WO2013051641A1 - バンドパス型δς変調器の設計方法、バンドパス型δς変調器、δς変調器を有する装置、及びδς変調を用いた方法 - Google Patents

バンドパス型δς変調器の設計方法、バンドパス型δς変調器、δς変調器を有する装置、及びδς変調を用いた方法 Download PDF

Info

Publication number
WO2013051641A1
WO2013051641A1 PCT/JP2012/075759 JP2012075759W WO2013051641A1 WO 2013051641 A1 WO2013051641 A1 WO 2013051641A1 JP 2012075759 W JP2012075759 W JP 2012075759W WO 2013051641 A1 WO2013051641 A1 WO 2013051641A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulator
frequency
band
unit
Prior art date
Application number
PCT/JP2012/075759
Other languages
English (en)
French (fr)
Inventor
前畠 貴
一幸 戸谷
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011220452A external-priority patent/JP2013081108A/ja
Priority claimed from JP2011220406A external-priority patent/JP5786623B2/ja
Priority claimed from JP2011220437A external-priority patent/JP5919712B2/ja
Priority claimed from JP2012034278A external-priority patent/JP5874432B2/ja
Priority claimed from JP2012127621A external-priority patent/JP5920034B2/ja
Priority claimed from JP2012209370A external-priority patent/JP6064485B2/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2013051641A1 publication Critical patent/WO2013051641A1/ja
Priority to US14/217,696 priority Critical patent/US9264063B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/402Arrangements specific to bandpass modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults

Definitions

  • the present invention relates to a method for designing a bandpass type ⁇ modulator, a bandpass type ⁇ modulator, a device having a ⁇ modulator, and a method using ⁇ modulation.
  • the ⁇ modulator is a kind of oversampling modulation, and is generally a technique used for AD conversion or DA conversion (see Non-Patent Document 1).
  • noise shaping Noise Shaping
  • ⁇ modulation noise shaping (Noise Shaping) is performed in which the quantization noise in the signal band is moved outside the signal band to greatly reduce the quantization noise in the signal band.
  • ⁇ modulation often refers to low-pass type ⁇ modulation.
  • low-frequency quantization noise moves to a higher frequency side, and noise shaping is performed so that the low-frequency quantization noise is attenuated. That is, in the low-pass type ⁇ modulation, the noise transfer function has a characteristic of blocking passing noise at a low frequency (near 0 Hz).
  • ⁇ modulation in addition to the low-pass type ⁇ modulation, there is also a band-pass type ⁇ modulation in which a noise transfer function blocks passage noise at a frequency larger than 0 Hz.
  • a digital electric signal to be transmitted is converted into an optical signal by an electro-optical converter (E / O; optical link) 101a.
  • E / O electro-optical converter
  • the optical receiver 103 acquires a digital electric signal by converting an optical signal transmitted from the optical transmission path 102 into an electric signal by an optical-electric converter (O / E; optical link) 103a.
  • a laser diode is used for the electrical-optical converter 101a, and a photodiode is used for the optical-electrical converter 103a.
  • the input / output characteristics of these elements 101a and 103a are not sufficiently linear. Therefore, an optical fiber communication system can be used to transmit a value quantized with a stepwise value such as a binarized value, but to transmit a continuous value such as an analog signal. Not very suitable.
  • a digital signal pulse train is transmitted through the optical transmission line (optical fiber) 102 as shown in FIG.
  • an analog signal to be transmitted is first converted into a digital signal by an AD converter (ADC) 101b.
  • the parallel digital signal output from the AD converter 101b is converted into a serial bit string, and a pulse train of an optical signal corresponding to the serial bit string is generated by the electro-optical converter 101a for optical transmission.
  • the optical receiver 103 acquires the analog signal by converting the digital signal indicated by the received pulse train into an analog signal by the DA converter (DAC) 103b.
  • DAC DA converter
  • the pulse width of transmitting the analog signal by modulating the pulse width in addition to the method of transmitting an analog signal by modulating the optical intensity, the pulse width of transmitting the analog signal by modulating the pulse width.
  • a modulation method PWM; Plus Width Modulation
  • the pulse width modulation method represents the waveform of an analog signal by the pulse width. Since a pulse train is transmitted through the optical transmission path, the pulse width modulation method is less susceptible to non-linearity in the transmission system.
  • Wireless broadcast receivers such as television receivers or radio receivers are widespread throughout the world. For this reason, wireless broadcasting such as television broadcasting is very attractive as a means for transmitting information.
  • a large-scale wireless broadcast facility is required.
  • broadcasting equipment requires a broadcasting machine (broadcasting transmitter) and a transmission antenna.
  • the broadcaster puts a video signal or an audio signal on a carrier wave to generate an RF (Radio Frequency) signal.
  • the RF signal is output by a high-power amplifier and radiated as a radio wave from the transmitting antenna.
  • An RF signal radiated into space as a radio wave is received by a wireless broadcast receiver such as a television receiver via a receiving antenna.
  • Distorted compensation processing includes digital signal processing such as DPD (Digital Pre-Distortion).
  • DPD Digital Pre-Distortion
  • Non-Patent Document 1 z ⁇ ⁇ z 2 conversion is performed on a z-region model of a low-pass type ⁇ modulator, so that the low-pass type ⁇ modulator is converted into a bandpass type ⁇ . Can be converted to a modulator.
  • an fs / 4 bandpass ⁇ modulator that operates at a frequency that is 1 ⁇ 4 of the sampling frequency fs (the center frequency f 0 of the quantization noise stop band is fs / Only a bandpass type ⁇ modulator 4). That is, the bandpass ⁇ modulator obtained by using the z ⁇ ⁇ z 2 conversion formula is limited to the one in which the center frequency f 0 of the band of the signal to be processed is 1 ⁇ 4 of the sampling frequency fs. It is done.
  • Non-Patent Document 1 does not disclose the structure of a bandpass type ⁇ modulator for frequency f 0 other than a quarter of the sampling frequency fs. Naturally, it is not disclosed at all how to design a bandpass ⁇ modulator for an arbitrary frequency f 0 other than 1 ⁇ 4 of the sampling frequency fs.
  • a problem (first problem) for the first background is to obtain a bandpass ⁇ modulator for a desired frequency f 0 .
  • the analog signal is a signal with a relatively low frequency (for example, an audio signal).
  • the analog signal is a modulated wave obtained by modulating a carrier wave (unmodulated wave) with a transmission signal such as a radio frequency (RF) signal
  • RF radio frequency
  • a radio frequency (carrier frequency) of about 1 GHz may be used. If pulse width modulation is performed on a 1 GHz radio frequency signal (RF signal), a very high sampling rate of 128 GS / s, which is 128 times the radio frequency (1 GHz), is required. Sampling and transmitting at such a high speed is unrealistic from the viewpoint of practical use.
  • a problem (second problem) with respect to the second background is to transmit the modulated wave while suppressing the sampling rate.
  • Non-Patent Document 1 does not disclose the structure of a bandpass ⁇ modulator for frequency f 0 other than a quarter of the sampling frequency fs. For this reason, for example, even if a bandpass ⁇ modulator is used to transmit a radio frequency carrier wave, the bandpass ⁇ modulator limits the frequency to be processed as described above. The signal transmission at the carrier frequency cannot be performed.
  • a transmitter capable of performing bandpass ⁇ modulation on a modulated wave having a desired carrier frequency capable of performing bandpass ⁇ modulation on a modulated wave having a desired carrier frequency
  • a mobile body equipped with the transmitter and a signal processing device Is to provide.
  • the broadcasting equipment is configured as a large-scale system, for example, because it is configured in a duplex system for stable operation.
  • the broadcasting equipment In order to provide a broadcasting service in many regions / countries, it is necessary to install such a large-scale broadcasting facility in each region / country, which requires enormous costs.
  • the maintenance and management of broadcasting facilities will be expensive.
  • a problem (fourth problem) with respect to the third background is to perform transmission or broadcasting of an RF signal in a manner different from the conventional one.
  • the oversampling ratio (OSR) is defined as follows.
  • OSR fs / (2 ⁇ BW) fs: sampling frequency
  • BW signal frequency band
  • the sampling frequency fs of ⁇ modulation can be determined.
  • the present inventor has come up with the idea of performing bandpass ⁇ modulation on an RF signal transmitted as a radio wave.
  • the RF signal can be easily handled as a digital signal.
  • the sampling frequency fs can be determined if the frequency band fs of the RF signal and the oversampling ratio are determined.
  • the sampling frequency fs increases, the cost of the ⁇ modulator and its peripheral circuits increases.
  • the signal bandwidth may be several MHz to several tens of MHz, the sampling frequency fs is desired to be kept as low as possible.
  • the sampling frequency fs OSR ⁇ (2 ⁇ BW) may be set.
  • the sampling frequency fs of ⁇ modulation is kept low, leakage power leaking out of the signal band becomes a problem. The inventor found out.
  • leakage power that leaks out of the signal band may be a problem, and therefore, the magnitude of leakage power outside the signal band is often regulated by legal regulations or standards. This is because if the leakage power outside the signal band is increased, the adjacent channel is disturbed.
  • ⁇ modulation the quantization noise within the signal band is moved outside the signal band, so that the power due to the quantization noise tends to be relatively large even outside the signal band. Therefore, when ⁇ modulation is performed on the RF signal, quantization noise outside the signal band may increase leakage power.
  • Another problem (fifth problem) with respect to the first background is that quantization noise increases leakage power when bandpass ⁇ modulation is performed on an RF signal transmitted as a radio wave. It is to suppress.
  • an analog circuit a high-frequency circuit including analog elements such as a coupler, a low-noise amplifier, a demodulator, and an analog filter
  • an AD converter that monitor the amplifier output
  • Such a circuit is equivalent to an RF (Radio Frequency) unit in a radio receiver, and increases the circuit scale.
  • a problem related to the fourth background is to obtain the output of the amplifier without performing complicated analog signal processing.
  • This is a method for designing a bandpass ⁇ modulator.
  • fs is the sampling frequency f 0 is the center frequency of the quantization noise stop band of the bandpass ⁇ modulator
  • a bandpass ⁇ modulator for a desired frequency f 0 can be obtained.
  • f cnv (z, ⁇ 0 ) is an expression of the other side in the identity where the value of one side is 1 or ⁇ 1.
  • the identity is obtained by modifying the following expression: Preferably.
  • (1-3) z ′ is preferably represented by the following formula.
  • (1-4) z ′ is preferably represented by the following formula.
  • z ′ is preferably represented by the following formula.
  • (1-6) z ′ is preferably represented by the following formula.
  • z ′ f cnv (z, ⁇ 0 )
  • fs is the sampling frequency f 0 is the center frequency of the quantization noise stop band of the bandpass ⁇ modulator
  • the present invention as seen from one viewpoint is a transmitter for transmitting a modulated wave in which a transmission signal is added to an unmodulated wave to a signal transmission line, the modulation A bandpass ⁇ modulator that performs bandpass ⁇ modulation on the wave, and an output unit that outputs the quantized signal output from the bandpass ⁇ modulator to the signal transmission path as the modulated wave, It is the transmitter characterized by having.
  • bandpass ⁇ modulation it is sufficient if the sampling frequency is sufficiently large with respect to the signal band of the modulated wave. There is no need to increase the sampling rate.
  • the frequency of the unmodulated wave is preferably set so as to satisfy the following expression.
  • f 0 ' f 0 -n ⁇ fs
  • f 0 reception frequency on the receiver side
  • fs sampling frequency of the band-pass ⁇ modulator
  • f 0 ′ frequency of the unmodulated wave
  • n integer
  • n is preferably an integer having an absolute value of 1 or more.
  • the reception frequency f 0 of the receiver can be larger than the sampling frequency fs.
  • the sampling frequency can be set high by extending the band.
  • the band extending unit extends the band of the modulated wave by inserting a zero signal outside the signal band of the modulated wave.
  • the bandwidth can be easily expanded.
  • a digital modulation unit that generates the modulated wave by digital signal processing is further provided, and the digital modulated wave generated by the digital modulation unit is supplied to the bandpass ⁇ modulator.
  • both the generation of the modulated wave and the generation of the quantized signal can be performed by digital signal processing.
  • the digital modulation section is preferably a digital quadrature modulation section.
  • the modulated wave is preferably a radio frequency modulated wave.
  • the present invention from another viewpoint is a receiver for receiving a signal transmitted from a signal transmission path, and is a bandpass type for a modulated wave in which a transmission signal is added to an unmodulated wave.
  • An input unit that receives a quantized signal generated by performing ⁇ modulation from the signal transmission path, and an analog bandpass filter that receives the quantized signal received by the input unit as an input. It is the receiver characterized by this.
  • An analog modulated wave can be obtained by passing a quantized signal generated by performing bandpass ⁇ modulation on the modulated wave through an analog bandpass filter.
  • the analog bandpass filter is preferably set to satisfy the following expression.
  • fc f 0 '+ n ⁇ fs
  • fc center frequency of the passband of the analog bandpass filter
  • fs sampling frequency of the ⁇ modulator
  • f 0 ′ frequency of the unmodulated wave
  • n integer
  • n is preferably an integer having an absolute value of 1 or more.
  • an analog circuit for processing the modulated wave is further provided, and an output of the analog bandpass filter is preferably supplied to the analog circuit.
  • an antenna for outputting radio waves is provided, and the antenna also functions as the analog bandpass filter.
  • the analog bandpass filter can be omitted.
  • the present invention provides the transmitter according to any one of (2-1) to (2-8) described above, and (2-9) to (2-13) A receiver according to any one of the above.
  • the present invention from another viewpoint is a radio base station apparatus comprising a base station main body and a remote radio head connected to the base station main body via a signal transmission path,
  • the station main body includes the transmitter according to any one of (2-1) to (2-8), and the remote radio head is any one of (2-9) to (2-13).
  • a radio base station apparatus comprising the receiver according to item 1.
  • the present invention as seen from one viewpoint is a transmitter for transmitting a modulated wave in which a transmission signal is added to a carrier wave, and is a bandpass type ⁇ modulation for the modulated wave And a transmission unit (output unit) that transmits a quantized signal output from the bandpass ⁇ modulator.
  • the transmitter further includes a control unit that controls the bandpass ⁇ modulator so that the frequency band of the modulated wave is included in a quantization noise rejection band of ⁇ modulation performed by the bandpass ⁇ modulator. ing.
  • the control unit controls the bandpass ⁇ modulator so that the frequency band of the modulated wave is included in the quantization noise rejection band of ⁇ modulation.
  • bandpass ⁇ modulation can be performed.
  • the control unit controls the bandpass ⁇ modulator so that the frequency band of the modulated wave is included in the quantization noise blocking band of ⁇ modulation.
  • a modulated wave can be extracted from the quantized signal output from the ⁇ modulator and transmitted without frequency conversion.
  • the transmission signal is preferably a radio frequency modulated wave.
  • control unit further has a function of determining the frequency of the carrier wave.
  • determination of the frequency of the carrier wave and the control of the center frequency of the quantization noise stopband of ⁇ modulation corresponding to this can be performed collectively by the control unit.
  • the frequency of the carrier wave is set within a sampling frequency range of the band-pass ⁇ modulator.
  • the transmitter may further include a volatile storage unit, and the storage unit may be configured to store frequency information indicating the frequency of the carrier wave. In this case, when the power supplied to the storage unit is cut off, the stored frequency information is erased. For example, it is possible to prevent the frequency information from being recognized as much as possible by reverse engineering, and the confidentiality of the communication can be reduced. Can be maintained.
  • the control unit further includes a function of determining the frequency of the carrier wave by frequency hopping from a plurality of predetermined frequencies.
  • the transmission unit can extract and transmit the modulated wave from the quantized signal output from the ⁇ modulator without frequency conversion, so that the control unit determines the frequency of the carrier to determine the setting.
  • the degree of freedom is increased.
  • the plurality of frequency information can be set from a wider range.
  • the carrier frequency can be spread over a wider band than in the case of using a VCO whose setting bandwidth is limited for setting the carrier frequency, and has high fault tolerance and communication. Frequency hopping with excellent secrecy can be realized.
  • the control unit is stored in the storage unit.
  • the frequency of the carrier wave may be determined by referring to the plurality of frequency information and the pattern information. Also in this case, as described above, when the power supplied to the storage unit is cut off, a plurality of stored frequency information and hopping patterns are erased, so that the confidentiality of communication can be maintained.
  • the present invention from another viewpoint is a movable mobile body including a transmitter that transmits information, and the transmitter includes the above (3-1 ) To (3-7).
  • the mobile unit configured as described above, in information transmission, band-pass ⁇ modulation can be performed on a modulated wave having a desired carrier frequency.
  • the present invention viewed from another point of view relates to a bandpass ⁇ modulator that performs bandpass ⁇ modulation on a modulated wave with a transmission signal added to a carrier wave, A control unit that controls the band-pass ⁇ modulator so that the frequency band of the modulated wave is included in a quantization noise rejection band of ⁇ modulation performed by the band-pass ⁇ modulator.
  • This is a featured signal processing apparatus. According to the signal processing device having the above-described configuration, it is possible to perform band-pass ⁇ modulation on a modulated wave having a desired carrier frequency in information transmission.
  • the present invention viewed from one viewpoint includes a first device that transmits a signal to a signal transmission path, and a second device that receives a signal from the signal transmission path,
  • the first device includes a ⁇ modulator that performs ⁇ modulation on an RF signal and outputs a quantized signal, and a transmission unit that transmits the quantized signal output from the ⁇ modulator to the signal transmission path;
  • the second device includes a receiving unit that receives the quantized signal from the signal transmission path, a buffer that stores the quantized signal received by the receiving unit, and a quantization stored in the buffer.
  • An RF signal transmission system comprising: an output unit that outputs a signal.
  • the RF signal is converted into a quantized signal by ⁇ modulation. Therefore, the RF signal that has become the quantized signal can be transmitted as a digital signal through the signal transmission path.
  • the second device that receives the quantized signal includes the buffer, the quantized signal can be output at a necessary speed regardless of the transmission speed in the signal transmission path.
  • the transmission unit is configured to be capable of transmitting information, and the information transmitted by the transmission unit is configured to reproduce the signal waveform of the quantized signal output from the ⁇ modulator. It preferably contains information used in. In this case, since the second device can acquire information used to reproduce the signal waveform of the quantized signal output from the ⁇ modulator, it is not necessary to know the information in advance.
  • the transmission unit packetizes the quantized signal and outputs the packetized signal to the signal transmission path, and the receiving unit receives the packetized quantized signal and depackets it.
  • the quantized signal When the quantized signal is packetized, the signal can be transmitted via a signal transmission path (for example, the Internet) through which packet communication is performed.
  • the signal transmission path is preferably a wired signal transmission path. Although the RF signal is handled, the signal transmission path is wired so that it is not subject to legal restrictions regarding radio waves.
  • the output unit preferably outputs the quantized signal to a receiver that receives an RF signal.
  • the quantized signal is given to the receiver as an RF signal.
  • the second device further includes an antenna that radiates an RF signal as a radio wave to space, and the second device radiates the quantized signal output from the output unit as a radio wave by the antenna. It is preferable to use it as an RF signal. In this case, the second device can radiate the RF signal transmitted through the signal transmission path as a radio wave.
  • the RF signal preferably includes an RF signal of a video signal.
  • the RF signal is preferably an RF signal for digital television broadcasting.
  • the ⁇ modulator is preferably a bandpass type ⁇ modulator.
  • the present invention viewed from another point of view includes a receiving unit that receives a quantized signal obtained by ⁇ modulation of an RF signal from a signal transmission path, and the receiving unit.
  • a signal output device comprising: a buffer that stores a received quantized signal; and an output unit that outputs the quantized signal stored in the buffer as a signal including an RF signal.
  • the present invention viewed from still another viewpoint includes a receiver that receives an RF signal, and the signal output device according to (10), wherein the signal output device includes: The reception system outputs the quantized signal to the receiver.
  • the present invention as seen from still another aspect is an RF signal transmission method for transmitting a quantized signal obtained by ⁇ modulation of an RF signal to a signal transmission line Receiving the quantized signal from the signal transmission path; storing the received quantized signal in a buffer; and receiving the quantized signal stored in the buffer to a receiver that receives an RF signal. And a step of outputting to the RF signal transmission method.
  • the present invention as viewed from still another viewpoint includes a transmission device that transmits a signal to a signal transmission path, and one or a plurality of broadcast facilities.
  • a ⁇ modulator that performs ⁇ modulation on the RF signal for output and outputs a quantized signal; and a first transmitter that transmits the quantized signal output from the ⁇ modulator to the signal transmission path.
  • the broadcast facility includes an antenna that radiates a broadcast RF signal to space as a radio wave, and a broadcaster that outputs the broadcast RF signal to the antenna, and the broadcaster transmits the quantized signal to the signal
  • a broadcasting system comprising: a receiving unit that receives from a path; and a second transmission unit that outputs the quantized signal received by the receiving unit as the broadcasting RF signal to the antenna. It is.
  • the RF signal for broadcasting is converted into a quantized signal by ⁇ modulation. Therefore, the broadcast RF signal that has become the quantized signal can be transmitted as a digital signal through the signal transmission path.
  • the received quantized signal can be radiated from the antenna as a radio wave signal for broadcasting.
  • the broadcaster further includes a buffer for storing the quantized signal received by the receiving unit, and the second transmitting unit transmits the quantized signal stored in the buffer to the broadcast It is preferable to output to the antenna as an RF signal for use. Since the broadcaster includes a buffer, the broadcaster can output the quantized signal at a necessary speed regardless of the transmission speed in the signal transmission path.
  • the first transmission unit is configured to be capable of transmitting information, and the information transmitted by the first transmission unit is for reproducing the signal waveform of the quantized signal output from the ⁇ modulator. It preferably contains information used in the broadcaster. In this case, since the broadcaster can acquire information used to reproduce the signal waveform of the quantized signal output from the ⁇ modulator, it is not necessary to know the information in advance.
  • the first transmitting unit packetizes the quantized signal and transmits the packetized signal to the signal transmission path, and the receiving unit receives the packetized quantized signal and depackets it. preferable.
  • the quantized signal can be transmitted via a signal transmission path (for example, the Internet) through which packet communication is performed.
  • the ⁇ modulator is preferably a bandpass type ⁇ modulator.
  • the present invention which is seen from another viewpoint, provides a reception unit that receives a quantized signal obtained by ⁇ modulation of a broadcast RF signal from a signal transmission path, and the reception A transmission unit that outputs the quantized signal received by the unit to the antenna as the broadcast RF signal.
  • the present invention as viewed from another point of view relates to the broadcasting apparatus described in the above (16) and the quantized signal output from the transmission unit of the transmitter in space.
  • a broadcasting facility comprising a radiating antenna.
  • the present invention as viewed from still another aspect provides a step of obtaining a quantized signal by ⁇ modulation of a broadcast RF signal, and a step of transmitting the quantized signal to a broadcaster And a step in which the broadcaster outputs the received quantized signal as a broadcast RF signal to an antenna.
  • the present invention from one viewpoint is a signal processing device that performs processing on an RF signal transmitted as a radio wave, and performs bandpass ⁇ modulation on the RF signal.
  • a band-pass ⁇ modulator, and a quantization noise rejection band of the band-pass ⁇ modulator includes a use band of the RF signal and has a wider bandwidth than the use band of the RF signal.
  • the quantization noise stopband has a wider bandwidth than the use band of the RF signal. In the vicinity of the use band of the RF signal, the quantization noise is reduced, and it is possible to suppress the quantization noise from increasing the leakage power.
  • the RF signal has a use band extending over a plurality of communication bands, and the quantization noise stop band is a minimum including an adjacent channel and a next adjacent channel on both sides of the use band of the RF signal. It is preferable to have a narrower bandwidth than the bandwidth. When leakage power to the adjacent channel and the next adjacent channel in the RF signal usage band becomes a problem, the quantization noise stop band is larger than the band including the adjacent channel and the next adjacent channel on both sides of the RF signal usage band. Should also be a wide band. However, when viewed in each of the plurality of communication bands, the quantization noise stop band can be narrower than the minimum bandwidth including the adjacent channel and the next adjacent channel on both sides of the use band of the RF signal. This makes it possible to keep the sampling rate low.
  • each of the plurality of communication bands has a bandwidth including all adjacent channels on both sides of the used band when the used band is regarded as a used band. In this case, it is possible to prevent the quantization noise from becoming leakage power to the adjacent channel.
  • the quantization noise stop band has a bandwidth including all adjacent channels on both sides of the use band and the next adjacent channel when each of the plurality of communication bands is regarded as a use band. Is preferred. In this case, the quantization noise can be prevented from becoming leakage power to the adjacent channel and the next adjacent channel.
  • Each of the quantization noise stopbands includes both the adjacent channels on both sides of the use band and the minimum basic band including all the next adjacent channels when each of the plurality of communication bands is regarded as a use band. Preferably, it has a bandwidth equal to or less than a bandwidth that secures an additional bandwidth corresponding to one communication bandwidth. In this case, while preventing leakage power to the adjacent channel and the next adjacent channel, the quantization noise stop band is not so wide, and the sampling rate can be suppressed.
  • a band selection unit that selects a use band of the RF signal from one or a plurality of communication bands is further provided, and the quantization noise rejection band regards all the plurality of communication bands as a use band. It is preferable to have a narrower bandwidth than the minimum band including the adjacent channel and the next adjacent channel on both sides of the used band. In this case, the quantization noise stop band is not too wide, and the sampling rate can be suppressed.
  • the quantization noise stopband has a bandwidth that includes all adjacent channels on both sides of the use band and the next adjacent channels when each of the plurality of communication bands is regarded as a use band. Is preferred. In this case, it is possible to prevent the quantization noise from becoming leakage power to the adjacent channel and the next adjacent channel regardless of which communication band is selected.
  • the quantization noise stop band preferably has a bandwidth including adjacent channels on both sides of the RF signal use band. In this case, the quantization noise can be prevented from becoming leakage power to the adjacent channel.
  • the quantization noise stop band has a bandwidth including the adjacent channel and the next adjacent channel on both sides of the use band of the RF signal. In this case, it is possible to prevent the quantization noise from becoming leakage power to the adjacent channel and the next adjacent channel.
  • the present invention provides a radio apparatus comprising the signal processing device according to any one of (5-1) to (5-9) for processing an RF signal. It is.
  • the quantization noise stop band in the signal processing apparatus has a bandwidth that is equal to or greater than a bandwidth in which the magnitude of leakage power is regulated by legal regulations or standards that the radio equipment must conform to. It is preferable.
  • the present invention from one viewpoint relates to an amplifier, a digital signal processing unit that outputs a signal to be amplified by the amplifier, and an analog provided on the output side of the amplifier
  • the digital signal processing unit based on the output of the amplifier, a distortion compensation unit that performs distortion compensation of the amplifier, and performs ⁇ modulation on the signal to be amplified by the amplifier to quantize
  • a delta-sigma modulation unit that outputs a quantized signal
  • the amplifier amplifies the quantized signal
  • the analog filter generates an analog signal from the quantized signal
  • the digital signal processing unit includes the distortion signal
  • An amplifying apparatus that acquires a quantized signal output from the amplifier for distortion compensation by a compensation unit.
  • the digital signal processing unit including the distortion compensation unit obtains the quantized signal output from the amplifier for distortion compensation by the distortion compensation unit, and thus the output of the amplifier is complicated analog signal processing. Can be obtained without doing.
  • the amplifier is preferably a digital amplifier. In this case, power efficiency is improved.
  • the digital signal processing unit further includes a digital filter having the same characteristics as the analog filter, and the digital filter performs filtering on the quantized signal acquired by the digital signal processing unit,
  • the distortion compensator preferably performs distortion compensation based on the output of the digital filter. Since the digital signal processing unit has a digital filter having the same characteristics as the analog filter that generates the analog signal, the digital signal processing unit can obtain a digital signal corresponding to the analog signal output from the analog filter.
  • the digital signal processing unit further includes a demodulation unit that demodulates the output of the digital filter, and the distortion compensation unit performs distortion compensation based on the output of the demodulation unit.
  • demodulation such as quadrature demodulation
  • demodulation can also be performed by the digital signal processing unit. Further, by demodulating, it is not necessary to handle high frequencies such as carrier waves, and the processing speed in the digital signal processing unit can be suppressed.
  • the ⁇ modulator is preferably a bandpass type ⁇ modulator.
  • a bandpass ⁇ modulator is advantageous when handling high frequencies such as radio frequency signals.
  • the analog signal is preferably a radio frequency signal.
  • the present invention as seen from another viewpoint is a digital signal processing device that outputs a signal to be amplified by an amplifier, and is based on the output of the amplifier, and the distortion of the amplifier.
  • a distortion compensation unit that performs compensation
  • a ⁇ modulation unit that performs ⁇ modulation on the signal to be amplified by the amplifier and outputs a quantized signal, and for distortion compensation by the distortion compensation unit
  • a digital signal processing apparatus configured to acquire a quantized signal output from an amplifier.
  • the present invention provides the amplification device according to any one of (6-1) to (6-6) described above for amplifying a communication signal. It is the radio
  • FIG. 1 is a configuration diagram of a communication system according to an embodiment. It is a block diagram of a ⁇ modulator. This is a primary low-pass type ⁇ modulator.
  • (A) is an output spectrum of the low pass type ⁇ modulator, and (b) is an output spectrum of the band pass type ⁇ modulator.
  • (A) is an output spectrum of the low pass type ⁇ modulator, and (b) is an output spectrum of the band pass type ⁇ modulator.
  • (A) is an output spectrum of the low pass type ⁇ modulator, and (b) is an output spectrum of the band pass type ⁇ modulator.
  • FIG. 1 is a configuration diagram of a broadcasting system according to an embodiment. It is a block diagram of broadcasting equipment (parent equipment).
  • (A) is a characteristic diagram of a noise transfer function and a signal transfer function of a bandpass type ⁇ modulator, and
  • (b) is an output spectrum showing leakage power of an RF signal. It is an output spectrum of a band pass type delta-sigma modulator which shows the 1st example of a quantization noise stop band. It is an output spectrum of the band pass type delta-sigma modulator which shows the 2nd example of a quantization noise stop band.
  • (A) is an output spectrum of a bandpass ⁇ modulator showing a second example of the quantization noise rejection band
  • (b) is an output spectrum when only the band c is regarded as a use band
  • (C) is an output spectrum when only the band d is regarded as the use band.
  • It is an output spectrum of the band pass type delta-sigma modulator which shows the 4th example of a quantization noise stop band.
  • It is a block diagram of the radio
  • FIG. 1 shows a communication system 1 according to the embodiment.
  • the communication system 1 includes a transmitter 2 and a receiver 3.
  • the communication system 1 is configured as an optical fiber communication system in which the transmission line 4 is an optical fiber (optical transmission line).
  • the transmitter 2 can be used as, for example, an OLT (station side device) in a PON (Passive Optical Network).
  • the receiver 3 can be used as, for example, an ONU (home-side device) in the PON.
  • the communication system is not limited to the optical fiber communication system.
  • the transmission path 4 may be an electric cable (electric transmission path) instead of an optical fiber (optical transmission path).
  • the transmitter 2 includes a digital signal processing unit 21.
  • the digital signal processing unit 21 outputs a quantized signal (here, 1-bit quantized signal; pulse signal) that is a digital signal.
  • the digital signal processing unit 21 is output to the optical transmission line 4 by an electro-optical converter (optical link) 22 that is an output unit of a quantized signal.
  • the output unit 22 may be a converter that converts the voltage of the quantized signal. Further, when conversion of voltage or the like is not necessary, the connection terminal to the transmission line 4 is regarded as an output unit.
  • the digital signal processing unit 21 includes a baseband unit 23 that outputs a baseband signal (IQ signal) that is a transmission signal, a processing unit (orthogonal modulator) 24 that performs processing such as orthogonal modulation on the baseband signal, A band-pass ⁇ modulator 25.
  • a baseband unit 23 that outputs a baseband signal (IQ signal) that is a transmission signal
  • a processing unit (orthogonal modulator) 24 that performs processing such as orthogonal modulation on the baseband signal
  • a band-pass ⁇ modulator 25 A band-pass ⁇ modulator 25.
  • the baseband unit 23 outputs IQ baseband signals (I signal and Q signal) as digital data.
  • the processing unit 24 modulates the carrier wave (non-modulated wave) according to the change of the IQ baseband signal, and outputs a modulated wave (orthogonal modulated wave) in which the IQ baseband signal is added to the carrier wave.
  • the quadrature modulation performed in the processing unit 24 is digital quadrature modulation that performs quadrature modulation by digital signal processing. Therefore, the processing unit (orthogonal modulator) 24 outputs a modulated wave (digital modulated wave) in a digital signal format expressed by multi-bit digital data (discrete values).
  • the processing unit 24 performs various digital signal processing such as DPD (Digital Pre-distortion), CFR (Crest Factor Reduction), and DUC (Digital Up Conversion) in addition to quadrature modulation.
  • the processing unit 24 outputs a modulated wave (digital modulated wave) generated by various digital signal processes as described above.
  • the output modulated wave is given to the bandpass type ⁇ modulator 25.
  • a normal radio frequency can be adopted as the frequency of the carrier wave.
  • the radio frequency is preferably 30 MHz or more, more preferably 300 MHz or more, and further preferably 1 GHz or more.
  • the signal bandwidth of the modulated wave is not particularly limited, but is preferably a narrow band sufficiently small with respect to the carrier frequency.
  • the signal bandwidth is preferably in the range of 5 MHz to 20 MHz, for example.
  • the modulator 24 that generates the modulated wave is not limited to the quadrature modulator, and may be a modulator of another method for generating the modulated wave. Further, since the transmitter 2 according to the embodiment includes the quadrature modulator 24, the transmitter 2 itself has a function of generating a carrier wave, but does not have a function of generating a carrier wave. May be. For example, the transmitter 2 may accept a carrier wave generated by an external device of the transmitter 2 as an input, and give the carrier wave to the bandpass ⁇ modulator 25.
  • the bandpass type ⁇ modulator 25 performs bandpass type ⁇ modulation on the modulation signal output from the quadrature modulator 24 and outputs a 1-bit quantized signal (pulse signal).
  • the bandpass type ⁇ modulator 25 is set so that its center frequency matches the frequency of the carrier wave. Note that the quantized signal output from the bandpass ⁇ modulator 25 does not have to be 1 bit.
  • the quantized signal output from the ⁇ modulator 25 may be smaller than the number of bits of digital data input to the ⁇ modulator 25.
  • the quantized signal ( ⁇ modulation signal) output from the bandpass type ⁇ modulator 25 (digital signal processing unit 21) is converted into an optical pulse signal by the electro-optical converter 22.
  • the quantized signal is output to the transmission line 4 as a modulated wave.
  • a modulated wave of an analog signal can be acquired from this quantized signal (pulse signal).
  • the ⁇ modulation will be described later.
  • the quadrature modulator 24 and the bandpass ⁇ modulator 25 are both configured as digital circuits that perform modulation by digital signal processing. Therefore, it is advantageous that an analog circuit need not be used before the electro-optical converter 22 while handling a modulated wave having a high frequency.
  • the band-pass ⁇ modulator 25 can output a pulse signal in the same manner even when an analog signal is input instead of a digital signal, so that the quadrature modulator 24 can also be configured with an analog circuit.
  • the receiver 3 includes an opto-electric converter 31, an analog bandpass filter 32, and an analog circuit 33.
  • the receiver 3 receives an optical pulse signal (quantized signal) transmitted from the transmission line 4 by an optical-electrical converter 31 as an input unit.
  • the photoelectric converter 31 converts the received optical pulse signal into an electrical pulse signal and outputs it.
  • the input unit 31 may be a converter that converts the voltage of the quantized signal.
  • the connection terminal to the transmission line 4 is regarded as an input unit.
  • the input unit 31 may obtain a signal obtained by shaping the signal in the transmission path 4 by comparing the signal received from the transmission path 4 with a reference value.
  • the analog band pass filter 32 is set with a pass band centered on the frequency of the carrier wave, and passes a band near the frequency of the carrier wave (a band slightly wider than the band of the transmission signal). For example, if the carrier frequency used for the quadrature modulator 24 of the transmitter 2 is 1 GHz, the bandpass filter 32 is set with 1 GHz as the center frequency of the passband.
  • the analog band filter 32 removes quantization noise that has been noise-shaped (described later) by ⁇ modulation.
  • the modulated wave When a quantized signal ( ⁇ modulation signal) obtained by performing ⁇ modulation on the modulated wave is applied to the input of the bandpass filter 32, the modulated wave is converted into an analog signal (continuous wave) from the output of the bandpass filter 32. ) Is output. That is, the analog bandpass filter 32 generates and outputs an analog RF signal corresponding to the digital RF signal input to the bandpass ⁇ modulator 25.
  • the output of the band pass filter 32 is given to the analog circuit 33.
  • the analog circuit 33 is not particularly limited as long as it is a circuit that processes an analog signal.
  • the analog circuit 33 can be a circuit of an RF unit in a wireless receiver.
  • the communication system of this embodiment generally transmits a modulated wave from the transmitter 2 to the receiver 3, but a pulse signal is transmitted in the transmission path 4 between the transmitter 2 and the receiver 3. Since it flows, there is almost no signal degradation due to the influence of the transmission path 4. Therefore, the modulated wave can be transmitted with high quality.
  • a pulse signal digital signal
  • the signal can be corrected on the receiving side using a digital signal processing technique. Therefore, also from this point, an analog signal (modulated wave) can be transmitted with high quality.
  • the ⁇ modulator 25 includes a loop filter 27 and a quantizer 28 (see Non-Patent Document 1).
  • an input (modulated wave in this embodiment) U is given to the loop filter 27.
  • the output Y of the loop filter 27 is supplied to a quantizer (for example, a 1-bit quantizer or a multi-bit quantizer) 28.
  • the output (quantized signal) V of the quantizer 28 is given as another input to the loop filter 27.
  • the characteristic of the delta-sigma modulator 25 can be represented by a signal transfer function (STF) and a noise transfer function (NTF; Noise Transfer Function). That is, when the input of the ⁇ modulator 25 is U, the output of the ⁇ modulator 25 is V, and the quantization noise is E, the characteristics of the ⁇ modulator 25 are expressed in the z region as follows. is there.
  • Such ⁇ modulation is a kind of oversampling modulation, and is generally a technique used for AD conversion or DA conversion.
  • noise shaping Noise Shaping
  • ⁇ modulation noise shaping is performed in which the quantization noise in the signal band is moved outside the signal band to greatly reduce the quantization noise in the signal band.
  • FIG. 3 shows a block diagram of the linear z-domain model of the first-order low-pass ⁇ modulator 125.
  • Reference numeral 127 represents a loop filter portion, and reference numeral 128 represents a quantizer.
  • the input to the ⁇ modulator 125 is U (z)
  • the output is V (z)
  • the quantization noise is E (z)
  • the characteristics of the ⁇ modulator 125 are expressed in the z region. It is as follows.
  • V (z) U (z) + (1-z ⁇ 1 ) E (z)
  • ⁇ modulation refers to low-pass ⁇ modulation.
  • noise shaping is performed so that the low-frequency quantization noise moves to a higher frequency side and the low-frequency quantization noise is attenuated. That is, in the low-pass type ⁇ modulation, the noise transfer function (NTF) has a characteristic of blocking passing noise at a low frequency (near 0 Hz).
  • the frequency of the signal subjected to ⁇ modulation needs to be sufficiently smaller than the sampling frequency fs of the low-pass ⁇ modulator.
  • a sufficiently high sampling frequency fs is required for the signal frequency.
  • a sampling frequency fs of about 128 times the signal frequency is required.
  • the noise transfer function blocks the passing noise at a frequency higher than 0 Hz.
  • the frequency (center frequency) f 0 of the signal subjected to ⁇ modulation may be equal to or lower than the sampling frequency fs.
  • the sampling frequency fs may be sufficiently larger than the signal bandwidth f B. For example, a sufficiently large sampling frequency fs of about 64 times the signal bandwidth f B is sufficient.
  • the carrier frequency f 0 of radio communication is 1 GHz and the signal band f B is 20 MHz.
  • the maximum frequency of the modulation wave is about 1 GHz, so that the maximum frequency of the modulation wave is 1 GHz.
  • the low-pass ⁇ modulation is not practical because the sampling frequency (sampling speed) becomes too high, as in the PWM modulation.
  • the band-pass type ⁇ modulation is advantageous because the sampling frequency (sampling speed) can be reduced.
  • DA conversion using ⁇ modulation a digital signal that is input to the DA converter is supplied to the ⁇ modulator, and oversampling and noise shaping are performed.
  • the low-bit quantized signal output from the ⁇ modulator is converted into an analog signal by passing through an analog filter that cuts components outside the signal band. This analog signal becomes the output of the DA converter.
  • the ⁇ modulator 25 provided in the transmitter 2 of the present embodiment performs oversampling and noise shaping on the input digital signal (modulated wave), similarly to the case where it is used in the DA converter.
  • the low-bit quantized signal output from the ⁇ modulator 25 of the present embodiment is supplied to the electro-optical converter 22 that is an output unit without passing through the analog filter as it is. It becomes an optical pulse signal.
  • the optical pulse signal is received by an optical-electrical converter 31 that is an input unit of the receiver 3, becomes an electric pulse signal, and is given to an analog filter (analog bandpass filter) 32.
  • the analog bandpass filter 32 of the receiver 3 outputs a modulated wave that is an analog signal by cutting a component outside the signal band of the modulated wave.
  • Non-Patent Document 1 a low pass type ⁇ modulator can be converted into a band pass type ⁇ modulator by performing the following conversion on the low pass type ⁇ modulator.
  • an n-order low-pass ⁇ modulator (n is an integer of 1 or more) can be converted to a 2n-order band-pass ⁇ modulator.
  • the frequency characteristic of the first-order low-pass ⁇ modulator 125 is as shown in FIG.
  • the frequency characteristic of the secondary bandpass ⁇ modulator obtained by converting the primary lowpass ⁇ modulator 125 with the above conversion formula is as shown in FIG. In FIG. 5, the horizontal axis ⁇ is the normalized frequency.
  • the bandpass type ⁇ modulator obtained by the above conversion formula has the same stability characteristics and SNR characteristics as the low-pass type ⁇ modulator 125 before conversion operating at the same oversampling ratio.
  • z ′ for obtaining a bandpass ⁇ modulator while maintaining the characteristics of the lowpass ⁇ modulator without deterioration is a function f cnv (z, ⁇ 0 ) including z and ⁇ 0.
  • a function f cnv (z, ⁇ 0 ) in which the absolute value of f cnv (z, ⁇ 0 ) is always 1 may be used.
  • T is a sampling period.
  • the bandpass ⁇ modulator operates as a complex conjugate pair at ⁇ 0 and ⁇ 0 as shown in FIGS. 6B and 7B. Therefore, considering the fact that the bandpass type ⁇ modulator has a complex conjugate pair based on the formula (7) in the low-pass type ⁇ modulator, the following formula (8) is obtained.
  • z ′ f cnv (z, ⁇ 0 ) may be ⁇ 1 (because the absolute value may be 1), z ′ may have the following format.
  • z ′ f cnv (z, ⁇ 0 )
  • f cnv (z, ⁇ 0 ) there are various expression formats. This is because there is a whole way of transforming an expression to obtain an identity with a value of 1 or ⁇ 1 on one side from Expression (8). It is clear that this is not the case.
  • FIG. 8 shows a second-order bandpass ⁇ modulator 25 obtained by converting the first-order lowpass ⁇ modulator 125 shown in FIG. 3 using the conversion equation (3).
  • FIG. 9 shows a low-pass ⁇ modulator 125 having a CRFB structure loop filter 127 described in Non-Patent Document 1.
  • reference numeral 128 denotes a quantizer.
  • the desired carrier frequency f 0 can be set as the noise rejection band of the noise transfer function (NTF), and the bandpass ⁇ with respect to the desired carrier frequency f 0 .
  • NTF noise transfer function
  • a bandpass ⁇ modulator that performs modulation can be designed.
  • the application of the designed bandpass type ⁇ modulator is not limited to the communication system shown in FIG. 1, and can be used for other applications.
  • FIG. 15 shows a configuration in which a band extension unit 29 is added to the receiver 3 of the communication system 1 of FIG.
  • a band extension unit 29 is added to the receiver 3 of the communication system 1 of FIG.
  • the points that are not described are the same as those of FIG.
  • the signal band f B only needs to be sufficiently small with respect to the sampling frequency fs.
  • the sampling frequency fs increases.
  • the carrier frequency f 0 it is possible to select the following values sampling frequency fs, the sampling frequency fs increases, also increases the range of selection of the carrier frequency f 0.
  • the signal band portions f B1 and f B2 expanded by the band extending unit 29 are substantially portions where no signal exists. Therefore, as shown in FIG. 17, the band pass filter 32 of the receiver 3 may use the signal band f B before expansion as the pass band, and the entire extended signal band f B ′ is the pass band. It does not have to be. In addition, the roll-off of the band-pass filter 32 can be widened using the extended signal band portions f B1 and f B2 , so that the design of the band-pass filter 32 is facilitated.
  • the frequency (reception frequency) f 0 desired to be received by the receiver 3 is 2 GHz.
  • the transmitter 2 side sets the carrier frequency (frequency of unmodulated wave) f 0 to 2 GHz and the sampling frequency fs to a value larger than 2 GHz. It is necessary to.
  • the output (quantized signal) of the bandpass ⁇ modulator 25 is the carrier frequency.
  • f 0 n ⁇ fs + f 0 ′ (n is an integer having an absolute value of 1 or more) by folding.
  • the center frequency fc of the passband of the analog bandpass filter in the receiver 3 is also set to 2 GHz. That is, the receiver 3 receives a modulated wave having a center frequency f 0 of 2 GHz.
  • the sampling frequency fs of the bandpass type ⁇ modulator 25 of the transmitter 2 is 1.5 GHz ( ⁇ f 0 )
  • the transmitter 2 actually handles a modulated wave having a center frequency (carrier frequency) f 0 ′ of 500 MHz, but when viewed from the receiver 3 side, the transmitter 2 is as if the center frequency (carrier wave) It can be considered that the frequency) f 0 is transmitting a modulated wave of 2 GHz. As a result, a modulated wave having a frequency higher than the sampling frequency in the transmitter 2 can be transmitted.
  • the frequency f 0 ′ of the carrier wave (unmodulated wave) used in the quadrature modulator 24 of the transmitter 2 satisfies the following expression.
  • f 0 ' f 0 -n ⁇ fs
  • f 0 reception frequency on the receiver 3 side
  • fs sampling frequency of the bandpass type ⁇ modulator 25
  • f 0 ′ frequency of carrier wave (unmodulated wave) of the quadrature modulator 24
  • n integer
  • center frequency fc of the pass band of the analog bandpass filter 32 of the receiver 3 satisfies the following expression.
  • fc f 0 '+ n ⁇ fs
  • fc center frequency of pass band of analog bandpass filter 32
  • fs sampling frequency of bandpass ⁇ modulator 25
  • f 0 ′ frequency of carrier wave (unmodulated wave) of quadrature modulator 24
  • n integer
  • the main signal component shown in FIG. 18 is transmitted as a signal of the frequency (reception frequency) desired by the receiver 3, and the other cases are the harmonics shown in FIG.
  • the wave component is transmitted as a signal having a frequency (reception frequency) desired by the receiver 3.
  • FIG. 19 shows a variation of the embodiment of the radio base station apparatus 41 using the communication system 1 described above.
  • a radio base station apparatus 41 shown in FIG. 19 includes a base station main body 42 and a remote radio head 43 that is connected to the base station main body 42 via a signal transmission path (optical transmission path or electrical transmission path) 44. And.
  • the remote radio head 43 having the antenna 35 can be installed on the building roof while the base station main body 42 is installed inside the building, and the degree of freedom of installation is high.
  • the base station apparatus main body is configured as a radio apparatus control unit (REC; Radio Equipment Control) that performs baseband signal processing, control and management in the digital domain
  • the remote radio head is It is configured as a radio device (Radio Equipment) that performs radio signal processing (modulation, amplification, etc.) in the analog domain.
  • REC Radio Equipment Control
  • Radio Equipment Radio Equipment
  • the digital baseband signal is transmitted from the base station body (REC) to the remote radio head (RE) via the transmission line. Therefore, the remote radio head (RE) needs a circuit for modulating (orthogonal modulation) the digital baseband signal transmitted from the base station body (REC).
  • a plurality of remote radio heads may be connected in parallel or in series to one base station body (REC). In this case, an orthogonal modulation circuit is provided in each remote radio head. Necessary.
  • the base station main body 42 includes the transmitter 2 in the communication system 1 of the present embodiment, and the remote radio head includes the present embodiment.
  • the receiver 3 in the communication system 1 is provided.
  • the signal output from the baseband unit 23 in the transmitter 2 of the present embodiment is transmitted as an optical pulse signal.
  • digital signal processing is performed.
  • the quadrature modulator 24 and the band-pass ⁇ modulator 25 are included as the unit 21, the quadrature-modulated modulated wave (RF signal) is transmitted as a quantized signal (optical pulse) signal.
  • the remote radio head 43 including the receiver 3 does not need to modulate (orthogonal modulation) the signal received from the base station main body 42, and the circuit scale of the remote radio head can be reduced. This is particularly advantageous when a plurality of remote radio heads 43 are connected to one base station body 42 (in parallel or in series). Note that the modulated wave (RF signal) received by the antenna 35 is subjected to ⁇ modulation (bandpass ⁇ modulation) by the remote radio head 43 and transmitted to the base station main body 42.
  • ⁇ modulation bandpass ⁇ modulation
  • the base station main body 42 has other functions necessary for the radio base station apparatus 41 in addition to the function as the transmitter 2 of the present embodiment.
  • the remote radio head 43 in FIG. 19A is configured to output the analog modulated wave (RF signal) output from the analog bandpass filter 32 from the antenna 35 without passing through an amplifier. Such a connection method is also possible when a high wireless output is not required.
  • the remote radio head 43 in FIG. 19B amplifies the analog modulated wave (RF signal) output from the analog bandpass filter 32 by the amplifier (analog amplifier) 36 and outputs it from the antenna 35.
  • the analog modulated wave is amplified by the amplifier 36, a high wireless output can be obtained.
  • the remote radio head 43 in FIG. 19C amplifies the quantized signal (1 bit pulse signal) before passing through the analog bandpass filter 32 with the digital amplifier 37 (class S amplifier), and then the analog band.
  • An analog modulated wave (RF signal) amplified by passing through the pass filter 32 is obtained.
  • the digital amplifier 37 amplifies the quantized signal (1-bit pulse signal) as it is.
  • the digital amplifier 37 is highly efficient because it operates in a saturated state.
  • the remote radio head 43 shown in FIG. 19D corresponds to the remote radio head 43 shown in FIG. 19C in which the analog bandpass filter 32 is omitted.
  • the antenna 35 of the remote radio head shown in FIG. 19D has a characteristic of blocking the passage of signals in a band other than the vicinity of the center frequency (carrier frequency) of the RF signal (modulated wave). That is, the antenna 35 has the same function as the analog bandpass filter 32 and also serves as the analog bandpass filter 32.
  • the quantized signal (1 bit pulse signal) amplified by the digital amplifier 37 is band-limited by the band-pass filter function of the antenna 35 to become an analog modulated wave. And radiated as a radio wave from the antenna 35.
  • the amplifier 37 may be omitted in FIG. 19D as in FIG. 19A. In this case, both the amplifier 37 and the bandpass filter 32 are omitted, which is advantageous.
  • the transmission speed of the signal transmitted from the base station body to the remote radio head will be considered.
  • the signal bandwidth f B of the IQ baseband signal is 5 MHz
  • the sampling rate of the IQ baseband signal is 7.68 MS / s
  • the I signal is 20 bits
  • the carrier frequency can be freely selected as long as it is 320 MHz or less. As shown in FIG. 18, when using a harmonic, a carrier frequency of 320 MHz or more can be selected.
  • the conventional radio base station apparatus transmits an IQ baseband signal at a transmission rate of 307.2 Mb / s, whereas the radio base station apparatus 41 of the present embodiment is almost the same as the conventional one. Since modulation wave transmission (RF signal transmission) can be performed at a transmission speed of about 320 Mb / s, it is advantageous.
  • FIG. 22 is a block diagram illustrating a transmitter 200 according to an embodiment of the present invention.
  • the transmitter 200 includes a digital signal processing unit 21, an analog filter 132, an amplifier 133 connected to the analog filter 132, and a transmission antenna 134 connected to the output terminal of the amplifier 133.
  • the digital signal processing unit 21 outputs a digital signal (1-bit quantized signal: 1-bit pulse train) representing an RF (Radio Frequency) signal that is an analog signal (modulated wave) of a band transmission method using a carrier wave.
  • the RF signal is a transmission signal to be radiated into the space as a radio wave, for example, an RF signal for mobile communication and an RF signal for broadcasting services such as television / radio.
  • the output from the digital signal processing unit 21 is given to an analog filter (bandpass filter or lowpass filter) 132.
  • the analog signal expressed by the 1-bit pulse train includes noise components other than the RF signal.
  • the noise component is removed by the analog filter 132.
  • the 1-bit pulse train simply passes through the analog filter 132 and becomes a pure analog signal.
  • the analog RF signal output from the analog filter 132 is given to the transmitting antenna 134 and radiated to the space. Note that the transmission antenna 134 may have a function as the analog filter 132.
  • the analog filter 132 is a band-pass filter or a low-pass filter is appropriately determined depending on the frequency of the RF signal.
  • a band-pass filter is used as the analog filter 132, and when signal conversion is performed by low-pass ⁇ modulation, the analog filter 132 is used.
  • a low-pass filter is used.
  • the signal transmission path 4 between the digital signal processing unit 21 and the analog filter 132 may be a signal wiring formed on a circuit board, or a transmission line such as an optical fiber or an electric cable.
  • the signal transmission path 4 does not have to be a dedicated line for transmitting a 1-bit pulse train, and may be a communication network that performs packet communication such as the Internet.
  • the transmission side converts a 1-bit pulse string into a bit string, transmits it to the signal transmission path 4, and receives it on the reception side (analog filter). 132 side) may restore the received bit string to the original 1-bit pulse string.
  • the digital signal processing unit 21 can be regarded as a transmitter that transmits a 1-bit pulse train to the signal transmission path 4.
  • the device having the analog filter 132 can be regarded as a receiver of the RF signal.
  • the digital signal processing unit 21 includes a baseband unit 23 that outputs a baseband signal (IQ signal) that is a transmission signal, a processing unit 24 that modulates the baseband signal, a ⁇ modulator 25, a control unit 135, And a storage unit 136.
  • the baseband unit 23 outputs IQ baseband signals (I signal and Q signal) as digital data.
  • the processing unit 24 performs processing such as digital quadrature modulation on the IQ baseband signal. Therefore, the processing unit 24 outputs a signal in a digital signal format expressed by multi-bit digital data (discrete values).
  • the modulation in the processing unit 24 is not limited to quadrature modulation, and may be modulation of another method for generating a modulated wave.
  • the processing unit 24 performs various digital signal processing such as DPD (Digital Pre-distortion), CFR (Crest Factor Reduction), and DUC (Digital Up Conversion) in addition to quadrature modulation.
  • the processing unit 24 outputs an RF signal generated by various digital signal processing as described above.
  • the processor 24 superimposes (adds) the IQ baseband signal on the carrier wave when orthogonally modulating the IQ baseband signal.
  • the carrier frequency f 0 at this time is based on the control of the control unit 135 as described later. Is set. That is, the processing unit 24 outputs a digital RF signal having a carrier frequency f 0 .
  • the processing unit 24 performs frequency conversion to the carrier frequency f 0 , but a frequency conversion unit for converting the signal frequency between the processing unit 24 and the ⁇ modulator 25. It is good also as a structure which provides.
  • the processing unit 24 generates a digital signal with a predetermined intermediate frequency, and the frequency conversion unit performs frequency conversion of the digital signal with the intermediate frequency based on the control of the control unit 135, so that the digital signal with the carrier frequency f 0 is obtained.
  • RF signal is output.
  • the digital RF signal output from the processing unit 24 is given to a bandpass type ⁇ modulator (converter) 25.
  • the converter 25 may be a low-pass type ⁇ modulator or a PWM modulator.
  • the ⁇ modulator 25 performs ⁇ modulation on the input RF signal and outputs a 1-bit quantized signal (1-bit pulse train).
  • the 1-bit pulse train output from the ⁇ modulator 25 is a digital signal, but represents an analog RF signal.
  • the 1-bit pulse train output from the ⁇ modulator 25 is output from the digital signal processing unit 21 to the signal transmission path 4 as an output signal of the digital signal processing unit 21.
  • the analog filter 132 When the quantized signal output from the ⁇ modulator 25 is given to the analog filter 132 through the signal transmission path 4, the analog filter 132 outputs an analog RF signal.
  • the analog RF signal output from the analog filter 132 reaches the transmitting antenna 134 via the amplifier 133 and is radiated. Therefore, the analog filter 132, the amplifier 133, and the transmission antenna 134 constitute a transmission unit that transmits the quantized signal output from the ⁇ modulator 25 as an analog RF signal.
  • the control unit 135 has a control function such as carrier wave frequency control described later, and controls each unit in the digital signal processing unit 21 and the analog filter 132.
  • the storage unit 136 can be accessed by the control unit 135, the processing unit 24, the ⁇ modulator 25, and the analog filter 132.
  • the storage unit 136 is configured to be able to store information necessary for controlling the carrier frequency described later. The functions of the control unit 135 and the storage unit 136 will be described in detail later.
  • the ⁇ modulator 25 is the same as the ⁇ modulator 25 described in [1.2 Bandpass ⁇ Modulation].
  • the ⁇ modulator 25 can convert the value of z based on the above-described equation (3). That is, the ⁇ modulator 25 can change the center frequency of the quantization noise stop band. In other words, the quantization noise stop band can be changed.
  • the control unit 135 converts z of the ⁇ modulator 25 based on the above-described equation (3) according to the center frequency of the signal input to the ⁇ modulator 25 (carrier frequency f 0 of the digital RF signal).
  • band-pass ⁇ modulation can be performed on a signal having an arbitrary frequency.
  • cos ⁇ 0 coefficient a
  • the coefficient of NTF shown in Expression (1) is changed, but the order of the expression is maintained.
  • the bandpass ⁇ modulator 25 is not changed.
  • the signal processing load in the case does not change.
  • the present embodiment is advantageous because the signal processing load in the band-pass ⁇ modulator 25 does not change even when the carrier frequency f 0 is changed.
  • the signal processing load in the band-pass ⁇ modulator 25 depends on the sampling frequency fs determined by the signal bandwidth according to the Nyquist theorem, but the signal bandwidth even when the carrier frequency f 0 is changed. Therefore, it is not necessary to change the sampling frequency fs.
  • the ⁇ modulator is a low-pass type, it is necessary to change the sampling frequency fs in order to cope with a change in the carrier frequency f 0 , and in this respect, the band-pass type is advantageous.
  • the ⁇ modulator 25 can be used not only as a bandpass type ⁇ modulator that can cope with an arbitrary frequency (f 0 ) but also as a low pass type ⁇ modulator. That is, the ⁇ modulator 25 can be switched between a low pass type and a band pass type.
  • control unit 135 and the bandpass ⁇ modulator 25 constitute a signal processing device that can perform bandpass ⁇ modulation on a modulated wave having a desired carrier frequency.
  • control unit 135 has a function of changing and controlling the center frequency of the quantization noise stop band by the ⁇ modulator 25, and a function of controlling the center frequency and pass band of the analog filter 132. Also have.
  • the control unit 135 has a function of determining the carrier frequency f 0 and controlling the processing unit 24 to adjust the carrier frequency f 0 of the digital RF signal output from the processing unit 24.
  • the storage unit 136 stores frequency information that is information indicating the carrier frequency f 0 determined by the control unit 135.
  • the control unit 135 causes the processing unit 24 to refer to the storage unit 136 to acquire frequency information indicating the carrier frequency f 0 determined by the control unit 135.
  • the processing unit 24 performs orthogonal modulation based on the frequency information.
  • FIG. 23 is a diagram for describing functions related to quadrature modulation of IQ baseband signals in the processing unit 24.
  • IQ baseband signal processing section 24 is given the multiplication a first multiplier 224a which multiplies the cosine wave of the carrier frequency f 0 to the I component, the sine wave of the carrier frequency f 0 to the Q component A second multiplier 224b, and an adder 224c for adding these two components.
  • the processor 24 outputs a digital RF signal having a carrier frequency f 0 by superimposing a signal wave having a carrier frequency f 0 for each component of the IQ baseband signal during quadrature modulation.
