), and further oversamples the passband width BW of the bandpass filter 4b as represented by the following equation (2). It is determined to be a sufficiently high frequency that can be performed and lower than the RFW bandwidth RFW of the RF signal SRF.
  • the pass bandwidth BW of the bandpass filter 4b is determined according to the signal frequency bandwidth of the FM wave (desired wave) as the received signal, and further, the RF signal
  • the frequency of the bandpass filter 4b lower than the channel frequency Fchi of each broadcast channel CHi included in the SRF bandwidth RFW is determined as the local oscillation frequency Fsi, and the local oscillation frequency Fsi is changed to the above FM wave (desired wave).
  • Table 1 exemplifies the relationship between the local oscillation frequency Fsi determined according to the conditions to be applied and the center frequency Fcv of the bandpass filter 4b.
  • the local oscillation unit 8 follows the instruction from the control unit 9 and the center frequency Fcv (l A local oscillation signal Svco with a local oscillation frequency Fs3 (64.0 MHz) lower by (6.0 MHz) is generated, and the bandpass A / D converter 4 shown in FIG. 2 (b) samples the local oscillation frequency Fs3.
  • the RF signal SRF is oversampled as the sampling frequency and A / D converted.
  • the D / A converter 4d provided in the feedback path performs DZA conversion of the digital signal Sa to the feedback signal S3 in synchronization with the local oscillation frequency Fs3, and the RF signal SRF generated by the subtractor 4a Since the difference signal S1 from the feedback signal S3 is input to the AZD converter 4c through the bandpass filter 4b, noise is generated in the same frequency band as the center frequency Fcv and the passband width BW of the bandpass filter 4b due to the noise shaving effect. A stopband appears.
  • the sampling aliasing noise and quantization noise generated in the A / D converter 4c are driven out of the noise stopband, and a digital signal Sa having a good S / N is output from the A / D converter 4c, and the finalizer Supplied to 5.
  • the band-pass A / D converter 4 is configured so that the above folding principle and noise shaving effect can be obtained even when the other broadcast channels CHi illustrated in Table 1 are selected by a user or the like.
  • the received signal (FM wave) of channel CHi is A / D converted to a digital signal Sa with good S / N and supplied to the filter unit 5.
  • the filter unit 5 prevents the passage of unnecessary noise components included in the digital signal Sa that is the output signal of the AZD conversion unit 4c, and allows only the FM wave data Sb that is the desired component to pass. It is formed by a digital filter.
  • the rate conversion unit 6 performs so-called down-sampling by thinning out the oversampled FM wave data Sb on the time axis to obtain a low sampling frequency and FM wave data Sc.
  • the detector 7 digitally detects the FM wave data Sc by digital signal processing, and outputs the detected signal (baseband signal) Sdet.
  • the RF signal SRF is configured to be AZD converted by the bandpass type AZD converter 4, and the bandpass type is applied to the channel frequency Fchi.
  • the bandpass filter 4b in the AZD converter 4 has a frequency lower by the center frequency Fcv than the sampling frequency (local oscillation frequency) Fsi, and the bandpass A / D converter 4 performs oversampling.
  • the FM wave that will be biased to a substantially lower frequency due to the effect of AZD conversion, and A / D conversion to a digital signal Sa with good S / N due to the noise shaving effect.
  • the bandpass AZD converter 4 can operate at a sampling frequency of about 100 MHz, according to the present embodiment, the RF signal SRF is directly converted to AZD, so that an intermediate frequency can be obtained. Since the A / D conversion of the received signal (FM wave) of the desired channel frequency, such as AZD conversion of the signal (IF signal), into the digital signal Sa of a low frequency is possible, the RF signal SRF is down-converted to the IF signal. This eliminates the need for a mixer. As a result, A / D conversion can be performed on the side closer to the antenna ANT, and further, the configuration after the output of the bandpass A / D converter 4 can be formed by a digital signal processing circuit. Therefore, it is possible to provide a radio receiver capable of processing many of the processing functions in the digital domain.
  • the oversampled digital signal Sa is converted into data Sc having a desired low frequency. Downsampling can be performed. For example, by converting the center frequency of the digital signal Sa to 10.7 MHz, the detector 7 can be a digital detector compliant with the FM broadcasting standard. As a result, it is possible to use a conventional digital detector or digital demodulator that performs AZD conversion on the IF signal and detect it, thereby providing a highly versatile radio receiver.
  • the bandpass type A / D converter 4 having the basic configuration shown in Fig. 2 (b) is used.
  • a / D converter can be used.
  • a pass-type ⁇ / D converter can be used.
  • the oversampling frequency can be further increased. Therefore, the received signal (FM wave) contained in the RF signal SRF is A / D converted and further S / It is possible to generate a good signal of N and a digital signal Sa, and further improve the function of the receiving device, and reduce the size of the device by forming it with a semiconductor integrated circuit device.
  • the wireless reception device 1 of the present embodiment can also receive AM broadcast based on the same principle, and further, can be a bandpass A /
  • the components of the D converter 4 and the local oscillator 8 can be applied to a so-called tuner for receiving digital broadcast such as terrestrial digital broadcasting.
  • a variable gain circuit that automatically adjusts the voltage amplification factor for the RF signal SRF to reduce the detected fluctuation (amplitude fluctuation in the case of analog signal) is detected by a digital low-pass filter, etc. It may be provided between the output terminal of 3 and the input terminal of the bandpass A / D converter 4. With this configuration, the amplitude of the RF signal input to the bandpass A / D converter 4 can be stabilized and the reception performance can be kept stable.
  • a variable gain circuit that detects the amplitude fluctuation of the RF signal SRF output from the RF amplifier 3 with an analog low-pass filter or the like and automatically adjusts the voltage amplification factor for the RF signal SRF so as to reduce the detected fluctuation.
  • AGC may be provided between the output terminal of the RF amplifier 3 and the input terminal of the bandpass A / D converter 4. Even with this configuration, the amplitude of the RF signal input to the bandpass A / D converter 4 can be stabilized and the reception performance can be kept stable.
  • FIG. 3 (a) is a block diagram showing the configuration of the radio receiving apparatus of this embodiment, and the same or corresponding parts as those in FIG. 2 (a) are denoted by the same reference numerals.
  • Fig. 3 (b) is a block diagram showing the configuration of the band-pass ⁇ / D converter.
  • FIG. 4 is a diagram for explaining the functions of the radio reception apparatus and the bandpass type ⁇ / D converter of the present embodiment.
  • this wireless receiver 1 is a receiver that receives FM broadcasts.
  • Tracking filter 2 connected to the antenna ANT, RF amplifier 3, band-pass type ⁇ / D converter 4, digital mixer 10, digital filter 5, down sampler 6, detector 7, local oscillator 8, control 9 And an IQ signal generation circuit 11.
  • Tracking filter 2 passes signals in the medium FM transmission band of various broadcast waves received by antenna ANT, and RF amplifier 3 amplifies the signal that has passed tracking filter 2 to generate an RF signal. Output SRF.
  • the control unit 9 supplies a channel selection control signal CNT to the local oscillation unit 8 in accordance with a channel selection operation from a user or the like.
  • the local oscillation unit 8 uses a synthesizer tuning method including a VCO circuit and a PLL circuit.
  • a local oscillation signal Svco of local oscillation frequency Fsi corresponding to the broadcast channel CH i that is formed by the local oscillation circuit and indicated by the channel selection control signal CNT is generated to generate a bandpass type ⁇ ⁇ ⁇ / D converter 4 and IQ This is supplied to the signal generation circuit 11. That is, the local oscillator 8 outputs a local oscillator signal Svco having a local oscillation frequency Fsi that satisfies the conditions of the above equations (1) and (2) according to the broadcast channel CHi specified by the controller 9.
