WO2006098421A1 - チタン含有珪素酸化物触媒の保存方法 - Google Patents

チタン含有珪素酸化物触媒の保存方法 Download PDF

Info

Publication number
WO2006098421A1
WO2006098421A1 PCT/JP2006/305325 JP2006305325W WO2006098421A1 WO 2006098421 A1 WO2006098421 A1 WO 2006098421A1 JP 2006305325 W JP2006305325 W JP 2006305325W WO 2006098421 A1 WO2006098421 A1 WO 2006098421A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
titanium
silicon oxide
containing silicon
mold
Prior art date
Application number
PCT/JP2006/305325
Other languages
English (en)
French (fr)
Inventor
Jun Yamamoto
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to EP06729315A priority Critical patent/EP1862218A4/en
Priority to US11/908,456 priority patent/US8470729B2/en
Priority to KR1020077023396A priority patent/KR101368579B1/ko
Publication of WO2006098421A1 publication Critical patent/WO2006098421A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for preserving a titanium-containing silicon oxide catalyst. More specifically, the present invention is a titanium-containing silicon oxide catalyst that can be used in a reaction for obtaining an oxysilane compound from, for example, a hydride peroxide and an olefin compound even after long-term storage, and can exhibit high activity. It relates to the storage method. Background art
  • a method for obtaining an oxylan compound from octadropoxide and an olefin type compound in the presence of a catalyst is known.
  • a catalyst used here, for example, patent documents disclose specific titanium-containing silicon oxide catalysts (for example, US Pat. No. 4,367,342, US Pat. 7-300312, JP 2000-107604, JP 2000-107605, JP 2000-109469, JP 2000-109470, JP 2000-117101, JP 2000 —See 119266, JP-A 2001-286768, JP-A 2002-2 24563, JP-A 2002-239381, JP-A 2004-19 5379 or JP 2909911).
  • the present invention provides a method for preserving a titanium-containing silicon oxide catalyst that can be used in a reaction for obtaining an oxysilane compound from hydroperoxide and an olefin-type compound and that can exhibit high activity.
  • the present invention can be used for the reaction of obtaining an oxysilane compound from, for example, hydroperoxide and an olefin compound even after long-term storage, and is a method for storing a titanium-containing silicon oxide catalyst that can exhibit high activity. Accordingly, a catalyst storage method is characterized in that the titanium-containing silicon oxide catalyst is stored at a relative humidity of 60% or less.
  • titanium-containing silicon oxide catalyst examples include the above-mentioned patent documents (see U.S. Pat. No. 4,336,73,42, and U.S. Pat. No. 2,990,911). Titanium alkoxide or titanium halide supported on a carrier such as silica gel as described above in a gas phase or in a liquid phase, an aerosil type in which titanium halide and silicon halide are reacted in a flame, titanium Although it is not particularly limited, such as that obtained by sol-gel reaction between alkoxide and silicon alkoxide, it should be composed of a titanium-containing silicon oxide catalyst that satisfies all the following conditions (1) to (3) Is preferred.
  • the average pore diameter is 10 A or more
  • the specific pore volume means the pore volume per gram of catalyst.
  • the above conditions (1) to (3) can be measured by an ordinary method using a physical adsorption method of a gas such as nitrogen or argon.
  • the catalyst stored in the present invention may or may not have a peak indicating an interplanar spacing d.
  • the peak indicating the interplanar spacing d here refers to a peak derived from the crystallinity and regularity of the solid, and there may be a broad peak derived from the amorphous part.
  • the catalyst stored in the present invention has an infrared absorption spectrum. It is preferable to have an absorption peak in the region of 9 60 ⁇ 5 cm ⁇ 1 in Kuttle. This peak is considered to correspond to titanium introduced into the silica skeleton.
  • the catalyst stored in the present invention is preferably produced by a production method having the following steps.
  • First step Mixing silica source, titanium source and mold (template) in liquid form * Stirring to obtain solid containing catalyst component and mold
  • Second step A step of obtaining a solid containing a catalyst component by removing the mold from the solid obtained in the first step.
  • Third step A step of obtaining a silylated catalyst by subjecting the solid obtained in the second step to a silylation treatment.
  • the first step is a step of obtaining a solid containing the catalyst component and the mold by mixing and stirring the silica source, the titanium source and the mold (template) in liquid form.
  • the reagent to be used is solid, it may be used as a solution dissolved or dispersed in a solvent. Examples thereof include methyl orthosilicate, tetraethyl orthosilicate, and tetrapropyl orthosilicate.
  • Silica sources containing organic groups such as alkyltrialkoxysilanes, dialkyl dialkoxysilanes, 1,2-bis (trialkoxysilyl) alkanes can also be used. They can be used alone or in admixture of several kinds.
  • Titanium alkoxides such as tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraisoptyl titanate, tetra-2-ethylhexyl titanate, Tetraoctadecyl titanate titanium (IV) oxide acetylacetonate, titanium (IV) dipropoxybisacetyl acetate, etc., or titanium halides such as titanium tetrachloride, titanium tetrabromide, Examples thereof include titanium tetraiodide and titanyl sulfate.
  • alkylammonium and dialkyl derived from cationic surfactants Nonionic surfactant polyalkylene oxides such as ammonium sulfate, trialkyl ammonium, benzyl ammonium, alkyl sulfate ions derived from anionic surfactants, alkyl phosphate ions, their block copolymers, alkylamines Any of these can be applied. Of these, quaternary ammonium ions represented by the following general formula (I) are preferably used.
  • R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms
  • R 2 to R 4 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • R 1 is a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and preferably 10 to 18 carbon atoms.
  • R 2 to R 4 are each independently an alkyl group having 1 to 6 carbon atoms, and all of R 2 to R 4 are preferably methyl groups.
  • Specific examples of the quaternary ammonium ion represented by the general formula (I) include hexadecyltrimethylammonium, dodecyltrimethylammonium, benzyltrimethylammonium, dimethyldidodecylammonium, hexadecylpyrimethyl. And cations such as dinium.
  • quaternary ammonium ions represented by the general formula (I) can be used alone or in combination of several kinds.
  • solvents include water and alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol, sec-butanol, tert-butanol, allylic alcohol, cyclohexanol, benzyl
  • alcohols include diols and mixtures thereof.
  • the amount of the titanium source against the silica source is 1 0 _ 5 to 1 in molar ratio, preferably 0. 0 0 0 0 8 to 0.4.
  • the amount of the quaternary ammonium Niu-ion to the total amount of these silica source and titanium source is preferably 1 0 2 to 2 in molar ratio.
  • Quaternary ammonium hydroxide is preferred as the alkali source, and examples include tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, tetrapropyl ammonium hydroxide, etc.
  • the acid include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and propionic acid.
  • Mixing / stirring temperature is usually from 30 to 100 ° C.
  • a solid is formed by mixing and stirring, but this may be aged to further grow the solid.
  • the aging time is usually 1800 hours or less, and the aging temperature is usually 0 to 200 ° C.
  • heating is required at the time of aging, it is preferable to transfer to a pressure vessel and seal in order to avoid solvent bubbling.
  • the second step is a step of obtaining a solid containing a catalyst component by removing the mold from the solid obtained in the first step.
  • the mold agent may be removed by either high-temperature calcination or solvent extraction, but from the viewpoint of obtaining a highly active catalyst, solvent extraction is preferred.
  • the extraction and removal of the mold can be achieved by subjecting the solid containing the catalyst component and the mold obtained in the first step to a solvent extraction operation.
  • the solvent used for the extraction is not particularly limited as long as it can dissolve the compound used in the mold, and in general, oxax and Z or oxo-substituted hydrocarbon which are liquid at room temperature having 1 to about 12 carbon atoms can be used.
  • Suitable solvents of this type include alcohols, ketones, ethers (acyclic and cyclic) and esters, such as methanol, ethanol, ethylene glycol, propylene glycol, isopropano.
  • Alcohols such as 1, n-butanol and octanol; ketones such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone; ethers such as diisobutyl ether and tetrahydrofuran; and Examples include esters such as methyl acetate, ethyl acetate, butyl acetate, and butyl propionate. Of these, alcohols are preferable from the viewpoint of the solubility of the mold, and methanol is more preferable.
  • the weight ratio of these extraction solvents to the solid containing the catalyst component and the mold is usually 1 to 100, preferably 5 to 300.
  • acid in order to improve the extraction effect, acid or it is added to these solvents.
  • These salts may be added.
  • the acid used include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and odorous acid, and organic acids such as formic acid, acetic acid, and propionic acid.
  • examples of such salts include alkali metal salts, alkaline earth metal salts, ammonium salts and the like.