  • the control unit 135 controls the processing unit 24 and sets the carrier frequency f 0 of the digital RF signal output from the processing unit 24.
  • control unit 135 causes the ⁇ modulator 25 to refer to the storage unit 136 to acquire frequency information indicating the carrier frequency f 0 set by the control unit 135, and the frequency band of the RF signal having the carrier frequency f 0 Is controlled to be included in the quantization noise stop band of ⁇ modulation.
  • ⁇ modulator 25 obtains the frequency information from the storage unit 136, the center frequency of the quantization noise stop band is adjusted so that the carrier frequency f 0.
  • the RF signal having the carrier frequency f 0 is included in the quantization noise stop band of ⁇ modulation of the ⁇ modulator 25.
  • the control unit 135 controls the processing unit 24, the ⁇ modulator 25, and the analog filter 132 to execute a process based on the determined carrier frequency f 0 . . That is, the control unit 135, based on the carrier frequency f 0 determined, RF signal processing unit 24 outputs is adjusted to be the carrier frequency f 0. Further, the control unit 135 adjusts so that the center frequency of the quantization noise stop band in the ⁇ modulator 25 becomes the carrier frequency f 0 . Further, the control unit 135 adjusts the center frequency and pass band of the analog filter 132 so that the RF signal having the carrier frequency f 0 can be extracted.
  • control unit 135 determines the carrier frequency f 0 to a desired value, and controls the processing unit 24, the ⁇ modulator 25, and the analog filter 132 based on the determined carrier frequency f 0 .
  • An RF signal having an arbitrary carrier frequency can be transmitted from the antenna 134.
  • the control unit 135 controls the ⁇ modulator 25 so that the RF signal having the carrier frequency f 0 is included in the quantization noise stop band of ⁇ modulation. It is possible to perform bandpass ⁇ modulation on the RF signal as the modulated wave.
  • FIG. 26 is a block diagram illustrating a configuration of a wireless transmitter using a VCO.
  • This transmitter includes a digital signal processing unit 300 for digitally processing a baseband signal.
  • the digital signal output from the digital signal processing unit 300 is converted into an analog signal by the digital / analog converter 301.
  • the converted analog signal is frequency-converted by superimposing a carrier wave supplied by a VCO (Voltage Controlled Oscillator) 302.
  • the frequency-converted analog signal is amplified as an RF signal by the amplifier 303 and radiated from the antenna 304 to the space.
  • the frequency band that can be used as a carrier frequency is limited to a frequency that can be oscillated by the VCO.
  • the control unit 135 controls the ⁇ modulator 25 so that the RF signal having the carrier frequency f 0 is included in the quantization noise rejection band of ⁇ modulation.
  • the analog filter 132 and the transmission antenna 134 connected as a transmission unit in the subsequent stage can extract and transmit the RF signal from the quantized signal from the ⁇ modulator without frequency conversion. Therefore, it is not necessary to use VCO, it is possible to increase the degree of freedom in setting of the carrier frequency f 0. That is, the transmitter 200 according to the present embodiment generates an RF signal having a carrier frequency f 0 by digital processing by the digital signal processing unit 21 and transmits the generated RF signal without performing frequency conversion. Therefore, it is necessary to use a VCO. Absent. Consequently, without being limited to capable of oscillating frequency by VCO, it is possible to increase the degree of freedom in setting of the carrier frequency f 0.
  • the control unit 135 of the present embodiment is provided with the function of determining the carrier frequency f 0, the determination of the carrier frequency f 0, and a band-pass type ⁇ modulation of the quantization noise rejection band corresponding to The control of the center frequency can be performed collectively by the control unit.
  • the transmitter 200 of this embodiment has a function of determining the carrier frequency f 0 by frequency hopping.
  • Control unit 135, in order to determine the carrier frequency f 0, which refers to the information stored in the storage unit 136.
  • the storage unit 136 includes a plurality of frequency information as information necessary for determining the carrier frequency f 0 , and a hopping pattern when performing frequency hopping using the plurality of frequency information. Is remembered.
  • a plurality of frequency information is information indicating a carrier frequency f 0 which is determined in advance in order to sequentially change when applying the frequency hopping.
  • a plurality of frequency information, transmitter 200 is out of the setting range of the frequency as the carrier frequency f 0, is set to be different frequencies.
  • the control unit 135 selects and determines one frequency information from among a plurality of frequency information as the carrier frequency f 0 and controls the processing unit 24, the ⁇ modulator 25, and the analog filter 132 to execute frequency hopping. To do.
  • the hopping pattern is a plurality of frequency information registered in association with a pattern for selecting a plurality of frequency information to be sequentially changed when applying frequency hopping.
  • the control unit 135 refers to the hopping pattern stored in the storage unit 136.
  • Control unit 135 sequentially performs the determination of the carrier frequency f 0 according to a hopping pattern. As a result, the transmitter 200 transmits a transmission signal to which frequency hopping is applied.
  • a plurality of frequency information and hopping patterns are determined in advance and are shared with a receiver that receives a transmission signal from the transmitter 200. By sharing a plurality of frequency information and hopping patterns, the receiver can receive a transmission signal to which frequency hopping transmitted by the transmitter 200 is applied.
  • the transmitter 200 can adjust the carrier frequency f 0 without using the VCO. Therefore, the carrier frequency f 0 is not limited to a frequency range that can be oscillated by the VCO. Since the upper limit of the signal frequency that can be oscillated by the VCO is generally about 5 GHz, the conventional transmitter needs to set frequency information for hopping within a band of about 5 GHz.
  • the quantized signal output from the digital signal processing unit 21 is radiated as an RF signal via the analog filter 132 and the antenna 134 without frequency conversion without using a VCO.
  • the carrier frequency f 0 of the radiated RF signal is adjusted by digital processing by the processing unit 24 included in the digital signal processing unit 21. Therefore, the carrier frequency f 0 can be adjusted within a frequency range that the digital signal processing unit 21 can generate.
  • the frequency that can be generated by the digital circuit constituting the digital signal processing unit 21 is higher than about 5 GHz, which is a general upper limit of the VCO, and the carrier frequency f 0 is in a wider range than when the VCO is used. Can be set.
  • the carrier frequency f 0 indicated by the frequency information is set within the range of the sampling frequency fs of the ⁇ modulator 25. This is because if the carrier frequency f 0 exceeds the sampling frequency fs of the ⁇ modulator 25, the RF signal obtained from the quantized signal may not be accurately reproduced.
  • FIG. 24A is an example of a waveform diagram of the frequency spectrum of the output from the ⁇ modulator 25 when frequency hopping is applied.
  • the carrier frequency f 0 is set to 800 MHz, which is the frequency position indicated by the diamond mark 1 in the figure, within the range of 0 Hz to 6 GHz. That is, the power peak portion seen at 800 MHz is the frequency of the RF signal on which the signal is superimposed.
  • the center frequency of the quantization noise stop band of the ⁇ modulator 25 is also set to 800 MHz. For this reason, portions where the power value is extremely reduced are seen on both sides of the band seen at 800 MHz.
  • the power peak part is seen also in other parts, these are the harmonics of the RF signal superimposed at 800 MHz.
  • FIG. 24B is an enlarged view of the band near the carrier frequency f 0 in FIG.
  • a signal RF signal
  • the carrier frequency f 0 of the RF signal was exemplified when set to 800 MHz, it can either be set to the carrier frequency f 0 by using harmonics appearing in FIG. 24 (a), a carrier
  • the frequency f 0 can be set to an arbitrary frequency within a range up to 6 GHz.
  • a higher frequency can be generated, it can be set from a wider band than the band shown in FIG.
  • control unit 135 determines the carrier frequency f 0 by a frequency hopping, the degree of freedom is increased in setting the carrier frequency f 0, which can be set carrier frequency f 0 from a wider range of frequency bands, A plurality of frequency information can be set from a wider range.
  • the carrier frequency f 0 can be spread over a wider band, even if it is multiplexed, the possibility of overlapping of the bands is low and the use by many users is facilitated.
  • the control unit 135 stores a plurality of frequency information and hopping patterns used for frequency hopping application in the storage unit 136 .
  • the plurality of frequency information and hopping patterns are stored in a third party. Once recognized, it is important information that makes it impossible to maintain confidentiality of communication. Therefore, in order to prevent a plurality of frequency information and hopping patterns from being recognized by a third party, the storage unit 136 is volatile so that the stored information is erased when the power supply is cut off. You may comprise by a memory
  • the storage unit 136 is configured to be able to store a plurality of frequency information and hopping patterns.
  • the digital signal processing unit 21 determines a carrier frequency f 0 of the RF signal, can be adjusted, the determination and adjustment of the carrier frequency f 0 of the RF signal in the digital processing It can be carried out. Therefore, if a plurality of frequency information and hopping patterns are given from the outside and stored as information in the storage unit 136 (FIG. 22), the control unit 135 stores the stored information without performing hardware adjustment or the like. Based on the frequency hopping can be performed. Even if the storage unit 136 is configured by a volatile storage unit, the control unit 135 can perform frequency hopping in the same manner.
  • the storage unit 136 is configured by the volatile storage unit described above, even if the transmitter 200 is disassembled by a third party, the power source of the transmitter 200 is stopped. If the power supply to the storage unit 136 is cut off, the stored plurality of frequency information and hopping patterns are erased. Thereby, it is possible to prevent a third party from recognizing the frequency information and the hopping pattern by reverse engineering, and it is possible to maintain confidentiality of communication.
  • the transmitter 200 of the above embodiment if the power supply to the storage unit 136 is cut off, it is possible to prevent the frequency information and the hopping pattern from being recognized by a third party. It can be suitably used when secret communication is performed between a passenger who is on a moving body such as an airplane (a moving body with a propulsion device) and a person located outside the moving body.
  • the mobile body includes the transmitter 200 of the above embodiment and a receiver that can receive a transmission signal from the transmitter 200.
  • a person located outside the mobile body also includes the transmitter 200 and the receiver as in the mobile body. Even if the transmitter 200 mounted on the mobile body is acquired by a third party, if the transmitter 200 is broken and the power supply to the storage unit 136 is cut off, the frequency information and the hopping pattern are It is not recognized by a third party. Accordingly, the confidentiality of communication can be maintained even when the transmitter 200 is acquired by a third party.
  • FIG. 25 is a diagram showing an airplane that is equipped with the transmitter 200 of the above embodiment and can be controlled by remote control.
  • an airplane 140 is remotely controlled by receiving control information transmitted from a control device 150 located on the ground, for example.
  • the airplane 140 includes an operation control unit 141 that controls the operation of the airplane 140, the transmitter 200 of the above-described embodiment, a receiver 142 that receives control information given from the external control device 150, and an antenna 143. I have.
  • the control device 150 also includes the transmitter 200 of the above embodiment.
  • a receiver capable of receiving a transmission signal applied with frequency hopping transmitted from the transmitter 200 of the airplane 140 is provided.
  • the receiver 142 of the airplane 140 When receiving the control information from the control device 150, the receiver 142 of the airplane 140 gives the control information to the steering control unit 141.
  • the steering control unit 141 performs processing based on the control information, and gives response information (for example, the current position of the airplane 140, the speed, the surrounding situation, etc.) to the transmitter 200.
  • the transmitter 200 given the response information transmits the response information to the control device 150 by frequency hopping.
  • the airplane 140 is remotely controlled by communicating with the control device 150.
  • the transmitter 200 mounted on the aircraft 140 the degree of freedom in setting of the carrier frequency f 0 is increased in the communication between the control device 150, it can provide excellent frequency hopping communication secrecy it can. Even if the airplane 140 and the transmitter 200 are acquired by a third party, if the power supply to the storage unit 136 is cut off due to the transmitter 200 being broken or the like, the frequency information and the hopping pattern are It is not recognized by a third party. Accordingly, the confidentiality of communication can be maintained even when the airplane 140 and the transmitter 200 are acquired by a third party.
  • a plurality of frequency information and hopping patterns necessary for communication are given to the transmitter 200 as follows. That is, in the transmitter 200 of the airplane 140 before starting, the volatile storage unit 136 (FIG. 22) does not store a plurality of frequency information and hopping patterns.
  • the storage unit 136 When the transmitter 200 is activated to remotely operate the airplane 140, first, the storage unit 136 is provided with a plurality of frequency information and hopping patterns necessary for communicating with the control device 150.
  • the storage unit 136 to which a plurality of frequency information and hopping patterns are given stores them. Accordingly, the transmitter 200 can communicate with the control device 150 by using the frequency information and the hopping pattern stored in the storage unit 136.
  • the airplane 140 as a moving body is remotely controlled.
  • a missile when launched, it does not return to the original position and is suitable for a moving body with a high probability of breaking. Can be mounted on.
  • control unit 135 and the storage unit 136 in Chapter 2 can be used for devices and systems in other chapters.
  • FIG. 27 shows a broadcasting system.
  • This broadcasting system uses an RF signal transmission system 400 that transmits an RF signal for wireless broadcasting service via a signal transmission path 4.
  • the RF signal transmission system 400 is used to provide a broadcasting service to a viewer (television receiver).
  • the RF signal transmission system 400 is used to transmit an RF signal for broadcasting service to broadcasting facilities 405 and 405 at remote locations.
  • the broadcast system (RF signal transmission system 400) shown in FIG. 27 includes a broadcast facility (first device) 402 that transmits a broadcast RF signal for digital terrestrial television broadcasting.
  • the broadcasting system (RF signal transmission system 400) includes a signal output device (second device) 403 as a viewer-side device.
  • the broadcasting facility 402 has the same function as the broadcasting facility of a conventional television broadcasting station. That is, the broadcast facility 402 modulates the video signal / audio signal of the broadcast content (the content shot by the television studio 402a or the broadcast content stored in the content storage unit) with the carrier wave and converts it into an RF signal.
  • the RF signal is radiated as a radio wave from the antenna 402c.
  • Radio waves (RF signals) radiated from the antenna 402c can be received by the television receivers 407A and 407A in the area A where the antenna 402c is installed.
  • the broadcasting facility 402 can provide the wireless broadcasting service to viewers in the area A by transmitting RF signals as radio waves in the area A.
  • the broadcasting facility 402 not only has the same function as the conventional broadcasting facility, but also uses the RF signal transmission system 400 to transmit the signal transmission path 4 (outside the range where the radio waves of the antenna 402c can reach) outside the area A. 4a, 4b, 4c, 4d) can transmit RF signals.
  • the broadcasting facility 402 includes a transmission device (first device) for the RF signal transmission system 400.
  • the transmission device (first device) includes a digital signal processing unit 21.
  • the broadcasting facility 402 includes a wireless transmitter 60 for performing wireless broadcasting similar to the conventional broadcasting facility.
  • the digital signal processing unit 21 performs processing for expressing the RF signal with a quantized signal (packetized quantized signal) that is a digital signal, and outputs the generated quantized signal.
  • the quantized signal output from the digital signal processing unit 21 is output to the optical transmission line 4a by an electro-optical converter (optical link) 22 that is an output unit of the quantized signal.
  • a quantized signal as a digitized RF signal is transmitted to the optical transmission line 4a.
  • the frequency of the RF signal is several hundred MHz, a very high sampling speed of about several tens of GS / s is required.
  • a very high transmission rate is required, or the amount of information becomes very large. For this reason, conventionally, it was theoretically impossible to digitize and transmit a very high frequency RF signal, but it was not practical.
  • ⁇ modulation (particularly, band-pass type ⁇ modulation) is performed on the RF signal, so the RF signal is digitized and transmitted regardless of the frequency of the RF signal. It is practically possible to do this.
  • the digital signal processing unit 21 includes a baseband unit 23 that outputs a baseband signal (IQ signal) that is a transmission signal, a digital modulator (orthogonal modulator) 24a that modulates the baseband signal, a processing unit 24b, A path-type ⁇ modulator 25 and a transmission unit (first transmission unit) 26 are provided.
  • a baseband unit 23 that outputs a baseband signal (IQ signal) that is a transmission signal
  • a digital modulator (orthogonal modulator) 24a that modulates the baseband signal
  • a processing unit 24b A path-type ⁇ modulator 25 and a transmission unit (first transmission unit) 26 are provided.
  • the baseband unit 23 acquires the video signal and audio signal of the content acquired from the television studio 402a or the content storage unit 402b.
  • the baseband unit 23 outputs IQ baseband signals (I signal and Q signal) of the acquired video signal and audio signal as digital data.
  • the modulator 24a converts the IQ baseband signal into an intermediate frequency signal.
  • the modulator 24a is configured as a digital quadrature modulator that performs quadrature modulation by digital signal processing. Therefore, a signal (digital IF signal) in a digital signal format expressed by multi-bit digital data (discrete values) is output from the quadrature modulator 24a.
  • the modulator 24a that generates the modulated wave is not limited to the quadrature modulator, and may be a modulator of another type for generating the modulated wave.
  • the IF signal output from the modulator 24 a is given to the processing unit 24 b in the digital signal processing unit 21.
  • the IF signal output from the modulator 24 a is also given to the wireless transmitter 60.
  • the processing unit 24b performs various digital signal processing such as DPD (Digital Pre-distortion), CFR (Crest Factor Reduction), and DUC (Digital Up Conversion) on the IF signal.
  • the processing unit 24b outputs an RF signal generated by digital signal processing.
  • the frequency of the carrier wave of the RF signal is set to the frequency of the channel in the terrestrial digital television broadcast if the RF signal is for terrestrial digital television broadcast.
  • the radio transmitter 60 may be provided with an RF signal output from the processing unit 24b.
  • the digital RF signal output from the processing unit 24 b is given to the ⁇ modulator 25.
  • the ⁇ modulator 25 of the present embodiment is configured as a bandpass type ⁇ modulator, but may be a low pass type ⁇ modulator.
  • the ⁇ modulator 25 performs ⁇ modulation on the RF signal and outputs a 1-bit quantized signal (pulse signal).
  • the bandpass type ⁇ modulator 25 is set so that its center frequency matches the frequency of the carrier wave. Note that the quantized signal output from the ⁇ modulator 25 does not have to be 1 bit.
  • the quantized signal output from the ⁇ modulator 25 may be smaller than the number of bits of digital data input to the ⁇ modulator 25.
  • the quantized signal ( ⁇ modulated signal) output from the ⁇ modulator 25 is transmitted by the transmitter 26 to the signal transmission optical transmission line 4a (4).
  • the transmission unit (first transmission unit) 26 packetizes the quantized signal ( ⁇ modulation signal) as a digitized RF signal, and transmits the packetized data.
  • the transmission unit 26 performs processing necessary for packet communication such as packet retransmission.
  • the transmission unit 26 transmits necessary information to the reception side (signal output device 403 or a broadcaster 405 described later) in packet data.
  • the information transmitted by the transmission unit 26 includes the quantized signal (pulse-like) output from the ⁇ modulator 25 by the device (signal output device 403 or broadcaster 405) that has received the quantized signal.
  • the ⁇ modulator 25 outputs a pulsed quantized signal ( ⁇ modulation signal) at a rate corresponding to the sampling frequency fs. If only the quantized value indicated by such a quantized signal is simply converted into packet data, the bit data indicating the quantized value is only included in the packet data, and information regarding the rate of the quantized signal is lost. Therefore, the transmitting unit 26 receives the pulsed ⁇ modulation output from the ⁇ modulator 25 from the bit string indicating the quantized value on the reception side (the signal output device 403 or the broadcasting device 405) of the packetized quantized signal. The packet data is transmitted including the reproduction information so that the signal can be reproduced.
  • the reproduction information includes, for example, information (sampling rate information) indicating a sampling rate (sampling frequency) in the ⁇ modulator 25. If the quantized value indicated by the quantized signal is pulsed at a rate corresponding to the sampling rate, the pulsed ⁇ modulated signal output from the ⁇ modulator 25 can be reproduced.
  • the reproduction information may include information indicating the number of bits of the quantized signal.
  • the transmission unit 26 does not need to transmit the reproduction information. Further, when a quantized signal as a digitized RF signal is transmitted to the optical transmission line 4a while maintaining a signal waveform as a 1-bit or multi-bit pulse signal, the receiving side (signal output device 403 or Since the broadcaster 405) does not need to reproduce the signal, transmission of reproduction information is not required.
  • the packet data output from the transmission unit 26 is converted into an optical signal by the electro-optical converter (optical link) 22 and transmitted to the optical transmission line 4a.
  • the optical transmission line 4a is connected to the Internet. That is, the packet data is transmitted via the Internet 4 that is a signal transmission path.
  • the electro-optical converter (optical link) 22 may be provided as a device different from the transmission device in the broadcasting facility 402.
  • a communication network that performs packet communication such as the Internet 4 can be used as a signal transmission path.
  • the digitized RF signal may be transmitted by a signal transmission path configured as a dedicated line or by a circuit switching type signal transmission path. Occupying communication is performed, so it tends to be expensive. On the other hand, a communication network that performs packet communication such as the Internet 4 can be used as a signal transmission path, and the cost can be reduced. In addition, since the RF signal is digitized by ⁇ modulation (particularly, band-pass ⁇ modulation), the amount of information is relatively small, so that it is suitable for packet communication. When a signal transmission path (such as a dedicated line) that does not require packetization is used, the packetization function in the transmission unit 26 can be omitted.
  • the receiving side (signal output device 403 or broadcaster 405) can receive the pulsed ⁇ modulation signal output from the ⁇ modulator 25 even from the packetized quantized signal. It is easy to reproduce.
  • the transmission speed of the signal transmission path 4 is not sufficient to transmit the quantized signal output from the ⁇ modulator 25 as it is ( ⁇ When the transmission speed of the signal transmission path 4 is lower than the sampling speed (1 / fs) of the modulator 25), it is necessary to convert the quantized signal into a signal that is low enough to be transmitted by the signal transmission path 4. Even in this case, the receiving side (the signal output device 403 or the broadcasting device 405) can output the ⁇ modulator 25 from the quantized signal converted to low speed by exchanging the reproduction information described above. It is easy to reproduce the quantized signal.
  • the radio transmitter 60 in the broadcasting facility 402 shown in FIG. 28 includes a DA converter (DAC) 61, a frequency converter 62, and a power amplifier 63.
  • the DA converter 61 converts the digital signal (IF signal) output from the digital modulator into an analog signal.
  • the frequency converter 62 performs frequency conversion for converting the analog IF signal into an RF signal.
  • the power amplifier 63 amplifies the RF signal and outputs it to the antenna 402c of the broadcasting facility 402.
  • the frequency converter 62 can be omitted.
  • the wireless transmitter 60 and the antenna 402c may be omitted.
  • the broadcasting facility 402 does not substantially have an analog circuit that causes an increase in cost, and most of the broadcasting facility 402 is configured by the digital signal processing unit 21, so that the cost of the broadcasting facility 402 can be reduced.
  • the transmitter (first device) 2 for the RF signal transmission system 400 is additionally provided in the existing broadcasting facility 402 capable of wireless broadcasting, it is only necessary to provide the digital signal processing unit 21 and the like. Low cost.
  • the radio wave radiated from the antenna 402c of the broadcasting facility 402 can be received only by the receiver 407A within the range (area A) where the radio wave reaches.
  • the quantized signal transmitted from the broadcasting facility 402 to the signal transmission path (Internet) 4 can be received not only in the region A but also in all regions / countries in the world that can be connected to the Internet.
  • FIG. 27 shows a state where the quantized signal (digitalized RF signal) transmitted from the broadcasting equipment (first device) 2 in the area A is received by the television receiver 407B installed in the area B. It was.
  • the quantized signal transmitted from the signal transmission paths 4 and 4B is received by the signal output device (second device) 403 and output to the television receiver 407B.
  • the signal output device (second device) 403 includes an optical-electrical converter (optical link) 431, a receiving unit 432, a buffer 433, an output unit 434, and a switch unit 435.
  • the photoelectric converter 431 may be provided as a separate device from the signal output device 403.
  • the optical-electrical converter (optical link) 431 converts the optical signal (packet data; packetized quantized signal) transmitted from the optical transmission line 4b connected to the Internet 4 into an electrical signal and outputs it. To do.
  • the receiving unit 432 depackets the packet data converted into an electrical signal, and extracts a quantized signal (quantized value of the quantized signal) and other information (reproduction information) from the packet data.
  • the receiving unit 432 performs processing necessary for packet communication, such as a packet retransmission request.
  • the depacketizing function of the receiving unit 432 can be omitted.
  • the quantized signal received by the receiving unit 432 is temporarily stored in a (FIFO; First In First Out) type buffer 433.
  • the reproduction information (sampling speed information) received by the receiving unit 432 is given to the output unit 434.
  • the quantized signal is It is possible to output continuously at a predetermined rate (a rate corresponding to the sampling speed indicated by the reproduction information) without any breaks.
  • a predetermined rate a rate corresponding to the sampling speed indicated by the reproduction information
  • the output unit 434 outputs the quantized signal (quantized value of the quantized signal) stored in the buffer 433 as a pulse signal having a predetermined rate (a rate corresponding to the sampling speed indicated by the reproduction information). That is, the quantized signal output from the output unit 434 is a reproduction of the signal waveform of the quantized signal output from the ⁇ modulator 25. Note that it is not necessary to use the reproduction information received by the reception unit 432, and the reproduction information may be set in advance in the signal output device 403.
  • the quantized signal output from the ⁇ modulator (bandpass type ⁇ modulator) 25 holds information as an RF signal in the vicinity of the carrier frequency of the RF signal. Therefore, the quantized signal output from the output unit 434 also holds information as an RF signal. Therefore, when the quantized signal output from the output unit 434 is given as an RF signal input of the television receiver 407B, the television receiver 407B can receive the quantized signal as an RF signal. That is, the television receiver 407B can receive the RF signal transmitted via the RF signal transmission system 400 in the same manner as the RF signal transmitted as a wireless broadcast.
  • the quantized signal has quantized noise that is noise-shaped in the ⁇ modulator 25, and when it is desired to remove the quantized noise and extract the RF signal, the frequency near the carrier frequency of the RF signal. It is necessary to use a band-pass filter that passes. However, if the wireless broadcast receiver such as the television receiver 407B has a bandpass filter that cuts a signal having an unnecessary frequency, it is not necessary to provide the bandpass filter in the signal output device 403. Of course, a band pass filter may be provided. In this case, the output unit 434 may output a quantized signal to the television receiver 407B via a band pass filter.
  • the switch unit 435 selectively receives the quantized signal (RF signal) output from the output unit 434 and the RF signal received by the antenna 438 (a radio wave broadcast from a broadcasting facility in the region B) on the television set. This is given to the receiver 407B.
  • the signal output device 403 has an antenna terminal 436 (for example, a terminal for a coaxial cable) to which the antenna 438 is connected, and an RF signal received by the antenna 438 can be input to the signal output device 403. Yes.
  • the switch unit 435 receives only one of the RF signals from the television receiver in order to avoid interference. 407B.
  • switch unit 435 is connected to the antenna 438 side or to the output unit 434 side is appropriately set by the viewer (user) depending on which of the broadcasts is desired to be received.
  • both the RF signal from the antenna 438 and the RF signal from the output unit 434 may be supplied to the television receiver 407B.
  • the antenna 438 may not be connected to the signal output device 403.
  • the signal output device 403 is configured as a separate device from the television receiver 407B.
  • An RF signal output terminal 437 for example, a terminal for a coaxial cable
  • an antenna terminal 7B-1 for example, a terminal for a coaxial cable
  • the signal output device 403 and the television receiver 407B constitute one reception system.
  • the signal output device 403 may be configured as an integrated reception system built in the television receiver 407B. That is, a reception system that integrally has a function as a television receiver and a function as the signal output device 403 may be configured. By configuring it as an integrated reception system, it is possible to achieve high functionality with the same handling as a conventional television, and it does not burden the viewer for introducing technology.
  • the broadcasting service 402 can be provided via the Internet. Further, the signal output device 403 can also be used as a countermeasure for difficult viewing areas. That is, in an area where radio waves from the broadcast facility 402 cannot be received, the broadcast service can be received via the Internet 4 by using the signal output device 403.
  • the transmission of the RF signal from the area A to the area B is not transmitted using radio waves but via the wired signal transmission path 4, and thus is subject to legal regulations regarding radio waves. Absent.
  • the broadcast facility 402 is digitized with respect to the broadcast facilities 405 and 405 installed in other regions / countries (regions C and D in FIG. 27). It is also used for transmitting broadcast RF signals. For this reason, the broadcasting system (RF signal transmission system 400) includes broadcasting facilities 405 and 405 for other areas C and D.
  • the broadcasting facilities 405 and 405 in the regions C and D receive the RF signal transmitted from the broadcasting facility 402 in the region A, and radiate the received RF signal from the antenna 455 as radio waves. Thereby, the broadcast facilities 405 and 405 can cause the television receivers 407C and 407D in the regions C and D to receive the RF signal transmitted from the broadcast facility 402. That is, if the broadcasting facility 402 in the region A is a parent facility for broadcasting service, the broadcasting facilities 405 and 405 in the regions C and D can be said to be child facilities.
  • Broadcast facilities 405 and 405 that are sub-equipment include a broadcaster (hereinafter referred to as “broadcaster 405”) and an antenna 455.
  • a broadcaster (second device) 405 includes an optical-electrical converter (optical link) 451, a receiving unit 452, a buffer 453, and a transmitting unit (second transmitting unit) 454. I have. Note that the photoelectric converter 451 may be provided as a separate device from the broadcaster 405.
  • the optical-electrical converter (optical link) 451 converts an optical signal (packet data; packetized quantized signal) transmitted from the optical transmission lines 4c and 4d connected to the Internet 4 into an electrical signal. Output.
  • the receiving unit 452 depackets the packet data converted into the electrical signal, and extracts a quantized signal (quantized value of the quantized signal) and other information (reproduction information) from the packet data.
  • the receiving unit 452 performs processing necessary for packet communication such as a packet retransmission request. When the quantized signal is not packetized, the depacketizing function of the receiving unit 452 can be omitted.
  • the quantized signal received by the receiving unit 452 is temporarily stored in a (FIFO; First In First Out) type buffer 453.
  • the reproduction information (sampling rate information) received by the receiving unit 452 is given to the output unit 454a of the transmitting unit 454.
  • the quantized signal is It is possible to output continuously at a predetermined rate (a rate corresponding to the sampling speed indicated by the reproduction information) without any breaks. That is, by providing the buffer 453, it is possible to cope with a case where a quantized signal is transmitted by packet communication or a case where the signal transmission path 4 has no speed guarantee. Note that the buffer 453 may be omitted if the transmission speed of the signal transmission path 4 is sufficiently high.
  • the transmission unit 454 includes an output unit 454a, an analog filter (bandpass filter) 454b, and an amplifier (power amplifier) 454c.
  • the output unit 454a outputs the quantized signal (quantized value of the quantized signal) stored in the buffer 453 as a pulse signal having a predetermined rate (a rate corresponding to the sampling speed indicated by the reproduction information). That is, the quantized signal output from the output unit 454a is a reproduction of the signal waveform of the quantized signal output from the ⁇ modulator 25. Note that it is not necessary to use the reproduction information received by the receiving unit 452, and the reproduction information may be set in advance in the broadcasting device 405.
  • the band-pass filter (analog band-pass filter) 454b is a band-pass filter that passes frequencies near the carrier frequency of the RF signal.
  • the quantized signal output from the output unit 454a passes through the bandpass filter 454b, the quantization noise noise-shaped in the ⁇ modulator 25 is removed. That is, an analog RF signal is output from the band pass filter 454b.
  • the power amplifier 454c amplifies the RF signal output from the bandpass filter 454b and outputs the amplified RF signal to the antenna 455.
  • the broadcast facilities 405 and 405 can cause the television receivers 407C and 407D in the regions C and D to receive the RF signal transmitted from the broadcast facility 402.
  • the bandpass filter 454b may be omitted.
  • the amplifier 454c may be provided not only in the subsequent stage of the filter 454b but also in the previous stage of the filter 454b.
  • a digital amplifier can be adopted as the amplifier 454c provided in the previous stage of the filter 454b. Since the digital amplifier operates in a saturated state, it is highly efficient.
  • the amplifier 454c in the subsequent stage of the filter 454b may be omitted.
  • the broadcasting device (second device) 405 When the broadcasting device (second device) 405 according to the present embodiment is used, even in a region / country far away from the broadcasting facility (first device) 402 that is the parent facility, the signal transmission path such as the Internet 4 is used. A digitized RF signal can be obtained.
  • the broadcasting devices (second devices) 405 and 405 that are the subsidiary facilities have the RF signal from the baseband signal. It is not necessary to perform processing (digital signal processing such as quadrature modulation, DPD, CFR, and DUC) for generating. Therefore, the configuration of the broadcasting devices (second devices) 405 and 405 that are child facilities can be made relatively simple. As a result, it is possible to reduce the cost of the broadcasting devices (second devices) 405 and 405 that are sub-equipment. The merit of cost reduction increases as the number of broadcasting devices (second devices) 405 and 405, which are child facilities, increases.
  • the broadcasting service can be started in the areas C and D where the RF signal is provided without installing the conventional expensive broadcasting equipment, the conventional expensive broadcasting equipment is often installed in the areas C and D. Even if this is not the case, it is possible to enhance the broadcasting service.
  • the broadcasting facility 402 (the wireless transmitter 60 may be omitted) which is a parent facility is installed, contents transmitted from the regions C and D can be transmitted to various regions such as the region A. Can be offered at. Therefore, it is possible for viewers around the world to view various contents transmitted from each country.
  • the ⁇ modulator 25 is the same as the ⁇ modulator 25 described in [1.2 Bandpass ⁇ Modulation].
  • FIG. 31 shows a configuration in which a band extending unit 29 is added to the digital signal processing unit 21 of the broadcasting facility 402 of FIG.
  • the bandwidth extension unit 29 is the same as the bandwidth extension unit 29 described in [1.3 Band Extension].
  • the description of the broadcasting facility 402 in FIG. 31 is the same as that in FIG.
  • the transmission device receives the signal at the reception side (signal output device 403 or broadcaster 405) while keeping the carrier frequency f 0 ′ and the sampling frequency fs low.
  • the frequency of the modulated wave (RF signal) can be increased.
  • the terrestrial digital television broadcast has been described as an example of the broadcast service, but the digital television broadcast may be a satellite digital television broadcast. Also, the analog television broadcast may be used as the television broadcast. The broadcast may be a radio broadcast. Furthermore, the signal transmission system of the present embodiment can be used for transmission of RF signals other than broadcast RF signals.
  • FIG. 32 illustrates a wireless device 501 according to the embodiment.
  • the wireless device 501 includes a digital signal processing unit (signal processing device) 21 including a bandpass type ⁇ modulator 25, an amplifier 531, and a bandpass filter 532.
  • a digital signal processing unit signal processing device 21 including a bandpass type ⁇ modulator 25, an amplifier 531, and a bandpass filter 532.
  • the digital signal processing unit 21 outputs a digital signal (quantized signal) representing an RF signal transmitted from the antenna as a radio wave.
  • the RF signal is a signal to be radiated to the space as a radio wave, for example, an RF signal for mobile communication and an RF signal for broadcasting services such as television / radio.
  • the digital signal output from the digital signal processing unit 21 is amplified by an amplifier (for example, a digital amplifier) and supplied to an analog filter (bandpass filter) 532 that removes noise-shaped quantization noise (noise component).
  • the signal output from the analog filter 532 is radiated into the space as a radio wave from the antenna.
  • the digital signal processing unit 21 includes a baseband unit 23 that outputs a baseband signal (IQ signal) that is information transmitted by an RF signal, a processing unit 24 that performs processing such as digital quadrature modulation, and a bandpass ⁇ modulation. And a container 25.
  • a baseband unit 23 that outputs a baseband signal (IQ signal) that is information transmitted by an RF signal
  • a processing unit 24 that performs processing such as digital quadrature modulation, and a bandpass ⁇ modulation.
  • a container 25 is a container 25.
  • the baseband unit 23 outputs IQ baseband signals (I signal and Q signal) as digital data.
  • the processing unit 24 performs processing such as digital quadrature modulation on the IQ baseband signal. Therefore, the processing unit 24 outputs a signal in a digital signal format expressed by multi-bit digital data (discrete values).
  • the modulation in the processing unit 24 is not limited to quadrature modulation, and may be modulation of another method for generating a modulated wave.
  • the processing unit 24 can perform various digital signal processing such as DPD (Digital Pre-distortion), CFR (Crest Factor Reduction), and DUC (Digital Up Conversion) in addition to quadrature modulation.
  • the processing unit 24 outputs an RF signal generated by various digital signal processing as described above.
  • the digital RF signal output from the processing unit 24 is given to the bandpass ⁇ modulator 25.
  • the bandpass type ⁇ modulator 25 performs ⁇ modulation on the RF signal that is an input signal, and outputs a quantized signal of one or more bits.
  • the ⁇ modulator 25 is the same as the ⁇ modulator 25 described in [1.2 Bandpass ⁇ Modulation].
  • the bandpass type ⁇ modulator 25 can perform noise shaping by moving the quantization noise out of the quantization noise stop band NS_BW and greatly reducing the quantization noise in the quantization noise stop band.
  • the sampling frequency fs is set based on the signal band BW of the RF signal.
  • fs (2 ⁇ BW) ⁇ OSR
  • the noise stop band NS_BW matches the signal band BW.
  • leakage power leaking out of the signal band BW may be a problem.
  • the magnitude of leakage power outside the signal band is regulated.
  • 3GPP TS 36.104 version 9.1.0 Release 9 p21 "Table 6.6.2.1-2: Base Station ACLR in unpaired spectrum with synchronized operation” with regard to adjacent channel leakage power ratio (ACLR), the center frequency and next adjacent channel of adjacent channel is specified to be 45 dB, respectively.
  • the output spectrum of the ⁇ modulator 25 is a spectrum as an RF signal. Therefore, the presence of quantization noise outside the signal band of the RF signal causes a problem similar to leakage power outside the signal band, which is a problem in radio waves. That is, if quantization noise exists in the vicinity of the signal band of the RF signal, the quantization noise is superimposed on leakage power.
  • the quantization noise stop band NS_BW in the noise transfer function NTF is set larger than the bandwidth BW of the use band of the RF signal. Has been. Therefore, as shown in FIG. 34, most of the quantization noise moves outside the quantization noise stop band (bandwidth NS_BW) larger than the bandwidth BW of the RF signal.
  • the quantization noise stop band NS_BW is a band (3 dB band) in a range that is 3 dB lower than the peak value of the quantization noise.
  • the bandwidth NS_BW of the quantization noise stop band in FIG. 34 is expanded from the RF signal use band on both the high frequency side and low frequency side of the use band of the RF signal. Accordingly, there is almost no quantization noise in the vicinity of the RF signal use band even outside the use band of the RF signal, and it is suppressed that the quantization noise becomes leakage power outside the RF signal band.
  • the frequency range in which the magnitude of leakage power is regulated in the legal regulation or standard that the radio device 501 that emits the RF signal needs to conform to is the adjacent channel (the first adjacent channel).
  • the frequency range in which the magnitude of the leakage power is regulated in the legal regulation or standard that the radio device 501 that emits the RF signal needs to conform to is the adjacent channel (first adjacent channel: 1stAC) and the next adjacent channel.
  • the bandwidth NS_BW of the quantization noise stop band is the minimum bandwidth (BW ⁇ X) that covers up to the next adjacent channel (2ndAC) on both sides of the RF signal.
  • N is a magnification of the bandwidth NS_BW of the quantization noise blocking band with respect to the bandwidth BW of the RF signal.
  • multicarriers may be used. Specifically, a plurality of communication bands (bandwidth SBW) are prepared as communication bands that can be used by the radio, and the number of communication bands to be used is increased or decreased according to the increase or decrease of the number of user radios (mobile units). There are things to do.
  • the bandwidth NS_BW of the quantization noise stop band is set to be five times or more the bandwidth BW of the RF signal.
  • the quantization noise stop band is set.
  • the bandwidth NS_BW is set to be less than 5 times the bandwidth BW of the RF signal.
  • the bandwidth NS_BW of the quantization noise rejection band according to the third example is the minimum bandwidth (BW ⁇ 5) including the adjacent channel (1stAC) and the next adjacent channel (2ndAC) on both sides of the use band of the RF signal. It has a narrower bandwidth. Also in the third example, the bandwidth NS_BW of the quantization noise stop band is wider than the bandwidth BW of the use band of the RF signal.
  • the bandwidth NS_BW of the quantization noise blocking band is also twice that of the first example. ing.
  • the sampling rate is also twice that in the first example.
  • the sampling rate may be less than twice that of the first example, and an increase in the sampling rate can be suppressed.
  • FIG. 36 (b) and 36 (c) show the two communication bands c and d shown in FIG. 36 (a) that are regarded as the use bands.
  • the RF signal and the adjacent channel (1stAC) and the next adjacent channel (2ndAC) are all
  • the range in which the magnitude of leakage power is restricted is the range from a to e shown in FIG. 36 (b) and FIG. 36 (c).
  • a range of b to f is sufficient.
  • the bandwidth NS_BW of the quantization noise stop band can be (BW + (4 ⁇ SBW)) or more and less than (BW ⁇ 5).
  • the bandwidth NS_BW of the quantization noise stop band can be (BW + (4 ⁇ SBW)) or more and (BW + (6 ⁇ SBW)) or less.
  • sampling is performed while reliably including all adjacent channels (1stAC) and next adjacent channels (2ndAC) on both sides of the used bands c and d when the two communication bands c and d are regarded as used bands.
  • the rate can be kept low.
  • the two (plural) communication bands c and d constituting the use band of the RF signal are adjacent to each other, but the use band of the RF signal is formed as in the fourth example shown in FIG.
  • the two (plural) communication bands b and d to be separated may be separated.
  • the frequency range in which the magnitude of leakage power is regulated in the legal regulation or standard that the radio device 501 that emits the RF signal needs to conform to is the adjacent channel (first adjacent channel:
  • the bandwidth NS_BW of the quantization noise stopband may be ((BW (BW ′) + (2 ⁇ SBW)) or more and less than (BW (BW ′) ⁇ 3).
  • the bandwidth NS_BW of the quantization noise stop band is not less than ((BW (BW ′) + (2 ⁇ SBW)) and not more than ((BW (BW ′) + (4 ⁇ SBW))). Is more preferable.
  • FIG. 38 to 40 show a fifth example of how to set the quantization noise stopband.
  • FIG. 38 shows a wireless device 501 used in the fifth example.
  • the wireless device 501 shown in FIG. 38 is compatible with multi-carrier, and can dynamically change the frequencies (communication bands a to d) used for communication.
  • the digital signal processing unit 21 includes a control unit 135 having a selection unit 135a for selecting a communication band.
  • the selection unit 135a selects one or a plurality of communication bands to be used for communication from the communication bands a to d that can be used for communication.
  • the control unit 135 can change the use band of the RF signal output from the processing unit 24 by controlling the processing unit 24 based on the communication band selected by the selection unit 135a.
  • the ⁇ modulator 25 can convert the value of z based on the above-described equation (3). That is, the ⁇ modulator 25 can change the center frequency of the quantization noise stop band. In other words, the quantization noise stop band can be changed.
  • the control unit 135 performs ⁇ modulation based on the above equation (3) according to the center frequency f 0 (for example, the frequencies fa, fb, fc, fd, etc. in FIG. 40) of the signal input to the ⁇ modulator 25.
  • the center frequency f 0 for example, the frequencies fa, fb, fc, fd, etc. in FIG. 40
  • band-pass ⁇ modulation can be performed on a signal having an arbitrary frequency.
  • cos ⁇ 0 (coefficient a) in the conversion equation (3) according to the center frequency (carrier frequency) f 0 of the RF signal, any frequency can be obtained without changing the sampling frequency fs.
  • Bandpass ⁇ modulation corresponding to f 0 can be performed.
  • the present embodiment is advantageous because the signal processing load in the band-pass ⁇ modulator 25 does not change even when the carrier frequency f 0 is changed.
  • the signal processing load in the band-pass ⁇ modulator 25 depends on the sampling frequency fs determined by the signal bandwidth according to the Nyquist theorem, but the signal bandwidth even when the carrier frequency f 0 is changed. Therefore, it is not necessary to change the sampling frequency fs.
  • the ⁇ modulator is a low-pass type, it is necessary to change the sampling frequency fs in order to cope with a change in the carrier frequency f 0 , and in this respect, the band-pass type is advantageous.
  • control unit 135 can control the processing unit 24 to change the frequency of the RF signal output from the processing unit 24 to an arbitrary frequency and provide the ⁇ modulator 25 with the arbitrary frequency.
  • control unit 135 can also control to change the pass band of the analog filter 532 according to the communication band selected by the selection unit 135a.
  • the bandwidth BW of the RF signal usage band is dynamically changed.
  • the bandwidth of the quantization noise stop band of the ⁇ modulator 25 is changed according to the bandwidth BW of the RF signal that is dynamically changed, the circuit scale of the ⁇ modulator 25 increases. .
  • a bandwidth corresponding to the adjacent channel and the next adjacent channel where power is a problem can be secured.
  • the bandwidth NS_BW of the quantization noise rejection band may be (A_BW + (4 ⁇ SBW)) or more and less than (A_BW ⁇ 5). it can. More preferably, the bandwidth NS_BW of the quantization noise stop band can be (A_BW + (4 ⁇ SBW)) or more and (A_BW + (6 ⁇ SBW)) or less.
  • the bands c and d of the four communication bands a to d that can be used for communication may be selected as used bands, but as shown in FIG.
  • the bandwidth NS_BW of the quantization noise stop band equal to or greater than (A_BW + (4 ⁇ SBW))
  • the adjacent power leakage current becomes a problem regardless of which of the four communication bands a to d is selected.
  • a bandwidth corresponding to the channel and the next adjacent channel can be secured.
  • the frequency range in which the magnitude of leakage power is regulated in the legal regulation or standard that the radio device 501 that radiates the RF signal needs to conform to is the adjacent channel (first adjacent channel: 1stAC).
  • the bandwidth NS_BW of the quantization noise stop band can be ((A_BW + (2 ⁇ SBW)) or more and less than (A_BW ⁇ 3).
  • the bandwidth NS_BW is more preferably ((A_BW + (2 ⁇ SBW)) or more and ((A_BW + (4 ⁇ SBW)) or less).
  • FIG. 41 shows an amplifying device 601 according to the embodiment.
  • the amplifying device 601 is mounted on a radio communication device such as a radio base station device or a radio terminal device in a mobile communication system. Note that the amplifying apparatus 601 may be used for amplifying a received signal.
  • the amplifying device 601 includes a digital signal processing unit (digital signal processing device) 602 that processes a transmission signal, an amplifier (high power amplifier) 603 that amplifies the transmission signal output from the digital signal processing unit 602, and And an analog filter 604.
  • the output of the amplifier 603 passes through the analog filter 604 and is wirelessly transmitted from the antenna 605 of the wireless communication apparatus.
  • the digital signal processing unit 602 includes a baseband unit 23 that outputs a baseband signal (IQ signal) that is a transmission signal, an orthogonal modulator 24 that orthogonally modulates the baseband signal, and a ⁇ modulator 25. . Further, the digital signal processing unit 602 includes a distortion compensation unit 15 that performs distortion compensation of the amplifier 603 based on the output of the amplifier 603.
  • the baseband unit 23 outputs IQ baseband signals (I signal and Q signal) as digital data.
  • the IQ baseband signal output from the baseband unit 23 is subjected to distortion compensation processing by the distortion compensation unit 15.
  • the baseband signals (I ′ signal and Q ′ signal) after distortion compensation are supplied to the quadrature modulator (processing unit) 24.
  • the quadrature modulator 24 modulates a carrier wave (non-modulated wave) according to a change in the baseband signal, and outputs a modulated wave (orthogonal modulated wave) in which the baseband signal is added to the carrier wave. Since the quadrature modulator 24 is configured as a digital quadrature modulator that performs quadrature modulation by digital signal processing, the quadrature modulator 24 modulates in a digital signal format expressed by multi-bit digital data (discrete values). A wave (digital modulation wave; digital RF signal) is output. The output modulated wave is given to the ⁇ modulator 25.
  • the modulator 24 that generates the modulated wave is not limited to the quadrature modulator, and may be a modulator of another method for generating the modulated wave.
  • a normal radio frequency can be adopted as the frequency of the carrier wave.
  • the radio frequency is preferably 30 MHz or more, more preferably 300 MHz or more, and further preferably 1 GHz or more.
  • the signal bandwidth of the modulated wave is not particularly limited, but is preferably a narrow band sufficiently small with respect to the carrier frequency.
  • the signal bandwidth is preferably in the range of 5 MHz to 20 MHz, for example.
  • the ⁇ modulator 25 performs ⁇ modulation on the modulated signal output from the quadrature modulator 24 and outputs a 1-bit quantized signal (pulse signal).
  • the ⁇ modulator 25 may be a low-pass ⁇ modulator, but is preferably a bandpass ⁇ modulator.
  • the center frequency of the bandpass type ⁇ modulator 25 is set to coincide with the frequency of the carrier wave.
  • the quantized signal output from the ⁇ modulator 25 does not have to be 1 bit.
  • the quantized signal output from the ⁇ modulator 25 may be smaller than the number of bits of digital data input to the ⁇ modulator 25.
  • the quantized signal (pulse signal) output from the ⁇ modulator 25 is given to the amplifier 603 side as the output of the digital signal processing unit 602.
  • the amplifier 603 is a digital amplifier.
  • the amplifier 603 of this embodiment is supplied with the quantized signal (pulse signal) output from the ⁇ modulator 25 as an input, and receives an analog signal (analog RF signal) as in a general wireless communication device amplifier. Is not given as.
  • the amplifier 603 not an analog amplifier but a digital amplifier (S-class amplifier) that amplifies a pulse signal can be employed. Digital amplifiers are advantageous because they operate in saturation and are highly efficient.
  • the amplifier 603 may be an analog amplifier.
  • the amplifier 603 outputs an amplified quantized signal (pulse signal).
  • the quantized signal (pulse signal) output from the amplifier 603 is given to the analog filter 604.
  • an analog bandpass filter is used if the ⁇ modulator 25 is a bandpass type, and an analog lowpass filter is used if the ⁇ modulator 25 is a lowpass type.
  • the analog filter 604 is set so as to remove the quantization noise noise-shaped (described later) by the ⁇ modulator 25.
  • the analog filter 604 can generate the modulated wave (continuous wave) of the analog signal from the quantized signal generated by the ⁇ modulator 25. That is, the analog filter 604 generates and outputs an analog RF signal corresponding to the digital RF signal input to the ⁇ modulator 25.
  • the frequency of the pass band of the analog filter 604 is set to the frequency of the generated analog signal (analog modulated wave: analog RF signal).
  • the output of the analog filter 604 (analog modulated wave; analog RF signal) is wirelessly transmitted from the antenna.
  • the quadrature modulator 24, the ⁇ modulator 25, and the distortion compensation unit 15 are configured as a digital circuit that performs digital signal processing. Therefore, it is advantageous that an analog circuit is not used before the amplifier 603 while handling a modulated wave having a high frequency.
  • the ⁇ modulator 25 is the same as the ⁇ modulator 25 described in [1.2 Bandpass ⁇ Modulation].
  • the digital signal processing unit 602 acquires a quantized signal (pulse signal) output from the amplifier 603 for distortion compensation of the amplifier 603.
  • the output signal of the amplifier 603 is detected by the coupler 606 and supplied to the digital signal processing unit 602 via the variable attenuator 607 that adjusts the amplitude of the detection signal of the coupler 606.
  • the signal output from the amplifier 603 is a quantized signal (pulse signal)
  • a complicated analog circuit is not required between the coupler 606 and the digital signal processing unit 602, and the digital signal processing unit 602 has an amplifier output. Can be easily obtained.
  • the digital signal processing unit 602 includes a digital filter (first digital filter) 611, and the output signal (quantized signal) of the amplifier 603 acquired by the digital signal processing unit 602 is provided to the first digital filter 611.
  • the first digital filter 611 has the same filter characteristics as the analog filter 604. Therefore, the first digital filter 611 can perform the same filtering process as the analog filter 604 on the output signal (quantized signal) of the amplifier 603 to output an RF signal (carrier wave). However, unlike the analog filter 604, the first digital filter 611 performs filtering by digital signal processing, so that its output is a digital signal. That is, the output of the first digital filter 611 is a digital RF signal.
  • the digital RF signal output from the first digital filter 611 is provided to the digital quadrature demodulator 613.
  • the digital quadrature demodulator 613 outputs demodulated baseband signals (I ′′ signal, Q ′′ signal).
  • the demodulated baseband signal is given to the distortion compensator 15.
  • the distortion compensation unit (DPD) 15 performs a distortion compensation process on the transmission signal (baseband signal) and outputs a distortion-compensated transmission signal (baseband signal), and the distortion of the amplifier 603.
  • a characteristic estimation unit 15b that estimates the characteristic.
  • the compensation processing unit 15a performs distortion compensation processing so as to cancel the distortion based on the distortion characteristics of the amplifier 603 estimated by the characteristic estimation unit 15b.
  • the characteristic estimation unit 15b includes a baseband signal (I ′′ signal, Q ′′ signal) output from the quadrature demodulator 613 and a baseband signal (I ′) output from the distortion compensation unit 15 (compensation processing unit 15a). Signal, Q ′ signal) and the distortion characteristic is estimated.
  • the characteristic estimation unit 15b is input to the distortion compensation unit 15 (compensation processing unit 15a) instead of the baseband signal (I ′ signal, Q ′ signal) output from the distortion compensation unit 15 (compensation processing unit 15a).
  • Baseband signals (I signal, Q signal) to be used may be used.
  • FIG. 42 shows an amplifying apparatus 601 according to the first modification.
  • the quadrature demodulator 613 of the amplification device 601 shown in FIG. 41 is omitted.
  • the digital RF signal that is the output of the first digital filter 611 is given to the distortion compensation unit 15 (characteristic estimation unit 15b).
  • the description of the first modification and other modifications is omitted in the same way as the amplification device 601 shown in FIG.
  • the characteristic estimation unit 15b compares the digital RF signal output from the digital filter 611 with the digital RF signal output from the quadrature modulator 24, and compares the digital RF signal output from the quadrature modulator 24 with the amplifier 603. Estimate the distortion characteristics.
  • the processing speed of the distortion compensation can be suppressed, whereas the high frequency as in the amplification device 601 according to the first modification example.
  • the quadrature demodulator 613 can be omitted, so that the configuration of the digital signal processing unit 602 can be simplified.
  • FIG. 43 shows an amplifying apparatus 601 according to the second modification.
  • the distortion compensation unit 15 is provided between the quadrature modulator 24 and the ⁇ modulator 25.
  • the orthogonal demodulator 613 is omitted as in the amplification device 601 according to the first modification, and the distortion compensation unit 15 (characteristic estimation unit 15b) has the first digital signal.
  • a digital RF signal that is the output of filter 611 is provided.
  • the characteristic estimation unit 15b includes the digital RF signal output from the digital filter 611 and the digital RF signal output from the compensation processing unit 15a (or output from the quadrature modulator 24). Digital RF signal) and the distortion characteristic of the amplifier 603 is estimated. Then, the compensation processing unit 15 a performs distortion compensation processing on the digital RF signal output from the quadrature modulator 24, and gives the digital RF signal subjected to distortion compensation to the ⁇ modulator 25.
  • FIG. 44 shows an amplifying apparatus 601 according to the third modification.
  • the distortion compensation unit 15 is provided on the output side of the ⁇ modulator 25.
  • the digital filter 611 and the quadrature demodulator 613 in the amplification device 601 shown in FIG. 41 are omitted.
  • the distortion compensation unit 15 (characteristic estimation unit 15b) is given the output (quantized signal; pulse signal) of the amplifier 603 (via the attenuator 607).
  • the quantized signal (pulse signal) acquired by the digital signal processing unit 602 is not converted into an RF signal by the digital filter 611 but is given to the characteristic estimation unit 15b as it is as a quantized signal (pulse signal).
  • the characteristic estimation unit 15b includes the quantized signal that is the output of the amplifier 603 and the quantized signal that is output from the compensation processing unit 15a (or the quantum signal that is output from the ⁇ modulator 25).
  • the distortion characteristics of the amplifier 603 are estimated.
  • the compensation processing unit 15a performs distortion compensation processing on the quantized signal output from the ⁇ modulator 25, and outputs the quantized signal subjected to distortion compensation to the amplifier 603 as an output of the digital signal processing unit 602. give.
  • the compensation processing unit 15a performs distortion compensation processing by adjusting the pulse amplitude or the pulse position of the pulse signal indicating the quantized signal.
  • FIG. 45 shows an amplifying device 601 according to a fourth modification.
  • the distortion compensation unit 15 is provided on the input side of the quadrature modulator 24 as in the amplification device 601 shown in FIG.
  • the digital signal processing unit 602 acquires the output signal of the amplifier 603.
  • the output signal (quantized signal) of the amplifier 603 acquired by the digital signal processing unit 602 is provided to the first digital filter 611.
  • An input signal to the amplifier 603 is given to the second digital filter 612.
  • the first and second digital filters 611 and 612 have the same filter characteristics as the analog filter 604. Therefore, the first and second digital filters 611 and 612 perform the same filtering process as the analog filter 604 on the input / output signal (quantized signal) of the amplifier 603, and output an RF signal (carrier wave). Can do. However, unlike the analog filter 604, the first and second digital filters 611 and 612 perform filtering by digital signal processing, so that their outputs are digital signals. That is, the outputs of the first and second digital filters 611 and 612 are digital RF signals.
  • the digital RF signals output from the first and second digital filters 611 and 612 are supplied to the digital quadrature demodulator 613 and the digital quadrature demodulator 614.
  • Each of the digital quadrature demodulators 613 and 14 outputs a demodulated baseband signal.
  • the demodulated baseband signal is given to the distortion compensator 15.
  • the characteristic estimator 15b of the distortion compensator 15 compares the baseband signal output from the quadrature demodulator 613 with the baseband signal output from the quadrature demodulator 14 to estimate the distortion characteristic.
  • the harmonic emphasizing unit 626 is provided on the output side of the ⁇ modulator 25.
  • This harmonic emphasis unit can perform upsampling ( ⁇ 2) and use the harmonic component of the original signal. Note that the harmonic emphasis unit 626 may be omitted.
  • [Chapter 5] 601 Amplifying device 602 Digital signal processing unit (digital signal processing device) 603 amplifier 604 analog filter 605 antenna 606 coupler 607 variable attenuator 611 first digital filter 612 second digital filter 613 digital quadrature demodulator 614 digital quadrature demodulator 15 distortion compensation unit 15a distortion compensation processing unit 15b characteristic estimation unit 23 baseband unit 24 Quadrature modulator (modulator) 25 ⁇ modulator 626 Harmonic emphasis unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmitters (AREA)