  • the center frequency Fcv of the bandpass filter 4f provided in the force S, bandpass type ⁇ / D converter 4 to be described later in detail is set to 16.0 MHz. Therefore, the local oscillation unit 8 sets the local oscillation frequency Fsi of the local oscillation signal Svco to a frequency 16.0 MHz lower than the channel frequency Fchi of each broadcast channel CHi. Furthermore, since the maximum frequency deviation of the FM wave is about ⁇ 75 KHz, considering the adjacent interference, etc., the signal frequency bandwidth of the FM wave is assumed to be 100 kHz (200 kHz overall), and the local oscillation frequency Fsi is set to The high frequency that can oversample the 200kHz FM wave is decided. As a result, based on the relationship shown in Table 1, the local oscillator 8 sets the local oscillation frequency Fsi corresponding to the channel frequency Fchi of each broadcast channel CHi to output the local oscillation signal Svco. It has become.
  • the bandpass type ⁇ / D converter 4 operates according to the local oscillation signal Svco, converts the RF signal SRF to the 1-bit stream signal Sa by AZD conversion using the local oscillation frequency Fsi as the sampling frequency, and outputs the signal. . Further, the bandpass type ⁇ / D converter 4 has a configuration shown in FIG.
  • the bandpass type ⁇ / D converter 4 is a HEMT (High Electron Mobility Tr a subtractor that calculates the difference (SRF-S6) between the RF signal SRF supplied from the RF amplifier 3 and the feedback signal S6 (described later) and outputs the difference signal S4.
  • the bandpass filter 4b, and the local oscillation frequency Fsi supplied from the local oscillation unit 8 as a sampling frequency the passing signal S5 that has passed through the bandpass filter 4b is converted into a 1-bit stream signal Sa by a AZD And a D / A converter 4h that generates a feedback signal S6 by D / A converting the 1-bit stream signal Sa and supplies it to the subtractor 4e.
  • the bandpass filter 4b is formed of a continuous-time Gm-C (Continuous-Time Gm_C) type active bandpass filter, with a center frequency Fcv of 16.0 MHz and a passband width BW of ⁇ 100kHz (200kHz overall) is set.
  • Gm-C Continuous-Time Gm_C
  • the quantizer 4g is formed by a comparator, and the D / A converter 4h uses a switched capacitor that DZA converts the 1-bit stream signal Sa in synchronization with the local oscillation frequency Fsi. / A converter is formed.
  • the IQ signal generation circuit 11 divides the local oscillation signal Svco from the local oscillation unit 8 and an I signal that is a SIN component having a frequency of 1 / N (N is an integer) of the local oscillation frequency Fsi. It is formed by a prescaler that generates the Q signal, which is the COS component, and supplies these I and Q signals (indicated by the symbol Siq) to the digital mixer 10.
  • N 4
  • the I and Q signals Siq having a quarter of the local oscillation frequency Fsi are supplied from the IQ signal generation circuit 11 to the digital mixer 10.
  • the digital mixer 10 is formed of a digital multiplier that multiplies the 1-bit stream signal Sa with the I and Q signals Siq. Then, by multiplying the 1-bit stream signal Sal and the Q signal Siq, the 1-bit stream signal Sa is frequency-biased to the 1-bit stream signal Sab having a center frequency of approximately 0 Hz and supplied to the digital filter 5. .
  • Digitano Reinolator 5 is a band-pass type that blocks unnecessary noise components contained in 1-bit stream signal Sab and passes only 1-bit stream signal Sb of the desired FM wave. It is formed by a digital filter.
  • the downsampler 6 corresponds to the rate conversion unit 6 shown in Fig. 2 (a), and performs the thinning process on the time axis of the oversampled 1-bit stream signal Sb. Slow downsampling is performed, and a 1-bit stream signal Sc adjusted to the signal frequency bandwidth (maximum frequency deviation) of the FM wave is supplied to the detector 7. That is, the digital filter 5 and the downsampler 6 constitute a decimator.
  • the detector 7 performs FM digital detection on the 1-bit stream signal Sc by digital signal processing, and outputs the detection signal (baseband signal) Sdet.
  • radio receiving apparatus 1 having such a configuration
  • the operation of radio receiving apparatus 1 having such a configuration will be described.
  • the case where the user or the like has selected the broadcast channel CH3 shown in Table 1 will be explained.
  • the local oscillator 8 When a user or the like selects a broadcast channel CH3, the local oscillator 8 outputs a local oscillator signal Svc 0 with a local oscillation frequency Fsi of 64.OMHz according to the channel selection control signal CNT from the controller 9. To do.
  • the bandpass type AAZD converter 4 converts the RF signal SRf3 ⁇ 4rA / D supplied from the RF amplifier 3 using the local oscillation frequency Fsi of 64. OMHz as the oversampling frequency, and converts the 1-bit stream signal Sa into Output.
  • the oversampling frequency is 64. OMHz with respect to the channel frequency Fch3 (80. OMHz) of the broadcast channel CH3, as shown in the spectrum diagram of FIG.
  • An FM wave with a channel frequency of Fch 3 (80. OMHz) (basic band received signal) appears in the frequency bandwidth of ⁇ 100kHz as the center, and the bandpass filter 4f in the bandpass type ⁇ / D converter 4 Since the center frequency Fcv is set to 16.
  • OMHz and the passband width BW is set to ⁇ 100 kHz (200 kHz overall), the frequency bandwidth of ⁇ 100 kHz around 16. It becomes a noise stopband.
  • the quantization noise generated by the quantizer 4g is driven out of the noise stop band, and the above FM wave (the received signal in the basic band) that appears as the signal frequency bandwidth is 1 bit of SZN.
  • the stream signal Sa is A / D converted and supplied to the digital mixer 10.
  • the 1-bit stream signal Sa is multiplied by the I and Q signals Siq from the IQ signal generation circuit 11 in the digital mixer 10 to produce a 1-bit stream signal having a center frequency of approximately OHz.
  • 1-bit stream signal S that is frequency-biased by Sab and further matched to the signal frequency bandwidth of FM wave (maximum frequency deviation) by digital filter 5 and downsampler 6 It is converted to c, supplied to the detector 7, and output as a detection signal (baseband signal) Sdet.
  • the RF signal SRF is configured to be A / D converted by the bandpass type ⁇ / D converter 4, and the channel frequency Fchi
  • the bandpass type AZD converter 4 determines the frequency lower than the center frequency Fcv (l 6.0 MHz) of the bandpass filter 4f in the AAZD converter 4 as the sampling frequency (local oscillation frequency) Fsi. Since oversampling is performed, the FM wave that is biased to a substantially lower frequency due to the aliasing effect is AZD-converted, and the noise shaving effect is applied to the 1-bit stream signal Sa with good S / N. D conversion power S can be done.
  • the band-pass type ⁇ / D converter 4 can operate at a sampling frequency of about 100 MHz, according to the present embodiment, the RF signal SRF is directly converted by AZD conversion, so that A / D conversion of frequency signal (IF signal) A / D conversion of desired channel frequency FM wave to 1 bit stream signal Sa of low frequency, so RF signal SRF is down-converted to IF signal This eliminates the need for a mixer. As a result, A / D conversion can be performed on the side closer to the antenna ANT, and further, the configuration after the output of the bandpass type ⁇ / D converter 4 can be formed by a digital signal processing circuit. Therefore, it is possible to provide a radio receiver capable of processing many of the processing functions in the digital domain.
  • the wireless reception device 1 includes a digital mixer 10 and an IQ signal generation circuit 11, and the digital mixer 10 multiplies the 1-bit stream signal Sal and the Q signal Siq by the center. Since a 1-bit stream signal Sab having a frequency of approximately OHz is generated, digital signal processing can be performed in the digital filter 5 and the downsampler 6 and the detector 7 after the digital mixer 10, resulting in the circuit configuration. Simplification can be achieved.
  • the bandpass filter 4f in the bandpass type ⁇ / D converter 4 is a force modification in which the center frequency Fcv is fixed at 16. OMHz.
  • Variable bandpass filter that can adjust the center frequency Fcv without changing the bandwidth BW
  • the center frequency Fcv may be set to satisfy the condition of the following expression (3), with the center frequency Fcv being added to the above expressions (1) and (2).
