WO2006098444A1 - フルオロ誘導体の製造方法 - Google Patents

フルオロ誘導体の製造方法 Download PDF

Info

Publication number
WO2006098444A1
WO2006098444A1 PCT/JP2006/305435 JP2006305435W WO2006098444A1 WO 2006098444 A1 WO2006098444 A1 WO 2006098444A1 JP 2006305435 W JP2006305435 W JP 2006305435W WO 2006098444 A1 WO2006098444 A1 WO 2006098444A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl group
formula
organic base
derivative represented
Prior art date
Application number
PCT/JP2006/305435
Other languages
English (en)
French (fr)
Inventor
Akihiro Ishi
Takashi Ootsuka
Manabu Yasumoto
Hideyuki Tsuruta
Kenjin Inomiya
Koji Ueda
Kaori Mogi
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Priority to CN2006800034228A priority Critical patent/CN101111462B/zh
Priority to ES06729424T priority patent/ES2425170T3/es
Priority to EP06729424.9A priority patent/EP1842841B1/en
Priority to US11/795,378 priority patent/US7807858B2/en
Publication of WO2006098444A1 publication Critical patent/WO2006098444A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/307Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to an industrial (suitable for production on a large scale) fluorination reaction using sulfuryl fluoride.
  • it relates to methods for producing optically active fluoro derivatives, which are important intermediates for medical pesticides and optical materials, specifically 4 fluoroproline derivatives, 2'-deoxy 2 'fluorouridine derivatives and optically active a fluorocarboxylate derivatives. .
  • the fluorination reaction targeted in the present invention is classified into a dehydrofluorination reaction in which a hydroxyl group is substituted with a fluorine atom.
  • a substrate having a hydroxyl group is converted into a special strongly basic organic compound such as DBU (1,8 diazabicyclo [5.4.0] undesei7).
  • DBU 1,8 diazabicyclo [5.4.0] undesei7
  • a method of reacting with perfluoroalkanesulfur fluoride such as perfluorobutanesulfur fluoride in the presence of a base Patent Document
  • Patent Document 2 1) A substrate having a hydroxyl group in the presence of an organic base such as triethylamine and a “salt or complex capable of hydrogen fluoride with organic base” such as triethylamine 'hydrogen trifluoride complex.
  • organic base such as triethylamine and a “salt or complex capable of hydrogen fluoride with organic base” such as triethylamine 'hydrogen trifluoride complex.
  • Non-Patent Document 1 A method of reacting with perfluorobutanesulfonyl fluoride (Non-Patent Document 1), and 3) 3-, 5-, and 1-hydroxyl protected substances of 1- ⁇ -D arabinofuranosyluracil, organic compounds such as triethylamine
  • a trifluoromethanesulfonylating agent such as trifluoromethanesulfur fluoride in the presence of a base
  • a triethylamine 'hydrogen trifluoride complex a method of reacting with a fluorinating agent comprising a salt or complex comprising an organic base and hydrogen fluoride
  • Patent Document 3 A method of converting a hydroxyl group to a fluorosulfuric acid ester and substituting it with a fluorine ion
  • Patent Document 1 US Pat. No. 5,760,255 Specification
  • Patent Document 2 US Patent No. 6248889
  • Patent Document 3 International Publication No. 2004-089968 (Japanese Patent Laid-Open No. 2004-323518) )
  • Non-Patent Document 1 Organic Letters (USA), 2004, No. 6, No. 9, p. 1465-146 8
  • Non-Patent Document 2 Tetrahedron Letters (UK), 1996, 37th, No. 1, p. 17-20
  • An object of the present invention is to provide an industrial fluorination reaction.
  • long-chain perfluoroalkane sulfofluoride which is not preferred for industrial use, needs to use an expensive and special organic base.
  • a very stable perfluoroalkanesulfonic acid is formed as a salt of an organic base in a stoichiometric manner, and this reaction is carried out on an industrial scale. Therefore, waste treatment of the acid was a big problem.
  • Non-Patent Document 2 it is necessary to go through an imidazole sulfate in order to convert a hydroxy derivative to a fluorosulfate, which is not a direct fluorination reaction (see Scheme 1).
  • Non-Patent Document 1 trifluoromethanesulfonic anhydride, triethylamine 'trihydrofluoride complex-a dehydroxyfluorinating agent that also has triethylamine power, is a gaseous (boiling point-21 ° C) trifluoride in the reaction system. Fluoromethanesulfur fluoride is formed, and the hydroxyl group of the substrate cannot be efficiently converted to trifluoromethane sulfonate, and has a high boiling point. (Perfluorobutanesulfofluoride-triethylamine 'hydrogen trifluoride complex-triethylamine) is disclosed as being suitable.
  • perfluoroalkane sulfofluoride a dehydroxyfluorinated agent
  • the sulfuryl fluoride used in the present invention Has a lower boiling point (49. 7 ° C), and it is completely unknown whether it can be used suitably as a dehydroxyfluorination agent.
  • the fluorosulfonyl ester and the fluorine substitution can be continuously performed in one reactor without isolating the fluorosulfuric acid ester which is a reaction intermediate.
  • the feature of the present invention is that, as shown in Scheme 2, a hydroxy derivative can be converted into a fluorosulfate by using sulfuryl fluoride, and a quantitative by-product is produced in the reaction system in this fluorosulfolation step.
  • “A salt or complex having an organic base and hydrogen fluoride power” can be effectively used as a fluorine-substituted fluorine source.
  • fluorosulfo-rui can be formed in the presence of “a salt or complex consisting of an organic base and hydrogen fluoride”. Compared with the method shown in Scheme 2, a fluoro derivative Has also been found to be obtained with higher yield and selectivity.
  • Sulfuryl fluoride used as a dehydroxy fluorinating agent is a force having two reactive sites with a hydroxyl group, particularly as an optically active hydroxy derivative.
  • 4-hydroxyproline derivatives, 1- ⁇ -D-arabinofuranosiluracil derivatives, optically active ⁇ -hydroxycarboxylic acid ester derivatives, and primary alcohol derivatives disubstituted sulfuric acid It was found that fluorine substitution proceeded satisfactorily through the target fluorosulfuric acid ester with almost no ester (see Scheme 4). It was clarified that perfluoroalkanesulfur fluoride does not cause such a problem, and that sulfuryl fluoride can be suitably used as a dehydroxyfluorination agent.
  • the present inventors when using an optically active substance resulting from chirality of a carbon atom covalently bonded to a hydroxyl group as the hydroxy derivative, obtained a fluoro derivative obtained by reaction with sulfuryl fluoride. It was found that the stereochemistry of was reversed. In this dehydroxyfluorination reaction, fluorosulfonylation proceeds by steric retention, and subsequent fluorine substitution proceeds by steric inversion. Such a dehydroxyfluorination reaction involving inversion of stereochemistry has already been disclosed in the method using perfluoroalkanesulfur fluoride of Patent Document 2, but the elimination of the fluorosulfuric acid group.
  • the present invention provides a novel method for dehydroxyfluorinating a hydroxy derivative.
  • the following first method force is also up to the seventh method.
  • the first method is the formula [1]
  • R, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group, or an alkoxycarbo group.
  • the second method is the formula [la]
  • R, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group or an alkoxycarbo ll group.
  • An alkyl group is defined as “a linear or branched alkyl group having 1 to 16 carbon atoms”, and a substituted alkyl group is “a halogen atom, a lower alkoxy group, a lower haloalkoxy group on any carbon atom of an alkyl group, Lower alkylamino group, lower alkylthio group, cyano group, aminocarbonyl group (CO NH), unsaturated group, aromatic ring group, nucleobase, aromatic ring oxy group, aliphatic heterocyclic group, hydro
  • an aliphatic ring in which a protected form of xyl group, a protected form of an amino group, a protected form of a thiol group, or a protected form of a carboxyl group is substituted in any number and in any combination”. And any two carbon atoms of any two alkyl groups or substituted alkyl groups An aliphatic ring can be formed by forming a covalent bond, and an aliphatic heterocycle in which a part of carbon atoms of the aliphatic ring is substituted with a nitrogen atom or an oxygen atom can also be used.
  • An aromatic ring group is defined as an “aromatic hydrocarbon group or an aromatic heterocyclic group containing an oxygen atom, a nitrogen atom or a sulfur atom”.
  • An alkoxy carbo group is defined as “an alkoxy carbo group having a linear or branched alkoxy group having 1 to 12 carbon atoms”, and an alkoxy group and any carbon atom of any alkyl group or substituted alkyl group. Can form a covalent bond and adopt a rattan ring. ]
  • the third method is the formula [3]
  • R and R 1 each independently represents an alkyl group, a substituted alkyl group or an alkoxycarbonyl group, * represents an asymmetric carbon (R and R 1 are the same) )).
  • An alkyl group is defined as a “linear or branched alkyl group having 1 to 16 carbon atoms”, and a substituted alkyl group is a “halogen atom, lower alkoxy group, lower haloalkoxy group on any carbon atom of the alkyl group, Lower alkylamino group, lower alkylthio group, cyano group, aminocarbonyl group (CONH), unsaturated group, aromatic ring group, nucleobase, aromatic ring oxy
  • any carbon atom of two alkyl groups or substituted alkyl groups can form a covalent bond to form an aliphatic ring, and a part of the carbon atoms of the aliphatic ring is substituted with a nitrogen atom or an oxygen atom. It is also possible to take an aliphatic heterocycle.
  • An alkoxycarbonyl group is defined as an “alkoxycarbo group composed of a straight-chain or branched alkoxy group having 1 to 12 carbon atoms”, and an alkoxy group and an arbitrary alkyl group or a substituted alkyl group. These carbon atoms can form a covalent bond to form a rataton ring. Through the reaction, the stereology of the carbon atom to which the hydroxyl group is covalently bonded is reversed. ]
  • R 3 represents a protecting group for a secondary amino group
  • R 4 represents a protecting group for a carboxyl group
  • * represents an asymmetric carbon
  • the fifth method is the formula [7]
  • R 5 and R 6 each independently represent a hydroxyl-protecting group.
  • the sixth method is the formula [9]
  • R 7 represents an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group
  • R 8 represents an alkyl group having 1 to 8 carbon atoms
  • R 7 and R 8 Any carbon atom of the alkyl group or substituted alkyl group may form a covalent bond to form a rataton ring
  • * represents an asymmetric carbon.
  • the seventh method is the formula [11]
  • R represents an alkyl group or a substituted alkyl group.
  • An alkyl group is defined as a “linear or branched alkyl group having 1 to 16 carbon atoms”, and a substituted alkyl group is a “halogen atom, lower alkoxy group, lower haloalkoxy group on any carbon atom of an alkyl group, Lower alkylamino group, lower alkylthio group, cyano group, aminocarbonyl group (CONH), unsaturated group, aromatic ring group, nucleobase, aromatic ring oxy group, aliphatic heterocyclic group,
  • Droxyl group protector amino group protector, thiol group protector or carboxyl It is defined as “an alkyl group in which a protective group is substituted in an arbitrary number and in any combination”. ]
  • reaction may be carried out in the presence of a "salt or complex comprising an organic base and hydrogen fluoride" in the system.
  • Patent Document 1 Patent Document 2, Non-Patent Document 1, and Patent Document 3
  • perfluoroalkane sulfone which has problems with waste treatment, long-term persistence and toxicity in the environment, is a problem.
  • fluorosulfuric acid is formed as a salt of an organic base in a stoichiometric amount, but the acid can be easily treated as fluorite (CaF) as a final waste, which is an industrial scale.
  • fluorite CaF
  • the perfluoroalkyl moiety of the perfluoroalkanesulfofluoride should have sufficient sulfoniol capability and detachment ability that are not ultimately incorporated into the target product.
  • a lower fluorine content is industrially advantageous, and from this point of view, sulfuryl fluoride is remarkably superior.
  • Non-Patent Document 2 For the method of Non-Patent Document 2, it is not necessary to go through an imidazole sulfate.
  • a hydroxy derivative can be directly converted to fluorosulfate ester. .
  • the reaction end solution contains a quantitative amount of perfluoroalkane sulfonic acid and organic base salt.
  • the salt derived from the above perfluoroalkanesulfonic acid has a very high solubility in an organic solvent, and is generally used in organic synthesis such as washing the organic layer with water or an aqueous alkaline solution. Even after a post-treatment operation, It was found that there was a problem that it could not be removed effectively and the refining operation was burdensome.
  • perfluoroalkanesulfonic acid and organic base salts may act as an acid catalyst, and in order to produce a compound having an acid-labile functional group, it is necessary to remove the salt efficiently.
  • perfluorobutanesulfonic acid was obtained by distillation purification of a crude product of a 4-fluoroproline derivative represented by the formula [6], which is a tert-butoxycarbonyl (Boc) group of a secondary amino group.
  • the fluorosulfuric acid and organic base salt produced as a by-product in the present invention can be completely removed by washing the highly water-soluble organic layer with water or an aqueous alkali solution, which is almost a burden on the purification operation. Has been found to be extremely suitable for industrial fluorination reactions.
  • the fluorination reaction having the characteristics disclosed in the present invention has not been disclosed at all in the related technical field, and has very high selectivity and hardly produces impurities that are difficult to separate. It is extremely useful as an industrial fluorination reaction.
  • optically active fluoro derivatives which are important intermediates for medical pesticides and optical materials, specifically 4-fluoroproline derivatives, 2, -deoxy-2, monofluoro lysine derivatives, and optically active ⁇ -fluorocarbonic acid ester derivatives. It can be used very favorably, and can be manufactured much more efficiently than conventional manufacturing methods.
  • the hydroxy derivative represented by the formula [1] is reacted with sulfuryl fluoride in the presence of an organic base or in the presence of an organic base and a “salt or complex capable of hydrogen fluoride with an organic base”.
  • fluorosulfuric acid and fluorine substitution can be carried out continuously in one reactor without isolating the fluorosulfuric acid ester which is a reaction intermediate. Fluorosulfolation retains the stereochemistry of the hydroxyl group, and subsequent fluorine substitution reverses the stereology. Therefore, from the 4RZ2R form of the 4-hydroxyproline derivative represented by the formula [5], the 4S, 2R form of the 4 fluoroproline derivative represented by the formula [6] is obtained.
  • the 4SZ2R form has the 4RZ2R strength 4RZ2S form.
  • 4RZ2S body is obtained from 4SZ2S body From 4SZ2S body.
  • the ⁇ -position S-form of the optically active ⁇ -fluorocarboxylic acid ester derivative represented by the formula [10] is obtained from the ⁇ -position S-form.
  • R, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group, or an alkoxycarbo group.
  • R, R 1 and R 2 of the hydroxy derivative represented by the formula [1] are an alkyl group other than a hydrogen atom, a substituted alkyl group, an aromatic ring group, or an alkoxy carbo yl group, It is also possible to have an optically active site due to chirality, and in these cases, the stereology of the optically active site is retained through the fluorination reaction of the present invention.
  • Formula hydroxy derivative represented by [la] R, the alkyl group Ri and R 2 are defined as "straight-chain or branched alkyl group having from 1 to 16 carbon atoms.”
  • the substituted alkyl group of and R 2 in the hydroxy derivative represented by the formula [la] includes: “on any carbon atom of the alkyl group, a halogen atom of fluorine, chlorine, bromine, iodine, methoxy group, ethoxy Group, lower alkoxy group such as propoxy group, fluoromethoxy group, lower haloalkoxy group such as chloromethoxy group, bromomethoxy group, lower alkylamino group such as dimethylamino group, jetylamino group, dipropylamino group, methylthio group, ethylthio Group, lower alkylthio group such as propylthio group, cyano group, aminocarbol group (CON H), unsaturated group such as alkyl group, alkyl group, aromatic group such as phenol group, naphthyl group, etc.
  • Cyclic group adenine residue, guanine residue, hypoxanthine residue, xanthine residue, uracil residue, thymine residue, cytosine residue and other nucleobases, phenoxy group, naphthoxy group and other aromatic ring oxy groups, piperidyl Group, piperidino group, morpholinyl group and other aliphatic heterocyclic groups, hydroxy group protector, amino group protector, thiol group protector, carboxyl group protector, etc. Is defined as a substituted alkyl group.
  • “Lower” means a straight or branched chain having 1 to 6 carbon atoms. "Unsaturated group” is a double bond In the case of, geometric isomerism of both E-form and Z-form can be taken.
  • Aromatic ring group '' refers to an aromatic heterocyclic group (including a condensed skeleton) containing an oxygen atom, a nitrogen atom, a sulfur atom, etc., such as a furyl group, a pyrrolyl group, and a chenyl group, other than an aromatic hydrocarbon group. It can also be taken.
  • nucleobase can be protected with a protecting group commonly used in the field of nucleic acid-related substance synthesis (for example, as a protecting group for a hydroxyl group, an acyl group such as an acetyl group or a benzoyl group, Examples thereof include alkyl groups such as methoxymethyl group and aryl group, aralkyl groups such as benzyl group and trifluoromethyl group, etc.
  • a protecting group for amino groups isyl groups such as acetyl group and benzoyl group, benzyl group and the like. These protective groups can be substituted with halogen atoms, lower alkyl groups, lower alkoxy groups, etc.).
  • the hydrogen atom, hydroxyl group, and amino group of the “nucleic acid base” can be substituted with a hydrogen atom, an amino group, a halogen atom, a lower alkyl group, a lower alkenyl group, a nitro group, or the like.
  • Protective groups described in Protective Groups in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc. are used as “protecting groups for hydroxyl, amino, thiol and carboxyl”. be able to.
  • “Unsaturated group”, “aromatic ring group”, “aromatic ring oxy group” and “aliphatic heterocyclic group” include a lower alkyl group, a halogen atom, a lower haloalkyl group, a lower alkoxy group, a lower haloalkoxy group.
  • a lower alkylamino group, a lower alkylthio group, a cyano group, an aminoamino group, a hydroxyl group protector, an amino group protector, a thiol group protector, a carboxyl group protector and the like can be substituted.
  • any two carbon groups of any two alkyl groups or substituted alkyl groups may be bonded to each other.
  • a pyrrolidine ring in which a carbon atom of the aliphatic ring is substituted with a nitrogen atom or an oxygen atom can also be formed by forming a covalent bond to take an aliphatic ring such as a cyclopentane ring or a cyclohexane ring.
  • An aliphatic heterocyclic ring such as a protected form of a secondary amino group), a piperidine ring (including a protected form of a secondary amino group), an oxolane ring, an oxane ring and the like can also be used.
  • aromatic hydrocarbon group such as phenyl group, naphthyl group, anthryl group or the like, furyl group, pyrrolyl group, Group, benzofuryl group, indolyl group, benzocher group oxygen atom, nitrogen
  • aromatic heterocyclic group containing an atom or a sulfur atom is defined.
  • aromatic hydrocarbon groups and aromatic heterocyclic groups include lower alkyl groups, halogen atoms, lower haloalkyl groups, lower alkoxy groups, lower haloalkoxy groups, lower alkylamino groups, lower alkylthio groups, and cyano groups.
  • Aminocarbonyl group unsaturated group, aromatic ring group, aromatic ring oxy group, aliphatic heterocyclic group, protected hydroxyl group, protected amino group, protected thiol group, protected carboxyl group, etc. Can also be substituted.
  • the R, R 1 and R 2 alkoxycarbo group of the hydroxy derivative represented by the formula [la] may be represented by "an alkoxycarbo group having a linear or branched alkoxy group having 1 to 12 carbon atoms- Group.
  • the alkoxy group and any carbon atom of the above-described arbitrary alkyl group or substituted alkyl group may form a covalent bond to form a rataton ring.