Abstract

 所望の周波数用のバンドパスΔΣ変換器を得る。ローパス型ΔΣ変調器のz領域モデルにおけるzを、以下のz'に置き換えることでバンドパス型ΔΣ変調器(θ=±π/2×nを除く;nは1以上の整数)を得る。 z'=fcnv(z,θ) ただし、 fcnv(z,θ)は、任意のz,θについて、fcnv(z,θ)の絶対値が常に1となる関数 θ=2π×(f/fs) fsは、サンプリング周波数 fは、前記バンドパス型ΔΣ変調器の量子化雑音阻止帯域の中心周波数

Description

バンドパス型ΔΣ変調器の設計方法、バンドパス型ΔΣ変調器、ΔΣ変調器を有する装置、及びΔΣ変調を用いた方法
 本発明は、バンドパス型ΔΣ変調器の設計方法、バンドパス型ΔΣ変調器、ΔΣ変調器を有する装置、及びΔΣ変調を用いた方法に関するものである。
<第1の背景>
 ΔΣ変調器は、オーバサンプリング変調の一種であり、一般的には、AD変換又はDA変換に用いられている技術である(非特許文献1参照)。
 ΔΣ変調では、信号帯域内の量子化雑音を、信号帯域外に移動させて、信号帯域内の量子化雑音を大きく低下させるノイズシェイピング(Noise Shaping)が行われる。
 ここで、「ΔΣ変調」という用語は、多くの場合、ローパス型ΔΣ変調を指す。
 ローパス型ΔΣ変調では、低い周波数の量子化雑音が、より高い周波数側に移動して、低い周波数の量子化雑音が減衰するようノイズシェイピングされる。つまり、ローパス型Δ変調では、雑音伝達関数は、低周波数(0Hz付近)において、通過雑音を阻止する特性を有している。
 ΔΣ変調としては、ローパス型ΔΣ変調以外に、雑音伝達関数が、0Hzよりも大きい周波数において通過雑音を阻止するバンドパス型ΔΣ変調もある。
<第2の背景>
 量子化信号を送信するのに適した通信システムとして、光ファイバ通信システムがある。光ファイバ通信システムでは、High/Lowの2値の信号を容易に伝送することができる。
 例えば、図20に示すように、光ファイバ通信システム100の光送信機101では、送信すべきデジタル電気信号を、電気-光変換器(E/O;光リンク)101aにて光信号に変換し、光伝送路(光ファイバ)102に送信する。光受信機103は、光伝送路102から送信されてきた光信号を、光-電気変換器(O/E;光リンク)103aにて電気信号に変換することで、デジタル電気信号を取得する。
 一般に、電気-光変換器101aには、レーザダイオードが用いられ、光-電気変換器103aには、フォトダイオードが用いられる。これらの素子101a,103aは、いずれも入出力特性が十分に線形ではないことが多い。したがって、光ファイバ通信システムは、2値化された値のように段階的な値で量子化された値を伝送するのには使用できるが、アナログ信号のような連続値を伝送するのには、あまり適していない。
 光ファイバ通信システムにおいて、アナログ信号のような連続値を、直接、レーザダイオード101aで光強度変調して、光伝送しようとすると、線形性が良好である特殊な電気-光変換器101a及び光-電気変換器103aを用いたり、信号の補正をしたりすることが必要で、高価なシステムとなる。
 そのため、多くの場合、アナログ信号を光伝送路(光ファイバ)で伝送する場合であっても、図21に示すように、光伝送路(光ファイバ)102ではデジタル信号のパルス列を伝送する。このために、光送信機101では、送信したいアナログ信号を、まず、AD変換器(ADC)101bにてデジタル信号に変換する。
 そして、AD変換器101bから出力されたパラレルのデジタル信号をシリアルなビット列に変換した上で、そのシリアルなビット列に対応する光信号のパルス列を、電気-光変換器101aにて生成し、光伝送路102に送出する。
 光受信機103では、受信したパルス列が示すデジタル信号をDA変換器(DAC)103bにてアナログ信号に変換することで、アナログ信号を取得する。
 一方、アナログ信号を光ファイバ通信システムにて伝送するための技術としては、前述のように、アナログ信号を光強度変調して伝送する方式のほか、アナログ信号をパルス幅変調して伝送するパルス幅変調方式(PWM;Pluse Width Modulation)がある。
 パルス幅変調方式は、パルス幅によってアナログ信号の波形を表すものであり、光伝送路には、パルス列が伝送されるため、伝送系における非線形性の影響を受けにくくなる。
<第3の背景>
 テレビ受信機又はラジオ受信機のような無線放送受信機は、世界中で、広く普及している。このため、テレビ放送などの無線放送は、情報発信のための手段として、非常に魅力がある。
 しかし、無線放送受信機で受信可能な無線放送サービスを提供するには、大規模な無線放送設備が必要である。
 一般的に、放送設備としては、放送機(放送用送信機)及び送信アンテナが必要である。放送機は、映像信号又は音声信号を搬送波に載せて、RF(Radio Frequency)信号とする。RF信号は、高出力の増幅器にて出力され、送信アンテナから、電波として放射される。
 電波として空間に放射されたRF信号は、受信アンテナを介して、テレビ受信機のよう無線放送受信機にて受信される。
<第4の背景>
 高出力増幅器(High Power Amplifier、以下、「HPA」という)などの増幅器を用いて、電力を増幅する場合、増幅器の非線形な歪特性のため、所望の入出力特性を得ることができない。そこで、増幅器の歪を補償するため、歪補償処理が行われる(特許文献1参照)。
 歪補償処理としては、DPD(Digital PreDistortion)のように、デジタル信号処理によって行われるものがある。
特開2009-194432号公報
和保 孝雄、安田 明 監訳(原著者 Richard Schreier, Gabor C. Temes)ΔΣ型アナログ/デジタル変換器入門(Understanding Delta-Sigma Data Converters)、丸善株式会社、2007
<第1の課題>
 第1の背景に関し、非特許文献1によれば、ローパス型ΔΣ変調器のz領域モデルに対して、z→-zの変換を行うことで、ローパス型ΔΣ変調器を、バンドパス型ΔΣ変調器に変換できる。
 しかし、z→-zの変換式を用いても、サンプリング周波数fsの1/4の周波数で動作するfs/4バンドパス型ΔΣ変調器(量子化雑音阻止帯域の中心周波数fがfs/4であるバンドパス型ΔΣ変調器)しか得られない。
 つまり、z→-zの変換式を用いて得たバンドパス型ΔΣ変調器は、処理対象の信号の帯域の中心周波数fが、サンプリング周波数fsの1/4の周波数であるものに限られる。
 そして、非特許文献1には、サンプリング周波数fsの1/4の周波数以外の周波数f用のバンドパス型ΔΣ変調器の構造は全く開示されていない。当然ながら、サンプリング周波数fsの1/4以外の任意の周波数f用のバンドパス型ΔΣ変調器をどのようにして設計すればよいのか、についても全く開示されていない。
 そこで、第1の背景に対する課題(第1の課題)は、所望の周波数f用のバンドパス型ΔΣ変調器を得ることである。
<第2の課題>
 第2の背景に関し、アナログ信号をPWM変調する場合、パルス幅でアナログ信号の振幅を表現するため、適切な精度で変調しようとすると、アナログ信号の周波数よりも非常に高いサンプリング速度(例えば、アナログ信号の周波数の128倍)が必要となるという欠点を有している。
 この欠点は、アナログ信号が比較的周波数の低い信号(例えば、音声信号)である場合には、あまり問題とならない。
 しかし、アナログ信号が、無線周波数(RF;Radio Frequency)信号などのように搬送波(無変調波)を送信信号で変調した変調波の場合、搬送波自体の周波数が非常に高いため、大きな問題となる。
 例えば、移動体通信の分野では、1GHz程度の無線周波数(搬送波周波数)が用いられることがある。1GHzの無線周波数信号(RF信号)に対してパルス幅変調を行おうとすると、無線周波数(1GHz)の128倍の128GS/sという、非常に高速なサンプリング速度が要求されることになる。これほどの高速な速度でサンプリングして伝送することは、実用化という観点からは、非現実的である。
 そこで、第2の背景に対する課題(第2の課題)は、サンプリング速度を抑えつつ、変調波を伝送することである。
<第3の課題>
 第1の背景に関し、前述のように、非特許文献1には、サンプリング周波数fsの1/4の周波数以外の周波数f用のバンドパス型ΔΣ変調器の構造は全く開示されていない。
 このため、例えば、無線周波数の搬送波の送信にバンドパス型ΔΣ変調器を用いようとしても、上記バンドパス型ΔΣ変調器では、上記のように、処理対象となる周波数が制限されるので、任意の搬送波周波数での信号送信を行うことができない。
 そこで、第1の背景に対する他の課題(第3の課題)は、所望の搬送波周波数の変調波にバンドパス型ΔΣ変調を行うことができる送信機、及びこれを搭載した移動体、信号処理装置を提供することである。
<第4の課題>
 第3の背景に関し、放送設備は、安定動作のために二重系に構成される等の理由により、大規模なシステムとして構成される。
 放送サービスを多くの地域・国において提供するには、そのような大規模な放送設備を各地域・国に設置する必要があり、莫大な費用を要する。また、放送設備の維持・管理にも多額の費用が生じる。
 これまでの放送サービスは、そのサービス提供のために、多額の費用を要するという問題があった。
 本発明者の一人は、この問題が、RF信号という高周波のアナログ信号を扱うことに起因していることに気付いた。
 そこで、第3の背景に対する課題(第4の課題)は、従来とは異なるやり方で、RF信号の伝送又は放送を行うことである。
<第5の課題>
 第1の背景に関し、ΔΣ変調において、オーバサンプリング比(OSR)は、次のように定義される。
 OSR=fs/(2×BW)
  fs:サンプリング周波数
  BW:信号周波数帯域
 したがって、処理対象となる信号の周波数帯域fsと、所望のオーバサンプリング比(例えば、OSR=50)とが決まると、ΔΣ変調のサンプリング周波数fsを決定することができる。
 ここで、本発明者は、無線波として送信されるRF信号に対してバンドパス型ΔΣ変調を行うという着想を得た。無線波として送信されるRF信号に対してバンドパス型ΔΣ変調を行うことで、RF信号をデジタル信号として扱うのが容易になる。
 RF信号に対してバンドパス型ΔΣ変調を行う場合も、RF信号の周波数帯域fsとオーバサンプリング比とが決まると、サンプリング周波数fsを決定することができる。
 ここで、サンプリング周波数fsが高くなると、ΔΣ変調器及びその周辺の回路がコスト高となる。例えば、移動体通信では、信号の帯域幅が数MHzから数十MHzになることがあるため、サンプリング周波数fsは、できるだけ低く抑えたいところである。
 サンプリング周波数fsを低く抑えるには、サンプリング周波数fs=OSR×(2×BW)とすればよいが、ΔΣ変調のサンプリング周波数fsを低く抑えると、信号帯域外へ漏れ出る漏洩電力が問題となることを本発明者は見出した。
 すなわち、無線波では、信号帯域外へ漏れ出る漏洩電力が問題となることがあるため、法的規制又は規格において、信号帯域外の漏洩電力の大きさが規制されることが多い。これは、信号帯域外への漏洩電力が大きくなると、隣接チャネルへの妨害となるためである。
 一方、ΔΣ変調では、信号帯域内の量子化雑音を信号帯域外に移動させるため、信号帯域外においても量子化雑音による電力が比較的大きくなり易い。
 したがって、RF信号に対してΔΣ変調を行うと、信号帯域外の量子化雑音が漏洩電力を増大させるおそれがある。
 そこで、第1の背景に対する他の課題(第5の課題)は、無線波として送信されるRF信号に対してバンドパス型ΔΣ変調を行う場合において、量子化雑音が漏洩電力を増大させるのを抑制することである。
<第6の課題>
 第4の背景に関し、歪補償は、増幅器の出力を必要とするため、デジタル信号処理によって歪補償を行う場合であっても、アナログ信号である増幅器出力を取得する必要がある。
 アナログ信号である増幅器出力を取得するには、増幅器出力をモニターするアナログ回路(カプラ、ローノイズ増幅器、復調器、及びアナログフィルタなどのアナログ素子を含む高周波回路)及びAD変換器が必要とされる。このような回路は、無線受信機におけるRF(Radio Frequency)部と同等のものであり、回路規模を大きくしてしまう。
 そこで、第4の背景に関する課題(第6の課題)は、増幅器の出力を複雑なアナログ信号処理を行うことなく取得できるようにすることである。
<第1の課題を解決するための手段>
(1-1)第1の課題に関して、一の観点からみた本発明は、ローパス型ΔΣ変調器のz領域モデルにおけるzを、以下のz’に置き換えることでバンドパス型ΔΣ変調器(θ=±π/2×nを除く;nは1以上の整数)を得ることを特徴とするバンドパス型ΔΣ変調器の設計方法である。
 z’=fcnv(z,θ
 ただし、
 fcnv(z,θ)は、任意のz,θについて、fcnv(z,θ)の絶対値が常に1となる関数
 θ=2π×(f/fs)
 fsは、サンプリング周波数
 fは、前記バンドパス型ΔΣ変調器の量子化雑音阻止帯域の中心周波数
 上記の設計方法によれば、所望の周波数f用のバンドパス型ΔΣ変調器を得ることができる。
(1-2)fcnv(z,θ)は、一方の辺の値が1又は-1である恒等式における他方の辺の式であり、前記恒等式は、以下の式を変形することで得られたものであるのが好ましい。
Figure JPOXMLDOC01-appb-M000006
(1-3)z’は、以下の式で表されるのが好ましい。
Figure JPOXMLDOC01-appb-M000007
(1-4)z’は、以下の式で表されるのが好ましい。
Figure JPOXMLDOC01-appb-M000008
(1-5)z’は、以下の式で表されるのが好ましい。
Figure JPOXMLDOC01-appb-M000009

(1-6)z’は、以下の式で表されるのが好ましい。
Figure JPOXMLDOC01-appb-M000010
(1-7)第1の課題に関して、他の観点からみた本発明は、ローパス型ΔΣ変調器のz領域モデルにおけるzを、以下のz’に置き換えて得られたバンドパス型ΔΣ変調器(θ=±π/2×nを除く;nは1以上の整数)である。
 z’=fcnv(z,θ
 ただし、
 fcnv(z,θ)は、任意のz,θについて、fcnv(z,θ)の絶対値が常に1となる関数
 θ=2π×(f/fs)
 fsは、サンプリング周波数
 fは、前記バンドパス型ΔΣ変調器の量子化雑音阻止帯域の中心周波数
<第2の課題を解決するための手段>
(2-1)第2の課題に関して、一の観点からみた本発明は、無変調波に送信信号が付加された変調波を、信号伝送路に対して送信する送信機であって、前記変調波に対してバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器と、前記バンドパス型ΔΣ変調器から出力された量子化信号を前記変調波として前記信号伝送路に出力する出力部と、を備えていることを特徴とする送信機である。変調波に対してバンドパス型ΔΣ変調を行う場合には、変調波の信号帯域に対して十分大きなサンプリング周波数であればよいため、変調波の周波数(無変調波の周波数)が大きくても、サンプリング速度をさほど大きくする必要がない。
(2-2)前記無変調波の周波数は、以下の式を満たすように設定されているのが好ましい。
  f’=f-n×fs
 ただし、
  f  :受信機側の受信周波数
  fs :前記バンドパス型ΔΣ変調器のサンプリング周波数
  f’ :前記無変調波の周波数
  n  :整数
(2-3)前記nが、絶対値が1以上の整数であるのが好ましい。この場合、受信機側の受信周波数fをサンプリング周波数fsよりも大きくすることができる。
(2-4)前記バンドパス型ΔΣ変調器に与えられる前記変調波の信号帯域を拡張する帯域拡張部を更に備えているのが好ましい。この場合、帯域を拡張することで、サンプリング周波数を高く設定することができる。
(2-5)前記帯域拡張部は、前記変調波の信号帯域外にゼロ信号を挿入することで、前記変調波の帯域を拡張するのが好ましい。この場合、容易に帯域を拡張できる。
(2-6)前記変調波をデジタル信号処理によって生成するデジタル変調部を更に備え、前記バンドパス型ΔΣ変調器には、前記デジタル変調部によって生成されたデジタル変調波が与えられるのが好ましい。この場合、変調波の生成及び量子化信号の生成をともにデジタル信号処理によって行える。
(2-7)前記デジタル変調部は、デジタル直交変調部であるのが好ましい。
(2-8)前記変調波は、無線周波数の変調波であるのが好ましい。
(2-9)他の観点からみた本発明は、信号伝送路から送信されてきた信号を受信する受信機であって、無変調波に送信信号が付加された変調波に対してバンドパス型ΔΣ変調を行うことで生成された量子化信号を、前記信号伝送路から受信する入力部と、前記入力部によって受信した量子化信号が、入力として与えられるアナログバンドパスフィルタと、を備えていることを特徴とする受信機である。変調波に対してバンドパス型ΔΣ変調を行うことで生成された量子化信号をアナログバンドパスフィルタを通過させることで、アナログの変調波を得ることができる。
(2-10)前記アナログバンドパスフィルタは、以下の式を満たすように設定されているのが好ましい。
  fc=f’+n×fs
 ただし、
  fc  :アナログバンドパスフィルタの通過帯域の中心周波数
  fs :前記ΔΣ変調器のサンプリング周波数
  f’ :前記無変調波の周波数
  n  :整数
(2-11)前記nは、絶対値が1以上の整数であるのが好ましい。
(2-12)前記変調波を処理するアナログ回路を更に備え、前記アナログバンドパスフィルタの出力は、前記アナログ回路に与えられるのが好ましい。
(2-13)無線波を出力するアンテナを備え、前記アンテナは、前記アナログバンドパスフィルタの機能を兼ねているのが好ましい。この場合、アナログバンドパスフィルタを省略することが可能である。
(2-14)他の観点からみた本発明は、前記(2-1)~(2-8)のいずれか1項に記載の送信機と、前記(2-9)~(2-13)のいずれか1項に記載の受信機と、を備えた通信システムである。
(2-15)他の観点からみた本発明は、基地局本体と、基地局本体に信号伝送路を介して接続されたリモートレディオヘッドと、を備えた無線基地局装置であって、前記基地局本体は、前記(2-1)~(2-8)のいずれか1項に記載の送信機を備え、前記リモートレディオヘッドは、前記(2-9)~(2-13)のいずれか1項に記載の受信機を備えている無線基地局装置である。
<第3の課題を解決するための手段>
(3-1)第3の課題に関し、一の観点からみた本発明は、搬送波に送信信号が付加された変調波を送信する送信機であって、前記変調波に対してバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器と、前記バンドパス型ΔΣ変調器から出力された量子化信号を送信する送信部(出力部)と、を備えた送信機である。送信機は、前記変調波の周波数帯域が、前記バンドパス型ΔΣ変調器が行うΔΣ変調の量子化雑音阻止帯域に含まれるように、前記バンドパス型ΔΣ変調器を制御する制御部を更に備えている。
 上記構成の送信機によれば、変調波の周波数帯域がΔΣ変調の量子化雑音阻止帯域に含まれるように、制御部がバンドパス型ΔΣ変調器を制御するので、所望の搬送波周波数の変調波にバンドパス型ΔΣ変調を行うことができる。
 また、上記構成の送信機によれば、制御部が、変調波の周波数帯域がΔΣ変調の量子化雑音阻止帯域に含まれるように、バンドパス型ΔΣ変調器を制御するので、送信部は、周波数変換することなく、ΔΣ変調器が出力する量子化信号から変調波を取り出して送信することができる。
(3-2)上記送信機において、前記送信信号は、無線周波数の変調波であることが好ましい。
(3-3)前記制御部は、前記搬送波の周波数を決定する機能をさらに備えていることが好ましい。この場合、搬送波の周波数の決定、及び、これに応じたΔΣ変調の量子化雑音阻止帯域の中心周波数の制御を制御部にて集約して行うことができる。
(3-4)なお、前記搬送波の周波数は、前記バンドパス型ΔΣ変調器のサンプリング周波数の範囲内で設定されることが好ましい。
(3-5)上記搬送波の周波数が第三者に認知されると、通信の傍受等、通信の秘匿性を著しく低下させる。このため、上記送信機において、揮発性の記憶部をさらに備え、前記記憶部は、前記搬送波の周波数を示す周波数情報を記憶可能に構成されていてもよい。
 この場合、記憶部に供給される電力が絶たれると、記憶されていた周波数情報が消去されるので、例えば、リバースエンジニアリングによって、周波数情報が認知されるのを極力防止でき、通信の秘匿性を維持することができる。
(3-6)また、上記送信機において、前記制御部は、予め定められた複数の周波数の中から周波数ホッピングによって前記搬送波の周波数を決定する機能をさらに備えていることが好ましい。
 上記送信機において、送信部は、周波数変換することなくΔΣ変調器が出力する量子化信号から変調波を取り出して送信することができるので、制御部が搬送波の周波数を決定することでその設定の自由度が高められる。これにより、より広範な範囲の中から前記複数の周波数情報を設定することができる。この結果、例えば、搬送波の周波数の設定にその設定帯域幅が制限されるVCOを用いた場合と比較して、搬送波の周波数をより広帯域に拡散させることができ、耐障害性が高く、かつ通信の秘匿性に優れた周波数ホッピングを実現することができる。
(3-7)さらに、前記記憶部は、前記複数の周波数情報、及び周波数ホッピングのホッピングパターンに関するパターン情報を記憶可能に構成されている場合には、前記制御部は、前記記憶部に記憶された前記複数の周波数情報、及び前記パターン情報を参照することで前記搬送波の周波数を決定するものであってもよい。
 この場合も上記同様、記憶部に供給される電力が絶たれると、記憶されていた複数の周波数情報及びホッピングパターンが消去されるので、通信の秘匿性を維持することができる。
(3-8)また、第3の課題に関し、他の観点からみた本発明は、情報を送信する送信機を備えた移動可能な移動体であって、前記送信機は、上記(3-1)~(3-7)に記載の送信機であることを特徴としている。
 上記構成の移動体によれば、情報送信において、所望の搬送波周波数の変調波にバンドパス型ΔΣ変調を行うことができる。
(3-9)また、第3の課題に関し、他の観点からみた本発明は、搬送波に送信信号が付加された変調波に対してバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器と、前記変調波の周波数帯域が前記バンドパス型ΔΣ変調器が行うΔΣ変調の量子化雑音阻止帯域に含まれるように、前記バンドパス型ΔΣ変調器を制御する制御部と、を備えていることを特徴とする信号処理装置である。
 上記構成の信号処理装置によれば、情報送信において、所望の搬送波周波数の変調波にバンドパス型ΔΣ変調を行うことができる。
<第4の課題を解決するための手段>
(4-1)第4の課題に関し、一の観点からみた本発明は、信号伝送路に信号を送信する第1装置と、前記信号伝送路から信号を受信する第2装置と、を備え、前記第1装置は、RF信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調器と、前記ΔΣ変調器から出力された前記量子化信号を前記信号伝送路に送信する送信部と、を備え、前記第2装置は、前記量子化信号を前記信号伝送路から受信する受信部と、前記受信部にて受信した前記量子化信号を保存するバッファと、バッファに保存された量子化信号を出力する出力部と、を備えていることを特徴とするRF信号伝送システムである。
 上記のRF信号伝送システムに係る本発明によれば、ΔΣ変調によってRF信号が量子化信号に変換される。したがって、量子化信号となったRF信号を、デジタル信号として信号伝送路を伝送することができる。また、量子化信号を受信する第2装置では、バッファを備えているため、信号伝送路における伝送速度に関係なく、量子化信号を必要な速度で出力することができる。
(4-2)前記送信部は、情報を送信可能に構成され、前記送信部が送信する前記情報は、前記ΔΣ変調器が出力した量子化信号の信号波形を再現するために前記第2装置において用いられる情報を含んでいるのが好ましい。この場合、第2装置は、ΔΣ変調器が出力した量子化信号の信号波形を再現するために用いられる情報を取得できるため、当該情報を予め知っておく必要がない。
(4-3)前記送信部は、前記量子化信号をパケット化して前記信号伝送路に出力し、前記受信部は、パケット化された前記量子化信号を受信し、デパケット化するのが好ましい。量子化信号がパケット化されることで、パケット通信が行われる信号伝送路(例えば、インターネット)を経由することが可能となる。
(4-4)前記信号伝送路は、有線の信号伝送路であるのが好ましい。RF信号を扱いつつも、信号伝送路が有線であることで、電波に関する法的な規制を受けない。
(4-5)前記出力部は、前記量子化信号を、RF信号を受信する受信機に対して出力するのが好ましい。この場合、受信機には、量子化信号が、RF信号として与えられる。
(4-6)前記第2装置は、RF信号を電波として空間に放射するアンテナを更に備え、前記第2装置は、前記出力部から出力された前記量子化信号を、前記アンテナによって電波として放射されるRF信号として用いるのが好ましい。この場合、第2装置は、信号伝送路を介して送信されてきたRF信号を電波として放射することができる。
(4-7)前記RF信号は、映像信号のRF信号を含むのが好ましい。
(4-8)前記RF信号は、デジタルテレビ放送のためのRF信号であるのが好ましい。
(4-9)ΔΣ変調器は、バンドパス型ΔΣ変調器であるのが好ましい。
(4-10)第4の課題に関し、他の観点からみた本発明は、RF信号をΔΣ変調して得られた量子化信号を、信号伝送路から受信する受信部と、前記受信部にて受信した量子化信号を保存するバッファと、前記バッファに保存された前記量子化信号を、RF信号を含む信号として出力する出力部と、を備えていることを特徴とする信号出力装置である。
(4-11)第4の課題に関し、さらに他の観点からみた本発明は、RF信号を受信する受信機と、前記(10)項記載の信号出力装置と、を備え、前記信号出力装置は、前記受信機に対して、前記量子化信号を出力することを特徴とする受信システムである。
(4-12)第4の課題に関し、さらに他の観点からみた本発明は、RF信号の伝送方法であって、RF信号をΔΣ変調して得られた量子化信号を信号伝送路に送信するステップと、前記量子化信号を前記信号伝送路から受信するステップと、受信した量子化信号をバッファに保存するステップと、前記バッファに保存された量子化信号を、RF信号を受信する受信機に対して出力するステップと、を含むことを特徴とするRF信号の伝送方法である。
(4-13)第4の課題に関し、さらに他の観点からみた本発明は、信号伝送路に信号を送信する送信装置と、1又は複数の放送設備と、を備え、前記送信装置は、放送用RF信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調器と、前記ΔΣ変調器から出力された前記量子化信号を前記信号伝送路に送信する第1送信部と、を備え、前記放送設備は、放送用RF信号を電波として空間に放射するアンテナと、前記アンテナに放送用RF信号を出力する放送機と、を備え、前記放送機は、前記量子化信号を前記信号伝送路から受信する受信部と、前記受信部にて受信した前記量子化信号を、前記放送用RF信号として、前記アンテナに出力する第2送信部と、を備えていることを特徴とする放送システムである。
 上記放送システムに係る本発明によれば、ΔΣ変調によって放送用RF信号が量子化信号に変換される。したがって、量子化信号となった放送用RF信号を、デジタル信号として信号伝送路を伝送することができる。
 放送機では、受信した量子化信号を放送用RF信号を、アンテナから電波として放射させることができる。
(4-14)前記放送機は、前記受信部にて受信した前記量子化信号を保存するバッファをさらに備え、前記第2送信部は、前記バッファに保存された前記量子化信号を、前記放送用RF信号として、前記アンテナに出力するのが好ましい。放送機が、バッファを備えているため、放送機は、信号伝送路における伝送速度に関係なく、量子化信号を必要な速度で出力することができる。
(4-15)前記第1送信部は、情報を送信可能に構成され、前記第1送信部が送信する前記情報は、前記ΔΣ変調器が出力した量子化信号の信号波形を再現するために前記放送機において用いられる情報を含んでいるのが好ましい。
 この場合、放送機は、ΔΣ変調器が出力した量子化信号の信号波形を再現するために用いられる情報を取得できるため、当該情報を予め知っておく必要がない。
(4-16)前記第1送信部は、前記量子化信号をパケット化して前記信号伝送路に送信し、前記受信部は、パケット化された前記量子化信号を受信し、デパケット化するのが好ましい。量子化信号がパケット化されることで、パケット通信が行われる信号伝送路(例えば、インターネット)を経由することが可能となる。
(4-17)ΔΣ変調器は、バンドパス型ΔΣ変調器であるのが好ましい。
(4-18)第4の課題に関し、さらに他の観点からみた本発明は、放送用RF信号をΔΣ変調して得られた量子化信号を、信号伝送路から受信する受信部と、前記受信部にて受信した前記量子化信号を、前記放送用RF信号として、アンテナに出力する送信部と、を備えていることを特徴とする放送機である。
(4-19)第4の課題に関し、さらに他の観点からみた本発明は、前記(16)項記載の放送機と、前記送信機の前記送信部から出力された前記量子化信号を空間に放射するアンテナと、を備えていることを特徴とする放送設備である。
(4-20)第4の課題に関し、さらに他の観点から見た本発明は、放送用RF信号をΔΣ変調して量子化信号を得るステップと、前記量子化信号を放送機に送信するステップと、前記放送機が、受信した前記量子化信号を、放送用RF信号として、アンテナに出力するステップと、を含む放送方法である。
<第5の課題を解決するための手段>
(5-1)第5の課題に関し、一の観点からみた本発明は、無線波として送信されるRF信号に対する処理を行う信号処理装置であって、前記RF信号に対するバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器を備え、前記バンドパス型ΔΣ変調器の量子化雑音阻止帯域は、前記RF信号の使用帯域を含み、かつ、前記RF信号の使用帯域よりも広い帯域幅を有していることを特徴とする信号処理装置である。
 上記本発明によれば、無線波として送信されるRF信号に対してバンドパス型ΔΣ変調を行っても、量子化雑音阻止帯域がRF信号の使用帯域よりも広い帯域幅を有しているため、RF信号の使用帯域の近傍においては、量子化雑音が少なくなり、量子化雑音が漏洩電力を増大させるのを抑制することができる。
(5-2)前記RF信号は、使用帯域が複数の通信帯域に跨っており、前記量子化雑音阻止帯域は、前記RF信号の使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する最小の帯域幅よりも狭い帯域幅を有しているのが好ましい。
 RF信号の使用帯域の隣接チャネル及び次隣接チャネルへの漏洩電力が問題となる場合には、量子化雑音阻止帯域は、RF信号の使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する帯域よりも広い帯域であるべきである。
 しかし、複数の通信帯域それぞれでみれば、量子化雑音阻止帯域を、RF信号の使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する最小の帯域幅よりも狭い帯域幅とすることができる。これにより、サンプリングレートを低く抑えることが可能となる。
(5-3)前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル全てを包含する帯域幅を有しているのが好ましい。この場合、量子化雑音が、隣接チャネルへの漏洩電力となるのを防止できる。
(5-4)前記量子化雑音阻止帯域は、前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネル全てを包含する帯域幅を有しているのが好ましい。この場合、量子化雑音が、隣接チャネル及び次隣接チャネルへの漏洩電力となるのを防止できる。
(5-5)前記量子化雑音阻止帯域は、前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネル全てを包含する最小の基本帯域の両側それぞれに一つの前記通信帯域分の付加帯域を確保した帯域幅以下の帯域幅を有しているのが好ましい。この場合、隣接チャネル及び次隣接チャネルへの漏洩電力となるのを防止ししつつ、量子化雑音阻止帯域がさほど広くなりすぎず、サンプリングレートを抑えることができる。
(5-6)1又は複数の通信帯域の中から、前記RF信号の使用帯域を選択する帯域選択部を更に備え、前記量子化雑音阻止帯域は、前記複数の通信帯域全てを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する最小の帯域よりも狭い帯域幅を有しているのが好ましい。この場合、量子化雑音阻止帯域が広くなりすぎず、サンプリングレートを抑えることができる。
(5-7)前記量子化雑音阻止帯域は、前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネル全てを包含する帯域幅を有しているのが好ましい。この場合、いずれの通信帯域が選択されても、量子化雑音が、隣接チャネル及び次隣接チャネルへの漏洩電力となることを防止できる。
(5-8)前記量子化雑音阻止帯域は、前記RF信号の使用帯域の両側の隣接チャネルを包含する帯域幅を有しているのが好ましい。この場合、量子化雑音が、隣接チャネルへの漏洩電力となることを防止できる。
(5-9)前記量子化雑音阻止帯域は、前記RF信号の使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する帯域幅を有しているのが好ましい。この場合、量子化雑音が、隣接チャネル及び次隣接チャネルへの漏洩電力となることを防止できる。
(5-10)他の観点からみた本発明は、前記(5-1)~(5-9)のいずれか1項に記載の信号処理装置を、RF信号に対する処理のために備えた無線機である。
(5-11)前記信号処理装置における前記量子化雑音阻止帯域は、前記無線機が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される帯域幅以上の帯域幅を有しているのが好ましい。
<第6の課題を解決するための手段>
(6-1)第6の課題に関し、一の観点からみた本発明は、増幅器と、前記増幅器によって増幅されるべき信号を出力するデジタル信号処理部と、前記増幅器の出力側に設けられたアナログフィルタと、を備え、前記デジタル信号処理部は、前記増幅器の出力に基づいて、前記増幅器の歪補償を行う歪補償部と、前記増幅器によって増幅されるべき信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調部と、を備え、前記増幅器は、前記量子化信号を増幅し、前記アナログフィルタは、前記量子化信号からアナログ信号を生成し、前記デジタル信号処理部は、前記歪補償部による歪補償のために、前記増幅器から出力された量子化信号を取得することを特徴とする増幅装置である。
 上記本発明によれば、歪補償部を備えるデジタル信号処理部は、歪補償部による歪補償のために、増幅器から出力された量子化信号を取得するため、増幅器の出力を複雑なアナログ信号処理を行うことなく取得することができる。
(6-2)前記増幅器は、デジタル増幅器であるのが好ましい。この場合、電力効率が良くなる。
(6-3)前記デジタル信号処理部は、前記アナログフィルタと同じ特性を持つデジタルフィルタを更に備え、前記デジタルフィルタは、前記デジタル信号処理部が取得した前記量子化信号に対してフィルタリングを行い、前記歪補償部は、前記デジタルフィルタの出力に基づいて、歪補償を行うのが好ましい。デジタル信号処理部が、アナログ信号を生成するアナログフィルタと同じ特性を持つデジタルフィルタを持つことで、デジタル信号処理部は、アナログフィルタから出力されるアナログ信号に対応するデジタル信号を得ることができる。
(6-4)前記デジタル信号処理部は、前記デジタルフィルタの出力を復調する復調部を更に備え、前記歪補償部は、前記復調部の出力に基づいて、歪補償を行うのが好ましい。この場合、復調(直交復調など)もデジタル信号処理部で行える。また、復調することで、搬送波のような高周波を扱う必要がなくなり、デジタル信号処理部における処理速度を抑えることができる。
(6-5)前記ΔΣ変調器は、バンドパス型ΔΣ変調器であるのが好ましい。バンドパス型ΔΣ変調器は、無線周波数信号のような高周波を扱う際に有利である。
(6-6)前記アナログ信号は、無線周波数信号であるのが好ましい。
(6-7)第6の課題に関し、他の観点からみた本発明は、増幅器によって増幅されるべき信号を出力するデジタル信号処理装置であって、前記増幅器の出力に基づいて、前記増幅器の歪補償を行う歪補償部と、前記増幅器によって増幅されるべき信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調部と、を備え、前記歪補償部による歪補償のために、前記増幅器から出力された量子化信号を取得するよう構成されていることを特徴とするデジタル信号処理装置である。
(6-8)第6の課題に関し、さらに他の観点からみた本発明は、前記(6-1)~(6-6)のいずれか1項に記載の増幅装置を通信信号の増幅のために備えた無線通信装置である。
実施形態に係る通信システムの構成図である。 ΔΣ変調器の構成図である。 1次ローパス型ΔΣ変調器である。 (a)はローパス型ΔΣ変調器の出力スペクトルであり、(b)はバンドパス型ΔΣ変調器の出力スペクトルである。 (a)はローパス型ΔΣ変調器の出力スペクトルであり、(b)はバンドパス型ΔΣ変調器の出力スペクトルである。 (a)はローパス型ΔΣ変調器の出力スペクトルであり、(b)はバンドパス型ΔΣ変調器の出力スペクトルである。 (a)はローパス型ΔΣ変調器の動作を示す極座標であり、(b)はバンドパス型ΔΣ変調器の動作を示す極座標である。 1次ローパス型ΔΣ変調器から変換して得られた2次バンドパス型ΔΣ変調器である。 CRFB構造のローパス型ΔΣ変調器である。 CRFB構造のローパス型ΔΣ変調器から変換して得られたバンドパス型ΔΣ変調器である。 θ=π/4用のバンドパス型ΔΣ変調器の出力スペクトラム波形図である。 θ=3π/4用のバンドパス型ΔΣ変調器の出力スペクトラム波形図である。 θ=5π/4用のバンドパス型ΔΣ変調器の出力スペクトラム波形図である。 θ=7π/4用のバンドパス型ΔΣ変調器の出力スペクトラム波形図である。 送信機に帯域拡張部を有する通信システムの構成図である。 拡張された信号帯域の説明図である。 拡張された信号帯域とバンドパスフィルタの通過特性を示す図である。 主信号成分と高調波成分を示す図である。 無線基地局装置を示す図である。 従来の光ファイバ通信システムの構成図である。 従来の光ファイバ通信システムの構成図である。 本発明の一実施形態に係る送信機を示すブロック図である。 変調処理部における信号の周波数変換機能を説明するための図である。 (a)は、周波数ホッピングを適用したときのΔΣ変調器による出力の周波数スペクトルの波形図の一例であり、(b)は、(a)における搬送波周波数近傍の帯域を拡大した図である。 本実施形態の送信機を搭載した、遠隔制御によって操縦可能な飛行機を示す図である。 VCOを用いた無線送信機の構成を示すブロック図である。 実施形態に係る放送システムの構成図である。 放送設備(親設備)の構成図である。 信号出力装置の構成図である。 放送設備(子設備)の構成図である。 帯域拡張部を有する放送設備の構成図である。 ΔΣ変調器を有する無線機の構成図である。 (a)はバンドパス型ΔΣ変調器の雑音伝達関数と信号伝達関数の特性図であり、(b)はRF信号の漏洩電力を示す出力スペクトラムである。 量子化雑音阻止帯域の第1例を示すバンドパス型ΔΣ変調器の出力スペクトラムである。 量子化雑音阻止帯域の第2例を示すバンドパス型ΔΣ変調器の出力スペクトラムである。 (a)は、量子化雑音阻止帯域の第2例を示すバンドパス型ΔΣ変調器の出力スペクトラムであり、(b)は帯域cだけを使用帯域であるとみなした場合の出力スペクトラムであり、(c)は帯域dだけを使用帯域であるとみなした場合の出力スペクトラムである。 量子化雑音阻止帯域の第4例を示すバンドパス型ΔΣ変調器の出力スペクトラムである。 第5例のための無線機の構成図である。 量子化雑音阻止帯域の第5例を示すバンドパス型ΔΣ変調器の出力スペクトラムである。 通信帯域の選択例を示す図である。 増幅装置を備えた通信装置の構成図である。 第1変形例に係る増幅装置を備えた通信装置の構成図である。 第2変形例に係る増幅装置を備えた通信装置の構成図である。 第3変形例に係る増幅装置を備えた通信装置の構成図である。 第4変形例に係る増幅装置を備えた通信装置の構成図である。
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。
[目次]
 第1章 バンドパス型ΔΣ変調器の設計と通信への応用 [0119]~[0213]
 第2章 バンドパス型ΔΣ変調器の周波数制御     [0214]~[0267]
 第3章 ΔΣ変調によるRF伝送           [0268]~[0329]
 第4章 量子化雑音によって生じる漏洩電力の抑制   [0330]~[0382]
 第5章 歪補償                   [0383]~[0418]
[第1章 バンドパス型ΔΣ変調器の設計と通信への応用]
[1.1 通信システム]
 図1は、実施形態に係る通信システム1を示している。通信システム1は、送信機2と、受信機3と、を有している。通信システム1は、伝送路4が光ファイバ(光伝送路)である光ファイバ通信システムとして構成されている。
 送信機2は、例えば、PON(Passive Optical Network)におけるOLT(局側装置)として用いることができる。受信機3は、例えば、PONにおけるONU(宅側装置)として用いることができる。
 なお、通信システムとしては、光ファイバ通信システムに限られるものではない。例えば、伝送路4は、光ファイバ(光伝送路)ではなく、電気ケーブル(電気伝送路)であってもよい。
 送信機2は、デジタル信号処理部21を備えている。デジタル信号処理部21は、デジタル信号である量子化信号(ここでは、1ビット量子化信号;パルス信号)を出力する。デジタル信号処理部21は、量子化信号の出力部である電気-光変換器(光リンク)22によって、光伝送路4に出力される。なお、伝送路4が電気伝送路である場合には、出力部22は、量子化信号の電圧を変換する変換器であってもよい。また、電圧などの変換が必要ない場合には、伝送路4への接続端子が出力部であるとみなされる。
 デジタル信号処理部21は、送信信号であるベースバンド信号(IQ信号)を出力するベースバンド部23と、ベースバンド信号に対して直交変調などの処理を行う処理部(直交変調器)24と、バンドパス型ΔΣ変調器25と、を備えている。
 ベースバンド部23は、IQベースバンド信号(I信号、Q信号それぞれ)をデジタルデータとして出力する。
 処理部24は、搬送波(無変調波)をIQベースバンド信号の変化に応じて変調させて、搬送波にIQベースバンド信号が付加された変調波(直交変調波)を出力する。処理部24において行われる直交変調は、デジタル信号処理で直交変調を行うデジタル直交変調である。したがって、処理部(直交変調器)24からは、多ビットのデジタルデータ(離散値)によって表現されたデジタル信号形式の変調波(デジタル変調波)が出力される。
 処理部24は、直交変調のほか、DPD(Digital Pre-distortion)、CFR(Crest Factor Reduction)、DUC(Digital Up Conversion)などの様々なデジタル信号処理を施す。処理部24からは、上述のような各種のデジタル信号処理によって生成された変調波(デジタル変調波)が出力される。
 出力された変調波は、バンドパス型ΔΣ変調器25に与えられる。
 前記搬送波の周波数は、通常の無線周波数を採用できる。無線周波数としては、好ましくは30MHz以上、より好ましくは300MHz以上、さらに好ましくは1GHz以上である。
 変調波の信号帯域幅も、特に限定されないが、搬送波周波数に対して十分小さい狭帯域であるのが好ましい。信号帯域幅は、例えば、5MHz~20MHzの範囲が好ましい。
 なお、変調波を生成する変調器24としては、直交変調器に限らず、変調波を生成するための他の方式の変調器であってもよい。
 また、実施形態に係る送信機2は、直交変調器24を有しているため、送信機2自体が、搬送波を生成する機能を有しているが、搬送波を生成する機能を有していなくてもよい。例えば、送信機2は、送信機2の外部装置にて生成された搬送波を入力として受け付け、その搬送波をバンドパス型ΔΣ変調器25に与えても良い。
 バンドパス型ΔΣ変調器25は、直交変調器24から出力された変調信号に対して、バンドパス型ΔΣ変調を行って1bitの量子化信号(パルス信号)を出力する。バンドパス型ΔΣ変調器25は、その中心周波数が、前記搬送波の周波数と一致するように設定されている。
 なお、バンドパス型ΔΣ変調器25から出力される量子化信号は、1bitである必要はない。ΔΣ変調器25から出力される量子化信号は、ΔΣ変調器25に入力されたデジタルデータのビット数よりも少なければよい。
 バンドパス型ΔΣ変調器25(デジタル信号処理部21)から出力された量子化信号(ΔΣ変調信号)は、電気-光変換器22によって光パルス信号に変換される。当該量子化信号は、変調波として伝送路4に出力される。
 受信機3側では、この量子化信号(パルス信号)からアナログ信号の変調波を取得することができる。なお、ΔΣ変調については、後述する。
 本実施形態の送信機2では、直交変調器24及びバンドパス型ΔΣ変調器25はいずれもデジタル信号処理によって変調を行うデジタル回路として構成されている。したがって、高周波である変調波を扱いつつも、電気-光変換器22の手前においてアナログ回路を用いる必要がなく有利である。なお、バンドパス型ΔΣ変調器25には、デジタル信号に代えて、アナログ信号を入力しても、同様にパルス信号を出力できるため、直交変調器24をアナログ回路で構成することもできる。
 受信機3は、光-電気変換器31と、アナログバンドバスフィルタ32と、アナログ回路33と、を備えている。
 受信機3は、伝送路4から送信されてきた光パルス信号(量子化信号)を、入力部としての光-電気変換器31にて受信する。光-電気変換器31は、受信した光パルス信号を電気パルス信号に変換して出力する。
 なお、伝送路4が電気伝送路である場合には、入力部31は、量子化信号の電圧を変換する変換器であってもよい。また、電圧などの変換が必要ない場合には、伝送路4への接続端子が入力部であるとみなされる。
 また、入力部31では、伝送路4から受信した信号を、基準値と比較することで、伝送路4において信号を整形した信号を得ても良い。
 アナログバンドパスフィルタ32は、前記搬送波の周波数を中心周波数とする通過帯域が設定されており、前記搬送波の周波数付近の帯域(送信信号の帯域よりやや広い帯域)を通過させる。
 例えば、送信機2の直交変調器24に用いられた搬送波周波数が1GHzであれば、バンドパスフィルタ32は、1GHzが通過帯域の中心周波数として設定される。
 なお、アナログバンドフィルタ32は、ΔΣ変調によってノイズシェイピング(後述)された量子化雑音を除去する。
 バンドパスフィルタ32の入力に、変調波に対してΔΣ変調を行って得られた量子化信号(ΔΣ変調信号)を与えると、バンドパスフィルタ32の出力からは、変調波がアナログ信号(連続波)として出力される。つまり、アナログバンドパスフィルタ32は、バンドパス型ΔΣ変調器25に入力されたデジタルRF信号に対応するアナログRF信号を生成して出力する。
 バンドパスフィルタ32の出力は、アナログ回路33に与えられる。アナログ回路33は、アナログ信号を処理する回路であれば特に限定されないが、例えば、無線受信機におけるRF部の回路とすることができる。
 本実施形態の通信システムは、全体的にみると、送信機2から受信機3へ変調波を伝送するものであるが、送信機2と受信機3との間の伝送路4ではパルス信号が流れるため、伝送路4の影響による信号の劣化がほとんどない。したがって、変調波を高品質で伝送することができる。
 しかも、伝送路4では、パルス信号(デジタル信号)が流れるため、伝送路4中で信号の劣化があっても、受信側においてデジタル信号処理技術を用いて、信号の訂正を行うことができる。したがって、この点からも、アナログ信号(変調波)を高品質で伝送することが可能となる。
[1.2 バンドパス型ΔΣ変調]
[1.2.1 ΔΣ変調器の基本構成]
 図2に示すように、ΔΣ変調器25は、ループフィルタ27と、量子化器28と、を備えている(非特許文献1参照)。
 図2に示すΔΣ変調器25は、入力(本実施形態では、変調波)Uが、ループフィルタ27に与えられる。ループフィルタ27の出力Yは、量子化器(例えば、1bit量子化器又は多ビットの量子化器)28に与えられる。量子化器28の出力(量子化信号)Vは、ループフィルタ27への他の入力として与えられる。
 ΔΣ変調器25の特性は、信号伝達関数(STF;Signal Transfer Function)及び雑音伝達関数(NTF;Noise Transfer Function)によって表すことができる。
 つまり、ΔΣ変調器25の入力をUとし、ΔΣ変調器25の出力をVとし、量子化雑音をEとしたときに、ΔΣ変調器25の特性を、z領域において表すと、次のとおりである。
Figure JPOXMLDOC01-appb-M000011
 したがって、所望のNTFとSTFとが与えられると、ループフィルタ27の伝達関数を得ることができる。
 このようなΔΣ変調は、オーバサンプリング変調の一種であり、一般的には、AD変換又はDA変換に用いられている技術である。
 ΔΣ変調では、信号帯域内の量子化雑音を、信号帯域外に移動させて、信号帯域内の量子化雑音を大きく低下させるノイズシェイピング(Noise Shaping)が行われる。
 図3は、1次ローパス型ΔΣ変調器125の線形z領域モデルのブロック図を示している。符号127がループフィルタの部分を示し、符号128が量子化器を示している。このΔΣ変調器125への入力をU(z)とし、出力をV(z)とし、量子化雑音をE(z)としたときに、ΔΣ変調器125の特性を、z領域において表すと、次のとおりである。
 V(z)=U(z)+(1-z-1)E(z)
 つまり、図3に示す1次ローパス型ΔΣ変調器125において、信号伝達関数STF(z)=1であり、雑音伝達関数NTF(z)=1-z-1である。
[1.2.2 ローパス型ΔΣ変調とバンドパス型ΔΣ変調]
 一般に、「ΔΣ変調」という用語は、ローパス型ΔΣ変調を指す。
 ローパス型ΔΣ変調では、図4(a)に示すように、低い周波数の量子化雑音が、より高い周波数側に移動して、低い周波数の量子化雑音が減衰するようノイズシェイピングされている。つまり、ローパス型Δ変調では、雑音伝達関数(NTF)は、低周波数(0Hz付近)において、通過雑音を阻止する特性を有している。
 オーバサンプリングを行うため、ΔΣ変調が施される信号の周波数は、ローパス型ΔΣ変調器のサンプリング周波数fsよりも十分小さいことが必要である。換言すると、信号の周波数に対して、十分に大きなサンプリング周波数fsが要求される。例えば、信号の周波数に対して、128倍程度のサンプリング周波数fsが必要である。
 一方、バンドパス型ΔΣ変調では、図4(b)に示すように、雑音伝達関数(NTF)は、0Hzよりも大きい周波数において、通過雑音を阻止する。
 バンドパス型ΔΣ変調では、信号の周波数fではなく、信号の帯域幅fが、サンプリング周波数fsよりも十分に小さければよい。
 したがって、バンドパス型ΔΣ変調では、ΔΣ変調が施される信号の周波数(中心周波数)fは、サンプリング周波数fs以下であればよい。
 換言すると、バンドパス型ΔΣ変調では、信号の帯域幅fに対して、十分に大きなサンプリング周波数fsであればよい。例えば、信号の帯域幅fに対して、64倍程度の十分に大きなサンプリング周波数fsがあればよい。
 ここで、例えば、無線通信の搬送波周波数fが1GHz、信号帯域fが20MHzであるものとする。このような無線周波数の変調波(RF信号)に対して、ローパス型ΔΣ変調を行おうとすると、変調波の最大周波数は、約1GHzであるため、変調波の最大周波数である1GHzに対して、十分に大きな(128倍程度)のサンプリング周波数fs(=約128GHz)が必要となる。このように、ローパス型ΔΣ変調では、PWM変調と同様に、サンプリング周波数(サンプリング速度)が高くなりすぎて、現実的ではない。
 これに対し、バンドパス型ΔΣ変調では、信号の帯域幅fに対して、十分に大きなサンプリング周波数fsであればよいため、信号帯域が20MHzのRF信号であれば、20MHz×64=1.28GHz程度のサンプリング周波数fs(サンプリング速度=1.28GS/S)でよい。また、信号帯域が5MHzであれば、320MHzのサンプリング周波数(サンプリング速度=320MS/s)でよい。
 このように、バンドパス型ΔΣ変調では、サンプリング周波数(サンプリング速度)を小さくできるため、有利である。
[1.2.3 ΔΣ変調を用いたDA変換との対比]
 ΔΣ変調を用いたDA変換では、DA変換器への入力であるデジタル信号がΔΣ変調器に与えられ、オーバサンプリングとノイズシェイピングが行われる。ΔΣ変調器から出力された低ビットの量子化信号)は、信号帯域外の成分をカットするアナログフィルタを通過することで、アナログ信号となる。このアナログ信号が、DA変換器の出力となる。
 本実施形態の送信機2に設けられたΔΣ変調器25は、DA変換器に用いられる場合と同様に、入力されたデジタル信号(変調波)に対してオーバサンプリングとノイズシェイピングを行う。
 ただし、本実施形態のΔΣ変調器25から出力された低ビットの量子化信号は、アナログフィルタを通過することなく、量子化信号のまま、出力部である電気-光変換器22に与えられて、光パルス信号となる。
 光パルス信号は、受信機3の入力部である光-電気変換器31によって受信されて、電気パルス信号となり、アナログフィルタ(アナログバンドパスフィルタ)32に与えられる。受信機3のアナログバンドパスフィルタ32は、変調波の信号帯域外の成分をカットすることで、アナログ信号である変調波を出力する。
[1.2.4 バンドパス型のΔΣ変調器の設計]
[1.2.4.1 変換式]
 非特許文献1によれば、ローパス型ΔΣ変調器に対して、以下の変換を行うことで、ローパス型ΔΣ変調器を、バンドパス型ΔΣ変調器に変換できる。
Figure JPOXMLDOC01-appb-M000012
 上記変換式に従って、ローパス型ΔΣ変調器125のz領域モデルにおけるzを、z’=-zに置き換えることでバンドパス型ΔΣ変調器が得られる。
 上記変換式を用いると、n次のローパス型ΔΣ変調器(nは1以上の整数)を、2n次のバンドパス型Σ変調器に変換できる。
 例えば、1次ローパス型ΔΣ変調器125の周波数特性は、図5(a)に示すとおりである。1次ローパス型ΔΣ変調器125を、上記変換式で変換して得られた2次バンドパス型ΔΣ変調器の周波数特性は、図5(b)に示すようになる。なお、図5において、横軸θは正規化周波数である。
 上記変換式で得られたバンドパス型ΔΣ変調器の信号伝達関数及び雑音伝達関数は、変換前のローパス型ΔΣ変調器125と同じ利得を持つものの、図5(b)に示す周波数特性は、図5(a)に示す周波数特性が2分の1に圧縮され、折り返されている。
 上記変換式で得られたバンドパス型ΔΣ変調器は、同じオーバサンプリング比で動作する変換前のローパス型ΔΣ変調器125と同じ安定性特性とSNR特性を持つ。
 しかし、上記変換式では、図5(b)に示すように、サンプリング周波数fsの1/4の周波数(正規化周波数θ=±π/2)用のバンドパス型ΔΣ変調器しか得られない。つまり、上記変換式では、サンプリング周波数fsの1/4周波数(正規化周波数θ=±π/2)が量子化雑音阻止帯域の中心周波数fであるバンドパス型ΔΣ変調器しか得られない。
 本発明者の一人は、ローパス型ΔΣ変調器から、所望の周波数f(θ=θ)を、中心周波数fとして持つバンドパス型ΔΣ変調器を得るための変換式を見出した。当該変換式は、例えば、次の式(3)に示す通りである。
Figure JPOXMLDOC01-appb-M000013