  • Table 2 exemplifies the relationship between the local oscillation frequency Fsi determined according to the conditions to be applied and the center frequency Fcv of the bandpass filter 4f.
  • the IQ signal generation circuit 11 is prescaled (by multiple), and the local transmission frequency Fsi becomes I,
  • the Q signal Siq can be easily generated, and the 1-bit stream signal Sab that is the output of the digital mixer 10 can be easily generated as a complex zero IF signal. Therefore, it is possible to form the configuration of the digital filter 5, the downsampler 6, the detector 7 and the like after the digital mixer 10 with a simpler digital circuit, thereby realizing a wireless receiver having a simple configuration. it can.
  • the amplitude variation of the 1-bit stream signal Sa that is the output signal of the bandpass type ⁇ / D converter 4 (amplitude variation when an analog signal is used) is used as a digital filter.
  • a variable gain circuit (AGC) that automatically adjusts the voltage amplification factor for the RF signal SRF is detected by a pass filter, etc. to reduce the detected fluctuation, and the output terminal of the RF amplifier 3 and the bandpass type ⁇ ⁇ / D conversion It may be provided between the input terminals of the device 4.
  • AGC variable gain circuit
  • This configuration stabilizes the amplitude of the RF signal input to the band-pass ⁇ ⁇ ⁇ / D converter 4 and keeps the reception performance stable.
  • an analog low-pass filter may be used to detect the fluctuation of the 1-bit stream signal Sa.
  • the amplitude fluctuation of the RF signal SRF output from the RF amplifier 3 is detected by an analog low-pass filter or the like, and the voltage amplification factor for the RF signal SRF is reduced so as to reduce the detected fluctuation.
  • a variable gain circuit (AGC) that automatically adjusts the frequency may be provided between the output terminal of the RF amplifier 3 and the input terminal of the bandpass type ⁇ / D converter 4. Even with such a configuration, it is possible to stabilize the amplitude of the RF signal input to the bandpass type ⁇ / D converter 4 and to keep the reception performance stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Superheterodyne Receivers (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 実質的にRF信号をA/D変換して、ディジタル信号処理による受信処理を行うことを可能にする無線受信装置を提供する。  RF信号SRFに含まれる所望のチャンネル周波数Fchiの受信信号をバンドパス型A/D変換器4でA/D変換する。バンドパス型A/D変換器4に設けられているバンドパスフィルタは、チャンネル周波数Fchiより低い中心周波数Fcvを有し、中心周波数Fcvを中心として受信信号の信号周波数帯域幅に相当する通過帯域幅BWを有するバンドパスフィルタで形成する。局発部8でチャンネル周波数Fchiより中心周波数Fcv分低い局部発信周波数Fvcoの局発信号Svcoをバンドパス型A/D変換器4に供給し、局部発信周波数Fvcoをサンプリング周波数としてバンドパス型A/D変換器4にRF信号SRFをA/D変換させる。

Description

明 細 書
無線受信装置
技術分野
[0001] 本発明は、例えばラジオ放送等を受信する無線受信装置に関し、特に、受信アン テナから出力される受信信号を、より受信アンテナに近い側で AZD変換して処理す る無線受信装置に関する。
背景技術
[0002] 近年、ラジオ放送等を受信する無線受信装置では、より受信アンテナに近い側で 受信信号を A/D変換 (アナログディジタル変換)し、それ以降の検波や復調等の処 理をディジタル領域で行うことが注目されてレ、る。
[0003] 例えば、特許文献 1に開示されてレ、る「シグマ-デルタアナログ-デジタル変換器を 有する受信機」では、同文献の図 2に示されているように、アナログ領域で処理を行う 前段部と、ディジタル領域で処理を行う復調器が設けられ、前段部が高周波数の RF (Radio Frequency)信号をダウンコンバートして IF信号(中間周波信号)を出力すると 、復調器内の∑ A ADC (シグマ-デルタアナログ -デジタル変換器)が、その IF信号 をオーバーサンプリングによる AZD変換によってサンプノレ系列の IF信号に変換し、 更にデジタル信号プロセッサがそのサンプノレ系列の IF信号をディジタル信号処理に よって復調等を行う構成となっている。
[0004] すなわち、特許文献 1に開示されている受信機は、基本的に、図 1 (a)に示す構成 となっている。そして、周波数変換器としてのミキサが RFアンプ部からの RF信号と局 発部からの周波数 FLの局部発振信号とを混合することで、中間周波数 Foの IF信号 に周波数変換 (ダウンコンバート)し、更に IFフィルタで帯域制限するまでの処理をァ ナログ領域で行うものの、その後の検波と復調等の処理をディジタル領域で行えるよ うにしている。
[0005] 特許文献 1 :特表 2001— 526487号公報
発明の開示
発明が解決しょうとする課題 [0006] 特許文献 1に開示されている従来の∑ AADCを有する受信機では、 IF信号を生 成するまでの処理が未だアナログ領域で行われてレ、ることから、ディジタル領域でよ り多くの処理を行うことによる利益が十分に得られていない。例えば、処理機能の多く をディジタル領域での処理とすると、装置の更なる高機能化や、半導体集積回路装 置で形成することによる小型化等を図ることが可能となるが、こうした利益が得られる ようにするためには更なる技術的向上を図る必要がある。
[0007] そこで、図 1 (a)の構成から図 1 (b)に示す構成に変更し、 RFアンプ部とミキサとの 間に∑ A ADCを設けて、 RFアンプ部から出力される RF信号を A/D変換すること により、ミキサを含むそれ以降の処理をディジタル領域で行う構成とすることが考えら れる。
[0008] ところが、∑ Δ ADCは、図 1 (c)に示すように、オーバーサンプリング及びノイズシヱ 一ビング特性から判るように、そのオーバーサンプリング周波数に対して信号周波数 帯域幅が十分狭い場合に有効に作用するものである。このこと力 、図 1 (a)に示した 従来の受信機のように、 IFフィルタで帯域制限された狭帯域幅の IF信号をオーバー サンプリング周波数に基づいて A/D変換することは可能である力 S、単に図 1 (b)の 構成にしただけでは、広帯域幅の RF信号を極めて高いサンプリング周波数で A/D 変換しなければならなくなり、実現不能となるという問題を生じる。