  • R and R 1 each independently represents an alkyl group, a substituted alkyl group, or an alkoxy carbo group, and * represents an asymmetric carbon (R And R 1 do not adopt the same substituent).
  • An alkyl group is defined as “a linear or branched alkyl group having 1 to 16 carbon atoms”, and a substituted alkyl group is defined as “a halogen atom, a lower alkoxy group, a lower haloalkoxy group on any carbon atom of the alkyl group, Lower alkyl amino group, lower alkylthio group, cyano group, aminocarbonyl group (CONH), unsaturated group
  • Aromatic ring group nucleobase, aromatic ring oxy group, aliphatic heterocyclic group, protector of hydroxyl group, protector of amino group, protector of thiol group, protector of carboxyl group, etc.
  • An alkyl group substituted with a combination of any carbon atom of two alkyl groups or substituted alkyl groups can form a covalent bond to form an aliphatic ring, and a part of the carbon atoms of the aliphatic ring is substituted with a nitrogen atom or an oxygen atom. It is also possible to take an aliphatic heterocycle.
  • alkoxycarbo group is defined as an “alkoxycarbo group composed of a linear or branched alkoxy group having 1 to 12 carbon atoms”, and any carbon atom of an alkoxy group and any alkyl group or substituted alkyl group can be Can form a covalent bond and adopt a rataton ring.
  • the alkyl group or substituted alkyl group of R of the primary alcohol derivative represented by the formula [11] is defined as "a linear or branched alkyl group having 1 to 16 carbon atoms".
  • the substituted alkyl group includes a “halogen atom, a lower alkoxy group, a lower haloalkoxy group, a lower alkylamino group, a lower alkylthio group, a cyan group, an aminocarbonyl group (CONH) on any carbon atom of the alkyl group.
  • the dehydroxyfluorination reaction of the present invention is particularly effective for the production of a fluoro derivative having a high optical purity, which is required as an important intermediate for medical and agricultural chemicals and optical materials.
  • the selection of the raw material substrate is important. Specifically, it can be applied to a sterically bulky optically active tertiary alcohol derivative, but an optically active secondary alcohol derivative (an optical compound represented by the formula [3], which can be expected to have a high asymmetric transfer rate).
  • An active hydroxy derivative “corresponding to” is preferable.
  • As a substituent of the optically active secondary alcohol derivative (corresponding to “R and” of the optically active hydroxy derivative represented by the formula [3]), there is a reaction.
  • an alkyl group rather than an aromatic ring group, which is expected to be partially racemized via a transition state such as a benzylic carboion ion
  • a transition state such as a benzylic carboion ion
  • Substituted alkyl groups and alkoxycarbonyl groups are preferred.
  • the number of carbon atoms of the alkyl group is usually preferably 1 to 14, and more preferably 1 to 12.
  • a nucleic acid salt group, a hydroxyl group protector, an amino group protector and a carboxyl group protector are preferable, and two alkyl groups or substituted alkyl groups are aliphatic heterocyclic rings.
  • the number of carbon atoms of the alkoxy group of the alkoxycarbo group is preferably 1 to 10 and more preferably 1 to 8.
  • the R configuration or the S configuration can be adopted.
  • the enantiomeric excess (% ee ) is not particularly limited, but 90% ee or higher is usually used, and 95% ee or higher is generally preferable, and 97% ee or higher is more preferable.
  • the hydroxy derivative represented by the formula [1] includes an optically active hydroxy derivative represented by the formula [3], a 4-hydroxyproline derivative represented by the formula [5], and a formula [7].
  • 1 ⁇ -D arabinofuranosyluracil derivative represented by formula (1), an optically active hydroxycarboxylic acid ester derivative represented by formula [9], and a primary alcohol derivative represented by formula [11] Is particularly preferred.
  • these are an optically active fluoro derivative represented by the formula [4], a 4 fluoroproline derivative represented by the formula [6], and a 2′-deoxy-2 ′ represented by the formula [8], respectively. It is converted into a fluorolysine derivative, an optically active ⁇ -fluorocarboxylate derivative represented by the formula [10], and a monofluoromethyl derivative represented by the formula [12].
  • the protective group R 3 for the secondary amino group of the 4-hydroxyproline derivative represented by the formula [5] includes a benzyloxycarbonyl ( ⁇ ) group, a tert butoxycarbole (Boc) group, 9 Examples thereof include a fluorine-methoxycarbonyl (Fmoc) group, a 3-tro-2-pyridinesulfuryl (Npys) group, and a p-methoxybenzyloxycarbonyl [Z (MeO)] group. Of these, a benzyloxycarbonyl (Z) group and a tert-butoxycarbonyl (Boc) group are preferred, and a tert-butoxycarbonyl (Boc) group is particularly preferred.
  • the protecting group R 4 for the carboxyl group of the 4-hydroxyproline derivative represented by the formula [5] includes a methyl (Me) group, an ethyl (Et) group, a tert butyl (t Bu) group, a trichlorodiethyl ( Tee) group, phenacyl (Pac) group, benzyl (Bzl) group, 4-trobenzyl [Bzl (4-NO)] group
  • the 4-hydroxyproline derivative represented by the formula [5] can be obtained by referring to the 4th edition Experimental Chemistry Course 22 Organic Synthesis IV Acid 'Amino Acid' Peptide (Maruzen, 1992, p. 193-309). Commercially available optically active 4-hydroxyprolinker can also be produced. Some combinations of secondary amino protecting group R 3 and carboxyl protecting group R 4 are commercially available. These can also be used.
  • the protecting group R 3 for the secondary amino group is a tert-butoxycarbonyl (Boc) group
  • the protecting group R 4 for the carboxyl group is methyl (Me ) Group of compounds is Tetrahedron Letters (UK), 1998, No. 39, No. 10, p. 1169— 1172 [Koto! /, Optically active 4-hydroxyproline methyl ester hydrochloride Can be easily converted.
  • the 2- and 4-positions can independently adopt R configuration or S configuration, respectively.
  • There are 4R / 2R, 4SZ2R, 4RZ2S, and 4SZ2S strengths, and the enantiomeric excess (o / oee ) or diastereomeric excess (% de) of each stereoisomer is particularly limited. However, it is sufficient to use 90% ee or 90% de or more, respectively. Usually, 95% ee or 95% de or more is preferable, and 97% ee or 97% de or more is more preferable.
  • the hydroxyl protecting groups R 5 and R 6 of the 1 ⁇ 1-arabinofuranosyluracil derivative represented by the formula [7] include a trityl group (triphenylmethyl group), a tetrahydrobiral group (Group), tetrahydrofuran group (THF group) and the like. Of these, a tetrahydrobiranyl group ( ⁇ group) and a tetrahydrofuranyl group (THF group) are preferred, and a tetrahydrobiranyl group ( ⁇ group) is more preferred.
  • the 1- ⁇ -D-alappinofurano siluracil derivative represented by the formula [7] is described in Chem. Pharm. Bull.
  • R 7 of the optically active ⁇ -hydroxycarboxylic acid ester derivative represented by the formula [9] a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, a hexyl group, a heptyl group, an octyl group , Nonyl group, decyl group, undecyl group and lauryl group, and an alkyl group having 3 or more carbon atoms can be linear or branched.
  • an aromatic hydrocarbon group such as a phenyl group or a naphthyl group, an unsaturated hydrocarbon group such as a vinyl group, or a linear or branched alkoxy group having 1 to 6 carbon atoms.
  • Aryloxy groups such as phenoxy groups, halogen atoms (fluorine, chlorine, bromine, iodine), carboxyl group protectors, The mino group protector or the hydroxyl group protector can be substituted by one or in any combination.
  • protective groups for carboxyl, amino and hydroxyl groups use the protective groups described in Protective Groups in Organic synthesis, Third Edition, 1999, John Wiley & Sons, Inc.
  • the protecting group for the carboxyl group include an ester group
  • the protecting group for the amino group includes a benzyl group, an acyl group (acetyl group, a chloroacetyl group, a benzoyl group, a 4-methylbenzoyl group).
  • Etc. phthaloyl groups, etc., and benzyl group, 2-tetrahydrovinyl group, acyl group (acetyl group, chloroacetyl group, benzoyl group, 4-methylbenzoyl group, etc.), silyl group (Trialkylsilyl group, alkylarylsilyl group, etc.) and the like, and as a protective group for 1,2-dihydroxyl group, 2,2 dimethyl-1,3 di Examples include a protecting group that forms oxolane.
  • R 8 of the optically active ⁇ -hydroxycarboxylic acid ester derivative represented by the formula [9] is a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, a hexyl group, a heptyl group, or an octyl group.
  • an alkyl group having 3 or more carbon atoms can be linear or branched.
  • any carbon atom of the alkyl group or substituted alkyl group of R 7 and R 8 in the optically active ⁇ -hydroxycarboxylic acid ester derivative represented by the formula [9] forms a covalent bond to form a rattan ring. Say it with a word.
  • optically active ⁇ -hydroxycarboxylic acid ester derivative represented by the formula [9] It can be similarly produced from various optically active ⁇ -amino acids that are commercially available with reference to Communications (USA), 1991, No. 21, No. 21, p. 2165-2170.
  • the (S) -lactic acid ethyl ester used in the examples was a commercial product.
  • reaction in the present invention is carried out by reacting any of the above hydroxy derivatives in the presence of an organic base or in the presence of an organic base and a “salt or complex comprising an organic base and hydrogen fluoride”. This can be achieved by bringing into contact with fluoride and mixing thoroughly at a predetermined temperature and pressure as described below.
  • the amount of sulfuryl fluoride (SO F) used is not particularly limited, but is represented by the formula [1].
  • Examples of the organic base include trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, pyridine, 2,3-lutidine, 2,4-lutidine, 2,5-lutidine, 2, 6 —Lutidine, 3, 4-Lutidine, 3,5—Lutidine, 2, 3, 4—Colidine, 2, 4, 5—Colidine, 2, 5, 6—Colidine, 2, 4, 6—Colidine, 3, 4 , 5-collidine, 3, 5, 6-collidine and the like.
  • the amount of the organic base used is not particularly limited, but it is sufficient to use 1 mol or more per 1 mol of the hydroxy derivative represented by the formula [1]. Usually, 1 to 20 mol is preferable. In particular, 1 to 10 mol is more preferable.
  • Organic bases of "a salt or complex having an organic base and hydrogen fluoride power” include trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, pyridine, 2,3-lutidine, 2 , 4-lutidine, 2, 5-lutidine, 2, 6-lutidine, 3, 4-lutidine, 3, 5-lutidine, 2, 3, 4-collidine, 2, 4, 5-collidine, 2, 5, 6—collidine, 2, 4 , 6-collidine, 3, 4, 5-collidine, 3, 5, 6-collidine and the like.
  • triethylamine, diisopropylethylamine, tri ⁇ -propylamine, pyridine, 2, 3-lutidine, 2,4-lutidine, 2,6-lutidine, 3,4-lutidine, 3,5-lutidine, 2, 4, 6-collidine and 3, 5, 6-collidine are preferred, especially triethylamine, diisopropylpropylamine, pyridine, 2,4-lutidine, 2,6-lutidine, 3,5-lutidine and 2,4,6 -Collidine is more preferred.
  • the molar ratio of the organic base to hydrogen fluoride in the "organic base and hydrogen fluoride power salt or complex" is in the range of 100: 1 to 1: 100, usually 50: 1 to 1. A range of 50 is preferred, especially a range of 25: 1 to 1:25.
  • “complex with 1 mol of triethylamine and 3 mol of hydrogen fluoride” commercially available from Anoledritchi (Aldrich, 2003-2004 general catalog), and "pyridine ⁇ 30% ( ⁇ 10 mol%) and fluoride it is very convenient to use hydrogen and 70% (90 mol 0/0) or Ranaru complex ".
  • the amount of the “salt or complex having an organic base and hydrogen fluoride power” is not particularly limited. Fluorine ion (F—) is used per 1 mol of the hydroxy derivative represented by the formula [1]. It is sufficient to use 0.3 mol or more. Usually, 0.5 to 50 mol is preferable, and 0.7 to 25 mol is more preferable.
  • Reaction solvents include aliphatic hydrocarbons such as n-hexane, cyclohexane, and n-heptane, aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene, methyl chloride, and black mouth.
  • halogenated hydrocarbons such as 1,2-dichloroethane, ethers such as jetyl ether, tetrahydrofuran and tert-butyl methyl ether, esters such as ethyl acetate and n-butyl acetate, N, N-dimethylformamide, N Amides such as N-dimethylacetamide and N-methylpyrrolidone; -tolyl groups such as acetonitrile and propio-tolyl; dimethyl sulfoxide and the like.
  • n-heptane, toluene, mesitylene, methylene chloride, tetrahydrofuran, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, acetonitrile, propio-tolyl and dimethylsulfoxide are particularly preferred.
  • U more preferred are toluene, mesitylene, methylene chloride, tetrahydrofuran, N, N-dimethylformamide and acetonitrile.
  • the amount of reaction solvent to be used is not particularly limited, but 0.1 L (liter) or more is usually used per 0.1 mol of the hydroxy derivative represented by the formula [1]. ⁇ 20L is preferred, especially 0.1 ⁇ : LOL is more preferred.
  • the temperature condition there is no particular limitation on the temperature condition, but it should be performed in the range of -100 to + 100 ° C. Normally, 80 to + 80 ° C is preferred, especially 60 to + 60 ° C. Is more preferable.
  • a pressure-resistant reaction vessel can be used when the reaction is performed at a temperature higher than the boiling point of sulfuryl fluoride (-49.7 ° C).
  • the pressure condition is not particularly limited, but it may be in the range of atmospheric pressure to 2 MPa. Usually, atmospheric pressure to 1.5 MPa is preferred, and particularly atmospheric pressure to IMPa is more preferred. Therefore, it is preferable to perform the reaction using a pressure-resistant reaction vessel made of a material such as stainless steel (SUS) or glass (glass lining).
  • SUS stainless steel
  • glass glass lining
  • the reaction time is not particularly limited, but may vary depending on the substrate and reaction conditions which should be performed in the range of 0.1 to 72 hours. Therefore, depending on the analytical means such as gas chromatography, liquid chromatography, NMR, etc. It is preferable to trace the progress of the reaction and end the time when the raw material has almost disappeared.
  • the post-treatment is not particularly limited, but usually the reaction-terminated solution is poured into water or an aqueous solution of an alkali metal inorganic base (for example, sodium bicarbonate, potassium bicarbonate, sodium carbonate or potassium carbonate), A crude product can be obtained by extraction with an organic solvent (for example, toluene, mesitylene, methylene chloride or ethyl acetate). Fluorosulfuric acid and organic basic salt, or alkali metal salt of fluorosulfuric acid, which is a by-product of sulfuryl fluoride, has an extremely high distribution to water.
  • the desired fluoro derivative represented by the formula [2] can be obtained with high chemical purity. If necessary, it can be purified to a higher chemical purity by activated carbon treatment, distillation, recrystallization, and the like.
  • a crude product of the 4 fluoroproline derivative represented by ## STR4 ## was obtained as a brown oily substance.
  • the recovered amount of the crude product was slightly over the theoretical yield weight! /.
  • the selectivity of the crude product was measured by gas chromatography, and it was 82.4% (there are three main impurities, and when impure product AC is named, impurity A, impurity B and impurity C are respectively 8. 2% 3.3% 4. 9% included).
  • the instrument data of the resulting crude product of 4 fluoroproline derivative is shown below (assigned as a mixture of EZZ isomers attributed to the NBoc group).
  • the crude product does not contain any salts derived from fluorosulfuric acid (FSO H-Et N or FSO K).
  • V ⁇ was found from the 19 F-NMR spectrum.
  • the reaction mixture was poured into an aqueous solution of potassium carbonate [prepared with potassium carbonate (6.30 g, 45.58 mmol, 4.56 eq) and water (100.OmL)], and extracted twice with 100.OmL of ethyl acetate.
  • the recovered organic layer is concentrated under reduced pressure, vacuum dried,
  • a crude product of the 4 fluoroproline derivative represented by ## STR4 ## was obtained as a brown oily substance.
  • the recovered amount of the crude product was slightly over the theoretical yield weight! /.
  • the selectivity of the crude product was measured by gas chromatography, and it was 91.0% (there are three main impurities. Impurities A to C are named as Impurities A, B and C. 6.4%, 2.4% and 0.1% respectively).
  • the resulting crude product of 4 fluoroproline derivative The vessel data was the same as in Example 1.
  • 1-j8-D-arabinofuranosyluracil derivative represented by 12.30 g (29. 82 mmol, 1. OOeq), ace-sulyl 38. OmL, ⁇ -ethylamine 18. 15 g (179. 37 mmol, 6.00 eq) and triethynoleamine's trihydrohydrogen complex 19. 30 g (119.71 mmol, 4. Oleq) were added and the internal temperature was 40. After cooling out to C, 10 OOg (97. 98 mmol, 3. 29 eq) was blown from the cylinder. The internal temperature was returned to room temperature, and the mixture was stirred for 16 hours and 30 minutes, and further stirred at 40 ° C for 5 hours and 30 minutes.
  • the conversion rate of the reaction was measured by liquid chromatography and found to be 99% or more.
  • the reaction-terminated liquid was poured into an aqueous solution of potassium carbonate [prepared with potassium carbonate 58.00 g (419. 65 mmol, 14. 07 eq) and water 300. OmL], and extracted twice with 300. OmL of ethyl acetate.
  • the collected organic layer was washed with 200% OmL of 10% brine, concentrated under reduced pressure, and dried under vacuum.
  • a crude product of 2′-deoxy-2′-fluorouridine derivative represented by the formula 12.83 g was obtained as a brown oily substance.
  • the recovered amount of the crude product was slightly over the theoretical yield weight.
  • the selectivity for the crude product was determined by liquid chromatography to be 83.2%.
  • the instrument data of the crude product of the obtained 2'-deoxy 2'-fluorourizine derivative is shown below (observation of four diastereomers attributed to two THP groups).
  • the reaction-terminated solution was poured into an aqueous solution of potassium carbonate [prepared from potassium carbonate 7.90 g (57.16 mmol, 0.70 eq) and water 100.OmL] and extracted twice with 45.OmL of mesitylene.
  • the collected organic layer was washed with hydrochloric acid brine (adjusted from 1N hydrochloric acid 95. OmL and sodium chloride 10. OOg).
  • the concentration of the main distillation was 21.0% by weight.
  • the total yield was 58%.
  • the optical purity and instrument data of the main product of the obtained optically active ⁇ -fluorocarboxylic acid ester derivative are shown below.
  • OmL of water was added to the reaction completed solution, and the mixture was concentrated under reduced pressure. 50. OmL of water was added to the concentrated residue, and the mixture was extracted once with 100.OmL of ethyl acetate. The recovered organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and vacuum dried.
  • a crude product of the monofluoromethyl derivative represented by the formula (2.72 g) was obtained as a dark brown oily substance.
  • the selectivity for the crude product was measured by gas chromatography to be 69.4%.
  • the crude product contained 3.45 mmol of monofluoromethyl derivative by 19 F-NMR internal standard method (internal standard substance: CF). Yield was 23%
  • the primary alcohol derivative of the raw material substrate is to be manufactured with reference to Protective Groups in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc. Can do.
  • the obtained monofluoromethyl derivative can be converted into optically active 1-isopropyl 2-fluoroethylamine without degrading the optical purity with reference to the same book.
  • a crude product of a monofluoromethyl derivative represented by the formula (1) was obtained as a brown oily substance.
  • the selectivity for the crude product was determined by gas chromatography to be 94.2%.
  • the crude product was found to contain 2.10 mmol of monofluoromethyl derivative by 19 F-NMR internal standard method (internal standard: CF).
  • the yield was 21%. Obtained
  • a commercially available product was used as the primary alcohol derivative of the raw material substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 ヒドロキシ誘導体を有機塩基の存在下に、または有機塩基と「有機塩基とフッ化水素からなる塩または錯体」の存在下にスルフリルフルオリド(SO2F2)と反応させることによりフルオロ誘導体が製造できることを見出した。本製造方法は、工業的な使用が好ましくないパーフルオロアルカンスルホニルフルオリドを用いる必要がなく、医農薬および光学材料の重要中間体である光学活性フルオロ誘導体、具体的には4-フルオロプロリン誘導体、2’-デオキシ-2’-フルオロウリジン誘導体および光学活性α-フルオロカルボン酸エステル誘導体等を大量規模でも有利に製造できる。