  • the concentration of the acid to be added or the salt thereof in the solvent is preferably 1 O m o 1 Z 1 or less, more preferably 5 m o 1/1 or less. If the concentration of the acid to be added or the salt thereof is excessive, the titanium present in the catalyst component may be eluted and the catalytic activity may be reduced.
  • the liquid phase is separated by a method such as filtration or decantation. Repeat this operation as many times as necessary. It is also possible to extract the mold by a method of filling the solid containing the catalyst component and the mold into a reaction tube or the like and circulating the extraction solvent. The completion of the solvent extraction can be known, for example, by analyzing the liquid phase part.
  • the extraction temperature is preferably 0 to 200 ° C., more preferably 20 to 100 ° C. When the boiling point of the extraction solvent is low, the extraction may be performed by applying pressure.
  • the quaternary ammonium ion represented by the general formula (I) in the solution obtained after the extraction treatment can be recovered and reused as a mold raw material in the first step.
  • the extraction solvent can be purified and reused by a normal distillation operation or the like.
  • Alcohols that are preferably used to remove molds react with the silylating agent in the silylation of the next step to inhibit the desired reaction, so the extraction solvent contained in the solid after the mold is extracted is usually dried. Removed by. Examples of the drying device include a conical dryer and a shelf dryer equipped with hot air or a decompression device. However, these dryings are very time consuming and economical, and may not be sufficient from the viewpoint of catalyst productivity.
  • the extraction solvent contained in the solid obtained in the second step may be replaced with a solvent that is substantially inert to the silylating agent used in the subsequent silylation step. preferable.
  • the substitution solvent used in this substitution step is substantially inert to the silylating agent, and As long as it satisfies the condition that the extraction solvent used in the second step can be dissolved.
  • Solvents preferably used for this substitution operation are generally hydrocarbons, halogenated hydrocarbons, canes, ethers, esters, N, N-2 dihydrocarbons having a carbon number of 1 to ⁇ 12 at room temperature.
  • Substituted amides, nitriles, tertiary amines, etc. for example, hexane, cyclohexane, black mouth form, benzene, toluene, xylene, petroleum, jetyl ketone, methyl ethyl ketone, methyl isobutyl ketone , Diethyl ether, diisoptyl ether, tetrahydrofuran, dioxane, methyl acetate, ethyl acetate, dimethylformamide, acetonitrile, pyridine, triethylamine, dimethyl sulfoxide and the like.
  • preferred substitution solvents are hydrocarbons, with to
  • the solid containing the substitution solvent and the extraction solvent obtained in the second step is sufficiently mixed, and then the liquid phase part is separated by a method such as filtration or decantation. This operation is repeated as many times as necessary. It is also possible to substitute by a method in which a solid containing an extraction solvent is filled in a reaction tube or the like and a substitution solvent is circulated. From the viewpoint of catalyst productivity, it is preferable to perform the second step, the solvent replacement step, and the subsequent silylation step in the same reactor. The completion of this replacement operation can be known, for example, by analyzing the liquid phase part.
  • the substitution temperature is preferably from 0 to 200 ° C, more preferably from 20 to 1 ° C. If the solvent used in this operation has a low boiling point, it may be replaced by pressurization.
  • substitution solvent used in this step can be reused after removing the extraction solvent by a conventional method such as distillation or extraction.
  • the third step is a step of obtaining a silylated catalyst by subjecting the solid obtained in the second step to a silylation treatment.
  • Silylation may be performed by a gas phase method in which a gaseous silylating agent is reacted with titanium-containing silicon oxide, or by a liquid phase method in which a silylating agent and titanium-containing silicon oxide are reacted in a solvent.
  • the liquid phase method is more preferable.
  • silylation is a liquid phase method Hydrocarbons are used as a suitable solvent when carried out in
  • silylating agents include organic silanes, organic silylamines, organic silylamides and derivatives thereof, and organic silazanes and other silylating agents.
  • organosilanes include chlorotrimethylsilane, dichlorodimethylsilane, chlorodimethylsilane, nitrotrimethylsilane, chlorotriethylsilane, iodide dimethylbutylsilane, chlorodimethylphenylsilane, chlorodimethylsilane, dimethyl n- Propylchlorosilane, dimethylisopropylchlorosilane, t-butyldimethylchlorosilane, tripropylchlorosilane, dimethyloctylchlorosilane, tributylchlorosilane, trihexylchlorosilane, dimethylethylchlorosilane, dimethyloctyldecylchlorosilane, n-butyldimethylchlorosilane, bromo Methyldimethylchlorosilane, chloromethyldimethylchlor
  • organic silylamines include N-trimethylsilyldimethylamine, N-trimethylsilyljetylamine, N-triethylsilylamine, N-triethylsilyldimethylamine, N-triethylsilyljetylamine, N-tri-n-propylsilylamine, N-t-butyldimethylsilylamine, N-trimethylsilylimidazole, N-triethylsilylimidazole, N-tri-n-proylsilylimidazole, N-t —Ptyldimethylsilylimidazole, N-dimethylethylsilylimidazole, N-dimethyl-n-propylsilylimidazole, N-dimethylisopropylsilylimidazole, N-trimethylsilyldimethylamine, N— Trimethylsilyljetylamine, N— ⁇ -methylsilyl
  • organic silylamides and derivatives include N, O-bistrimethylsilylacetamide, N, O-pistrimethylsilyltrifluoroacetamide, N-trimethylsilylacetamide, N-methyl-N-trimethylsilylacetamide, N-methyl-N-trimethylsilyltrifluoroacetamide, N-methyl-N-trimethylsilylheptafluorobutyramide, N_ (t-butyldimethylsilyl) one N-trifluoroacetamide, N Silyl) trifluoroacetamide.
  • organic silazanes examples include hexamethyldisilazane, hexaethyldisilazane, heptamethyldisilazane, 1, 1, 3, 3 —tetramethyldisilazane, 1,3-bis (chloromethyl) tetramethyldisilazane, 1 , 3-Dibvi-1,1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and hexamethylcyclotrisilazane.
  • silylating agents include N-methoxy-N, O-bistrimethylsilyl trifluoroacetamide, N-methoxy-1-N, O-pistrimethylsilyl carbamate, N, O-bistrimethylsilylsulfamate, trimethylsilyltrifluor.
  • Examples include fluoromethanesulfonate, triethylsilyltrifluoromethanesulfonate, and N, ⁇ '-pistrimethylsilylurea.
  • the silylating agent may be used alone, or two or more silylating agents may be used simultaneously or separately.
  • the most preferred silylating agent is hexamethyldisilazane.
  • the silylation can be carried out by either batch or flow method.
  • the catalyst after resilylation is dried by a general method such as drying under reduced pressure or contact with an inert dry gas such as heated nitrogen. It is preferable to do.
  • the catalyst suitably stored in the present invention is usually used as a catalyst molded body by the process of molding a solid containing a catalyst component.
  • the molding process may be carried out at any stage before or after the above-mentioned mold removing process, after the solvent replacement process and after the silylation process, but the viewpoint of suppressing deterioration of catalyst physical properties such as specific surface area and pore volume Therefore, it is preferably performed before the mold removing step.
  • any method such as compression molding or extrusion molding may be used. In extrusion molding, organic and inorganic binders that are generally used can be used. A decrease in the medium activity may be caused.
  • the compression molding method is most preferable from the viewpoints of catalyst strength and catalyst physical properties.
  • compression molding methods include roll press molding (pre-ketting and compacting), hydraulic press molding, and tableting molding.
  • the pressure for compression is usually 0.1 to 10 tons 7 m 2 , preferably 0.2 to 5 tons / cm 2 , and more preferably 0.5 to 2 tons Z cm 2 . If the pressure is too low, the strength of the molded body may be insufficient. On the other hand, if the pressure is too high, the pores may be destroyed and the physical properties of the catalyst may be insufficient.
  • the solid containing the catalyst component contains an appropriate amount of moisture, and thus a molded body having sufficient strength can be produced even at a low compression pressure.
  • the water content of the solid containing the catalyst component subjected to compression molding is preferably 1 to 70% by weight, more preferably 5 to 40% by weight.
  • the amount of moisture may be adjusted by the degree of drying when the damp solid is dried, or may be adjusted by adding water to the sufficiently dried solid.
  • a generally used binder may be added as long as desired performance is not hindered.
  • the shape of the molded body may be any shape such as a tablet, a sphere, or a ring. It may be used in the reaction as it is, or may be crushed to an appropriate size.
  • the catalyst obtained by the above production method has a high surface area and a highly dispersed titanium active point, in addition to selective oxidation reaction, for example, epoxidation reaction of olefin-type compounds, various oxidation reactions of organic compounds. Can be used.