[0009] 例えば、 FMラジオ放送を受信する場合、図 1 (a)の構成によれば、ミキサによって 中間周波数 Fo (10. 7MHz)にダウンコンバートされた IF信号を IFフィルタが帯域制 限することで、 IFフィルタから出力される IF信号の帯域幅 (最大周波数偏移)は例え ば ± 75kHz程度と狭くなることから、その IF信号に対して 256倍程度のオーバーサ ンプリング周波数(例えば、 40MHz)でオーバーサンプリングすると、図 1 (c)に示す ように、量子化雑音等に対して帯域阻止特性力 Sかかって、その量子化雑音等の阻止 帯域である信号周波数帯域幅(± 75kHz)内の IF信号を A/D変換することが可能 である。
[0010] これに対し、単に図 1 (b)の構成として FMラジオ放送を受信しょうとすると、 RF信号 の帯域幅は 100MHzに近い高い周波数であることから、 RF信号に対して 256倍程 度のオーバーサンプリング周波数で A/D変換することは現実的に不可能となり、実 現不能となるという問題がある。
[0011] 本発明は、このような課題に鑑みて成されたものであり、実質的に RF信号を A/D 変換して、ディジタル信号処理による受信処理を行うことを可能にする無線受信装置 を提供することを目的とする。
課題を解決するための手段
[0012] 請求項 1に記載の発明は、 RF信号に含まれる所望のチャンネル周波数の受信信 号を A/D変換する A/D変換器を有する無線受信装置であって、前記 A/D変換 器は、前記チャンネル周波数より低い中心周波数を中心として前記受信信号の信号 周波数帯域幅に相当する通過帯域幅を有するバンドパスフィルタを具備するバンド パス型 A/D変換器で形成され、前記チャンネル周波数より前記バンドパスフィルタ の中心周波数分低い局部発信周波数の局発信号を前記 A/D変換器に供給し、前 記局部発信周波数をサンプリング周波数として前記 A/D変換器に前記 RF信号を A/D変換させる局発手段を有することを特徴とする。
[0013] 請求項 2に記載の発明は、請求項 1に記載の無線受信装置において、更に、前記 A/D変換器の出力信号に含まれる前記受信信号の希望成分を通過させるフィルタ 手段と、前記フィルタ手段を通過した前記希望成分をダウンサンプリングするレート変 換手段と、を有することを特徴とする。
[0014] 請求項 3に記載の発明は、請求項 1に記載の無線受信装置において、前記バンド パス型 A/D変換器は、前記バンドパスフィルタを有するバンドパス型∑ A AZD変 換器であることを特徴とする。
[0015] 請求項 4に記載の発明は、請求項 3に記載の無線受信装置において、更に、前記 バンドパスフィルタの中心周波数は、前記チャンネル周波数の 4分の 1の周波数であ り且つ、前記局部発信周波数は、前記チャンネル周波数の 0. 8倍の周波数であるこ とを特徴とする。
[0016] 請求項 5に記載の発明は、請求項 4に記載の無線受信装置において、前記局発信 号力 前記局部発信周波数の 4分の 1の周波数の I信号と Q信号を生成する IQ信号 発生手段と、前記バンドパス型∑ Δ Α/D変換器力 出力されるビットストリーム信号 と前記 I信号と Q信号とを乗算するディジタルミキサ手段を更に有することを特徴とす る。
[0017] 請求項 6に記載の発明は、請求項 5に記載の無線受信装置において、前記ディジ タルミキサ手段の出力信号に含まれる前記受信信号の希望成分を通過させるデイジ タルバンドパスフィルタと、前記ディジタルバンドパスフィルタを通過した前記希望成 分をダウンサンプリングするダウンサンブラと、を有することを特徴とする。
図面の簡単な説明
[0018] [図 1]従来の無線受信装置の構成及び問題点を説明するための図である。
[図 2]本発明の実施形態に係る無線受信装置の構成を表したブロック図及び機能を 説明するための図である。
[図 3]実施例の無線受信装置の構成を表したブロック図である。
[図 4]図 3に示した無線受信装置の動作及び機能を説明するための図である。
発明を実施するための最良の形態
[0019] 本発明の実施の形態に係る無線受信装置について、図 2を参照して説明する。図
2 (a)は、本実施形態の無線受信装置の構成を表したブロック図、同図(b)は、バンド パス型 A/D変換器の構成を表したブロック図、同図(c) (d)は、本実施形態の無線 受信装置及びバンドパス型 A/D変換器の機能を説明するための図である。
[0020] 図 2 (a)において、この無線受信装置 1は、アンテナ ANTで受信される様々な放送 波の中から FM放送帯域の信号を通過させる共振回路としてのトラッキングフィルタ 2 と、トラッキングフィルタ 2を通過した信号を増幅して RF信号 SRFを出力する RFアン プ 3と、バンドパス型 A/D変換器 4と、フィルタ部 5、レート変換部 6、検波器 7、局発 部 8、制御部 9を備えて構成されている。
[0021] 制御部 9は、ユーザ等からの選局操作に従って、選局制御信号 CNTを局発部 8に 供給することにより、ユーザ等の所望する放送チャンネルを指示する選局制御回路 である。
[0022] 局発部 8は、 VCO回路(Voltage Controlled Oscillator:電圧制御発振回路)と PLL 回路(Phase Locked Loop :位相同期ループ)とを備えたシンセサイザー同調方式の 局部発振回路等で形成されており、選局制御信号 CNTによって指示される放送チ ヤンネル (ユーザ等が選局操作した放送チャンネル) CHiに対応する局部発振周波 数 Fsiの局発信号 Svcoを生成して出力する。
[0023] バンドパス型 A/D変換器 4は、局発信号 Svcoに従って動作し、その局部発振周 波数 Fsiをサンプリング周波数として RF信号 SRFをディジタル信号 Saに A/D変換し 、フィルタ部 5に供給する。
[0024] ここで、バンドパス型 A/D変換器 4は、一具体例として図 2 (b)に示す基本構成を 有している。すなわち、バンドパス型 AZD変換器 4は、 RF信号 SRFと後述の帰還信 号 S3との差分 (SRF—S3)を演算してその差分信号 S1を出力する減算器 4aと、所 定の中心周波数 Fcv及び通過帯域幅 BWを有するバンドパスフィルタ 4bと、上述の 局部発振周波数 Fsiをサンプリング周波数として、バンドパスフィルタ 4bを通過した通 過信号 S2をディジタル信号 Saに AZD変換する AZD変換部 4cと、ディジタル信号 Saを D/A変換 (ディジタルアナログ変換)することで上述の帰還信号 S3を生成して 減算器 4aに供給する D/A変換部 4dとを有して形成されている。
[0025] 更に、バンドパスフィルタ 4bの中心周波数 Fcvと通過帯域幅 BWは、次のように決め られている。
[0026] まず、バンドパスフィルタ 4bの通過帯域幅 BWは、希望波である FM波の信号周波 数帯域幅に合わせて決められている。例えば、 FM波の最大周波数偏移に合わせて 決められている。 日本の FM放送規格では FM波の最大周波数偏移が搬送周波数 を中心として ± 75kHz程度と定められていることから、それに合わせて、通過帯域幅 BWは、中心周波数 Fcvを中心として ± 75kHzの範囲(全体で 150kHz)に決められ ている。また、例えば、隣接妨害等を考慮して、通過帯域幅 BWは、中心周波数 Fcv を中心として ± 100kHzの範囲(全体で 200kHz)に決められている。
[0027] 次に、バンドパスフィルタ 4bの中心周波数 Fcvは、チャンネル周波数 Fchiと局部発 振周波数 Fsiとの差の周波数 (Fchi_Fsi)に決められている。すなわち、 FM放送帯 域に割り当てられてレ、る各放送チャンネル CHi (iは自然数)のチャンネル周波数を F chi (iは自然数)、各放送チャンネル CHiを選局するための局部発振周波数を Fsi (iは 自然数)で表すこととすると、次式(1)で表されるように、中心周波数 Fcvは、チャンネ ル周波数 Fchiと局部発振周波数 Fsiとの差の周波数 (Fchi - Fsi)に決められてレ、る。
[0028] [数 1] F cv= Fch i— F s ■(1)
[0029] 更に、局部発振周波数 Fsiは、上記式(1)の条件を満たし、更に、次式(2)で表され るように、バンドパスフィルタ 4bの通過帯域幅 BWに対してオーバーサンプリングを行 うことが可能な十分に高い周波数であって、且つ RF信号 SRFの帯域幅 RFWよりも低 い周波数に決められている。
[0030] [数 2]
B W« F s i < R FW --- (2)
[0031] したがって、図 2 (c)に模式的に示すように、バンドパスフィルタ 4bの通過帯域幅 B Wを受信信号である FM波(希望波)の信号周波数帯域幅に従って決め、更に、 RF 信号 SRFの帯域幅 RFWに含まれる各放送チャンネル CHiのチャンネル周波数 Fchi よりもバンドパスフィルタ 4bの中心周波数 Fcv分低い周波数を局部発振周波数 Fsiに 決めると共に、その局部発振周波数 Fsiを上記 FM波(希望波)の信号周波数帯域幅 (通過帯域幅 BW)に対して十分高い周波数に決めている。