Description

フルォロ誘導体の製造方法
技術分野
[0001] 本発明は、スルフリルフルオリドを用いる工業的な(大量規模での製造に適した)フッ 素化反応に関する。特に医農薬および光学材料の重要中間体である光学活性フル ォロ誘導体、具体的には 4 フルォロプロリン誘導体、 2 '—デォキシー 2 ' フルォロ ゥリジン誘導体および光学活性 a フルォロカルボン酸エステル誘導体等の製造方 法に関する。
発明の背景
[0002] 本発明で対象とするフッ素化反応は、ヒドロキシル基をフッ素原子に置換する脱ヒド ロキシフッ素化反応に分類される。本発明に関連する代表的な反応例として、 1)ヒド 口キシル基を有する基質を、 DBU ( 1 , 8 ジァザビシクロ [5. 4. 0]ゥンデセー7 ェ ン)等の特殊な強塩基性の有機塩基の存在下に、パーフルォロブタンスルホ -ルフ ルオリド等のパーフルォロアルカンスルホ-ルフルオリドと反応させる方法 (特許文献
1、特許文献 2)、 2)ヒドロキシル基を有する基質を、トリェチルァミン等の有機塩基と 、トリェチルァミン'三フッ化水素錯体等の「有機塩基とフッ化水素力 なる塩または 錯体」の存在下に、パーフルォロブタンスルホニルフルオリドと反応させる方法 (非特 許文献 1)と、 3) 1 - β—D ァラビノフラノシルゥラシルの 3,, 5,一水酸基保護体を 、トリェチルァミン等の有機塩基の存在下に、トリフルォロメタンスルホ-ルフルオリド 等のトリフルォロメタンスルホニル化剤と反応させることにより、 2 '—トリフレート体に変 換し、次 、でトリェチルァミン'三フッ化水素錯体等の「有機塩基とフッ化水素からな る塩または錯体」よりなるフッ素化剤と反応させる方法 (特許文献 3)が挙げられる。ま た 4)ヒドロキシル基をフルォロ硫酸エステルに変換し、フッ素ァ-オンで置換する方 法 (非特許文献 2)が報告されて 、る。
特許文献 1:米国特許第 5760255号明細書
特許文献 2:米国特許第 6248889号明細書
特許文献 3 :国際公開 2004Ζ089968号パンフレット(特開 2004— 323518号公報 )
非特許文献 1 : Organic Letters (米国), 2004年,第 6卷,第 9号, p. 1465 - 146 8
非特許文献 2 : Tetrahedron Letters (英国), 1996年,第 37卷,第 1号, p. 17— 20
発明の概要
[0003] 本発明の目的は、工業的なフッ素化反応を提供することにある。特許文献 1および 特許文献 2の方法では、工業的な使用が好ましくない長鎖のパーフルォロアルカン スルホ-ルフルオリドゃ、高価で特殊な有機塩基を用いる必要があった。パーフルォ ロアルカンスルホ-ルフルオリドを用いる脱ヒドロキシフッ素化反応では、極めて安定 なパーフルォロアルカンスルホン酸を有機塩基の塩として量論的に副生し、工業的 な規模で本反応を実施する上で該酸の廃棄物処理が大きな問題であった。特に炭 素数力 以上の長鎖のパーフルォロアルカンスルホン酸誘導体は環境への長期残 留性ゃ毒性が指摘されており、工業的な使用が制限されている (例えばパーフルォ 口オクタンスルホン酸誘導体については、フアルマシア Vol. 40 No. 2 2004を 参照)。非特許文献 1の方法においても、長鎖のパーフルォロブタンスルホ-ルフル オリドを用いるという同様の問題があった。一方、特許文献 3の方法は、炭素数が 1の トリフルォロメタンスルホ-ルフルオリドを用いるため、環境への長期残留性や毒性の 問題を回避できる優れた方法である力 トリフルォロメタンスルホ-ルフルオリドのェ 業的な生産量は、パーフルォロブタンスルホ-ルフルオリドゃパーフルォロオクタン スルホ-ルフルオリドに比べて限られており、大量の入手が必ずしも容易ではなかつ た。非特許文献 2の方法では、ヒドロキシ誘導体をフルォロ硫酸エステルに変換する ためにイミダゾール硫酸エステルを経る必要があり、直接的なフッ素化反応ではなか つた (スキーム 1を参照)。
[0004] [化 1] スキーム 1
0、 Ώ
OH
一 1* 0' V Γ
R小 -R2 R1
R' "R2 R 、水 个
' 、R2 2
R1
[0005] また非特許文献 1では、トリフルォロメタンスルホン酸無水物 トリェチルアミン'三 フッ化水素錯体—トリェチルァミン力もなる脱ヒドロキシフッ素化剤では、反応系内で ガス状 (沸点— 21°C)のトリフルォロメタンスルホ-ルフルオリドが生成し、基質のヒド 口キシル基が効率的にトリフルォロメタンスルホ-ル化できず、沸点の高 、 (64°C)パ 一フルォロブタンスルホ-ルフルオリドとの組み合わせ(パーフルォロブタンスルホ- ルフルオリド—トリェチルアミン'三フッ化水素錯体—トリェチルァミン)が好適であると 開示されている。この記載内容は、脱ヒドロキシフッ素ィ匕剤のパーフルォロアルカンス ルホ-ルフルオリドとして、沸点の低 、トリフルォロメタンスルホ-ルフルオリドは好適 でないことを明示しており、本発明で使用するスルフリルフルオリドはさらに沸点が低 く(一 49. 7°C)、脱ヒドロキシフッ素ィ匕剤として好適に利用できる力否かは全く不明で めつに。
[0006] この様に、後述の式 [2]で示されるフルォロ誘導体を製造するための、工業的に実 施容易な、新規のフッ素化反応が強く望まれていた。
[0007] 本出願人は、関連するフッ素化反応として、本出願に先立ち、特願 2004— 13037 5号、特願 2004— 184099号、特願 2004— 215526号および特願 2004— 23788 3号を出願した。これらの出願において、本発明者らは、特定のヒドロキシ誘導体を有 機塩基の存在下、または有機塩基と「有機塩基とフッ化水素からなる塩または錯体」 の存在下にトリフルォロメタンスルホ-ルフルオリドと反応させることによりフルォロ誘 導体が収率良く製造できることを明らかにした。しかしながら、特許文献 3の方法と同 様に、これらの出願の方法では何れもトリフルォロメタンスルホ-ルフルオリドを用い ており、工業的な安定供給の観点から、これに代わる新規なフッ素化反応の開発も 求められていた。
[0008] 本発明者らは、上記の観点から、工業的に実施容易な、新規のフッ素化反応を見 出すベぐ鋭意検討した。その結果、燻蒸剤として広く利用されているスルフリルフル オリド (SO F )力 本発明で対象とするヒドロキシ誘導体を脱ヒドロキシフッ素化する
2 2
のに、極めて好適であるという知見を得、課題の解決に到達した。すなわち、本発明 で対象とする、後述の式 [1]で示されるヒドロキシ誘導体を、有機塩基の存在下に、 または有機塩基と「有機塩基とフッ化水素カゝらなる塩または錯体」の存在下に、スル フリルフルオリドと反応させることにより、後述の式 [2]で示されるフルォロ誘導体が、 収率良く製造できることを見出した。スルフリルフルオリドを脱ヒドロキシフッ素化剤と して利用した例は未だ報告されて 、な 、。
[0009] 本発明の方法では、反応中間体であるフルォロ硫酸エステルを単離することなぐ 一つの反応器内でフルォロスルホニルイ匕とフッ素置換を連続的に行うことができる。 本発明の特徴は、スキーム 2に示す様に、スルフリルフルオリドを用いることによりヒド ロキシ誘導体をフルォロ硫酸エステルに変換でき、このフルォロスルホ-ル化の工程 で反応系内に量論的に副生した「有機塩基とフッ化水素力もなる塩または錯体」がフ ッ素置換のフッ素源として有効に利用できることである。またスキーム 3に示す様に、「 有機塩基とフッ化水素カゝらなる塩または錯体」の存在下にフルォロスルホ-ルイ匕を行 うこともでき、スキーム 2に示した方法に比べて、フルォロ誘導体がより高い収率およ び選択性で得られることも見出した。
[0010] [化 2]
Figure imgf000005_0001
有機塩基としてトリェチ /レアミン(1当量)を使用した場合の例
[0011] [化 3] スキーム 3
R
Figure imgf000006_0001
有機塩基としてトリェチルァミン(1当量)と 「有機塩基とフッ化水素からなる塩または錯体 J
としてトリェチルァミン · 三フ;/化水素錯体(1当量)を使用した場合の例
[0012] 本発明にお!/、て脱ヒドロキシフッ素化剤として利用するスルフリルフルオリドにはヒド 口キシル基との反応点が二つある力 ヒドロキシ誘導体として、特に光学活性ヒドロキ シ誘導体である、 4ーヒドロキシプロリン誘導体、 1— β—D—ァラビノフラノシルゥラシ ル誘導体、光学活性 α—ヒドロキシカルボン酸エステル誘導体、および第一級アル コール誘導体を用いた場合には、二置換の硫酸エステルを殆ど与えず (スキーム 4を 参照)、 目的とするフルォロ硫酸エステルを経てフッ素置換が良好に進行することを 見出した。パーフルォロアルカンスルホ-ルフルオリドではこの様な問題は起こり得 ず、スルフリルフルオリドが脱ヒドロキシフッ素ィ匕剤として好適に利用できることを明ら 力にした。
[0013] [化 4]
スキーム 4
Figure imgf000006_0002
[0014] さらに、本発明者らは、ヒドロキシ誘導体として、ヒドロキシル基が共有結合した炭素 原子のキラリティーに起因する光学活性体を用いた場合、スルフリルフルオリドとの反 応で得られたフルォロ誘導体の立体化学が反転して ヽることを見出した。本脱ヒドロ キシフッ素化反応では、フルォロスルホニル化は立体保持で進行し、引き続くフッ素 置換は立体反転で進行して!/ヽるものと考えられる。この様な立体化学の反転を伴う脱 ヒドロキシフッ素化反応は、特許文献 2のパーフルォロアルカンスルホ-ルフルオリド を用いる方法にぉ ヽても既に開示されて 、るが、フルォロ硫酸基の脱離能はパーフ ルォロアルカンスルホン酸基に比べて格段に劣って 、るため [Synthesis (ドイツ国) , 1982年,第 2号, p. 85— 126]、立体化学の制御が困難な鎖状基質、特に、後述 の式 [9]で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体のスルフリル フルオリドを用いる脱ヒドロキシフッ素化反応にぉ 、ては、反応が高 、不斉転写率で 進行する力否かは不明であった。これに対して、本発明者らは、本発明のスルフリル フルオリドを用いる脱ヒドロキシフッ素化反応力 非常に温和な反応条件下で良好に 進行し、原料基質として用いる、式 [9]で示される光学活性 α—ヒドロキシカルボン酸 エステル誘導体の光学純度が反映され、光学純度が極めて高い、後述の式 [ 10]で 示される光学活性 a フルォロカルボン酸エステル誘導体が得られることを見出した
[0015] また、後述の式 [5]で示される 4ーヒドロキシプロリン誘導体および、後述の式 [7]で 示される 1 β—D ァラビノフラノシルゥラシル誘導体からフルォロスルホ-ル化に より変換される、それぞれの原料基質に対応するフルォロ硫酸エステルが、フッ素置 換において充分な脱離能を有する力否力も不明であった。これに対しても、本発明 者らは、本発明のスルフリルフルオリドを用いる脱ヒドロキシフッ素化反応力 後述の 式 [6]で示される 4 フルォロプロリン誘導体および、後述の式 [8]で示される 2 '— デォキシ 2 '—フルォロウリジン誘導体の製造方法として好適に利用できることも見 出した。
[0016] すなわち本発明はヒドロキシ誘導体を脱ヒドロキシフッ素化する新規方法を提供す る。本発明に依る方法は以下の第 1方法力も第 7方法までの 、ずれかであればょ 、。
[0017] 第 1方法は、式 [ 1]
[化 5]
Figure imgf000007_0001
で示されるヒドロキシ誘導体を有機塩基の存在下にスルフリルフルオリド (SO F )と
2 2 反応させることにより、式 [2]
Figure imgf000008_0001
で示されるフルォロ誘導体を製造する方法である。
[式 [1]、式 [2]中、 R、 R1および R2はそれぞれ独立に水素原子、アルキル基、置換 アルキル基、芳香環基またはアルコキシカルボ-ル基を表す。 ]
第 2方法は、式 [la]
[化 7]
Figure imgf000008_0002
[ 3: で示されるヒドロキシ誘導体を有機塩基の存在下にスルフリルフルオリド (SO F )と
2 2 反応させることにより、式 [2a]
[化 8]
R个 R1
R2 [2a] で示されるフルォロ誘導体を製造する方法である。
[式 [la]、式 [2a]中、 R、 R1および R2はそれぞれ独立に水素原子、アルキル基、置 換アルキル基、芳香環基またはアルコキシカルボ-ル基を表す。アルキル基は「炭素 数 1から 16の直鎖または分枝のアルキル基」と定義され、置換アルキル基は「アルキ ル基の任意の炭素原子上にハロゲン原子、低級アルコキシ基、低級ハロアルコキシ 基、低級アルキルアミノ基、低級アルキルチオ基、シァノ基、ァミノカルボ-ル基 (CO NH )、不飽和基、芳香環基、核酸塩基、芳香環ォキシ基、脂肪族複素環基、ヒドロ
2
キシル基の保護体、ァミノ基の保護体、チオール基の保護体またはカルボキシル基 の保護体が任意の数でさらに任意の組み合わせで置換したアルキル基」と定義され る。また任意の二つのアルキル基または置換アルキル基の任意の炭素原子同士が 共有結合を形成して脂肪族環を採ることもでき、該脂肪族環の炭素原子の一部が窒 素原子または酸素原子に置換した脂肪族複素環を採ることもできる。芳香環基は「芳 香族炭化水素基または、酸素原子、窒素原子もしくは硫黄原子を含む芳香族複素 環基」と定義される。アルコキシカルボ-ル基は「炭素数 1から 12の直鎖または分枝 のアルコキシ基力 なるアルコキシカルボ-ル基」と定義され、アルコキシ基と任意の アルキル基または置換アルキル基の任意の炭素原子同士が共有結合を形成して、 ラタ卜ン環を採ることちできる。 ]
第 3方法は、式 [3]
[化 9]
H
Figure imgf000009_0001
で示される光学活性ヒドロキシ誘導体を有機塩基の存在下にスルフリルフルオリド (S O F )と反応させることにより、式 [4]
2 2
[化 10]
Figure imgf000009_0002
で示される光学活性フルォロ誘導体を製造する方法である。
[式 [3]、式 [4]中、 Rおよび R1はそれぞれ独立にアルキル基、置換アルキル基また はアルコキシカルボ二ル基を表し、 *は不斉炭素を表す (Rと R1は同一の置換基を採 らな 、)。アルキル基は「炭素数 1から 16の直鎖または分枝のアルキル基」と定義され 、置換アルキル基は「アルキル基の任意の炭素原子上にハロゲン原子、低級アルコ キシ基、低級ハロアルコキシ基、低級アルキルアミノ基、低級アルキルチオ基、シァノ 基、ァミノカルボニル基 (CONH )、不飽和基、芳香環基、核酸塩基、芳香環ォキシ
2
基、脂肪族複素環基、ヒドロキシル基の保護体、ァミノ基の保護体、チオール基の保 護体またはカルボキシル基の保護体等が任意の数でさらに任意の組み合わせで置 換したアルキル基」と定義される。また二つのアルキル基または置換アルキル基の任 意の炭素原子同士が共有結合を形成して脂肪族環を採ることもでき、該脂肪族環の 炭素原子の一部が窒素原子または酸素原子に置換した脂肪族複素環を採ることも できる。アルコキシカルボ二ル基は「炭素数 1から 12の直鎖または分枝のアルコキシ 基カゝらなるアルコキシカルボ-ル基」と定義され、アルコキシ基と任意のアルキル基ま たは置換アルキル基の任意の炭素原子同士が共有結合を形成して、ラタトン環を採 ることもできる。反応を通してヒドロキシル基が共有結合した炭素原子の立体ィ匕学は 反転する。 ]
[0020] 第 4方法は、式 [5]
[化 11]
Figure imgf000010_0001
で示される 4—ヒドロキシプロリン誘導体を有機塩基の存在下にスルフリルフルオリド( SO F )と反応させることにより、式 [6]
2 2
[化 12]
Figure imgf000010_0002
で示される 4 -フルォロプロリン誘導体を製造する方法である。
[式 [5]、式 [6]中、 R3は二級アミノ基の保護基を表し、 R4はカルボキシル基の保護 基を表し、 *は不斉炭素を表す。反応を通して 4位の立体化学は反転し、 2位の立体 化学は保持される。 ]
[0021] 第 5方法は、式 [7]
[化 13]
Figure imgf000011_0001
で示される 1 導体を有機塩基の存在下にス ルフリルフルオリド (SO F )と反応させることにより、式 [8]