  • the acid point of the catalyst can be further strengthened by adding a third component such as alumina, and can also be used for an alkylation reaction or a catalytic reforming reaction.
  • the storage method of the catalyst of the present invention is characterized by storing at a relative humidity of 60% or less, preferably storage at a relative humidity of 30% or less, and more preferably storage at a relative humidity of 15% or less. . If the relative humidity during storage is too high, it will cause a significant decrease in catalytic activity.
  • a method for setting the relative humidity to a desired value includes a method in which a dry gas is continuously circulated in a container in which a catalyst is accommodated, a method in which it is stored in a sealed container together with a desiccant such as silica gel zeolite, and a humidity control device.
  • a desiccant such as silica gel zeolite
  • a humidity control device How to store in a container and / or in a warehouse, keep the container with gas barrier properties to the desired humidity, and then store it in a sealed state Method.
  • the storage period of the catalyst means from immediately after the catalyst production is completed until it is used for the reaction. Generally, from the time when the catalyst is produced and filled in the storage container, the container is introduced into the reactor. Refers to until is opened.
  • the material of the container is arbitrary as long as it can maintain a dry state.
  • examples thereof include a resin having a gas barrier property, a resin obtained by laminating a resin having a gas barrier property, and a resin obtained by laminating a metal such as aluminum.
  • a container equipped with an inner bag made of a resin in which aluminum is laminated is preferably used.
  • the gas in the storage atmosphere is not particularly limited as long as it does not contain anything that adversely affects the catalyst, and there is no problem as long as the conditions described in this application are satisfied, but in general, air, nitrogen, oxygen, argon Carbon dioxide or the like is preferably used, and air or nitrogen is more preferably used from the viewpoints of ease of handling, cost, and safety.
  • the temperature at the time of storage is preferably ⁇ 30 ° ( ⁇ 100 ° C, preferably 0 ° C to 40 ° C), but should not be limited thereto.
  • the catalyst stored in the present invention can be optimally used in a method for producing an oxysilane compound in which an olefin-type compound and a hydroperoxide are reacted.
  • the olefin type compound may be an acyclic, monocyclic, bicyclic or polycyclic compound, and may be a monoolefin type, a olefin type or a polyolefin type. If there are two or more olefin bonds, these may be conjugated or non-conjugated.
  • Olefin-type compounds with 2 to 60 carbon atoms are generally preferred. Examples of such hydrocarbons are ethylene, propylene, 1-butene, isobutylene, 1-hexene, 2-hexene, and 3- Xene, 1-octene, 1-decene, styrene, cyclohexene and the like.
  • Suitable diolephin-type compounds include butadiene and isoprene.
  • a substituent may be present in the olefin compound, but the substituent is preferably a relatively stable group.
  • the substituent include a halogen atom, and oxygen. , Sulfur, nitrogen
  • substituents may be present that contain an atomic atom together with hydrogen and / or carbon atoms.
  • Particularly preferred olefin-type compounds are olefin-type unsaturated alcohols, and olefin-type unsaturated hydrocarbons substituted with halogen, and examples thereof include allyl alcohol, crotyl alcohol, and salt allyl.
  • Organic hydroperoxide As an example of hydroperoxide, organic hydroperoxide can be mentioned.
  • Organic Hyde Mouth Peroxide is a general formula
  • R is a group having 3 to 20 carbon atoms. More preferably, R is a hydrocarbon group having 3 to 10 carbon atoms, especially a second or third alkyl group or an aralkyl group. Among these groups, particularly preferred groups are tertiary alkyl groups, and second or third aralkyl groups.
  • tertiary butyl group examples thereof include tertiary pentyl group, cyclopentyl group, 2_ Examples thereof include a phenyl-2-propyl group, and various tetranyl groups generated by removing a hydrogen atom from the aliphatic side chain of the tetralin molecule.
  • the resulting hydroxyl compound is 2-phenyl-2-propanol. This can be converted to 0: -methylstyrene by a dehydration reaction.
  • the resulting a-methylstyrene can be converted to cumene by reaction with hydrogen in the presence of a catalyst, and the resulting cumene can be converted to cumene hydroperoxide by reaction with oxygen. Can be used for reaction.
  • the hydroxyl compound obtained when ethylbenzene hydroperoxide is used as the organic hydroperoxide is 1-phenylethanol. This can be converted to styrene by a dehydration reaction. Styrene is useful as a raw material for resins such as polystyrene and ABS resin. The resulting styrene is converted to ethylbenzene by reaction with hydrogen in the presence of a catalyst. Tylbenzene can be converted to ethylbenzene hydroperoxide by reaction with oxygen and used for reaction with olefin-type compounds.
  • the third amylene produced by the dehydration reaction of the third pentyl alcohol obtained when the third pentyl nanoperoxide is used as the organic hydroperoxide is a useful substance as a precursor of isoprene.
  • Tertiary pentyl alcohol is also useful as a precursor of methyl tertiary pentyl ether, an octene number improver.
  • T-Butyl alcohol obtained when t-butyl hydroperoxide is used as the organic hydroperoxide is a useful substance as a precursor of methyl-t-butyl ether which is an octane improver.
  • hydroperoxide other than an organic hydroperoxide is hydrogen peroxide.
  • Hydrogen peroxide is a compound of the chemical formula H 2 O OH and can usually be obtained in the form of an aqueous solution. This reacts with the olefin type compound to produce an oxysilane compound and water.
  • the organic hydroperoxide and hydrogen peroxide used as the raw material may be a diluted or concentrated purified product or non-purified product.
  • organic octaperoxide is preferably used in the present invention.
  • the epoxidation reaction can be carried out in the liquid phase using a solvent and Z or a diluent.
  • Solvents and diluents must be liquid under the temperature and pressure during the reaction and be substantially inert to the reactants and products.
  • the solvent may consist of substances present in the hydroperoxide solution used. For example, if cumene hydroperoxide is a mixture of cumene hydroperoxide and its raw material, cumene, it can be used as a substitute for solvent without any additional solvent. It is.
  • the epoxidation reaction temperature is generally 0 to 200, but a temperature of 25 to 200 is preferred.
  • the pressure may be sufficient to keep the reaction mixture in a liquid state. In general, the pressure is advantageously between 1 00 and 1 0 0 0 0 0 k Pa.
  • a liquid mixture containing the desired product is removed from the catalyst. Easy separation.
  • the liquid mixture can then be purified by a suitable method. Purification includes fractional distillation, selective extraction, filtration and washing.
  • the solvent, catalyst, unreacted olefin-type compound, and unreacted hydroperoxide can be recycled and reused.
  • the reaction using the catalyst of the present invention can be carried out in the form of a slurry or a fixed bed. In the case of a large-scale industrial operation, it is preferable to use a fixed bed. This reaction can be carried out by a batch method, semi-continuous method or continuous method. When the liquid containing the reactants is passed through a fixed bed, the liquid mixture exiting the reaction zone contains no or substantially no catalyst.
  • a white solid obtained by drying was mixed with water by spraying so that the water content was 1.5 parts by weight, and compression-molded with a roll press. The obtained solid was broken, and a molded body containing a catalyst component and a mold of 1.0 to 2.0 mm was obtained using a sieve. 1. Solids of 0 mm or less were recycled and compression molded again.
  • the obtained solid (5.0 g), hexamethyldisilazane (3.4 g) and toluene (30.0 g) were placed in a flask, and silylation was performed for 1.5 hours while heating at 110 ° C. After removing the solvent by decantation, the titanium-containing silicon oxide catalyst was obtained by drying at 110 ° C. under reduced pressure.
  • the above titanium-containing silicon oxide catalyst was placed in a 2 Om 1 glass sample bottle, and the inside of the bottle was replaced with dry nitrogen, and then sealed and stored at room temperature for 1 week.
  • Example 1 The catalyst obtained in the same manner as in Example 1 was the same as in Example 1 except that the storage of the catalyst in Example 1 was carried out in an open system for 6 months at a temperature of 20 ⁇ 5 ° C and a relative humidity of 50 ⁇ 5%.
  • the batch reactor was used for evaluation.
  • the reaction results are shown in Table 1. Comparative Example 1
  • Example 1 The catalyst obtained in the same manner as in Example 1 except that the catalyst of Example 1 was stored in an open system for 2 months at a temperature of 50 ° C and a relative humidity of 85%. The device was evaluated. The reaction results are shown in Table 1. table 1
  • a method for preserving a titanium-containing silicon oxide catalyst that can be used in a reaction for obtaining an oxysilane compound from, for example, a hydroperoxide and an olefin compound even after long-term storage, and can exhibit high activity. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