[0032] 表 1は、力かる条件に従って決められた局部発振周波数 Fsiとバンドパスフィルタ 4b の中心周波数 Fcvとの関係を例示したものである。
[0033] [表 1]
Figure imgf000008_0001
[0034] 例えば、ユーザ等が放送チャンネル CH3を選局操作した場合、制御部 9からの指 示に従って局発部 8が、チャンネル周波数 Fch3 (80. 0MHz)より中心周波数 Fcv (l 6. 0MHz)分だけ低い局部発振周波数 Fs3 (64. 0MHz)の局発信号 Svcoを発生し 、図 2 (b)に示すバンドパス型 A/D変換器 4が、その局部発振周波数 Fs3をサンプリ ング周波数として RF信号 SRFをオーバーサンプリングして A/D変換する。
[0035] そして、バンドパス型 AZD変換器 4内の A/D変換部 4cが局部発振周波数 Fs3に 従ってオーバーサンプリングを行うと、図 2 (d)に示すように、折返しの原理よつて、バ ンドパスフィルタ 4bの中心周波数 Fcv及び通過帯域幅 BWと同じ周波数帯域に、チヤ ンネル周波数 Fch3 (80. 0MHz)の FM波(基本帯域の受信信号)が現れることとなり 、その FM波がディジタル信号 Saに AZD変換される。
[0036] 更に、帰還経路に設けられている D/A変換部 4dが局部発振周波数 Fs3に同期し てディジタル信号 Saを帰還信号 S3に DZA変換し、減算器 4aで生成される RF信号 SRFと帰還信号 S3との差分信号 S1がバンドパスフィルタ 4bを通して AZD変換部 4c に入力されるため、ノイズシェービング効果によって、バンドパスフィルタ 4bの中心周 波数 Fcv及び通過帯域幅 BWと同じ周波数帯域に、雑音阻止帯域が現れる。このた め、 A/D変換部 4cで生じる標本化折返し雑音と量子化雑音が雑音阻止帯域から 追いやられ、 S/Nの良いディジタル信号 Saが A/D変換部 4cから出力され、フィノレ タ部 5に供給される。
[0037] また、バンドパス型 A/D変換器 4は、表 1に例示した他の放送チャンネル CHiがュ 一ザ等によって選局操作される場合にも、上述の折返しの原理とノイズシェービング 効果によって、バンドパスフィルタ 4bの中心周波数 Fcv及び通過帯域幅 BWと同じ周 波数帯域に雑音阻止帯域が現れ、その雑音阻止帯域が FM波の信号周波数帯域 幅となることから、選局操作された放送チャンネル CHiの受信信号 (FM波)を S/N の良いディジタル信号 Saに A/D変換し、フィルタ部 5に供給することとなる。
[0038] フィルタ部 5は、 AZD変換部 4cの出力信号であるディジタル信号 Saに含まれてい る不要な雑音成分の通過を阻止し、希望成分である FM波データ Sbのみを通過させ る帯域通過型ディジタルフィルタで形成されてレ、る。
[0039] レート変換部 6は、上述のオーバーサンプリングされている FM波データ Sbを時間 軸上で間引き処理することによっていわゆるダウンサンプリングを行レ、、サンプリング 周波数の低レ、 FM波データ Scにして検波器 7に供給する。 [0040] 検波器 7は、ディジタル信号処理によって FM波データ Scをディジタル検波し、その 検波信号 (ベースバンド信号) Sdetを出力する。
[0041] 以上に説明したように、本実施形態の無線受信装置 1によれば、 RF信号 SRFをバ ンドパス型 AZD変換器 4で AZD変換する構成とし、チャンネル周波数 Fchiに対し て該バンドパス型 AZD変換器 4内のバンドパスフィルタ 4bの中心周波数 Fcv分低い 周波数をサンプリング周波数(局部発振周波数) Fsiに決めて、バンドパス型 A/D変 換器 4でオーバーサンプリングするようにしたので、折返しの効果によって実質的に 低い周波数に偏倚することとなる FM波を AZD変換し、且つノイズシェービング効果 によって、 S/Nの良いディジタル信号 Saに A/D変換することができる。
[0042] すなわち、バンドパス型 AZD変換器 4は 100MHz程度のサンプリング周波数で動 作することが可能であることから、本実施形態によると、 RF信号 SRFを直接 AZD変 換することで、中間周波信号 (IF信号)を AZD変換するが如ぐ所望のチャンネル周 波数の受信信号 (FM波)を低い周波数のディジタル信号 Saに A/D変換できるため 、RF信号 SRFを IF信号にダウンコンバートするためのミキサを不要にすることができ る。この結果、アンテナ ANTにより近い側で A/D変換を行うことが可能となり、更に バンドパス型 A/D変換器 4の出力以降の構成をディジタル信号処理回路で形成す ることが可能となるため、処理機能の多くをディジタル領域で処理することが可能な無 線受信装置を提供することができる。
[0043] また、本実施形態の無線受信装置 1によれば、フィルタ部 5とレート変換部 6が設け られているため、オーバーサンプリングされているディジタル信号 Saを所望の低い周 波数のデータ Scにダウンサンプリングすることができ、例えばディジタル信号 Saの中 心周波数を 10. 7MHzに周波数変換することで、検波器 7を FM放送規格に準拠し たディジタル検波器とすることができる。この結果、従来の IF信号を AZD変換して検 波するディジタル検波器やディジタル復調器等をそのまま利用することができ、汎用 性に富んだ無線受信装置を提供することが可能である。
[0044] なお、以上に説明した実施形態では、図 2 (b)に示した基本的な構成を有するバン ドパス型 A/D変換器 4を用いることとしている力 他の構成のバンドパス型 A/D変 換器を用いることが可能である。例えば、 AZD変換部 4cを量子化器とする、バンド パス型∑ Δ Α/D変換器を用いることが可能である。バンドパス型∑ Δ Α/D変換器 を用いると、オーバーサンプリング周波数を更に上げることが可能となるため、 RF信 号 SRFに含まれる受信信号 (FM波)を A/D変換して更に S/Nの良レ、ディジタル 信号 Saを生成することができ、受信装置の更なる機能向上、半導体集積回路装置で 形成することによる装置の小型化等を実現することができる。
[0045] また、 FM放送を受信する場合について説明したが、本実施形態の無線受信装置 1は、同様の原理に基づいて AM放送を受信することも可能であり、更に、バンドパス 型 A/D変換器 4と局発部 8との構成部分を、地上ディジタル放送等のディジタル放 送を受信するためのいわゆるチューナ部に応用することが可能である。
[0046] また、バンドパス型 A/D変換器 4の出力信号であるディジタル信号 Saの振幅変動
(アナログ信号とした場合の振幅変動)をディジタルローパスフィルタ等で検出し、検 出した変動を減少させるように RF信号 SRFに対する電圧増幅率を自動調整する可 変利得回路 (AGC)を、 RFアンプ 3の出力端とバンドパス型 A/D変換器 4の入力端 の間に設けてもよい。力かる構成とすると、バンドパス型 A/D変換器 4に入力する R F信号の振幅を安定化させ、受信性能を安定に保つことができる。
[0047] また、 RFアンプ 3から出力される RF信号 SRFの振幅変動をアナログローパスフィル タ等で検出し、検出した変動を減少させるように RF信号 SRFに対する電圧増幅率を 自動調整する可変利得回路 (AGC)を、 RFアンプ 3の出力端とバンドパス型 A/D 変換器 4の入力端の間に設けてもよい。力かる構成によっても、バンドパス型 A/D 変換器 4に入力する RF信号の振幅を安定化させ、受信性能を安定に保つことができ る。
実施例
[0048] 次に、より具体的な実施例について、図 3及び図 4を参照して説明する。図 3 (a)は 、本実施例の無線受信装置の構成を表したブロック図であり、図 2 (a)と同一又は相 当する部分を同一符号で示している。図 3 (b)は、バンドパス型∑ ΔΑ/D変換器の 構成を表したブロック図である。図 4は、本実施例の無線受信装置及びバンドパス型 ∑ ΔΑ/D変換器の機能を説明するための図である。
[0049] 図 3 (a)において、この無線受信装置 1は、 FM放送を受信する受信装置であり、ァ ンテナ ANTに接続されたトラッキングフィルタ 2と、 RFアンプ 3、バンドパス型∑ ΔΑ /D変換器 4、ディジタルミキサ 10、ディジタルフィルタ 5、ダウンサンブラ 6、検波器 7 、局発部 8、制御部 9及び IQ信号発生回路 11を有して構成されている。
[0050] トラッキングフィルタ 2は、アンテナ ANTで受信される様々な放送波の中力 FM放 送帯域の信号を通過させ、 RFアンプ 3は、トラッキングフィルタ 2を通過した信号を増 幅して RF信号 SRFを出力する。
[0051] 制御部 9は、ユーザ等からの選局操作に従って、選局制御信号 CNTを局発部 8に 供給し、局発部 8は、 VCO回路と PLL回路とを備えたシンセサイザー同調方式の局 部発振回路で形成され、選局制御信号 CNTによって指示される放送チャンネル CH iに対応する局部発振周波数 Fsiの局発信号 Svcoを生成してバンドパス型∑ Δ Α/D 変換器 4と IQ信号発生回路 11に供給する。すなわち、局発部 8は、制御部 9から指 示される放送チャンネル CHiに応じて、上記式(1) (2)の条件を満たす局部発振周 波数 Fsiの局発信号 Svcoを出力する。