2 2
[化 14]
Figure imgf000011_0002
で示される 2'—デォキシ 2'—フルォロウリジン誘導体を製造する方法である。
[式 [7]、式 [8]中、 R5および R6はそれぞれ独立にヒドロキシル基の保護基を表す。 ] 第 6方法は、式 [9]
[化 15]
Figure imgf000011_0003
【91 で示される光学活性 aーヒドロキシカルボン酸エステル誘導体を有機塩基の存在下 にスルフリルフルオリド(SO F )と反応させることにより、式 [10]
2 2
[化 16]
Figure imgf000012_0001
で示される光学活性 a フルォロカルボン酸エステル誘導体を製造する方法である
[式 [9]、式 [10]中、 R7は炭素数 1から 12のアルキル基または置換アルキル基を表 し、 R8は炭素数 1から 8のアルキル基を表し、 R7と R8のアルキル基または置換アルキ ル基の任意の炭素原子同士が共有結合を形成してラタトン環を採ることもでき、 *は 不斉炭素を表す。反応を通して α位の立体化学は反転する。 ]
第 7方法は、式 [11]
[化 17]
Figure imgf000012_0002
で示される第一級アルコール誘導体を有機塩基の存在下にスルフリルフルオリド(S O F )と反応させることにより、式 [12]
2 2
[化 18]
Figure imgf000012_0003
で示されるモノフルォロメチル誘導体を製造する方法である。
[式 [11]、式 [12]中、 Rはアルキル基または置換アルキル基を表す。アルキル基は「 炭素数 1から 16の直鎖または分枝のアルキル基」と定義され、置換アルキル基は「ァ ルキル基の任意の炭素原子上にハロゲン原子、低級アルコキシ基、低級ハロアルコ キシ基、低級アルキルアミノ基、低級アルキルチオ基、シァノ基、ァミノカルボ-ル基( CONH )、不飽和基、芳香環基、核酸塩基、芳香環ォキシ基、脂肪族複素環基、ヒ
2
ドロキシル基の保護体、ァミノ基の保護体、チオール基の保護体またはカルボキシル 基の保護体が任意の数でさらに任意の組み合わせで置換したアルキル基」と定義さ れる。 ]
[0024] 上記の第 1〜第 7方法の各々において、系中にさらに「有機塩基とフッ化水素から なる塩または錯体」を存在させて反応を行っても良 、。
詳細な説明
[0025] 本発明のフッ素化反応が従来の技術に比べて有利な点を以下に述べる。
[0026] まず、特許文献 1、特許文献 2、非特許文献 1および特許文献 3の方法に対しては、 廃棄物処理、環境への長期残留性や毒性が問題となるパーフルォロアルカンスルホ
-ルフルオリドを用いる必要がなぐ本発明では、燻蒸剤として広く利用されているス ルフリルフルオリドを用いることができる。
[0027] また本発明では、フルォロ硫酸を有機塩基の塩として量論的に副生するが、該酸 は最終廃棄物として蛍石 (CaF )に簡便に処理することができ、工業的な規模でのフ
2
ッ素化反応に極めて好適である。
[0028] さらにパーフルォロアルカンスルホ-ルフルオリドのパーフルォロアルキル部位は、 最終的には目的生成物に組み込まれるわけではなぐ充分なスルホ二ルイ匕能と脱離 能を有するものであれば、フッ素含量が少ない方が工業的に有利であり、この様な観 点から見てもスルフリルフルオリドは格段に優れている。
[0029] また DBU等の高価で特殊な有機塩基を用いる必要がなぐ本発明では、トリェチ ルァミン等の安価で工業的に汎用されて 、る有機塩基を用 、ることができる。
[0030] また非特許文献 2の方法に対しては、イミダゾール硫酸エステルを経る必要がなぐ 本発明では、スルフリルフルオリドを用いることにより、ヒドロキシ誘導体をフルォロ硫 酸エステノレに直接、変換することができる。
[0031] またスルフリルフルオリドを用いることにより、新たな発明の効果が見出された。パー フルォロアルカンスルホ-ルフルオリドを用いる脱ヒドロキシフッ素化反応では、反応 終了液にパーフルォロアルカンスルホン酸と有機塩基の塩が量論的に含まれている 力 該塩、特に炭素数力 以上のパーフルォロアルカンスルホン酸に由来する塩は、 有機溶媒に対する溶解性が極めて高 ヽため、有機層を水またはアルカリ水溶液で洗 浄する等の、有機合成で一般的に採用されている後処理操作を実施しても、該塩を 効果的に取り除くことができず、精製操作に負荷が力かるという問題点があることを知 つた。さらにパーフルォロアルカンスルホン酸と有機塩基カゝらなる塩が酸触媒として 働く場合があり、酸に不安定な官能基を有する化合物を製造するためには、該塩を 効率的に取り除く必要があった。実際に、二級アミノ基の保護基力tert ブトキシカ ルボニル (Boc)基である、式 [6]で示される 4 フルォロプロリン誘導体の粗生成物 の蒸留精製にぉ 、て、パーフルォロブタンスルホン酸と有機塩基力もなる塩が多量 に含まれていると、脱 Boc化反応が相当に認められ、目的生成物を収率良く回収す ることが出来な力つた。一方、本発明で副生するフルォロ硫酸と有機塩基の塩は極 めて水溶性が高ぐ有機層を水またはアルカリ水溶液で洗浄することにより完全に取 り除くことができ、精製操作に殆ど負荷が力からないため、工業的なフッ素化反応に 極めて好適であることを見出した。
[0032] 本発明で開示した特徴を有するフッ素化反応は、関連する技術分野にお!、て全く 開示されておらず、選択性が非常に高ぐ分離の難しい不純物を殆ど副生しないた め、工業的なフッ素化反応として極めて有用である。特に医農薬および光学材料の 重要中間体である光学活性フルォロ誘導体、具体的には 4 フルォロプロリン誘導 体、 2,ーデォキシー 2,一フルォロウリジン誘導体および光学活性 α フルォロカル ボン酸エステル誘導体の工業的な製造方法に極めて好適に利用でき、従来の製造 方法に比べて格段に効率良く製造することができる。
[0033] 以下、本発明のスルフリルフルオリドを用いるフッ素化反応について詳細に説明す る。
[0034] 本発明は、式 [1]で示されるヒドロキシ誘導体を有機塩基の存在下に、または有機 塩基と「有機塩基とフッ化水素力 なる塩または錯体」の存在下にスルフリルフルオリ ドと反応させることによりなり、反応中間体であるフルォロ硫酸エステルを単離すること なぐ一つの反応器内でフルォロスルホ-ルイ匕とフッ素置換を連続的に行うことがで きる。フルォロスルホ-ル化ではヒドロキシル基の立体化学は保持され、引き続くフッ 素置換では立体ィ匕学が反転する。従って、式 [5]で示される 4—ヒドロキシプロリン誘 導体の 4RZ2R体からは、式 [6]で示される 4 フルォロプロリン誘導体の 4S,2R 体が得られ、同様に 4SZ2R体からは 4RZ2R体力 4RZ2S体からは 4SZ2S体が 、 4SZ2S体からは 4RZ2S体が得られる。また、式 [9]で示される光学活性 α ヒド ロキシカルボン酸エステル誘導体の α位 R体からは、式 [10]で示される光学活性 α フルォロカルボン酸エステル誘導体の α位 S体が得られ、同様に α位 S体からは α位 R体が得られる。
[0035] 式 [1]で示されるヒドロキシ誘導体の R、 R1および R2としては、それぞれ独立に水素 原子、アルキル基、置換アルキル基、芳香環基またはアルコキシカルボ-ル基を表 す。
[0036] 式 [1]で示されるヒドロキシ誘導体の R、 R1および R2が水素原子以外のアルキル基 、置換アルキル基、芳香環基またはアルコキシカルボ-ル基においては、炭素原子 や軸等のキラリティーに起因する光学活性部位を有することもでき、これらの場合に は、本発明のフッ素化反応を通して、該光学活性部位の立体ィ匕学は保持される。
[0037] 式 [la]で示されるヒドロキシ誘導体の R、Riおよび R2のアルキル基としては、「炭素 数 1から 16の直鎖または分枝のアルキル基」と定義される。
[0038] 式 [la]で示されるヒドロキシ誘導体の および R2の置換アルキル基としては、「 アルキル基の任意の炭素原子上に、フッ素、塩素、臭素、ヨウ素のハロゲン原子、メト キシ基、エトキシ基、プロポキシ基等の低級アルコキシ基、フルォロメトキシ基、クロ口 メトキシ基、ブロモメトキシ基等の低級ハロアルコキシ基、ジメチルァミノ基、ジェチル アミノ基、ジプロピルアミノ基等の低級アルキルアミノ基、メチルチオ基、ェチルチオ 基、プロピルチオ基等の低級アルキルチオ基、シァノ基、ァミノカルボ-ル基 (CON H )、ァルケ-ル基、アルキ-ル基等の不飽和基、フヱ -ル基、ナフチル基等の芳香
2
環基、アデニン残基、グァニン残基、ヒポキサンチン残基、キサンチン残基、ゥラシル 残基、チミン残基、シトシン残基等の核酸塩基、フ ノキシ基、ナフトキシ基等の芳香 環ォキシ基、ピペリジル基、ピペリジノ基、モルホリニル基等の脂肪族複素環基、ヒド 口キシル基の保護体、ァミノ基の保護体、チオール基の保護体、カルボキシル基の 保護体等が、任意の数で、さらに任意の組み合わせで、置換したアルキル基」と定義 される。
[0039] なお、本明細書において、次の各用語は、それぞれ次に掲げる意味で用いられる。
「低級」とは、炭素数 1から 6の直鎖または分枝を意味する。「不飽和基」が二重結合 の場合は、 E体または Z体の両方の幾何異性を採ることができる。「芳香環基」は、芳 香族炭化水素基以外の、フリル基、ピロリル基、チェニル基等の酸素原子、窒素原 子、硫黄原子等を含む芳香族複素環基 (縮合骨格も含む)を採ることもできる。「核酸 塩基」は、核酸関連物質の合成分野で一般的に使用する保護基で保護することがで きる(例えば、ヒドロキシル基の保護基としては、ァセチル基、ベンゾィル基等のァシ ル基、メトキシメチル基、ァリル基等のアルキル基、ベンジル基、トリフエ-ルメチル基 等のァラルキル基等が挙げられる。またアミノ基の保護基としては、ァセチル基、ベン ゾィル基等のァシル基、ベンジル基等のァラルキル基等が挙げられる。さら〖ここれら の保護基には、ハロゲン原子、低級アルキル基、低級アルコキシ基等が置換すること もできる)。また「核酸塩基」の水素原子、ヒドロキシル基、アミノ基を、水素原子、ァミノ 基、ハロゲン原子、低級アルキル基、低級アルケニル基、ニトロ基等で置換することも できる。「ヒドロキシル基、アミノ基、チオール基およびカルボキシル基の保護基」とし て ίま、 Protective Groups in Organic synthesis, Third Edition, 1999, J ohn Wiley & Sons, Inc.に記載された保護基等を使用することができる。また「 不飽和基」、「芳香環基」、「芳香環ォキシ基」および「脂肪族複素環基」には、低級ァ ルキル基、ハロゲン原子、低級ハロアルキル基、低級アルコキシ基、低級ハロアルコ キシ基、低級アルキルアミノ基、低級アルキルチオ基、シァノ基、ァミノカルボ-ル基 、ヒドロキシル基の保護体、ァミノ基の保護体、チオール基の保護体、カルボキシル 基の保護体等が置換することもできる。
[0040] 式 [la]で示されるヒドロキシ誘導体の R、 R1および R2のアルキル基および置換アル キル基としては、任意の二つのアルキル基または置換アルキル基の、任意の炭素原 子同士が共有結合を形成して、シクロペンタン環、シクロへキサン環等の脂肪族環を 採ることもでき、該脂肪族環の炭素原子の一部が窒素原子または酸素原子に置換し た、ピロリジン環(二級ァミノ基の保護体も含む)、ピぺリジン環(二級ァミノ基の保護 体も含む)、ォキソラン環、ォキサン環等の脂肪族複素環を採ることもできる。
[0041] 式 [la]で示されるヒドロキシ誘導体の および R2の芳香環基としては、「フエ- ル基、ナフチル基、アントリル基等の芳香族炭化水素基または、フリル基、ピロリル基 、チェニル基、ベンゾフリル基、インドリル基、ベンゾチェ-ル基等の酸素原子、窒素 原子もしくは硫黄原子等を含む芳香族複素環基」と定義される。またこれらの芳香族 炭化水素基および芳香族複素環基には、低級アルキル基、ハロゲン原子、低級ハロ アルキル基、低級アルコキシ基、低級ハロアルコキシ基、低級アルキルアミノ基、低 級アルキルチオ基、シァノ基、ァミノカルボニル基、不飽和基、芳香環基、芳香環ォ キシ基、脂肪族複素環基、ヒドロキシル基の保護体、ァミノ基の保護体、チオール基 の保護体、カルボキシル基の保護体等が置換することもできる。
[0042] 式 [la]で示されるヒドロキシ誘導体の R、 R1および R2のアルコキシカルボ-ル基とし ては、「炭素数 1から 12の直鎖または分枝のアルコキシ基力もなるアルコキシカルボ -ル基」と定義される。また該アルコキシ基と、上記の任意のアルキル基または置換 アルキル基の、任意の炭素原子同士が共有結合を形成して、ラタトン環を採ることも できる。
[0043] 式 [3]で示される光学活性ヒドロキシ誘導体の Rおよび R1としては、それぞれ独立 にアルキル基、置換アルキル基またはアルコキシカルボ-ル基を表し、 *は不斉炭 素を表す (Rと R1は同一の置換基を採らな 、)。アルキル基は「炭素数 1から 16の直 鎖または分枝のアルキル基」と定義され、置換アルキル基は「アルキル基の任意の炭 素原子上にハロゲン原子、低級アルコキシ基、低級ハロアルコキシ基、低級アルキル アミノ基、低級アルキルチオ基、シァノ基、ァミノカルボニル基 (CONH )、不飽和基
2
、芳香環基、核酸塩基、芳香環ォキシ基、脂肪族複素環基、ヒドロキシル基の保護体 、ァミノ基の保護体、チオール基の保護体またはカルボキシル基の保護体等が任意 の数でさらに任意の組み合わせで置換したアルキル基」と定義される。また二つのァ ルキル基または置換アルキル基の任意の炭素原子同士が共有結合を形成して脂肪 族環を採ることもでき、該脂肪族環の炭素原子の一部が窒素原子または酸素原子に 置換した脂肪族複素環を採ることもできる。アルコキシカルボ-ル基は「炭素数 1から 12の直鎖または分枝のアルコキシ基からなるアルコキシカルボ-ル基」と定義され、 アルコキシ基と任意のアルキル基または置換アルキル基の任意の炭素原子同士が 共有結合を形成してラタトン環を採ることもできる。
[0044] 式 [11]で示される第一級アルコール誘導体の Rのアルキル基または置換アルキル 基としては、アルキル基は「炭素数 1から 16の直鎖または分枝のアルキル基」と定義 され、置換アルキル基は「アルキル基の任意の炭素原子上にハロゲン原子、低級ァ ルコキシ基、低級ハロアルコキシ基、低級アルキルアミノ基、低級アルキルチオ基、シ ァノ基、ァミノカルボニル基 (CONH )、不飽和基、芳香環基、核酸塩基、芳香環ォ
2
キシ基、脂肪族複素環基、ヒドロキシル基の保護体、ァミノ基の保護体、チオール基 の保護体またはカルボキシル基の保護体等が任意の数でさらに任意の組み合わせ で置換したアルキル基」と定義される。
[0045] 本発明の脱ヒドロキシフッ素化反応は、医農薬および光学材料の重要中間体に要 求される、光学純度の高いフルォロ誘導体の製造に、特に効力を発揮する。この効 果を最大限に引き出すには、原料基質の選択が重要となる。具体的には、立体的に 嵩高い光学活性第三級アルコール誘導体にも適用できるが、高い不斉転写率が期 待できる、光学活性第二級アルコール誘導体(「式 [3]で示される光学活性ヒドロキシ 誘導体「に対応)がー層好適である。さらに光学活性第二級アルコール誘導体の置 換基(「式 [3]で示される光学活性ヒドロキシ誘導体の Rおよび 」に対応)としては、 反応中間体であるフルォロ硫酸エステルがフッ素置換される過程において、ベンジ ル位カルボ-ゥムイオンの様な遷移状態を経て部分的にラセミ化を伴うことが予想さ れる、芳香環基よりも、アルキル基、置換アルキル基およびアルコキシカルボニル基 が好適である。
[0046] また得られる生成物の有用性から、アルキル基の炭素数としては、通常は 1から 14 が好ましぐ特に 1から 12がより好ましい。置換アルキル基の置換基としては、核酸塩 基、ヒドロキシル基の保護体、ァミノ基の保護体およびカルボキシル基の保護体が好 適であり、また二つのアルキル基または置換アルキル基が脂肪族複素環を採ること が好適であり、アルコキシカルボ-ル基のアルコキシ基の炭素数としては、通常は 1 力 10が好ましぐ特に 1から 8がより好ましい。
[0047] さらに光学活性第二級アルコール誘導体(「式 [3]で示される光学活性ヒドロキシ誘 導体」に対応)の不斉炭素の立体ィ匕学としては、 R配置または S配置を採ることができ 、ェナンチォマー過剰率(%ee)としては、特に制限はないが、 90%ee以上のものを 使用すればよぐ通常は 95%ee以上が好ましぐ特に 97%ee以上がより好ましい。