 ここで、
 θ=2π×(f/fs)
 式(2)の変換式では、特定の周波数θ=π/2に関するものであったが、式(3)の変換式では、任意の周波数(θ)に一般化されている。
[1.2.4.2 変換式の考え方]
 ローパス型ΔΣ変調器において、z=ejωT=1という前提に立つと、ローパス型変調器の特性を維持しつつバンドパス型ΔΣ変調器に変換するためのz’の絶対値は1となるべきである。
 |z’|=1でなければ、素子zを通過した信号の大きさ(振幅)が変化するため、変換前のローパス型ΔΣ変調器よりも特性が劣化するからである。
 なお、z’の大きさは、1であっても、-1であってもよい。これは、z’=1とz’=-1とは、単に位相が反転した関係にすぎず、信号の大きさを変化させないからである。
 したがって、ローパス型ΔΣ変調器の特性を劣化させずに維持しつつ、バンドパス型ΔΣ変調器を得るためのz’は、z及びθを含む関数fcnv(z,θ)であって、任意のz,θについて、fcnv(z,θ)の絶対値が常に1となる関数fcnv(z,θ)であれば良い。
 そのような関数fcnv(z,θ)を見出せば、ローパス型ΔΣ変調器を、所望の周波数f(θ)用のバンドパス型ΔΣ変調器が得られる。
 本発明者は、次のようにして、そのような関数z’=fcnv(z,θ)を見出し、式(2)を一般化した変換式z→z’(式(3))を得た。
 まず、ローパス型ΔΣ変調器から、所望の周波数f(θ=θ)を中心周波数fとして持つバンドパス型ΔΣ変調器への変換は、周波数特性で考えると、図6に示すようになる。図6は、図5を、任意の周波数f(θ=θ)で一般化したものである。
 図6(b)に示すように、バンドパス型ΔΣ変調器の雑音阻止帯域の中心周波数はf(θ=2π×(f/fs))である。
 ここで、
Figure JPOXMLDOC01-appb-M000014

とおくことで、周波数領域で考える。なお、Tはサンプリング周期である。
 また、式(4)のωTは、
Figure JPOXMLDOC01-appb-M000015

である。
 そして、図6(a)に示すように、ローパス型ΔΣ変調器では、f=0(θ=0)で動作している。そこで、本発明者は、式(4)に関して、ローパス型ΔΣ変調器では、以下の式(6)が成り立つと考えた。
Figure JPOXMLDOC01-appb-M000016

 つまり、ローパス型ΔΣ変調器では、図6(a)に示すように、ej0で動作していると考えることができる。
 式(6)より、以下の式(7)が得られる。
Figure JPOXMLDOC01-appb-M000017
 一方、バンドパス型ΔΣ変調器では、図6(b)及び図7(b)に示すように、θ及び-θにおいて、複素共役の対で動作する。
 したがって、ローパス型Δ変調器における式(7)に基づくとともに、バンドパス型ΔΣ変調器が複素共役の対を持つことを考慮すると、次の式(8)が得られる。
Figure JPOXMLDOC01-appb-M000018
 本発明者は、式(8)を利用して、z’=fcnv(z,θ)を得た。
 すなわち、まず、上記式(8)を次のように変形して、右辺(一方の辺)の値が1である式(10)を得る。
Figure JPOXMLDOC01-appb-M000019

Figure JPOXMLDOC01-appb-M000020
 式(10)は、その左辺(他方の辺)の式の値が、任意のz,θについて、常に左辺の値=1となる恒等式であることが明らかである。
 したがって、式(10)の左辺は、任意のz,θについて、値が常に1となる関数fcnv(z,θ)となっている。
 式(10)より、ローパス型からバンドパス型へ変換するための変換式z→z’におけるz’は、次の通りである。
Figure JPOXMLDOC01-appb-M000021

 上記式(11)より、式(3)の変換式が得られる。
 なお、上記式(3)において、θ=π/2(f=fs/4の場合)とおくと、式(2)の変換式と等価であることがわかる。
 さらに、ローパス型ΔΣ変換器は、θ=0である。θ=0の場合、式(3)の変換式は、z→zとなり、式(3)は、ローパス型ΔΣ変換器を変形させないことがわかる。
 また、z’=fcnv(z,θ)の値は、-1でもよいため(絶対値が1であればよいため)、z’は、次の形式であってもよい。
Figure JPOXMLDOC01-appb-M000022
 また、z’=fcnv(z,θ)の分母と分子とを入れ替えても、1又は-1となるため、z’は、次の形式であってもよい。
Figure JPOXMLDOC01-appb-M000023

Figure JPOXMLDOC01-appb-M000024
 なお、任意のz,θについて、絶対値が常に1となる式z’=fcnv(z,θ)の表現形式は、当然ながら、例示したものに限定されない。fcnv(z,θ)について、多様な表現形式が存在することは、式(8)から一方の辺の値が1又は-1である恒等式を得るための式の変形の仕方が一通りではないことからも明らかである。
[1.2.5 バンドパス型ΔΣ変調器の例]
[1.2.5.1 第1例]
 図8は、図3に示す1次ローパス型ΔΣ変調器125を、式(3)の変換式で変換して得られた2次バンドパス型ΔΣ変調器25を示している。
 なお、図3から図8への変換では、表記の便宜上、式(3)において、a=cosθとおいた下記の変換式を用いた。
Figure JPOXMLDOC01-appb-M000025
[1.2.5.2 第2例]
 図9は、非特許文献1に記載されたCRFB構造のループフィルタ127を持つローパス型ΔΣ変調器125を示している。なお、図9において、符号128は、量子化器を示す。
 図9に示すローパス型ΔΣ変調器125を、式(3)の変換式で変換すると、図10に示すバンドパス型ΔΣ変調器25が得られる。なお、ここでも、表記の便宜上、式(3)において、a=cosθとおいた。
 図9の(1/(z-1))と(z/(z-1))におけるzが、変換式によって変換される。(1/(z-1))と(z/(z-1))の変換後の式は、それぞれ、次の通りである。
Figure JPOXMLDOC01-appb-M000026