[0052] また、詳細については後述する力 S、バンドパス型∑ Δ Α/D変換器 4に設けられて レ、るバンドパスフィルタ 4fの中心周波数 Fcvが 16. 0MHzに設定されている。そのた め、局発部 8は、局発信号 Svcoの局部発振周波数 Fsiを、各放送チャンネル CHiの チャンネル周波数 Fchiに対して 16. 0MHz低い周波数に設定する。更に、 FM波の 最大周波数偏移が ± 75KHz程度であることから、隣接妨害等を考慮して、 FM波の 信号周波数帯域幅を土 100kHz (全体で 200kHz)であるとし、局部発振周波数 Fsi をその 200kHzの FM波をオーバーサンプリングすることが可能な高い周波数に決 めている。その結果、局発部 8は、表 1に示したような関係に基づいて、各放送チャン ネル CHiのチャンネル周波数 Fchiに対応する局部発振周波数 Fsiに設定して、局発 信号 Svcoを出力するようになっている。
[0053] バンドパス型∑ ΔΑ/D変換器 4は、局発信号 Svcoに従って動作し、局部発振周 波数 Fsiをサンプリング周波数として、 RF信号 SRFを 1ビットストリーム信号 Saに AZ D変換して出力する。更に、バンドパス型∑ ΔΑ/D変換器 4は、図 3 (b)に示す構成 を有している。
[0054] すなわち、バンドパス型∑ ΔΑ/D変換器 4は、 HEMT (High Electron Mobility Tr ansistor)等の高速素子で形成されており、 RFアンプ 3から供給される RF信号 SRFと 後述の帰還信号 S6との差分 (SRF— S6)を演算してその差分信号 S4を出力する減 算器 4eと、バンドパスフィルタ 4bと、局発部 8から供給される局部発振周波数 Fsiをサ ンプリング周波数として、バンドパスフィルタ 4bを通過した通過信号 S5を 1ビットストリ ーム信号 Saに AZD変換する量子化器 4gと、 1ビットストリーム信号 Saを D/A変換 することで帰還信号 S6を生成して減算器 4eに供給する D/A変換器 4hとを有して 形成されている。
[0055] 更に、バンドパスフィルタ 4bは、連続時間 Gm-C (Continuous-Time Gm_C)型ァク ティブバンドパスフィルタで形成されており、中心周波数 Fcvが 16. 0MHz、通過帯 域幅 BWが ± 100kHz (全体で 200kHz)に設定されている。
[0056] 量子化器 4gは、コンパレータで形成されており、 D/A変換器 4hは、局部発振周 波数 Fsiに同期して 1ビットストリーム信号 Saを DZA変換する、スィッチトチヤパシタを 用いた D/A変換器で形成されている。
[0057] IQ信号発生回路 11は、局発部 8からの局発信号 Svcoを分周し、局部発振周波数 Fsiの N分の 1 (Nは整数)の周波数から成る SIN成分である I信号と COS成分である Q信号とを生成するプリスケーラ (prescaler)で形成されており、それらの I, Q信号 (符 号 Siqで示す)をディジタルミキサ 10に供給する。なお、本実施例では、 N = 4とし、局 部発振周波数 Fsiの 4分の 1の周波数から成る I, Q信号 Siqを IQ信号発生回路 11か らディジタルミキサ 10に供給している。
[0058] ディジタルミキサ 10は、 1ビットストリーム信号 Saと I, Q信号 Siqとを乗算するディジタ ル乗算器で形成されている。そして、 1ビットストリーム信号 Sa l, Q信号 Siqとを乗算 することにより、 1ビットストリーム信号 Saを、中心周波数が略 0Hzとなる 1ビットストリー ム信号 Sabに周波数偏倚させてディジタルフィルタ 5に供給する。
[0059] デイジタノレフイノレタ 5は、 1ビットストリーム信号 Sabに含まれている不要な雑音成分 の通過を阻止し、希望成分である FM波の 1ビットストリーム信号 Sbのみを通過させる 帯域通過型ディジタルフィルタで形成されてレ、る。
[0060] ダウンサンプラ 6は、図 2 (a)に示したレート変換部 6に相当し、オーバーサンプリン グされている 1ビットストリーム信号 Sbを時間軸上で間引き処理することによっていわ ゆるダウンサンプリングを行い、 FM波の信号周波数帯域幅 (最大周波数偏移)に合 わせた 1ビットストリーム信号 Scにして検波器 7に供給する。すなわち、ディジタルフィ ルタ 5とダウンサンプラ 6によって、デシメータが構成されている。
[0061] 検波器 7は、ディジタル信号処理によって 1ビットストリーム信号 Scを FMディジタル 検波し、その検波信号 (ベースバンド信号) Sdetを出力する。
[0062] 次に、かかる構成を有する無線受信装置 1の動作について説明する。なお、説明の 便宜上、表 1に示した放送チャンネル CH3をユーザ等が選局した場合について説明 する。
[0063] ユーザ等が放送チャンネル CH3を選局操作すると、局発部 8が、制御部 9からの 選局制御信号 CNTに従って、局部発振周波数 Fsiを 64. OMHzとする局発信号 Svc 0を出力する。これにより、バンドパス型∑ AAZD変換器 4が、 64. OMHzの局部発 振周波数 Fsiをオーバーサンプリング周波数として、 RFアンプ 3から供給される RF信 号 SRf¾rA/D変換し、 1ビットストリーム信号 Saを出力する。
[0064] ここで、放送チャンネル CH3のチャンネル周波数 Fch3 (80. OMHz)に対して、ォ 一バーサンプリング周波数が 64. OMHzであることから、図 4のスペクトル図に示すよ うに、 16. OMHzを中心として ± 100kHzの周波数帯域幅に、チャンネル周波数 Fch 3 (80. OMHz)の FM波(基本帯域の受信信号)が現れ、更に、バンドパス型∑ ΔΑ /D変換器 4内のバンドパスフィルタ 4fの中心周波数 Fcvが 16. OMHz且つ、通過 帯域幅 BWが ± 100kHz (全体で 200kHz)に設定されているため、ノイズシエーピン グ効果によって、 16. OMHzを中心として ± 100kHzの周波数帯域幅が雑音阻止帯 域となる。このため、量子化器 4gで生じる量子化雑音等が雑音阻止帯域から追いや られ、雑音阻止帯域を信号周波数帯域幅として現れる上記 FM波(基本帯域の受信 信号)が SZNの良レ、 1ビットストリーム信号 Saに A/D変換されて、ディジタルミキサ 10に供給される。
[0065] 次に、 1ビットストリーム信号 Saは、ディジタルミキサ 10において IQ信号発生回路 1 1からの I, Q信号 Siqと乗算されることにより、中心周波数が略 OHzとなる 1ビットストリ ーム信号 Sabに周波数偏倚され、更にディジタルフィルタ 5とダウンサンブラ 6によって 、 FM波の信号周波数帯域幅 (最大周波数偏移)に合わせた 1ビットストリーム信号 S cに変換されて検波器 7に供給され、検波信号 (ベースバンド信号) Sdetとなって出力 される。
[0066] 以上説明したように、本実施例の無線受信装置 1によれば、 RF信号 SRFをバンド パス型∑ Δ Α/D変換器 4で A/D変換する構成とし、チャンネル周波数 Fchiに対し て該バンドパス型∑ AAZD変換器 4内のバンドパスフィルタ 4fの中心周波数 Fcv (l 6. 0MHz)分低い周波数をサンプリング周波数(局部発振周波数) Fsiに決めて、バ ンドパス型 AZD変換器 4でオーバーサンプリングするようにしたので、折返しの効果 によって実質的に低い周波数に偏倚することとなる FM波を AZD変換し、且つノィ ズシェービング効果によって、 S/Nの良い 1ビットストリーム信号 Saに A/D変換す ること力 Sできる。
[0067] すなわち、バンドパス型∑ ΔΑ/D変換器 4は 100MHz程度のサンプリング周波数 で動作することが可能であることから、本実施例によると、 RF信号 SRFを直接 AZD 変換することで、中間周波信号 (IF信号)を A/D変換するが如ぐ所望のチャンネル 周波数の FM波を低レ、周波数の 1ビットストリーム信号 Saに A/D変換できるため、 R F信号 SRFを IF信号にダウンコンバートするためのミキサを不要にすることができる。 この結果、アンテナ ANTにより近い側で A/D変換を行うことが可能となり、更にバン ドパス型∑ ΔΑ/D変換器 4の出力以降の構成をディジタル信号処理回路で形成す ることが可能となるため、処理機能の多くをディジタル領域で処理することが可能な無 線受信装置を提供することができる。
[0068] また、本実施例の無線受信装置 1は、ディジタルミキサ 10と IQ信号発生回路 11と を備え、ディジタルミキサ 10によって 1ビットストリーム信号 Sa l, Q信号 Siqとを乗算 することで、中心周波数が略 OHzとなる 1ビットストリーム信号 Sabを生成するので、デ イジタルミキサ 10以降のディジタルフィルタ 5とダウンサンブラ 6及び検波器 7等にお けるディジタル信号処理を行うことができ、結果、回路構成の簡素化等を実現するこ とができる。