[0048] また新規薬効を有する医薬品開発において、「モノフルォロメチル基」は重要なモ チーフとして認識されており、モノフルォロメチル誘導体(「式 [ 12]で示されるモノフ ルォロメチル誘導体」に対応)を効率良く製造できる、第一級アルコール誘導体(「式 [11]で示される第一級アルコール誘導体」に対応)も好適な基質である。
[0049] 具体的には、式 [1]で示されるヒドロキシ誘導体としては、式 [3]で示される光学活 性ヒドロキシ誘導体、式 [5]で示される 4ーヒドロキシプロリン誘導体、式 [7]で示され る 1 β—D ァラビノフラノシルゥラシル誘導体、式 [9]で示される光学活性ひ一ヒ ドロキシカルボン酸エステル誘導体および、式 [ 11 ]で示される第一級アルコール誘 導体が特に好適である。これらは、本発明のフッ素化反応を通して、それぞれ、式 [4 ]で示される光学活性フルォロ誘導体、式 [6]で示される 4 フルォロプロリン誘導体 、式 [8]で示される 2'—デォキシ—2' フルォロウリジン誘導体、式 [10]で示される 光学活性 α フルォロカルボン酸エステル誘導体、式 [12]で示されるモノフルォロ メチル誘導体に変換される。
[0050] 式 [5]で示される 4ーヒドロキシプロリン誘導体の二級アミノ基の保護基 R3としては、 ベンジルォキシカルボ-ル(Ζ)基、 tert ブトキシカルボ-ル(Boc)基、 9 フルォレ -ルメトキシカルボ-ル(Fmoc)基、 3 -トロ 2 ピリジンスルフエ-ル(Npys)基 、 p—メトキシベンジルォキシカルボ-ル [Z (MeO) ]基等が挙げられる。その中でも ベンジルォキシカルボ-ル(Z)基および tert ブトキシカルボ-ル(Boc)基が好まし く、特に tert ブトキシカルボニル (Boc)基がより好まし 、。
[0051] 式 [5]で示される 4ーヒドロキシプロリン誘導体のカルボキシル基の保護基 R4として は、メチル(Me)基、ェチル(Et)基、 tert ブチル(t Bu)基、トリクロ口ェチル(Tee )基、フエナシル(Pac)基、ベンジル(Bzl)基、 4 -トロベンジル [Bzl (4— NO ) ]基
2
、 4—メトキシベンジル [Bzl (4— MeO) ]基等が挙げられる。その中でもメチル(Me) 基、ェチル (Et)基およびべンジル (Bzl)基が好ましぐ特にメチル (Me)基およびェ チル (Et)基がより好ましい。
[0052] 式 [5]で示される 4ーヒドロキシプロリン誘導体は、第 4版 実験化学講座 22 有機 合成 IV 酸 'アミノ酸'ペプチド (丸善, 1992年, p. 193— 309)を参考にして、巿販 の光学活性 4—ヒドロキシプロリンカも製造することができる。また二級アミノ基の保護 基 R3とカルボキシル基の保護基 R4の組み合わせによっては巿販されているものがあ り、これらを利用することもできる。また式 [5]で示される 4ーヒドロキシプロリン誘導体 の内、二級アミノ基の保護基 R3が tert—ブトキシカルボ-ル(Boc)基で、カルボキシ ル基の保護基 R4がメチル(Me)基である化合物は、 Tetrahedron Letters (英国) , 1998年,第 39卷,第 10号, p. 1169— 1172【こ従!/、、光学活'性 4—ヒドロキシプロ リンメチルエステルの塩酸塩から容易に変換できる。
[0053] 式 [5]で示される 4ーヒドロキシプロリン誘導体の不斉炭素の立体ィ匕学としては、 2 位と 4位がそれぞれ独立に R配置または S配置を採ることができ、立体ィ匕学の組み合 わせとしては、 4R/2R体、 4SZ2R体、 4RZ2S体または 4SZ2S体力あり、各立体 異性体のェナンチォマー過剰率(o/oee)またはジァステレオマー過剰率(%de)とし ては、特に制限はないが、それぞれ 90%eeまたは 90%de以上を使用すればよぐ 通常は 95%eeまたは 95%de以上が好ましぐ特に 97%eeまたは 97%de以上がより 好ましい。
[0054] 式 [7]で示される 1 β Ό—ァラビノフラノシルゥラシル誘導体のヒドロキシル基の 保護基 R5および R6としては、トリチル基(トリフエ-ルメチル基)、テトラヒドロビラ-ル基 (ΤΗΡ基)、テトラヒドロフラ -ル基 (THF基)等が挙げられる。その中でもテトラヒドロ ビラニル基 (ΤΗΡ基)およびテトラヒドロフラ -ル基 (THF基)が好ましぐ特にテトラヒ ドロビラニル基 (ΤΗΡ基)がより好ましい。式 [7]で示される 1— β—D—ァラピノフラノ シルゥラシル誘導体は、 Chem. Pharm. Bull. (日本), 1994年,第 42卷,第 3号, p. 595— 598、および Khim. Geterotsikl. Soedin. (ロシア), 1996年,第 7号, p . 975— 977を参考にして製造することができる。これらの文献の方法にならえば、 3 ' 位と 5 '位のヒドロキシル基を選択的に保護したものが得られる。
[0055] 式 [9]で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体の R7としては、 メチル基、ェチル基、プロピル基、ブチル基、アミル基、へキシル基、ヘプチル基、ォ クチル基、ノニル基、デシル基、ゥンデシル基、ラウリル基が挙げられ、炭素数 3以上 のアルキル基は直鎖または分枝を採ることができる。またアルキル基の任意の炭素原 子上に、フ ニル基、ナフチル基等の芳香族炭化水素基、ビニル基等の不飽和炭化 水素基、炭素数 1から 6の直鎖または分枝のアルコキシ基、フエノキシ基等のァリール ォキシ基、ハロゲン原子 (フッ素、塩素、臭素、ヨウ素)、カルボキシル基の保護体、ァ ミノ基の保護体またはヒドロキシル基の保護体が、一つまたは任意の組み合わせで 二つ置換することもできる。カルボキシル基、アミノ基およびヒドロキシル基の保護基と し一し ί 、上 tiと同様に、 Protective Groups in Organic synthesis, Third E dition, 1999, John Wiley & Sons, Inc.に記載された保護基を使用すること ができ、具体的にカルボキシル基の保護基としてはエステル基等が挙げられ、ァミノ 基の保護基としてはべンジル基、ァシル基(ァセチル基、クロロアセチル基、ベンゾィ ル基、 4 メチルベンゾィル基等)、フタロイル基等が挙げられ、ヒドロキシル基の保護 基としてはべンジル基、 2—テトラヒドロビラ-ル基、ァシル基 (ァセチル基、クロロアセ チル基、ベンゾィル基、 4 メチルベンゾィル基等)、シリル基(トリアルキルシリル基、 アルキルァリールシリル基等)等が挙げられ、特に 1, 2—ジヒドロキシル基の保護基と しては 2, 2 ジメチルー 1, 3 ジォキソランを形成する保護基等が挙げられる。
[0056] 本発明で対象とする製造方法は、式 [9]で示される光学活性 aーヒドロキシカルボ ン酸エステル誘導体の R7が芳香族炭化水素基の場合にも採用できるが、 R7がアルキ ル基または置換アルキル基の場合に比べて、 目的生成物である式 [10]で示される 光学活性 a フルォロカルボン酸エステル誘導体 (R7 =芳香族炭化水素基)の光学 純度が有意に低下するため、式 [9]で示される光学活性 α—ヒドロキシカルボン酸ェ ステル誘導体の R7としてはアルキル基または置換アルキル基が好適である。
[0057] 式 [9]で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体の R8としては、 メチル基、ェチル基、プロピル基、ブチル基、アミル基、へキシル基、ヘプチル基、ォ クチル基が挙げられ、炭素数 3以上のアルキル基は直鎖または分枝を採ることができ る。さらに式 [9]で示される光学活性 α ヒドロキシカルボン酸エステル誘導体の R7と R8のアルキル基または置換アルキル基の、任意の炭素原子同士が共有結合を形成 して、ラタ卜ン環を採ることちでさる。
[0058] 式 [9]で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体の不斉炭素の 立体ィ匕学としては、 R配置または S配置を採ることができ、ェナンチォマー過剰率(% ee)としては、特に制限はないが、 90%ee以上のものを使用すればよぐ通常は 95 %ee以上が好ましぐ特に 97%ee以上がより好ましい。
[0059] 式 [9]で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体は、 Syntheti c Communications (米国), 1991年,第 21卷,第 21号, p. 2165— 2170を参考 にして、市販されている種々の光学活性 α—アミノ酸から同様に製造することができ る。また実施例で使用した (S)—乳酸ェチルエステルは市販品を利用した。
[0060] 本発明における反応は、上述のヒドロキシ誘導体の何れかを、有機塩基の存在下 に、または有機塩基と「有機塩基とフッ化水素からなる塩または錯体」の存在下に、ス ルフリルフルオリドと接触させ、後述する所定の温度、圧力で十分に混和することによ り、達成できる。
[0061] スルフリルフルオリド(SO F )の使用量としては、特に制限はないが、式 [1]で示さ
2 2
れるヒドロキシ誘導体 1モルに対して 1モル以上を使用すればよぐ通常は 1〜10モ ルが好ましぐ特に 1〜5モルがより好ましい。
[0062] 有機塩基としては、トリメチルァミン、トリエチルァミン、ジイソプロピルェチルァミン、 トリ n—プロピルァミン、ピリジン、 2, 3—ルチジン、 2, 4—ルチジン、 2, 5—ルチジン 、 2, 6—ルチジン、 3, 4—ルチジン、 3, 5—ルチジン、 2, 3, 4—コリジン、 2, 4, 5— コリジン、 2, 5, 6—コリジン、 2, 4, 6—コリジン、 3, 4, 5—コリジン、 3, 5, 6—コリジ ン等が挙げられる。その中でもトリエチルァミン、ジイソプロピルェチルァミン、トリ n— プロピルァミン、ピリジン、 2, 3—ルチジン、 2, 4—ルチジン、 2, 6—ルチジン、 3, 4 —ルチジン、 3, 5—ルチジン、 2, 4, 6—コリジンおよび 3, 5, 6—コリジン力 子ましく 、特にトリェチルァミン、ジイソプロピルェチルァミン、ピリジン、 2, 4—ルチジン、 2, 6 ールチジン、 3, 5—ルチジンおよび 2, 4, 6—コリジンがより好ましい。
[0063] 有機塩基の使用量としては、特に制限はないが、式 [1]で示されるヒドロキシ誘導 体 1モルに対して 1モル以上を使用すればよぐ通常は 1〜20モルが好ましぐ特に 1 〜 10モルがより好ましい。
[0064] 次に、第 1〜第 7方法において使用できる「有機塩基とフッ化水素力もなる塩または 錯体」について詳細に説明する。
[0065] 「有機塩基とフッ化水素力もなる塩または錯体」の有機塩基としては、トリメチルアミ ン、トリエチルァミン、ジイソプロピルェチルァミン、トリ n—プロピルァミン、ピリジン、 2 , 3—ルチジン、 2, 4—ルチジン、 2, 5—ルチジン、 2, 6—ルチジン、 3, 4—ルチジ ン、 3, 5—ルチジン、 2, 3, 4—コリジン、 2, 4, 5—コリジン、 2, 5, 6—コリジン、 2, 4 , 6—コリジン、 3, 4, 5—コリジン、 3, 5, 6—コリジン等力挙げられる。その中でもトリ ェチルァミン、ジイソプロピルェチルァミン、トリ η—プロピルァミン、ピリジン、 2, 3- ルチジン、 2, 4—ルチジン、 2, 6—ルチジン、 3, 4—ルチジン、 3, 5—ルチジン、 2, 4, 6—コリジンおよび 3, 5, 6—コリジンが好ましぐ特にトリェチルァミン、ジイソプロ ピルェチルァミン、ピリジン、 2, 4—ルチジン、 2, 6—ルチジン、 3, 5—ルチジンおよ び 2, 4, 6—コリジンがより好ましい。
[0066] 「有機塩基とフッ化水素力 なる塩または錯体」の有機塩基とフッ化水素のモル比と しては、 100 : 1〜1: 100の範囲であり、通常は 50 : 1〜1: 50の範囲が好ましぐ特に 25 : 1〜1 : 25の範囲カょり好ましぃ。さらにァノレドリツチ(Aldrich、 2003— 2004総 合カタログ)から市販されている、「トリエチルァミン 1モルとフッ化水素 3モル力もなる 錯体」、および「ピリジン〜 30% (〜10モル%)とフッ化水素〜 70% (〜90モル0 /0)か らなる錯体」を使用するのが極めて便利である。
[0067] 「有機塩基とフッ化水素力もなる塩または錯体」の使用量としては、特に制限はない 力 式 [1]で示されるヒドロキシ誘導体 1モルに対してフッ素ァ-オン (F—)とし て 0. 3モル以上を使用すればよぐ通常は 0. 5〜50モルが好ましぐ特に 0. 7〜25 モルがより好ましい。
[0068] 反応溶媒としては、 n—へキサン、シクロへキサン、 n—ヘプタン等の脂肪族炭化水 素系、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレ ン、クロ口ホルム、 1, 2—ジクロロェタン等のハロゲン化炭化水素系、ジェチルエーテ ル、テトラヒドロフラン、 tert—ブチルメチルエーテル等のエーテル系、酢酸ェチル、 酢酸 n—ブチル等のエステル系、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセ トアミド、 N—メチルピロリドン等のアミド系、ァセトニトリル、プロピオ-トリル等の-トリ ル系、ジメチルスルホキシド等が挙げられる。その中でも n—ヘプタン、トルエン、メシ チレン、塩化メチレン、テトラヒドロフラン、酢酸ェチル、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、ァセトニトリル、プロピオ-トリルおよびジメチルスルホキ シドが好ましぐ特にトルエン、メシチレン、塩化メチレン、テトラヒドロフラン、 N, N— ジメチルホルムアミドおよびァセトニトリルがより好ま U、。これらの反応溶媒は単独ま たは組み合わせて使用することができる。 [0069] 反応溶媒の使用量としては、特に制限はないが、式 [1]で示されるヒドロキシ誘導 体 1モルに対して 0. 1L (リットル)以上を使用すればよぐ通常は 0. 1〜20Lが好まし く、特に 0. 1〜: LOLがより好ましい。
[0070] 温度条件としては、特に制限はないが、― 100〜+ 100°Cの範囲で行えばよぐ通 常は— 80〜 + 80°Cが好ましぐ特に— 60〜 + 60°Cがより好ましい。スルフリルフル オリドの沸点(-49. 7°C)以上の温度条件で反応を行う場合には、耐圧反応容器を 使用することができる。
[0071] 圧力条件としては、特に制限はないが、大気圧〜 2MPaの範囲で行えばよぐ通常 は大気圧〜 1. 5MPaが好ましぐ特に大気圧〜 IMPaがより好ましい。従って、ステ ンレス鋼 (SUS)またはガラス (グラスライニング)の様な材質でできた耐圧反応容器を 用 、て反応を行うのが好まし 、。
[0072] 反応時間としては、特に制限はないが、 0. 1〜72時間の範囲で行えばよぐ基質 および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、 N MR等の分析手段により、反応の進行状況を追跡して原料が殆ど消失した時点を終 点とすることが好ましい。
[0073] 後処理としては、特に制限はないが、通常は反応終了液を水またはアルカリ金属の 無機塩基 (例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウムまたは炭酸 カリウム等)の水溶液に注ぎ込み、有機溶媒 (例えば、トルエン、メシチレン、塩化メチ レンまたは酢酸ェチル等)で抽出することにより、粗生成物を得ることができる。スルフ リルフルオリドから副生するフルォロ硫酸と有機塩基力 なる塩、またはフルォロ硫酸 のアルカリ金属塩は、水に対する分配が格段に高いため、水洗等の簡便な操作によ り、これらの塩を効率的に除去することができ、目的とする式 [2]で示されるフルォロ 誘導体を高い化学純度で得ることができる。また必要に応じて、活性炭処理、蒸留、 再結晶等により、さらに高い化学純度に精製することができる。 実施例