チタン含有珪素酸化物触媒を、相対湿度60%以下で保存することを特徴とする触媒の保存方法であり、長時間保存後でも例えばハイドロパーオキサイドとオレフィン型化合物からオキシラン化合物を得る反応に用いることができ、高い活性を発揮し得るチタン含有珪素酸化物触媒の保存方法を提供する。チタン含有珪素酸化物触媒としては、下記(1)~(3)の条件を充足する触媒に好適に適用される。 (1)平均細孔径が10Å以上であること (2)全細孔容量の90%以上が5~200Åの細孔径を有すること (3)比細孔容量が0.2cm3/g以上であること

Description

明 細 書 チタン含有珪素酸化物触媒の保存方法 技術分野
本発明は、 チタン含有珪素酸化物触媒の保存方法に関するものである。 更に 詳しくは、 本発明は、 長期間保存後でも例えばハイド ΰパーオキサイドとォレ フィン型化合物からォキシラン化合物を得る反応に用いることができ、 高い活 性を発揮し得るチタン含有珪素酸化物触媒の保存方法に関するものである。 背景技術
触媒の存在下、 八ィドロパーォキサイドとォレフィン型化合物からォキシラ ン化合物を得る方法は公知である。 ここで用いられる触媒として、 たとえば特 許文献には、 特定のチタン含有珪素酸化物触媒が開示されている (例えば、 米 国特許第 4367342号明細書、 米国特許第 5783167号明細書、 特開 平 7— 300312号公報、 特開 2000— 107604号公報、 特開 200 0-107605号公報、 特開 2000— 109469号公報、 特開 2000 - 109470号公報、 特開 2000— 117101号公報、 特開 2000— 119266号公報、 特開 2001— 286768号公報、 特開 2002— 2 24563号公報、 特開 2002— 239381号公報、 特開 2004— 19 5379号公報または特許第 2909911号公報参照) 。
これらの触媒は固定床触媒として用いられるため、 数ケ月から数年毎に一度 に大量の触媒が反応器に充填される。 そのためこれらの触媒は充填に備えて触 媒が順次製造され長期間保存されることが多い。 しかしながらこれらの触媒を 長期間保存する場合の好適な条件についての知見はこれまで示されていなかつ た。 発明の開示
力、かる現状において本発明が解決しょうとする課題は、 長期間保存後でも例 えばハイドロパーォキサイドとォレフィン型化合物からォキシラン化合物を得 る反応に用いることができ、 高い活性を発揮し得るチタン含有珪素酸化物触媒 の保存方法を提供する点にある。
すなわち、 本発明は長期間保存後も例えばハイドロパーォキサイドとォレフ ィン型化合物からォキシラン化合物を得る反応に用いることができ、 高い活性 を発揮し得るチタン含有珪素酸化物触媒の保存方法に係るものであり、 チタン 含有珪素酸化物触媒を相対湿度 6 0 %以下で保存することを特徴とする触媒の 保存方法である。 発明を実施するための最良の形態
本発明で長期間保存されるチタン含有珪素酸化物触媒は、 例えば上記特許文 献 (米国特許第 4 3 6 7 3 4 2号明細書や特許第 2 9 0 9 9 1 1号公報参照) に記載のシリカゲル等の担体にチタンアルコキサイドゃチタンハラィド等のチ タン源を気相あるいは液相下で担持させたもの、 チタンハライドとシリコンハ ライド等を火炎中で反応させたァエロジル型のもの、 チタンアルコキサイドと シリコンアルコキサイドとのゾルゲル反応によって得られるもの等特に限定さ れるものではないが、 下記 (1 ) 〜 (3 ) の全ての条件を充足するチタン含有 珪素酸化物触媒からなることが好ましい。
( 1 ) 平均細孔径が 1 0 A以上であること、
( 2 ) 全細孔容量の 9 0 %以上が 5〜 2 0 0 Aの細孔径を有すること、 および ( 3 ) 比細孔容量が 0 . 2 c m3/ g以上であること、 である。 ここで、 比細孔 容量とは触媒 1 g当りの細孔容量を意味している。
上記の条件 (1 ) 〜 (3 ) の測定は、 窒素、 アルゴン等の気体の物理吸着法 を用い、 通常の方法により測定することができる。
本発明で保存される触媒は、 X線回折 (XRD) において、 面間隔 dを示す ピークが存在してもよいし、 存在しなくてよい。 ここでいう面間隔 dを示すピ ークとは、 固体が有する結晶性や規則性に由来するピークのことであり、 ァモ ルファスな部分に由来するブロードなピークは存在していてもかまわない。 本発明で保存される触媒は、 高活性であるという観点から、 赤外線吸収スぺ クトルにおいて 9 6 0± 5 c m— 1の領域に吸収ピークを有するものであることが 好ましい。 このピークはシリカ骨格内に導入されたチタンに対応するものであ ると考えられる。
本発明で保存される触媒は下記の工程を有する製造方法によって製造される ことが好ましい。
第一工程:シリカ源、 チタン源及び型剤 (テンプレー卜) を液状で混合 *攪 拌することにより触媒成分及び型剤を含有する固体を得る工程
第二工程:第一工程で得た固体から型剤を除去することにより触媒成分を含 有する固体を得る工程
第三工程:第二工程で得た固体にシリル化処理を付すことによりシリル化さ れた触媒を得る工程
ここに、 第一工程は、 シリカ源、 チタン源及び型剤 (テンプレート) を液状 で混合 ·攪拌することにより触媒成分及び型剤を含有する固体を得る工程であ る。 用いる試薬は固体状の場合は溶媒に溶解または分散した溶液として用いる とよい。 メチルオルトシリゲート、 テトラエチルオルトシリケート、 テトラプロピルォ ルトシリゲート等があげられる。 アルキルトリアルコキシシラン、 ジアルキル ジアルコキシシラン、 1、 2—ビス (トリアルコキシシリル) アルカンなどの 有機基を含有するシリカ源も使用することができる。 それらは単独で用いるこ とも出来るし、 数種を混合させて用いても良い。
チタン源としては、 チタンアルコキサイド、 たとえばチタン酸テトラメチル 、 チタン酸テトラエチル、 チタン酸テトラプロピル、 チタン酸テトライソプロ ピル、 チタン酸テトラブチル、 チタン酸テトライソプチル、 チタン酸テトラー 2—ェチルへキシル、 チタン酸テトラオクタデシルゃチタニウム (I V) ォキ シァセチルァセトナ一ト、 チタニウム (I V) ジイシプロポキシビスァセチル ァセトナ一ト等が、 又はハロゲン化チタン、 たとえば四塩化チタン、 四臭化チ タン、 四沃化チタン等や硫酸チタニル等があげられる。
型剤としてはカチオン界面活性剤由来のアルキルアンモニゥム、 ジアルキル アンモニゥム、 トリアルキルアンモニゥム、 ベンジルアンモニゥムなど、 ァニ オン界面活性剤由来のアルキル硫酸イオン、 アルキルリン酸イオンなど、 ノニ オン界面活性剤のポリアルキレンォキサイドゃそれらのプロックコポリマー、 アルキルァミンなどのいずれも適用可能である。 なかでも下記の一般式 ( I ) で表される第 4級アンモニゥムイオンが好適に用いられる。
[N R'R2R3R4] + ( I )
(式中、 R1は炭素数 2〜 3 6の直鎖状又は分岐状の炭化水素基を表し、 R2 〜R4はそれぞれ独立に炭素数 1〜 6のアルキル基を表す。 )
R1は炭素数 2〜 3 6の直鎖状又は分岐状の炭化水素基であり、 好ましくは炭 素数 1 0〜1 8のものである。 R2〜R4はそれぞれ独立に炭素数 1〜6のアルキ ル基であり、 R2〜R4の全てがメチル基であることが好ましい。 一般式 (I) で 表される第 4級アンモニゥムイオンの具体例としては、 へキサデシルトリメチ ルアンモニゥム、 ドデシルトリメチルアンモニゥム、 ベンジルトリメチルアン モニゥム、 ジメチルジドデシルアンモニゥム、 へキサデシルピリジニゥム等の カチオンをあげることができる。
また、 これらの一般式 ( I ) で表される第 4級アンモニゥムイオンは単独で 用いることもできるし、 数種を混合させて用いてもよい。
溶媒の例としては、 水やアルコール、 たとえばメタノール、 エタノール、 n 一プロパノール、 2—プロパノール、 n—ブ夕ノール、 s e c—ブ夕ノール、 tーブ夕ノール、 ァリルアルコール、 シクロへキサノール、 ベンジルアルコー ル等ゃジオール、 またそれらの混合物などをあげることができる。 シリカ源に 対するチタン源の使用量はモル比で 1 0 _5〜 1であり、好ましくは 0 . 0 0 0 0 8〜0 . 4である。 また、 これらのシリカ源及びチタン源の合計量に対する第 4級アンモニゥムイオンの使用量はモル比で 1 0—2〜 2とすることが好ましい。 また、 シリカ源とチタン源の反応を促進するために、 混合溶液にアルカリ性 又は酸性を付与させることが好ましい。 アルカリ源としては第 4級アンモニゥ ムヒドロキシドが好ましく、 例としてはテトラメチルアンモニゥムヒドロキシ ド、 テトラエチルアンモニゥムヒドロキシド、 テトラプロピルアンモニゥムヒ ドロキシド等があげられるが、 型剤とアル力リ源が同一化合物中に含まれる一 般式 (I ) で表される第 4級アンモニゥムイオンの水酸化物を用いるのがより 好ましい。 また酸の例としては塩酸、 硫酸、 硝酸等の無機酸及び蟻酸、 酢酸、 プロピオン酸等の有機酸があげられる。
混合 ·攪拌の温度は通常— 3 0〜 1 0 0 °Cである。 混合 ·攪拌により固体が 生成するが、 更に固体を成長させるためにこれを熟成してもよい。 熟成時間は 通常 1 8 0時間以下であり、 熟成温度は通常 0〜 2 0 0 °Cである。 熟成時に加 熱を要する場合は、 溶媒の気ィヒを避けるために耐圧容器に移して密閉して行う のが好ましい。
次に、 第二工程は、 第一工程で得た固体から型剤を除去することにより触媒 成分を含有する固体を得る工程である。
型剤除去は高温焼成あるいは溶媒抽出のいずれの方法を用いても良いが、 高活 性な触媒を得るという観点から溶媒抽出で行うことが好ましい。
型剤の抽出除去は第一工程で得た触媒成分及び型剤を含有する固体を溶媒抽 出操作に付すことにより達成できる。
溶媒による型剤を抽出する技術は、 Wh i t e h u r s tらによって報告さ れている (米国特許 5 1 4 3 8 7 9号公報参照) 。 抽出に用いる溶媒は、 型剤 に用いた化合物を溶解し得るものであればよく、 一般に炭素数 1から約 1 2の 常温で液状のォキサ及び Z又はォキソ置換炭化水素を用いることができる。 こ の種類の好適な溶媒としては、 アルコール類、 ケトン類、 エーテル類 (非環式 及び環式のもの) 及びエステル類を用いることができ、 たとえば、 メタノール 、 エタノール、 エチレングリコール、 プロピレングリコール、 イソプロパノ一 ル、 n—ブ夕ノール及びォクタノールのようなアルコール類;アセトン、 ジ ェチルケトン、 メチルェチルケトン及びメチルイソプチルケトンのようなケト ン類;ジイソブチルエーテルゃテトラヒドロフランのようなェ一テル類;及び 酢酸メチル、 酢酸ェチル、 酢酸ブチル及びプロピオン酸ブチルのようなエステ ル類があげられるが、 型剤の溶解能という観点からアルコ一ル類が好ましく、 なかでもメタノールが更に好ましい。 これらの抽出溶媒の触媒成分及び型剤を 含有する固体に対する重量比は、 通常 1〜1 0 0 0であり、 好ましくは 5〜3 0 0である。 また、 抽出効果を向上させるために、 これらの溶媒に酸又はそれ らの塩を添加してもよい。 用いる酸の例としては、 塩酸、 硫酸、 硝酸、 臭酸等 の無機酸や有機酸である蟻酸、 酢酸、 プロピオン酸などがあげられる。 また、 それらの塩の例としては、 アルカリ金属塩、 アルカリ土類金属塩、 アンモニゥ ム塩等があげられる。
添加する酸又はそれらの塩の溶媒中の濃度は 1 O m o 1 Z 1以下が好ましく 、 5 m o 1 / 1以下が更に好ましい。 添加する酸又はそれらの塩の溶媒中の濃 度が過大であると触媒成分中に存在するチタンが溶出し、 触媒活性が低下する 場合がある。
溶媒と触媒成分及び型剤を含有する固体を十分に混合した後、 液相部をろ過 あるいはデカンテーシヨンなどの方法により分離する。 この操作を必要回数繰 り返す。 また触媒成分及び型剤を含有する固体を反応管等に充填し、 抽出溶媒 を流通させる方法により型剤を抽出することも可能である。 溶媒抽出の終了は たとえば液相部の分析により知ることができる。 抽出温度は 0〜2 0 0 °Cが好 ましく 2 0〜1 0 0 °Cが更に好ましい。 抽出溶媒の沸点が低い場合は、 加圧し て抽出を行ってもよい。
抽出処理後に得られた溶液中の一般式 ( I ) で表される第 4級アンモニゥム イオンは回収して第一工程の型剤原料として再使用することもできる。 また同 様に抽出溶媒も通常の蒸留操作などにより精製して再使用することもできる。 型剤除去に好適に用いられるアルコール類は次工程のシリル化においてシリ ル化剤と反応し目的の反応を阻害することから、 通常、 型剤抽出後の固体に含 まれる抽出溶媒は乾燥操作によって除去される。 乾燥装置としては温風もしく は減圧装置を装着したコニカル乾燥機や棚段乾燥機をあげることができる。 し かしながらこれらの乾燥を経済的かつ効率的に行うには非常に時間がかかり、 触媒の生産性の観点からは十分ではない場合がある。 また乾燥条件によっては 細孔収縮や触媒表面性質の変化などがおこり触媒性能が悪化する場合がある。 効率的に触媒を製造するために、 第二工程で得られた固体に含まれる抽出溶 媒を、 続くシリル化工程で用いるシリル化剤に対して実質上不活性な溶媒で置 換するのが好ましい。
本置換工程で用いられる置換溶媒はシリル化剤に対して実質上不活性で、 か つ第二工程で用いた抽出溶媒を溶解させ得るという条件を満たすものであれば 良い。
本置換操作に好適に用いられる溶媒は一般に炭素数 1力 ^ら 1 2の常温で液状 の炭化水素類、 ハロゲン化炭化水素類、 ケ卜ン類、 エーテル類、 エステル類、 N, N—二置換アミド類、 二トリル類、 三級アミン類などであり、 たとえばへ キサン、 シクロへキサン、 クロ口ホルム、 ベンゼン、 トルエン、 キシレン、 ァ セ卜ン、 ジェチルケトン、 メチルェチルケトン、 メチルイソプチルケトン、 ジ ェチルエーテル、 ジイソプチルエーテル、 テトラヒドロフラン、 ジォキサン、 酢酸メチル、 酢酸ェチル、 ジメチルホルムアミド、 ァセトニトリル、 ピリジン 、 トリェチルァミン、 ジメチルスルフォキシドなどがあげられる。 続くシリル 化工程との関係から好ましい置換溶媒は炭化水素類で、 なかでもトルエンが更 に好ましい。 これらの溶媒は単独で用いることもできるし、 数種類を混合した 溶液を用いることもできる。
本置換操作では置換溶媒と第二工程で得られた抽出溶媒を含有する固体を十 分に混合した後、 液相部をろ過あるいはデカンテーシヨンなどの方法により分 離する。 この操作を必要回数繰り返す。 また抽出溶媒を含有する固体を反応管 等に充填し、 置換溶媒を流通させる方法により置換することも可能である。 触 媒の生産性という観点から、 第二工程と溶媒置換工程、 更には続くシリル化工 程を同一の反応器で行うことが好ましい。 本置換操作の終了はたとえば液相部 の分析により知ることができる。 置換温度は 0〜2 0 0 °Cが好ましく 2 0〜1 o o °cが更に好ましい。 本操作で用いる溶媒の沸点が低い場合は、 加圧して置 換を行ってもよい。
また本工程に用いた置換溶媒は蒸留や抽出などの通常の方法により抽出溶媒 を除去し、 再使用することができる。
更に、 第三工程は、 第二工程で得た固体にシリル化処理を付すことによりシ リル化された触媒を得る工程である。
シリル化はチタン含有珪素酸化物にガス状のシリル化剤を反応させる気相法 で行ってもよいし、 溶媒中でシリル化剤とチタン含有珪素酸化物とを反応させ る液相法で行ってもよいが、 液相法がより好ましい。 通常、 シリル化を液相法 で行う場合は炭化水素類が好適な溶媒として用いられる。
.シリル化剤の例には、 有機シラン、 有機シリルアミン、 有機シリルアミドと その誘導体、 及び有機シラザン及びその他のシリル化剤があげられる。
有機シランの例としては、 クロロトリメチルシラン、 ジクロロジメチルシラ ン、 クロロブ口モジメチルシラン、 ニトロトリメチルシラン、 クロロトリエチ ルシラン、 ョ一ドジメチルブチルシラン、 クロロジメチルフエニルシラン、 ク ロロジメチルシラン、 ジメチル n—プロピルクロロシラン、 ジメチルイソプロ ピルクロロシラン、 t—プチルジメチルクロロシラン、 トリプロピルクロロシラ ン、 ジメチルォクチルクロロシラン、 トリブチルクロロシラン、 トリへキシル クロロシラン、 ジメチルェチルクロロシラン、 ジメチルォク夕デシルクロロシ ラン、 n一ブチルジメチルクロロシラン、 ブロモメチルジメチルクロロシラン 、 クロロメチルジメチルクロロシラン、 3 -クロ口プロピルジメチルクロロシラ ン、 ジメトキシメチルクロロシラン、 メチルフエニルクロロシラン、 トリエト キシクロロシラン、 ジメチルフエニルクロロシラン、 メチルフエ二ルビニルク ロロシラン、 ベンジルジメチルクロロシラン、 ジフエニルクロロシラン、 ジフ ェニルメチルクロロシラン、 ジフエ二ルビニルクロロシラン、 トリベンジルク ロロシラン、 3 -シァノプロピルジメチルクロロシランがぁげられる。
有機シリルァミンの例としては、 N—トリメチルシリルジメチルァミン、 N —トリメチルシリルジェチルァミン、 N—トリェチルシリルァミン、 N—トリ ェチルシリルジメチルァミン、 N—トリェチルシリルジェチルァミン、 N—ト リー n—プロピルシリルアミン、 N— t—プチルジメチルシリルアミン、 N—ト リメチルシリルイミダゾ一ル、 N—トリェチルシリルイミダゾール、 N—トリ — n—プロビルシリルイミダゾール、 N— t —プチルジメチルシリルイミダゾ ール、 N—ジメチルェチルシリルイミダゾ一ル、 N—ジメチル— n—プロピル シリルイミダゾ一ル、 N—ジメチルイソプロビルシリルイミダゾール、 N—ト リメチルシリルジメチルァミン、 N—トリメチルシリルジェチルァミン、 N— 卜リメチルシリルピロール、 N—トリメチルシリルピロリジン、 N—トリメチ ルシリルピぺリジン、 1—シァノエチル (ジェチルァミノ) ジメチルシラン、 ペンタフルォロフエ二ルジメチルシリルァミンがぁげられる。 有機シリルァミド及び誘導体の例としては、 N, O—ビストリメチルシリルァ セトアミド、 N,〇—ピストリメチルシリルトリフルォロアセトアミド、 N—ト リメチルシリルァセトアミド、 N—メチルー N—トリメチルシリルァセトアミ ド、 N—メチルー N—トリメチルシリルトリフルォロアセトアミド、 N—メチ ル—N—トリメチルシリルヘプ夕フルォロブチルアミド、 N_ ( t -ブチルジメチ ルシリル)一 N—トリフルォロアセトアミド、 N, 〇一ビス (ジェチルハイド口 シリル) トリフルォロアセトアミドがあげられる。
有機シラザンの例としては、 へキサメチルジシラザン、 へキサェチルジシラ ザン、 ヘプタメチルジシラザン、 1, 1, 3 , 3 —テトラメチルジシラザン, 1, 3 —ビス (クロロメチル) テトラメチルジシラザン、 1, 3 -ジビエル- 1 , 1 , 3 , 3—テトラメチルジシラザン、 1, 3 —ジフエニルテトラメチルジシラザン、 へ キサメチルシクロトリシラザンがあげられる。
その他のシリル化剤としては、 N—メトキシー N, O—ビストリメチルシリ ルトリフルォロアセトアミド、 N—メトキシ一 N, O—ピストリメチルシリル カーバメート、 N, 〇一ビストリメチルシリルスルファメート、 トリメチルシ リルトリフルォロメタンスルホナート、 トリェチルシリルトリフルォロメタン スルホナー卜、 N, Ν'—ピストリメチルシリル尿素があげられる。
シリル化剤は単独で用いても良いし、 2種類以上のシリル化剤を同時あるい は別々に用いても良い。 最も好適なシリル化剤はへキサメチルジシラザンであ る。 また上記シリル化はバッチ式あるいは流通式のいずれの方法で行っても良 レ シリル化後の触媒は減圧乾燥や加熱した窒素などの不活性乾燥ガスを接 触させるなどの一般的な方法で乾燥することが好ましい。
本発明で好適に保存される触媒は、 通常、 触媒成分を含む固体を成型するェ 程により触媒成型体として用いられる。 成型工程は、 上述した型剤除去工程の 前後、 溶媒置換工程後及びシリル化工程後のいずれの段階で行つてもよいが、 比表面積や細孔容量などの触媒物性の劣化を抑制するという観点から、 型剤除 去工程の前に行うことが好ましい。 成型方法は圧縮成型、 押し出し成型などの いずれの方法を用いてもよい。 押し出し成型においては一般的に用いられる有 機および無機パインダーを用いることができるが、 バインダ一の添加により触 媒活性の低下が引き起こされる場合がある。 本触媒成型体の製造にあたり、 触 媒強度及び触媒物性の観点から圧縮成型法が最も好ましい。
圧縮成型法としてはロールプレス成型 (プリケッティング、 コンパクティン グ) 、 油圧プレス成型、 打錠成型などをあげることができる。 圧縮の圧力は通 常 0 . 1〜1 0トン7じ m2であり、 好ましくは 0 . 2 ~ 5トン/ c m2であり、 更に好しくは 0 . 5〜2トン Z c m2である。 圧力が低すぎると成型体の強度が 不十分となる場合があり、 一方圧力が高すぎると細孔が破壊され触媒物性が不 十分なものとなる場合がある。 圧縮成型を行うにあたり、 触媒成分を含む固体 が適当量の水分を含んでいることが好ましく、 これにより低い圧縮圧力でも充 分な強度の成型体をつくることができる。 圧縮成型に付す触媒成分を含む固体 の含水率は 1〜 7 0重量%が好ましく、 5〜4 0重量%が更に好ましい。 水分 量は湿った固体を乾燥させる際の乾燥度で調整してもよいし、 十分乾燥させた 固体に水を加えて調整してもよい。 また、 所望の性能に支障をきたさない範囲 で、 一般に用いられるバインダー等を加えてもよい。 成型体の形状は錠剤、 球 、 リングなどいずれの形状であってもよい。 そのままの形状で反応などに用い てもよいし、 適当な大きさに破砕して用いてもよい。
上記製造方法により得られた触媒は、 高い表面積と高度に分散したチタン活 性点を有することから、 選択的酸化反応、 たとえばォレフィン型化合物のェポ キシ化反応の他、 有機化合物の各種酸化反応に用いることが可能である。 また 所望によりアルミナ等の第三成分の添加で触媒の酸点をより強化することも可 能であり、 アルキル化反応や接触改質反応等にも使用することが可能である。 本発明の触媒の保存方法は、 相対湿度 6 0 %以下で保存することを特徴とす るが、 相対湿度 3 0 %以下での保存が好ましく、 相対湿度 1 5 %以下での保存 が更に好ましい。 保存時の相対湿度が高すぎる場合には、 著しい触媒活性の低 下を引き起こす。
相対湿度を所望の値にする方法には触媒が収容されている容器内に乾燥ガス を継続的に流通させる方法、 シリカゲルゃゼォライト等の乾燥剤とともに密封 容器内で保存する方法、 調湿装置を備えた容器および/または倉庫内で保存する 方法、 ガスバリアー性を有する容器内を所望の湿度にした後、 密閉して保存す る方法などがあげられる。 ここで触媒の保存期間とは触媒製造が終了した直後 から反応に用いられるまでを意味し、 一般的には触媒が製造され保存容器に充 填されたときから、 反応器に導入するために容器が開封されるまでを指す。 容器の材質は乾燥状態を維持できるものであれば任意であり、 例えば、 ガラ ス、 鉄、 アルミニウム等の金属、 ァクリレート、 ポリエチレンテレフタレート 、 ポリブチレンテレフタレート、 ポリエステル等の樹脂およびその他のェンジ ニアリングプラスチック等のガスバリア一性を有する樹脂、 ならびにガスバリ ァ一性を有する樹脂をラミネートした樹脂およびアルミニゥム等の金属をラミ ネートした樹脂が挙げられる。 なかでもアルミをラミネ一トした樹脂で作製さ れた内袋を装着した容器が好適に用いられる。
保存雰囲気のガスは触媒に悪影響を及ぼすものを含有していなければ特に限 定されるものではなく本願記載の条件を満たしておれば問題は無いが、 一般的 には空気、 窒素、 酸素、 アルゴン、 二酸化炭素等が好適に用いられ、 なかでも 取扱いの容易さ及びコスト、 安全性の観点から空気あるいは窒素を用いるのが より好ましい。
保存時の温度は、 好ましくは— 3 0 ° (〜 1 0 0 、 好ましくは 0 °Cから 4 0 °Cであるがこれに限定されるべきものではない。
本発明で保存された触媒は特にォレフィン型化合物とハイドロパーォキサイ ドを反応させるォキシラン化合物の製造方法に最適に使用され得る。
ォレフィン型化合物は、 非環式、 単環式、 二環式又は多環式化合物であって よく、 モノォレフィン型、 ジォレフイン型又はポリオレフイン型のものであつ てよい。 ォレフィン結合が 2以上ある場合には、 これらは共役結合又は非共役 結合であってよい。 炭素原子 2 ~ 6 0個のォレフィン型化合物が一般に好まし レ^ このような炭化水素の例にはエチレン、 プロピレン、 1—ブテン、 イソブ チレン、 1—へキセン、 2—へキセン、 3—へキセン、 1—ォクテン、 1ーデ セン、 スチレン、 シクロへキセン等があげられる。 適当なジォレフイン型化合 物の例にはブタジエン、 イソプレンがあげられる。 また、 ォレフィン型化合物 には置換基が存在してもよいが、 置換基は比較的安定な基であることが好まし レ^ その置換基の例にはハロゲン原子があげられ、 更にまた、 酸素、 硫黄、 窒 素原子を、 水素及び/又は炭素原子と共に含有する種々の置換基が存在してもよ い。 特に好ましいォレフィン型化合物はォレフイン型不飽和アルコール、 及び ハロゲンで置換されたォレフィン型不飽和炭化水素であり、 その例にはァリル アルコール、 クロチルアルコール、 塩ィ匕ァリルがあげられる。
ハイドロパーォキサイドの例として、 有機ハイドロパーォキサイドをあげる ことができる。 有機ハイド口パーオキサイドは、 一般式
R - O - O - H
(ここに Rは 1価の炭化水素基である。 )
で表される化合物であって、 これはォレフィン型化合物と反応してォキシラン 化合物及び化合物 R— OHを生成する。 好ましくは、 Rは炭素原子を 3〜2 0 個有する基である。 更に好ましくは、 Rが炭素原子 3〜1 0個の炭化水素基、 特に、 第 2若しくは第 3アルキル基又はァラルキル基である。 これらの基のう ちで特に好ましい基は第 3アルキル基、 及ぴ第 2又は第 3ァラルキル基であつ て、 その具体例としては、 第 3ブチル基、 第 3ペンチル基、 シクロペンチル基 、 2 _フエニル— 2—プロピル基があげられ、 更にまた、 テトラリン分子の脂 肪族側鎖から水素原子を除去することによって生じる種々のテトラニリル基も あげられる。
有機ハイドロパーォキサイドとしてクメンハイドロパーォキサイドを使用し た場合には、 その結果得られるヒドロキシル化合物は 2—フエニル- 2 -プロパ ノールである。 これは脱水反応によって 0:—メチルスチレンに変換できる。 得 られる a—メチルスチレンは触媒の存在下に水素との反応によりクメンに変換 し、 さらに得られるクメンは酸素との反応によりクメンハイドロパ一ォキサイ ドに変換することができ、 ォレフィン型化合物との反応に使用することができ る。
有機ハイドロパ一ォキサイドとしてェチルベンゼンハイドロパーォキサイド を使用した場合に得られるヒドロキシル化合物は 1一フエニルエタノールであ る。 これは脱水反応によってスチレンに変換できる。 スチレンはポリスチレン や A B S樹脂などの樹脂の原料として有用である。 また得られるスチレンは触 媒の存在下に水素との反応によりェチルベンゼンに変換し、 さらに得られるェ チルベンゼンは酸素との反応によりェチルベンゼンハイドロパーォキサイドに 変換することができ、 ォレフィン型化合物との反応に使用することができる。 有機ハイドロパーォキサイドとして第 3ペンチルノ\ィドロパーォキサイドを 使用したときに得られる第 3ペンチルアルコールの脱水反応によって生じる第 3アミレンは、 イソプレンの前駆体として有用な物質である。 第 3ペンチルァ ルコールはォク夕ン価向上剤であるメチル第 3ぺンチルエーテルの前駆体とし ても有用である。
有機ハイドロパーォキサイドとして t—プチルハイドロパーォキサイドを使 用したときに得られる t一ブチルアルコールはオクタン価向上剤であるメチル -t-ブチルエーテルの前駆体として有用な物質である。
有機ハイドロパ一ォキサイド以外のハイドロパーォキサイドの例としては、 過酸化水素をあげることができる。
過酸化水素は化学式 H O OHの化合物であつて、 通常水溶液の形で得ること ができる。 これはォレフイン型化合物と反応して、 ォキシラン化合物及び水を 生成する。
原料物質として使用される有機ハイドロパーォキサイド及び過酸化水素は、 希薄又は濃厚な精製物又は非精製物であってよい。 なかでも本発明では有機八 ィドロパーォキサイドが好適に用いられる。
. エポキシ化反応は、 溶媒及び Z又は希釈剤を用いて液相中で実施できる。 溶 媒及び希釈剤は、 反応時の温度及び圧力のもとで液体であり、 かつ、 反応体及 び生成物に対して実質的に不活性なものでなければならない。 溶媒は使用され るハイドロパーォキサイド溶液中に存在する物質からなるものであってよい。 たとえばクメンハイドロパーォキサイドがクメンハイドロパーォキサイドとそ の原料であるクメンとからなる混合物である場合には、 特に溶媒を添加するこ となく、 これを溶媒の代用とすることも可能である。
エポキシ化反応温度は一般に 0〜 2 0 0でであるが、 2 5〜 2 0 0での温度 が好ましい。 圧力は、 反応混合物を液体の状態に保つのに充分な圧力でよい。 一般に圧力は 1 0 0〜 1 0 0 0 0 k P aであることが有利である。
エポキシ化反応の終了後に、 所望生成物を含有する液状混合物が触媒から容 易に分離できる。 次いで液状混合物を適当な方法によって精製できる。 精製は 分別蒸留、 選択抽出、 濾過、 洗浄等を含む。 溶媒、 触媒、 未反応ォレフィン型 化合物、 未反応ハイドロパーォキサイドは再循環して再び使用することもでき る。
本発明の触媒を用いた反応は、 スラリー、 固定床の形で行うことができ、 大 規模な工業的操作の場合には固定床を用いることが好ましい。 本反応は、 回分 法、 半連続法又は連続法によって実施できる。 反応体を含有する液を固定床に 通した場合には、 反応帯域から出た液状混合物には、 触媒が全く含まれていな いか又は実質的に含まれていない。 実施例
以下に実施例により本発明を説明する。
実施例 1
触媒粉の調製 (第一工程)
16重量%へキサデシルトリメチルアンモニゥムヒドロキシド水溶液 (メタ ノール 25重量%含有) 125. 1重量部を撹拌し、 これに 40°Cでチタン酸 テトライソプロピル 1. 85重量部と 2—プロパノール 10. 0重量部の混合 溶液を滴下して加えた。 30分間撹拌した後、 テトラメチルオルトシリケート 38. 1重量部を滴下した。 その後、 40°Cで 1時間攪拌を続けた。 生じた沈 殿をろ別した。 得られた沈殿を減圧下、 7 CTCで乾燥した。
成型体の作製
乾燥して得られた白色固体 10. 0重量部に水分含量が 1. 5重量部となる よう水を霧吹きで加え良く混合したものを、 ロールプレス機で圧縮成型した。 得られた固体を破碎し、 篩を用いて 1. 0〜2. 0mmの触媒成分および型剤 を含有する成型体を得た。 1. 0mm以下の固体はリサイクルして、 再度圧縮 成型した。
型剤の柚出除去 (第二工程)
次に、 上記のとおり得られた成型体 10. 0重量部をグラスライニングカラ ムに充填し、 LHSV=6h— 1で (1) 室温下、 91. 1重量部のメタノール、 (2) 45°C加熱下、 168. 1重量部の 0. 2mo 1 / 1塩酸/メタノール溶 液、 (3) 45°C加熱下、 132. 3重量部のメタノールをアップフローで順 次カラムに通液した。 通液終了後、 カラム内のメタノールをカラム下部より抜 き出した。 その後、 得られた固体を、 減圧下、 110°Cで乾燥した。
シリル化 ( ≡^m
得られた固体 5. 0 g、 へキサメチルジシラザン 3. 4gとトルエン 30. 0 gをフラスコに入れ 110°C加熱下 1. 5時間シリル化を行った。 デカンテ ーシヨンにより溶媒を除いた後、 減圧下、 110°Cで乾燥することにより、 チ タン含有珪素酸化物触媒を得た。
触媒の保存
上記のチタン含有珪素酸化物触媒を 2 Om 1ガラス製サンプル瓶に入れ瓶内 を乾燥窒素で置換した後、 室温で 1週間、 密閉保存した。
プロピレンオキサイド (P〇) の合成
上記のとおり得られた触媒を 25%クメンハイドロパーォキサイドのクメン 溶液 (CHPO) とプロピレン (C3') を用いてバッチ反応装置 (オートクレ —ブ) で評価した。 触媒 1. O g、 CHP030. O g、 C3' 16. 6 gをォ 一トクレーブに仕込み、 自生圧力下、 反応温度 85 :、 反応時間 1. 5時間 ( 昇温込み) で反応させた。 反応結果を表 1に示す。 実施例 2
実施例 1の触媒の保存を温度 20±5°C、 相対湿度 50±5%で 6ヶ月間開放 系で行った以外は実施例 1の同様の操作で得られた触媒を実施例 1と同様にバ ツチ反応装置で評価した。 反応結果を表 1に示す。 比較例 1
実施例 1の触媒の保存を温度 50 °C、 相対湿度 85 %で 2ヶ月間開放系で行 つた以外は実施例 1の同様の操作で得られた触媒を実施例 1と同様にバッチ反 応装置で評価した。 反応結果を表 1に示す。 表 1
Figure imgf000017_0001
(保存後重量一保存前重量) Z保存前重量 X 1 0 0
生成した P Oモルノ反応した C 3'モル X 1 0 0
生成した (プロピレングリコール + 2 Xジプロピレングリコ
+ 3 Xトリプロピレングリコール) モル Z反応した C H P〇モル X 1 0 0 産業上の利用可能性
本発明によれば、 長期間保存後でも例えばハイドロパーォキサイドとォレフ ィン型化合物からォキシラン化合物を得る反応に用いることができ、 高い活性 を発揮し得るチタン含有珪素酸化物触媒の保存方法を提供することができる。

Claims

請 求 の 範 囲
1 . チタン含有珪素酸化物触媒の保存方法であって、 該触媒を相対湿度 6 0 % 以下で保存することを特徴とする触媒の保存方法。
2 . 相対湿度 3 0 %以下で保存する請求の範囲第 1項記載の触媒の保存方法。
3 . 相対湿度 1 5 %以下で保存する請求の範囲第 1項記載の触媒の保存方法。
4. チタン含有珪素酸化物触媒が下記 (1 ) 〜 (3 ) の条件を充足することを 特徴とする請求の範囲第 1〜 3項のいずれかに記載の触媒の保存方法。
( 1 ) 平均細孔径が 1 0人以上であること
( 2 ) 全細孔容量の 9 0 %以上が5〜2 0 0 Aの細孔径を有すること ( 3 ) 比細孔容量が 0 . 2 c m g以上であること
5 . チタン含有珪素酸化物触媒が下記の第一工程〜第三工程によつて製造され たことを特徴とする請求の範囲第 4項に記載の触媒の保存方法。
第一工程:シリカ源、 チタン源及び型剤を液状で混合 ·攪拌することにより 触媒成分及び型剤を含有する固体を得る工程
第二工程:第一工程で得た固体から型剤を除去することにより触媒成分を含 有する固体を得る工程
第三工程:第二工程で得た固体にシリル化処理を付すことによりシリル化さ れた触媒を得る工程
6 . 第一工程で用いられる型剤が下記の一般式 (I) で表される第 4級アンモニ ゥムイオンである請求の範囲第 5に記載の触媒の保存方法。
[N R RSR4] + (I)
(式中、 R1は炭素数 2〜3 6の直鎖状又は分岐状の炭化水素基を表し、 R2 〜R4はそれぞれ独立に炭素数 1〜 6のアルキル基を表す。 )
7 . 第二工程での型剤除去が溶媒抽出操作によって行われる請求の範囲第 5項 に記載の触媒の保存方法。
8 . 触媒成分を含む固体を成型する工程を有する請求の範囲第 5〜 7項のいず れかに記載の触媒の保存方法。
9 . チタン含有珪素酸化物触媒がシリカゲル担体にチタンアルコキサイドある いはチタンハラィドを担持させたものである請求の範囲第 1〜4項のいずれか に記載の触媒の保存方法。
1 0 . 請求の範囲第 1〜 9項のいずれかに記載の保存方法により得られること を特徴とするチタン含有珪素酸化物触媒。
1 1 . 請求の範囲第 1 0項に記載の触媒の存在下、 ォレフィン型化合物とハイ ドロパーォキサイドを反応させることを特徴とするォキシラン化合物の製造方 法。
1 2 . ハイドロパーォキサイドが有機ハイドロパーォキサイドである請求の範 囲第 1 1項に記載のォキシラン化合物の製造方法。
PCT/JP2006/305325 2005-03-17 2006-03-13 チタン含有珪素酸化物触媒の保存方法 WO2006098421A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06729315A EP1862218A4 (en) 2005-03-17 2006-03-13 METHOD FOR STORING A TITANIUM CATALYST ON SILICON OXIDE
US11/908,456 US8470729B2 (en) 2005-03-17 2006-03-13 Method for storing titanium-containing silicon oxide catalyst
KR1020077023396A KR101368579B1 (ko) 2005-03-17 2006-03-13 티탄 함유 규소 산화물 촉매의 보존 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005076608 2005-03-17
JP2005-076608 2005-03-17
JP2005-332532 2005-11-17
JP2005332532A JP2006289341A (ja) 2005-03-17 2005-11-17 チタン含有珪素酸化物触媒の保存方法

Publications (1)

Publication Number Publication Date
WO2006098421A1 true WO2006098421A1 (ja) 2006-09-21

Family

ID=36991764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305325 WO2006098421A1 (ja) 2005-03-17 2006-03-13 チタン含有珪素酸化物触媒の保存方法

Country Status (5)

Country Link
US (1) US8470729B2 (ja)
EP (1) EP1862218A4 (ja)
JP (1) JP2006289341A (ja)
KR (1) KR101368579B1 (ja)
WO (1) WO2006098421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059068A (ja) * 2013-09-19 2015-03-30 国立大学法人 新潟大学 メソポーラス酸化タングステン及びその製造方法、光触媒、並びにメソポーラス酸化タングステン電極

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558842B2 (ja) * 2008-06-05 2010-10-06 パナソニック株式会社 光触媒性部材の保管方法
JP5942923B2 (ja) * 2013-05-09 2016-06-29 信越化学工業株式会社 シリルアミン化合物を用いたシリル化方法
EP4129476A4 (en) * 2020-04-01 2024-05-01 Sumitomo Chemical Company, Limited CATALYST FOR HALOGEN GENERATING, PACKING AND PACKING MANUFACTURING PROCESS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043431A1 (fr) * 1998-02-24 1999-09-02 Japan As Represented By Director-General Of Agency Of Industrial Science And Technology Catalyseur d'oxydation partielle d'hydrocarbure insature
JP2000107604A (ja) * 1998-08-04 2000-04-18 Sumitomo Chem Co Ltd チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP2002524244A (ja) * 1998-09-14 2002-08-06 イーストマン ケミカル カンパニー ブタジエンの3,4−エポキシ−1−ブテンへの選択的エポキシ化用Cs促進Ag触媒の再活性化
JP2003010695A (ja) * 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の保存方法
JP2004174396A (ja) * 2002-11-27 2004-06-24 Mitsubishi Chemicals Corp オレフィン類酸化触媒の保存方法と当該触媒によるオレフィン類の酸化方法
JP2005186065A (ja) * 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸製造用触媒及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367342A (en) * 1969-04-02 1983-01-04 Shell Oil Company Olefin epoxidation
US3923843A (en) * 1972-03-13 1975-12-02 Shell Oil Co Epoxidation process with improved heterogeneous catalyst
US5935895A (en) * 1994-09-22 1999-08-10 Roche Vitamins Inc. Heterogeneous catalysts
SG73663A1 (en) * 1998-08-04 2000-06-20 Sumitomo Chemical Co A process for producing propylene oxide
ES2156506B1 (es) 1998-10-14 2002-03-01 Sumitomo Chemical Co Metodo para la produccion de oxido de propileno.
DE19915357A1 (de) * 1999-04-06 2000-10-12 Basf Ag Verfahren zur Oligomerisierung von C¶2¶- bis C¶8¶-Olefinen
DE19920753A1 (de) * 1999-04-23 2000-10-26 Bayer Ag Verfahren zur Herstellung von amorphen, edelmetallhaltigen Titan-Silizium-Mischoxiden
DE69929415T2 (de) * 1999-08-06 2006-09-21 Repsol Quimica S.A. Verfahren zur kontinuierlichen Herstellung von Propylenoxid und weiteren Alkenoxiden
JP2003200056A (ja) * 2002-01-10 2003-07-15 Sumitomo Chem Co Ltd チタン含有珪素酸化物触媒の製造方法及び触媒
JP4265212B2 (ja) 2002-12-19 2009-05-20 住友化学株式会社 チタン含有珪素酸化物触媒の製造方法
CN100342968C (zh) 2003-12-03 2007-10-17 三菱化学株式会社 生产不饱和醛和不饱和羧酸的催化剂以及此催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043431A1 (fr) * 1998-02-24 1999-09-02 Japan As Represented By Director-General Of Agency Of Industrial Science And Technology Catalyseur d'oxydation partielle d'hydrocarbure insature
JP2000107604A (ja) * 1998-08-04 2000-04-18 Sumitomo Chem Co Ltd チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP2002524244A (ja) * 1998-09-14 2002-08-06 イーストマン ケミカル カンパニー ブタジエンの3,4−エポキシ−1−ブテンへの選択的エポキシ化用Cs促進Ag触媒の再活性化
JP2003010695A (ja) * 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の保存方法
JP2004174396A (ja) * 2002-11-27 2004-06-24 Mitsubishi Chemicals Corp オレフィン類酸化触媒の保存方法と当該触媒によるオレフィン類の酸化方法
JP2005186065A (ja) * 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸製造用触媒及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1862218A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059068A (ja) * 2013-09-19 2015-03-30 国立大学法人 新潟大学 メソポーラス酸化タングステン及びその製造方法、光触媒、並びにメソポーラス酸化タングステン電極

Also Published As

Publication number Publication date
EP1862218A1 (en) 2007-12-05
KR101368579B1 (ko) 2014-02-28
US8470729B2 (en) 2013-06-25
US20090227807A1 (en) 2009-09-10
KR20070119682A (ko) 2007-12-20
EP1862218A4 (en) 2011-07-06
JP2006289341A (ja) 2006-10-26

Similar Documents

Publication Publication Date Title
JP2001031662A (ja) プロピレンオキサイドの製造方法
JP3848027B2 (ja) チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP4889865B2 (ja) チタン含有珪素酸化物触媒の製造方法
KR101254352B1 (ko) 티탄 함유 규소 산화물 촉매의 제조 방법, 상기 촉매 및상기 촉매를 사용하는 올레핀옥시드 화합물의 제조 방법
KR100693773B1 (ko) 촉매성형체, 촉매성형체의 제조방법 및 옥시란 화합물의제조방법
JP4265212B2 (ja) チタン含有珪素酸化物触媒の製造方法
WO2006098421A1 (ja) チタン含有珪素酸化物触媒の保存方法
TW568797B (en) Method for producing titanium-containing silicon oxide catalyst and catalyst prepared thereby
JP3797107B2 (ja) 触媒成型体、該触媒成型体の製造方法及びオキシラン化合物の製造方法
JP2006255586A (ja) チタン含有珪素酸化物触媒の製造方法及び触媒
JP3731384B2 (ja) チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP4834982B2 (ja) チタン含有珪素酸化物触媒の製造方法及び触媒
JP3788107B2 (ja) チタン含有珪素酸化物触媒、該触媒の製造方法及びプロピレンオキサイドの製造方法
JP2003200056A (ja) チタン含有珪素酸化物触媒の製造方法及び触媒
JP4495272B2 (ja) オキシラン化合物の製造方法
JP2000109469A (ja) プロピレンオキサイドの製造方法
JP2006159058A (ja) チタン含有珪素酸化物触媒の製造方法及び触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008031.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11908456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006729315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077023396

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 4586/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729315

Country of ref document: EP