[0069] なお、以上の実施例の説明では、バンドパス型∑ ΔΑ/D変換器 4内のバンドパス フイノレタ 4fは、中心周波数 Fcvが 16. OMHzに固定されている力 変形例として、通 過帯域幅 BWを変えずに中心周波数 Fcvを調整することが可能な可変バンドパスフィ ルタにし、その中心周波数 Fcvを上記式(1) (2)にカ卩えて次式(3)の条件を満たすよ うに設定してもよい。
[0070] [数 3]
F cv= F s i Z 4 -- (3)
[0071] すなわち、式(3)を式(1)に代入すると、次式 (4)が得られることから、制御部 11の 制御の下で、局発部 8が各放送チャンネル CHiのチャンネル周波数 Fchiの 0. 8倍の 周波数を局部発信周波数 Fsiとする局発信号 Svcoを出力し、更に、バンドパスフィル タ 4fが、その中心周波数 Fcvを上記式(3)に従って、自動的にチャンネル周波数 Fch iの 4分の 1の周波数に設定する。
[0072] [数 4]
Fs ! = 0. 8 X Fch i ·■· (4)
[0073] 表 2は、力かる条件に従って決められた局部発振周波数 Fsiとバンドパスフィルタ 4f の中心周波数 Fcvとの関係を例示したものである。
[0074] [表 2]
Figure imgf000016_0001
[0075] 力かる構成の変形例によると、中心周波数 Fcvとオーバーサンプリング周波数(局 部発信周波数) Fsiとの比を常に 1/4とすることから、 2のべき乗の演算を多用するバ ンドパス型∑ ΔΑ/D変換器 4にとつて都合の良い周波数の組み合わせで処理を行 うことができ、 A/D変換の精度のばらつきを抑制することができる。 [0076] 更に、中心周波数 Fcvとオーバーサンプリング周波数(局部発信周波数) Fsiとの比 を常に 1/4とすると、 IQ信号発生回路 11がプレスケーリング (てい倍)によってその 局部発信周波数 Fsiから I, Q信号 Siqを容易に生成することができ、ディジタルミキサ 10の出力である 1ビットストリーム信号 Sabを複素ゼロ IF信号として簡単に生成するこ とができる。このため、ディジタルミキサ 10以降のディジタルフィルタ 5とダウンサンプ ラ 6及び検波器 7等の構成をより簡素なディジタル回路で形成することが可能となり、 簡素な構成を有する無線受信装置を実現することができる。
[0077] また、他の変形例として、バンドパス型∑ Δ Α/D変換器 4の出力信号である 1ビッ トストリーム信号 Saの振幅変動(アナログ信号とした場合の振幅変動)をディジタノレ口 一パスフィルタ等で検出し、検出した変動を減少させるように RF信号 SRFに対する電 圧増幅率を自動調整する可変利得回路 (AGC)を、 RFアンプ 3の出力端とバンドパ ス型∑ ΔΑ/D変換器 4の入力端の間に設けてもよい。力、かる構成とすると、バンドパ ス型∑ ΔΑ/D変換器 4に入力する RF信号の振幅を安定化させ、受信性能を安定 に保つことができる。また、 1ビットストリーム信号 Saの上記変動を検出するのに、アナ ログローパスフィルタを用いてもよい。
[0078] また、更に他の変形例として、 RFアンプ 3から出力される RF信号 SRFの振幅変動 をアナログローパスフィルタ等で検出し、検出した変動を減少させるように RF信号 SR Fに対する電圧増幅率を自動調整する可変利得回路 (AGC)を、 RFアンプ 3の出力 端とバンドパス型∑ ΔΑ/D変換器 4の入力端の間に設けてもよい。かかる構成によ つても、バンドパス型∑ ΔΑ/D変換器 4に入力する RF信号の振幅を安定化させ、 受信性能を安定に保つことができる。

Claims

請求の範囲
[1] RF信号に含まれる所望のチャンネル周波数の受信信号を A/D変換する A/D変 換器を有する無線受信装置であって、
前記 AZD変換器は、前記チャンネル周波数より低い中心周波数を中心として前 記受信信号の信号周波数帯域幅に相当する通過帯域幅を有するバンドパスフィルタ を具備するバンドパス型 AZD変換器で形成され、
前記チャンネル周波数より前記バンドパスフィルタの中心周波数分低い局部発信 周波数の局発信号を前記 A/D変換器に供給し、前記局部発信周波数をサンプリン グ周波数として前記 A/D変換器に前記 RF信号を A/D変換させる局発手段を有 することを特徴とする無線受信装置。
[2] 更に、前記 A/D変換器の出力信号に含まれる前記受信信号の希望成分を通過さ せるフィルタ手段と、
前記フィルタ手段を通過した前記希望成分をダウンサンプリングするレート変換手 段と、を有することを特徴とする請求項 1に記載の無線受信装置。
[3] 前記バンドパス型 A/D変換器は、前記バンドパスフィルタを有するバンドパス型∑
ΔΑ/D変換器であることを特徴とする請求項 1に記載の無線受信装置。
[4] 更に、前記バンドパスフィルタの中心周波数は、前記チャンネル周波数の 4分の 1 の周波数であり且つ、前記局部発信周波数は、前記チャンネル周波数の 0. 8倍の 周波数であることを特徴とする請求項 3に記載の無線受信装置。
[5] 前記局発信号から前記局部発信周波数の 4分の 1の周波数の I信号と Q信号を生 成する IQ信号発生手段と、
前記バンドパス型∑ ΔΑ/D変換器から出力されるビットストリーム信号と前記 I信 号と Q信号とを乗算するディジタルミキサ手段を更に有することを特徴とする請求項 4 に記載の無線受信装置。
[6] 前記ディジタルミキサ手段の出力信号に含まれる前記受信信号の希望成分を通過 させるディジタルフィルタと、
前記ディジタルフィルタを通過した前記希望成分をダウンサンプリングするダウンサ ンブラと、を有することを特徴とする請求項 5に記載の無線受信装置。
[7] 前記 A/D変換器力 出力される出力信号の振幅変動を検出し、検出結果に基づ レ、て、前記振幅変動を減少させるベく前記 RF信号に対する電圧増幅率を可変制御 する可変利得制御手段を有することを特徴とする請求項 1に記載の無線受信装置。
[8] 前記 RF信号の振幅変動を検出し、検出結果に基づいて、前記振幅変動を減少さ せるべく前記 RF信号に対する電圧増幅率を可変制御する可変利得制御手段を有 することを特徴とする請求項 1に記載の無線受信装置。
PCT/JP2006/305031 2005-03-25 2006-03-14 無線受信装置 WO2006103921A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007510370A JP4516116B2 (ja) 2005-03-25 2006-03-14 無線受信装置
EP06729065A EP1863185A4 (en) 2005-03-25 2006-03-14 RADIO RECEPTION APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-089853 2005-03-25
JP2005089853 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006103921A1 true WO2006103921A1 (ja) 2006-10-05

Family

ID=37053184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305031 WO2006103921A1 (ja) 2005-03-25 2006-03-14 無線受信装置

Country Status (3)

Country Link
EP (1) EP1863185A4 (ja)
JP (1) JP4516116B2 (ja)
WO (1) WO2006103921A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543129A (ja) * 2005-05-04 2008-11-27 トムソン ライセンシング 複数のチャネルを受信するためのシステム及び方法
JP2013511241A (ja) * 2011-01-20 2013-03-28 メディア テック シンガポール ピーティーイー.リミテッド 向上した雑音除去性を有するオーバーサンプリング連続時間型コンバータ
WO2013051641A1 (ja) * 2011-10-04 2013-04-11 住友電気工業株式会社 バンドパス型δς変調器の設計方法、バンドパス型δς変調器、δς変調器を有する装置、及びδς変調を用いた方法
WO2013080314A1 (ja) * 2011-11-30 2013-06-06 株式会社日立製作所 無線通信システム、受信機、昇降機制御システムおよび変電設備制御システム
WO2013136460A1 (ja) * 2012-03-14 2013-09-19 株式会社日立製作所 無線機、昇降機制御システムおよび変電設備制御システム
JP2016082512A (ja) * 2014-10-21 2016-05-16 本田技研工業株式会社 車両用ラジオノイズ除去装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818457A (ja) * 1994-06-30 1996-01-19 Asahi Kasei Micro Syst Kk Agc機能付きデルタシグマ型a/d変換器