Figure JPOXMLDOC01-appb-M000027
[1.2.5.3 その他]
 バンドパス型ΔΣ変調器への変換は、その他の高次ローパス型ΔΣ変調器(例えば、非特許文献1記載のCIFB構造、CRFF構造、CIFF構造など)に対しても適用できる。
[1.2.6 出力結果]
 図11~図14は、第2例(図10)のバンドパス型ΔΣ変調器において、θ=π/4とした場合(図11)、θ=3π/4とした場合(図12)、θ=5π/4とした場合(図13)、θ=7π/4とした場合(図14)の出力スペクトラム波形を示している。
 図11~図14に示すように、θ=π/4,3π/4,5π/4,7π/4の各周波数において、信号が所望のθにおいて出現しており、θ=±π/2以外の他の周波数用のバンドパス型ΔΣ変調器が得られていることが分かる。
 従来、任意の周波数fに対してバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器の設計手法は確立していなかった。しかし、式(3)などの変換式を用いることで、所望の搬送周波数fを、雑音伝達関数(NTF)の雑音阻止帯域として設定でき、所望の搬送周波数fに対してバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器を設計することができる。設計されたバンドパス型ΔΣ変調器の用途は、図1に示す通信システム用に限定されるものではなく、他の用途にも用いることができる。
[1.3 帯域拡張]
 図15は、図1の通信システム1の受信機3に帯域拡張部29を追加したものを示している。図15の通信システム1において、説明を省略した点については、図1のものと同様である。
 前述のように、バンドパス型ΔΣ変調では、信号帯域fがサンプリング周波数fsに対して十分に小さければよい。例えば、信号帯域が20MHzのRF信号であれば、20MHz×64=1.28GHzのサンプリング周波数fs(サンプリング速度=1.28GS/S)でよい。
 ここで、前述のサンプリング周波数fs(1.28GHz)を更に大きくできる場合、信号帯域fに余裕ができるため、図15に示すように、帯域拡張部29を設けておき、信号帯域fを拡張しておくのが好ましい。
 帯域拡張部29では、アップサンプリングを行うことにより、図16に示すように、元々の信号帯域f(=20MHz)の両側にゼロ信号を挿入して、信号帯域を2倍(f’=40MHz)に拡張する。また、信号帯域f’の拡張に伴い、バンドパス型ΣΔ変調器25のサンプリング周波数fsも、2倍の2.56GHzとなる。
 このように、帯域fを拡張するとサンプリング周波数fsが大きくなる。ここで、搬送波周波数fは、サンプリング周波数fs以下の値を選択できるため、サンプリング周波数fsが大きくなると、搬送周波数fの選択の幅も大きくなる。
 ここで、無線通信の規格であるLTE(Long Term Evolution)では、例えば、信号帯域f=20MHzで、搬送波周波数fが2GHzである。この場合、バンドパス型ΔΣ変調のために、信号帯域f=20MHzだけを基準にサンプリング周波数fsを決定すると、サンプリング周波数fs=1.28GHz=20MHz×64となる。しかし、サンプリング周波数fs=1.28GHzが、搬送波周波数f=2GHzよりも小さいため、不適切である。
 しかし、拡張された信号帯域f’=40MHzを基準にサンプリング周波数fsを決定すると、サンプリング周波数fs=2.56GHz=40MHz×64となる。この場合、サンプリング周波数fs=2.56MHzが、搬送波周波数f=2GHzよりも大きいため適切である。
 また、帯域拡張部29によって拡張された信号帯域部分fB1,fB2は、実質的には、信号が存在しない部分である。したがって、図17に示すように、受信機3のバンドパスフィルタ32では、拡張前の信号帯域fを通過帯域とするものでよく、拡張された信号帯域f’全体が通過帯域となっていなくてもよい。
 しかも、拡張された信号帯域部分fB1,fB2を利用して、バンドパスフィルタ32のロールオフ(roll-off)を広くとることができるため、バンドパスフィルタ32の設計が容易となる。
[1.4 高調波の利用]
 ΔΣ変調器25の出力は、量子化信号(パルス信号)であるため、主信号成分のほか、折り返しによる高調波成分が存在する。
 この高調波成分を利用することで、送信機2側では、搬送波周波数f’及びサンプリング周波数fsを低く抑えつつ、受信機3側で受信される変調波の周波数を高くすることができる。
 例えば、受信機3にて受信したい周波数(受信周波数)fが、2GHzであったとする。これまでの説明した通信システム1のように高調波を利用しない場合には、送信機2側は、搬送波周波数(無変調波の周波数)fを2GHzとし、サンプリング周波数fsを2GHzよりも大きい値にする必要がある。
 しかし、図18に示すように、バンドパス型ΔΣ変調器25に対して、搬送波周波数f’の変調波を入力すると、バンドパス型ΔΣ変調器25の出力(量子化信号)は、搬送波周波数f’を中心とする主信号成分を有するだけでなく、折り返しによって、f=n×fs+f’(nは絶対値が1以上の整数)の高調波成分をも有している。
 この高調波成分を、受信機3側で積極的に受信させることで、送信機2側では、比較的低い周波数f’を対象に処理を行いつつも、受信機3側では、搬送波周波数f=n×fs+f’の高い周波数の変調波を受信することが可能となる。
 具体的には、受信機3側の受信周波数fを2GHzとした場合、受信機3のアナログバンドパスフィルタの通過帯域の中心周波数fcも2GHzに設定される。つまり、受信機3は、中心周波数fが2GHzの変調波を受信する。
 この場合、送信機2のバンドパス型Δ変調器25のサンプリング周波数fsを1.5GHz(<f)とすると、直交変調器24における搬送波(無変調波)の周波数f’は、
  f’=f-fs=2GHz-1.5GHz=500MHz
でよい。
 したがって、送信機2としては、実際には、中心周波数(搬送波周波数)f’が500MHzの変調波を扱いつつも、受信機3側からみると、送信機2は、あたかも、中心周波数(搬送波周波数)fが2GHzの変調波を送信しているものとみなすことができる。この結果、送信機2におけるサンプリング周波数よりも高い周波数の変調波を送信することが可能となる。
 図18に示す主信号成分を受信機3が所望する周波数(受信周波数)の信号として送信する場合、及び図18に示す高調波成分を受信機3が所望する周波数(受信周波数)の信号として送信する場合の両者についてまとめると、送信機2の直交変調器24において用いられる搬送波(無変調波)の周波数f’は、以下の式を満たすものとなる。
  f’=f-n×fs
 ただし、
  f  :受信機3側の受信周波数
  fs :バンドパス型ΔΣ変調器25のサンプリング周波数
  f’ :直交変調器24の搬送波(無変調波)の周波数
  n  :整数
 上記式において、n=0の場合が、図18に示す主信号成分を受信機3が所望する周波数(受信周波数)の信号として送信する場合となり、それ以外の場合が、図18に示す高調波成分を受信機3が所望する周波数(受信周波数)の信号として送信する場合となる。
 nが大きくなると、高調波成分は徐々に小さくなるため、n=±1(特にn=1)が好ましい。
 また、受信機3のアナログバンドパスフィルタ32の通過帯域の中心周波数fcは、以下の式を満たすものとなる。
  fc=f’+n×fs
 ただし、
  fc  :アナログバンドパスフィルタ32の通過帯域の中心周波数
  fs :バンドパス型ΔΣ変調器25のサンプリング周波数
  f’ :直交変調器24の搬送波(無変調波)の周波数
  n  :整数
 上記式においても、n=0の場合が、図18に示す主信号成分を受信機3が所望する周波数(受信周波数)の信号として送信する場合となり、それ以外の場合が、図18に示す高調波成分を受信機3が所望する周波数(受信周波数)の信号として送信する場合となる。
 nが大きくなると、高調波成分は徐々に小さくなるため、n=±1(特にn=1)が好ましい。
[1.5 無線基地局装置への適用]
 図19は、前述の通信システム1を利用した無線基地局装置41の実施形態のバリエーションを示している。
 図19に示す無線基地局装置41は、基地局本体42と、基地局本体42に信号伝送路(光伝送路又は電気伝送路)44を介して接続されたリモートレディオヘッド(Remote Radio Head)43と、を備えている。
 リモートレディオヘッドを有する無線基地局装置41では、基地局本体42を建物内部に設置しつつ、アンテナ35を有するリモートレディオヘッド43を建物屋上に設置することができ、設置の自由度が高い。
 ここで、従来の無線基地局装置では、基地局装置本体は、デジタル領域のベースバンド信号処理や制御・管理などを行う無線装置制御部(REC;Radio Equipment Control)として構成され、リモートレディオヘッドは、アナログ領域の無線信号処理(変調及び増幅など)を行う無線装置(Radio Equipment)として構成されている。
 また、従来の無線基地局装置では、基地局本体(REC)から、伝送路を介して、リモートレディオヘッド(RE)へ送信されるのは、デジタルベースバンド信号であった。したがって、リモートレディオヘッド(RE)は、基地局本体(REC)から送信されてきたデジタルベースバンド信号を変調(直交変調)する回路が必要とされる。しかも、無線基地局装置では、一台の基地局本体(REC)に、複数のリモートレディオヘッドが、並列又は直列に接続されることがあり、この場合、それぞれのリモートレディオヘッドに直交変調回路が必要となる。
 これに対し、本実施形態の無線基地局装置41では、図19に示すように、基地局本体42に、本実施形態の通信システム1における送信機2を備え、リモートレディオヘッドに、本実施形態の通信システム1における受信機3を備えている。
 従来の基地局本体では、本実施形態の送信機2におけるベースバンド部23から出力された信号を光パルス信号にして送信することになるが、本実施形態の基地局本体42では、デジタル信号処理部21として直交変調器24及びバンドパス型ΔΣ変調器25を備えていることで、直交変調された変調波(RF信号)が量子化信号(光パルス)信号によって送信される。
 したがって、受信機3を備えるリモートレディオヘッド43では、基地局本体42から受信した信号を変調(直交変調)する必要がなく、リモートレディオヘッドの回路規模を小さくできる。これは、一台の基地局本体42に、複数のリモートレディオヘッド43が(並列又は直列に)接続される場合に特に有利である。
 なお、アンテナ35にて受信した変調波(RF信号)に対しては、リモートレディオヘッド43にて、ΔΣ変調(バンドパスΔΣ変調)を行い、基地局本体42に送信される。
 図19(a)~(d)において、基地局本体42の構成は共通している。基地局本体42は、本実施形態の送信機2としての機能のほか、無線基地局装置41として必要なその他の機能を備える。
 図19(a)のリモートレディオヘッド43は、アナログバンドパスフィルタ32から出力されたアナログの変調波(RF信号)を、増幅器を介さずに、アンテナ35から出力するように構成されている。さほど高い無線出力が要求されない場合には、このような接続の仕方も可能である。
 図19(b)のリモートレディオヘッド43は、アナログバンドパスフィルタ32から出力されたアナログの変調波(RF信号)を、増幅器(アナログ増幅器)36にて増幅して、アンテナ35から出力する。この場合、増幅器36にてアナログの変調波が増幅されるため、高い無線出力が得られる。
 図19(c)のリモートレディオヘッド43は、アナログバンドパスフィルタ32を通過する前の量子化信号(1bitパルス信号)を、デジタル増幅器37(S級の増幅器)にて増幅してから、アナログバンドパスフィルタ32を通過させて増幅されたアナログの変調波(RF信号)を得る。デジタル増幅器37は、量子化信号(1bitパルス信号)を、そのまま増幅する。デジタル増幅器37は、飽和状態で動作するため高効率である。
 図19(d)のリモートレディオヘッド43は、図19(c)のリモートレディオヘッド43におけるアナログバンドパスフィルタ32を省略したものに相当する。図19(d)のリモートレディオヘッドのアンテナ35は、RF信号(変調波)の中心周波数(搬送波の周波数)付近以外の帯域の信号の通過を阻止する特性を有している。つまり、アンテナ35が、アナログバンドパスフィルタ32と同様の機能を有しており、アナログバンドパスフィルタ32を兼ねている。
 図19(d)のリモートレディオヘッド43では、デジタル増幅器37にて増幅された量子化信号(1bitパルス信号)は、アンテナ35のバンドパスフィルタ機能によって、帯域制限されることでアナログ変調波となって、アンテナ35から無線波として放射される。
 なお、高い出力が要求されない場合においては、図19(d)においても、図19(a)のように、増幅器37を省略してもよい。この場合、増幅器37及びバンドパスフィルタ32の双方を省略することになり、有利である。
 ここで、本実施形態及び従来の無線基地局装置において、基地局本体からリモートレディオヘッドに送信される信号の伝送速度について考察する。
 LTEの場合、例えば、IQベースバンド信号の信号帯域幅f=5MHzであり、IQベースバンド信号のサンプリング速度=7.68MS/sであり、I信号が20bit、Q信号が20bitである。したがって、デジタルIQベースバンド信号をシリアルで、基地局本体からリモートレディオヘッドに送信するためのサンプリング速度は、(20bit+20biti)×7.68MS/s=307.2MS/sとなり、このサンプリング速度が伝送速度となる。
 一方、本実施形態の無線基地局装置41では、サンプリング速度は、IQベースバンド信号の信号帯域幅f=5MHzの64倍程度で良いため、320MS/sとなり、このサンプリング速度が伝送速度となる。この場合、搬送波周波数は、320MHz以下であれば自由に選択でき、図18に示すように、高調波を利用する場合には、320MHz以上の搬送波周波数も選択できる。
 このように、従来の無線基地局装置では、307.2Mb/sの伝送速度でIQベースバンド信号を伝送することになるのに対し、本実施形態の無線基地局装置41では、従来とほぼ同程度の320Mb/sという伝送速度で、変調波伝送(RF信号伝送)が行えるため、有利である。
[第2章 バンドパス型ΔΣ変調器の周波数制御]
[2.1 システム構成]
 図22は、本発明の一実施形態に係る送信機200を示すブロック図である。この送信機200は、デジタル信号処理部21と、アナログフィルタ132と、アナログフィルタ132に接続された増幅器133と、増幅器133の出力端に接続された送信用アンテナ134とを有している。
 デジタル信号処理部21は、搬送波を用いる帯域伝送方式のアナログ信号(変調波)であるRF(Radio Frequency)信号を表現するデジタル信号(1bit量子化信号:1bitパルス列)を出力する。RF信号は、無線波として空間に放射されるべき送信信号であり、例えば、移動体通信のためのRF信号、テレビ/ラジオなどの放送サービスのためのRF信号である。
 デジタル信号処理部21による出力は、アナログフィルタ(バンドパスフィルタ又はローパスフィルタ)132に与えられる。1bitパルス列が表現するアナログ信号は、RF信号以外のノイズ成分も含んでいる。そのノイズ成分は、アナログフィルタ132によって除去される。
 1bitパルス列は、アナログフィルタ132を通過するだけで、純粋なアナログ信号となる。
 アナログフィルタ132から出力されるアナログRF信号は、送信用アンテナ134に与えられて空間に放射される。なお、送信用アンテナ134が、アナログフィルタ132としての機能を有していてもよい。
 アナログフィルタ132として、バンドパスフィルタを用いるか、ローパスフィルタを用いるかは、RF信号の周波数によって、適宜決定される。
 なお、デジタル信号処理部21が、バンドパス型ΔΣ変調によって信号変換を行う場合には、アナログフィルタ132としてバンドパスフィルタが用いられ、ローパス型ΔΣ変調によって信号変換を行う場合には、アナログフィルタ132としてローパスフィルタが用いられる。
 デジタル信号処理部21とアナログフィルタ132との間の信号伝送路4は、回路基板に形成された信号配線であってもよいし、光ファイバー又は電気ケーブルなどの伝送線路であってもよい。また、信号伝送路4は、1bitパルス列を送信するための専用線である必要は無く、インターネットなどのパケット通信を行う通信ネットワークであってもよい。パケット通信を行う通信ネットワークを信号伝送路4として用いる場合、送信側(デジタル信号処理部21側)は、1bitパルス列を、ビット列に変換して、信号伝送路4に送信し、受信側(アナログフィルタ132側)が、受信したビット列を元の1bitパルス列に復元すればよい。
 デジタル信号処理部21は、信号伝送路4に対して、1bitパルス列を送信する送信機とみなすことができる。この場合、アナログフィルタ132を有する装置は、RF信号の受信機とみなすことができる。
 デジタル信号処理部21は、送信信号であるベースバンド信号(IQ信号)を出力するベースバンド部23と、ベースバンド信号の変調等を行う処理部24と、ΔΣ変調器25と、制御部135と、記憶部136とを備えている。
 ベースバンド部23は、IQベースバンド信号(I信号、Q信号それぞれ)をデジタルデータとして出力する。
 処理部24は、IQベースバンド信号に対してデジタル直交変調などの処理を行う。したがって、処理部24からは、多ビットのデジタルデータ(離散値)によって表現されたデジタル信号形式の信号が出力される。
 なお、処理部24における変調は、直交変調に限らず、変調波を生成するための他の方式の変調であってもよい。
 処理部24は、直交変調のほか、DPD(Digital Pre-distortion)、CFR(Crest Factor Reduction)、DUC(Digital Up Conversion)などの様々なデジタル信号処理を施す。処理部24からは、上述のような各種のデジタル信号処理によって生成されたRF信号が出力される。
 処理部24は、IQベースバンド信号を直交変調する上で当該IQベースバンド信号を搬送波に重畳(付加)するが、このときの搬送波周波数fは、後述するように制御部135の制御に基づいて設定される。つまり、処理部24からは、搬送波周波数fのデジタルのRF信号が出力される。
 なお、本実施形態では、処理部24が搬送波周波数fへの周波数変換を行う構成としたが、処理部24と、ΔΣ変調器25との間に、信号周波数を変換するための周波数変換部を設ける構成としてもよい。この場合、処理部24は、所定の中間周波数のデジタル信号を生成し、前記周波数変換部が、制御部135の制御に基づいて中間周波数のデジタル信号の周波数変換を行い、搬送波周波数fのデジタルのRF信号を出力する。
 処理部24から出力されるデジタルRF信号は、バンドパス型ΔΣ変調器(変換器)25に与えられる。なお、変換器25は、ローパス型ΔΣ変調器であってもよいし、PWM変調器であってもよい。
 ΔΣ変調器25は、入力信号であるRF信号に対して、ΔΣ変調を行って1bitの量子化信号(1bitパルス列)を出力する。ΔΣ変調器25から出力された1bitパルス列は、デジタル信号であるが、アナログRF信号を表現したものとなっている。
 ΔΣ変調器25から出力された1bitパルス列は、デジタル信号処理部21の出力信号として、デジタル信号処理部21から信号伝送路4へ出力される。
 ΔΣ変調器25が出力する量子化信号が信号伝送路4を通じてアナログフィルタ132に与えられると、アナログフィルタ132は、アナログのRF信号を出力する。
 アナログフィルタ132が出力するアナログのRF信号は、増幅器133を経て送信用アンテナ134に到達し、放射される。
 よって、アナログフィルタ132、増幅器133、及び送信用アンテナ134は、ΔΣ変調器25から出力された量子化信号をアナログのRF信号として送信する送信部を構成している。
 制御部135は、後述する搬送波周波数の制御などの制御機能を有しており、デジタル信号処理部21における各部、及びアナログフィルタ132を制御する。
 記憶部136は、制御部135や、処理部24、ΔΣ変調器25、アナログフィルタ132がアクセス可能である。記憶部136は、後述する搬送波周波数の制御に必要な情報が記憶可能に構成されている。
 制御部135及び記憶部136の機能については、後に詳述する。
[2.2.ΔΣ変調器について]
 ΔΣ変調器25は、[1.2 バンドパス型ΔΣ変調]にて説明したΔΣ変調器25と同様である。
 さらに、ΔΣ変調器25は、前述の式(3)に基づいて、zの値が変換可能となっている。つまり、ΔΣ変調器25は、量子化雑音阻止帯域の中心周波数を変更可能となっている。換言すると、量子化雑音阻止帯域が変更可能となっている。
 制御部135は、ΔΣ変調器25に入力される信号の中心周波数(デジタルRF信号の搬送周波数f)に応じて、前述の式(3)に基づいてΔΣ変調器25のzを変換することにより、任意の周波数の信号に対して、バンドパス型ΔΣ変調が行える。
 このように、RF信号の搬送周波数fに応じて、上記変換式(3)におけるcosθ(係数a)を変更することで、サンプリング周波数fsを変更することなく、任意の周波数fに対応したバンドパスΔΣ変調が行える。cosθを変更すると、式(1)に示すNTFの係数が変更されたことになるが、式の次数は維持される。このため、RF信号の搬送波周波数fに応じて、バンドパス型ΔΣ変調器25の構成を変化させても、式の複雑度(次数)は変化せず、したがって、バンドパス型ΔΣ変調器25における信号処理負荷も変化しない。
 このように本実施形態では、搬送波周波数fを変化させても、バンドパス型ΔΣ変調器25における信号処理負荷が変化しないため有利である。本実施形態において、バンドパス型ΔΣ変調器25における信号処理負荷は、ナイキストの定理により、信号帯域幅によって決定されるサンプリング周波数fsに依存するが、搬送波周波数fを変化させても信号帯域幅が変化するわけではないためサンプリング周波数fsを変更する必要はない。なお、ΔΣ変調器がローパス型である場合、搬送波周波数fの変化に対応するには、サンプリング周波数fsを変更する必要があり、この点において、バンドパス型が有利である。
 また、式(3)を利用すると、ΔΣ変調器25を任意の周波数(f)に対応できるバンドパス型ΔΣ変調器として利用できるだけでなく、ローパス型ΔΣ変調器として利用することもできる。つまり、ΔΣ変調器25は、ローパス型とバンドパス型とに切り替え可能となっている。
 以上のように、制御部135と、バンドパス型ΔΣ変調器25とは、所望の搬送波周波数の変調波に対してバンドパス型ΔΣ変調を行うことができる信号処理装置を構成している。
[2.3 搬送波周波数の制御について]
 制御部135は、上述のように、ΔΣ変調器25による量子化雑音阻止帯域の中心周波数を変更し制御する機能を有している他、アナログフィルタ132の中心周波数、及び通過帯域を制御する機能も有している。
 また、制御部135は、搬送波周波数fを決定するとともに、処理部24を制御し、処理部24から出力されるデジタルRF信号の搬送波周波数fを調整する機能を有している。
 記憶部136には、制御部135が決定する搬送波周波数fを示す情報である周波数情報が記憶されている。
 制御部135は、処理部24に記憶部136を参照させて、当該制御部135が決定した搬送波周波数fを示す周波数情報を取得させる。処理部24は、記憶部136から搬送波周波数fを示す周波数情報を取得すると、これに基づいて直交変調を行う。
 図23は、処理部24におけるIQベースバンド信号の直交変調に関する機能を説明するための図である。図に示すように、IQベースバンド信号が与えられる処理部24は、I成分に搬送波周波数fの余弦波を乗算する第1乗算器224aと、Q成分に搬送波周波数fの正弦波を乗算する第2乗算器224bと、これら両成分を加算する加算器224cとを備えている。
 処理部24は、直交変調の際にIQベースバンド信号の各成分ごとに搬送波周波数fの信号波を重畳することで、搬送波周波数fのデジタルRF信号を出力する。
 以上のようにして、制御部135は、処理部24を制御し、当該処理部24が出力するデジタルRF信号の搬送波周波数fを設定する。
 また、制御部135は、ΔΣ変調器25に記憶部136を参照させて、当該制御部135が設定した搬送波周波数fを示す周波数情報を取得させ、搬送波周波数fであるRF信号の周波数帯域がΔΣ変調の量子化雑音阻止帯域に含まれるように、ΔΣ変調器25を制御する。
 ΔΣ変調器25は、記憶部136から周波数情報を取得すると、量子化雑音阻止帯域の中心周波数が、搬送波周波数fとなるように調整する。これによって、搬送波周波数fとされたRF信号は、ΔΣ変調器25のΔΣ変調の量子化雑音阻止帯域に含められる。
 制御部135は、アナログフィルタ132についても、ΔΣ変調器25と同様に、記憶部136を参照させて、当該制御部135が設定した搬送波周波数fを示す周波数情報を取得させて制御する。
 図22を参照して、制御部135は、搬送波周波数fを決定すると、処理部24、ΔΣ変調器25、及びアナログフィルタ132を制御し、決定した搬送波周波数fに基づいた処理を実行させる。
 つまり、制御部135は、決定した搬送波周波数fに基づいて、処理部24が出力するRF信号が搬送波周波数fとなるように調整する。また、制御部135は、ΔΣ変調器25における量子化雑音阻止帯域の中心周波数が搬送波周波数fとなるように調整する。さらに、制御部135は、アナログフィルタ132の中心周波数及び通過帯域を搬送波周波数fのRF信号を取り出し可能に調整する。
 以上のように、制御部135は、搬送波周波数fを所望の値に決定するとともに、決定した搬送波周波数fに基づいて処理部24、ΔΣ変調器25、及びアナログフィルタ132を制御して、任意の搬送波周波数のRF信号をアンテナ134から送信することができる。
 上記構成の送信機200によれば、搬送波周波数fであるRF信号がΔΣ変調の量子化雑音阻止帯域に含まれるように、制御部135がΔΣ変調器25を制御するので、所望の搬送波周波数の変調波としてのRF信号にバンドパス型ΔΣ変調を行うことができる。
 ここで、RF信号を送信する送信機では、一般に、VCO(Voltage Controlled Oscillator:電圧制御発振器)を用いて無線周波数の搬送波を生成する。
 図26は、VCOを用いた無線送信機の構成を示すブロック図である。この送信機は、ベースバンド信号をデジタル処理するためのデジタル信号処理部300を備えている。デジタル信号処理部300が出力するデジタル信号は、デジタルアナログコンバータ301によってアナログ信号に変換される。変換されたアナログ信号は、VCO(Voltage Controlled Oscillator:電圧制御発振器)302が供給する搬送波が重畳されることで周波数変換される。周波数変換されたアナログ信号は、RF信号としてアンプ303によって増幅され、アンテナ304から空間に放射される。
 上記送信機のように、RF信号を得るためにVCOを用いると、搬送波周波数として使用可能な周波数帯域が、VCOによって発振可能な周波数に制限されてしまう。
 この点、本実施形態の送信機200によれば、搬送波周波数fであるRF信号がΔΣ変調の量子化雑音阻止帯域に含まれるように、制御部135がΔΣ変調器25を制御するので、送信部としての後段に接続されたアナログフィルタ132や送信用アンテナ134において、周波数変換することなく、ΔΣ変調器からの量子化信号からRF信号を取り出して送信することができる。よって、VCOを用いる必要がなく、搬送波周波数fの設定の自由度を高めることができる。
 つまり、本実施形態の送信機200は、デジタル信号処理部21によるデジタル処理によって搬送波周波数fのRF信号を生成し、生成したRF信号を周波数変換することなく送信するので、VCOを用いる必要がない。この結果、VCOによって発振可能な周波数に制限されることなく、搬送波周波数fの設定の自由度を高めることができる。
 また、本実施形態の制御部135は、搬送波周波数fを決定する機能を備えているので、搬送波周波数fの決定、及び、これに応じたバンドパス型ΔΣ変調の量子化雑音阻止帯域の中心周波数の制御を制御部にて集約して行うことができる。
[2.4 周波数ホッピングについて]
 本実施形態の送信機200は、周波数ホッピングによって搬送波周波数fを決定する機能を備えている。
 制御部135は、搬送波周波数fを決定するために、記憶部136に記憶されている情報を参照する。
 図22のように、記憶部136には、搬送波周波数fを決定するために必要な情報として、複数の周波数情報と、これら複数の周波数情報を用いて周波数ホッピングを実行する際のホッピングパターンとが記憶されている。
 複数の周波数情報は、周波数ホッピングを適用する際に逐次変更するために予め定められた搬送波周波数fを示す情報である。複数の周波数情報は、送信機200が搬送波周波数fとして設定可能な周波数範囲の中から、互いに異なる周波数となるように設定されている。
 制御部135は、複数の周波数情報の中から一つの周波数情報を、搬送波周波数fとして選択、決定し、処理部24、ΔΣ変調器25、及びアナログフィルタ132を制御することで周波数ホッピングを実行する。
 ホッピングパターンは、複数の周波数情報が、周波数ホッピングを適用する際に逐次変更すべき複数の周波数情報を選択するためのパターンに対応づけられて登録されたものである。
 制御部135は、搬送波周波数fを決定する際、記憶部136に格納されたホッピングパターンを参照する。制御部135は、ホッピングパターンに基づいて、複数の周波数情報の中から一つの周波数情報を選択し、搬送波周波数fを決定する。
 制御部135は、ホッピングパターンにしたがって搬送波周波数fの決定を逐次行う。これによって、送信機200は、周波数ホッピングが適用された送信信号を送信する。
 なお、複数の周波数情報及びホッピングパターンは、予め定められており、送信機200による送信信号を受信する受信機との間で共有されている。
 複数の周波数情報及びホッピングパターンを共有することで、前記受信機は、送信機200が送信する周波数ホッピングが適用された送信信号を受信することができる。
 本実施形態の送信機200は、上述のように、VCOを用いることなく搬送波周波数fを調整することができる。よって、搬送波周波数fがVCOにより発振可能な周波数の範囲に制限されることがない。
 VCOが発振可能な信号周波数の上限は一般に5GHz程度であるため、上記従来の送信機では、5GHz程度の帯域内でホッピングのための周波数情報を設定する必要がある。
 一方、本実施形態の送信機200では、VCOを用いることなく、デジタル信号処理部21から出力された量子化信号を周波数変換することなくアナログフィルタ132及びアンテナ134等を介してRF信号として放射する。
 放射されるRF信号の搬送波周波数fは、デジタル信号処理部21が備える処理部24によって、デジタル処理によって調整される。
 したがって、搬送波周波数fは、デジタル信号処理部21が発生可能な周波数の範囲で調整することができる。デジタル信号処理部21を構成しているデジタル回路が発生可能な周波数は、VCOの一般的な上限である5GHz程度よりも高く、搬送波周波数fは、VCOを用いた場合よりも広帯域の範囲で設定することができる。
 ただし、周波数情報が示す搬送波周波数fは、ΔΣ変調器25のサンプリング周波数fsの範囲内で設定される。搬送波周波数fが、ΔΣ変調器25のサンプリング周波数fsを超えると、量子化信号から得られるRF信号が精度良く再現されないおそれがあるからである。
 図24(a)は、周波数ホッピングを適用したときのΔΣ変調器25による出力の周波数スペクトルの波形図の一例である。図例では、0Hz~6GHzの範囲の内、搬送波周波数fは、図中、ひし形のマーク1で示す周波数位置である800MHzに設定されている。つまり、800MHzにおいて見られる電力ピーク部分は、信号が重畳されているRF信号の周波数である。
 搬送波周波数fに応じて、ΔΣ変調器25の量子化雑音阻止帯域の中心周波数も800MHzに設定されている。このため、800MHzにおいて見られる帯域の両側には、極端に電力値が低下している部分が見られる。
 なお、他の部分においても、電力ピーク部分が見られるが、これらは、800MHzにおいて重畳されているRF信号の高調波が現れたものである。
 図24(b)は、図24(a)における搬送波周波数f近傍の帯域を拡大した図である。図において、800MHzを中心に信号(RF信号)が重畳されている。
 図24では、RF信号の搬送波周波数fを800MHzに設定した場合を例示したが、図24(a)に現れている高調波を利用して搬送波周波数fを設定することもできるし、搬送波周波数fを、例えば、6GHzまでの範囲で任意の周波数に設定することもできる。また、より高い周波数を発生可能な場合、図24に示す帯域よりもさらに広い帯域内から設定することもできる。
 このように、周波数ホッピングによって搬送波周波数fを決定する制御部135は、搬送波周波数fの設定の自由度が高められ、より広範囲の周波数帯域から搬送波周波数fを設定することができることによって、より広範な範囲の中から複数の周波数情報を設定することができる。この結果、搬送波周波数の設定範囲が制限されるVCOを用いた場合と比較して、搬送波周波数fをより広帯域に拡散させることができ、耐障害性が高く、かつ通信の秘匿性に優れた周波数ホッピングを実現することができる。
 さらに、搬送波周波数fをより広帯域に拡散させることができるので、多重化したとしても帯域の重複の可能性が低く、多ユーザでの利用が容易となる。
[2.5 他の実施形態について]
 上記実施形態では、制御部135が周波数ホッピング適用のために用いる複数の周波数情報及びホッピングパターンを記憶部136に記憶した場合を例示したが、これら複数の周波数情報及びホッピングパターンは、第三者に認知されてしまうと、通信の秘匿性が維持できなくなる重要な情報である。
 そこで、複数の周波数情報及びホッピングパターンが、第三者に認知されてしまうのを防止するために、記憶部136を、電力の供給が絶たれると記憶している情報が消去される揮発性の記憶部によって構成してもよい。記憶部136は、複数の周波数情報及びホッピングパターンを記憶可能に構成されている。
 図26に示す送信機のように、VCOを用いた場合、VCOがアナログ回路なので、周波数ホッピングを実現するには、VCOを含むハードウェアの調整や設定が必要となる。このため、リバースエンジニアリングによって、第三者に周波数情報やホッピングパターンが認知されるおそれがある。
 この点、本実施形態では、デジタル信号処理部21が、RF信号の搬送波周波数fを決定し、調整することができるので、デジタル処理の中でRF信号の搬送波周波数fの決定及び調整を行うことができる。
 したがって、複数の周波数情報及びホッピングパターンが外部から与えられて記憶部136(図22)に情報として記憶しておけば、制御部135は、ハードウェアの調整等を行うことなく、記憶された情報に基づいて周波数ホッピングを行うことができる。また、この記憶部136を揮発性の記憶部によって構成したとしても、制御部135は、同様に周波数ホッピングを行うことができる。
 ここで、本実施形態では、記憶部136が上述の揮発性の記憶部によって構成されているので、仮に、送信機200が第三者によって分解されたとしても、送信機200の電源が停止し、記憶部136への電力の供給が絶たれれば、記憶していた複数の周波数情報及びホッピングパターンは消去される。これにより、第三者がリバースエンジニアリングによって、周波数情報及びホッピングパターンが認知されるのを防止でき、通信の秘匿性を維持することができる。
 また、上記実施形態の送信機200では、記憶部136の電力の供給が絶たれれば、周波数情報及びホッピングパターンが第三者に認知されるのを防止できるので、例えば、陸上を走行する車両や飛行機等の移動体(推進装置付きの移動体)に搭乗している搭乗者と、移動体の外部に位置する者との間で、秘匿通信を行う場合に好適に用いることができる。
 この場合、移動体が、上記実施形態の送信機200と、送信機200による送信信号を受信可能な受信機を搭載する。また、移動体の外部に位置する者も移動体と同様に送信機200及び前記受信機を備える。
 仮に、移動体に搭載された送信機200が、第三者によって取得されたとしても、当該送信機200が壊れ記憶部136への電力の供給が絶たれていれば、周波数情報及びホッピングパターンが第三者に認知されことはない。よって、送信機200が第三者に取得された場合にも通信の秘匿性を維持することができる。
 また、移動体を外部から遠隔制御する際に、制御に必要な制御情報を送受信するための通信手段として、上記実施形態の送信機200を用いることもできる。
 図25は、上記実施形態の送信機200を搭載した、遠隔制御によって操縦可能な飛行機を示す図である。図中、飛行機140は、例えば地上に位置する制御装置150から送信される制御情報を受信することで遠隔制御される。
 飛行機140は、当該飛行機140の操縦制御を行う操縦制御部141と、上記実施形態の送信機200と、外部としての制御装置150から与えられる制御情報を受信する受信機142と、アンテナ143とを備えている。
 なお、制御装置150も、上記実施形態の送信機200を備えている。また、飛行機140の送信機200から送信される周波数ホッピングが適用された送信信号を受信可能な受信機を備えている。
 飛行機140の受信機142は、制御装置150からの制御情報を受信すると、この制御情報を操縦制御部141に与える。操縦制御部141は、制御情報に基づいた処理を行うとともに、この制御情報に対する応答情報(例えば、飛行機140の現在位置や、速度、周囲の状況等)を送信機200に与える。応答情報が与えられた送信機200は、当該応答情報を周波数ホッピングにより制御装置150に向けて送信する。
 以上のようにして、飛行機140は、制御装置150との間で相互に通信を行うことで遠隔制御される。
 この場合も、飛行機140に搭載された送信機200は、制御装置150との間の通信における搬送波周波数fの設定の自由度が高められ、通信の秘匿性に優れた周波数ホッピングを行うことができる。
 また、仮に、飛行機140及び送信機200が第三者に取得されたとしても、送信機200が壊れる等して記憶部136への電力の供給が絶たれていれば、周波数情報及びホッピングパターンが第三者に認知されことはない。よって、飛行機140及び送信機200が第三者に取得された場合にも通信の秘匿性を維持することができる。
 通信に必要な複数の周波数情報及びホッピングパターンは、以下のようにして送信機200に与えられる。すなわち、起動する前の段階での飛行機140の送信機200において、揮発性の記憶部136(図22)は、複数の周波数情報及びホッピングパターンを記憶していない。
 飛行機140を遠隔操作するために送信機200を起動する場合、まず、記憶部136に、制御装置150と通信を行うために必要な、複数の周波数情報及びホッピングパターンが与えられる。複数の周波数情報及びホッピングパターンが与えられた記憶部136は、これらを記憶する。これによって、送信機200は、記憶部136に記憶された周波数情報及びホッピングパターンを利用することで、制御装置150と通信可能となる。
 その後、飛行機140に故障が生じ、送信機200が壊れる等して記憶部136への電力の供給が絶たれれば、記憶部136が記憶していた複数の周波数情報及びホッピングパターンは消去される。この場合、記憶部136に対して再度電力を供給したとしても、複数の周波数情報及びホッピングパターンは消去されてしまっているので、飛行機140及び送信機200が第三者に取得された場合にも通信の秘匿性を維持することができる。
 なお、上記実施形態では、移動体としての飛行機140を遠隔制御する場合を例示したが、例えば、ミサイル等、発射すれば、元の位置には戻って来ず、壊れる確率の高い移動体に好適に搭載することができる。
 また、第2章における制御部135及び記憶部136は、他の章における装置・システム等にも用いることができる。
[第3章 ΔΣ変調によるRF伝送]
[3.1 RF信号伝送システム(放送システム)]
 図27は、放送システムを示している。この放送システムは、無線放送サービスのためのRF信号を、信号伝送路4を介して、伝送するRF信号伝送システム400を利用している。
 RF信号伝送システム400は、視聴者(テレビ受信機)に対する放送サービスの提供に用いられる。また、RF信号伝送システム400は、放送サービスのためのRF信号を遠隔地にある放送設備405,405に伝送するために用いられる。
[3.2 視聴者に対する放送サービスの提供]
 図27に示す放送システム(RF信号伝送システム400)は、地上デジタルテレビ放送のための放送用RF信号を送信する放送設備(第1装置)402を備えている。放送システム(RF信号伝送システム400)は、視聴者側の装置として、信号出力装置(第2装置)403を備えている。
 放送設備402は、従来のテレビ放送局の放送設備と同様の機能を有している。つまり、放送設備402は、放送コンテンツ(テレビスタジオ402aで撮影されたコンテンツ又はコンテンツ記憶部に記憶された放送コンテンツ)の映像信号/音声信号を、搬送波で変調して、RF信号に変換する。RF信号は、アンテナ402cから、電波として放射される。
 アンテナ402cから放射された電波(RF信号)は、アンテナ402cが設置された地域Aにあるテレビ受信機407A,407Aにて受信可能である。つまり、放送設備402は、地域Aにおいて、RF信号を電波として送信して、無線放送サービスを地域Aの視聴者に提供することができる。
 放送設備402は、このような従来の放送設備と同様の機能だけでなく、RF信号伝送システム400を用いて、地域A外(アンテナ402cの電波が届く範囲外)へも、信号伝送路4(4a,4b,4c,4d)を介して、RF信号を送信することができる。
 図28に示すように、放送設備402は、RF信号伝送システム400のための送信装置(第1装置)を備えている。送信装置(第1装置)は、デジタル信号処理部21を備えている。また、放送設備402は、従来の放送設備と同様の無線放送を行うための無線送信機60を備えている。
 デジタル信号処理部21は、RF信号を、デジタル信号である量子化信号(パケット化された量子化信号)で表現するための処理を行い、生成された量子化信号を出力する。デジタル信号処理部21から出力された量子化信号は、量子化信号の出力部である電気-光変換器(光リンク)22によって、光伝送路4aに出力される。
 本実施形態のRF信号伝送システム400において、光伝送路4aには、デジタル化されたRF信号としての量子化信号が送信される。RF信号をデジタル化する場合、一般的には、RF信号の周波数(搬送波周波数)よりも十分に高い周波数で、サンプリングする必要がある。例えば、RF信号の周波数が数百MHzであれば、数十GS/s程度の、非常に高速なサンプリング速度が必要となる。
 このため、RF信号をデジタル化して送信しようとすると、非常に高速の伝送速度が要求されるか、又は、情報量が非常に大きくなる。このため、従来は、非常に高い周波数のRF信号をデジタル化して送信することは、理論的にはありえても、現実的ではなかった。
 しかし、本実施形態のRF信号伝送システム400では、RF信号に対して、ΔΣ変調(特に、バンドパス型ΔΣ変調)が行われるため、RF信号の周波数にかかわらず、RF信号をデジタル化して送信することが、現実的に可能となっている。
 デジタル信号処理部21は、送信信号であるベースバンド信号(IQ信号)を出力するベースバンド部23と、ベースバンド信号を変調するデジタル変調器(直交変調器)24aと、処理部24bと、バンドパス型ΔΣ変調器25と、送信部(第1送信部)26と、を備えている。
 ベースバンド部23は、テレビスタジオ402a又はコンテンツ記憶部402bなどから取得したコンテンツの映像信号及び音声信号を取得する。ベースバンド部23は、取得した映像信号及び音声信号のIQベースバンド信号(I信号、Q信号それぞれ)をデジタルデータとして出力する。
 変調器24aは、IQベースバンド信号を、中間周波数の信号に変換する。変調器24aは、デジタル信号処理で直交変調を行うデジタル直交変調器として構成されている。したがって、直交変調器24aからは、多ビットのデジタルデータ(離散値)によって表現されたデジタル信号形式の信号(デジタルIF信号)が出力される。
 なお、変調波を生成する変調器24aとしては、直交変調器に限らず、変調波を生成するための他の方式の変調器であってもよい。
 変調器24aから出力されたIF信号は、デジタル信号処理部21における処理部24bに与えられる。また、変調器24aから出力されたIF信号は、無線送信機60にも与えられる。
 処理部24bは、IF信号に対して、DPD(Digital Pre-distortion)、CFR(Crest Factor Reduction)、DUC(Digital Up Conversion)などの様々なデジタル信号処理を施す。処理部24bからは、デジタル信号処理によって生成されたRF信号が出力される。
 RF信号の搬送波の周波数は、RF信号が地上デジタルテレビ放送用であれば、地上デジタルテレビ放送におけるチャンネルの周波数に設定される。
 なお、無線送信機60には、処理部24bから出力されたRF信号が与えられても良い。
 処理部24bから出力されたデジタルRF信号は、ΔΣ変調器25に与えられる。本実施形態のΔΣ変調器25は、バンドパス型ΔΣ変調器として構成されているが、ローパス型ΔΣ変調器であってもよい。
 ΔΣ変調器25は、RF信号に対して、ΔΣ変調を行って1bitの量子化信号(パルス信号)を出力する。バンドパス型ΔΣ変調器25は、その中心周波数が、前記搬送波の周波数と一致するように設定されている。
 なお、ΔΣ変調器25から出力される量子化信号は、1bitである必要はない。ΔΣ変調器25から出力される量子化信号は、ΔΣ変調器25に入力されたデジタルデータのビット数よりも少なければよい。
 ΔΣ変調器25から出力された量子化信号(ΔΣ変調信号)は、送信部26によって、信号送信の光伝送路4a(4)へ送信される。
 送信部(第1送信部)26は、デジタル化されたRF信号としての量子化信号(ΔΣ変調信号)を、パケット化し、パケットデータにして送信する。送信部26は、パケットの再送など、パケット通信に必要な処理を行う。
 また、送信部26は、受信側(信号出力装置403、又は後述の放送機405)に対して、必要な情報も、パケットデータに含めて送信する。送信部26が送信する情報には、量子化信号を受信した装置(信号出力装置403、又は放送機405)が、受信した量子化信号を、ΔΣ変調器25が出力した量子化信号(パルス状のΔΣ変調信号)と同じ波形(パルス波形)の信号として再現するための情報(再現情報)が含まれる。
 ΔΣ変調器25は、サンプリング周波数fsに応じたレートで、パルス状の量子化信号(ΔΣ変調信号)を出力する。このような量子化信号が示す量子化値だけを、単純に、パケットデータにすると、パケットデータには、量子化値を示すビット列が含まれるだけで、量子化信号のレートに関する情報が欠落する。そこで、送信部26は、パケット化された量子化信号の受信側(信号出力装置403、又は放送機405)において、量子化値を示すビット列から、ΔΣ変調器25が出力したパルス状のΔΣ変調信号を再現できるように、パケットデータに、再現情報を含めて送信する。
 再現情報には、例えば、ΔΣ変調器25におけるサンプリング速度(サンプリング周波数)を示す情報(サンプリング速度情報)が含まれる。量子化信号が示す量子化値を、サンプリング速度に対応した速度でパルス化すれば、ΔΣ変調器25が出力したパルス状のΔΣ変調信号を再現することができる。
 また、量子化信号が、多ビットである場合、再現情報には、量子化信号のビット数を示す情報を含めても良い。
 なお。再現情報が、受信側(信号出力装置403、又は放送機405)において既知の場合には、送信部26は、再現情報を送信する必要はない。
 また、デジタル化されたRF信号としての量子化信号が、1bit又は多bitのパルス信号としての信号波形を維持したまま、光伝送路4aに送信される場合、受信側(信号出力装置403、又は放送機405)にて信号の再現の必要がないため、再現情報の送信は、必要とされない。
 送信部26から出力されたパケットデータは、電気-光変換器(光リンク)22によって、光信号に変換され、光伝送路4aへ送出される。光伝送路4aは、インターネットに接続されている。つまり、パケットデータは、信号伝送路であるインターネット4を介して、伝送される。
 なお、電気-光変換器(光リンク)22は、放送設備402における送信装置とは別の装置として設けても良い。
 本実施形態のRF信号伝送システム400では、デジタル化されたRF信号としての量子化信号が、パケット化されているため、インターネット4のようにパケット通信を行う通信ネットワークを信号伝送路として活用できる。
 デジタル化されたRF信号の伝送を、専用線として構成された信号伝送路での伝送、又は、回線交換方式の信号伝送路での伝送、によって行っても良いが、この場合、信号伝送路を占有して通信が行われるため、高コストになりやすい。
 これに対し、インターネット4のようにパケット通信を行う通信ネットワークを信号伝送路として活用でき、低コスト化が可能である。
 しかも、RF信号をΔΣ変調(特に、バンドパス型ΔΣ変調)によってデジタル化したため、比較的少ない情報量となっていることからも、パケット通信に適したものとなっている。
 なお、パケット化が不要な信号伝送路(専用線など)を用いる場合、送信部26におけるパケット化の機能は省略できる。
 パケット通信の場合、信号伝送路4の伝送速度は保証されないため、ΔΣ変調器25から出力された量子化信号を、パルス信号としての信号波形を維持したまま、信号伝送路4に送信することはできないが、前述の再現情報の交換によって、受信側(信号出力装置403、又は放送機405)は、パケット化された量子化信号からでも、ΔΣ変調器25が出力したパルス状のΔΣ変調信号を再現することが容易となっている。
 また、パケット通信ではなく、信号伝送路を占有した通信であっても、信号伝送路4の伝送速度が、ΔΣ変調器25から出力された量子化信号をそのまま伝送するのに十分でない場合(ΔΣ変調器25のサンプリング速度(1/fs)よりも信号伝送路4の伝送速度が低い場合)、量子化信号を、信号伝送路4で伝送できる程度に低速の信号に変換する必要がある。この場合であっても、前述の再現情報の交換によって、受信側(信号出力装置403、又は放送機405)は、低速に変換された量子化信号からでも、ΔΣ変調器25が出力したままの量子化信号を再現することが容易となっている。
 ここで、図28に示す放送設備402における無線送信機60は、DAコンバータ(DAC)61と、周波数変換器62と、パワーアンプ63と、を備えている。DAコンバータ61は、デジタル変調器から出力されたデジタル信号(IF信号)を、アナログ信号に変換する。周波数変換器62は、アナログIF信号に対して、RF信号にするための周波数変換を行う。パワーアンプ63は、RF信号を増幅し、放送設備402のアンテナ402cに出力する。なお、DAコンバータ61にRF信号が与えられる場合、周波数変換器62は省略することができる。
 また、放送設備402が無線放送を行わない場合、無線送信機60及びアンテナ402cは省略してもよい。この場合、放送設備402は、実質的に、高コスト化を招くアナログ回路を有さず、大部分が、デジタル信号処理部21によって構成されるため、放送設備402の低コスト化が可能である。
 また、既存の無線放送可能な放送設備402に、RF信号伝送システム400用の送信装置(第1装置)2を追加で設ける場合にも、デジタル信号処理部21等を設けるだけで足り、比較的低コストですむ。
 放送設備402のアンテナ402cから放射された電波は、その電波が届く範囲(地域A)内の受信機407Aでしか受信できない。
 これに対し、放送設備402から、信号伝送路(インターネット)4に送信された量子化信号は、地域A内だけでなく、インターネット接続可能な世界中のあらゆる地域・国にて受信可能である。
 図27では、地域Aの放送設備(第1装置)2から送信された量子化信号(デジタル化されたRF信号)を、地域Bに設置されたテレビ受信機407Bにて、受信する様子を示した。信号伝送路4,4Bから送信された量子化信号は、信号出力装置(第2装置)403にて受信され、テレビ受信機407Bへ出力される。
 図29に示すように、信号出力装置(第2装置)403は、光-電気変換器(光リンク)431と、受信部432と、バッファ433と、出力部434と、スイッチ部435と、を備えている。
 なお、光-電気変換器431は、信号出力装置403とは別の装置として設けても良い。
 光-電気変換器(光リンク)431は、インターネット4に接続された光伝送路4bから送信されてきた光信号(パケットデータ;パケット化された量子化信号)を、電気信号に変換して出力する。
 受信部432は、電気信号に変換されたパケットデータのデパケット化を行い、パケットデータから、量子化信号(量子化信号の量子化値)及びその他の情報(再現情報)を抽出する。受信部432は、パケットの再送要求など、パケット通信に必要な処理を行う。
 なお、量子化信号がパケット化されていない場合、受信部432のデパケット化の機能は省略できる。
 受信部432にて受信された量子化信号は、(FIFO;First In First Out)型のバッファ433に一時的に保存される。また、受信部432にて受信した再現情報(サンプリング速度情報)は、出力部434に与えられる。
 受信した量子化信号を、バッファ433にて一時的に保存してから出力することで、信号伝送路の伝送速度が一定でなかったり、パケット欠落などがあったりしても、量子化信号を、切れ目なく、所定のレート(再現情報が示すサンプリング速度に応じたレート)で連続的に出力することができる。つまり、バッファ433を設けていることで、パケット通信で量子化信号を送信する場合や、信号伝送路4に速度保証がない場合であっても、対応できる。なお、信号伝送路4の伝送速度が、十分に高速であれば、バッファ433を省略することもできる。
 出力部434は、バッファ433に保存された量子化信号(量子化信号の量子化値)を、所定のレート(再現情報が示すサンプリング速度に応じたレート)のパルス信号として、出力する。
 つまり、出力部434から出力された量子化信号は、ΔΣ変調器25から出力された量子化信号の信号波形を再現したものとなる。
 なお、再現情報は、受信部432にて受信されたものを用いる必要はなく、信号出力装置403において予め設定されていてもよい。
 ΔΣ変調器(バンドパス型ΔΣ変調器)25から出力された量子化信号は、RF信号の搬送波周波数付近において、RF信号としての情報を保持している。したがって、出力部434から出力された量子化信号も、RF信号としての情報を保持している。
 このため、出力部434から出力された量子化信号を、テレビ受信機407BのRF信号入力として与えると、テレビ受信機407Bでは、量子化信号を、RF信号として受信することができる。つまりテレビ受信機407Bは、RF信号伝送システム400を介して伝送されたRF信号を、無線放送として送信されたRF信号と同様に受信できる。
 なお、量子化信号は、ΔΣ変調器25においてノイズシェイピングされた量子化雑音を有しており、この量子化雑音を除去してRF信号を取り出したい場合には、RF信号の搬送波周波数付近の周波数を通過させるバンドパスフィルタを用いる必要がある。ただし、テレビ受信機407Bなどの無線放送受信機が、不要な周波数の信号をカットするバンドパスフィルタを有していれば、信号出力装置403にバンドパスフィルタを設ける必要はない。
 もちろん、バンドパスフィルタを設けても良い。この場合、出力部434は、バンドパスフィルタを介して、テレビ受信機407Bに対して、量子化信号を出力すればよい。
 スイッチ部435は、出力部434から出力された量子化信号(RF信号)と、アンテナ438にて受信したRF信号(地域Bの放送設備から無線放送された電波)と、を選択的に、テレビ受信機407Bに与える。
 信号出力装置403は、アンテナ438が接続されるアンテナ端子436(例えば、同軸ケーブル用の端子)を有しており、アンテナ438にて受信したRF信号を、信号出力装置403へ入力可能となっている。スイッチ部435は、アンテナ438にて受信するRF信号と同一チャネル(周波数)のRF信号が、出力部434から出力される場合、混信を避けるため、いずれか一方のRF信号だけが、テレビ受信機407Bに与えられる。
スイッチ部435を、アンテナ438側に接続させるか、出力部434側に接続させるかは、いずれからの放送を優先して受信したいかによって、視聴者(ユーザ)によって、適宜設定される。
 混信のおそれがない場合には、アンテナ438からのRF信号と、出力部434からのRF信号とを、ともに、テレビ受信機407Bに与えても良い。
 なお、信号出力装置403にアンテナ438を接続しなくてもよい。
 なお、図29において、信号出力装置403は、テレビ受信機407Bとは別体の装置として構成されている。信号出力装置403におけるRF信号の出力端子437(例えば、同軸ケーブル用の端子)と、テレビ受信機407のアンテナ端子7B-1(例えば、同軸ケーブル用の端子)とが、同軸ケーブルなどのケーブルによって接続されることで、信号出力装置403とテレビ受信機407Bとが、一つの受信システムを構成している。
 これに対し、信号出力装置403を、テレビ受信機407Bに内蔵させた、一体型の受信システムとして構成してもよい。つまり、テレビ受信機としての機能及び信号出力装置403としての機能を一体的に有する受信システムとして構成してもよい。
 一体型の受信システムとして構成することにより、従来型テレビと同様な取り扱いで高機能化を図る事ができ、視聴者にとって技術導入のための負担とならない。
 本実施形態に係る信号出力装置403を用いると、放送設備402から遠く離れた地域・国であっても、インターネット経由で、放送設備402による放送サービスの提供を受けることができる。
 また、信号出力装置403は、難視聴地域対策にも用いることができる。つまり、放送設備402からの電波を受信できない地域では、信号出力装置403を用いることで、放送サービスをインターネット4経由で受けることができる。
 さらに、本実施形態のRF信号伝送システム400では、地域Aから地域BへのRF信号の伝送が、電波ではなく、有線の信号伝送路4で送信されるため、電波に関する法的な規制を受けない。
[3.3 遠隔地の放送設備への伝送]
 図27に示す放送システム(RF信号伝送システム400)において、放送設備402は、他の地域・国(図27の地域C,D)に設置された放送設備405,405に対して、デジタル化された放送用RF信号を送信するためにも用いられる。このため、放送システム(RF信号伝送システム400)は、他地域C,D用の放送設備405,405を備えている。
 地域C,Dの放送設備405,405は、地域Aの放送設備402から送信されたRF信号を受信して、受信したRF信号を、アンテナ455から、電波として放射する。これにより、放送設備405,405は、放送設備402から送信されたRF信号を、地域C,D内のテレビ受信機407C,407Dに受信させることができる。
 つまり、地域Aの放送設備402を放送サービスのための親設備とすると、地域C,Dの放送設備405,405は、子設備といえる。
 子設備である放送設備405,405は、放送機(以下、「放送機405」という)と、アンテナ455とを備えて構成されている。
 図30に示すように、放送機(第2装置)405は、光-電気変換器(光リンク)451と、受信部452と、バッファ453と、送信部(第2送信部)454と、を備えている。
 なお、光-電気変換器451は、放送機405とは別の装置として設けても良い。
 光-電気変換器(光リンク)451は、インターネット4に接続された光伝送路4c,4dから送信されてきた光信号(パケットデータ;パケット化された量子化信号)を、電気信号に変換して出力する。
 受信部452は、電気信号に変換されたパケットデータのデパケット化を行い、パケットデータから、量子化信号(量子化信号の量子化値)及びその他の情報(再現情報)を抽出する。受信部452は、パケットの再送要求など、パケット通信に必要な処理を行う。
 なお、量子化信号がパケット化されていない場合、受信部452のデパケット化の機能は省略できる。
 受信部452にて受信された量子化信号は、(FIFO;First In First Out)型のバッファ453に一時的に保存される。また、受信部452にて受信した再現情報(サンプリング速度情報)は、送信部454の出力部454aに与えられる。
 受信した量子化信号を、バッファ453にて一時的に保存してから出力することで、信号伝送路の伝送速度が一定でなかったり、パケット欠落などがあったりしても、量子化信号を、切れ目なく、所定のレート(再現情報が示すサンプリング速度に応じたレート)で連続的に出力することができる。つまり、バッファ453を設けていることで、パケット通信で量子化信号を送信する場合や、信号伝送路4に速度保証がない場合であっても、対応できる。なお、信号伝送路4の伝送速度が、十分に高速であれば、バッファ453を省略することもできる。
 送信部454は、出力部454aと、アナログフィルタ(バンドパスフィルタ)454bと、増幅器(パワーアンプ)454cと、を備えている。
 出力部454aは、バッファ453に保存された量子化信号(量子化信号の量子化値)を、所定のレート(再現情報が示すサンプリング速度に応じたレート)のパルス信号として、出力する。
 つまり、出力部454aから出力された量子化信号は、ΔΣ変調器25から出力された量子化信号の信号波形を再現したものとなる。
 なお、再現情報は、受信部452にて受信されたものを用いる必要はなく、放送機405において予め設定されていてもよい。
 バンドパスフィルタ(アナログバンドパスフィルタ)454bは、RF信号の搬送波周波数付近の周波数を通過させるバンドパスフィルタである。出力部454aから出力された量子化信号が、バンドパスフィルタ454bを通過すると、ΔΣ変調器25においてノイズシェイピングされた量子化雑音が除去される。つまり、バンドパスフィルタ454bからは、アナログRF信号が出力される。
 パワーアンプ454cは、バンドパスフィルタ454bから出力されたRF信号を増幅し、アンテナ455に出力する。これにより、放送設備405,405は、放送設備402から送信されたRF信号を、地域C,D内のテレビ受信機407C,407Dに受信させることができる。
 なお、アンテナ455が、バンドパスフィルタとしての特性を有している場合には、バンドパスフィルタ454bを省略してもよい。
 また、増幅器454cは、フィルタ454bの後段に設けるだけでなく、フィルタ454bの前段に設けても良い。フィルタ454bの前段に設けられる増幅器454cとしては、デジタル増幅器を採用できる。デジタル増幅器は飽和状態で動作するため高効率となる。フィルタ454bの前段に増幅器454cを設けた場合、フィルタ454bの後段の増幅器454cは省略してもよい。
 本実施形態に係る放送機(第2装置)405を用いると、親設備である放送設備(第1装置)402から遠く離れた地域・国であっても、インターネット4などの信号伝送路経由で、デジタル化されたRF信号を取得することができる。
 また、親設備である放送設備(第1装置)402にて、RF信号が既に生成されているため、子設備である放送機(第2装置)405,405においては、ベースバンド信号からRF信号を生成するための処理(直交変調、DPD,CFR,DUCなどのデジタル信号処理)を行う必要がない。したがって、子設備である放送機(第2装置)405,405の構成を、比較的簡素にできる。
 その結果、子設備である放送機(第2装置)405,405の低コスト化が可能である。低コスト化のメリットは、子設備である放送機(第2装置)405,405の数が多くなるほど、大きくなる。
 したがって、地域Aで無線放送されているコンテンツを、地域C,Dにおいて、無線放送にて新たに提供しようとした場合、低コストの放送機を設置すればよいため、地域C,Dにおける放送サービスの提供を低コストで開始できる。
[3.4.放送のグローバル化]
 本実施形態の放送システムを用いると、放送サービスを地域・国を超えて、グローバルに提供することが可能となる。
 例えば、地域Aと地域C,Dとに時差がある場合、地域Aでは夜間(放送が行われない時間帯)であるため、本来であれば放送設備402が休止するときに、放送設備402を有効的に活用することができる。例えば、地域Aでは夜間であるときに、放送設備402は、休止せずに、昼間(放送が行われる時間帯)である地域C,D向けに、RF信号を送信することで、放送設備402を有効活用できる。
 また、RF信号の提供を受ける地域C,Dでは、従来の高価な放送設備を設置しなくても、放送サービスを開始できるため、当該地域C,Dに、従来の高価な放送設備があまり設置されていない場合であっても、放送サービスの高度化が可能である。
 さらに、地域C,Dにおいても、親設備である放送設備402(無線送信機60は無くても良い)を設置すれば、地域C,Dから送信されたコンテンツを、地域Aなどの様々な地域で提供することができる。
 したがって、各国から送信された多様なコンテンツを、世界中の視聴者が視聴することが可能となる。
[3.5 バンドパス型ΔΣ変調]
 ΔΣ変調器25は、[1.2 バンドパス型ΔΣ変調]にて説明したΔΣ変調器25と同様である。
[3.6.帯域拡張]
 図31は、図28の放送設備402のデジタル信号処理部21に帯域拡張部29を追加したものを示している。
 帯域拡張部29は、[1.3 帯域拡張]にて説明した帯域拡張部29と同様である。その他、図31の放送設備402において、説明を省略した点については、図28のものと同様である。
[3.7 高調波の利用]
 第3章においても、[1.4 高調波の利用]にて説明した高調波成分を利用することができる。
 この高調波成分を利用することで、送信装置(第1装置)側では、搬送波周波数f’及びサンプリング周波数fsを低く抑えつつ、受信側(信号出力装置403、又は放送機405)で受信される変調波(RF信号)の周波数を高くすることができる。
[3.8 付記]
 前述の説明では、放送サービスとして、地上デジタルテレビ放送を例として説明したが、デジタルテレビ放送としては、衛星デジタルテレビ放送であってもよい。また、テレビ放送としては、アナログテレビ放送であってもよい。放送は、ラジオ放送であってもよい。さらに、本実施形態の信号伝送システムは、放送用RF信号以外のRF信号の伝送にも利用できる。
[第4章 量子化雑音によって生じる漏洩電力の抑制]
[4.1 無線機]
 図32は、実施形態に係る無線機501を示している。無線機501は、バンドパス型ΔΣ変調器25を備えたデジタル信号処理部(信号処理装置)21と、増幅器531と、バンドパスフィルタ532と、を有している。
 デジタル信号処理部21は、無線波としてアンテナから送出されるRF信号を表現するデジタル信号(量子化信号)を出力する。RF信号は、無線波として空間に放射されるべき信号であり、例えば、移動体通信のためのRF信号、テレビ/ラジオなどの放送サービスのためのRF信号である。
 デジタル信号処理部21から出力されたデジタル信号は、増幅器(例えば、デジタル増幅器)によって増幅され、ノイズシェイピングされた量子化雑音(ノイズ成分)を除去するアナログフィルタ(バンドパスフィルタ)532に与えられる。
 アナログフィルタ532から出力された信号は、アンテナから無線波として空間に放射される。
 デジタル信号処理部21は、RF信号によって送信される情報であるベースバンド信号(IQ信号)を出力するベースバンド部23と、デジタル直交変調などの処理を行う処理部24と、バンドパス型ΔΣ変調器25と、を備えている。
 ベースバンド部23は、IQベースバンド信号(I信号、Q信号それぞれ)をデジタルデータとして出力する。
 処理部24は、IQベースバンド信号に対してデジタル直交変調などの処理を行う。したがって、処理部24からは、多ビットのデジタルデータ(離散値)によって表現されたデジタル信号形式の信号が出力される。
 なお、処理部24における変調は、直交変調に限らず、変調波を生成するための他の方式の変調であってもよい。
 処理部24は、直交変調のほか、DPD(Digital Pre-distortion)、CFR(Crest Factor Reduction)、DUC(Digital Up Conversion)などの様々なデジタル信号処理を施すことができる。処理部24からは、上述のような各種のデジタル信号処理によって生成されたRF信号が出力される。
 処理部24から出力されたデジタルRF信号は、バンドパス型ΔΣ変調器25に与えられる。
 バンドパス型ΔΣ変調器25は、入力信号であるRF信号に対して、ΔΣ変調を行って1又は複数ビットの量子化信号を出力する。
[4.2 ΔΣ変調]
 ΔΣ変調器25は、[1.2 バンドパス型ΔΣ変調]にて説明したΔΣ変調器25と同様である。
[4.3 ΔΣ変調と漏洩電力]
 図33(a)に示すように、バンドパス型ΔΣ変調器25は、雑音伝達関数NTFが、バンドストップ型特性を持つ。したがって、バンドパス型ΔΣ変調器25は、量子化雑音を量子化雑音阻止帯域NS_BW外へ移動させて、量子化雑音阻止帯域内の量子化雑音を大きく低下させるノイズシェイピングを行うことができる。
 ここで、所望のOSRにおいて、サンプリング周波数fsを低く抑えるために、RF信号の信号帯域BWに基づいて、サンプリング周波数fsを、
 fs=(2×BW)×OSR
 の式に従って設定すると、雑音阻止帯域NS_BWは、信号帯域BWに一致することになる。
 一方、無線機が出力する信号(無線波)においては、図33(b)に示すように、信号帯域BW外へ漏れ出る漏洩電力が問題となることがあるため、法的規制又は規格において、信号帯域外の漏洩電力の大きさが規制される。
 例えば、3GPP TS 36.104 version 9.1.0 Release 9 p21 "Table 6.6.2.1-2: Base Station ACLR in unpaired spectrum with synchronized operation"では、隣接チャネル漏洩電力比(ACLR)に関し、隣接チャネルの中心周波数及び次隣接チャネルの中心周波数におけるACLRの制限(ACLR limit)が、それぞれ、45dBであると規定されている。
 RF信号に対してバンドパス型ΔΣ変調を行った場合、ΔΣ変調器25の出力スペクトラムは、RF信号としてのスペクトラムとなる。したがって、RF信号の信号帯域外に量子化雑音が存在するとは、無線波において問題となる信号帯域外への漏洩電力と同様の問題を生じさせる。つまり、RF信号の信号帯域近傍に量子化雑音が存在すると、その量子化雑音が、漏洩電力に重畳される。
[4.4 量子化雑音阻止帯域の設定例]
[4.4.1 第1例]
 量子化雑音が漏洩電力となることを防止するため、本実施形態のΔΣ変調器25では、雑音伝達関数NTFにおける量子化雑音阻止帯域NS_BWが、RF信号の使用帯域の帯域幅BWよりも大きく設定されている。したがって、図34に示すように、量子化雑音のほとんどは、RF信号の帯域幅BWよりも大きい量子化雑音阻止帯域(帯域幅NS_BW)の外に移動することになる。
 なお、量子化雑音阻止帯域NS_BWとは、量子化雑音のピーク値から3dB下がっている範囲の帯域(3dB帯域)である。
 図34の量子化雑音阻止帯域の帯域幅NS_BWは、RF信号の使用帯域の高周波数側及び低周波数側の両方で、RF信号の使用帯域よりも拡張されている。したがって、RF信号の使用帯域の外側であっても、RF信号の使用帯域の近傍においては、量子化雑音がほとんどなく、量子化雑音がRF信号帯域外の漏洩電力となることが抑制される。
 ここで、図34に示す第1例では、OSR=50、RF信号の帯域幅BW=5[MHz]、RF信号の中心周波数はfとする。また、第1例及び他の例において、RF信号を放射する無線機501が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される周波数範囲は、隣接チャネル(第1隣接チャネル:1stAC)及び次隣接チャネル(第2隣接チャネル:2ndAC)であるものとする。
 隣接チャネル(1stAC)とは、RF信号の使用帯域(帯域幅BW)の両側において隣接する帯域であって、RF信号の帯域幅BWと同じ帯域幅を持つものをいう。したがって、RF信号の使用帯域とその両側の隣接チャネル(1stAC)とを包含する最小の帯域幅は、BW×3(=15MHz)となる。
 また、次隣接チャネル(2ndAC)とは、2つの隣接チャネルそれぞれの外側に位置する帯域であって、RF信号の帯域幅BWと同じ帯域幅を持つものをいう。したがって、RF信号の使用帯域並びに隣接チャネル(1stAC)及び次隣接チャネル(2ndAC)を包含する最小の帯域幅は、BW×5(=25MHz)となる。
 図34では、RF信号を放射する無線機501が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される周波数範囲が、隣接チャネル(第1隣接チャネル:1stAC)及び次隣接チャネル(第2隣接チャネル:2ndAC)であることに対応して、量子化雑音阻止帯域の帯域幅NS_BWが、RF信号の両側の次隣接チャネル(2ndAC)までを包含する最小の帯域幅(BW×N=5MHz×5=25MHz)以上に設定されている。
ここで、Nは、RF信号の帯域幅BWに対する量子化雑音阻止帯域の帯域幅NS_BWの倍率である。N=5の場合、量子化雑音阻止帯域は、RF信号の帯域幅BWの5倍の帯域幅を持つことを意味する。
 第1例において、量子化雑音阻止帯域の帯域幅NS_BWは、(BW×N)=5MHz×7=35MHz以下であるのが好ましい。量子化雑音阻止帯域の帯域幅NS_BWを大きくすると、サンプリング周波数が大きくなってしまうため、(BW×7)以下に抑えることで、サンプリング周波数の増加を防止できる。
 図34のように、RF信号の使用帯域の帯域幅BW=5MHzではなく、隣接チャネル及び次隣接チャネルを含めた帯域幅(25MHz)を基準にサンプリング周波数(サンプリングレート)fsを決定する場合、fs=2×(BW×5)×OSR=2.5[GS/s]となる(N=5)。
 また、N=7の場合の35MHzを基準にサンプリング周波数(サンプリングレート)fsを決定する場合、fs=2×(BW×7)×OSR=3.5[GS/s]となる。
 なお、図34に示すRF信号において、RF信号を放射する無線機501が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される周波数範囲が、隣接チャネル(第1隣接チャネル:1stAC)だけである場合、量子化雑音阻止帯域の帯域幅NS_BWは、(BW×N)=5MHz×3=15MHz以上であるのが好ましい。この場合、量子化雑音阻止帯域の帯域幅NS_BWは、(BW×N)=5MHz×5=25MHz以下であるのがより好ましい。
[4.4.2 第2例]
 移動体通信等では、マルチキャリアが利用されることがある。具体的には、無線機が使用可能な通信帯域として複数の通信帯域(帯域幅SBW)が用意され、ユーザ無線機(移動体)の数の増減に応じて、使用する通信帯域の数を増減させることがある。
 図35は、5MHzの通信帯域(SBW=5MHz)を2個(複数)組み合わせて使用して合計10MHzの帯域幅BWをRF信号の信号帯域として使用する例を示している。この場合、RF信号の使用帯域(BW=10MHz)は、2個(複数)の通信帯域(SBW=5MHz)に跨っていることになる。
 図35に示すように、RF信号の使用帯域の帯域幅BWが10MHzとなった場合、隣接チャネル(1stAC)及び次隣接チャネル(2ndAC)それぞれの帯域幅も10MHzとなる。
 したがって、量子化雑音阻止帯域が、RF信号の両側の次隣接チャネル(2ndAC)までを包含しようとすると、量子化雑音阻止帯域の帯域幅NS_BWは、BW×N=10MHz×5=50MHz)以上となっていればよい。
 図35に示す第2例の場合も、サンプリング周波数の増大を抑えるため、量子化雑音阻止帯域の帯域幅NS_BWは、(BW×N)=10MHz×7=70MHz以下であるのが好ましい。
 図35において、隣接チャネル及び次隣接チャネルを含めた帯域幅(50MHz)を基準にサンプリング周波数(サンプリングレート)fsを決定する場合、fs=2×(BW×5)×OSR=5.0[GS/s]となる(N=5)。
 また、N=7の場合の70MHzを基準にサンプリング周波数(サンプリングレート)fsを決定する場合、fs=2×(BW×7)×OSR=7.0[GS/s]となる。
 なお、図35に示すRF信号において、RF信号を放射する無線機501が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される周波数範囲が、隣接チャネル(第1隣接チャネル:1stAC)だけである場合には、量子化雑音阻止帯域の帯域幅NS_BWは、(BW×N)=10MHz×3=30MHz以上であるのが好ましい。この場合、量子化雑音阻止帯域の帯域幅NS_BWは、(BW×N)=10MHz×5=50MHz以下であるのがより好ましい。
[4.4.3 第3例]
 第1例及び第2例では、量子化雑音阻止帯域の帯域幅NS_BWが、RF信号の帯域幅BWの5倍以上に設定されたものを示したが、第3例では、量子化雑音阻止帯域の帯域幅NS_BWが、RF信号の帯域幅BWの5倍未満に設定されたものを示す。
 つまり、第3例に係る量子化雑音阻止帯域の帯域幅NS_BWは、RF信号の使用帯域の両側の隣接チャネル(1stAC)及び次隣接チャネル(2ndAC)を包含する最小の帯域幅(BW×5)よりも狭い帯域幅を有している。
 なお、第3例においても、量子化雑音阻止帯域の帯域幅NS_BWは、RF信号の使用帯域の帯域幅BWよりも広い。
 図36(a)に示すように、第3例では、第2例と同様に、5MHzの通信帯域(SWB=5MHz)c,dを2個組み合わせて使用して合計10MHzの帯域幅BWが、RF信号の信号帯域として使用される。つまり、RF信号の使用帯域(BW=10MHz)は、2個(複数)の通信帯域(SBW=5MHz)に跨っている。
 前述の第2例においては、RF信号の帯域幅BWが第1例に比べて2倍になっていることから、量子化雑音阻止帯域の帯域幅NS_BWも第1例に比べて2倍になっている。この結果、第2例では、サンプリングレートも第1例に比べて2倍になっている。
 これに対し、図36に示す第3例の場合、第2例と同様に、RF信号の帯域幅BWが第1例に比べて2倍になっているものの、第3例の量子化雑音阻止帯域の帯域幅NS_BWは第1例の2倍未満になっている。したがって、第3例では、サンプリングレートも第1例の2倍未満でよく、サンプリングレートの増加を抑制できている。
 図36(b)(c)は、図36(a)に示す2個の通信帯域c,dそれぞれ単独を、使用帯域とみなしたものを示している。
 図36(b)に示すように、通信帯域c(帯域幅SBW=5MHz)がRF信号の使用帯域であるとみなした場合、RF信号並びに隣接チャネル(1stAC)及び次隣接チャネル(2ndAC)すべてを包含するために必要な帯域幅は、SBW×5=5MHz×5=25MHzとなる(図36(b)のa~eの範囲)。
 また、図36(c)に示すように、通信帯域d(帯域幅SBW=5MHz)がRF信号の使用帯域であるとみなした場合も、RF信号並びに隣接チャネル(1stAC)及び次隣接チャネル(2ndAC)すべてを包含するために必要な帯域幅は、SBW×5=5MHz×5=25MHzとなる(図36(b)のb~fの範囲)。
 通信帯域cと通信帯域dとは、別のキャリアであるから、漏洩電力の大きさが規制される範囲としては、図36(b)に示すa~eの範囲及び図36(c)に示すb~fの範囲で十分である。
 したがって、2個の通信帯域c,dを組み合わせてRF信号の使用帯域とする場合には、漏洩電力の大きさが規制される範囲としては、図36(a)に示すa~fの範囲で十分となる。
 つまり、RF信号の使用帯域(帯域幅BW=10MHzの両側に、それぞれ、通信帯域(帯域幅SBW=5MHz)の2倍の帯域を確保すると、2個の通信帯域c,dそれぞれを使用帯域とみなしたときの当該使用帯域c,dの両側の隣接チャネル(1stAC)及び次隣接チャネル(2ndAC)全てを包含する量子化雑音阻止帯域となる。
 この結果、量子化雑音阻止帯域の帯域幅NS_BW=BW+(4×SBW)=10MHz+(4×5MHz)=30MHz以上あれば、漏洩電力が問題となる隣接チャネル及び次隣接チャネルに応じた帯域幅を確保できる。
 したがって、第3例では、量子化雑音阻止帯域の帯域幅NS_BWは、(BW+(4×SBW))以上、(BW×5)未満とすることができる。
 より好ましくは、量子化雑音阻止帯域の帯域幅NS_BWは、(BW+(4×SBW))以上、(BW+(6×SBW))以下とすることができる。
 これは、量子化雑音阻止帯域の帯域幅NS_BWとして、範囲a~fを基本帯域としたときに、当該基本帯域の両側それぞれに一つの通信帯域(帯域幅SBW=5MHz)分の付加帯域を確保した帯域幅(BW+(6×SBW))以下としたものである。これにより、2個の通信帯域c,dそれぞれを使用帯域とみなしたときの当該使用帯域c,dの両側の隣接チャネル(1stAC)及び次隣接チャネル(2ndAC)全てを確実に包含しつつ、サンプリングレートを低く抑えることができる。
 例えば、帯域幅NS_BW=BW+(4×SBW)=30MHzを基準にサンプリング周波数(サンプリングレート)fsを決定する場合、fs=2×(BW+(4×SBW))×OSR=2×(10MHz+(4×5MHz))×50=3.0GS/sとなる。
 また、帯域幅NS_BW=BW+(6×SBW)=40MHzを基準にサンプリング周波数(サンプリングレート)fsを決定する場合、fs=2×(BW+(6×SBW))×OSR=2×(10MHz+(6×5MHz))×50=4.0GS/sとなる。
 いずれの場合も第2例に比べて、サンプリングレートが低くなる。
[4.4.4 第4例]
 第3例では、RF信号の使用帯域を構成する2個(複数)の通信帯域c,dが、隣接していたが、図37に示す第4例のように、RF信号の使用帯域を構成する2個(複数)の通信帯域b,dが、離れていてもよい。
 第4例の場合、使用帯域は、通信帯域bから通信帯域dまでの範囲(SB’=15MHz)であるとみなすことで、第3例と同様に、量子化雑音阻止帯域の帯域NS_BWを決定できる。
 つまり、第4例においても、量子化雑音阻止帯域の帯域幅NS_BWは、(BW’+(4×SBW))=35MHz以上、(BW’×5)=75MHz未満とすることができる。
 第4例においても、より好ましくは、量子化雑音阻止帯域の帯域幅NS_BWは、(BW’+(4×SBW))以上、(BW’+(6×SBW))以下とすることができる。
 なお、図36及び図37において、RF信号を放射する無線機501が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される周波数範囲が、隣接チャネル(第1隣接チャネル:1stAC)だけである場合には、量子化雑音阻止帯域の帯域幅NS_BWは、((BW(BW’)+(2×SBW))以上、(BW(BW’)×3)未満とすることができる。この場合、量子化雑音阻止帯域の帯域幅NS_BWは、((BW(BW’)+(2×SBW))以上、((BW(BW’)+(4×SBW))以下とするのがより好ましい。
[4.4.5 第5例]
 図38~図40は、量子化雑音阻止帯域の設定の仕方の第5例を示している。図38は、第5例において使用される無線機501を示している。図38に示す無線機501は、マルチキャリアに対応したものであり、通信に使用する周波数(通信帯域a~d)を動的に変更することができる。通信帯域の変更のため、デジタル信号処理部21は、通信帯域を選択する選択部135aを有する制御部135を備えている。選択部135aは、通信に使用可能な通信帯域a~dのうち、通信に使用する1又は複数の通信帯域を選択する。
 制御部135は、選択部135aによって選択された通信帯域に基づいて、処理部24を制御することによって、処理部24から出力されるRF信号の使用帯域を、変更することができる。
 また、ΔΣ変調器25は、前述の式(3)に基づいて、zの値が変換可能となっている。つまり、ΔΣ変調器25は、量子化雑音阻止帯域の中心周波数を変更可能となっている。換言すると、量子化雑音阻止帯域が変更可能となっている。
 制御部135は、ΔΣ変調器25に入力される信号の中心周波数f(例えば、図40の周波数fa,fb,fc,fdなど)に応じて、前述の式(3)に基づいてΔΣ変調器25のzを変換することにより、任意の周波数の信号に対して、バンドパスΔΣ変調が行える。
 このように、RF信号の中心周波数(搬送周波数)fに応じて、上記変換式(3)におけるcosθ(係数a)を変更することで、サンプリング周波数fsを変更することなく、任意の周波数fに対応したバンドパスΔΣ変調が行える。cosθを変更すると、式(1)に示すNTFの係数が変更されたことになるが、式の次数は維持される。このため、RF信号の搬送波周波数fに応じて、バンドパス型ΔΣ変調器25の構成を変化させても、式の複雑度(次数)は変化せず、したがって、バンドパス型ΔΣ変調器25における信号処理負荷も変化しない。
 このように本実施形態では、搬送波周波数fを変化させても、バンドパス型ΔΣ変調器25における信号処理負荷が変化しないため有利である。本実施形態において、バンドパス型ΔΣ変調器25における信号処理負荷は、ナイキストの定理により、信号帯域幅によって決定されるサンプリング周波数fsに依存するが、搬送波周波数fを変化させても信号帯域幅が変化するわけではないためサンプリング周波数fsを変更する必要はない。なお、ΔΣ変調器がローパス型である場合、搬送波周波数fの変化に対応するには、サンプリング周波数fsを変更する必要があり、この点において、バンドパス型が有利である。
 また、制御部135は、処理部24を制御することによって、処理部24から出力されるRF信号の周波数を任意の周波数に変更してΔΣ変調器25に与えることができる。
 さらに、制御部135は、選択部135aによって選択された通信帯域に応じて、アナログフィルタ532の通過帯域を変更するように制御することもできる。
 さて、図38のように構成された無線機501の場合、RF信号の使用帯域の帯域幅BWは、動的に変更される。しかし、ΔΣ変調器25の量子化雑音阻止帯域の帯域幅を、動的に変更されるRF信号の帯域幅BWに応じて、変更するように構成すると、ΔΣ変調器25の回路規模が増大する。
 そこで、第5例では、通信に使用可能な4つの通信帯域a~d(帯域幅SBWはそれぞれ5MHz)全てを使用帯域(帯域幅A_BW=20MHz)とみなした上で、第3例及び第4例と同じ考え方で、量子化雑音阻止帯域NS_BWを決定する。
 図39に示すように、帯域幅A_BW=20MHzを使用帯域とみなした場合、量子化雑音阻止帯域の帯域幅NS_BW=A_BW+(4×SBW)=20MHz+(4×5MHz)=40MHz以上あれば、漏洩電力が問題となる隣接チャネル及び次隣接チャネルに応じた帯域幅を確保できる。
 第5例においても、第3例と同様にサンプリングレートを低く抑えるため、量子化雑音阻止帯域の帯域幅NS_BWは、(A_BW+(4×SBW))以上、(A_BW×5)未満とすることができる。
 より好ましくは、量子化雑音阻止帯域の帯域幅NS_BWは、(A_BW+(4×SBW))以上、(A_BW+(6×SBW))以下とすることができる。
 図40に示すように、実際には、通信に使用可能な4つの通信帯域a~dのうちの一部の帯域c,dしか使用帯域として選択されない場合があるが、図39に示すように、量子化雑音阻止帯域の帯域幅NS_BWを、(A_BW+(4×SBW))以上とすることで、4つの通信帯域a~dのうちのいずれが選択されても、漏洩電力が問題となる隣接チャネル及び次隣接チャネルに応じた帯域幅を確保できる。
 なお、第5例においても、RF信号を放射する無線機501が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される周波数範囲が、隣接チャネル(第1隣接チャネル:1stAC)だけである場合には、量子化雑音阻止帯域の帯域幅NS_BWは、((A_BW+(2×SBW))以上、(A_BW×3)未満とすることができる。この場合、量子化雑音阻止帯域の帯域幅NS_BWは、((A_BW+(2×SBW))以上、((A_BW+(4×SBW))以下とするのがより好ましい。
[第5章 歪補償]
[5.1 増幅装置の全体構成]
 図41は、実施形態に係る増幅装置601を示している。この増幅装置601は、移動体通信システムにおける無線基地局装置又は無線端末装置などの無線通信装置に搭載される。なお、増幅装置601は、受信信号の増幅に用いても良い。
 増幅装置601は、送信信号の処理を行うデジタル信号処理部(デジタル信号処理装置)602と、デジタル信号処理部602から出力された送信信号を増幅する増幅器(高出力増幅器;High Power Amplifier)603と、アナログフィルタ604と、を備えている。
 増幅器603の出力は、アナログフィルタ604を通って、無線通信装置のアンテナ605から無線送信される。
 デジタル信号処理部602は、送信信号であるベースバンド信号(IQ信号)を出力するベースバンド部23と、ベースバンド信号を直交変調する直交変調器24と、ΔΣ変調器25と、を備えている。
 さらに、デジタル信号処理部602は、増幅器603の出力に基づいて、増幅器603の歪補償を行う歪補償部15を備えている。
 ベースバンド部23は、IQベースバンド信号(I信号、Q信号それぞれ)をデジタルデータとして出力する。
 ベースバンド部23から出力されたIQベースバンド信号は、歪補償部15によって歪補償処理が行われる。歪補償後のベースバンド信号(I’信号、Q’信号)は、直交変調器(処理部)24に与えられる。
 直交変調器24では、搬送波(無変調波)をベースバンド信号の変化に応じて変調させて、搬送波にベースバンド信号が付加された変調波(直交変調波)を出力する。直交変調器24は、デジタル信号処理で直交変調を行うデジタル直交変調器として構成されているため、直交変調器24からは、多ビットのデジタルデータ(離散値)によって表現されたデジタル信号形式の変調波(デジタル変調波;デジタルRF信号)が出力される。出力された変調波は、ΔΣ変調器25に与えられる。
 なお、変調波を生成する変調器24としては、直交変調器に限らず、変調波を生成するための他の方式の変調器であってもよい。
 前記搬送波の周波数は、通常の無線周波数を採用できる。無線周波数としては、好ましくは30MHz以上、より好ましくは300MHz以上、さらに好ましくは1GHz以上である。
 変調波の信号帯域幅も、特に限定されないが、搬送波周波数に対して十分小さい狭帯域であるのが好ましい。信号帯域幅は、例えば、5MHz~20MHzの範囲が好ましい。
 ΔΣ変調器25は、直交変調器24から出力された変調信号に対して、ΔΣ変調を行って1bitの量子化信号(パルス信号)を出力する。ΔΣ変調器25としては、ローパス型ΔΣ変調器であってもよいが、バンドパス型ΔΣ変調器が好ましい。ΔΣ変調器25が、バンドパス型である場合、バンドパス型ΔΣ変調器25の中心周波数は、前記搬送波の周波数と一致するように設定されている。
 なお、ΔΣ変調器25から出力される量子化信号は、1bitである必要はない。ΔΣ変調器25から出力される量子化信号は、ΔΣ変調器25に入力されたデジタルデータのビット数よりも少なければよい。
 ΔΣ変調器25から出力された量子化信号(パルス信号)は、デジタル信号処理部602の出力として、増幅器603側に与えられる。
 増幅器603は、デジタル増幅器が採用されている。本実施形態の増幅器603には、ΔΣ変調器25から出力された量子化信号(パルス信号)が入力として与えられ、一般的な無線通信装置の増幅器のようにアナログ信号(アナログRF信号)が入力として与えられるわけではない。
 したがって、増幅器603として、アナログ増幅器ではなく、パルス信号を増幅するデジタル増幅器(S級の増幅器)を採用することができる。デジタル増幅器は飽和状態で動作するため高効率であり、有利である。なお、増幅器603は、アナログ増幅器であってもよい。
 増幅器603は、増幅された量子化信号(パルス信号)を出力する。増幅器603から出力された量子化信号(パルス信号)は、アナログフィルタ604に与えられる。
 アナログフィルタ604としては、ΔΣ変調器25がバンドパス型であればアナログバンドパスフィルタが用いられ、ΔΣ変調器25がローパス型であればアナログローパスフィルタが用いられる。
 アナログフィルタ604は、ΔΣ変調器25によってノイズシェイピング(後述)された量子化雑音を除去するように設定されている。このアナログフィルタ604によって、ΔΣ変調器25によって生成された量子化信号から、アナログ信号の前記変調波(連続波)を生成することができる。
 つまり、アナログフィルタ604は、ΔΣ変調器25に入力されたデジタルRF信号に対応するアナログRF信号を生成して出力する。なお、アナログフィルタ604の通過帯域の周波数は、生成されるアナログ信号(アナログ変調波:アナログRF信号)の周波数に設定されている。
 アナログフィルタ604の出力(アナログ変調波;アナログRF信号)は、アンテナから無線送信される。
 本実施形態の増幅装置601では、直交変調器24、ΔΣ変調器25、及び歪補償部15がデジタル信号処理を行うデジタル回路として構成されている。したがって、高周波である変調波を扱いつつも、増幅器603の手前でアナログ回路を用いる必要がなく有利である。
[5.2 ΔΣ変調]
 ΔΣ変調器25は、[1.2 バンドパス型ΔΣ変調]にて説明したΔΣ変調器25と同様である。
[5.3 歪補償]
 増幅器603において非線形特性(AM-AM特性、AM-PM特性)が存在する場合には、増幅器603から出力されるパルス信号の振幅及び/又は位置のずれが、歪として生じる。
 デジタル信号処理部602は、増幅器603の歪補償のため、増幅器603から出力された量子化信号(パルス信号)を取得する。
 増幅器603の出力信号は、カプラ606によって検出され、カプラ606の検出信号の振幅を調整する可変減衰器607を介して、デジタル信号処理部602に与えられる。
 増幅器603から出力される信号は、量子化信号(パルス信号)であるため、カプラ606からデジタル信号処理部602までの間に複雑なアナログ回路は不要であり、デジタル信号処理部602は、増幅器出力を容易に取得することができる。
 デジタル信号処理部602は、デジタルフィルタ(第1デジタルフィルタ)611を備えており、デジタル信号処理部602が取得した増幅器603の出力信号(量子化信号)は、第1デジタルフィルタ611に与えられる。
 第1デジタルフィルタ611は、アナログフィルタ604と同じフィルタ特性を有している。したがって、第1デジタルフィルタ611は、増幅器603の出力信号(量子化信号)に対して、アナログフィルタ604と同様のフィルタリング処理を行って、RF信号(搬送波)を出力することができる。ただし、第1デジタルフィルタ611は、アナログフィルタ604とは異なり、デジタル信号処理によってフィルタリングを行うため、その出力はデジタル信号となる。つまり、第1デジタルフィルタ611の出力は、デジタルRF信号となる。
 第1デジタルフィルタ611から出力されたデジタルRF信号は、デジタル直交復調器613に与えられる。デジタル直交復調器613は、復調されたベースバンド信号(I’’信号、Q’’信号)を出力する。
 復調されたベースバンド信号は、歪補償部15に与えられる。
 歪補償部(DPD)15は、送信信号(ベースバンド信号)に対して歪補償処理を行って、歪補償された送信信号(ベースバンド信号)を出力する補償処理部15aと、増幅器603の歪特性を推定する特性推定部15bと、を備えている。
 補償処理部15aは、特性推定部15bにて推定された増幅器603の歪特性に基づいて、歪を打ち消すように歪補償処理を行う。
 特性推定部15bは、直交復調器613から出力されたベースバンド信号(I’’信号、Q’’信号)と、歪補償部15(補償処理部15a)から出力されたベースバンド信号(I’信号、Q’信号)とを比較して、歪特性を推定する。なお、特性推定部15bは、歪補償部15(補償処理部15a)から出力されたベースバンド信号(I’信号、Q’信号)に代えて、歪補償部15(補償処理部15a)に入力されるベースバンド信号(I信号、Q信号)を用いても良い。
 以上のように、本実施形態の増幅装置601では、歪補償に必要な処理の大部分をデジタル信号処理部602にて行える。
[5.4.増幅装置の変形例]
[5.4.1 第1変形例]
 図42は、第1変形例に係る増幅装置601を示している。図42に示す増幅装置601では、図41に示す増幅装置601の直交復調器613が省略されている。このため、歪補償部15(特性推定部15b)には、第1デジタルフィルタ611の出力であるデジタルRF信号が、与えられる。なお、第1変形例及びその他の変形例において説明を省略した点は、図41に示す増幅装置601と同様である。
 第1変形例に係る増幅装置601では、特性推定部15bは、デジタルフィルタ611から出力されたデジタルRF信号と、直交変調器24から出力されたデジタルRF信号と、を比較して、増幅器603の歪特性を推定する。
 図41に示す増幅装置601のように、ベースバンド信号を用いて歪補償をすると、歪補償の処理速度を抑えることができるのに対して、第1変形例に係る増幅装置601のように高周波であるRF信号を用いて歪補償をすると、歪保障の処理速度を高速化する必要がある。
 ただし、第1変形例に係る増幅装置601では、直交復調器613を省略できるため、デジタル信号処理部602の構成を簡素化できる。
[5.4.2 第2変形例]
 図43は、第2変形例に係る増幅装置601を示している。第2変形例に係る増幅装置601では、歪補償部15が、直交変調器24とΔΣ変調器25との間に設けられている。
 第2変形例に係る増幅装置601では、第1変形例に係る増幅装置601と同様に、直交復調器613が省略されており、歪補償部15(特性推定部15b)には、第1デジタルフィルタ611の出力であるデジタルRF信号が、与えられる。
 第2変形例に係る増幅装置601では、特性推定部15bは、デジタルフィルタ611から出力されたデジタルRF信号と、補償処理部15aから出力されたデジタルRF信号(又は直交変調器24から出力されたデジタルRF信号)と、を比較して、増幅器603の歪特性を推定する。そして、補償処理部15aは、直交変調器24から出力されたデジタルRF信号に対して歪補償処理を行い、歪補償がなされたデジタルRF信号を、ΔΣ変調器25に与える。
[5.4.3 第3変形例]
 図44は、第3変形例に係る増幅装置601を示している。第3変形例に係る増幅装置601では、歪補償部15が、ΔΣ変調器25の出力側に設けられている。
 第2変形例に係る増幅装置601では、図41に示す増幅装置601におけるデジタルフィルタ611及び直交復調器613が省略されている。歪補償部15(特性推定部15b)には、増幅器603の出力(量子化信号;パルス信号)が、(減衰器607を介して)与えられる。
 つまり、デジタル信号処理部602が取得した量子化信号(パルス信号)は、デジタルフィルタ611によってRF信号に変換されることなく、量子化信号(パルス信号)のまま、特性推定部15bに与えられる。
 第3変形例に係る増幅装置601では、特性推定部15bは、増幅器603の出力である量子化信号と、補償処理部15aから出力された量子化信号(又はΔΣ変調器25から出力された量子化信号)と、を比較して、増幅器603の歪特性を推定する。そして、補償処理部15aは、ΔΣ変調器25から出力された量子化信号に対して歪補償処理を行い、歪補償がなされた量子化信号を、デジタル信号処理部602の出力として、増幅器603に与える。
 なお、補償処理部15aは、量子化信号を示すパルス信号のパルス振幅又はパルス位置を調整することで歪補償処理を行う。
[5.4.4 第4変形例]
 図45は、第4変形例に係る増幅装置601を示している。第4変形例に係る増幅装置601では、図41に示す増幅装置601と同様に、直交変調器24の入力側に歪補償部15が設けられている。
 第4変形例に係る増幅装置601では、デジタル信号処理部602は、増幅器603の出力信号を取得する。
 デジタル信号処理部602が取得した増幅器603の出力信号(量子化信号)は、第1デジタルフィルタ611に与えられる。また、増幅器603への入力信号は、第2デジタルフィルタ612に与えられる。
 第1及び第2デジタルフィルタ611,612は、アナログフィルタ604と同じフィルタ特性を有している。したがって、第1及び第2デジタルフィルタ611,612は、増幅器603の入出力信号(量子化信号)に対して、アナログフィルタ604と同様のフィルタリング処理を行って、RF信号(搬送波)を出力することができる。ただし、第1及び第2デジタルフィルタ611,612は、アナログフィルタ604とは異なり、デジタル信号処理によってフィルタリングを行うため、その出力はデジタル信号となる。つまり、第1及び第2デジタルフィルタ611,612の出力は、デジタルRF信号となる。
 第1及び第2デジタルフィルタ611,612から出力されたデジタルRF信号は、デジタル直交復調器613及びデジタル直交復調器614に与えられる。デジタル直交復調器613,14は、それぞれ、復調されたベースバンド信号を出力する。
 復調されたベースバンド信号は、歪補償部15に与えられる。
 歪補償部15の特性推定部15bは、直交復調器613から出力されたベースバンド信号と、直交復調器14から出力されたベースバンド信号とを比較して、歪特性を推定する。
 また、第4変形例に係る増幅装置601では、ΔΣ変調器25の出力側に高調波強調部626が設けられている。この高調波強調部は、アップサンプリング(×2)を行い、本来の信号の高調波成分を利用することができる。なお、高調波強調部626は省略してもよい。
[6.付記]
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
[第1章]
 1 通信システム
 2 送信機
 3 受信機
 4 伝送路
 21 デジタル信号処理部
 22 出力部
 23 ベースバンド部
 24 直交変調器
 25 バンドパスΔΣ変調器
 27 ループフィルタ
 28 量子化器
 29 帯域拡張部
 31 入力部
 32 アナログバンドバスフィルタ
 33 アナログ回路
 35 アンテナ
 36 アナログ増幅器
 37 デジタル増幅器
 41 無線基地局装置
 42 基地局本体
 43 リモートレディオヘッド
 44 伝送路
 125 ローパス型ΔΣ変調器
 127 ループフィルタ
 128 量子化器
[第2章]
200 送信機
 21 デジタル信号処理部
132 アナログフィルタ
133 増幅器
134 送信用アンテナ
 24 処理部
 25 バンドパス型ΔΣ変調器
135 制御部
136 記憶部
 40 飛行機(移動体)
[第3章]
400 信号伝送システム(放送システム)
402 放送設備(送信装置;第1装置)
403 信号出力装置(第2装置)
  4 信号伝送路
405 放送機(放送設備)
407 テレビ受信機
 21 デジタル信号処理部
 23 ベースバンド部
 24a 変調器
 24b 処理部
 25 ΔΣ変調器
 26 第1送信部
432 受信部
433 バッファ
434 出力部
435 スイッチ部
438 アンテナ
452 受信部
453 バッファ
454 第2送信部
454a 出力部
454b バンドパスフィルタ
454c アンプ
 60 無線送信機
[第4章]
501 ΔΣ変調システム
 21 デジタル信号処理部(デジタル信号処理装置)
 25 バンドパス型ΔΣ変調器
532 バンドパスフィルタ
135 制御部
135a 選択部
[第5章]
601 増幅装置
602 デジタル信号処理部(デジタル信号処理装置)
603 増幅器
604 アナログフィルタ
605 アンテナ
606 カプラ
607 可変減衰器
611 第1デジタルフィルタ
612 第2デジタルフィルタ
613 デジタル直交復調器
614 デジタル直交復調器
 15 歪補償部
 15a 歪補償処理部
 15b 特性推定部
 23 ベースバンド部
 24 直交変調器(変調器)
 25 ΔΣ変調器
626 高調波強調部

Claims (69)

  1.  ローパス型ΔΣ変調器のz領域モデルにおけるzを、以下のz’に置き換えることでバンドパス型ΔΣ変調器(θ=±π/2×nを除く;nは1以上の整数)を得ることを特徴とするバンドパス型ΔΣ変調器の設計方法。
     z’=fcnv(z,θ
     ただし、
     fcnv(z,θ)は、任意のz,θについて、fcnv(z,θ)の絶対値が常に1となる関数
     θ=2π×(f/fs)
     fsは、サンプリング周波数
     fは、前記バンドパス型ΔΣ変調器の量子化雑音阻止帯域の中心周波数
  2.  fcnv(z,θ)は、一方の辺の値が1又は-1である恒等式における他方の辺の式であり、前記恒等式は、以下の式を変形することで得られたものである
     請求項1記載の設計方法。
    Figure JPOXMLDOC01-appb-M000001
  3.  z’は、以下の式で表される請求項1又は2記載の設計方法。
    Figure JPOXMLDOC01-appb-M000002
  4.  z’は、以下の式で表される請求項1又は2記載の設計方法。
    Figure JPOXMLDOC01-appb-M000003
  5.  z’は、以下の式で表される請求項1又は2記載の設計方法。
    Figure JPOXMLDOC01-appb-M000004
  6.  z’は、以下の式で表される請求項1又は2記載の設計方法。
    Figure JPOXMLDOC01-appb-M000005
  7.  ローパス型ΔΣ変調器のz領域モデルにおけるzを、以下のz’に置き換えて得られたバンドパス型ΔΣ変調器(θ=±π/2×nを除く;nは1以上の整数)。
     z’=fcnv(z,θ
     ただし、
     fcnv(z,θ)は、任意のz,θについて、fcnv(z,θ)の絶対値が常に1となる関数
     θ=2π×(f/fs)
     fsは、サンプリング周波数
     fは、前記バンドパス型ΔΣ変調器の量子化雑音阻止帯域の中心周波数
  8.  無変調波に送信信号が付加された変調波を、信号伝送路に対して送信する送信機であって、
     前記変調波に対してバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器と、
     前記バンドパス型ΔΣ変調器から出力された量子化信号を前記変調波として前記信号伝送路に出力する出力部と、
     を備えていることを特徴とする送信機。
  9.  前記無変調波の周波数は、以下の式を満たすように設定されている
     請求項8記載の送信機。
      f’=f-n×fs
     ただし、
      f  :受信機側の受信周波数
      fs :前記バンドパス型ΔΣ変調器のサンプリング周波数
      f’ :前記無変調波の周波数
      n  :整数
  10.  前記nは、絶対値が1以上の整数である
     請求項9記載の送信機。
  11.  前記バンドパス型ΔΣ変調器に与えられる前記変調波の信号帯域を拡張する帯域拡張部を更に備えている請求項8~10のいずれか1項に記載の送信機。
  12.  前記帯域拡張部は、前記変調波の信号帯域外にゼロ信号を挿入することで、前記変調波の帯域を拡張する
     請求項11記載の送信機。
  13.  前記変調波をデジタル信号処理によって生成するデジタル変調部を更に備え、
     前記バンドパス型ΔΣ変調器には、前記デジタル変調部によって生成されたデジタル変調波が与えられる
     請求項8~12のいずれか1項に記載の送信機。
  14.  前記デジタル変調部は、デジタル直交変調部である
     請求項13記載の送信機。
  15.  前記変調波は、無線周波数の変調波である
     請求項8~14のいずれか1項に記載の送信機。
  16.  前記変調波の周波数帯域が、前記バンドパス型ΔΣ変調器が行うΔΣ変調の量子化雑音阻止帯域に含まれるように、前記バンドパス型ΔΣ変調器を制御する制御部を更に備えている
     請求項8~15のいずれか1項に記載の送信機。
  17.  前記制御部は、前記搬送波の周波数を決定する機能をさらに備えている請求項16に記載の送信機。
  18.  前記搬送波の周波数は、前記バンドパス型ΔΣ変調器のサンプリング周波数の範囲内で設定される請求項16又は17記載の送信機。
  19.  揮発性の記憶部を更に備え、
     前記記憶部は、前記搬送波の周波数を示す周波数情報を記憶可能に構成されている請求項16~18のいずれか一項に記載の送信機。
  20.  前記制御部は、予め定められた複数の周波数の中から周波数ホッピングによって前記搬送波の周波数を決定する機能をさらに備えている請求項16~19のいずれか一項に記載の送信機。
  21.  前記複数の周波数情報、及び周波数ホッピングのホッピングパターンに関するパターン情報を記憶可能に構成された揮発性の記憶部を更に備え、
     前記制御部は、前記記憶部に記憶された前記複数の周波数情報、及び前記パターン情報を参照することで前記搬送波の周波数を決定する請求項20に記載の送信機。
  22.  情報を送信する送信機を備えた移動可能な移動体であって、
     前記送信機は、請求項16~21に記載の送信機であることを特徴とする移動体。
  23.  搬送波に送信信号が付加された変調波に対してバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器と、
     前記変調波の周波数帯域が、前記バンドパス型ΔΣ変調器が行うΔΣ変調の量子化雑音阻止帯域に含まれるように、前記バンドパス型ΔΣ変調器を制御する制御部と、を備えていることを特徴とする信号処理装置。
  24.  信号伝送路から送信されてきた信号を受信する受信機であって、
     無変調波に送信信号が付加された変調波に対してバンドパス型ΔΣ変調を行うことで生成された量子化信号を、前記信号伝送路から受信する入力部と、
     前記入力部によって受信した量子化信号が、入力として与えられるアナログバンドパスフィルタと、
     を備えている
     ことを特徴とする受信機。
  25.  前記アナログバンドパスフィルタは、以下の式を満たすように設定されている
     請求項24記載の受信機。
      fc=f’+n×fs
     ただし、
      fc  :アナログバンドパスフィルタの通過帯域の中心周波数
      fs :前記ΔΣ変調器のサンプリング周波数
      f’ :前記無変調波の周波数
      n  :整数
  26.  前記nは、絶対値が1以上の整数である
     請求項25記載の受信機。
  27.  前記変調波を処理するアナログ回路を更に備え、
     前記アナログバンドパスフィルタの出力は、前記アナログ回路に与えられる
     請求項24~26のいずれか1項に記載の受信機。
  28.  無線波を出力するアンテナを備え、
     前記アンテナは、前記アナログバンドパスフィルタの機能を兼ねている
     請求項24~27のいずれか1項に記載の受信機。
  29.  請求項8~21のいずれか1項に記載の送信機と、請求項24~28のいずれか1項に記載の受信機と、を備えた通信システム。
  30.  基地局本体と、基地局本体に信号伝送路を介して接続されたリモートレディオヘッドと、を備えた無線基地局装置であって、
     前記基地局本体は、請求項8~21のいずれか1項に記載の送信機を備え、
     前記リモートレディオヘッドは、請求項24~28のいずれか1項に記載の受信機を備えている
     無線基地局装置。
  31.  信号伝送路に信号を送信する第1装置と、
     前記信号伝送路から信号を受信する第2装置と、
    を備え、
     前記第1装置は、
      RF信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調器と、
      前記ΔΣ変調器から出力された前記量子化信号を前記信号伝送路に送信する送信部と、
     を備え、
     前記第2装置は、
      前記量子化信号を前記信号伝送路から受信する受信部と、
      前記受信部にて受信した前記量子化信号を保存するバッファと、
      バッファに保存された量子化信号を出力する出力部と、
     を備えている
     ことを特徴とするRF信号伝送システム。
  32.  前記送信部は、情報を送信可能に構成され、
     前記送信部が送信する前記情報は、前記ΔΣ変調器が出力した量子化信号の信号波形を再現するために前記第2装置において用いられる情報を含んでいる
     請求項31記載のRF信号伝送システム。
  33.  前記送信部は、前記量子化信号をパケット化して前記信号伝送路に出力し、
     前記受信部は、パケット化された前記量子化信号を受信し、デパケット化する
     請求項31又は32記載のRF信号伝送システム。
  34.  前記信号伝送路は、有線の信号伝送路である
     請求項31~33のいずれか1項に記載のRF信号伝送システム。
  35.  前記出力部は、前記量子化信号を、RF信号を受信する受信機に対して出力する
     請求項31~34のいずれか1項に記載のRF信号伝送システム。
  36.  前記第2装置は、RF信号を電波として空間に放射するアンテナを更に備え、
     前記第2装置は、前記出力部から出力された前記量子化信号を、前記アンテナによって電波として放射されるRF信号として用いる
     請求項31~35のいずれか1項に記載のRF信号伝送システム。
  37.  前記RF信号は、映像信号のRF信号を含む
     請求項31~36のいずれか1項に記載のRF信号伝送システム。
  38.  前記RF信号は、デジタルテレビ放送のためのRF信号である
     請求項31~37のいずれか1項に記載のRF信号伝送システム。
  39.  ΔΣ変調器は、バンドパス型ΔΣ変調器である
     請求項31~38のいずれか1項に記載のRF信号伝送システム。
  40.  RF信号をΔΣ変調して得られた量子化信号を、信号伝送路から受信する受信部と、
     前記受信部にて受信した量子化信号を保存するバッファと、
     前記バッファに保存された前記量子化信号を、RF信号を含む信号として出力する出力部と、
     を備えていることを特徴とする信号出力装置。
  41.  RF信号を受信する受信機と、
     請求項40記載の信号出力装置と、
     を備え、
     前記信号出力装置は、前記受信機に対して、前記量子化信号を出力する
     ことを特徴とする受信システム。
  42.  RF信号の伝送方法であって、
     RF信号をΔΣ変調して得られた量子化信号を信号伝送路に送信するステップと、
     前記量子化信号を前記信号伝送路から受信するステップと、
     受信した量子化信号をバッファに保存するステップと、
     前記バッファに保存された量子化信号を、RF信号を受信する受信機に対して出力するステップと、
     を含むことを特徴とするRF信号の伝送方法。
  43.  信号伝送路に信号を送信する送信装置と、
     1又は複数の放送設備と、
    を備え、
     前記送信装置は、
      放送用RF信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調器と、
      前記ΔΣ変調器から出力された前記量子化信号を前記信号伝送路に送信する第1送信部と、
     を備え、
     前記放送設備は、
      放送用RF信号を電波として空間に放射するアンテナと、
      前記アンテナに放送用RF信号を出力する放送機と、
     を備え、
     前記放送機は、
      前記量子化信号を前記信号伝送路から受信する受信部と、
      前記受信部にて受信した前記量子化信号を、前記放送用RF信号として、前記アンテナに出力する第2送信部と、
     を備えていることを特徴とする放送システム。
  44.  前記放送機は、前記受信部にて受信した前記量子化信号を保存するバッファをさらに備え、
     前記第2送信部は、前記バッファに保存された前記量子化信号を、前記放送用RF信号として、前記アンテナに出力する
     請求項43記載の放送システム。
  45.  前記第1送信部は、情報を送信可能に構成され、
     前記第1送信部が送信する前記情報は、前記ΔΣ変調器が出力した量子化信号の信号波形を再現するために前記放送機において用いられる情報を含んでいる
     請求項43又は44記載の放送システム。
  46.  前記第1送信部は、前記量子化信号をパケット化して前記信号伝送路に送信し、
     前記受信部は、パケット化された前記量子化信号を受信し、デパケット化する
     請求項43~45のいずれか1項に記載の放送システム。
  47.  ΔΣ変調器は、バンドパス型ΔΣ変調器である
     請求項43~46のいずれか1項に記載の放送システム。
  48.  放送用RF信号をΔΣ変調して得られた量子化信号を、信号伝送路から受信する受信部と、
     前記受信部にて受信した前記量子化信号を、前記放送用RF信号として、アンテナに出力する送信部と、
     を備えていることを特徴とする放送機。
  49.  請求項48記載の放送機と、
     前記放送機の前記送信部から出力された前記量子化信号を空間に放射するアンテナと、
     を備えていることを特徴とする放送設備。
  50.  放送用RF信号をΔΣ変調して量子化信号を得るステップと、
     前記量子化信号を放送機に送信するステップと、
     前記放送機が、受信した前記量子化信号を、放送用RF信号として、アンテナに出力するステップと、
     を含む放送方法。
  51.  無線波として送信されるRF信号に対する処理を行う信号処理装置であって、
     前記RF信号に対するバンドパス型ΔΣ変調を行うバンドパス型ΔΣ変調器を備え、
     前記バンドパス型ΔΣ変調器の量子化雑音阻止帯域は、前記RF信号の使用帯域を含み、かつ、前記RF信号の使用帯域よりも広い帯域幅を有している
     ことを特徴とする信号処理装置。
  52.  前記RF信号は、使用帯域が複数の通信帯域に跨っており、
     前記量子化雑音阻止帯域は、
      前記RF信号の使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する最小の帯域幅よりも狭い帯域幅を有している
     請求項51記載の信号処理装置。
  53.  前記量子化雑音阻止帯域は、前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル全てを包含する帯域幅を有している
     請求項52記載の信号処理装置。
  54.  前記量子化雑音阻止帯域は、前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネル全てを包含する帯域幅を有している
     請求項53記載の信号処理装置。
  55.  前記量子化雑音阻止帯域は、前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネル全てを包含する最小の基本帯域の両側それぞれに一つの前記通信帯域分の付加帯域を確保した帯域幅以下の帯域幅を有している
     請求項54記載の信号処理装置。
  56.  1又は複数の通信帯域の中から、前記RF信号の使用帯域を選択する帯域選択部を更に備え、
     前記量子化雑音阻止帯域は、
      前記複数の通信帯域全てを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する最小の帯域よりも狭い帯域幅を有している
     請求項51記載の信号処理装置。
  57.  前記量子化雑音阻止帯域は、前記複数の通信帯域それぞれを使用帯域とみなしたときの当該使用帯域の両側の隣接チャネル及び次隣接チャネル全てを包含する帯域幅を有している
     請求項56記載の信号処理装置。
  58.  前記量子化雑音阻止帯域は、前記RF信号の使用帯域の両側の隣接チャネルを包含する帯域幅を有している
     請求項51記載の信号処理装置。
  59.  前記量子化雑音阻止帯域は、前記RF信号の使用帯域の両側の隣接チャネル及び次隣接チャネルを包含する帯域幅を有している
     請求項58記載の信号処理装置。
  60.  請求項51~請求項59のいずれか1項に記載の信号処理装置を、RF信号に対する処理のために備えた無線機。
  61.  前記信号処理装置における前記量子化雑音阻止帯域は、前記無線機が適合することを要する法的規制又は規格において漏洩電力の大きさが規制される帯域幅以上の帯域幅を有している
     請求項60記載の無線機。
  62.  増幅器と、
     前記増幅器によって増幅されるべき信号を出力するデジタル信号処理部と、
     前記増幅器の出力側に設けられたアナログフィルタと、
    を備え、
     前記デジタル信号処理部は、
      前記増幅器の出力に基づいて、前記増幅器の歪補償を行う歪補償部と、
      前記増幅器によって増幅されるべき信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調部と、
     を備え、
     前記増幅器は、前記量子化信号を増幅し、
     前記アナログフィルタは、前記量子化信号からアナログ信号を生成し、
     前記デジタル信号処理部は、前記歪補償部による歪補償のために、前記増幅器から出力された量子化信号を取得する
     ことを特徴とする増幅装置。
  63.  前記増幅器は、デジタル増幅器である
     請求項62記載の増幅装置。
  64.  前記デジタル信号処理部は、前記アナログフィルタと同じ特性を持つデジタルフィルタを更に備え、
     前記デジタルフィルタは、前記デジタル信号処理部が取得した前記量子化信号に対してフィルタリングを行い、
     前記歪補償部は、前記デジタルフィルタの出力に基づいて、歪補償を行う
     請求項62又は63記載の増幅装置。
  65.  前記デジタル信号処理部は、前記デジタルフィルタの出力を復調する復調部を更に備え、
     前記歪補償部は、前記復調部の出力に基づいて、歪補償を行う
     請求項64記載の増幅装置。
  66.  前記ΔΣ変調器は、バンドパス型ΔΣ変調器である
     請求項62~65のいずれか1項に記載の増幅装置。
  67.  前記アナログ信号は、無線周波数信号である
     請求項62~66のいずれか1項に記載の増幅装置。
  68.  増幅器によって増幅されるべき信号を出力するデジタル信号処理装置であって、
     前記増幅器の出力に基づいて、前記増幅器の歪補償を行う歪補償部と、
     前記増幅器によって増幅されるべき信号に対してΔΣ変調を行って量子化信号を出力するΔΣ変調部と、
     を備え、
     前記歪補償部による歪補償のために、前記増幅器から出力された量子化信号を取得するよう構成されている
     ことを特徴とするデジタル信号処理装置。
  69.  請求項62~67のいずれか1項に記載の増幅装置を通信信号の増幅のために備えた無線通信装置。
PCT/JP2012/075759 2011-10-04 2012-10-04 バンドパス型δς変調器の設計方法、バンドパス型δς変調器、δς変調器を有する装置、及びδς変調を用いた方法 WO2013051641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/217,696 US9264063B2 (en) 2011-10-04 2014-03-18 Method for designing band pass delta-sigma modulator, band pass delta-sigma modulator, signal processing device, and radio transceiver

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011-220437 2011-10-04
JP2011220452A JP2013081108A (ja) 2011-10-04 2011-10-04 増幅装置、デジタル信号処理装置、及び無線通信装置
JP2011220406A JP5786623B2 (ja) 2011-10-04 2011-10-04 バンドパス型δς変調器の設計方法
JP2011-220406 2011-10-04
JP2011220437A JP5919712B2 (ja) 2011-10-04 2011-10-04 送信機、通信システム、及び無線基地局装置
JP2011-220452 2011-10-04
JP2012-034278 2012-02-20
JP2012034278A JP5874432B2 (ja) 2012-02-20 2012-02-20 Rf信号伝送システム、信号出力装置、受信システム、rf信号の伝送方法、放送システム、放送機、放送設備、及び放送方法
JP2012127621A JP5920034B2 (ja) 2012-06-05 2012-06-05 送信機、及びこれを搭載した移動体、信号処理装置
JP2012-127621 2012-06-05
JP2012209370A JP6064485B2 (ja) 2012-09-24 2012-09-24 信号処理装置及び無線機
JP2012-209370 2012-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/217,696 Continuation US9264063B2 (en) 2011-10-04 2014-03-18 Method for designing band pass delta-sigma modulator, band pass delta-sigma modulator, signal processing device, and radio transceiver

Publications (1)

Publication Number Publication Date
WO2013051641A1 true WO2013051641A1 (ja) 2013-04-11

Family

ID=48043794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075759 WO2013051641A1 (ja) 2011-10-04 2012-10-04 バンドパス型δς変調器の設計方法、バンドパス型δς変調器、δς変調器を有する装置、及びδς変調を用いた方法

Country Status (2)

Country Link
US (1) US9264063B2 (ja)
WO (1) WO2013051641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183528A1 (ja) * 2012-06-05 2013-12-12 住友電気工業株式会社 Δς変調システム及びデジタル信号処理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10341148B2 (en) * 2017-08-25 2019-07-02 Mediatek Inc. Sigma-delta modulator and associated system improving spectrum efficiency of wired interconnection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214259A (ja) * 1994-01-25 1995-08-15 Akechi Ceramics Kk 溶鋼の連続鋳造用ノズル
WO2003030373A1 (fr) * 2001-09-28 2003-04-10 Sony Corporation Appareil de modulation delta-sigma et appareil d'amplification de signaux
JP2004048703A (ja) * 2002-05-13 2004-02-12 Matsushita Electric Ind Co Ltd 増幅回路、送信装置、増幅方法、および送信方法
JP2004088431A (ja) * 2002-08-27 2004-03-18 Mitsubishi Electric Corp D級増幅器
JP2005020698A (ja) * 2003-06-27 2005-01-20 Northrop Grumman Corp 信号変換システム
JP2005311472A (ja) * 2004-04-16 2005-11-04 Mitsubishi Electric Corp D級増幅器
WO2006103921A1 (ja) * 2005-03-25 2006-10-05 Pioneer Corporation 無線受信装置
JP2010187298A (ja) * 2009-02-13 2010-08-26 Mitsubishi Electric Corp バンドパス・デルタシグマa/d変換器
JP2012060568A (ja) * 2010-09-13 2012-03-22 Panasonic Corp D級増幅器及び無線通信装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214236A (ja) 1989-02-14 1990-08-27 Toyo Commun Equip Co Ltd 周波数ホッピング装置
US6442195B1 (en) * 1997-06-30 2002-08-27 Integrated Telecom Express, Inc. Multiple low speed sigma-delta analog front ends for full implementation of high-speed data link protocol
US7924937B2 (en) * 2002-03-04 2011-04-12 Stmicroelectronics N.V. Resonant power converter for radio frequency transmission and method
US7561635B2 (en) * 2003-08-05 2009-07-14 Stmicroelectronics Nv Variable coder apparatus for resonant power conversion and method
US7061989B2 (en) * 2004-05-28 2006-06-13 Texas Instruments Incorporated Fully digital transmitter including a digital band-pass sigma-delta modulator
US7787563B2 (en) * 2004-12-08 2010-08-31 Texas Instruments Incorporated Transmitter for wireless applications incorporation spectral emission shaping sigma delta modulator
US20080007365A1 (en) * 2006-06-15 2008-01-10 Jeff Venuti Continuous gain compensation and fast band selection in a multi-standard, multi-frequency synthesizer
US7729445B2 (en) * 2006-09-27 2010-06-01 Intel Corporation Digital outphasing transmitter architecture
US7504976B1 (en) * 2007-01-31 2009-03-17 Lockheed Martin Corporation Direct radio frequency generation using power digital-to-analog conversion
JP4973532B2 (ja) 2008-02-12 2012-07-11 住友電気工業株式会社 増幅回路とこれを有する無線通信装置及びコンピュータプログラム
US20090253398A1 (en) * 2008-04-04 2009-10-08 Sheehy Paul B Modulation and upconversion techniques
US8943112B2 (en) * 2009-06-26 2015-01-27 Syntropy Systems, Llc Sampling/quantization converters
US8212700B2 (en) * 2009-07-09 2012-07-03 Stellamar Llc Delta-sigma-delta modulator
JP5433327B2 (ja) 2009-07-10 2014-03-05 株式会社日立製作所 ピークファクタ低減装置および基地局
KR101585067B1 (ko) 2009-10-28 2016-01-13 삼성전자주식회사 최적화된 망접속 구조를 갖는 통신 시스템
KR101674209B1 (ko) 2010-01-27 2016-11-08 삼성전자주식회사 디지털 장치와 rf 장치간에 이더넷 데이터를 송수신하는 방법 및 그 장치
US8354947B2 (en) * 2010-09-08 2013-01-15 Mediatek Inc. Signal processing apparatus with sigma-delta modulating block collaborating with notch filtering block and related signal processing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214259A (ja) * 1994-01-25 1995-08-15 Akechi Ceramics Kk 溶鋼の連続鋳造用ノズル
WO2003030373A1 (fr) * 2001-09-28 2003-04-10 Sony Corporation Appareil de modulation delta-sigma et appareil d'amplification de signaux
JP2004048703A (ja) * 2002-05-13 2004-02-12 Matsushita Electric Ind Co Ltd 増幅回路、送信装置、増幅方法、および送信方法
JP2004088431A (ja) * 2002-08-27 2004-03-18 Mitsubishi Electric Corp D級増幅器
JP2005020698A (ja) * 2003-06-27 2005-01-20 Northrop Grumman Corp 信号変換システム
JP2005311472A (ja) * 2004-04-16 2005-11-04 Mitsubishi Electric Corp D級増幅器
WO2006103921A1 (ja) * 2005-03-25 2006-10-05 Pioneer Corporation 無線受信装置
JP2010187298A (ja) * 2009-02-13 2010-08-26 Mitsubishi Electric Corp バンドパス・デルタシグマa/d変換器
JP2012060568A (ja) * 2010-09-13 2012-03-22 Panasonic Corp D級増幅器及び無線通信装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MARTIN SCHMIDT ET AL.: "Continuous-Time Bandpass Delta-Sigma Modulator for a Signal Frequency of 2.2GHz", GERMAN MICROWAVE CONFERENCE, 2009, March 2009 (2009-03-01), pages 1 - 4, XP031449729 *
MOTOI YAMAGUCHI ET AL.: "The transfer function design of bandpass Delta-Sigma modulators", 2000 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, ELECTRONICS 2, 7 March 2000 (2000-03-07), pages 137 *
TAKAO WAHO ET AL.: "Understanding Delta-Sigma Data Converters", vol. 11, no. 12, 15 August 2007 (2007-08-15), pages 114 - 135 *
TSAI-PI HUNG ET AL.: "Design of H-Bridge Class-D Power Amplifiers for Digital Pulse Modulation Transmitters", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 55, no. 12, December 2007 (2007-12-01), pages 2845 - 2854, XP011197404, DOI: doi:10.1109/TMTT.2007.909881 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183528A1 (ja) * 2012-06-05 2013-12-12 住友電気工業株式会社 Δς変調システム及びデジタル信号処理装置
JP2013254994A (ja) * 2012-06-05 2013-12-19 Sumitomo Electric Ind Ltd Δς変調システム及びデジタル信号処理装置

Also Published As

Publication number Publication date
US20140198878A1 (en) 2014-07-17
US9264063B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US11239916B2 (en) Systems and methods for delta-sigma digitization
US7761011B2 (en) Optical fiber communication link
US9197322B2 (en) Digital optical spectral shaping
US11799550B2 (en) System and methods for efficient digitization in a communication network
US10027415B2 (en) Apparatuses and methods for transmitting and receiving control signal in analog radio-over-fiber (ROF)-based mobile fronthaul
JP2009512285A (ja) デジタル信号の光送信のための方法および装置
JP5919712B2 (ja) 送信機、通信システム、及び無線基地局装置
Gomes et al. The new flexible mobile fronthaul: Digital or analog, or both?
WO2013051641A1 (ja) バンドパス型δς変調器の設計方法、バンドパス型δς変調器、δς変調器を有する装置、及びδς変調を用いた方法
CA3050283C (en) System and methods for mapping and demapping digitized signals for optical transmission
US10903909B2 (en) System and methods for cable fiber node splitting using coherent optics
Wang et al. 10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit delta-sigma modulation supporting carrier aggregation of 32 LTE-A signals
CN102065042A (zh) 一种数字预失真装置及方法
JP2014064236A (ja) 信号処理装置及び無線機
JP6344421B2 (ja) バンドパス型δς変調器、装置及び方法
JP5874432B2 (ja) Rf信号伝送システム、信号出力装置、受信システム、rf信号の伝送方法、放送システム、放送機、放送設備、及び放送方法
Shiina et al. Optical video transmission system of terrestrial broadcasting by digitized-RoF technology with rate reduction method
Yang et al. Digitized RF-over-fiber as a cost-effective and energy-efficient backhaul option for wireless communications
JP5920034B2 (ja) 送信機、及びこれを搭載した移動体、信号処理装置
JP5799896B2 (ja) Rf信号伝送装置、rf信号伝送システム、及び受信装置
JP2012249122A (ja) 光通信システム及び光送信器
NL1031482C2 (nl) Kabeltelevisiesysteem met uitgebreide kwadratuuramplitudemodulatiesignaaluitwisseling, zendmiddelen en een beheercentrum daarvoor.
Pei et al. A novel multi-channel digital pre-distortion technique for subcarrier multiplexed radio-over-fiber system
Yu et al. OFDM signal transmission by epwm transmitter in nonlinear rof channel
Yu et al. EPWM-OFDM signal transmission against nonlinearities of E/O converters in radio over fiber channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838516

Country of ref document: EP

Kind code of ref document: A1