[0074] 以下、実施例により本発明の実施の形態を具体的に説明するが、本発明はこれら の実施例に限定されるものではない。
[実施例 1] ステンレス鋼 (sus)製耐圧反応容器に、下
[化 19]
Figure imgf000025_0001
で示される 4ーヒドロキシプロリン誘導体 2. 45g (9. 99mmol 1. OOeq)、ァセトニトリ ノレ 10. OmLとトリエチノレアミン 1. 10g (10. 87mmol 1. 09eq)をカロえ、内温を一 40 °Cに冷去口してスノレフリノレフノレ才リド 2. 00g (19. 60mmol 1. 96eq)をボンベより吹き 込んだ。内温を室温に戻して 20時間 20分攪拌した。反応の変換率をガスクロマトグ ラフィーにより測定したところ 100%であった。反応終了液を炭酸カリウムの水溶液 [ 炭酸カリウム 2. 80g (20. 26mmol 2. 03eq)と水 50. OmL力ら調製]に注ぎ込み、 酢酸ェチル 50. OmLで 2回抽出した。回収有機層を減圧下濃縮し、真空乾燥し、下 己式
[化 20]
Figure imgf000025_0002
で示される 4 フルォロプロリン誘導体の粗生成物を褐色の油状物質として得た。粗 生成物の回収量は理論収率の重量を若干超えて!/、た。粗生成物の選択率をガスク 口マトグラフィ一により測定したところ 82. 4%であった(主な不純物は 3種類あり、不 純物 A Cと命名すると、不純物 A、不純物 Bおよび不純物 Cは、それぞれ 8. 2% 3 . 3% 4. 9%含まれていた)。得られた 4 フルォロプロリン誘導体の粗生成物の機 器データを下に示す (NBoc基に起因する EZZ異性体の混合物として帰属)。粗生 成物にはフルォロ硫酸に由来する塩 (FSO H-Et Nまたは FSO K)が全く含まれて
3 3 3
Vヽな 、ことが19 F— NMRスペクトルより分かった。
NMR (基準物質: Me Si,重溶媒: CDC1 ) , δ ppm: 1. 43& 1. 49 (s X 2,ト 一タル 9H), 1. 95-2. 55(トータル 2H), 3. 51— 3. 94(トータル 2H), 3. 75 (S,
3H), 4. 36-4. 58(トータル 1H), 5. 10— 5. 31(トータル 1H).
19F— NMR (基準物質: C F ,重溶媒: CDC1), δ ppm:— 11. 27(トータル IF) .
6 6 3
[実施例 2]
ステンレス鋼(SUS)製耐圧反応容器に、下記式
[化 21]
Figure imgf000026_0001
で示される 4ーヒドロキシプロリン誘導体 2.45g(9. 99mmol、 1. OOeq)、ァセトニトリ ノレ 13. OmL、トリエチノレアミン 3. 50g(34. 59mmol、 3.46eq)とトリエチノレアミン' 三フッ化水素錯体 1. 60g(9. 92mmol、0. 99eq)を加え、内温を— 40°Cに冷却し てスルフリルフルオリド 2. 00g(19. 60mmol、 1. 96eq)をボンベより吹き込んだ。内 温を室温に戻して 20時間攪拌した。反応の変換率をガスクロマトグラフィーにより測 定したところ 100%であった。反応終了液を炭酸カリウムの水溶液 [炭酸カリウム 6. 3 0g(45. 58mmol、4. 56eq)と水 100. OmL力ら調製]に注ぎ込み、酢酸ェチノレ 10 0. OmLで 2回抽出した。回収有機層を減圧下濃縮し、真空乾燥し、下記式
[化 22]
Figure imgf000026_0002
で示される 4 フルォロプロリン誘導体の粗生成物を褐色の油状物質として得た。粗 生成物の回収量は理論収率の重量を若干超えて!/、た。粗生成物の選択率をガスク 口マトグラフィ一により測定したところ 91. 0%であった(主な不純物は 3種類あり、不 純物 A〜Cと命名すると、不純物 A、不純物 Bおよび不純物 Cは、それぞれ 6.4%、 2 . 4%、0. 1%含まれていた)。得られた 4 フルォロプロリン誘導体の粗生成物の機 器データは、実施例 1と同様であった。
[実施例 3]
ステンレス鋼 (SUS)製耐圧反応容器に、下
[化 23]
Figure imgf000027_0001
で示される 1— j8—D—ァラビノフラノシルゥラシル誘導体 12. 30g (29. 82mmol、 1. OOeq)、ァセ卜-卜リル 38. OmL、卜リエチルァミン 18. 15g (179. 37mmol、 6. 0 2eq)とトリエチノレアミン'三フツイ匕水素錯体 19. 30g (119. 71mmol、 4. Oleq)をカロ え、内温を一 40。Cに冷去口してスノレフリノレフノレ才リド 10. OOg (97. 98mmol、 3. 29eq )をボンベより吹き込んだ。内温を室温に戻して 16時間 30分攪拌し、さらに 40°Cで 5 時間 30分攪拌した。反応の変換率を液体クロマトグラフィーにより測定したところ 99 %以上であった。反応終了液を炭酸カリウムの水溶液 [炭酸カリウム 58. 00g (419. 65mmol、 14. 07eq)と水 300. OmL力ら調製]に注ぎ込み、酢酸ェチノレ 300. Om Lで 2回抽出した。回収有機層を 10%食塩水 200. OmLで洗浄し、減圧下濃縮し、 真空乾燥し、下記式
[化 24]
Figure imgf000027_0002
で示される 2 '—デォキシ— 2 '—フルォロウリジン誘導体の粗生成物 12. 83gを褐色 の油状物質として得た。粗生成物の回収量は理論収率の重量を若干超えていた。粗 生成物の選択率を液体クロマトグラフィーにより測定したところ 83. 2%であった。得ら れた 2 '—デォキシ 2 '—フルォロウリジン誘導体の粗生成物の機器データを下に 示す(二つの THP基に起因する四種のジァステレオマーを観測)。
19F— NMR (基準物質: C F ,重溶媒: CDC1 ) , δ ppm :— 43. 13 (dt, 51. 9Hz
6 6 3
, 15. 4Hz) , -42. 50 (dt, 51. 5Hz, 15. 4Hz) , —37. 62 (dt, 51. 5Hz, 15. OHz) , - 37. 55 (dt, 51. 9Hz, 15. OHz)Z卜一タル IF.
[実施例 4]
ステンレス鋼(SUS)製耐圧反応容器に、下記式
[化 25]
OH S
Me 、C02Et で示される光学活性 α ヒドロキシカルボン酸エステル誘導体 9. 60g (81. 27mmo 1、 1. OOeq、光学純度 98. 4%ee)、メシチレン 27. OmLとトリェチルァミン 8. 50g (8 4. OOmmol、 1. 03eq)を加え、内温を— 40。Cに冷却してスルフリルフルオリド 11. 5 0g ( 112. 68mmol、 1. 39eq)をボンベより吹き込んだ。内温を室温に戻して 22時 間 10分攪拌した。反応の変換率をガスクロマトグラフィーにより測定したところ 100% であった。反応終了液を炭酸カリウムの水溶液 [炭酸カリウム 7. 90g (57. 16mmol、 0. 70eq)と水 100. OmLから調製]に注ぎ込み、メシチレン 45. OmLで 2回抽出した 。回収有機層を塩酸食塩水(1N塩酸 95. OmLと食塩 10. OOgから調整)で洗浄し、 下,己式
[化 26]
Figure imgf000028_0001
で示される光学活性 a フルォロカルボン酸エステル誘導体の粗生成物のメシチレ ン溶液 110. 63gを得た。粗生成物の選択率をガスクロマトグラフィーにより測定した ところ 99. 0%以上 (メシチレンを除く)であった。粗生成物のメシチレン溶液を分別蒸 留(81— 90。CZ20000Pa)し、本留 26. 82gを回収した。本留には、光学活性 α— フルォロカルボン酸エステル誘導体力 S46. 90mmol含まれて!/、ることが1 H
NMRスペクトルより分かり、本留の濃度は 21. 0重量%であった。トータル収率は 58%であった。得られた光学活性 α フルォロカルボン酸エステル誘導体の本留の 光学純度と機器データを下に示す。
光学純度 97. 7%ee (テトラヒドロフラン中、過剰の水素化リチウムアルミニウムを用い てヒドリド還元し、得られた (R)—2—フルォローlープロパノールをMosher酸ェステ ルに誘導し、ガスクロマトグラフィーにより決定した。不斉転写率は 99. 3%であった) — NMR (基準物質: Me Si,重溶媒: CDC1 ) , δ ppm: l. 32 (t, 7. 2Hz, 3H
4 3
) , 1. 58 (dd, 23. 6Hz, 6. 9Hz, 3H) , 4. 26 (q, 7. 2Hz, 2H) , 5. 00 (dq, 49. 0Hz, 6. 9Hz, 1H) .
19F— NMR (基準物質: C F ,重溶媒: CDC1 ) , δ ppm:— 21. 88 (dq, 48. 9Hz
6 6 3
, 24. 4Hz, IF) .
[実施例 5]
ステンレス鋼(SUS)製耐圧反応容器に、下記式
[化 27]
Figure imgf000029_0001
で示される第一級アルコール誘導体 3. 50g (15. 00mmol、 1. OOeq)、ァセトニトリ ノレ 30. 0mL、トリエチノレアミン 8. 35g (82. 52mmol、 5. 50eq)とトリエチノレアミン' 三フツイ匕水素錯体 4. 84g (30. 02mmol、 2. OOeq)をカロえ、内温を 40。Cに冷去 P してスルフリルフルオリド 7. 86g (77. 01mmol、 5. 13eq)をボンベより吹き込んだ。 内温を室温に戻して 1時間 10分攪拌し、さらに 60°Cで 39時間 30分攪拌した。反応 の変換率をガスクロマトグラフィーにより測定したところ 100%であった。反応終了液 に水 50. OmLを加え、減圧下濃縮し、濃縮残渣に水 50. OmLを加え、酢酸ェチル 1 00. OmLで 1回抽出した。回収有機層を無水硫酸ナトリウムで乾燥し、減圧下濃縮し 、真空乾燥し、下記式
[化 28]
Figure imgf000030_0001
で示されるモノフルォロメチル誘導体の粗生成物 2. 72gを濃褐色の油状物質として 得た。粗生成物の選択率をガスクロマトグラフィーにより測定したところ 69. 4%であつ た。粗生成物には、モノフルォロメチル誘導体が 3. 45mmol含まれていることが19 F —NMRの内部標準法(内部標準物質: C F )により分力つた。収率は 23%であった
6 6
。得られたモノフルォロメチル誘導体の粗生成物の機器データを下に示す。
NMR (基準物質: Me Si,重溶媒: CDC1 ) , δ ppm: 0. 90 (d, 6. 8Hz, 3H
4 3
) , 1. 08 (d, 6. 8Hz, 3H) , 2. 44 (m, 1H) , 4. 24 (m, 1H) , 4. 76 (ddd, 46. 6 Hz, 9. 5Hz, 4. 8Hz, 1H) , 5. 01 (dt, 46. 6Hz, 9. 5Hz, 1H) , 7. 74 (Ar-H , 2H) , 7. 86 (Ar-H, 2H) .
19F— NMR (基準物質: C F ,重溶媒: CDC1 ) , δ ppm:— 62. 12 (dt, 13. 3Hz
6 6 3
, 46. 6Hz, IF) .
原料基質の第一級アルコール誘導体は、 Protective Groups in Organic Syn thesis, Third Edition, 1999, John Wiley & Sons, Inc.を参考にして、巿 販されて!/ヽる光学活性バリノールカゝら製造することができる。また得られたモノフルォ ロメチル誘導体は、同図書を参考にして、光学純度を損なうことなく光学活性 1 イソ プロピル 2—フルォロェチルァミンに変換することができる。
[実施例 6]
ステンレス鋼(SUS)製耐圧反応容器に、下記式 THPO で示される第一級アルコール誘導体 1. 39g (7. 98mmol、 1. OOeq)、ァセトニトリル 16. OmL、トリエチノレアミン 4. 45g (43. 98mmol、 5. 5 leq)とトリエチノレアミン'三フ ツイ匕水素錯体 2. 58g (16. 00mmol、 2. Oleq)をカロえ、内温を 40。Cに冷去口してス ルフリルフルオリド 3. 00g (29. 39mmol、 3. 68eq)をボンベより吹き込んだ。内温を 室温に戻して 19時間 15分攪拌した。反応の変換率をガスクロマトグラフィーにより測 定したところ 100%であった。反応終了液に水 10. OmLを加え、ァセトニトリルを減圧 下濃縮し、濃縮残渣を酢酸ェチル 30. OmLで 1回抽出した。回収有機層を飽和食 塩水 10. OmLで洗浄し、無水硫酸ナトリウムで乾燥し、減圧下濃縮し、真空乾燥し、 下,己式
[化 30]
で示されるモノフルォロメチル誘導体の粗生成物 0. 36gを褐色の油状物質として得 た。粗生成物の選択率をガスクロマトグラフィーにより測定したところ 98. 6%であった 。収率は 26%であった。得られたモノフルォロメチル誘導体の粗生成物の機器デー タを下に示す。
NMR (基準物質: Me Si,重溶媒: CDC1 ) , δ ppm: l. 42—1. 88 (m, 10
4 3
H) , 3. 35- 3. 52 (m, 2H) , 3. 70— 3. 88 (m, 2H) , 4. 45 (dt, 46. 8Hz, 6. 1 Hz, 2H) , 4. 56 (m, 1H) .
19F— NMR (基準物質: C F ,重溶媒: CDC1 ) , δ ppm:— 56. 37 (septet, 23.
6 6 3
4Hz, IF) .
原料基質の第一級アルコール誘導体は、 Protective Groups in Organic Syn thesis, Third Edition, 1999, John Wiley & Sons, Inc.を参考にして、巿 販されている 1, 4 ブタンジオール力 製造することができる。また得られたモノフル ォロメチル誘導体は、同図書を参考にして、 4 フルオロー 1ーブタノールに変換す ることがでさる。 [実施例 7]
ステンレス鋼 (SUS)製耐圧反応容器に、下
[化 31]
Figure imgf000032_0001
で示される第一級アルコール誘導体 1. 58g (9. 98mmol、 1. OOeq)、ァセトニトリル 20. OmL、トリェチルァミン 5. 57g (55. 04mmol、 5. 52eq)とトリェチルアミン'三フ ツイ匕水素錯体 3. 22g (19. 97mmol、 2. OOeq)をカロえ、内温を 40。Cに冷去口してス ルフリルフルオリド 2. 04g (19. 99mmol、 2. OOeq)をボンベより吹き込んだ。内温を 室温に戻して 22時間 20分攪拌した。反応の変換率をガスクロマトグラフィーにより測 定したところ 100%であった。反応終了液に水 20. OmLを加え、酢酸ェチル 20. 0m Lで 1回抽出した。回収有機層を水 20. OmLで洗浄し、飽和食塩水 20. OmLで洗浄 し、無水硫酸ナトリウムで乾燥し、減圧下濃縮し、下記式
[化 32]
Figure imgf000032_0002
で示されるモノフルォロメチル誘導体の粗生成物を褐色の油状物質として得た。粗 生成物の選択率をガスクロマトグラフィーにより測定したところ 94. 2%であった。粗生 成物には、モノフルォロメチル誘導体が 2. lOmmol含まれていることが19 F— NMR の内部標準法(内部標準物質: C F )により分力つた。収率は 21%であった。得られ
6 6
たモノフルォロメチル誘導体の粗生成物の機器データを下に示す。
NMR (基準物質: Me Si,重溶媒: CDC1 ) , δ ppm: 0. 89 (t, 6. 8Hz, 3H
4 3
) , 1. 20- 1. 45 (m, 14H) , 1. 60—1. 70 (m, 2H) , 4. 44 (dt, 47. 6Hz, 6. 2 Hz, 2H) .
19F— NMR (基準物質: C F ,重溶媒: CDC1 ) , δ ppm:— 55. 97 (septet, 23.
6 6 3
8Hz, IF) .
原料基質の第一級アルコール誘導体は市販品を利用した。