JPH0888577A (ja) * 1994-09-14 1996-04-02 Toshiba Corp 周波数変換機能を有するa/d変換装置およびこれを用いた無線機
JP2000114880A (ja) * 1998-09-29 2000-04-21 Toshiba Corp 周波数変換機能を有するa/d変換装置及びこれを用いた無線機
JP2000224041A (ja) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd Δσad変換装置および受信装置
JP2001094450A (ja) * 1999-09-20 2001-04-06 Sony Corp 受信機
JP2004173081A (ja) * 2002-11-21 2004-06-17 Samsung Electronics Co Ltd A/d変換回路及びa/d変換制御方法並びにa/d変換プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110732B2 (en) * 2001-04-09 2006-09-19 Texas Instruments Incorporated Subsampling RF receiver architecture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818457A (ja) * 1994-06-30 1996-01-19 Asahi Kasei Micro Syst Kk Agc機能付きデルタシグマ型a/d変換器
JPH0888577A (ja) * 1994-09-14 1996-04-02 Toshiba Corp 周波数変換機能を有するa/d変換装置およびこれを用いた無線機
JP2000114880A (ja) * 1998-09-29 2000-04-21 Toshiba Corp 周波数変換機能を有するa/d変換装置及びこれを用いた無線機
JP2000224041A (ja) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd Δσad変換装置および受信装置
JP2001094450A (ja) * 1999-09-20 2001-04-06 Sony Corp 受信機
JP2004173081A (ja) * 2002-11-21 2004-06-17 Samsung Electronics Co Ltd A/d変換回路及びa/d変換制御方法並びにa/d変換プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1863185A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543129A (ja) * 2005-05-04 2008-11-27 トムソン ライセンシング 複数のチャネルを受信するためのシステム及び方法
JP2013511241A (ja) * 2011-01-20 2013-03-28 メディア テック シンガポール ピーティーイー.リミテッド 向上した雑音除去性を有するオーバーサンプリング連続時間型コンバータ
WO2013051641A1 (ja) * 2011-10-04 2013-04-11 住友電気工業株式会社 バンドパス型δς変調器の設計方法、バンドパス型δς変調器、δς変調器を有する装置、及びδς変調を用いた方法
US9264063B2 (en) 2011-10-04 2016-02-16 Sumitomo Electric Industries, Ltd. Method for designing band pass delta-sigma modulator, band pass delta-sigma modulator, signal processing device, and radio transceiver
WO2013080314A1 (ja) * 2011-11-30 2013-06-06 株式会社日立製作所 無線通信システム、受信機、昇降機制御システムおよび変電設備制御システム
CN103931114A (zh) * 2011-11-30 2014-07-16 株式会社日立制作所 无线通信系统、接收机、升降机控制系统以及变电设备控制系统
CN103931114B (zh) * 2011-11-30 2017-03-01 株式会社日立制作所 无线通信系统、接收机、升降机控制系统以及变电设备控制系统
WO2013136460A1 (ja) * 2012-03-14 2013-09-19 株式会社日立製作所 無線機、昇降機制御システムおよび変電設備制御システム
JP5688184B2 (ja) * 2012-03-14 2015-03-25 株式会社日立製作所 無線機、昇降機制御システムおよび変電設備制御システム
JP2016082512A (ja) * 2014-10-21 2016-05-16 本田技研工業株式会社 車両用ラジオノイズ除去装置

Also Published As

Publication number Publication date
JP4516116B2 (ja) 2010-08-04
JPWO2006103921A1 (ja) 2008-09-04
EP1863185A1 (en) 2007-12-05
EP1863185A4 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP5280868B2 (ja) Rf−ベースバンド受信機アーキテクチャ
US8249535B2 (en) Radio receivers
Hickling New technology facilitates true software-defined radio
JP4750833B2 (ja) 周波数調整及び周波数逓降変換のためのスイッチキャパシターネットワーク
JP4004951B2 (ja) 無線受信機
KR20080072383A (ko) 실리콘 튜너 및 그 신호 처리 방법
EP1123609A4 (en) MULTIMODE SIGMA-DELTA INTERFERENCE BANDWIDTH RECEIVER SUBSYSTEM AND METHOD OF USING SAME
WO2006103921A1 (ja) 無線受信装置
US8335484B1 (en) Systems and methods for dynamically controlling an analog-to-digital converter
JP2011166773A (ja) サブサンプリング技法を利用する受信器のデジタル処理構造
JPH11234150A (ja) デジタル復調装置
JP2004531132A5 (ja)
US20070049330A1 (en) Wireless transceiver for supporting a plurality of communication or broadcasting services
US8144811B2 (en) Hybrid zero-IF receiver
US20070015479A1 (en) Integrated wireless receiver and a wireless receiving method thereof
KR100783502B1 (ko) 바이패스 회로를 구비한 위성 디지털 멀티미디어 방송용수신기.
JP2003318760A (ja) アンダーサンプリング方式を用いた受信装置
JP2002118479A (ja) ディジタル放送受信回路、発振信号生成回路及びディジタル放送受信方法
US7474693B2 (en) Electronic component notably for decoding signals modulated by a digital quadrature modulation over a large number of orthogonal carriers
JP2006217013A (ja) Cofdm変調信号受信機
WO2006055821A2 (en) An integrated wireless receiver and a wireless receiving method thereof
WO2008059560A1 (fr) Récepteur à conversion directe
JP2004104583A (ja) 受信装置
KR20080067168A (ko) 광대역 수신기
TW201220841A (en) Analog television receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510370

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006729065

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729065

Country of ref document: EP