Claims

請求の範囲
[1] 式 [1]
[化 33]
OH
R 、
1 [1] で示されるヒドロキシ誘導体を有機塩基の存在下にスルフリルフルオリド (SO F )と
2 2 反応させることにより、式 [2]
[化 34]
Figure imgf000033_0001
で示されるフルォロ誘導体を製造する方法。
[式 [1]、式 [2]中、 R、 R1および R2はそれぞれ独立に水素原子、アルキル基、置換 アルキル基、芳香環基またはアルコキシカルボ-ル基を表す。 ]
[2] 請求項 1にお 、て、系中にさらに「有機塩基とフッ化水素力もなる塩または錯体」を存 在させて反応を行うことを特徴とする、請求項 1に記載のフルォロ誘導体を製造する 方法。
[3] 式 [la]
[化 35]
Figure imgf000033_0002
で示されるヒドロキシ誘導体を有機塩基の存在下にスルフリルフルオリド (SO F )と
2 2 反応させることにより、式 [2a]
[化 36]
Figure imgf000034_0001
で示されるフルォロ誘導体を製造する方法。
[式 [la]、式 [2a]中、 R、 R1および R2はそれぞれ独立に水素原子、アルキル基、置 換アルキル基、芳香環基またはアルコキシカルボ-ル基を表す。アルキル基は「炭素 数 1から 16の直鎖または分枝のアルキル基」と定義され、置換アルキル基は「アルキ ル基の任意の炭素原子上にハロゲン原子、低級アルコキシ基、低級ハロアルコキシ 基、低級アルキルアミノ基、低級アルキルチオ基、シァノ基、ァミノカルボ-ル基 (CO NH )、不飽和基、芳香環基、核酸塩基、芳香環ォキシ基、脂肪族複素環基、ヒドロ
2
キシル基の保護体、ァミノ基の保護体、チオール基の保護体またはカルボキシル基 の保護体が任意の数でさらに任意の組み合わせで置換したアルキル基」と定義され る。また任意の二つのアルキル基または置換アルキル基の任意の炭素原子同士が 共有結合を形成して脂肪族環を採ることもでき、該脂肪族環の炭素原子の一部が窒 素原子または酸素原子に置換した脂肪族複素環を採ることもできる。芳香環基は「芳 香族炭化水素基または、酸素原子、窒素原子もしくは硫黄原子を含む芳香族複素 環基」と定義される。アルコキシカルボ-ル基は「炭素数 1から 12の直鎖または分枝 のアルコキシ基力 なるアルコキシカルボ-ル基」と定義され、アルコキシ基と任意の アルキル基または置換アルキル基の任意の炭素原子同士が共有結合を形成して、 ラタ卜ン環を採ることちできる。 ]
[4] 請求項 3にお 、て、系中にさらに「有機塩基とフッ化水素力もなる塩または錯体」を存 在させて反応を行うことを特徴とする、請求項 3に記載のフルォロ誘導体を製造する 方法。
[5] 式 [3]
[化 37]
Figure imgf000034_0002
で示される光学活性ヒドロキシ誘導体を有機塩基の存在下にスルフリルフルオリド (s
O F )と反応させることにより、式 [4]
2 2
[化 38]
Figure imgf000035_0001
で示される光学活性フルォロ誘導体を製造する方法。
[式 [3]、式 [4]中、 Rおよび R1はそれぞれ独立にアルキル基、置換アルキル基また はアルコキシカルボ二ル基を表し、 *は不斉炭素を表す (Rと R1は同一の置換基を採 らな 、)。アルキル基は「炭素数 1から 16の直鎖または分枝のアルキル基」と定義され 、置換アルキル基は「アルキル基の任意の炭素原子上にハロゲン原子、低級アルコ キシ基、低級ハロアルコキシ基、低級アルキルアミノ基、低級アルキルチオ基、シァノ 基、ァミノカルボニル基 (CONH )、不飽和基、芳香環基、核酸塩基、芳香環ォキシ
2
基、脂肪族複素環基、ヒドロキシル基の保護体、ァミノ基の保護体、チオール基の保 護体またはカルボキシル基の保護体が任意の数でさらに任意の組み合わせで置換 したアルキル基」と定義される。また二つのアルキル基または置換アルキル基の任意 の炭素原子同士が共有結合を形成して脂肪族環を採ることもでき、該脂肪族環の炭 素原子の一部が窒素原子または酸素原子に置換した脂肪族複素環を採ることもでき る。アルコキシカルボ-ル基は「炭素数 1から 12の直鎖または分枝のアルコキシ基か らなるアルコキシカルボ-ル基」と定義され、アルコキシ基と任意のアルキル基または 置換アルキル基の任意の炭素原子同士が共有結合を形成して、ラタトン環を採ること もできる。反応を通してヒドロキシル基が共有結合した炭素原子の立体化学は反転す る。]
[6] 請求項 5にお 、て、系中にさらに「有機塩基とフッ化水素力もなる塩または錯体」を存 在させて反応を行うことを特徴とする、請求項 5に記載の光学活性フルォロ誘導体を 製造する方法。
[7] 式 [5]
[化 39]
Figure imgf000036_0001
で示される 4—ヒドロキシプロリン誘導体を有機塩基の存在下にスルフリルフルオリド( SO F )と反応させることにより、式 [6]
2 2
[化 40]
Figure imgf000036_0002
で示される 4 -フルォロプロリン誘導体を製造する方法。
[式 [5]、式 [6]中、 R3は二級アミノ基の保護基を表し、 R4はカルボキシル基の保護 基を表し、 *は不斉炭素を表す。反応を通して 4位の立体化学は反転し、 2位の立体 化学は保持される。 ]
請求項 7にお 、て、系中にさらに「有機塩基とフッ化水素力もなる塩または錯体」を存 在させて反応を行うことを特徴とする、請求項 7に記載の 4 フルォロプロリン誘導体 を製造する方法。
Figure imgf000036_0003
[7】 で示される 1 β—D ァラビノフラノシルゥラシル誘導体を有機塩基の存在下にス ルフリルフルオリド (SO F )と反応させることにより、式 [8]
2 2
[化 42]
Figure imgf000037_0001
で示される 2'—デォキシ 2'—フルォロ 8ウリジン誘導体を製造する方法。
[式 [7]、式 [8]中、 R5および R6はそれぞれ独立にヒドロキシル基の保護基を表す。 ] [10] 請求項 9にお 、て、系中にさらに「有機塩基とフッ化水素力もなる塩または錯体」を存 在させて反応を行うことを特徴とする、請求項 9に記載の 2'—デォキシ—2' フルォ ロウリジン誘導体を製造する方法。
[11] 式 [9]
[化 43]
Figure imgf000037_0002
で示される光学活性 aーヒドロキシカルボン酸エステル誘導体を有機塩基の存在下 にスルフリルフルオリド(SO F )と反応させることにより、式 [10]
2 2
[化 44]
R7
Figure imgf000037_0003
[10] で示される光学活性 a フルォロカルボン酸エステル誘導体を製造する方法。
[式 [9]、式 [10]中、 R7は炭素数 1から 12のアルキル基または置換アルキル基を表 し、 R8は炭素数 1から 8のアルキル基を表し、 R7と R8のアルキル基または置換アルキ ル基の任意の炭素原子同士が共有結合を形成してラタトン環を採ることもでき、 *は 不斉炭素を表す。反応を通して α位の立体化学は反転する。 ]
[12] 請求項 11にお 、て、系中にさらに「有機塩基とフッ化水素力もなる塩または錯体」を 存在させて反応を行うことを特徴とする、請求項 11に記載の光学活性 α—フルォロ カルボン酸エステル誘導体を製造する方法。
[13] 式 [11]
[化 45]
ΟΗ
Η
H H I] で示される第一級アルコール誘導体を有機塩基の存在下にスルフリルフルオリド(S O F )と反応させることにより、式 [12]
2 2
[化 46]
Figure imgf000038_0001
で示されるモノフルォロメチル誘導体を製造する方法。
[式 [11]、式 [12]中、 Rはアルキル基または置換アルキル基を表す。アルキル基は「 炭素数 1から 16の直鎖または分枝のアルキル基」と定義され、置換アルキル基は「ァ ルキル基の任意の炭素原子上にハロゲン原子、低級アルコキシ基、低級ハロアルコ キシ基、低級アルキルアミノ基、低級アルキルチオ基、シァノ基、ァミノカルボ-ル基( CONH )、不飽和基、芳香環基、核酸塩基、芳香環ォキシ基、脂肪族複素環基、ヒ
2
ドロキ
シル基の保護体、ァミノ基の保護体、チオール基の保護体またはカルボキシル基の 保護体が任意の数でさらに任意の組み合わせで置換したアルキル基」と定義される 。 ]
請求項 13にお 、て、系中にさらに「有機塩基とフッ化水素力もなる塩または錯体」を 存在させて反応を行うことを特徴とする、請求項 13に記載のモノフルォロメチル誘導 体を製造する方法。
PCT/JP2006/305435 2005-03-18 2006-03-17 フルオロ誘導体の製造方法 WO2006098444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800034228A CN101111462B (zh) 2005-03-18 2006-03-17 氟代衍生物的生产方法
ES06729424T ES2425170T3 (es) 2005-03-18 2006-03-17 Procedimiento para la producción de un derivado de flúor
EP06729424.9A EP1842841B1 (en) 2005-03-18 2006-03-17 Process for production of fluoro derivative
US11/795,378 US7807858B2 (en) 2005-03-18 2006-03-17 Process for production of fluoro derivative

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-079641 2005-03-18
JP2005079641 2005-03-18
JP2005-379257 2005-12-28
JP2005379257A JP5186722B2 (ja) 2005-03-18 2005-12-28 スルフリルフルオリドを用いるフッ素化反応

Publications (1)

Publication Number Publication Date
WO2006098444A1 true WO2006098444A1 (ja) 2006-09-21

Family

ID=36991788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305435 WO2006098444A1 (ja) 2005-03-18 2006-03-17 フルオロ誘導体の製造方法

Country Status (6)

Country Link
US (1) US7807858B2 (ja)
EP (1) EP1842841B1 (ja)
JP (1) JP5186722B2 (ja)
CN (1) CN101111462B (ja)
ES (1) ES2425170T3 (ja)
WO (1) WO2006098444A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122611A1 (en) * 2007-04-05 2008-10-16 Solvay (Société Anonyme) Process for the manufacture of fluorinated compounds
JP2009067776A (ja) * 2007-08-17 2009-04-02 Central Glass Co Ltd 光学活性α−フルオロカルボン酸エステルの精製方法
WO2009075186A1 (ja) 2007-12-12 2009-06-18 Central Glass Company, Limited 4-デオキシ-4-フルオロ-d-グルコース誘導体の製造方法
WO2009116320A1 (ja) 2008-03-21 2009-09-24 セントラル硝子株式会社 光学活性フルオロアミン類の製造方法
WO2009133789A1 (ja) * 2008-04-28 2009-11-05 セントラル硝子株式会社 α-フルオロ-β-アミノ酸類の製造方法
WO2010071129A1 (ja) * 2008-12-17 2010-06-24 セントラル硝子株式会社 ヒドロキシル基置換生成物の製造方法
JP2010285350A (ja) * 2009-06-09 2010-12-24 Central Glass Co Ltd 2−フルオロアクリル酸エステルの製造方法
CN101245086B (zh) * 2007-02-14 2013-05-29 上海巨龙药物研究开发有限公司 1-甲氧基-2,3,6-O-三苯甲酰基-4-去氧-4-氟-α-D-葡萄糖的制备方法
WO2020238779A1 (zh) * 2019-05-24 2020-12-03 上海博璞诺科技发展有限公司 一种氟苯尼考的合成方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615669B2 (en) * 2005-03-28 2009-11-10 Tosoh F-Tech, Inc. Process for producing fluoro-compounds
JP4940790B2 (ja) * 2006-06-30 2012-05-30 セントラル硝子株式会社 脱ヒドロキシフッ素化剤
WO2008049531A1 (en) * 2006-10-27 2008-05-02 Bayer Cropscience Ag Stereoselective one step fluorination process for the preparation of 2-fluoropropionate
JP5109530B2 (ja) 2007-01-23 2012-12-26 セントラル硝子株式会社 光学活性α−フルオロカルボン酸エステルの製造方法
JP5412742B2 (ja) * 2008-03-31 2014-02-12 セントラル硝子株式会社 4−パーフルオロイソプロピルアニリン類の製造方法
JP5338138B2 (ja) 2008-05-29 2013-11-13 セントラル硝子株式会社 ハロゲン化α−フルオロエーテル類の製造方法
JP5277837B2 (ja) 2008-09-26 2013-08-28 セントラル硝子株式会社 α−トリフルオロメチル−α,β−不飽和エステル類の製造方法
JP5359252B2 (ja) 2008-10-22 2013-12-04 セントラル硝子株式会社 フルオロ硫酸エステル類の製造方法
JP5600994B2 (ja) * 2010-03-29 2014-10-08 セントラル硝子株式会社 2−フルオロイソ酪酸エステルの製造方法
PT105139B (pt) * 2010-06-01 2013-01-29 Hovione Farmaciencia S A Método para a monofluorometilação de substratos orgânicos para preparação de compostos orgânicos biologicamente activos
JP5716500B2 (ja) * 2010-06-03 2015-05-13 セントラル硝子株式会社 (2R)−2−フルオロ−2−C−メチル−D−リボノ−γ−ラクトン類前駆体の製造方法
JP2013126970A (ja) * 2011-11-17 2013-06-27 Central Glass Co Ltd 光学活性3−シクロプロピルアミノメチル−4−フルオロピロリジン類の工業的な製造方法
JP5853771B2 (ja) * 2012-03-01 2016-02-09 セントラル硝子株式会社 α,α−ジフルオロ芳香族化合物の製造方法
JP5853772B2 (ja) * 2012-03-01 2016-02-09 セントラル硝子株式会社 α,α−ジフルオロ芳香族化合物の製造方法
CN103420955B (zh) * 2012-05-23 2016-09-28 浙江瑞博制药有限公司 一种氟代核糖内酯的制备方法
CA2900665C (en) 2013-02-11 2021-02-09 Martin Reid Johnson Preparation of fluorosulfonate esters and onium salts derived therefrom
CN107406356A (zh) * 2015-03-31 2017-11-28 关东电化工业株式会社 氟化烷烃的制造方法、脒碱的分离、回收方法以及回收脒碱的使用方法
US10683252B2 (en) 2016-12-29 2020-06-16 Central Glass Company, Limited Production method for 1,2,2,2-tetrafluoroethyl difluoromethyl ether (desflurane)
JP6886104B2 (ja) 2016-12-29 2021-06-16 セントラル硝子株式会社 ハロゲン化α−フルオロエーテル類の製造方法
CN113683648A (zh) * 2021-08-26 2021-11-23 上海皓鸿生物医药科技有限公司 一种2’-氟-2’-脱氧尿苷的合成方法及其中间体
CN116789702A (zh) * 2023-06-15 2023-09-22 浙江工业大学 一种膦酸化合物的氟化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692694A (en) * 1970-06-25 1972-09-19 Texaco Inc Catalyst for hydrocarbon conversion
JPS4995923A (ja) * 1973-01-11 1974-09-11
JPS51149208A (en) * 1975-06-12 1976-12-22 Merck & Co Inc Method of fluoroodehydroxylation of alcohol
JPH08283231A (ja) * 1995-04-04 1996-10-29 Haldor Topsoee As フッ素化アルキルスルホニルハライドの合成方法
JPH0948741A (ja) * 1995-07-14 1997-02-18 Hoechst Ag モノフルオロ誘導体の選択的製造方法
JPH09507503A (ja) * 1994-10-26 1997-07-29 バイエル・アクチエンゲゼルシヤフト ヒドロキシル基を対応するフルオロ化合物に転換する方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780682A (en) * 1995-04-04 1998-07-14 Haldor Topsoe A/S Process for the synthesis of fluorinated alkyl sulphonyl halides
US6248889B1 (en) * 1998-11-20 2001-06-19 3M Innovative Properties Company Process for converting an alcohol to the corresponding fluoride
JP3890411B2 (ja) * 2003-01-07 2007-03-07 独立行政法人物質・材料研究機構 コヒーレントフォノンによる光の変調方法およびフォノンモジュレータ
JP4774676B2 (ja) 2003-04-10 2011-09-14 セントラル硝子株式会社 2’−デオキシ−2’−フルオロウリジンの製造方法
WO2004089968A1 (ja) 2003-04-10 2004-10-21 Central Glass Company, Limited 2’-デオキシ-2’-フルオロウリジンの製造方法
JP4610252B2 (ja) 2004-04-26 2011-01-12 セントラル硝子株式会社 4−フルオロプロリン誘導体の製造方法
JP4675065B2 (ja) 2004-06-22 2011-04-20 セントラル硝子株式会社 4−フルオロプロリン誘導体の製造方法
JP4839724B2 (ja) 2004-08-18 2011-12-21 セントラル硝子株式会社 光学活性α−フルオロカルボン酸エステル誘導体の製造方法
JP4940790B2 (ja) * 2006-06-30 2012-05-30 セントラル硝子株式会社 脱ヒドロキシフッ素化剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692694A (en) * 1970-06-25 1972-09-19 Texaco Inc Catalyst for hydrocarbon conversion
JPS4995923A (ja) * 1973-01-11 1974-09-11
JPS51149208A (en) * 1975-06-12 1976-12-22 Merck & Co Inc Method of fluoroodehydroxylation of alcohol
JPH09507503A (ja) * 1994-10-26 1997-07-29 バイエル・アクチエンゲゼルシヤフト ヒドロキシル基を対応するフルオロ化合物に転換する方法
JPH08283231A (ja) * 1995-04-04 1996-10-29 Haldor Topsoee As フッ素化アルキルスルホニルハライドの合成方法
JPH0948741A (ja) * 1995-07-14 1997-02-18 Hoechst Ag モノフルオロ誘導体の選択的製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245086B (zh) * 2007-02-14 2013-05-29 上海巨龙药物研究开发有限公司 1-甲氧基-2,3,6-O-三苯甲酰基-4-去氧-4-氟-α-D-葡萄糖的制备方法
WO2008122611A1 (en) * 2007-04-05 2008-10-16 Solvay (Société Anonyme) Process for the manufacture of fluorinated compounds
JP2009067776A (ja) * 2007-08-17 2009-04-02 Central Glass Co Ltd 光学活性α−フルオロカルボン酸エステルの精製方法
US8748653B2 (en) 2007-08-17 2014-06-10 Central Glass Company, Limited Method for purification of optically active α-fluorocarboxylic acid esters
CN101896496A (zh) * 2007-12-12 2010-11-24 中央硝子株式会社 4-脱氧-4-氟-d-葡萄糖衍生物的制造方法
WO2009075186A1 (ja) 2007-12-12 2009-06-18 Central Glass Company, Limited 4-デオキシ-4-フルオロ-d-グルコース誘導体の製造方法
CN101896496B (zh) * 2007-12-12 2013-05-29 中央硝子株式会社 4-脱氧-4-氟-d-葡萄糖衍生物的制造方法
US8426645B2 (en) 2008-03-21 2013-04-23 Central Glass Company, Limited Process for production of optically active fluoroamine
WO2009116320A1 (ja) 2008-03-21 2009-09-24 セントラル硝子株式会社 光学活性フルオロアミン類の製造方法
CN102015621A (zh) * 2008-04-28 2011-04-13 中央硝子株式会社 α-氟-β-氨基酸类的制造方法
US8217196B2 (en) 2008-04-28 2012-07-10 Central Glass Company, Limited Process for producing α-fluoro-β-amino acids
JP2009286779A (ja) * 2008-04-28 2009-12-10 Central Glass Co Ltd α−フルオロ−β−アミノ酸類の製造方法
WO2009133789A1 (ja) * 2008-04-28 2009-11-05 セントラル硝子株式会社 α-フルオロ-β-アミノ酸類の製造方法
JP2010163422A (ja) * 2008-12-17 2010-07-29 Central Glass Co Ltd ヒドロキシル基置換生成物の製造方法
WO2010071129A1 (ja) * 2008-12-17 2010-06-24 セントラル硝子株式会社 ヒドロキシル基置換生成物の製造方法
JP2010285350A (ja) * 2009-06-09 2010-12-24 Central Glass Co Ltd 2−フルオロアクリル酸エステルの製造方法
WO2020238779A1 (zh) * 2019-05-24 2020-12-03 上海博璞诺科技发展有限公司 一种氟苯尼考的合成方法

Also Published As

Publication number Publication date
US7807858B2 (en) 2010-10-05
EP1842841A4 (en) 2010-06-09
ES2425170T3 (es) 2013-10-11
JP2006290870A (ja) 2006-10-26
CN101111462B (zh) 2011-12-28
EP1842841B1 (en) 2013-05-15
JP5186722B2 (ja) 2013-04-24
CN101111462A (zh) 2008-01-23
EP1842841A1 (en) 2007-10-10
US20080125589A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2006098444A1 (ja) フルオロ誘導体の製造方法
JP4940790B2 (ja) 脱ヒドロキシフッ素化剤
EP0342203B1 (en) 2',3' dideoxyribofuranoxide derivatives
JP5326510B2 (ja) α−置換エステル類の製造方法
JP5338138B2 (ja) ハロゲン化α−フルオロエーテル類の製造方法
EP2357168B1 (en) Method for producing fluorosulfuric acid ester
WO2010071129A1 (ja) ヒドロキシル基置換生成物の製造方法
JP4675065B2 (ja) 4−フルオロプロリン誘導体の製造方法
JP4610252B2 (ja) 4−フルオロプロリン誘導体の製造方法
Hugenberg et al. Oxidative desulfurization–fluorination of thioethers. Application for the synthesis of fluorinated nitrogen containing building blocks
WO2011083612A1 (ja) ジフルオロシクロプロパン化合物の製造方法
JP2017014199A (ja) 新規なヒドロキサム酸誘導体の製造方法
JP5023443B2 (ja) 4−フルオロプロリン誘導体の製造方法
JP4952122B2 (ja) 2’−デオキシ−2’−フルオロウリジンの製造方法
US20190077797A1 (en) Processes for preparing 2-dihalo ribolactones
JP5277837B2 (ja) α−トリフルオロメチル−α,β−不飽和エステル類の製造方法
WO2000039144A1 (fr) Procede de preparation de derives fluores de nucleosides et de sucres
JP2006022009A (ja) 3−フルオロ−2,3−ジデオキシ−β−D−リボフラノシル型ヌクレオシド誘導体の製造方法
JP2004315445A (ja) サイクリックカーボネート類の製造方法
WO2011013635A1 (ja) 3位に脱離基を有する2-フルオロプロピルアミン保護体またはn-アルキル-2-フルオロプロピルアミン保護体
JPH04264062A (ja) 1,3−ジヒドロキシアセトン誘導体及びその製造方法
JPH07505152A (ja) 新規アルキル化剤,その製造方法および使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11795378

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680003422.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2802/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006729424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006729424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU