WO2006095823A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2006095823A1
WO2006095823A1 PCT/JP2006/304624 JP2006304624W WO2006095823A1 WO 2006095823 A1 WO2006095823 A1 WO 2006095823A1 JP 2006304624 W JP2006304624 W JP 2006304624W WO 2006095823 A1 WO2006095823 A1 WO 2006095823A1
Authority
WO
WIPO (PCT)
Prior art keywords
balancer
vehicle
torque
motor
drive
Prior art date
Application number
PCT/JP2006/304624
Other languages
English (en)
French (fr)
Inventor
Nobuaki Miki
Munehisa Horiguchi
Takumi Tachibana
Fumihiko Sakakibara
Katsunori Doi
Toshio Fukuda
Takayuki Matsuno
Original Assignee
Equos Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005227672A external-priority patent/JP5110416B2/ja
Priority claimed from JP2005254879A external-priority patent/JP4789061B2/ja
Application filed by Equos Research Co., Ltd. filed Critical Equos Research Co., Ltd.
Priority to US11/885,872 priority Critical patent/US8016060B2/en
Publication of WO2006095823A1 publication Critical patent/WO2006095823A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K1/00Unicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/34Wheel chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/20Acceleration angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle, and relates to vehicle attitude control using, for example, inverted pendulum attitude control.
  • a vehicle in which a driver rides on driving wheels arranged on one axis by using posture control of an inverted pendulum and travels while maintaining a balance like a unicycle (hereinafter simply referred to as an inverted pendulum vehicle). Both) are attracting attention and are now being put into practical use.
  • Patent Document i proposes a technology that has two drive wheels arranged on the same axis and detects and drives the posture of the drive wheel by the driver's center of gravity movement.
  • Patent Document 2 proposes a vehicle that moves while controlling the posture of one conventional circular driving wheel or one spherical driving wheel.
  • a weight and a counter weight (hereinafter simply referred to as a balancer) are arranged and moved to move the center of gravity. It is disclosed.
  • an inverted pendulum vehicle is configured to maintain balance using the principle of a wheel-type inverted pendulum!
  • the center of gravity In an inverted pendulum vehicle, the center of gravity is above the axle, so how to maintain balance is important.
  • the balance can be maintained by moving the vehicle in the direction in which the center of gravity moves (the direction in which the vehicle tilts), but it is more effective when used in combination with a balancer.
  • Patent Document 4 proposes an inverted pendulum vehicle including a balancer for assisting in maintaining balance.
  • the technique proposed in Patent Document 4 is a force that is a balance method in the case where the driving wheel is made of a sphere, and its principle is as shown in FIG.
  • the balancer 101 when an external force that causes the riding section 13 to tilt forward is applied, the balancer 101 is rotated in the tilting direction of the riding section to reverse the rotation direction of the nolancer, that is, the direction opposite to the tilting direction due to the external force.
  • the attitude is controlled by applying torque to the riding section.
  • the riding section 13 is inclined forward more than the target value.
  • the direction in which the riding section 13 is restored by the reaction torque generated when the balancer 101 is rotated by rotating the balancer 101 in the direction opposite to the direction in which the riding section 13 is restored Move in the direction.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-276727
  • Patent Document 2 JP 2004-129435 A
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2005-094898
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-129435
  • the vehicle center of gravity and balancer center of gravity described in the patent literature are merely a representation of the center of gravity in a balanced state where the total center of gravity of the two center of gravity is located on the vertical axis of the axle, in other words, the static stable state.
  • this static stable state cannot be realized by moving the balancer in the direction opposite to the direction of movement of the vehicle's center of gravity.
  • the weight of the nolancer system also increases, which is disadvantageous for improving fuel efficiency.
  • the height of the vehicle was increased due to the need to place the boarding position above the balancer, and the entire vehicle was becoming larger.
  • a first object of the present invention is to provide a vehicle that can dynamically control the attitude of a vehicle by moving a balancer in a vehicle that uses the attitude control of an inverted pendulum. .
  • a second object of the present invention is to provide a vehicle that can start the vehicle by moving a balancer in a vehicle that uses posture control of an inverted pendulum.
  • the third object of the present invention is to facilitate posture control, improve performance, and reduce vehicle size.
  • the fourth object of the present invention is to drive the balancer so as to keep the center of gravity of the vehicle at a predetermined position.
  • the driving wheel disposed on one axis, the riding part, the attitude detection sensor for detecting a physical quantity based on the inclination of the riding part, and the riding part
  • a balancer movably disposed on the vehicle, a drive control unit that drives and controls the drive wheels in accordance with a drive command from the rider, and the inclination of the riding unit detected according to the detected physical quantity of the riding unit.
  • the vehicle is equipped with attitude control means for controlling the attitude of the riding section by moving the balancer and returning the riding section to the original attitude position with the reaction torque generated thereby. Achieve.
  • the driving wheel arranged on one axis, the riding part, the attitude detection sensor for detecting a physical quantity based on the inclination of the riding part, and the movement relative to the riding part
  • a balancer arranged in a possible manner, a drive control unit that drives and controls the drive wheel in accordance with a drive command from a passenger, and the balancer is moved in the tilt direction according to the detected physical quantity of the riding unit.
  • Posture control means for performing posture control of the riding section, and the posture control means is configured to generate a reaction torque corresponding to the predetermined value when the detected physical quantity exceeds a predetermined value.
  • the balancer is moved, and the driving wheel adjusting torque value necessary for posture control is supplied to the driving control unit, and the driving control unit drives and controls the driving wheel according to the driving command and the adjusting torque value.
  • the attitude control means performs the vehicle speed by moving the balancer and supplying the acceleration / deceleration torque value.
  • posture control is performed by supplying the adjustment torque value.
  • the driving wheel disposed on one axis, the riding part, a posture detection sensor for detecting a physical quantity based on the inclination of the riding part, and the riding part.
  • a balancer disposed so as to be movable, a drive control unit that drives and controls the driving wheel in accordance with a drive command from a passenger, and a posture control unit that performs posture control of the riding unit according to the detected physical quantity of the riding unit,
  • the attitude control means moves the balancer in a direction opposite to the traveling direction when the vehicle starts, and moves the center of gravity of the entire vehicle in the traveling direction by the reaction torque. And achieve the second objective.
  • the attitude control means moves the balancer in a direction opposite to the traveling direction when the vehicle is accelerated, and when the vehicle is decelerated.
  • the balancer is moved in the traveling direction.
  • driving wheel driving means for driving a driving wheel disposed on a single axle, and driving for driving the driving wheel disposed above the driving wheel.
  • attitude control means for controlling the attitude of the driving operation unit to a predetermined position to achieve the fourth object.
  • the plurality of balancers are arranged to be movable around the axle, and the posture control means includes the plurality of posture control means.
  • the balancer is moved by individually rotating around the axle.
  • the posture control means is configured to detect the physical quantity detected by the balancer. It is characterized by being moved at an angular acceleration or angular velocity that generates a torque T2 that is equal to or greater than the torque T1.
  • the vehicle includes a balancer motor that moves the balancer, and the attitude control means includes: The balancer motor is used to move the balancer in the tilt direction of the riding section.
  • the posture control means includes the balancer motor together with the balancer. It is characterized by moving in the direction of inclination of the riding section.
  • the balancer is a power source that supplies power to the balancer motor. It is characterized by.
  • Claim 12 (Equipment 1 of EQ05086)
  • drive wheel drive means for driving a drive wheel disposed on a single axle, and disposed above the drive wheel, the drive wheel A driving operation unit for performing the driving operation, a rotating body that rotates around a rotation axis on the same axis as the axle, and a rotation force of the rotating body that accelerates and a reaction force generated at that time causes the driving operation unit to
  • the vehicle is provided with posture control means for controlling the posture to a predetermined position to achieve the third object.
  • the posture control means is configured so that the driving operation unit is tilted around the axle from the predetermined position. The rotating body is accelerated.
  • the posture maintaining means is configured to rotate the rotation when the driving operation unit is at the predetermined position. It is characterized by freely rotating the body.
  • a physical quantity such as angular acceleration based on the inclination of the riding section is detected, and the sensor is moved in the inclination direction of the riding section according to the detected physical quantity. Since the control is performed, the attitude of the vehicle in which the drive wheels are arranged on one axis can be dynamically controlled.
  • the predetermined value is set.
  • the balancer is moved so that the corresponding reaction force torque is generated, and the driving wheel adjusting torque value necessary for posture control is supplied to the drive control unit so that the posture control by the balancer and the driving wheel is performed.
  • the attitude of the vehicle can be dynamically controlled even with a larger external force.
  • the attitude control means moves the balancer in the direction opposite to the traveling direction when the vehicle starts, and moves the center of gravity of the entire vehicle in the traveling direction by the reaction torque. Since it is configured so that it can be started by the movement of the ⁇ Lancer ⁇ . Further, in the present invention described in claim 6, since the posture control is performed by individually driving a plurality of balancers, the center of gravity of the vehicle can be maintained at a predetermined position.
  • the gyro sensor detects the tilt of the riding section (vehicle body), calculates the torque T1 for the tilt of the riding section from the tilted angular acceleration, cancels the torque T1, and reverses the tilt direction. Torque T2 to return the riding section to is generated by the balancer movement.
  • the gyro sensor detects the angular acceleration when the riding section tilts to the opposite side of the vertical line, and the balancer is moved in the opposite direction (the riding section) with a torque ⁇ 2 corresponding to the angular acceleration. Move again in the direction of the movement in the direction opposite to the direction in which the balancer was first moved.
  • the balancer is moved in the inclination direction of the riding section, and the riding section is moved in the opposite direction by its anti-cartridge. By repeating this operation, the inclination angle of the riding section gradually decreases, and is repeated until the entire center of gravity of the riding section and the balancer returns to the vertical line.
  • FIG. 1 exemplifies an external configuration of an inverted pendulum vehicle that can be used in this embodiment.
  • the inverted pendulum vehicle includes two drive wheels l la and 11 b arranged coaxially.
  • Both drive wheels l la and l ib are each driven by a drive motor (wheel motor) 12.
  • the driving wheel l la, l ib (hereinafter referred to as the driving wheel 11 when referring to both driving wheels 11a and l ib) and the riding section 13 on which the driver rides are arranged above the driving motor 12. Speak.
  • the riding section 13 includes a seat surface section 131 on which a driver sits, a backrest section 132, and a headrest 133.
  • the riding section 13 is supported by a support member 14 that houses a drive motor 12 and is fixed to a wheel motor casing 121.
  • a control device 15 is disposed on the left side of the riding section 13. This control device 15 is for giving instructions such as acceleration, deceleration, turning, rotation, stop, braking, etc. of the inverted pendulum vehicle by the operation of the driver.
  • the control device 15 in the first embodiment may be configured by a power wired or wireless remote controller fixed to the seat portion 131. Further, an armrest may be provided and a control device may be arranged on the upper part.
  • control such as acceleration / deceleration is performed by an operation signal output by operation of the control device 15.
  • control device 15 For example, as shown in Patent Document 1, the driver has a forward tilt moment with respect to the vehicle. Or by changing the front and rear tilt angles, it is possible to switch to perform vehicle attitude control and travel control according to the tilt angle.
  • the posture control according to this embodiment is not performed when the posture control and the traveling control by the tilt moment by the driver are performed. However, even when posture control is performed using a tilt moment, if a sensor that separately detects the tilt moment due to the driver's movement and the tilt moment due to an external force is arranged, the tilt moment due to the external force is canceled out. Therefore, apply the attitude control according to this embodiment.
  • a control unit 16 is disposed between the riding section 13 and the drive wheel 11.
  • control mute 16 is attached to the lower surface of the seat surface part 131 of the riding part 13, but may be attached to the support member 14.
  • a balancer driving unit 18 in the present embodiment is disposed below the control unit 16.
  • the balancer drive unit 18 is disposed at a position between the drive wheels 11 on the approximate center between the drive wheels 11.
  • FIG. 2 shows the configuration of the «Lancer drive unit 18.
  • the balancer drive unit 18 includes a balancer motor 181, a balancer 182, and a balancer drive mechanism 183 attached to the lower part of the control unit 16.
  • the balancer drive mechanism 183 includes a balancer gear 184, a bearing 185, a gear support 186, and a motor gear 187 that mesh with each other.
  • the non-sense gear 184 is formed in a semicircular shape, and a balancer 18 2 is fixed to the center in the length direction.
  • bearing 185 Various bearings such as a static pressure bearing can be used as the bearing 185, but in the present embodiment, the bearing 185 is configured by a rolling bearing.
  • the inner ring of the bearing 185 is fixed to the outer surface of the wheel motor housing 121, and the balancer gear 184 is fixed to the outer ring via three gear support portions 186. As a result, the semicircular balancer gear 184 rotates coaxially with the drive wheel 11 (rotating shaft 111).
  • the balancer gear 184 itself can be used as part of the load of the balancer 182 by making the balancer gear 184 into a semicircular shape.
  • the balancer 182 is fixed to the center of the balancer gear 184 in the length direction, so that the balancer 182 can move within a range of about 180 degrees.
  • the motor gear 187 is attached to the rotation shaft of the balancer motor 181.
  • the motor gear 187 meshes with the balancer gear 184, and rotates the balancer gear 184 by rotating with the driving force of the balancer motor 181. As a result, the balancer 182 moves in a plane parallel to the drive wheels 11 around the rotation shaft 111.
  • the nolancer motor 181 is fixed to the control unit 16 so that it is indirectly fixed to the riding section 13 (the seat surface section 131 in the present embodiment).
  • the balancer motor 181 rotates (moves) the balancer 182 with the predetermined torque T, and the reaction force acts on the riding section 22 from the balancer motor 181.
  • FIG. 3 shows the configuration of the control unit 16 of the inverted pendulum vehicle.
  • the control unit 16 includes a notch 160, a main control device 161, a gyro sensor 162, and a motor control device 163.
  • the knotter 160 supplies power to the drive motor 12 and the balancer motor 181.
  • the main controller 161 is also supplied with a low-voltage power source for control.
  • the main control device 161 includes a main CPU, and is configured by a computer system including a ROM storing various programs and data (not shown), a RAM used as a work area, an external storage device, an interface unit, and the like.
  • a computer system including a ROM storing various programs and data (not shown), a RAM used as a work area, an external storage device, an interface unit, and the like.
  • OM or an external storage device
  • a posture control program for maintaining the posture of the inverted pendulum vehicle
  • a traveling control program for controlling traveling based on various instruction signals from the control device 15.
  • the main control device 161 executes corresponding processes by executing these various programs.
  • the gyro sensor 162 functions as an attitude detection sensor that senses the attitude of the riding section 13.
  • the gyro sensor 162 detects the angular acceleration and the inclination angle ⁇ of the riding section 13 as physical quantities based on the inclination of the riding section 13. To do.
  • the angular acceleration is represented by ⁇ , and in the drawing, it is indicated by ⁇ dot 'dot with two dots on top of ⁇ .
  • the inclination angle ⁇ detected by the gyro sensor 162 is ⁇ > 0 when the vehicle is inclined forward, and ⁇ ⁇ 0 when the vehicle is inclined later.
  • Main controller 161 recognizes the tilt direction from the tilt angle detected by gyro sensor 162.
  • the gyro sensor 162 of the present embodiment detects the angular acceleration and the tilt angle and supplies them to the main controller 161, only the angular acceleration may be detected.
  • main controller 161 accumulates the angular acceleration supplied from gyro sensor 162, thereby calculating the angular velocity and angle to obtain the tilt angle.
  • various signals that output signals according to the angular acceleration when the riding section 13 is tilted such as a liquid rotor angular accelerometer and an eddy current angular accelerometer, are output. Sensors can be used.
  • the liquid rotor type angular accelerometer detects the movement of the liquid instead of the pendulum of the servo type accelerometer, and measures the angular acceleration from the feedback current when the movement of the liquid is balanced by the servo mechanism.
  • angular accelerometers that use eddy currents generate a magnetic circuit using permanent magnets, a cylindrical aluminum rotor is placed in the circuit, and changes in response to changes in the rotational speed of the rotor. The angular acceleration is detected based on the magnetic electromotive force.
  • the motor control device 163 controls the drive motor 12 and the balancer motor 181 of the balancer drive unit 18.
  • the drive motor 12 is controlled in accordance with the drive torque, speed, and rotation direction instruction signals supplied from the main controller 161.
  • balancer motor 181 is driven and controlled in the commanded direction so as to output a torque corresponding to the rotation direction command supplied from the main controller 161 and the torque command value T2.
  • the motor control device 163 includes a torque-current map for the drive motor 12 and a torque-current map for the balancer motor 181.
  • the motor control device 163 outputs a current corresponding to the drive torque supplied from the main control device 161 to the drive motor 12, and a current corresponding to the supplied torque command value T2.
  • the balancer motor 181 is controlled so that it is output.
  • the drive torque supplied from the main controller 161 is the same as when the vehicle is stopped. This is the torque command value T3 for posture control, and the torque command value force corresponding to the driver's drive request during driving is also the value obtained by adding or subtracting the torque command value ⁇ 3 for posture control.
  • Acceleration instruction information, deceleration instruction information, and turning information indicating the turning direction are supplied from 15, and the angular acceleration ⁇ of the riding section is supplied from the gai mouth sensor 162.
  • attitude control process by the inverted pendulum vehicle configured as described above will be described.
  • This attitude control process is performed when the vehicle is stopped (not traveling), during acceleration / deceleration, and during constant speed traveling, that is, in all the states that the vehicle can take.
  • FIG. 4 explains the principle of attitude control in an inverted pendulum vehicle.
  • the weight of occupant A is ml and the weight of balancer B is m2.
  • rl be the distance from the center of the 11 wheels (rotation axis) to the center of gravity of the occupant, and be the distance from the center of gravity of the nolancer.
  • the weight m2 of the balancer B is not only the balancer 182 but also the weight of the balancer gear 184 and the like that are driven integrally with the balancer 182.
  • the weight ml of occupant A is the value obtained by subtracting the balancer weight m2 from the total weight M of the rotating part while the driver is on board and the drive wheels 11 are fixed.
  • the center of gravity of occupant A (hereinafter referred to as the occupant's center of gravity) is angular acceleration ⁇ 1 ⁇ It shall be inclined at.
  • the gyro sensor 162 detects the tilt angle 0 1 and the angular acceleration ⁇ 1 ⁇ due to the tilt of the occupant's center of gravity.
  • the balancer B When the inclination of the occupant's center of gravity is detected, the balancer B is moved in the inclination direction of the occupant A with an angular acceleration ⁇ 2 ⁇ as shown in FIG. 4 (c).
  • the inclination direction is determined by the sign of the inclination angle ⁇ .
  • the angular acceleration ⁇ 2 ⁇ that moves the balancer B is ⁇ 2 ⁇ > ⁇ ⁇ 1 ⁇ .
  • is a constant, and its derivation will be described later.
  • the angular acceleration ⁇ 3 ⁇ when the inclination angle of the occupant A is reversed is also detected by the gyro sensor 162, and the angular velocity ⁇ 4 ⁇ ( ⁇ 4 ⁇ > ⁇ ⁇ 3 ⁇ ) corresponding to the angular velocity ⁇ 3 ⁇ Then move balancer ⁇ backward (moving direction of occupant ⁇ ).
  • the balancer B is moved in the direction of the inclination angle at the angular velocity corresponding to the angular velocity when the inversion of the inclination angle of the occupant A with respect to the vertical line is detected, and the reaction force caused by the movement of the balancer B
  • the inclination angle ⁇ centered on the vertical line gradually converges to 0, and the normal posture shown in Fig. 4 (a) can be restored.
  • T1 be the torque required for occupant A to move forward with angular acceleration ⁇ 1 ⁇
  • T2 be the torque required to move balancer B forward. It can be obtained from equations (1) and (2).
  • Tl mlX (rlXrl) ⁇ ⁇ 1 ⁇ (1)
  • T2 m2X (r2Xr2) ⁇ ⁇ 2 ⁇ (2)
  • the angular acceleration ⁇ 1 ⁇ is detected by the gyro sensor 162.
  • Crew's weight ml is force that is equipment weight mla + passenger's weight mlb. Of these, equipment weight mla is known for each vehicle.
  • the passenger's weight mlb is set to the expected maximum passenger weight, for example, 90kg. If the expected maximum weight is set and T2 is determined based on that value, even if the weight is less than that, the condition of T2> T1 will be met, and the passenger ⁇ ⁇ will be moved in the opposite direction by moving the sensor ⁇ be able to.
  • a weight scale for measuring the weight of the passenger is placed on the seat portion 131 where the driver of the riding section 13 sits, and the measured value is used as the weight mlb of the passenger. It may be.
  • FIG. 5 is a flowchart showing the attitude control operation by main controller 161.
  • the main controller 161 sends the tilt angle ⁇ and tilt angle acceleration of the riding section 13 from the gyro sensor 162.
  • is obtained (step 50), and it is determined whether or not the force with the tilt angle ⁇ reversed (step 51).
  • the reversal of the inclination angle ⁇ is the change in the state of occupant A from (b) to (c) and the change of occupant A from (c) to (d). This corresponds to the change between the state and the state of tilt angle ⁇ ⁇ 0.
  • step 51; N If there is no inversion of the inclination angle ⁇ (step 51; N), main controller 161 returns to step 50 and continues to monitor the posture.
  • step 51 when the reversal of the inclination angle ⁇ is detected (step 51; Y), the main controller 161 determines from the angular acceleration ⁇ of the riding section 13 obtained in step 50 according to the above equation (1). Then, torque T1 for tilting occupant A with angular acceleration ⁇ is calculated (step 52).
  • the output torque T2 is commanded to the balancer motor 181 (step 53).
  • the main controller 161 supplies the torque T2 (> T1) larger than the calculated torque T1 to the motor controller 163 as a torque command value, and corresponds to the inclination angle ⁇ .
  • Information on the movement direction of the balancer 182 ( ⁇ > 0: forward, ⁇ ⁇ backward) is supplied.
  • the motor controller 163 causes the torque T in the direction instructed by the main controller 161.
  • the non-sensor 182 moves in the indicated direction, and the anti-cartoon T2 that balances the driving torque T2 acts on the riding section 13 (occupant A) and returns in the opposite direction.
  • the main controller 161 determines whether the power is turned off (step 54). If it is turned off (; Y), the process is terminated. If it is not turned off (; N), the process returns to step 50. Continue posture control.
  • FIG. 6 shows the appearance of another inverted pendulum vehicle.
  • the inverted pendulum vehicle includes two drive wheels l la and l ib arranged on the same axis, and wheel drive motors 12a and 12b that independently drive both drive wheels l la and l ib and On the housings of the both wheel drive motors 12, a riding section 40 is provided for the driver to board in a standing posture. Note that the riding section 40 has a function of connecting the wheel drive motor 12a and the wheel drive motor 12b in any case that may be arranged on the drive shaft or below the drive shaft.
  • a support section 41 is disposed in the front center of the riding section 40.
  • a handle 42 is attached to the upper end portion of the support portion 41.
  • a steering device 15 is attached to the handle 42.
  • control device 15 may be configured by an accelerator and a brake, like a bicycle with a motor. Rotation angle force of steering wheel You can get a driving force command and get a stop command by brake operation!
  • a control unit 16 is fixed to the lower surface of the riding section 40, and a balancer driving section 18 is disposed below the control unit 16.
  • the basic configuration of the non-sensor drive unit 18 is the same as the configuration shown in FIG. 2, but the following description focuses on the differences.
  • a balancer motor 181 is fixed to the control unit 16, and a balancer drive mechanism 183 is disposed in the casing of the wheel drive motor 12a.
  • a balancer 182 is attached to the center position of the balancer gear 184 of the balancer drive mechanism 183 in the length direction.
  • the balancer gear 184 is formed of an internal gear and meshes with a motor gear 187 attached to the rotation shaft of the balancer motor 181.
  • the gear support portion is supported by the outer ring of the bearing at both ends of the semicircular balancer gear 184.
  • the motor gear 187 is provided at a position avoiding the axial direction.
  • the inner ring of the bearing is fixed to the casing of the wheel drive motor 12a so as to be coaxial with the drive shaft of the wheel drive motor 12a.
  • the balancer 182 and the balancer gear 184 are arranged so as to be below the force arranged to be above the drive shaft of the wheel drive motor 12a. May be.
  • the distance r2 (see FIG. 4) to the balancer center can be increased.
  • the balancer drive mechanism 183 is disposed on the wheel drive motor 12a side. However, the balancer drive mechanism 183 is provided with the wheel drive motor 12a and the wheel drive motor.
  • the balancer drive mechanism 183 may be arranged not only on the wheel drive motor 12a side but also on the other wheel drive motor 12b side!
  • the balancer motor 181 may be shared, and the balancers 182a and 182b and the balancer drive mechanisms 183a and 183b may be arranged in the wheel drive motors 12a and 12b, respectively.
  • the posture change of the riding section 13 (the occupant A's When (tilt) is detected, the torque T1 required for the occupant's A tilt is calculated from the angular acceleration ⁇ that the occupant A tilted, and the balancer B is moved in the tilt direction of the occupant A with a torque T2 greater than this torque T1.
  • the anti-car T2 can act on the occupant A to balance the occupant A (maintain the posture in a steady state).
  • the posture control of the riding section is performed by moving the balancer B in the direction in which the occupant A is inclined.
  • the reaction force due to the drive of the drive wheels 11 is used.
  • the reaction force torque due to the movement of the balancer and the driving of the drive wheels 11 Use reaction torque by adjusting torque.
  • the drive torque of drive wheel 11 is used as an auxiliary to supplement the torque generated by the movement of balancer B.
  • posture control is performed by movement of the balancer B.
  • the balancer B moves at an angular acceleration that generates a reaction force corresponding to the predetermined torque value, and returns the occupant A to the vertical direction.
  • the attitude of the occupant A is controlled by adjusting the torque of the drive wheel 11 to the amount of reaction torque that is insufficient.
  • the maximum torque value T2max obtained by the movement of the balancer B is used as the predetermined torque value.
  • vehicle used in the second embodiment has the same configuration as that described in the first embodiment and its modifications (including FIG. 6), except for the portion of attitude control for the drive wheels 11.
  • the occupant A is driven by the occupant in the vehicle.
  • balancer B Refers to the portion of balancer B excluding balancer B from the entire rotating part with the rotation of 11 fixed, and balancer B is integrated with balancer 182 as well as balancer 182. It refers to the entire part where the position moves, for example, the part including the balancer gear 184 and the like.
  • FIG. 7 shows the torque balance of the inverted pendulum vehicle in the second embodiment.
  • the torque T2 when the balancer B is driven with the angular acceleration ⁇ 2 ⁇ in order to return the occupant A to the vertical line is represented by the above (2).
  • r3 is the radius of the drive wheel
  • ⁇ 3 ⁇ is the rotational angular acceleration of the drive wheel 11.
  • reaction force torque T2 against torque T2 due to movement of Nolancer B and reaction force torque T3 against torque T3 stored in drive wheel 11 are By acting on the occupant, the occupant A is returned to the vertical direction.
  • FIG. 8 is a flow chart showing the attitude control operation of the main controller 161 in the second embodiment.
  • main controller 161 calculates torque T1 for tilting occupant ⁇ at angular acceleration ⁇ from angular acceleration ⁇ of riding section 13 (step 52). After that, the calculated T1 is the maximum of the torque T2 (reaction torque one T2) obtained by the movement of balancer B. It is determined whether or not the value is less than T2max (step 52a).
  • step 52a If Tl ⁇ T2max (step 52a; Y), the main controller 161 proceeds to step 53, and performs the same control as in the first embodiment.
  • step 52a the main controller 161 sends the output torque T2max and the acceleration / deceleration torque value T3> T1 – T2max to the balancer motor 181.
  • step 53a By supplying to 163, the output torque is commanded (step 53a).
  • the current value corresponding to the supplied output torque T2max is calculated based on the torque current map for the balancer motor 181 based on the torque current map for the balancer motor 181 as in the case of the first embodiment.
  • the required reaction torque-T2max is obtained by supplying 18
  • the motor control device 163 drives the drive motor 12 (drive wheel 11) with a current value corresponding to the supplied torque T3 based on the torque-current map for the drive motor 12, thereby providing a necessary reaction. Force torque—T3 is obtained.
  • the main control device 161 supplies the motor control device 163 with the adjusting torque T3 when the vehicle is stopped.
  • main controller 161 has added torque T3 to control torque TM of drive motor 12 necessary to obtain an output corresponding to the operation signal output from control device 15.
  • the value (TM + T3) is supplied to the motor controller 163.
  • the motor control device 163 actually has a torque value (T3,
  • the drive motor 12 is driven with a current corresponding to ⁇ + ⁇ 3, TM (when attitude control by the drive motor is not performed).
  • the occupant A is returned in the vertical direction by the reaction force torque T2 due to the movement of the nolancer B and the reaction force torque T3 due to the drive of the drive motor 12 (drive wheel 11).
  • the posture control of the occupant A is performed by repeating Step 50 to Step 54 in FIG.
  • the allowable external force is improved by supplementarily using the drive motor torque in the stable control of the riding section A when the vehicle is stopped or running (especially during constant speed running). It is possible to improve the occupant tilt allowable angle at the time of startup.
  • the balancer obtains the following two effects (a) and (b) in the stable control (posture control) of the occupant (occupant A). Used for.
  • reaction force torque T2 is applied to occupant A.
  • control according to the second embodiment is executed when the vehicle is stopped.
  • the posture control during traveling with respect to the movement of the occupant A due to the external force is based on the adjustment of the drive torque of the drive motor 12 (drive wheel 11).
  • FIG. 9 shows the state of each part during traveling of the vehicle in the third embodiment.
  • Fig. 9 (a) shows a state in which occupant A is attitude controlled on the vertical line while the vehicle is running.
  • the center of gravity of the entire vehicle (combined center of gravity of occupant A and balancer B) must be tilted in the direction of travel to balance the driving torque for the running resistance.
  • the balancer B is positioned at a position inclined by ⁇ 2 forward in the traveling direction.
  • the reaction torque TM due to the drive torque TM generated by driving the drive wheel 11 with the drive motor 12 and the torque T 2 (G) due to the gravity of the balancer B at a position inclined by ⁇ 2 are matched. Therefore, it is possible to drive while the position of the occupant A is on the vertical line.
  • the torque T2 (G) is expressed by the following equation (5).
  • T2 (G) r2 X m2 X G X sin 0 2 to (5)
  • FIG. 10 is a flowchart showing the attitude control operation of main controller 161 in the third embodiment.
  • main controller 161 calculates torque T1 for tilting occupant A at angular acceleration ⁇ from angular acceleration ⁇ of riding section 13 (step 52). Thereafter, it is determined whether or not the vehicle is traveling (step 52b).
  • Whether or not the vehicle is traveling is determined, for example, based on whether or not it is greater than the output force SO from the vehicle speed sensor. Also, this judgment may be made based on whether or not the speed is lower than the speed, that is, whether or not the output speed of the vehicle speed sensor force is greater than 5 kmZh.
  • step 52b If it is determined that the vehicle is not traveling, that is, the vehicle is stopped (step 52b; N), the main controller 161 proceeds to step 52a, and thereafter the second control until step 54 is performed. Process in the same way as in the embodiment.
  • step 52 when it is determined that the vehicle is traveling (step 52; Y), the main control device 161 is larger than T1 calculated in step 52, and the motor control device uses the torque value as an increase / decrease torque value T3. By supplying to 163, the output torque is commanded (step 53b), and the process proceeds to step 54.
  • main controller 161 Since drive torque TM for vehicle travel is commanded, main controller 161 requires the drive necessary to obtain an output corresponding to the operation signal output from control device 15. A value (TM + T3) obtained by adding the adjusting torque T3 to the driving torque TM of the motor 12 is supplied to the motor controller 163.
  • the motor control device 163 actually drives the drive motor 12 with a current corresponding to the torque value ( ⁇ + ⁇ 3) supplied from the main control device 161.
  • the balancer position is not moved for posture control while the vehicle is running, and the reaction torque generated by the driving motor 12 (driving wheel 11) is increased / decreased ⁇ 3.
  • Attitude control is performed by controlling ⁇ 3.
  • the control is simplified because it is not necessary to consider the movement of the center of gravity due to the movement of the balancer position.
  • the vehicle speed is changed because the driving torque of the wheel is changed without using the reaction force due to the balancer movement during traveling.
  • the state force when the vehicle is stopped starts when moving forward or backward.
  • accelerating / decelerating when the vehicle is running, it accelerates or decelerates.
  • the entire center of gravity is defined as the traveling direction when starting and accelerating, and the entire center of gravity is defined as the traveling direction during deceleration It is necessary to incline in the opposite direction (inclination angle oc).
  • the vertical line is the reference line
  • a line that is inclined from the vertical line by the inclination angle oc necessary for running in the state immediately before acceleration / deceleration is the reference line.
  • FIG. 11 shows the outline of the first operation
  • (b) shows the outline of the second operation.
  • the same is true except that the force reference line representing the operation at the start of the vehicle is different, and the direction of inclination is reversed (decreasing direction) in the case of deceleration.
  • the reference line P is inclined by ⁇ ⁇ with respect to the vertical line immediately before acceleration / deceleration, and the total center of gravity ⁇ is located on this baseline.
  • One of the passenger ⁇ and the balancer ⁇ is in front of the reference line P and the other is in the rear, or both are on the reference line P.
  • the total center of gravity Z also moves between the reference line P and the occupant A in the direction opposite to the balancer B (traveling direction).
  • ml is the weight of occupant A
  • rl is the distance from the wheel center (axle) of drive wheel 11 to the center of gravity of occupant A
  • ⁇ rl ⁇ is the angular acceleration of occupant A
  • II is The inertia around the center of gravity of occupant A
  • mi x ⁇ rl ⁇ in equation (6) is the inertia around the axle of occupant A.
  • M2 is the weight of balancer B
  • r2 is the axle force of drive wheel 11
  • 2 ⁇ is the angular acceleration of balancer B
  • 12 is the inertia around the center of gravity of balancer B.
  • M2 X 2 ⁇ is the inertia around the balancer B axle.
  • Equation (6) If the direction of the inequality sign is reversed in Equation (6), the force that moves in the direction opposite to the balancer B for the occupant A when the lancer B is moved. Move in the same direction. In this case, moving the balancer B in the direction opposite to the traveling direction, acceleration direction, and deceleration direction can move the overall center of gravity Z in the desired direction. This is the opposite of the sense of multiplication, so it is better to use equation (6).
  • angular acceleration
  • 0 angular velocity
  • subscript w drive wheel
  • subscript 1 occupant A
  • subscript 2 represents a balancer.
  • G heavy Force acceleration
  • Rw represents the radius of the drive wheel.
  • Expression (7) is expressed as follows.
  • T3 T31 + T32 + T33
  • T32 RwX (T32a + T32b + T32b)
  • T33 (T33a + T33b) X ⁇ 0 w ''
  • T 31 is the inertia of the drive wheel 11.
  • T32 is a moment due to frictional force with the ground.
  • Rw X T32a is tire inertia (translation).
  • Rw X T32b is the inertia of the vehicle body (translational acceleration + circumferential acceleration radial acceleration).
  • Rw X T32c is the balancer inertia (translation acceleration + circumferential acceleration radial acceleration).
  • T33 is a damping force
  • Rw is the radius of the drive wheel 11.
  • Equation (8) is expressed as follows.
  • T1 body inertia (of occupant A) + couple force of gravity + damping force due to the inertial force of the vehicle body [0112] (c) The balancer equation of motion is: 9).
  • T2 (m2Xr2Xr2 + I2) X ⁇ 2 ⁇
  • Equation (9) is expressed as follows.
  • T2 balancer's inertia + couple's gravity acting on the balancer's inertial force + damping force
  • T3 ' Iw' ⁇ ⁇ w ⁇ + Rw (mlXRlX ⁇ l ⁇ + m2XRlX ⁇ 1 ⁇ )
  • T2 I2, X ⁇ l ⁇ + m2XRwX ⁇ w ⁇ Xr2-m2XgXr2X ⁇ 2
  • Iw Iw + (ml + m2 + mw XRwXRw
  • FIG. 12 is a flowchart showing the control operation at the time of start and acceleration / deceleration by the second operation.
  • main controller 161 detects the current state of vehicle (occupant A) and balancer B immediately before starting, acceleration / deceleration (hereinafter referred to as starting, etc.) (step 21 to step 25).
  • main controller 161 measures the vehicle speed (step 21).
  • This vehicle speed is used in step 23, which will be described later, to increase the accuracy of detecting the vehicle inclination angular velocity.
  • the main controller 161 measures the inclination angle and inclination angular velocity of the vehicle (passenger A) (steps 22, 23) o
  • the vehicle's tilt angular acceleration is calculated from the measured tilt angular velocity force.
  • main controller 161 measures the angle (tilt angle) and angular velocity of balancer B.
  • the measured angular velocity force is also calculated.
  • the main control device 161 reads a travel command (operation signal) output from 15 control devices (step 26).
  • main controller 161 determines the overall center of gravity Z after starting or acceleration / deceleration corresponding to the current state of the vehicle and balancer B detected in steps 21 to 25 and the travel command read in step 26.
  • the target inclination angle ex is calculated (step 27).
  • main controller 161 calculates the target inclination angle and the target inclination angular velocity of the vehicle (occupant A), which are necessary to obtain the calculated target inclination angle a as the total center of gravity Z (steps 28 and 29).
  • the target tilt angle and target tilt angular velocity of the vehicle required to set the target tilt angle ⁇ can be obtained from the above equation of motion and the weights of the vehicle (occupant ⁇ ) and balancer ⁇ and the distances rl, r2, inertia to the center of gravity. .
  • main controller 161 calculates a balancer torque T3 required to obtain the target inclination angle and target inclination angular velocity calculated for the vehicle body, and issues an output command to motor controller 163 (step 30).
  • the motor control device 163 supplies the current value corresponding to the output balancer torque T3 to the balancer drive unit 18 based on the torque-current map for the balancer motor 181 so that the vehicle (occupant A) and the overall center of gravity are supplied. Move Z.
  • main controller 161 calculates drive motor torque T1 necessary for starting or accelerating / decelerating the vehicle from its current state, and issues an output command to motor controller 163 (step 31).
  • the motor control device 163 starts or accelerates by driving the drive motor 12 (drive wheel 11) with a current value corresponding to the supplied drive motor torque T1 based on the torque-current map for the drive motor 12. Decelerate. After starting or accelerating / decelerating as described above, main controller 161 performs posture stabilization control (posture control) (step 32), and returns to the main routine.
  • posture control posture stabilization control
  • control operation such as the start by the first operation is performed as follows.
  • the target vehicle inclination angle is obtained by adding the difference ⁇ between the target inclination angle ⁇ calculated in step 27 and the inclination angle a 0 of the overall center of gravity Z immediately before starting to the vehicle inclination angle measured in step 22 to the target vehicle inclination angle. (Steps 28 and 29).
  • main controller 161 calculates a drive motor torque necessary for starting or acceleration / deceleration and outputs a command based on the calculated target inclination angle and target inclination angular velocity (step 32). In this case, step 30 is naturally omitted.
  • the vehicle (occupant ⁇ ) tilts in the start direction (forward tilt in the case of forward movement) during start-up and acceleration, and during deceleration. O! Because it inclines in the direction opposite to the starting direction, a sense of riding can be obtained without feeling uncomfortable.
  • FIGS. 13 to 15 are for explaining the configuration of the balancer, and the control device 15 and the control unit 16 shown in FIG. 1 are omitted as appropriate.
  • the control unit 16 is appropriately disposed below the seat surface portion 131 and the like.
  • FIG. 13 shows the configuration of a balancer 182 that can rotate 360 degrees.
  • a balancer motor 181 is arranged between the drive motor 12a for the drive wheel 1la and the drive motor 12b for the drive wheel 1lb.
  • the balancer drive shaft 188 of the balancer motor 181 is arranged coaxially with the rotation shaft 111 of the drive wheels l la and l ib, and the balancer 182 is arranged on the balancer drive shaft 188 via a balancer indicating member 187. .
  • the balancer support member 187 is a force disposed on the balancer drive shaft 188 on one side of the balancer motor 181.
  • the balancer motor 18 is applied to the balancer drive shaft 188 on both sides.
  • the balancer may be arranged so as to sandwich 1 and the balancer support members 187 and 187 may support the balancer.
  • FIG. 14 shows a balancer 182 composed of a balancer motor 181.
  • a shaft 189a is arranged on the same axis as the drive wheel 11 in the casing of the drive motor 12b, and a balancer support member 189b is arranged on the shaft 189a via a bearing.
  • a balancer motor 181 that functions as a balancer is attached to the support member 189b.
  • a motor gear 187a is arranged on the rotation shaft of the balancer motor 181.
  • the motor gear 187a meshes with a fixed gear 1 87b arranged on the casing opposite to the drive wheel 11a of the drive motor 12a! /
  • the motor gear 187a rotates and rotates around the fixed gear 187b together with the balancer motor 181 while meshing with the fixed gear 187b.
  • the balancer motor 181 is supported by a shaft 189a as a rotating shaft via a lancer support member 189b and rotates.
  • the balancer motor 181 configures the balancer in this way, the members necessary to make the balancer function can be reduced, so that the space below the riding section 13 can be used effectively.
  • the weight of the balancer motor which is the weight of the riding section A, can be used as the weight of the balancer.
  • FIG. 15 shows a balancer 182 that moves in the front-rear direction of the vehicle on a horizontal plane that does not rotate about the rotation axis 111.
  • a fixed portion 181c fixed to the side opposite to the seat surface of the seat surface portion 131 and having a length with the front-rear direction of the vehicle as the longitudinal direction is disposed.
  • the balancer 182 is configured to move in the front-rear direction of the vehicle as indicated by the arrow q while being guided by the fixed portion 181c.
  • the driving by the fixed portion 181c and the balancer 182 may be either a ball screw type or a linear motor type.
  • the ball screw is rotated by a balancer motor (not shown) So that the balancer 182 moves back and forth.
  • a stator is arranged on the fixed portion 181c, and a mover is arranged on the lancer 182.
  • the balancer 182 moves back and forth along a guide formed in the longitudinal direction of the fixed portion 181c. .
  • the posture control in the left-right direction is performed rather than the posture control in the front-rear direction.
  • the balancer 182 is used for the inversion control (posture control) in the front-rear direction has been described, but in the fourth embodiment, the balancer is moved in the left-right direction to move in the left-right direction.
  • the attitude control is performed.
  • the balancer is used for posture control with respect to the tilt in the left-right direction, so there is one drive wheel 11.
  • FIG. 16 shows the movement of the balancer in the fourth embodiment.
  • the sensor B moves around the rotation axis 111 of the drive wheel 11 on the arc in the front-rear direction of the vehicle as indicated by the arrow pi and moves the rotation axis 111. Move as indicated by the arrow p2 on the left and right circular arcs at the center.
  • the balancer B moves on the horizontal plane in the front-rear direction as indicated by the arrow p3 and moves in the left-right direction as indicated by the arrow p4.
  • FIGS. 16 (a) and 16 (b) the case where the balancer moves on the lines pi to p4 determined in the front / rear and left / right directions has been described. It may be configured to move any position above or any position on the horizontal plane within a predetermined range.
  • the balancer B rotates around the vehicle line Y around the vehicle line Y connecting the rotation shaft 111 and the passenger A (the center). It is configured to In FIG. 16 (c), the dotted line area around balancer B is a conceptual representation of the balancer's outer shape, and the entire sensor is placed in contact with vehicle line Y.
  • the lane Y also inclines, and the balancer B
  • the vehicle rotates on a plane perpendicular to the vehicle line Y passing above, with the vehicle line Y as the center, as indicated by arrow ⁇ 5 .
  • the balancer rod may be configured to rotate about a vertical line on a horizontal plane regardless of the inclination of the vehicle.
  • the running stability of the vehicle can be improved by controlling the horizontal posture with the balancer.
  • FIG. 17 Next, a fifth embodiment will be described in detail with reference to FIGS. 17 to 21.
  • FIG. 17
  • the balancer that performs posture control is configured by a flywheel that rotates about the same axis as the axle.
  • the vehicle according to the present embodiment freely rotates the balancer after the vehicle posture is stabilized by increasing or decreasing the balancer rotation speed (constant rotation speed state).
  • the stroke can be made infinite by configuring the Nolansa with a flywheel.
  • the balancer can be made compact and lightweight, and the vehicle can be miniaturized. Furthermore, energy consumption can be reduced because the balancer is held against gravity.
  • FIG. 17 illustrates an example of the external configuration of the vehicle.
  • the vehicle according to the present embodiment is composed of an inverted pendulum vehicle, which senses the posture of the riding section and controls posture in such a way as to maintain the front-rear direction tolerance in the driving direction of the drive wheels according to the posture. While traveling, it is something to run.
  • attitude control method in this embodiment is disclosed in, for example, US Pat. No. 6,302,230, JP-A-63-35082, JP-A-2004-129435, and JP-A-2004-276727.
  • Various control methods described above can be used.
  • the inverted pendulum vehicle includes two drive wheels lla and 1 lb arranged coaxially.
  • Both drive wheels l la and l ib are driven by a drive motor (wheel motor) 12 housed in a wheel motor housing 121, respectively.
  • a balancer constituted by a flywheel (not shown) and a balancer motor for accelerating the rotation of the balancer are disposed in the wheel motor housing 121 between the drive wheels l la and l ib and the drive wheels l la and l ib. It is provided coaxially.
  • the driving wheel l la, l ib (hereinafter referred to as the driving wheel 11 when referring to both driving wheels 11a and l ib) and the riding section 13 on which the driver rides are arranged above the driving motor 12. Speak.
  • the riding section 13 includes a seat surface section 131 on which a driver sits, a backrest section 132, and a headrest 133.
  • the riding section 13 is supported by a support member 14 (frame) fixed to the wheel motor casing 121.
  • the control device 15 is a driving operation unit that gives instructions such as acceleration, deceleration, turning, rotation, stop, and braking of the inverted pendulum vehicle by the operation of the driver.
  • the control device 15 in the present embodiment may be configured by a power wired or wireless remote controller that is fixed to the seat portion 131. There is also an armrest You may make it arrange
  • control such as acceleration / deceleration is performed by a travel command instructed by operation of the control device 15.
  • the driver By changing the forward tilt moment and the forward / backward tilt angle, the vehicle can be switched to perform posture control and travel control according to the tilt angle.
  • This display 'operation unit 17 includes a display unit 172 made of a liquid crystal display device, an input unit 171 composed of a touch panel and a dedicated function key arranged on the surface of the display unit 172, not shown.
  • the display / operation unit 17 may be configured by the same remote controller as the control device 15.
  • the display / operation unit 17 and the control device 15 may be arranged in the left-right direction, or they may be arranged on the same side.
  • a control unit 16 is disposed between the riding section 13 and the drive wheels 11.
  • control mute 16 is attached to the lower surface of the seat surface part 131 of the riding part 13, but may be attached to the support member 14.
  • Fig. 18 (a) is a schematic diagram that models the vehicle according to the present embodiment. The figure is shown.
  • the vehicle is connected to the riding section 13, the drive motor 12 connected to the riding section 13 via the frame, the drive wheels 11 driven by the drive motor 12, and the balancer motor connected to the riding section 13 via the frame. 22 and a balancer 21 driven by a nolancer motor 22.
  • the mass of the frame is ignored.
  • FIG. 18 (b) shows a side view of the modeled vehicle viewed from the balancer 21 side. However The balancer motor 22 is omitted.
  • the direction in which the riding section 13 rotates (tilts) around the axle 25 in the forward direction of the vehicle is defined as a positive direction, and the opposite direction is defined as a negative direction.
  • the balancer 21 is a rotating body having a mass, and its center of gravity is on the axle 25.
  • the rotation axis of the balancer motor 22 is coaxial with the axle 25, and the balancer motor 22 rotates the balancer 21 in a designated direction and a designated angular acceleration.
  • the balancer motor 22 rotates the balancer 21 in the positive direction at the angular acceleration, and if negative, the balancer 21 moves the balancer 21 in the negative direction. Rotates with acceleration.
  • this torque acts as a torque that rotates the riding section 13 in the direction opposite to the acceleration direction of the balancer 21.
  • this torque is called a reaction force.
  • reaction force is a reaction caused by the torque applied to the balancer 21 by the nolancer motor 22.
  • reaction force against the acceleration of the balancer 21 acts as a force for tilting the riding section 13 in the forward direction or the backward direction as described above, this can be used for vehicle attitude control.
  • FIG. 19 illustrates the principle of attitude control in an inverted pendulum vehicle.
  • the weight of occupant A is ml
  • the distance from the wheel center (rotating shaft) of driving wheel 11 to the center of gravity of the occupant is rl.
  • the angular acceleration is represented by ⁇ 0 ⁇ and ⁇ . In the drawing, it is represented by 0 dot 'dot with two dots on the top of ⁇ and ⁇ dot with one dot on the top of ⁇ . indicate.
  • the weight ml of the passenger ⁇ is the value obtained by subtracting the weight of the balancer 21 from the total weight M of the rotating part while the driver is on board and the drive wheels 11 are fixed. Can be approximated by
  • Fig. 19 (a) the center of gravity of occupant A (hereinafter referred to as the occupant centroid) is angular acceleration ⁇ 1 ⁇ It shall be inclined at.
  • the gyro sensor 162 detects the tilt angle 0 1 and the angular acceleration ⁇ 1 ⁇ due to the tilt of the occupant's center of gravity.
  • Acceleration direction The inclination direction is determined by whether the inclination angle ⁇ is positive or negative with respect to the reference line (vertical line passing through axle 25 in the example of Fig. 19), and normal vehicle rotation in the forward direction is positive and vice versa.
  • the angular acceleration ⁇ 2 ⁇ for moving the balancer 21 is ⁇ 2 ⁇ > ⁇ ⁇ 1 ⁇ .
  • is a constant, and its derivation will be described later.
  • the acceleration of Nolansa 21 detects the number of rotations of Nolansa 21 and increases the number of rotations if the direction of rotation is normal (if it is rotating in the same direction as the direction of acceleration).
  • the positive acceleration ⁇ 2 ⁇ is obtained.
  • the positive or negative acceleration is performed by decreasing the rotational speed.
  • the rotation speed decreases to 0 the rotation in the reverse direction is increased.
  • the angular acceleration ⁇ 3 ⁇ when the inclination angle of the occupant A is reversed is also detected by the gyro sensor 162, and the angular acceleration ⁇ 4 ⁇ ( ⁇ 4 ⁇ > ⁇ ⁇ according to the angular acceleration ⁇ 3 ⁇ 3 ⁇ ) to accelerate balancer 21.
  • the acceleration in this case is a negative acceleration in the example of FIG.
  • the balancer 21 since the balancer 21 is rotating in the positive direction (clockwise in the drawing) until just before, the balancer 21 accelerates in the negative direction by decreasing (decelerating) the rotation speed (the rotation speed decreases). When it reaches 0, it will rotate backward).
  • the balancer 21 is actually accelerated immediately upon detection of the inclination angle ⁇ 1 or the angular acceleration ⁇ 1 ⁇ . However, there is only a slight movement.
  • the reason why the balancer 21 is freely rotated in cases other than when the reaction force of the balancer 21 is used in this way is to prevent unnecessary reaction force from being generated by controlling the balancer 21 (for example, braking). is there. Even if the sensor 21 is freely rotated, it does not consume power or move the center of gravity of the vehicle.
  • the freely rotating balancer 21 is accelerated by the balancer motor 22 again before it stops or is stopped by friction caused by a bearing or the like.
  • the balancer motor 22 accelerates the rotation of the balancer 21
  • the balancer 21 may already be rotating due to the previous acceleration.
  • the balancer motor 22 accelerates the balancer 21 from the rotation speed.
  • the NOR 22 motor 22 accelerates the rotation of the NOR 21 and further increases the speed. Rotate with. Conversely, when accelerating the rotation of the nolancer 21 in the negative direction, the nolancer 21 is decelerated and the rotation speed of the balancer 21 is decreased.
  • NORANCER 21 For example, consider the case where a brake device is installed in NORANCER 21. If the Nolancer 21 is rotating in the positive direction and you want to accelerate it in the negative direction, applying a brake device to the Nolancer 21 will slow down the rotation of the balancer 21 (that is, in the negative direction). Accelerating), and this can generate a reaction force.
  • Tl ml X (rl Xrl) ⁇ ⁇ 1 ⁇ ⁇ (1)
  • the balancer 21 is a disk having a diameter D, a thickness L, and a mass m, and the acceleration (angular acceleration) is d co Zdt.
  • is the angular velocity of the balancer 21.
  • T2 m- (DXD / 16 + LXL / 12) ⁇ ⁇ ⁇ (2) [0171] If this torque T2 is larger than Tl, the occupant A (carrying part 13) can be returned in the direction opposite to the inclined direction (rearward) with the torque of (the opposite car T1 of torque T2).
  • the driving torque of balancer 21 by balancer motor 22 is T2
  • T2 the driving torque of balancer 21 by balancer motor 22
  • the drive of the NORANCER motor 22 is controlled so that> T1.
  • the angular acceleration ⁇ 1 ⁇ is detected by the gyro sensor 162.
  • Crew's weight ml is force that is equipment weight mla + passenger's weight mlb. Of these, equipment weight mla is known for each vehicle.
  • the passenger's weight mlb is set to the expected maximum passenger weight, for example, 90kg. If the expected maximum weight is set and T2 is determined based on that value, even if the weight is less than that, the condition of T2> T1 is satisfied, and the movement of the sensor 21 returns the passenger ⁇ in the opposite direction. be able to.
  • a weight scale (weight measurement means) for measuring the weight of the passenger is placed on the seat surface portion 131 where the driver of the riding section 13 sits, and the measured value is used as the weight mlb of the passenger. It may be.
  • the vehicle can perform posture control by the reaction force accompanying the acceleration of the rotation of the balancer 21.
  • the deficiency of the reaction force is compensated by the tilt driving torque by the drive motor 12.
  • the balancer 21 when the riding part 13 tilted with a large external force (large angular acceleration) in the positive direction is re-established in the vertical direction, the balancer 21 generates the maximum balancer torque and drives the drive motor 12 to advance the vehicle. Accelerate in the direction.
  • tilt drive torque The torque generated with respect to the drive wheels 11 to tilt the vehicle in the forward direction or in the reverse direction is referred to as tilt drive torque.
  • the negative reaction force Tbmax by the balancer 21 and the reaction force obtained by combining the tilt drive torque act on the riding section 13 and return to the direction opposite to the initial tilt direction.
  • the riding section 13 is controlled to the vertical position. In the middle of the pendulum movement, the angular acceleration ⁇ of the riding section 13 (occupant A) decreases, and after the reaction force due to the acceleration of the balancer 21 is sufficient, the control by the drive motor 12 by the tilt drive torque is performed. Is unnecessary.
  • FIG. 20 shows the configuration of the control unit 16.
  • the control unit 16 has a function of running the inverted pendulum while the vehicle performs posture control using the balancer 21.
  • control unit 16 each component constituting the control unit 16 will be described.
  • the control unit 16 includes a main control device 161, a gyro sensor 162, a drive motor control device 163, a nolancer motor control device 165, and a storage unit 164.
  • the control unit 16 includes a control device 15 that constitutes peripheral devices, an input unit 171, a display unit 172, a balancer detection unit 173, a tire angle detection unit 174, a drive motor inverter 31, a drive motor 12, and a balancer motor. Connected to the inverter 32, the balancer motor 22 and the battery (not shown).
  • the main control device 161 includes a main CPU, and is configured by a computer system including a ROM storing various programs and data (not shown), a RAM used as a work area, an external storage device, an interface unit, and the like. Yes.
  • the ROM stores various programs such as a posture control program that uses the sensor 21 to maintain the posture of the inverted pendulum vehicle, and a travel control program that controls travel based on various travel commands from the control device 15.
  • the main control device 161 performs corresponding processing by executing these various programs. These programs may be stored in the storage unit 164 and read out by the main CPU.
  • the attitude control program detects the tilt angle and tilt angular velocity of the vehicle from sensors described later. The detected values are used so that the vehicle travels according to the travel command instructed by the driver.
  • the drive motor 12 controls the balancer motor 22.
  • the gyro sensor 162 functions as an attitude detection sensor that detects the attitude of the riding section 13.
  • the gyro sensor 162 detects the inclination angle and angular acceleration of the riding section 13 as physical quantities based on the inclination of the riding section 13.
  • the main control device 161 recognizes the tilt direction from the tilt angle detected by the gyro sensor 162.
  • the gyro sensor 162 of the present embodiment detects the angular acceleration and the tilt angle and supplies them to the main control device 161. However, only the angular acceleration may be detected.
  • main controller 161 accumulates the angular velocity supplied from gyro sensor 162, thereby calculating the angular acceleration and angle to obtain the tilt angle.
  • gyro sensor 162 As an attitude detection sensor, various signals that output angular acceleration when the riding section 13 tilts, such as a liquid rotor angular accelerometer and an eddy current angular accelerometer. Sensors can be used.
  • the liquid rotor type angular accelerometer detects the movement of the liquid instead of the pendulum of the servo type accelerometer, and measures the angular acceleration from the feedback current when the movement of the liquid is balanced by the servo mechanism.
  • angular accelerometers that use eddy currents generate a magnetic circuit using permanent magnets, a cylindrical aluminum rotor is placed in the circuit, and changes in response to changes in the rotational speed of the rotor. The angular acceleration is detected based on the magnetic electromotive force.
  • the drive motor control device 163 controls the drive motor inverter 31, and thereby controls the drive motor 12.
  • the drive motor control device 163 has a torque-current map for the drive motor 12, and outputs a current corresponding to the drive torque commanded from the main control device 161 to the drive motor 12 according to the torque-current map. In this way, the drive motor inverter 31 is controlled.
  • the drive motor inverter 31 is connected to a battery (not shown), and the battery is supplied with the battery.
  • the direct current to be supplied is converted into alternating current according to the instruction of the drive motor control device 163 and supplied to the drive motor 12.
  • the main control device 161, the drive motor control device 163, the drive motor inverter 31 and the drive motor 12 operate in cooperation to constitute drive wheel drive means.
  • the balancer motor control device 165 controls the balancer motor inverter 32 and controls the balancer motor 22 accordingly.
  • the balancer motor control device 165 has a torque-current map for the balancer motor 22, and outputs a current corresponding to the drive torque commanded from the main control device 161 to the balancer motor 22 according to this torque current map. In this way, the balancer motor inverter 32 is controlled.
  • the inverter 32 for the nolancer motor is connected to the battery together with the inverter 31 for the drive motor, and converts the direct current supplied by the battery into an alternating current in accordance with an instruction from the balancer motor control device 165 and supplies it to the balancer motor 22. .
  • the balancer motor 22 rotates in the rotation direction instructed by the balancer motor control device 165 at the instructed angular acceleration.
  • the main control device 161, the balancer motor control device 165, the balancer motor inverter 32, and the balancer motor 22 operate in cooperation to control the posture of the vehicle (the posture of the driving operation unit) to a predetermined position. It constitutes attitude control means.
  • the storage unit 164 stores a navigation program, map data for performing navigation, and the like when performing navigation.
  • the input unit 171 is arranged on the display / operation unit 17 (see FIG. 17), and functions as an input means for performing various data, instructions, and selection.
  • the input unit 171 includes a touch panel arranged on the display unit 172 and a dedicated selection button.
  • the touch panel portion the position pressed (touched) by the driver corresponding to the various selection buttons displayed on the display unit 172 is detected, and the selection content is acquired from the pressed position and the display content.
  • the display unit 172 is arranged in the display / operation unit 17.
  • the display unit 172 displays buttons and explanations to be selected and input from the input unit 171.
  • the tire angle detection unit 174 is also composed of a resolver, for example, and detects the angle of the drive wheels 11 and supplies it to the main controller 161.
  • the main control device 161 can obtain the angular velocity of the driving wheel by differentiating the angle supplied from the tire angle detection unit 174 with time, and can obtain angular acceleration by differentiating this with time.
  • the main control device 161 can feedback control the drive motor control device 163 by comparing the angular acceleration of the drive wheel obtained in this way with the target angular acceleration.
  • the balancer detection unit 173 detects the rotation speed and angle of the balancer 21 and supplies this to the main controller 1601.
  • the main controller 161 obtains the angular velocity of the balancer 21 by time-differentiating the angle supplied from the balancer detection unit 173, and confirms the rotation direction of the balancer 21.
  • the main controller 161 determines the balancer necessary for controlling the attitude of the riding section 13 from the confirmed rotation direction and the rotation speed of the balancer 21 supplied from the balancer detection section 173 using this rotation speed as an initial value.
  • the angular acceleration of is calculated. That is, the rotation speed of the balancer 21 is increased (positive acceleration) or decreased (negative acceleration) with the rotation speed as an initial value.
  • control unit 16 After the vehicle starts traveling, the control unit 16 measures the vehicle inclination angle ⁇ from the detection value of the gyro sensor 162 (step 5).
  • control unit 16 measures the inclination angle acceleration of the vehicle from the detection value of the gyro sensor 162 (step 10).
  • control unit 16 measures the vehicle speed from the detection value of the tire angle detection unit 174 (step 15).
  • control unit 16 reads the input (travel command) made by the driver from the control device 15 (step 20).
  • travel command the vehicle speed designated by the driver is commanded.
  • control unit 16 calculates a target inclination angle of the vehicle for traveling the vehicle according to the travel command (step 25).
  • control unit 16 drives the drive mode to travel at the vehicle speed specified in the travel command.
  • the target value of the driving torque generated by the data 12 is calculated (step 30).
  • control unit 16 determines whether or not the target vehicle inclination can be realized only by the reaction force of the balancer 21 (step 35).
  • control unit 16 calculates the torque T1 applied to the riding section 13 (occupant A) according to the above equation (1) from the inclination angular acceleration ⁇ of the riding section 13 measured in step 10, and the balancer 21 Compare with the maximum reaction force Tbmax that can be generated by acceleration.
  • the control unit 16 sets the target to the balancer 21.
  • the angular acceleration for generating the reaction force is calculated, and the torque generated by the balancer motor 22 in order to realize this angular acceleration, that is, the balancer torque Tb is calculated (step 40).
  • the balancer torque Tb is larger than the torque T1 calculated according to the equation (1), that is, a value satisfying Tb> Tl.
  • control unit 16 outputs a current corresponding to the balancer torque Tb calculated previously to the balancer motor 22 in accordance with the torque-current map held by the balancer motor control device 165.
  • the motor inverter 32 is controlled (step 45). As a result, the rotation of the balancer 21 is accelerated, and the target vehicle tilt angle is realized by the reaction force at that time.
  • control unit 16 instructs the drive motor control device 163 to output the previously calculated travel drive torque to the drive motor 12 (step 50).
  • the vehicle can travel at the target vehicle speed.
  • control unit 16 controls the balancer motor inverter 32 so that a current corresponding to the maximum value Tbmax is output to the balancer motor 22 according to the torque-current map held by the balancer motor control device 165. (Step 65). In parallel with the operation of step 65, the control unit 16 commands the drive motor inverter 31 to drive the drive torque obtained by adding the previously calculated travel drive torque and the previously calculated inclination drive torque. Output to motor 12 (step 70).
  • the target inclination angle of the vehicle is realized by the reaction force of the balancer and the inclination driving torque, and the vehicle can travel at the target vehicle speed by the driving torque.
  • the target value can be realized by combining the reaction force by the nolancer 21 and the inclination driving torque.
  • control unit 16 returns to step 5 and does not continue traveling when the traveling is continued after realizing the desired inclination angle and vehicle speed in step 50 or 70 (step 55; Y). In such a case (Step 55; N), the vehicle is stopped and the process is terminated.
  • the balancer can be made compact (downsized) and lightweight.
  • the vehicle of the sixth embodiment is a separate body from the riding section, and can be freely moved in the front-rear direction (traveling direction).
  • the center of gravity of the entire vehicle is set at a predetermined position. To keep.
  • the vehicle is provided with a first balancer and a second balancer that can be individually rotated around the axle.
  • the vehicle calculates the reaction torque necessary for the attitude control, generates the reaction torque, and sets the position of the center of gravity of the vehicle to the predetermined position. Calculate the angular acceleration of the first balancer and second balancer that will be maintained.
  • the first balancer and the second balancer are respectively connected to individual drive motors, and the vehicle drives the individual drive motors so that the angular accelerations calculated by both balancers are obtained.
  • the vehicle can generate reaction force torque necessary for posture control while keeping the position of the center of gravity at a predetermined position.
  • the nolancer is configured by a flywheel
  • the nolancer of the sixth embodiment is the same in appearance configuration except that it is configured by a first balancer and a second balancer. Therefore, the description of FIG. 17 in the fifth embodiment is an explanation of the appearance configuration of the vehicle in the sixth embodiment.
  • FIG. 23 is a schematic view of a model of the vehicle according to the present embodiment, and shows a front view of the vehicle as viewed from the forward direction.
  • the vehicle is connected to the riding section 13, the drive motor 12 connected to the riding section 13 via the frame, the drive wheels 11 driven by the drive motor 12, and the riding section 13 via the frame.
  • the first balancer 20 driven by the first balancer motor 22 the second balancer motor 23 connected to the riding section 13 via the frame, and the second balancer 21 driven by the second balancer motor 23 It is composed. However, ignore the mass of the frame.
  • the rotation axes of the first balancer motor 22 and the second balancer motor 23 are arranged so as to be coaxial with the axle 25.
  • the first balancer 20 and the second balancer 21 are configured so that the mass is distributed above the rotation axis.
  • the first balancer motor 22 and the second balancer motor 23 are independent of each other within a finite stroke. It can be rotated in both directions.
  • the center of gravity can be moved by the rotation of the balancer.
  • FIG. 24 shows a state in which the modeled vehicle of FIG. 23 is viewed from the side in the traveling direction.
  • first balancer motor 22, the second balancer motor 23, etc. are omitted.
  • the center of gravity of the entire vehicle including the driver is indicated by the center of gravity 26.
  • the mass of the riding part 13 is ml
  • the moment of inertia around the center of gravity is II
  • the length from the center of gravity to the fulcrum is 3 ⁇ 4 ⁇ 1
  • the inclination angle of the vertical force of the riding part 13 is ⁇ 1.
  • the vehicle shall have a function to measure the weight of the driver and correct ml, II, rl to include the driver.
  • the mass of the first balancer 20 is m2
  • the inertia moment around the center of gravity is 12
  • the length to the center of gravity force r2 is r2
  • the inclination angle from the vertical direction is 0 2
  • the mass of balancer 21 is m3
  • the moment of inertia around the center of gravity is 13
  • the length from the center of gravity to the fulcrum is r3
  • the tilt angle from the vertical direction is 03.
  • angular acceleration ex is the time derivative of angular velocity
  • the first balancer 20 that does not generate an acceleration at the center of gravity 26, Find the acceleration condition of the second balancer 21.
  • the angular acceleration ⁇ 1 is obtained when the riding section 13 is tilted by an external force applied to the riding section 13. And is detected by a gyro sensor 162 described later.
  • the power n is represented by ⁇ ).
  • aG Alcos ( ⁇ G- ⁇ 1- j81) + A2cos ( ⁇ G- ⁇ 2- ⁇ 2) + A3cos ( ⁇ G— ⁇
  • j8 i is expressed as a function of a i.
  • the balancer torque ⁇ 3 (I3 + m3 (r3 "2)) ⁇ 3 is output to the second balancer motor 23, the riding section 13 is moved without rotating the center of gravity of the entire vehicle in the circumferential direction. The position can be controlled.
  • the hardware configuration of the vehicle will be described with reference to FIG.
  • FIG. 25 shows the configuration of the control unit 16.
  • the control unit 16 has a function of performing an inverted pendulum traveling while the vehicle performs posture control using the first balancer 20 and the second balancer 21.
  • control unit 16 each component constituting the control unit 16 will be described.
  • the control unit 16 includes a main control device 161, a gyro sensor 162, a drive motor control device 163, a first balancer motor control device 165, a second balancer motor control device 166, and a storage unit 164.
  • the control unit 16 includes a control device 15 that constitutes peripheral devices, an input unit 171, a display unit 172, a balancer detection unit 173, a tire angle detection unit 174, a drive motor inverter 31, a drive motor 12, a first The balancer motor inverter 32, the first balancer motor 22, the second balancer motor inverter 33, the second balancer motor 23, and a battery (not shown) are connected.
  • the main control device 161 includes a main CPU, and is configured by a computer system including a ROM that stores various programs and data (not shown), a RAM that is used as a work area, an external storage device, an interface unit, and the like. Yes.
  • the ROM stores various programs such as a posture control program that maintains the posture of the inverted pendulum vehicle using the balancers 20 and 21, and a travel control program that controls the travel based on various travel commands from the control device 15.
  • the main control device 161 performs corresponding processing by executing these various programs. These programs may be stored in the storage unit 164 and read out by the main CPU.
  • the attitude control program detects the tilt angle and tilt angular velocity of the vehicle from the sensors described later, and uses these detected values so that the vehicle travels according to the travel command instructed by the driver. 2 is calculated, and the drive motor 12, the first balancer motor 22, and the second balancer motor 23 are controlled.
  • the gyro sensor 162 functions as an attitude detection sensor that detects the attitude of the riding section 13.
  • the gyro sensor 162 is an inclination of the riding section 13 as a physical quantity based on the inclination of the riding section 13. Angle ⁇ 1 and angular acceleration ⁇ 1 are detected.
  • the main controller 161 recognizes the tilt direction from the tilt angle ⁇ 1 detected by the gyro sensor 162! / Speak.
  • the gyro sensor 162 of the present embodiment detects the angular acceleration ex 1 and the tilt angle ⁇ 1 and supplies them to the main controller 161, but only the angular velocity may be detected.
  • main controller 161 accumulates the angular velocity supplied from gyro sensor 162, thereby calculating angular acceleration ⁇ 1 and angle ⁇ 1 to obtain the tilt angle.
  • the liquid rotor type angular accelerometer detects the movement of the liquid instead of the pendulum of the servo type accelerometer, and measures the angular acceleration from the feedback current when the movement of the liquid is balanced by the servo mechanism.
  • angular accelerometers that use eddy currents generate a magnetic circuit using permanent magnets, a cylindrical aluminum rotor is placed in the circuit, and changes in response to changes in the rotational speed of the rotor. The angular acceleration is detected based on the magnetic electromotive force.
  • the drive motor control device 163 controls the drive motor inverter 31, and thereby controls the drive motor 12.
  • the drive motor control device 163 has a torque-current map for the drive motor 12, and outputs a current corresponding to the drive torque commanded from the main control device 161 to the drive motor 12 according to the torque-current map. In this way, the drive motor inverter 31 is controlled.
  • the drive motor inverter 31 is connected to a battery (not shown), converts a direct current supplied by the battery into an alternating current in accordance with an instruction from the drive motor control device 163, and supplies the alternating current to the drive motor 12.
  • the main control device 161, the drive motor control device 163, the drive motor inverter 31 and the drive motor 12 operate in cooperation in this way to constitute drive wheel drive means.
  • the first balancer motor control device 165 controls the first balancer motor inverter 32, and thereby controls the first balancer motor 22.
  • the first balancer motor control device 165 includes a torque-current map for the first balancer motor 22, and according to this torque current map, the current corresponding to the first balancer torque commanded by the main control device 161 is The first balancer motor inverter 32 is controlled to output to the 1 balancer motor 22.
  • the first balancer motor inverter 32 is connected to the battery together with the drive motor inverter 31.
  • the first balancer motor inverter 165 converts the direct current supplied by the battery into an alternating current in accordance with an instruction from the first balancer motor controller 165. Supply to motor 22.
  • the first balancer motor 22 rotates in the rotation direction instructed by the first balancer motor control device 165 at the instructed angular acceleration.
  • the second balancer motor control device 166 controls the second balancer motor inverter 33, and thereby controls the second balancer motor 23.
  • the second balancer motor control device 166 includes a torque-current map for the second balancer motor 23. According to this torque current map, the second balancer motor control device 166 generates a current corresponding to the second balancer torque commanded by the main controller 161. The second balancer motor inverter 33 is controlled so as to output to the two balancer motor 23.
  • the current corresponding to the balancer torques ⁇ 1 and ⁇ 2 is supplied to the balancer motors 22 and 23, so that the balancers 20 and 21 are driven by the angular accelerations a 2 and a 3.
  • the circumferential acceleration aG of the center of gravity in (2) is 0, and the position of the riding section 13 can be controlled without driving the entire center of gravity in the circumferential direction of the axle.
  • the second balancer motor inverter 33 is connected to the battery together with the drive motor inverter 31 and the first balancer motor inverter 32, and the DC current supplied by the battery is supplied to the second balancer motor controller 166. Convert to AC according to the instructions and supply to second balancer motor 23.
  • the second balancer motor 23 rotates at the angular acceleration instructed in the rotation direction instructed by the second balancer motor control device 166.
  • main controller 161, first balancer motor controller 165, first balancer motor Inverter 32, first balancer motor 22, first balancer 20, second balancer motor controller 166, second balancer motor inverter 33, second balancer motor 23, and second balancer 21 operate in cooperation.
  • a posture control means for controlling the posture of the vehicle (the posture of the driving operation unit) to a predetermined position is configured.
  • the storage unit 164 stores a navigation program, map data for performing navigation, and the like when performing navigation.
  • the input unit 171 is arranged on the display / operation unit 17 (see FIG. 1) and functions as an input means for performing various data, instructions, and selection.
  • the input unit 171 includes a touch panel arranged on the display unit 172 and a dedicated selection button.
  • the touch panel portion the position pressed (touched) by the driver corresponding to the various selection buttons displayed on the display unit 172 is detected, and the selection content is acquired from the pressed position and the display content.
  • the display unit 172 is arranged in the display / operation unit 17.
  • the display unit 172 displays buttons and explanations to be selected and input from the input unit 171.
  • the tire angle detection unit 174 is also composed of a resolver, for example, and detects the angle of the drive wheels 11 and supplies it to the main controller 161.
  • the main control device 161 can obtain the angular velocity of the driving wheel by differentiating the angle supplied from the tire angle detection unit 174 with time, and can obtain angular acceleration by differentiating this with time.
  • the main control device 161 can feedback control the drive motor control device 163 by comparing the angular acceleration of the drive wheel obtained in this way with the target angular acceleration.
  • the balancer detection unit 173 detects the inclination angles of the first balancer 20 and the second balancer 21 and supplies this to the main controller 161.
  • the main controller 161 refers to the detection value of the balancer detection unit 173 at a low rotation speed that does not affect the attitude control of the vehicle. Rotate in the direction opposite to the direction in which 1 balancer 20 and 2nd balancer 21 were driven To return to a predetermined fixed position. As a result, the first balancer 20 and the second balancer 21 can secure a stroke for the next posture control.
  • the control unit 16 measures the vehicle speed from the detection value of the tire angle detection unit 174 (step 15).
  • control unit 16 reads the input (travel command) made by the driver from the control device 15 (step 20).
  • travel command the vehicle speed designated by the driver is commanded.
  • control unit 16 calculates the position of the center of gravity of the vehicle for causing the vehicle to travel in accordance with the travel command (step 25).
  • the position of the center of gravity may be realized by moving the first balancer 20 and the second balancer 21 while the riding section 13 is kept vertical, or may be realized by tilting the vehicle in the traveling direction. Or you may combine both.
  • control unit 16 calculates the target value of the travel drive torque generated by the drive motor 12 in order to travel at the vehicle speed specified by the travel command (step 30).
  • control unit 16 rotates the first balancer 20 and the second balancer 21 to set the center of gravity of the entire vehicle at the predetermined center of gravity calculated in step 25, and the travel calculated in step 30 is performed.
  • the drive motor 12 is driven with the drive torque to drive the vehicle (step 35).
  • the control unit 16 determines whether or not the force is sufficient to continue traveling (step 40). If the traveling is continued (step 40; Y), the control unit 16 returns to step 15 and does not continue traveling (step 40). ; N), stop the vehicle and finish the process.
  • the control unit 16 obtains the inclination angle ⁇ 1 and the inclination angle acceleration a 1 of the riding section 13 from the gyro sensor 162 (step 60), and determines whether or not the force has reversed the inclination angle (step 65).
  • the inclination angle ⁇ 1 is detected with respect to a predetermined reference line passing through the axles of the drive wheels l la and l ib, and the inversion of the inclination angle is performed when the inclination angle ⁇ 1> 0 and the inclination angle ⁇ 1 ⁇ 0 state The change between.
  • the reference line in this embodiment is set to a vertical line passing through the axle, but the reference line may be inclined by a predetermined angle ⁇ from the vertical line.
  • ⁇ (V) may be defined as a function of the vehicle speed V by increasing the predetermined angle as the vehicle speed increases.
  • step 65; N If there is no reversal of the tilt angle (step 65; N), the control unit 16 returns to step 60 and continues monitoring the posture.
  • step 65; Y when the inversion of the tilt angle is detected (step 65; Y), the control unit 16 detects the angular acceleration ⁇ 1 of the riding section 13 acquired in step 60 and the balancer detection section 173. Substituting ⁇ 2 and ⁇ 3 into equations (1) and (2) to calculate the balancer torques ⁇ 2 and ⁇ 3 to be output to the first balancer motor 22 and the second balancer motor 23 (step 70).
  • the control unit 16 Is calculated using Equation (1) and Equation (2), and the balancer torques ⁇ 2 and ⁇ 3 are calculated using these equations.
  • the control unit 16 functions as an angular acceleration calculation means.
  • Parameters such as mi, Ii, and ri are stored in advance in the storage unit 164. Furthermore, when correcting ml, II, rl of the riding section 13 with the weight of the driver, the riding section 13 is equipped with a measuring device such as a weight scale, and the control unit 16 uses the output values of these measuring devices. To correct these parameters.
  • control unit 16 commands the first balancer motor control device 165 and the second balancer motor control device 166 to output the calculated balancer torques ⁇ 1, ⁇ 2.
  • the first balancer motor control device 165 and the second balancer motor control device 166 control the first balancer motor inverter 32 and the second balancer motor inverter 33, respectively, and the first balancer motor 22 and the second balancer motor. 23 outputs the balancer torques ⁇ 1 and ⁇ 2 respectively (step 75). [0240] Thus, the posture of the riding section 13 is controlled while the center of gravity of the entire vehicle is maintained at the predetermined value calculated in step 25.
  • the first balancer 20 and the second balancer 21 are rotated without moving the center of gravity of the entire vehicle.
  • the riding section 13 is returned to the reference line direction (in the direction opposite to the downward inclination by the external force).
  • control unit 16 determines whether or not the power is turned off (step 80). If it is turned off (; Y), the process ends. If it is not turned off (; N), the process returns to step 60. Continue attitude control.
  • the balancers 20 and 21 are rotated by the balancer torques ⁇ 1 and ⁇ 2 corresponding to the angular acceleration a 1 when the inversion of the tilt angle with respect to the reference line of the riding section 13 is detected, and the reaction caused by the movement of the balancer 21 is reversed. Repeat the operation to return the riding part 13 to the reference line direction with force. Through such a pendulum movement of the riding section 13, the maximum inclination angle ⁇ 1 centered on the reference line gradually converges to 0 and can return to the normal posture.
  • the rotation shaft of the balancer motor 181 is arranged on an axis parallel to the lead straight line of the drive shaft 11 in order to rotate the non-sense gear. It is possible to arrange the rotation shaft of the balancer motor 181 on an axis orthogonal to the shaft and rotate the balancer gear 184 by the worm gear.
  • the balancer gear is an external gear, but it may be an internal gear.
  • various transmission mechanisms such as a belt may be used in addition to the gear.
  • the movement direction of the balancer 182 is the rotation direction around the rotation shaft 111 of the drive wheel 11, a direction parallel to the control mute 16 may be configured to reciprocate! / ⁇ .
  • the balancer drive unit 18 may move the balancer using a linear motor as described in FIGS. 29 and 30 of Patent Document 2.
  • the balancer may be moved in the axial direction by the rotation of the screw shaft arranged on the rotating shaft of the motor!
  • the posture control may be performed with the movement torque T2 of the balancer B and the torque T3 due to the driving of the wheel drive motor 12.
  • attitude control is performed by driving the wheel drive motor 12 and driving the drive wheels 11.
  • the wheel drive motor 12 is controlled to decelerate by the torque T3.
  • the independent balancer 182 is arranged, but the balancer motor 181 may be used as a balancer.
  • the balancer motor 181 is configured to reciprocate on an arc centered on the rotation axis of the drive wheel 11 or to reciprocate on a horizontal plane.
  • both the balancer motor 181 and the balancer 182 may move.
  • the balancer motor 181 and the balancer 182 may be moved together, or only the normal balancer 182 may be moved, and the balancer motor may be moved when a torque exceeding a predetermined value is required. Well, or vice versa.
  • a vehicle-mounted device may be used as a balancer.
  • the posture control is performed so that the posture is on the vertical line with respect to the vertical line.
  • the posture control described in FIG. 5 the case where the posture is controlled so that the inclination angle ⁇ force ⁇ with respect to the vertical line is obtained has been described.
  • the reference line for posture control may be inclined by a predetermined vertical force ⁇ .
  • an unnatural feeling can be eliminated by inclining by a predetermined angle ⁇ in the traveling direction.
  • step 51 of FIG. 5 it is determined whether or not the inclination angle ⁇ is a force that has been reversed with reference to an angle inclined by ⁇ from the vertical line in the traveling direction.
  • the tilt angle ⁇ 0 (tilt ⁇ from the vertical line) is in a stable state.
  • the balancer driving unit 18 or the balancer 182 (hereinafter referred to as the balancer 18 or the like) is disposed below the riding unit 13; You can place it in!
  • an armrest can be arranged on the riding section 13, and the balancer 18 and the like can be arranged inside the armrest.
  • a main body that covers the vehicle of the present embodiment may be provided, and a balancer or the like may be disposed inside a vehicle side surface (one or both) such as a door portion that covers the riding section.
  • a roof portion may be disposed on the upper portion of the vehicle, and the balancer 18 or the like may be disposed on the roof portion.
  • the driving of the lancer 182 may employ either a rotational motion or a linear motion.
  • the balancer center of gravity is higher than the occupant's center of gravity and the balancer 182 is arranged at a position, so that the angular acceleration (in the case of rotational motion) and acceleration (in the case of rotational motion) when driving the balancer can be improved. (In the case of linear motion) can be reduced. As a result, a small balancer motor can be used.
  • the force described in the case where the balancer 182 is rotated around a predetermined axis in a plane perpendicular to the horizontal plane and parallel to the traveling direction has a predetermined level in the horizontal plane.
  • the balancer 182 may be rotated about the axis.
  • a balancer 182 that rotates in a horizontal plane with a predetermined position that is a substantially central portion of the seat surface 131 as a rotation axis is disposed below the control unit 16.
  • the space in the vehicle can be used effectively.
  • ⁇ 1 is increased as the angular acceleration ⁇ z ⁇ increases.
  • the inclination angle ⁇ of the riding section (occupant A) exceeds the predetermined allowable angle ⁇ a, that is, if ⁇ > ⁇ a, it is determined that the inclination angle has been reversed and posture control is performed. You may make it perform.
  • the angular acceleration ⁇ 1 ⁇ of occupant A for calculating T1 from equation (1) is the angular acceleration when ⁇ > ⁇ a, but the angular acceleration when ⁇ ⁇ 0 It is also possible.
  • the threshold value is not particularly set as the addition torque T3 by the drive motor 12.
  • the attitude control may be performed with the torque T3> ⁇ 1 (the first threshold).
  • the driving motor 12 sets the acceleration / deceleration torque ⁇ 3 to a predetermined value less than the first threshold, and the torque «2 due to the movement of the lancer ⁇ Is the T1 first threshold.
  • the second threshold value is Tmax + less than the first threshold value.
  • X be the acceleration / deceleration torque T3 by the drive motor 12 such that T3> T1 – T2max.
  • the position of the balancer B can be held at a predetermined position such as on the vertical line against a large external force thereafter.
  • a motor used for stability control may be selectively used according to the load and efficiency of the balancer drive motor and wheel drive motor depending on the running state.
  • the balancer motor is preferentially used when the vehicle is stopped, and the drive motor is preferentially used while the vehicle is running.
  • the fifth embodiment can be modified as follows.
  • the rotating shafts of the axle 25 and the balancer 21 are not necessarily on the same axis.
  • the attitude control process is easier if the rotating shaft of the sensor 21 and the axle 25 are coaxial.
  • the rotation axis of the balancer 21 and the axle 25 are not perpendicular, the rotation axis of the balancer 21 and the axle 25 do not necessarily have to be parallel.
  • the effect of the reaction force is greater when the rotary shaft of the Lancer 21 and the axle 25 are parallel.
  • the sixth embodiment can be modified as follows.
  • one of the first balancer 20 and the second balancer 21 is flywheel It is possible to configure. By configuring one of the balancers with a flywheel, the movement of the balancer due to stroke is eliminated.
  • both the first balancer 20 and the second balancer 21 are flywheels, the position of the center of gravity of the entire vehicle cannot be controlled even if the first balancer 20 and the second balancer 21 are driven.
  • the balancer needs to have an asymmetric shape with respect to the rotation axis.
  • the first balancer 20 and the second balancer 21 were not particularly distinguished. However, one of them is a center of gravity balancer for generating a reaction force torque, and the other is for maintaining the center of gravity position. It is also possible to use a counter balancer.
  • the rotation axes of the first balancer 20 and the second balancer 21 are coaxial with the axle 25, but they are not necessarily on the same axis.
  • equation (3) may be used to approximate ⁇ 2 and ⁇ 3 by using equation (2) in posture control.
  • aG mlrl a l / M + m2r2 a 2 / M + m3r3 a 3 / M (3)
  • vehicle of the present embodiment can also be configured as follows.
  • a drive wheel arranged on one axis
  • An attitude detection sensor for detecting a physical quantity based on the inclination of the riding section
  • a balancer arranged to be movable with respect to the riding section
  • a drive control unit that drives and controls the drive wheel according to a drive command and an adjustment torque value by a passenger; When the physical quantity is smaller than a first threshold, supply the first control torque value of the drive wheel necessary for attitude control to the drive control unit,
  • the balancer When the physical quantity is greater than or equal to the first threshold and less than or equal to the second threshold, the balancer is moved in the inclination direction of the riding section so as to generate a reaction torque corresponding to the physical quantity, and the physical quantity is less than the second threshold. If it is larger, the balancer is moved in the inclination direction of the riding section so that a reaction torque corresponding to the second threshold value is generated, and a second acceleration / deceleration torque value of the driving wheel necessary for posture control is driven. Supply to the control unit,
  • Attitude control means for performing attitude control of the riding section by
  • a vehicle comprising:
  • the first threshold value is a physical quantity corresponding to a starting torque value at which the driving wheel starts driving in a stopped state force.
  • FIG. 1 is an external configuration diagram of an inverted pendulum vehicle that is an embodiment of the vehicle of the present invention.
  • FIG. 2 is a configuration diagram of a balancer driving unit.
  • FIG. 3 is a configuration diagram of a control unit of an inverted pendulum vehicle.
  • FIG. 4 is an explanatory diagram of the principle of attitude control in an inverted pendulum vehicle.
  • FIG. 5 is a flowchart showing the operation of posture braking processing.
  • FIG. 6 is an external configuration diagram of another inverted pendulum vehicle.
  • FIG. 7 is an explanatory diagram showing the torque balance of an inverted pendulum vehicle in the second embodiment.
  • FIG. 8 is a flowchart showing the attitude control operation of the main controller in the second embodiment.
  • FIG. 9 is an explanatory diagram showing the state of each part during vehicle travel in a third embodiment.
  • FIG. 10 is a flowchart showing the attitude control operation of the main controller in the third embodiment.
  • FIG. 11 An explanatory diagram showing the outline of the second action and the outline of the first action in starting or acceleration / deceleration It is.
  • FIG. 12 is a flowchart showing a control operation at the time of start and acceleration / deceleration by the second operation. ⁇ 13] An explanatory diagram showing the configuration of a balancer capable of rotating 360 degrees.
  • ⁇ 17 It is an external configuration diagram of a vehicle in a fifth embodiment.
  • FIG. 18 is an explanatory diagram about the principle of attitude control by the balancer in the fifth embodiment.
  • FIG. 19 is a diagram for explaining the principle of attitude control in the inverted pendulum vehicle in the fifth embodiment.
  • FIG. 21 is a flowchart showing attitude control processing by the control unit in the fifth embodiment.
  • FIG. 22 is an explanatory diagram of attitude control using a conventional balancer.
  • FIG. 26 is a flowchart showing a travel control process by the control unit in the sixth embodiment.
  • FIG. 27 is a flowchart showing the attitude control process by the control unit in the sixth embodiment.

Description

明 細 書
車両
技術分野
[0001] 本発明は車両に関し、例えば倒立振り子の姿勢制御を利用した車両の姿勢制御に 関する。
背景技術
[0002] 倒立振り子の姿勢制御を利用して、一軸上に配置された駆動輪の上に運転者が搭 乗し、一輪車のようにバランスを保持しながら走行する車両 (以下、単に倒立振り子車 両と 、う)が注目され、現在実用化されつつある。
例えば、同軸上に配置された 2つの駆動輪を有し、運転者の重心移動による駆動 輪の姿勢を感知して駆動する技術が特許文献 iで提案されている。
また、従来の円形状の駆動輪 1つや、球体状の駆動輪 1つの姿勢を制御しながら 移動する車両が特許文献 2にお ヽて提案されて!ヽる。
[0003] このような、倒立振り子の姿勢制御を利用した車両では、運転者の重心移動量ゃリ モコン操作量に応じた駆動力を発生させ、姿勢制御を行 ヽながら走行するようになつ ている。
特許文献記載の技術では、車両の重心位置を移動させてバランスを保持するため に、錘やカウンタウェイト(以下単にバランサという)を配置し、これを移動させることで 重心移動を行う技術にっ 、て開示されて 、る。
[0004] また、倒立振り子車両は、例えば、次の特許文献 3に示されたように、車輪型倒立 振り子の原理を用いてバランスを保持するようになって!/、る。
倒立振り子車両では、重心が車軸より上方にあるため、如何にしてバランスを保持 するかが重要となってくる。バランスの保持は、重心の移動する方向(車両が傾斜す る方向)に車両を移動することによって実現することができるが、バランサを併用する とより効果的である。
[0005] 特許文献 4では、バランスの保持を補助するためのバランサを備えた倒立振り子車 両が提案されている。 この特許文献 4で提案されて ヽる技術は、駆動輪が球体で構成されて ヽる場合の バランス方法である力 その原理は図 22に示したとおりである。
すなわち、駆動輪 11、搭乗部 13、及びバランサ 101で構成され、図示した走行方 向と垂直な方向に車軸を有する車両 100があった場合、搭乗部 13の傾斜に対して ノ《ランサ 101を逆方向に移動させてバランスを保持するものである。
[0006] 一方、公開された技術ではないが、このようなバランサ 101を使用して姿勢制御を 行う場合、バランサ 101を加速することで発生する反力 (反力トルク)で姿勢制御を行 うことち考免られる。
図 28を用いて説明すると、バランサ 101を車軸の回りに回転 (傾斜)させる際に、バ ランサ 101の回転方向と逆方向に搭乗部 13を回転させるトルク (反力トルク)が発生 することを禾 IJ用するものである。
この方式では、搭乗部 13が前方に傾斜させる外力が働いた場合、搭乗部の傾斜 方向にバランサ 101を回転させることで、ノランサの回転方向と逆方向、すなわち、 外力による傾斜方向と逆方向のトルクを搭乗部に作用させることで姿勢を制御するも のである。
また、搭乗部 13が目標値よりも前傾しすぎているとする。これを立て直す場合、搭 乗部 13を立て直す方向と逆の方向、すなわち、前傾方向にバランサ 101を回転する ことで、ノ ンサ 101を加速した際に生じる反力トルクにより搭乗部 13が立ち直る方 向に移動する。
例えば、図 28において、バランサ 101を矢線 B方向に加速すると、その反力トルク により搭乗部 13を矢線 A方向〖こ移動させることができる。
[0007] 特許文献 1 :特開 2004— 276727公報
特許文献 2:特開 2004— 129435公報
特許文献 3 :特開 2005— 094898公報
特許文献 4:特開 2004— 129435公報
発明の開示
発明が解決しょうとする課題
[0008] 上記した特許文献 1、 2では、車両の重心移動方向と反対方向にバランサを移動さ せるようにしている。
しかし、バランサを移動すると、その移動方向と反対方向の反力が車両に作用し、 バランサと反対方向に車両重心 (バランサの重心を除く)が移動することになる。 このため、バランサ重心を除いた車両重心が例えば前方に移動した場合に、バラン サを後方に移動させると、反力により車両重心はさらに前方に移動してしま 、バラン スをとることができない。
特許文献に記載された車両重心とバランサ重心は、両重心を合成した全重心が車 軸の鉛直線上に位置したバランス状態、言 、換えれば静的な安定状態における重 心位置を表現したに過ぎず、この静的安定状態は、車両重心の移動方向と反対方 向にバランサを移動させることによっては実現することはできな 、。
[0009] 一方、図 22に示したバランサ 101のように、有限のストローク内でバランサを移動さ せて姿勢制御を行う場合、バランサの効果を発揮させるにはバランサの質量をある程 度大きくする必要があった。
そのため、バランサの制御系の強度を保っために、ノランサ系の重量も大きくなり、 燃費の向上に不利である。
また、バランサが車軸に対して不対称な形状をしているため、バランサを車軸の回り に回転させると車両の重心が移動してしまい、姿勢制御が複雑になってしまった。 また、バランサを車軸の上部で動作させるため、バランサの動作スペースが必要で めつに。
さらに、乗車位置をバランサよりも上部に配置する必要から車高が高くなり車両全 体が大きくなつていた。
カロえて、バランサを重力に逆らって保持するため、エネルギーの消費量が大きくな るという問題もあった。
[0010] また図 28に示した車両において、バランサ 101を加速してその反力トルクにより搭 乗部 13の姿勢制御を行うことが可能であるが、バランサ 101と搭乗部 13が移動する ことにより、車両全体の重心の位置が移動してしまうことになる。
そして、ノ ランサ 101を動かす量は、搭乗部 13を動力したい量によって決まってし まうため、全体の重心を直接制御できな 、と 、う問題がある。 このように、バランサ 101の駆動に伴って全体の重心が移動すると、車両の姿勢制 御が複雑化することになる。
[0011] そこで、本発明は、倒立振り子の姿勢制御を利用した車両において、バランサの移 動により車両の姿勢を動的に制御することが可能な車両を提供することを第 1の目的 とする。
また、本発明は、倒立振り子の姿勢制御を利用した車両において、バランサの移動 により車両の発進を行うことが可能な車両を提供することを第 2の目的とする。
また本発明は、姿勢制御の容易化、高性能化、車両の小型化を第 3の目的とする。 また本発明は、車両の重心位置を所定位置に保つようにバランサを駆動することを 第 4の目的とする。
課題を解決するための手段
[0012] (1)請求項 1に記載した発明では、一軸上に配置された駆動輪と、搭乗部と、前記搭 乗部の傾斜に基づく物理量を検出する姿勢感知センサと、前記搭乗部に対して移動 可能に配置されたバランサと、搭乗者による駆動指令に従って前記駆動輪を駆動制 御する駆動制御部と、前記検出した搭乗部の物理量に応じて前記検出した搭乗部 の傾斜方向に前記バランサを移動し、これにより生じる反力トルクで前記搭乗部を元 の姿勢位置に戻すことで前記搭乗部の姿勢制御を行う姿勢制御手段と、を車両に具 備させて前記第 1の目的を達成する。
(2)請求項 2に記載した発明では、一軸上に配置された駆動輪と、搭乗部と、前記搭 乗部の傾斜に基づく物理量を検出する姿勢感知センサと、前記搭乗部に対して移動 可能に配置されたバランサと、搭乗者による駆動指令に従って前記駆動輪を駆動制 御する駆動制御部と、前記検出した搭乗部の物理量に応じて、前記バランサを該傾 斜方向に移動させることで前記搭乗部の姿勢制御を行う姿勢制御手段と、を具備し 、前記姿勢制御手段は、前記検出した物理量が所定値を超える場合に、該所定値 に対応する反力トルクが発生するように前記バランサを移動すると共に、姿勢制御に 必要な前記駆動輪の加減トルク値を前記駆動制御部に供給し、前記駆動制御部は 、前記駆動指令及び前記加減トルク値に従って前記駆動輪を駆動制御する、ことで 前記第 1の目的を達成する。 (3)請求項 3に記載した発明では、請求項 2に記載の車両において、前記姿勢制御 手段は、車速が所定値以下の場合は前記バランサの移動と前記加減トルク値の供 給により、車速が前記所定値より大きい場合は前記加減トルク値の供給により、姿勢 制御を行うことを特徴とする。
(4)請求項 4に記載した発明では、において、一軸上に配置された駆動輪と、搭乗部 と、前記搭乗部の傾斜に基づく物理量を検出する姿勢感知センサと、前記搭乗部に 対して移動可能に配置されたバランサと、搭乗者による駆動指令に従って前記駆動 輪を駆動制御する駆動制御部と、前記検出した搭乗部の物理量に応じて前記搭乗 部の姿勢制御を行う姿勢制御手段と、を具備し、前記姿勢制御手段は、車両の発進 時において、進行方向と逆方向に前記バランサを移動し、その反力トルクで車両全 体の重心を進行方向に移動させる、ことで前記第 1及び第 2の目的を達成する。
(5)請求項 5に記載した発明では、請求項 4に記載の車両において、前記姿勢制御 手段は、車両の加速時において進行方向と逆方向に前記バランサを移動し、減速時 にお 、て進行方向に前記バランサを移動する、ことを特徴とする。
(6)請求項 6に記載した発明では、一軸の車軸上に配置された駆動輪を駆動する駆 動輪駆動手段と、前記駆動輪の上方に配置され、前記駆動輪の運転操作を行う運 転操作部と、前記運転操作部に対して移動可能に配置された複数のバランサと、車 両の重心位置を所定位置に保つように前記複数のバランサを個別に移動し、その際 に生じる反力により前記運転操作部の姿勢を所定の位置に制御する姿勢制御手段 と、を車両に具備させて前記第 4の目的を達成する。
(7)請求項 7に記載した発明では、請求項 6に記載の車両において、前記複数のバ ランサは、前記車軸の回りに移動可能に配置されており、前記姿勢制御手段は、前 記複数のバランサを前記車軸の回りに個別に回転させることにより移動させることを 特徴とする。
(8)請求項 8に記載した発明では、請求項 1から請求項 7のうちのいずれか 1の請求 項に記載の車両において、前記姿勢制御手段は、前記バランサを、前記検出した物 理量に対するトルク T1以上のトルク T2を発生させる角加速度又は角速度で移動さ せることを特徴とする。 (9)請求項 9に記載した発明では、請求項 1から請求項 8のうちのいずれか 1の請求 項に記載の車両において、前記バランサを移動させるバランサモータを備え、前記 姿勢制御手段は、前記バランサモータにより前記バランサを前記搭乗部の傾斜方向 に移動させることを特徴とする。
(10)請求項 10に記載した発明では、請求項 1から請求項 9のうちのいずれか 1の請 求項に記載の車両において、前記姿勢制御手段は、前記バランサと共に前記バラン サモータを、前記搭乗部の傾斜方向に移動させることを特徴とする。
(11)請求項 11に記載した発明では、請求項 1から請求項 10のうちのいずれか 1の 請求項に記載の車両において、前記バランサは、前記バランサモータに電力を供給 する電源であることを特徴とする。
(12)請求項 12 (EQ05086の請求項 1)に記載した発明では、一軸の車軸上に配置 された駆動輪を駆動する駆動輪駆動手段と、前記駆動輪の上方に配置され、前記駆 動輪の運転操作を行う運転操作部と、前記車軸と同一軸上の回転軸の回りに回転 する回転体と、前記回転体の回転を加速し、その際に生じる反力により前記運転操 作部の姿勢を所定の位置に制御する姿勢制御手段と、を車両に具備させて前記第 3 の目的を達成する。
(13)請求項 13に記載した発明では、請求項 12に記載の車両において、前記姿勢 制御手段は、前記運転操作部が前記所定の位置から前記車軸の回りに傾 、た方向 と同じ方向に前記回転体を加速することを特徴とする。
(14)請求項 14に記載した発明では、請求項 12、又は請求項 13に記載の車両にお いて、前記姿勢維持手段は、前記前記運転操作部が前記所定の位置にある場合、 前記回転体を自由回転させることを特徴とする。
発明の効果
請求項 1及び請求項 2に記載した本発明では、搭乗部の傾斜に基づく角加速度等 の物理量を検出し、検出した物理量に応じて、ノ ンサを搭乗部の傾斜方向に移動 させることで姿勢制御を行うようにしたので、駆動輪が一軸上に配置された車両の姿 勢を動的に制御することができる。
また、請求項 2に記載した本発明では、物理量が所定値を超える場合に、所定値に 対応する反力トルクが発生するように前記バランサを移動すると共に、姿勢制御に必 要な駆動輪の加減トルク値を駆動制御部に供給することで、バランサと駆動輪による 姿勢制御を行うようにしたので、より大きな外力に対しても車両の姿勢を動的に制御 することができる。
また、請求項 4に記載した本発明では、姿勢制御手段が、車両の発進時において、 進行方向と逆方向に前記バランサを移動し、その反力トルクで車両全体の重心を進 行方向に移動させるように構成したので、ノ《ランサの移動により発進ことができる。 また、請求項 6に記載した本発明では、複数のバランサを個別に駆動することで姿 勢制御を行うので、車両の重心位置を所定位置に保つことができる。
また請求項 12に記載した本発明では、車軸と平行な回転軸の回りに回転する回転 体を回転を加速させることで姿勢制御を行うので、姿勢制御を容易、高性能とし、車 両を小型化することができる。
発明を実施するための最良の形態
以下、本発明の車両における好適な実施の形態について、図面を参照して詳細に 説明する。
(1)第 1実施形態の概要
第 1実施形態では、ジャイロセンサで搭乗部(車体)の傾斜を検出し、その傾斜する 角加速度から、搭乗部の傾斜に対するトルク T1を算出し、そのトルク T1を打ち消し て傾斜方向と反対の方向に搭乗部を戻すためのトルク T2をバランサの移動により発 生させる。
すなわち、バランサを搭乗部の傾斜方向にトルク T2 ( >T1)で駆動することにより、 トルク Τ2に対する反力トルク—Τ2を搭乗部に作用させる。
この反力トルク Τ2により、搭乗部は最初に傾斜した方向と反対方向に押し戻され る。
搭乗部が反対方向に押し戻されることで、鉛直線に対する反対側に搭乗部が傾斜 した際の角加速度をジャイロセンサで検出し、その角加速度に対応したトルク Τ2でバ ランサを反対方向(搭乗部の移動方向で、最初にバランサを移動した方向と逆の方 向)に再度移動する。 [0015] このように、第 1実施形態では、搭乗部の傾斜方向にバランサを移動し、その反カト ルクで搭乗部を反対方向に移動する。この動作が繰り返されることで搭乗部の傾斜 角度は徐々に小さくなり、搭乗部とバランサとの全体の重心が鉛直線上に戻るまで繰 り返される。
[0016] (2)第 1実施形態の詳細
図 1は本実施形態に力かる倒立振り子車両の外観構成を例示したものである。 図 1に示されるように、倒立振り子車両は、同軸に配置された 2つの駆動輪 l la、 11 bを備えている。
両駆動輪 l la、 l ibは、それぞれ駆動モータ(ホイールモータ) 12で駆動されるよう になっている。
[0017] 駆動輪 l la、 l ib (以下、両駆動輪 11aと l ibを指す場合には駆動輪 11という)及 び駆動モータ 12の上部には運転者が搭乗する搭乗部 13が配置されて ヽる。
搭乗部 13は、運転者が座る座面部 131、背もたれ部 132、及びヘッドレスト 133で 構成されている。
搭乗部 13は、駆動モータ 12が収納されて 、るホイールモータ筐体 121に固定され た支持部材 14により支持されている。
[0018] 搭乗部 13の左脇には操縦装置 15が配置されている。この操縦装置 15は、運転者 の操作により、倒立振り子車両の加速、減速、旋回、回転、停止、制動等の指示を行 う為のものである。
第 1実施形態における操縦装置 15は、座面部 131に固定されている力 有線又は 無線で接続されたリモコンにより構成するようにしてもよい。また、肘掛けを設けその 上部に操縦装置を配置するようにしてもよい。
[0019] なお本実施形態において、操縦装置 15の操作により出力される操作信号によって 加減速等の制御が行われるが、例えば、特許文献 1に示されるように、運転者が車両 に対する前傾きモーメントや前後の傾斜角を変更することで、その傾斜角に応じた車 両の姿勢制御及び走行制御を行うように切替可能にしてもょ 、。
なお、運転者による傾きモーメントによる姿勢制御及び走行制御を行う場合には、 本実施形態による姿勢制御は行わな 、。 但し、傾きモーメントによる姿勢制御等を行う場合であっても、運転者の動きによる 傾きモーメントと、外力による傾きモーメントとを別々に検出するセンサを配置する場 合には、外力による傾きモーメントを打ち消すために本実施形態による姿勢制御を適 用するようにしてちょい。
[0020] 搭乗部 13と駆動輪 11との間には制御ユニット 16が配置されている。
本実施形態にお ヽて制御ュ-ット 16は、搭乗部 13の座面部 131の下面に取り付 けられて 、るが、支持部材 14に取り付けるようにしてもょ 、。
[0021] 制御ユニット 16の下部には、本実施形態におけるバランサ駆動部 18が配置されて いる。
バランサ駆動部 18は、両駆動輪 11間の略中心上で、駆動輪に挟まれる位置に配 置されている。
[0022] 図 2は、ノ《ランサ駆動部 18の構成を表したものである。
図 2に示されるようにバランサ駆動部 18は、制御ユニット 16の下部に取り付けられ たバランサモータ 181、バランサ 182、及びバランサ駆動機構 183から構成されてい る。
[0023] バランサ駆動機構 183は、互いに歯合するバランサ歯車 184、軸受け 185、歯車支 持部 186、及びモータ歯車 187を備えている。
ノ ンサ歯車 184は、半円形状に形成され、その長さ方向の中心にはバランサ 18 2が固定されている。
[0024] 軸受け 185は、静圧軸受け等の各種軸受けを使用することが可能であるが、本実 施形態では転がり軸受けで構成されて 、る。
軸受け 185の内輪はホイールモータ筐体 121の外面に固定されており、外輪には 3本の歯車支持部 186を介してバランサ歯車 184が固定されている。これにより、半 円形状のバランサ歯車 184は駆動輪 11と同軸(回転軸 111)で回動することになる。
[0025] 本実施形態において、バランサ歯車 184を半円形状とすることで、バランサ歯車 18 4自体をバランサ 182の荷重の一部として使用することができる。
本実施形態では、バランサ 182がバランサ歯車 184の長さ方向の中心に固定され ることで、約 180度の範囲で移動可能になっている。 [0026] モータ歯車 187は、バランサモータ 181の回転軸に取り付けられている。
モータ歯車 187は、バランサ歯車 184と歯合しており、バランサモータ 181の駆動 力で回動することで、バランサ歯車 184を回動させる。これにより、バランサ 182が、 その回動軸 111を中心に駆動輪 11と平行な面内を移動する。
[0027] ノランサモータ 181は、制御ユニット 16に固定されることで、間接的に搭乗部 13 ( 本実施形態では座面部 131)に固定されている。
これにより、ノ《ランサモータ 181によりバランサ 182を所定トルク Tで回動 (移動)さ せる、その反力がバランサモータ 181から搭乗部 22に作用することになる。
[0028] 図 3は、倒立振り子車両の制御ユニット 16の構成を表したものである。
制御ユニット 16は、ノ ッテリ 160、主制御装置 161、ジャイロセンサ 162、モータ制 御装置 163を備えている。
ノ ッテリ 160は、駆動モータ 12及びバランサモータ 181に電力を供給する。また、 主制御装置 161にも制御用の低電圧の電源を供給するようになっている。
[0029] 主制御装置 161は、メイン CPUを備え、図示しない各種プログラムやデータが格納 された ROM、作業領域として使用される RAM、外部記憶装置、インターフェイス部 等を備えたコンピュータシステムで構成されて 、る。
倒立振り子車両の姿勢を保持する姿勢制御プログラム、操縦装置 15からの各種指 示信号に基づ 、て走行を制御する走行制御プログラム等の各種プログラムカ¾OM ( 又は外部記憶装置)に格納されており、主制御装置 161は、これら各種プログラムを 実行することで対応する処理を行う。
[0030] ジャイロセンサ 162は、搭乗部 13の姿勢を感知する姿勢感知センサとして機能する ジャイロセンサ 162は、搭乗部 13の傾斜に基づく物理量として、搭乗部 13の角加 速度と傾斜角度 Θを検出する。
なお、本明細書において角加速度は { Θ }で表し、図面においては Θの上部に 2つ のドットを付した Θドット'ドットで表示する。
[0031] ジャイロセンサ 162で検出される傾斜角度 Θは、車両前方に傾斜する場合が Θ >0 、後に傾斜する場合が Θ < 0である。 主制御装置 161は、ジャイロセンサ 162で検出される傾斜角度から傾斜方向を認 識する。
[0032] なお、本実施形態のジャイロセンサ 162では、角加速度と傾斜角を検出して主制御 装置 161に供給するが、角加速度だけを検出するようにしてもよい。
この場合、主制御装置 161は、ジャイロセンサ 162から供給される角加速度を蓄積 することで、角速度と角度を算出して傾斜角を取得するようにする。
[0033] また、姿勢感知センサとしてはジャイロセンサ 162以外に、液体ロータ型角加速度 計、渦電流式の角加速度計等の搭乗部 13が傾斜する際の角加速度に応じた信号 を出力する各種センサを使用することができる。
液体ロータ型角加速度計は、サーボ型加速度計の振り子の代わりに液体の動きを 検出し、この液体の動きをサーボ機構によりバランスさせるときのフィードバック電流 から角加速度を測定するものである。一方、渦電流を利用した角加速度計は、永久 磁石を用いて磁気回路を構成し、この回路内に円筒形のアルミニウム製のロータを 配置し、このロータの回転速度の変化に応じて発生する磁気起電力に基づき、角加 速度を検出するものである。
[0034] モータ制御装置 163は、駆動モータ 12、及びバランサ駆動部 18のバランサモータ 181を制御する。
すなわち、主制御装置 161から供給される駆動トルク、速度、回転向きの各指示信 号に応じて駆動モータ 12を制御する。
また、主制御装置 161から供給される回転方向指令とトルク指令値 T2に応じたトル クを出力するようにバランサモータ 181を、指令された方向に駆動制御する。
[0035] モータ制御装置 163は、駆動モータ 12用のトルク—電流マップと、バランサモータ 181用のトルク—電流マップを備えている。
このトルク 電流マップに従って、モータ制御装置 163は、主制御装置 161から供 給される駆動トルクに対応する電流を駆動モータ 12に対して出力し、供給されるトル ク指令値 T2に対応する電流をバランサモータ 181に対して出力するように制御する なお、主制御装置 161から供給される駆動トルクは、車両が停止している場合には 、姿勢制御のためのトルク指令値 T3であり、走行中は運転者の駆動要求に応じたト ルク指令値力も姿勢制御のためのトルク指令値 Τ3を加減算した値である。
[0036] 主制御装置 161には、駆動モータ 12、操縦装置 15、及びジャイロセンサ 162から 各装置、機器に応じた情報が供給されるようになっており、これらの情報に応じて姿 勢、走行、制動の各制御が行われるようになつている。
すなわち、駆動モータ 12からトルクとロータ位置を示す情報が供給され、操縦装置
15から加速指示情報、減速指示情報、旋回方向を示す旋回情報が供給され、ジャィ 口センサ 162からは搭乗部の角加速度 { Θ }が供給されるようになっている。
[0037] 以上のように構成された倒立振り子車両による姿勢制御処理の動作につ!、て説明 する。なお、この姿勢制御処理は、車両が停止している(走行していない)場合、加減 速中、及び定速走行中、すなわち、車両が取りうるの全ての状態において行われる。
[0038] 図 4は、倒立振り子車両における姿勢制御の原理について説明したものである。
図 4 (a)に示されるように、乗員 Aの重量を ml、バランサ Bの重量を m2とし、駆動輪
11の車輪中心(回転軸)から、乗員の重心までの距離を rl、ノランサの重心までの 距離を とする。
[0039] なお、バランサ Bの重量 m2は、バランサ 182だけでなくバランサ 182と一体となって 駆動するバランサ歯車 184等の重量である。
また、乗員 Aの重量 mlは、搭乗者が搭乗し、駆動輪 11を固定した状態で回転部 分の全重量 Mからバランサ重量 m2を減じた値である。
[0040] いま図 4 (a)の状態から、何かの外力が加わって図 4 (b)に示されるように、乗員 Aの 重心(以下乗員重心という)が前方に角加速度 { Θ 1 }で傾斜したものとする。
この乗員重心の傾斜による傾斜角度 0 1と角加速度 { Θ 1 }がジャイロセンサ 162で 検出される。
乗員重心の傾斜を検出すると、図 4 (c)に示されるように、バランサ Bを乗員 Aの傾 斜方向に角加速度 { Θ 2}で移動させる。傾斜方向については、傾斜角 Θの正負で 判断される。
このバランサ Bを動かす角加速度 { Θ 2}は、 { θ 2} >Κ{ Θ 1 }である。 Κは常数で、 その導出につ!、ては後述する。 [0041] バランサ Bを、角加速度 { Θ 2}で動かすと、図 4(c)に示されるように、バランサ Bを 動かすためのトルクに対する反力によって乗員 Aが後方 (最初の傾斜方向と反対方 向)に移動する。
[0042] 乗員 Aが後方に移動することで鉛直線を越えて角度 03 (<0)になったこと、すな わち、鉛直線に対する傾斜角 Θが反転したことを検出すると、バランサ Bを角度 Θ 3 方向(反対方向)に再度移動させる。
すなわち、乗員 Aの傾斜角度が反転した際の角加速度 { Θ 3}もジャイロセンサ 162 で検出され、角速度 { Θ 3}に応じた角速度 { Θ4}({ Θ 4} >Κ{ θ 3})でバランサ Βを 後方 (乗員 Αの移動方向)に移動させる。
これにより、図 4(d)に示されるように、ノ《ランサ Bを後方に動かすためのトルクに対 する反力によって乗員 Aが再度前方に角加速度 { Θ 5}で移動する。
[0043] 以後、同様に乗員 Aの鉛直線に対する傾斜角の反転を検出した際の角速度に対 応した角速度でバランサ Bを傾斜角方向に移動し、そのバランサ Bの移動による反力 で乗員 Aを鉛直線方向に戻す動作を繰り返すことで、鉛直線を中心とした傾斜角 Θ が徐々に 0に収束し、図 4 (a)に示す正常状態の姿勢に戻すことができる。
なお、図 4に示した乗員 Aの傾斜角は説明のため大きく表示しているが実際には、 傾斜角 θ 1又は角加速度 { Θ 1}の検出により直ちにバランサ Bを移動させるので、乗 員 Aにとつてわずかな動きでしかな 、。
[0044] ここで、上記常数 Kについて説明する。
今、乗員 Aが前方に角加速度 { Θ 1}で移動するのに必要なトルクを T1とし、バラン サ Bを前方に動かす際に必要なトルクを T2とすると、両トルク Tl、 Τ2は次の式(1)、 (2)により求まる。
[0045] Tl=mlX (rlXrl) Χ{ θ 1}···(1)
T2=m2X (r2Xr2) Χ{ θ 2}···(2)
[0046] このトルク Τ2が Τ1よりも大きければ、トルク Τ2の反力— Τ2により乗員 Αが反対方向
(後方)に戻されることになる。
(1) (2)式から、 { Θ 2}>((mlXrlXrl)/(m2Xr2Xr2)){ Θ 1}となる。 [0047] 実際の制御では、バランサモータ 181によるバランサ Bの駆動トルクを T2とし、 T2 >T1となるように、ノランサモータ 181を駆動制御することになる。
角加速度 { Θ 1 }はジャイロセンサ 162で検出する。
乗員 Αの重量 mlは、装置の重量 mla+搭乗者の重量 mlbである力 このうち装 置重量 mlaは車両毎に既知である。搭乗者の重量 mlbは、予想される搭乗者の予 想最大体重、例えば、 90kgを設定しておく。予想最大体重を設定しておき、その値 に基づいて T2を決定すれば、それ以下の体重であっても、 T2>T1の条件を満たし 、 ノ ンサ Βの移動によって乗員 Αを反対方向に戻すことができる。
[0048] なお、搭乗部 13の運転者が座る座面部 131に搭乗者の体重を測定する体重計( 体重計測手段)を配置しておき、その測定値を搭乗者の重量 mlbとして使用するよう にしてもよい。
[0049] 図 5は、主制御装置 161による姿勢制御動作を表したフローチャートである。
主制御装置 161は、ジャイロセンサ 162から搭乗部 13の傾斜角 Θと傾斜角加速度
{ Θ }を取得し (ステップ 50)、傾斜角 Θが反転した力否かを判断する (ステップ 51)。 ここで、傾斜角 Θの反転は、図 4 (b)から(c)への乗員 Aの状態変化、(c)から(d) への乗員 Aの変化のように、傾斜角 Θ >0の状態と傾斜角 Θ < 0の状態間の変化が 該当する。
また、本出願において、図 4 (a)から (b)への乗員 Aの状態変化のように、傾斜角 Θ =0 (安定状態)から傾斜角 Θ >0や Θ < 0への状態変化も、傾斜角 Θの反転に含ま れるものとする。
[0050] 主制御装置 161は、傾斜角 Θの反転が無ければ (ステップ 51; N)、ステップ 50に 戻って引き続き姿勢の監視を継続する。
[0051] 一方、傾斜角 Θの反転が検出された場合 (ステップ 51; Y)、主制御装置 161は、ス テツプ 50で取得した搭乗部 13の角加速度 { Θ }から上記式(1)に従って、乗員 Aを 角加速度 { Θ }で傾斜させるためのトルク T1を算出する (ステップ 52)。
[0052] ついで、バランサモータ 181に出力トルク T2を指令する(ステップ 53)。
すなわち、主制御装置 161は、モータ制御装置 163に対して、算出したトルク T1よ りも大きいトルク T2 ( >T1)をトルク指令値とし供給すると共に、傾斜角 Θに対応した バランサ 182の移動方向の情報(θ >0 :前方、 Θ <後方)を供給する。 これにより、モータ制御装置 163は、主制御装置 161から指示された方向にトルク T
2でバランサモータ 181を駆動する。
[0053] これにより、ノ ンサ 182が指示方向に移動し、その駆動トルク T2と釣り合う反カト ルクー T2が搭乗部 13 (乗員 A)に作用し、反対方向に戻される。
[0054] ついで、主制御装置 161は、電源がオフされたか判断し (ステップ 54)、オフされれ ば(; Y)処理を終了し、オフされていなければ(; N)、ステップ 50に戻って姿勢制御を 継続する。
[0055] 図 6は、他の倒立振り子車両の外観を表したものである。
この倒立振り子車両は、同軸上に配置された 2つの駆動輪 l la、 l ibと、両駆動輪 l la、 l ibをそれぞれ独立して駆動するホイール駆動モータ 12a、 12bを備えている そして、両ホイール駆動モータ 12の筐体上に、運転者が立った姿勢で搭乗するた めの搭乗部 40が配置されている。なお、搭乗部 40は、駆動軸上又は駆動軸より下 方に配置するようにしてもよぐ何れの場合も、ホイール駆動モータ 12aとホイール駆 動モータ 12bを接続する機能を備えている。
[0056] 搭乗部 40の前方中央には、支持部 41が配置されている。
支持部 41の上端部には、ハンドル 42が取り付けられている。ハンドル 42には、操 縦装置 15が取り付けられている。
なお、原動機付き自転車等と同様に、アクセルとブレーキで操縦装置 15を構成す るようにしてもよい。ハンドルの回転角度力 駆動力指令を取得し、ブレーキ操作で 停止指令を取得するようにしてもよ!、。
[0057] 搭乗部 40の下面には制御ユニット 16が固定され、制御ユニット 16の下部にはバラ ンサ駆動部 18が配置されている。
ノ ンサ駆動部 18の基本的構成は図 2に示した構成と同一であるが、以下異なる 点を中心に説明する。
バランサ駆動部 18は、バランサモータ 181が制御ユニット 16に固定され、ホイール 駆動モータ 12aの筐体にバランサ駆動機構 183が配設されている。 [0058] バランサ駆動機構 183のバランサ歯車 184の長さ方向の中心位置にバランサ 182 が取り付けられている。バランサ歯車 184は、内歯歯車で構成され、バランサモータ 1 81の回転軸に取り付けられたモータ歯車 187と歯合するようになつている。
この変形例におけるバランサ駆動機構 183では、バランサ歯車 184が内歯歯車に なっているので、歯車支持部は、半円形状のバランサ歯車 184の両端で軸受けの外 輪に支持されている。図 2と同様に中央にも歯車支持部を配設する場合には、モータ 歯車 187を軸方向に避けた位置に配設する。
軸受けの内輪は、ホイール駆動モータ 12aの駆動軸と同軸となるように、ホイール 駆動モータ 12aの筐体に固定されている。
[0059] なお、図 6に示した車両におけるバランサ駆動機構 183では、バランサ 182とバラン サ歯車 184を、ホイール駆動モータ 12aの駆動軸の上側となるように配置した力 下 側となるように配置してもよい。この場合バランサ 182は、乗員 Aが傾斜していない( Θ =0)状態で、駆動軸の鉛直線上下側に位置することになる。そして、内歯歯車と 歯合するようにモータ歯車の径を大きくするか、モータ取り付け位置を調整する(両者 でもよい)。
このようにバランサ 182とバランサ歯車 184を下側に配置することで、バランサの重 心までの距離 r2 (図 4参照)を大きくすることができる。
[0060] また図 6に示した車両では、バランサ駆動機構 183をホイール駆動モータ 12a側に 配置したが、バランサ駆動機構 183をホイール駆動モータ 12aとホイール駆動モータ
12bの中央部に配置するようにしてもよ!、。
[0061] また、バランサ駆動機構 183をホイール駆動モータ 12a側だけでなぐ他方のホイ ール駆動モータ 12b側にも配置するようにしてもよ!、。
この場合、バランサモータ 181を共通化し、バランサ 182a、 182b,バランサ駆動機 構 183a、 183bをそれぞれホイール駆動モータ 12a、 12bに配置するようにしてもよ い。
[0062] 図 6で説明した他の倒立振り子車両に対する制動処理については、図 5のフローチ ヤートで説明した制動処理と同様である。
[0063] 以上説明したように本実施形態の車両によれば、搭乗部 13の姿勢変化 (乗員 Aの 傾斜)を検出すると、乗員 Aが傾斜した角加速度 { Θ }から乗員 Aの傾斜に要したトル ク T1を算出し、このトルク T1より大きなトルク T2でバランサ Bを乗員 Aの傾斜方向に 移動することで、その反カー T2を乗員 Aに作用させ、乗員 Aのバランスをとること(姿 勢を定常状態に維持すること)が可能になる。
[0064] (3)第 2の実施形態の概要
第 1の実施形態では、乗員 Aが傾斜した方向にバランサ Bを移動させることで搭乗 部の姿勢制御を行う場合について説明した。
これに対して、第 2の実施形態では、姿勢制御を行うために、ノランサ Bの移動によ る反力に加えて、駆動輪 11の駆動による反力を使用する。
すなわち、乗員部 (乗員 A)の安定制御(姿勢制御)において、車両の停止 Z走行 Z制動 Z旋回時に乗員部をより安定させるために、バランサの移動による反力トルク と、駆動輪 11の駆動トルクを加減することによる反力トルクを使用する。
駆動輪 11の駆動トルクはバランサ Bの移動によるトルクを補完するために補助的に 使用する。
[0065] 具体的には、乗員 Aの移動トルク T1が所定トルク値以下の場合はバランサ Bの移 動による姿勢制御をする。
一方、乗員 Aの移動トルク T1が所定トルク値よりも大きくなつた場合には、バランサ Bを所定トルク値に対応する反力を発生させる角加速度で移動し、乗員 Aを鉛直線 方向に戻すために不足して 、る反力トルク分を駆動輪 11のトルクを加減させることで 、乗員 Aの姿勢を制御する。
本実施形態では、所定トルク値としてバランサ Bの移動により得られる最大トルク値 T2maxが使用される。
[0066] なお、第 2実施形態で使用する車両は、駆動輪 11に対する姿勢制御の部分を除い て、第 1実施形態及びその変形例(図 6を含む)で説明した構成と同様である。
また、本実施形態を含む全ての実施形態及び及び各変形例において、乗員 Aとバ ランサ Bについては、第 1実施形態の説明と同様に、乗員 Aは搭乗者が車両に搭乗 し、駆動輪 11の回転を固定した状態で回転する部分の全体からバランサ Bを除いた 部分を指し、バランサ Bは、バランサ 182だけでなくバランサ 182と一体となって重心 位置が移動する部分全体、例えば、バランサ歯車 184等を含めた部分を指す。
[0067] (4)第 2実施形態の詳細
図 7は、第 2実施形態における、倒立振り子車両のトルクバランスについて表したも のである。
図 7に示されるように、乗員 Aが点線で表した鉛直線上にいる状態から、外力によつ て、図 7に示されるように、角加速度 { Θ 1 }で移動した場合、この移動による乗員 Aの トルク T1は上記式(1)で表される。
そして、この乗員 Aの動きに対して、乗員 Aの姿勢を鉛直線上に戻すために、バラ ンサ Bを角加速度 { Θ 2}で動力した時のトルク T2は上記(2)で表される。
[0068] これに対して、駆動輪 11を駆動モータ 12で駆動するために必要なトルク T3は次の
T3で表される。
[0069] Τ3=Ι3 Χ { Θ 3} + (F Xr3) - -- (3)
[0070] ここで、 r3は駆動輪の半径、 { Θ 3}は駆動輪 11の回転角加速度である。
また、 13はタイヤのイナーシャ (慣性モーメント)で、駆動輪 11の重量を m3とした場 合に m3 X (r3 Xr3)で表される。
[0071] そして、乗員 Aの外力による移動に対して、ノランサ Bを移動したことによるトルク T2 に対する反力トルク—T2と、駆動輪 11にカ卩えたトルク T3に対する反力トルク—T3が 乗員 Aに作用することで、乗員 Aは鉛直線方向に戻されることになる。
なお、乗員 Aを鉛直方向(外力により移動した方向と反対方向)に戻すためには、 次の式 (4)を満たす必要がある。
[0072] (T2+T3) >Τ1· ·· (4)
[0073] 図 8は、第 2実施形態において、主制御装置 161の姿勢制御動作を表したフローチ ヤートである。
なお、図 8において第 1実施形態と同一の部分には同一のステップ番号を付してそ の説明を適宜省略する。
[0074] 第 2実施形態の姿勢制御において、主制御装置 161は、搭乗部 13の角加速度 { Θ }から乗員 Αを角加速度 { Θ }で傾斜させるためのトルク T1を算出 (ステップ 52)した 後、算出した T1が、バランサ Bの移動で得られるトルク T2 (反力トルク一 T2)の最大 値 T2max以下であるか否かを判断する(ステップ 52a)。
Tl≤T2maxである場合 (ステップ 52a;Y)、主制御装置 161はステップ 53に移行 し、第 1実施形態と同様の制御を行う。
[0075] 一方、 Tl >T2maxである場合 (ステップ 52a;N)、主制御装置 161は、バランサモ ータ 181に出力トルク T2maxと、加減トルク値 T3 >T1— T2maxをモータ制御装置
163に供給することで、出力トルクを指令する (ステップ 53a)。
[0076] モータ制御装置 163では、第 1実施形態の場合と同様に、バランサモータ 181用の トルク 電流マップに基づ!/、て、供給された出力トルク T2maxに対応する電流値を バランサ駆動部 18に供給することで必要な反力トルク— T2maxを得る。
一方、モータ制御装置 163は、駆動モータ 12用のトルク—電流マップに基づいて、 供給された加減トルク T3に対応する電流値で駆動モータ 12 (駆動輪 11)を駆動する ことで、必要な反力トルク—T3を得る。
[0077] なお、主制御装置 161は、モータ制御装置 163に対して、車両が停車している場 合には、加減トルク T3を供給する。
一方、車両が走行中である場合、主制御装置 161は、操縦装置 15から出力される 操作信号に対応した出力を得るために必要な駆動モータ 12の駆動トルク TMに加減 トルク T3をカ卩えた値 (TM+T3)をモータ制御装置 163に供給する。
モータ制御装置 163は、実際には、主制御装置 161から供給されるトルク値 (T3、
ΤΜ+Τ3、 TM (駆動モータによる姿勢制御を行わない場合))に対応する電流で駆 動モータ 12を駆動することになる。
[0078] 以上、ノランサ Bの移動による反力トルク T2と、駆動モータ 12 (駆動輪 11)の駆 動による反力トルク T3とにより、乗員 Aが鉛直線方向に戻されることになる。
以下、第 1実施形態と同様に、図 8のステップ 50からステップ 54を繰り返すことで、 乗員 Aの姿勢制御が行われる。
[0079] この第 2実施形態によれば、車両停止又は走行時 (特に定速走行時)の搭乗部 A の安定制御において、駆動モータトルクを補助的に利用する事で、許容外力を向上 する事が可能となり、更には起動時の乗員傾斜許容角度を向上する事が可能となる [0080] (5)第 3実施形態の概要
第 1実施形態、第 2実施形態、及び本実施形態では、乗員部 (乗員 A)の安定制御 (姿勢制御)において、バランサは、次の(a)、 (b)の 2つの効果を得るために使用さ れる。
(a)バランサ Bを移動することにより反力トルク一 T2を乗員 Aに作用させる。
(b)バランサの位置を鉛直線上から前方又は後方に位置させることにより重心位置 を移動させる。
[0081] しかし、これらは同時に発生する物理現象の為、その制御則は複雑にならざるをえ ない。これは、バランサ駆動トルクの反力を得る場合、同時に重心移動も発生するた めである。
[0082] そこで、本実施形態では、第 2実施形態による制御は車両が停止して 、る場合に実 行する。
そして、車両が走行している場合には、ノ《ランサ Bの移動を上記 (b)の重心位置の 制御用に使用し、反力トルクを得るためには使用しな 、。
一方、乗員 Aの外力による移動に対する走行中の姿勢制御については、駆動モー タ 12 (駆動輪 11)の駆動トルクの加減によるものとする。
[0083] (6)第 3実施形態の詳細
図 9は、第 3実施形態における、車両走行中の各部の状態を表したものである。 図 9 (a)には、車両走行中に乗員 Aが鉛直線上に姿勢制御されている状態を表し たものである。
車両走行中は、車両全体の重心 (乗員 Aとバランサ Bの合成重心)位置を進行方向 に傾けることで、走行抵抗分の駆動トルクとバランスさせる必要がある。
[0084] 本実施形態では、この図 9 (a)に示されるように、バランサ Bを進行方向前方に Θ 2 だけ傾けた位置に位置させる。
この場合、駆動モータ 12で駆動輪 11を駆動することにより発生する駆動トルク TM による反力トルク TMと、 Θ 2だけ傾けた位置にあるバランサ Bの重力によるトルク T 2 (G)とを一致さることで、乗員 Aの位置を鉛直線上に位置させながら走行することが 可會 になる。 ここで、重力加速度を Gとした場合に、トルク T2 (G)は、次の式(5)で表される。
[0085] T2 (G) =r2 X m2 X G X sin 0 2〜(5)
[0086] 図 9 (a)のように安定走行して 、る状態で、図 9 (b)に示すように外力によって乗員 A が鉛直線力 ずれた場合、乗員 Aの姿勢を鉛直線方向に戻すために、駆動モータ 1 2の駆動トルクを、走行に必要な駆動トルク TMに加減トルク T3を加えた TM+T3に 変更する。
ここで加減トルク T3の値として、 T3 >T1とすることで、乗員 Αは反力トルク一 Τ3に より鉛直線方向に戻されることになる。
[0087] 図 10は、第 3実施形態において、主制御装置 161の姿勢制御動作を表したフロー チャートである。
なお、図 10において第 2実施形態と同一の部分には同一のステップ番号を付して その説明を適宜省略する。
[0088] 第 3実施形態の姿勢制御において、主制御装置 161は、搭乗部 13の角加速度 { Θ }から乗員 Aを角加速度 { Θ }で傾斜させるためのトルク T1を算出 (ステップ 52)した 後、車両が走行中カゝ否かを判断する (ステップ 52b)。
車両が走行中か否かについては、例えば、車速センサからの出力力 SOより大きいか 否力 駆動モータ 12に駆動トルク TMを供給している力否か等により判断される。 またこの判断は、徐行の速度以下か否か、すなわち、車速センサ力もの出力力 例 えば 5kmZhより大き 、か否かで判断してもよ 、。
[0089] 車両が走行中でな 、、すなわち、車両が停車中であると判断された場合 (ステップ 5 2b ;N)、主制御装置 161は、ステップ 52aに移行し、以後ステップ 54まで第 2実施形 態と同様に処理する。
[0090] 一方、車両が走行中であると判断された場合 (ステップ 52 ; Y)、主制御装置 161は 、ステップ 52で算出した T1よりも大き 、トルク値を加減トルク値 T3としてモータ制御 装置 163に供給することで、出力トルクを指令し (ステップ 53b)、ステップ 54に移行 する。
[0091] なお、車両走行のための駆動トルク TMが指令されているので、主制御装置 161か らは、操縦装置 15から出力される操作信号に対応した出力を得るために必要な駆動 モータ 12の駆動トルク TMに加減トルク T3をカ卩えた値 (TM+T3)がモータ制御装置 163に供給される。
そして、モータ制御装置 163は、実際には、主制御装置 161から供給されるトルク 値 (ΤΜ + Τ3)に対応する電流で駆動モータ 12を駆動することになる。
[0092] 以上説明したように、第 3実施形態では、車両走行中においては、バランサ位置を 姿勢制御のためには移動させず、駆動モータ 12 (駆動輪 11)の加減トルク Τ3による 反力トルク Τ3を制御することで姿勢制御を行う。
このように、車両走行中はバランサ位置を姿勢制御用に移動させないので、バラン サ位置の移動による重心の移動を考慮しなくてよいため制御が簡略ィ匕される。
[0093] なお、本実施形態では、走行中においてバランサ移動による反力を利用せず、車 輪の駆動トルクを変化させるため、車速に変化が発生する。
しかし、車両の走行中であるため、停車中に比べて、乗員が車両の揺れとして感じ る程度は小くて済むと 、う効果がある。
[0094] 次に、本実施形態における車両による発進時、及び加減速時の動作について説明 する。
ここで発進時とは車両が停止している状態力 前方又は後方に発進するする場合 を 、 、、加減速時とは車両の走行中にぉ 、て加速又は減速する場合を 、う。
[0095] 本実施形態の車両では、発進時、及び加減速時にお!、て、全体重心 (乗員 Αの重 心とバランサ Bの重心の合成重心)の傾斜角 aを変化させる必要がある。
すなわち、発進、加減速直前における、車輪中心(回転軸)と全体重心を結ぶ線を 基準線とした場合に、発進時と加速時には全体重心を進行方向に、減速時には全 体重心を進行方向と逆方向に傾斜 (傾斜角 oc )させる必要がある。
ここで、発進時には鉛直線が基準線であり、鉛直線から加減速直前の状態での走 行に必要な傾斜角 ocだけ傾斜した線が基準線となる。
[0096] 本実施形態では、発進、加減速のために全体重心を基準線に対して前方又は後 方に移動させる方法として、駆動輪による第 1動作と、バランサ Bの移動による第 2動 作とがある。
図 11は、(a)が第 1動作の概要を、(b)が第 2動作の概要を表したものである。 この図 1 1では、車両の発進時の動作について表している力 基準線が異なる点、 減速の場合に傾斜の方向が逆 (減少させる方向)である点を除き同一である。
[0097] (a)第 1動作
この第 1動作では、発進直前において、乗員 A (の重心)、バランサ B (の重心)及び 全体重心 Zは、姿勢制御によって全て基準線 (鉛直線) P上にある状態にバランスが 取られている。
この状態で、図 1 1 (a) (ィ)に示すように、進行方向と逆方向に駆動輪 1 1を回転(図 では進行方向右方向に対して左方向に回転)させることで、駆動輪 1 1を後退させる。
[0098] すると、図 1 1 (a) (口)に示すように、基準線 P上にあった乗員 A、バランサ 、全体 重心 Zは、同一の位置関係 (角度関係)を保持したまま重力によって前傾 (傾斜角ひ) する。
そして、図 1 1 (a) (ハ)に示すように、所定の傾斜角 ex (全体重心 Zの傾斜角)の姿 勢を保持しながら、指定された方向に加速することで発進 (前進、後進)が行われる。
[0099] (b)第 2動作
この第 1動作では、発進直前において、乗員 A (の重心)、バランサ B (の重心)及び 全体重心 Zは、姿勢制御によって全て基準線 (鉛直線) P上にある状態にバランスが 取られている。
なお、加減速の場合には、加減速直前において基準線 Pは鉛直線に対して α θだ け傾斜しており、全体重心 Ζはこの基線上に位置する。乗員 Αとバランサ Βは、一方 が基準線 P上の前方に、他方は後方に存在するか、又は両者とも基準線 P上に位置 している。
[0100] この状態で、図 1 1 (b) (ィ)に示すように、バランサ Bを進行方向と逆方向、すなわち 、後方に移動させる。
すると、図 1 1 (b) (口)に示すように、バランサ Bが後方に移動したことによる反力トル クにより、乗員 Aはバランサ Bと反対方向(進行方向)に傾斜する。
また、全体重心 Zも、乗員 Aはバランサ Bと反対方向 (進行方向)で、基準線 Pと乗員 Aの間に移動する。
そして、図 1 1 (b) (ハ)に示すように、ノ《ランサ Bを徐々に前に戻しながら加速が行 われる。
[0101] 以上説明した第 2動作では、バランサ Bを移動させた場合にその反力で乗員 Aがバ ランサ Bと反対方向に移動するが、両者の全体重心 Zにつ ヽてもバランサ Bと反対方 向に移動する場合にっ 、て説明した。
このようにバランサ Bと全体重心 Zが反対方向に移動するための条件は、次の式 (6 )で示される。
[0102] ml Xrl/ (ll +ml X {rl }) >m2 Xr2/ (l2+m2 X {r2}) (6)
[0103] この式(6)において、 mlは乗員 Aの重量、 rlは駆動輪 11の車輪中心(車軸)から 乗員 Aの重心までの距離、 {rl }は、乗員 Aの角加速度、 IIは乗員 Aの重心回りのィ ナーシャ、式(6)中の mi x {rl }は、乗員 Aの車軸周りのイナーシャである。
また、 m2はバランサ Bの重量、 r2は駆動輪 11の車軸力 バランサ Bの重心までの 距離、 2}は、バランサ Bの角加速度、 12はバランサ Bの重心回りのイナ一シャ、式( 6)中の m2 X 2}はバランサ Bの車軸周りのイナーシャである。
[0104] なお、式 (6)において不等号の向きが逆である場合、ノ《ランサ Bを移動した場合、 乗員 Aにつ 、てはバランサ Bと反対方向に移動する力 全体重心 Zはバランサと同一 方向に移動する。この場合、バランサ Bを進行方向、加速方向、減速方向と反対方向 に移動することで、全体重心 Zを所望方向に移動することができるが、乗員 Aが重心 の移動方向と逆方向となり、通常の乗 «覚と逆になるため、式 (6)による方がこの ましい。
[0105] ただし、第 1〜第 3実施形態等で説明した姿勢制御を行う場合については、乗員 A はバランサ Bと逆方向に移動するので、式 (6)の関係でも、不等号が逆の関係でもよ い。
[0106] 次に、第 1動作及び第 2動作による、発進時、及び加減速時の制御動作について 説明する。
ここで、発進時、及び加減速時の制御動作において使用される運動方程式につい て説明する。
なお、各式において { Θ }は角加速度を、「 0」は角速度を表し、添え字 wは駆動輪 を意味し、添え字 1は乗員 Aを表し、添え字 2はバランサを表すものとする。また gは重 力加速度を、 Rwは駆動輪の半径を表す。
[0107] (a)駆動輪 11の運動方程式は、ホイルモータトルクを T3とした場合、次の式(7)で表 される。
丄、3 = Iw{ Θ w}
+Rw[mwXRwX { Θ w} + [ (ml XRwX { Θ w}) + (ml Xrl { Θ 1} Xcos Θ 1 )— (mlXrlX「 Θ 1」 X「 01」 X sin Θ 1)] + [(m2XRwX { Θ w}) + (m2Xr2{ Θ 2} X cos Θ 2)-(m2Xr2 X「 02」 X「 02」 X sin 02) ] ]
+ (RwXDxw+D0w) X「0w」 (7)
[0108] 式(7)は、次のように表される。
T3=T31+T32+T33
T32=RwX (T32a+T32b+T32b)
T33= (T33a+T33b) X「 0 w」
[0109] T31は駆動輪 11の慣性である。
T32は地面との摩擦力によるモーメントである。
Rw X T32aはタイヤの慣性(並進)である。
Rw X T32bは車体の慣性 (並進方向加速度 +周方向加速度 半径方向加速度) である。
Rw X T32cはバランサの慣性 (並進方向加速度 +周方向加速度 半径方向加速 度)である。
T33は減衰力である。
T33aX「 Θ wjは、空気抵抗による減衰力である
T33bX「 Θ wjは、摩擦による減衰力である。
Rwは駆動輪 11の半径である。
[0110] (b)車体の運動方程式は次の式 (8)で表される。
Tl=一(T2+T3)
= (mlXrlXrl+Il) Χ{ Θ 1}
+ (ml XRwX { 0w} Xrl Xcos θ 1)
— (mlXgXrlXsin01) + (D01X「01」) (8) [0111] 式(8)は次のように表される。
T1 =車体 (乗員 Aの)慣性 +車体の慣性力によって働く偶力一重力 +減衰力 [0112] (c)バランサの運動方程式は、ノ《ランサモータトルクを T2とした場合、次の式(9)で 表される。
T2= (m2Xr2Xr2+I2) X { θ 2}
+ (m2XRwX { 0w}Xr2Xcos02)
一(m2XgXr2Xsin02) (D 02X「 02」) (9)
[0113] 式(9)は次のように表される。
T2=バランサの慣性 +バランサの慣性力によって働く偶力一重力 +減衰力
[0114] なお、上記式 (7)〜(9)を線形近似すると共に、粘性摩擦を無視 (省略)することで 、 Τ3、 Tl、 Τ2をそれぞれ Τ3'、 Tl,、 T2'で近似することも可能である。
T3'=Iw' Χ{ Θ w}+Rw(mlXRlX{ Θ l}+m2XRlX{ θ 1})
Tl' =11' X { Θ l}+mlXRwX{ Θ w} Xrl-ml XgXrl X Θ 1
T2,=I2, X { Θ l}+m2XRwX { Θ w} Xr2-m2XgXr2X Θ 2
[0115] この近似式において、 Iw'、 Π'、 12'は次の通りである。
Iw =Iw+ (ml +m2 + mw XRwXRw
Il'=Il+mlXrlXrl
12, =I2+m2Xr2Xr2
[0116] 図 12は、第 2動作による発進時、加減速時の制御動作を表したフローチャートであ る。
この図 12に示されるように、主制御装置 161は、発進、加減速 (以下発進等という) 直前における車両 (乗員 A)とバランサ Bの現状状態を検出する (ステップ 21〜ステツ プ 25)。
[0117] すなわち、主制御装置 161は、車両速度を測定する (ステップ 21)。
この車両速度は後述のステップ 23で車両傾斜角速度の検出精度を上げるために 使用される。
また、上記式 (8)における慣性及び重力の値を車速を用いたより精度の高い値を 算出する場合にも使用可能である。 ただし、車速の検出は省略することも可能である。
[0118] ついで主制御装置 161は、車両 (乗員 A)の傾斜角と傾斜角速度を測定する (ステ ップ 22、 23) o
なお、車両の傾斜角加速度は、測定した傾斜角速度力 算出される。
[0119] さらに主制御装置 161は、バランサ Bの角度 (傾斜角度)と角速度を測定する。
バランサ Bの角加速度は、測定した角速度力も算出される。
[0120] 以上により車両とバランサ Bの現状状態の測定が完了すると、主制御装置 161は、 操縦装置 15カゝら出力される走行指令 (操作信号)を読み取る (ステップ 26)。
[0121] 次に主制御装置 161は、ステップ 21〜25で検出した車両とバランサ Bの現状状態 と、ステップ 26で読み取った走行指令とに対応する、発進又は加減速後における全 体重心 Zの目標傾斜角 exを算出する (ステップ 27)。
[0122] 次に主制御装置 161は、全体重心 Zを算出した目標傾斜角 aとするために必要な 、車両 (乗員 A)の目標傾斜角と目標傾斜角速度を算出する (ステップ 28、 29)。 目標傾斜角 αとするために必要な車両の目標傾斜角と目標傾斜角速度は、上記 運動方程式と、車両 (乗員 Α)及びバランサ Βの重量や重心までの距離 rl、 r2、イナ ーシャ等から求まる。
[0123] 次に主制御装置 161は、車体を算出した目標傾斜角と目標傾斜角速度にするため に必要なバランサトルク T3を算出し、モータ制御装置 163に出力指令を出す (ステツ プ 30)。
モータ制御装置 163では、バランサモータ 181用のトルク—電流マップに基づいて 、出力されたバランサトルク T3に対応する電流値をバランサ駆動部 18に供給するこ とで、車両 (乗員 A)及び全体重心 Zを移動させる。
[0124] ついで、主制御装置 161は、車両を現状状態から発進又は加減速させるために必 要な駆動モータトルク T1を算出し、モータ制御装置 163に出力指令を出す (ステップ 31)。
モータ制御装置 163では、駆動モータ 12用のトルク—電流マップに基づいて、供 給された駆動モータトルク T1に対応する電流値で駆動モータ 12 (駆動輪 11)を駆動 することで、発進又は加減速を行う。 [0125] 以上により、発進又は加減速を行った後主制御装置 161は、姿勢安定制御(姿勢 制御)を行 、 (ステップ 32)、メインルーチンにリターンする。
[0126] 以上、第 2動作による発進時、加減速時の制御動作について説明したが、第 1動作 による発進等の制御動作を行う場合には次のようにする。
すなわち、バランサ Bを移動させないので車両 (乗員 A)、バランサ 、全体重心 Zの 位置関係は変化しない。
そこで、ステップ 27で算出した目標傾斜角 αと発進等直前の全体重心 Zの傾斜角 a 0との差分 Δ αを、ステップ 22で測定した車両傾斜角に加算した角度が目標車両 傾斜角となる (ステップ 28、 29)。
そして、主制御装置 161は、車体を算出した目標傾斜角と目標傾斜角速度にして 発進又は加減速に必要な駆動モータトルクの算出と指令を出力する (ステップ 32)。 なお、この場合には当然にステップ 30は省略される。
[0127] 以上説明したように、第 1及び第 2動作によれば、車両 (乗員 Α)は、発進及び加速 時にお 、て発進方向に傾斜 (前進の場合には前傾)し、減速時にお!、て発進方向と 逆方向に傾斜するので、違和感のな 、乗 «覚を得ることができる。
[0128] 次に、本実施形態及び各種変形例で使用するバランサの他の構成について図 13 〜図 15を用いて説明する。
なお、図 13〜図 15に示した構成図は、バランサの構成を説明するためのものであ り、図 1に示した操縦装置 15や制御ユニット 16等については適宜省略してある。制 御ユニット 16については、座面部 131の下部等に適宜配置される。
[0129] 図 13は、 360度回転可能なバランサ 182の構成を表したものである。
この図 13に示されるように、駆動輪 1 la用の駆動モータ 12aと駆動輪 1 lb用の駆動 モータ 12bとの間にバランサモータ 181が配置されている。
このバランサモータ 181のバランサ駆動軸 188は、駆動輪 l la、 l ibの回転軸 111 と同軸上に配置され、バランサ駆動軸 188にはバランサ指示部材 187を介してバラン サ 182が配置されている。
[0130] なお、図 13では、バランサ支持部材 187は、バランサモータ 181の一方側のバラン サ駆動軸 188に配置されている力 両側のバランサ駆動軸 188にバランサモータ 18 1を挟むように配置し、 2つのバランサ支持部材 187、 187でバランサを支持するよう にしても良い。
[0131] 図 14は、バランサモータ 181で構成したバランサ 182を表したものである。
図 14に示されるように、駆動モータ 12bの筐体には駆動輪 11と同軸線上に軸 189 aが配置され、この軸 189aには軸受けを介してバランサ支持部材 189bが配置され、 ノ《ランサ支持部材 189bにバランサとして機能するバランサモータ 181が取り付けら れている。
バランサモータ 181の回転軸にはモータ歯車 187aが配置されており、モータ歯車 187aは、駆動モータ 12aの駆動輪 11aと反対側の筐体に配置されている固定歯車 1 87bと歯合して!/、る。
[0132] このバランサモータ 181を駆動すると、モータ歯車 187aが回転し、固定歯車 187b と歯合しながら固定歯車 187bの周囲をバランサモータ 181と共に回転移動する。 その際バランサモータ 181は、ノ《ランサ支持部材 189bを介して軸 189aを回転軸と して軸支されて、回転する。
[0133] このようにバランサモータ 181でバランサを構成したので、バランサを機能させるた めに必要な部材を小さくすることができるので、搭乗部 13下部の空間を有効に活用 できる。
また、搭乗部 Aの重量となって ヽたバランサモータの重量をバランサの重量とするこ とがでさる。
[0134] 図 15は、回転軸 111を中心として回転するのではなぐ水平面を車両の前後方向 に移動するバランサ 182を表したものである。
この図 15に示されるように、座面部 131の座面と反対側に固定され、車両の前後方 向を長手方向とする長さを持った固定部 181cが配置されている。
そして、バランサ 182は、固定部 181cに案内されながら、矢印 qで示されるように、 車両の前後方向に移動するように構成されて 、る。
[0135] この固定部 181cとバランサ 182による駆動は、ボールネジ式及び、リニアモータ式 のいずれとしてもよい。
ボールネジ式の場合には、図示しないバランサモータでボールネジが回転され、そ の回転によりバランサ 182が前後に移動するようにする。
また、リニアモータ式の場合には、固定部 181cに固定子、ノ《ランサ 182に可動子 が配置され、バランサ 182は、固定部 181cの長手方向に形成されたガイドに沿って 前後に移動する。
[0136] (7)第 4実施形態
次に第 4実施形態について説明する。
この第 4実施形態では、前後方向の姿勢制御ではなぐ左右方向の姿勢制御を行 う物である。
すなわち、以上説明した実施形態では、前後方向の倒立制御 (姿勢制御)にバラン サ 182を使用する場合について説明したが、第 4実施形態では、左右方向にバラン サを移動することで、左右方向の姿勢制御を行うようにしたものである。
なお、第 4実施形態の車両の場合、左右方向の傾斜に対する姿勢制御としてバラ ンサを使用するので、駆動輪 11は 1つである。
[0137] 図 16は、第 4実施形態におけるバランサの動きについて表したものである。
図 16 (a)に示した実施形態では、ノ ンサ Bは、駆動輪 11の回転軸 111を中心とし て車両の前後方向の円弧上を矢印 piで示すように移動すると共に、回転軸 111を 中心とした左右方向の円弧上を矢印 p2で示すように移動する。
[0138] 一方、図 16 (b)に示した実施形態では、バランサ Bは水平面上を前後方向に矢印 p3で示すように移動すると共に、左右方向に矢印 p4で示すように移動する。
[0139] なお、図 16 (a) (b)では、前後、左右方向に決められたライン pi〜p4上をバランサ が移動する場合にっ 、て説明したが、回転軸 111を中心とする曲面上の任意の位置 や、水平面上の任意の位置を所定範囲内で移動するように構成してもよ ヽ。
[0140] 更に、図 16 (c)に示した実施形態では、バランサ Bは回転軸 111と搭乗者 A (の重 心)を結ぶ車両線 Yを中心に、該車両線 Yの周囲を回転移動するように構成されてい る。図 16 (c)において、バランサ Bの周囲に記載した点線の領域は、バランサの外形 形状を概念的に表したものであり、ノ ンサ全体が車両線 Yに接する状態で配置さ れている。
この場合、車両 (搭乗者 A)の傾斜に伴って車両線 Yも傾斜し、バランサ Bは水平面 上ではなぐ車両線 Yと直交する平面上を車両線 Yを中心として、矢印 Ρ5で示すよう に回転する。
なお、バランサ Βを車両の傾斜と関係なく水平面上を鉛直線を中心として回転する ように構成してもよい。
[0141] 以上説明したように、左右方向の姿勢をバランサで制御することにより、車両の走行 安定性を向上させることができる。
また、バランサの移動により強制的に全体重心 Ζの位置を左右に移動させることで、 全体重心 Ζの移動方向に進路変更することが可能になる。例えば、バランサを左方 向に移動させ、その反力で全体重心及び車両 (搭乗者 Α)を右方向に傾斜させること で、右方向にカーブすることが可能になる。
[0142] なお、以上説明したバランサによる左右方向の姿勢制御については、第 1〜第 3実 施形態で説明した姿勢制御と同様に制御され、全体重心 Ζの強制的移動について は第 2動作と同様に制御される。
[0143] 次に第 5実施形態について図 17から図 21を参照して詳細に説明する。
(8)第 5実施形態の概要
本実施形態の車両では、姿勢制御を行うバランサを、車軸と同軸の回りに回転する フライホイールで構成する。
すなわち、バランサを回転あるいは制動すると、回転数の増減によるバランサに角 加速度が生じる。この際にバランサの有する慣性により、バランサの軸の回りにバラン サの加速の方向と逆方向に車両を回転させるトルク (反力トルク)が生じる。このトルク により車両の姿勢制御を行う。
本実施の形態の車両は、バランサの回転数の増減により車両の姿勢が安定した後 は、バランサを自由回転させる(回転数一定状態)。
[0144] このように、ノランサをフライホイールで構成することによりストロークを無限とするこ とがでさる。
また、バランサの駆動による重心移動が無くなるため、姿勢制御が容易になる。 また、バランサをコンパクトィ匕及び軽量ィ匕することができ、車両も小型化することがで きる。 更に、バランサを重力に逆らわずに保持するためエネルギーの消費を軽減すること ができる。
[0145] (9)第 5実施形態の詳細
図 17は、車両の外観構成の一例を例示したものである。
本実施形態の車両は、倒立振り子車両により構成されており、搭乗部の姿勢を感 知し、その姿勢に応じて、駆動輪の駆動方向で前後方向のノ ランスを保持するように 姿勢制御を行 、ながら走行するものである。
本実施形態における姿勢制御の方法としては、例えば、米国特許第 6, 302, 230 号明細書、特開昭 63— 35082号公報、特開 2004— 129435公報、特開 2004— 2 76727公報で開示された各種制御方法が使用可能である。
[0146] 図 17に示されるように、倒立振り子車両は、同軸に配置された 2つの駆動輪 l la、 1 lbを備えている。
両駆動輪 l la、 l ibは、それぞれホイールモータ筐体 121内に収納された駆動モ ータ(ホイールモータ) 12で駆動されるようになって!/、る。
また、駆動輪 l la、 l ibの間には、図示しないフライホイールで構成したバランサと 、このバランサの回転を加速するバランサモータがホイールモータ筐体 121内に、駆 動輪 l la、 l ibと同軸に設けられている。
[0147] 駆動輪 l la、 l ib (以下、両駆動輪 11aと l ibを指す場合には駆動輪 11という)及 び駆動モータ 12の上部には運転者が搭乗する搭乗部 13が配置されて ヽる。
搭乗部 13は、運転者が座る座面部 131、背もたれ部 132、及びヘッドレスト 133で 構成されている。
搭乗部 13は、ホイールモータ筐体 121に固定された支持部材 14 (フレーム)により 支持されている。
[0148] 搭乗部 13の左脇には操縦装置 15が配置されている。この操縦装置 15は、運転者 の操作により、倒立振り子車両の加速、減速、旋回、回転、停止、制動等の指示を行 う運転操作部である。
本実施形態における操縦装置 15は、座面部 131に固定されている力 有線又は 無線で接続されたリモコンにより構成するようにしてもよい。また、肘掛けを設けその 上部に操縦装置を配置するようにしてもよい。
[0149] なお本実施形態において、操縦装置 15の操作により指示される走行指令によって 加減速などの制御が行われるが、例えば、特開平 10— 67254号公報に示されるよう に、運転者が車両に対する前傾きモーメントや前後の傾斜角を変更することで、その 傾斜角に応じた車両の姿勢制御及び走行制御を行うように切替可能にしてもょ 、。
[0150] 搭乗部の右脇には、表示'操作部 17が配置されている。この表示'操作部 17は、 図示しな!、液晶表示装置からなる表示部 172と、この表示部 172の表面に配置され たタツチパネル及び専用の機能キーで構成される入力部 171を備えて 、る。
なお、表示 ·操作部 17は、操縦装置 15と同様に又は同一のリモコンにより構成する ようにしてもょ ヽ。また表示 ·操作部 17と操縦装置 15と左右の配置を逆〖こしてもよく、 両者を同一の側に配置するようにしてもょ 、。
[0151] 搭乗部 13と駆動輪 11との間には制御ユニット 16が配置されている。
本実施形態にお ヽて制御ュ-ット 16は、搭乗部 13の座面部 131の下面に取り付 けられて 、るが、支持部材 14に取り付けるようにしてもょ 、。
[0152] 次に、フライホイールで構成したバランサによる姿勢制御の原理について説明する 図 18 (a)は、本実施の形態の車両をモデルィ匕した模式図であり、車両を前進方向 力も見た正面図を示している。
このモデルでは、車両を、搭乗部 13と、フレームを介して搭乗部 13と接続する駆動 モータ 12、駆動モータ 12で駆動される駆動輪 11、及びフレームを介して搭乗部 13 と接続するバランサモータ 22、 ノランサモータ 22で駆動されるバランサ 21で構成し ている。ただし、フレームの質量は無視する。
図 17に示した車両との対応では、図 17の車両から、駆動モータ 12、駆動輪 11、バ ランサモータ 22、 ノ《ランサ 21を除いた部分の重心が図 18 (a)の搭乗部 13に該当す る。
[0153] ここでは、進行方向に対して水平面上の垂直な方向(運転者から見て左右方向)の ノ《ランスは保たれているものとし、進行方向のバランスを制御することを考える。 図 18 (b)は、モデルィ匕した車両をバランサ 21側から見た側面図を示している。ただ し、バランサモータ 22は省略してある。
以下では、図 18 (b)に示したように、車軸 25を中心として搭乗部 13が車両の前進 方向に回転する (傾斜する)方向を正の方向とし、逆の方向を負の方向として説明す る。
[0154] バランサ 21は、質量を持った回転体であり、その重心は車軸 25上にある。バランサ モータ 22の回転軸は車軸 25と同軸になっており、バランサモータ 22は、バランサ 21 を指定された方向、及び指定された角加速度にて回転させる。
すなわち、ノ《ランサモータ 22は、指定された角加速度が正の値の場合はバランサ 2 1を正の方向に当該角加速度で回転し、負の値の場合はバランサ 21を負の方向に 当該角加速度で回転する。
[0155] バランサモータ 22が、バランサ 21の回転を加速すると、バランサ 21の有する慣性 により、バランサモータ 22のステータ側にバランサ 21の加速方向と逆方向に回転さ せるトルクが生じる。
バランサモータ 22は、車両に固定されているため、このトルクは、搭乗部 13をバラ ンサ 21の加速方向と逆方向に回転させるトルクとして作用する。本実施形態では、こ のトルクを反力と呼ぶことにする。
すなわち、反力は、ノランサモータ 22がバランサ 21にトルクを作用させたことにより 生じる反作用である。
この原理により、ノ《ランサ 21の回転を正の方向に加速すると、搭乗部 13には負の 方向に傾く反力が作用し、バランサ 21の回転を負の方向に加速すると、搭乗部 13に は正の方向に傾く反力が作用することになる。
[0156] このようにバランサ 21の加速に対する反力は、搭乗部 13を前進方向、あるいは後 退方向に傾ける力として作用するため、これを車両の姿勢制御に利用することができ る。
すなわち、目標とする車軸 25回りの傾斜角度(目標傾斜角)の位置から、搭乗部 1 3が外力等により傾斜した場合、搭乗部の傾斜方向にバランサ 21の回転を加速する 。これにより、搭乗部 13を目標傾斜角度に近づける方向に反力が作用し、搭乗部の 傾きを目的地傾斜角度に近づけるように位置制御することができる。 [0157] 図 19は、倒立振り子車両における姿勢制御の原理について説明したものである。 図 19 (a)に示されるように、乗員 Aの重量を ml、駆動輪 11の車輪中心(回転軸)か ら、乗員の重心までの距離を rlとする。
なお、本明細書において角加速度は { 0 }、 { ω }で表し、図面においては Θの上部 に 2つのドットを付した 0ドット'ドット、 ωの上部に 1つのドットを付した ωドットで表示 する。
また、乗員 Αの重量 mlは、搭乗者が搭乗し、駆動輪 11を固定した状態で回転部 分の全重量 Mからバランサ 21の重量を減じた値であり、搭乗部 13と乗員の体重とで 近似できる。
[0158] いま図 19 (a)の状態から、何かの外力が加わって図 19 (b)に示されるように、乗員 Aの重心(以下乗員重心という)が前方に角加速度 { Θ 1 }で傾斜したものとする。 この乗員重心の傾斜による傾斜角度 0 1と角加速度 { Θ 1 }がジャイロセンサ 162で 検出される。
乗員重心の傾斜を検出すると、図 19 (c)に示されるように、バランサ 21の回転を乗 員 Aの傾斜方向に角加速度 { ω 2}で加速させる。
加速の方向傾斜方向については、基準線(図 19の例では車軸 25を通る鉛直線) に対する傾斜角 Θの正負で判断され、通常車両の前方進行方向への回転を正、そ の逆を負とする。
[0159] このバランサ 21を動かす角加速度 { ω 2}は、 { ω 2} >Κ{ Θ 1 }である。 Κは常数で、 その導出につ!、ては後述する。
なお、ノランサ 21の加速は、ノランサ 21の回転数を検出し、その回転方向が正方 向(加速しょうとして 、る方向と同方向に回転して 、る場合)であれば回転数を増加さ せることで正方向の加速度 { ω 2}を得る。
そして、ノランサ 21が加速しょうとして 、る方向と逆方向に回転して 、る場合であれ ば、回転数を減少させることによる正又は負の加速を行う。回転数が減少して 0にな つた場合には、それ以前と逆方向の回転を増加させる。
[0160] バランサ 21を、角加速度 { ω 2}で回転させると、図 19 (c)に示されるように、バラン サ 21を動かすためのトルクに対する反力によって乗員 Aが後方 (最初の傾斜方向と 反対方向)に移動する。
[0161] 乗員 Aが後方に移動することで鉛直線を越えて角度 0 3 (< 0)になったこと、すな わち、鉛直線に対する傾斜角 Θが反転したことを検出すると、バランサ 21を角度 Θ 3 方向(反対方向)に加速 (負の方向に加速)させる。
すなわち、乗員 Aの傾斜角度が反転した際の角加速度 { Θ 3}もジャイロセンサ 162 で検出され、角加速度 { Θ 3}に応じた角加速度 { ω 4} ({ ω 4} >Κ{ Θ 3})でバランサ 21を加速させる。
この場合の加速は、図 19の例の場合、負方向の加速となる。すなわち、直前までバ ランサ 21は正方向(図面右回り方向)に回転させているので、バランサ 21に回転数を 減少 (減速)させることにより負方向の加速を行う(回転数が減少していき 0になったら 逆回転させることになる)。
これにより、図 19 (d)に示されるように、ノ《ランサ 21を後方に動かすためのトルクに 対する反力によって乗員 Αが再度前方に角加速度 { Θ 5}で移動する。
[0162] 以後、同様に乗員 Aの鉛直線に対する傾斜角の反転を検出した際の角加速度 { Θ }に対応した角加速度 { ω }でバランサ 21を傾斜角方向に加速し、そのバランサ 21の 移動による反力で乗員 Αを鉛直線方向に戻す動作を繰り返す。このような乗員 Aの 振り子運動を通して、鉛直線を中心とした傾斜角 Θが徐々に 0に収束し、図 19 (a)に 示す正常状態の姿勢に戻すことができる。
なお、図 19に示した乗員 Aの傾斜角は説明のため大きく表示しているが実際には 、傾斜角 θ 1又は角加速度 { Θ 1 }の検出により直ちにバランサ 21を加速させるので、 乗員 Aにとつてわずかな動きでしかな 、。
[0163] 車両は、図 19 (a)に示すように、搭乗部 13の位置が目標とする鉛直線上(目標傾 斜角)に戻った場合、すなわち、搭乗部 13が所定の位置にあり、反力を必要としない 場合、バランサモータ 22がバランサ 21に加えるトルクをゼロとし、バランサ 21を自由 回転 (フリーラン)させる。
このようにバランサ 21の反力を利用するとき以外の場合にバランサ 21を自由回転さ せるのは、バランサ 21を制御(例えば制動)することで不要な反力が発生するのを防 ぐためである。 ノ ンサ 21を自由回転させても電力を消費したり、車両の重心を移動させたりしな いので、車両の運用上何ら不都合は生じない。
[0164] 自由回転しているバランサ 21は、軸受などによる摩擦で徐々に停止する力 あるい は、停止する前に、再度バランサモータ 22によって加速される。
このため、ノ《ランサモータ 22がバランサ 21の回転を加速する際に、前回の加速に より既にバランサ 21が回転している場合がある。
ノランサ 21の回転を加速する際にバランサ 21が既に回転している場合、バランサ モータ 22は、その回転速度からバランサ 21を加速する。
[0165] 例えば、ノ ランサ 21が正の方向に自由回転している場合に、ノ ランサ 21を正の方 向に加速する場合、ノ ランサモータ 22は、ノ ランサ 21の回転を加速して更に高速で 回転させる。逆に、ノランサ 21の回転を負の方向に加速する場合は、ノ ランサ 21を 減速してバランサ 21の回転速度を低下させる。
[0166] 以上のように、本実施の形態では、バランサ 21の負の方向の加速をバランサモータ 22で行うように構成した力 例えば、ブレーキなどの物理的な制動手段を用いて負の 方向の加速を行うように構成することもできる。
例えば、ノ ランサ 21にブレーキ装置を設置した場合を考える。ノ ランサ 21が正の 方向に回転している際に、これを負の方向に加速したい場合、ノランサ 21にブレー キ装置を作用させると、バランサ 21の回転が減速し (すなわち、負の方向に加速し)、 これによつて反力を発生させることができる。
[0167] ここで、上記常数 Kについて説明する。
今、乗員 Aが前方に角加速度 { Θ 1 }で移動するのに必要なトルクを T1は次の式(1 )により求まる。
[0168] Tl =ml X (rl Xrl) Χ { θ 1 } · ·· (1)
[0169] 一方、バランサ 21を正の方向に加速した場合、乗員 Α (搭乗部 13)に対して負の方 向に作用するトルク T2 (反力)の大きさは、次の式(2)により求まる。
ただし、バランサ 21は、直径 D、厚さ L、質量 mの円板とし、加速度 (角加速度)を d co Zdtとする。なお、 ωはバランサ 21の角速度である。
[0170] T2 = m- (D X D/16 + L X L/12) Χ { ω } · ·· (2) [0171] このトルク T2が Tlよりも大きければ、(トルク T2の反カー T1)のトルクで乗員 A (搭 乗部 13)を傾斜した方向と反対方向 (後方)に戻すことができる。
(1) (2)式から、次の式(3)となる。
{W2}>((mlXrlXrl)/m- (DXD/16+LXL/12)) { θ 1}···(3) 従って、 K= (mlXrl Xrl)/(m- (DXDZ16+LXLZ12))となる。
[0172] 実際の制御では、バランサモータ 22によるバランサ 21の駆動トルクを T2とし、 T2
>T1となるように、ノランサモータ 22を駆動制御することになる。
角加速度 { Θ 1}はジャイロセンサ 162で検出する。
乗員 Αの重量 mlは、装置の重量 mla+搭乗者の重量 mlbである力 このうち装 置重量 mlaは車両毎に既知である。搭乗者の重量 mlbは、予想される搭乗者の予 想最大体重、例えば、 90kgを設定しておく。予想最大体重を設定しておき、その値 に基づいて T2を決定すれば、それ以下の体重であっても、 T2>T1の条件を満たし 、 ノ ンサ 21の移動によって乗員 Αを反対方向に戻すことができる。
[0173] なお、搭乗部 13の運転者が座る座面部 131に搭乗者の体重を測定する体重計( 体重計測手段)を配置しておき、その測定値を搭乗者の重量 mlbとして使用するよう にしてもよい。
[0174] 以上に述べたように、車両は、バランサ 21の回転の加速に伴う反力によって姿勢制 御を行うことができる。
ところで、搭乗部 13に加わった外力が大きぐ搭乗部 13が傾斜する角加速度が大 きい場合、ノ ンサ 21で発生させ得る最大反力 Tbmaxでは姿勢制御に必要な反力 が不足する場合がある。
この場合、本実施形態の車両では、駆動モータ 12による傾斜駆動トルクによって反 力の不足分を補う。
[0175] 例えば、正方向に大きな外力(大きな角加速度)で傾いた搭乗部 13を垂直方向に 立て直す場合、バランサ 21で最大のバランサトルクを発生させると共に、駆動モータ 12を駆動して車両を前進方向に加速させる。
車両を前進方向に加速すると、慣性の法則により車両は前進方向と逆方向に回転 しょうとするため、搭乗部 13に逆方向のトルクが発生する。このように、駆動モータ 12 が車両を前進方向、ある 、は後退方向に傾けるために駆動輪 11に対して発生するト ルクを傾斜駆動トルクと呼ぶことにする。
このように、搭乗部 13には、バランサ 21による負方向の最大反力 Tbmaxと、傾斜 駆動トルクを合成した反力が作用し、最初の傾斜方向と逆方向に戻される。その後、 図 19で説明したと同様に振り子運動の後、搭乗部 13は鉛直位置に制御される。 なお、振り子運動の途中で搭乗部 13 (乗員 A)の角加速度 { Θ }が小さくなり、バラン サ 21の加速による反力で足りる状態になった以降は、駆動モータ 12による傾斜駆動 トルクによる制御は不要である。
[0176] 次に、図 20を用いて車両のハードウェア構成について説明する。
図 20は、制御ユニット 16の構成を表したものである。
制御ユニット 16は、車両がバランサ 21を用いて姿勢制御を行いながら倒立振り子 走行を行う機能を有して 、る。
以下、制御ユ ット 16を構成する各構成要素について説明する。
[0177] 制御ユニット 16は、主制御装置 161、ジャイロセンサ 162、駆動モータ制御装置 16 3、 ノランサモータ制御装置 165、記憶部 164を備えている。
そして、制御ユニット 16は、周辺の装置を構成する操縦装置 15、入力部 171、表 示部 172、バランサ検出部 173、タイヤ角度検出部 174、駆動モータ用インバータ 3 1、駆動モータ 12、バランサモータ用インバータ 32、バランサモータ 22、及び図示し な!、バッテリなどと接続されて 、る。
[0178] 主制御装置 161は、メイン CPUを備え、図示しない各種プログラムやデータが格納 された ROM、作業領域として使用される RAM、外部記憶装置、インターフェース部 などを備えたコンピュータシステムで構成されている。
ROMには、ノ ンサ 21を用いて倒立振り子車両の姿勢を保持する姿勢制御プロ グラム、操縦装置 15からの各種走行指令に基づ ヽて走行を制御する走行制御プロ グラムなどの各種プログラムが格納されており、主制御装置 161は、これら各種プログ ラムを実行することで対応する処理を行う。なお、これらプログラムは、記憶部 164に 記憶しておき、メイン CPUがこれを読み出すように構成することもできる。
姿勢制御プログラムは、後述のセンサから車両の傾斜角度や傾斜角速度を検出し 、運転者が指示する走行指令に従って車両が走行するように、これらの検出値を用
V、て駆動モータ 12ゃバランサモータ 22を制御する。
[0179] ジャイロセンサ 162は、搭乗部 13の姿勢を感知する姿勢感知センサとして機能する ジャイロセンサ 162は、搭乗部 13の傾斜に基づく物理量として、搭乗部 13の傾斜 角度と角加速度を検出する。
主制御装置 161は、ジャイロセンサ 162で検出される傾斜角度から傾斜方向を認 識するようになっている。
[0180] なお、本実施形態のジャイロセンサ 162では、角加速度と傾斜角度を検出して主制 御装置 161に供給するが、角加速度だけを検出するようにしてもょ 、。
この場合、主制御装置 161は、ジャイロセンサ 162から供給される角速度を蓄積す ることで、角加速度と角度を算出して傾斜角を取得するようにする。
[0181] また、姿勢感知センサとしてはジャイロセンサ 162以外に、液体ロータ型角加速度 計、渦電流式の角加速度計などの搭乗部 13が傾斜する際の角加速度に応じた信号 を出力する各種センサを使用することができる。
液体ロータ型角加速度計は、サーボ型加速度計の振り子の代わりに液体の動きを 検出し、この液体の動きをサーボ機構によりバランスさせるときのフィードバック電流 から角加速度を測定するものである。一方、渦電流を利用した角加速度計は、永久 磁石を用いて磁気回路を構成し、この回路内に円筒形のアルミニウム製のロータを 配置し、このロータの回転速度の変化に応じて発生する磁気起電力に基づき、角加 速度を検出するものである。
[0182] 駆動モータ制御装置 163は駆動モータ用インバータ 31を制御し、これによつて駆 動モータ 12を制御する。
駆動モータ制御装置 163は、駆動モータ 12用のトルク―電流マップを備えており、 このトルク—電流マップに従って、主制御装置 161から指令される駆動トルクに対応 する電流を駆動モータ 12に対して出力するように駆動モータ用インバータ 31を制御 する。
[0183] 駆動モータ用インバータ 31は、図示しないバッテリに接続されており、ノ ッテリが供 給する直流電流を駆動モータ制御装置 163の指示に従って交流に変換して駆動モ ータ 12に供給する。
このように、主制御装置 161、駆動モータ制御装置 163、駆動モータ用インバータ 3 1、及び駆動モータ 12は、協働して動作し、駆動輪駆動手段を構成している。
[0184] バランサモータ制御装置 165はバランサモータ用インバータ 32を制御し、これによ つてバランサモータ 22を制御する。
バランサモータ制御装置 165は、バランサモータ 22用のトルク一電流マップを備え ており、このトルク 電流マップに従って、主制御装置 161から指令される駆動トルク に対応する電流をバランサモータ 22に対して出力するようにバランサモータ用インバ ータ 32を制御する。
[0185] ノランサモータ用インバータ 32は、駆動モータ用インバータ 31と共にバッテリに接 続されており、バッテリが供給する直流電流をバランサモータ制御装置 165の指示に 従って交流に変換してバランサモータ 22に供給する。
これによつて、バランサモータ 22は、バランサモータ制御装置 165に指示された回 転方向に、指示された角加速度で回転する。
このように、主制御装置 161、バランサモータ制御装置 165、バランサモータ用イン バータ 32、バランサモータ 22は、協働して動作し、車両の姿勢 (運転操作部の姿勢) を所定位置に制御する姿勢制御手段を構成して 、る。
[0186] 記憶部 164には、プログラム類を記憶するほか、ナビゲーシヨンを行う場合は、ナビ ゲーシヨンプログラム、ナビゲーシヨンを行うための地図データなどが記憶される。 入力部 171は、表示'操作部 17 (図 17参照)に配置され、各種データや指示、選択 をするための入力手段として機能する。
[0187] 入力部 171は、表示部 172上に配置されたタツチパネルと、専用の選択ボタンで構 成される。タツチパネル部分は、表示部 172に表示された各種選択ボタンに対応して 運転者が押下 (タツチ)した位置が検出され、その押下位置と表示内容とから選択内 容が取得される。
表示部 172は、表示 ·操作部 17に配置される。表示部 172は、入力部 171からの 選択や入力対象となるボタンや説明などが表示されるようになって 、る。 [0188] タイヤ角度検出部 174も例えばレゾルバなどで構成され、駆動輪 11の角度を検出 し、これを主制御装置 161に供給する。
主制御装置 161は、タイヤ角度検出部 174から供給された角度を時間で微分する ことにより駆動輪の角速度を得ることができ、更にこれを時間で微分することにより角 加速度を得ることができる。
主制御装置 161は、このようにして得た駆動輪の角加速度と、目標とする角加速度 とを比較することで、駆動モータ制御装置 163をフィードバック制御することができる。
[0189] バランサ検出部 173は、バランサ 21の回転数と角度を検出し、これを主制御装置 1 61に供給する。
主制御装置 161は、バランサ検出部 173から供給された角度を時間微分すること でバランサ 21の角速度を求め、バランサ 21の回転方向を確認する。
そして、主制御装置 161は、確認した回転方向と、バランサ検出部 173から供給さ れるバランサ 21の回転数とから、この回転数を初期値として搭乗部 13の姿勢制御す るために必要なバランサの角加速度を算出する。すなわち、バランサ 21の回転数を 初期値として回転数を増加(正方向の加速)、又は減少 (負方向の加速)させる。
[0190] 次に、図 21のフローチャートを用いて制御ユニット 16が行う姿勢制御の手順を説明 する。
車両が走行を開始した後、制御ユニット 16は、ジャイロセンサ 162の検出値から車 両の傾斜角度 { Θ }を測定する (ステップ 5)。
更に、制御ユニット 16は、ジャイロセンサ 162の検出値から車両の傾斜角加速度を 測定する (ステップ 10)。
そして、制御ユニット 16は、タイヤ角度検出部 174の検出値から車両速度を測定す る(ステップ 15)。
[0191] 次に制御ユニット 16は、操縦装置 15から運転者が行った入力(走行指令)を読み 取る (ステップ 20)。走行指令では、運転者が指示した車速などが指令される。
次に、制御ユニット 16は、走行指令に従って車両を走行させるための車両の目標 傾斜角を算出する (ステップ 25)。
次に、制御ユニット 16は、走行指令で指定された車速にて走行するために駆動モ ータ 12で発生させる走行駆動トルクの目標値を算出する (ステップ 30)。
[0192] 次に、制御ユニット 16は、バランサ 21の反力のみによって目標とする車両の傾斜を 実現できるか否かを判断する (ステップ 35)。
すなわち、制御ユニット 16は、ステップ 10で測定した搭乗部 13の傾斜角加速度 { Θ }から上記数式(1)に従って、搭乗部 13 (乗員 A)に加わったトルク T1を算出し、バ ランサ 21の加速で発生させ得るの最大反力 Tbmaxと比較する。
[0193] ノランサ 21の反力によってのみ目標とする車両の傾斜を実現できると判断した場 合、すなわち、 T1く Tbmaxである場合 (ステップ 35 ; Y)、制御ユニット 16は、バラン サ 21に目標とする反力を発生させるための角加速度を算出し、更に、この角加速度 を実現するためにバランサモータ 22で発生させるトルク、すなわちバランサトルク Tb を算出する (ステップ 40)。
このバランサトルク Tbは、式(1)に従って算出したトルク T1よりも大きな値、すなわ ち、 Tb>Tlとなる値である。
[0194] そして、制御ユニット 16は、バランサモータ制御装置 165で保持しているトルク一電 流マップに従って、先に算出したバランサトルク Tbに対応する電流をバランサモータ 22に対して出力するようにバランサモータ用インバータ 32を制御する (ステップ 45)。 これによつて、バランサ 21の回転が加速し、その際の反力で目標とする車両の傾斜 角が実現する。
[0195] このステップ 45の動作と並行して、制御ユニット 16は、駆動モータ制御装置 163に 指令して、先に算出した走行駆動トルクを駆動モータ 12に出力させる (ステップ 50)。 これによつて、車両は、 目標とする車速で走行することができる。
[0196] 一方、ノ ランサ 21の最大反力 Tbmaxでも車両の傾斜を戻すことができないと判断 した場合、すなわち、 Tl≥Tbmaxである場合 (ステップ 35 ;N)、制御ユニット 16は、 ノ《ランサ 21の最大反力 Tbmaxでは足りない分を補うための傾斜駆動トルク(=T1— 最大反力 Tbmax)を算出する (ステップ 60)。
そして、制御ユニット 16は、バランサモータ制御装置 165で保持しているトルク一電 流マップに従って、最大値 Tbmaxに対応する電流をバランサモータ 22に対して出 力するようにバランサモータ用インバータ 32を制御する (ステップ 65)。 [0197] このステップ 65の動作と並行して、制御ユニット 16は、駆動モータ用インバータ 31 に指令し、先に算出した走行駆動トルクと、先に算出した傾斜駆動トルクを加算した 駆動トルクを駆動モータ 12に出力させる (ステップ 70)。
バランサの反力と傾斜駆動トルクにより目標とする車両の傾斜角が実現し、走行駆 動トルクにより目標とする車速で走行することができる。
このように、ノランサトルクのみによっては目標とする車両の傾斜角が実現できない 場合は、ノ ランサ 21による反力と傾斜駆動トルクを組み合わせることにより目標値を 実現することができる。
[0198] 制御ユニット 16は、ステップ 50、又はステップ 70にて所望の傾斜角度、及び車速を 実現した後、走行を継続する場合は (ステップ 55 ; Y)ステップ 5に戻り、走行を継続し ない場合は (ステップ 55 ; N)、車両を停車して処理を終了する。
[0199] 以上に説明した第 5実施形態により次のような効果を得ることができる。
(1)バランサのストロークを無限とすることができる。
(2)バランサの重心が回転軸上にあるため、バランサの駆動に伴う車両の重心移動 が生じず、姿勢制御処理が容易になる。
(3)反力の利用後にホイールを自由回転させることにより、不要な反力の発生を防ぐ ことができる。
(4)ホイールを用いることにより回転軸の回りに質量を分布させることができるため、 バランサをコンパクトィ匕 (小型化)及び軽量ィ匕することができる。
(5)バランサを重力に逆らって保持する必要がな 、ため、バランサ保持に要するエネ ルギー消費を低減することができる。
[0200] 次に第 6実施形態について図 23から図 28を参照して詳細に説明する。
(10)第 6実施形態概要
第 6実施形態の車両は、搭乗部とは別体で、前後(走行方向)に自由に移動可能 で、各々独立制御が可能なバランサを複数設けることにより、車両全体の重心位置を 所定位置に保つものである。
バランサは 2個以上あればよいが、本実施形態では、一例として、車両に、車軸の 回りに個別に回転可能な第 1バランサと第 2バランサを備えている そして、車両は、搭乗部を所定の位置に姿勢制御する際に、姿勢制御に必要な反 力トルクを計算すると共に、当該反力トルクを発生させ、かつ、車両の重心の位置を 所定位置に保つような第 1バランサと第 2バランサの角加速度を計算する。
[0201] 第 1バランサと第 2バランサは、それぞれ個別の駆動モータに接続されており、車両 は、両バランサが算出した角加速度となるように個々の駆動モータを駆動する。 これによつて、車両は、全体の重心位置を所定位置に保ちながら姿勢制御に必要 な反力トルクを発生させることができる。
また、このように姿勢制御することにより、動作時及び停止時において搭乗部の傾 斜を抑制し、搭乗部を鉛直線上に保持することが可能となる。
更に、移動動作時に搭乗部の揺れを抑制することができるほか、搭乗部の安定性 を向上させることができる。
[0202] (11)第 6実施形態の詳細
第 5の実施形態では、ノランサをフライホイールで構成したのに対して、第 6実施形 態のノランサは第 1バランサと第 2バランサで構成される点を除き、その外観構成は 同じである。従って、第 5実施形態における図 17の説明が第 6実施形態の車両の外 観構成の説明である。
[0203] 次に、図 23と図 24を用いて第 1バランサと第 2バランサを用いた姿勢制御の原理に ついて説明する。
図 23は、本実施形態の車両をモデルィヒした模式図であり、車両を前進方向から見 た正面図を示している。
このモデルでは、車両を、搭乗部 13と、フレームを介して搭乗部 13と接続する駆動 モータ 12、駆動モータ 12で駆動される駆動輪 11、及びフレームを介して搭乗部 13 と接続する第 1バランサモータ 22、第 1バランサモータ 22で駆動される第 1バランサ 2 0、及びフレームを介して搭乗部 13と接続する第 2バランサモータ 23、第 2バランサ モータ 23で駆動される第 2バランサ 21で構成している。ただし、フレームの質量は無 視する。
第 1バランサモータ 22、第 2バランサモータ 23の回転軸は車軸 25と同軸となるよう に配設されている。 第 1バランサ 20と第 2バランサ 21は、それぞれ回転軸よりも上方に質量が分布する ように構成されており、第 1バランサモータ 22、第 2バランサモータ 23により有限なスト ローク内でそれぞれ独立に双方向に回転可能となつて 、る。
このように、質量分布が回転軸に対して非対称となるようにバランサを構成すること により、バランサの回転によって重心の移動を生じさせることができる。
[0204] 図 24は、図 23のモデルィ匕した車両を進行方向に対して、その側面から見た状態を 表している。
なお、簡単ィ匕のため第 1バランサモータ 22、第 2バランサモータ 23などは省略して ある。
また、図 24では、運転者を含めた車両全体の重心を重心 26で示している。
[0205] ここで、搭乗部 13の質量を ml、重心回りの慣性モーメントを II、重心から支点まで の長さ ¾τ1とし、搭乗部 13の垂直方向力もの傾斜角を θ 1とする。なお、これらの値 は、搭乗部 13に着席して 、る運転者を含めた値とする。
すなわち、車両は、運転者の体重などを計測し、 ml、 II、 rlを運転者込みの値に 補正する機能を備えているものとする。
又は、運転者の標準的な体重などを予め想定しておき、この値を用いた計算値を 固定的に用いるようにしてもょ 、。
[0206] バランサに関しても同様にして、第 1バランサ 20の質量を m2、重心回りの慣性モー メントを 12、重心力 支点までの長さを r2、垂直方向からの傾斜角を 0 2とし、第 2バ ランサ 21の質量を m3、重心回りの慣性モーメントを 13、重心から支点までの長さを r 3、垂直方向からの傾斜角を 0 3とする。
以下の計算式では、時間微分を記号 Uで表すことにする。この表記法に従い、角 速度 ωは角度 Θの時間微分であり ω = { Θ }で表され、角加速度 exは角速度の時間 微分であり、 α = { ω } = { { Θ } }で表される。
[0207] ここで、搭乗部 13に姿勢制御のための角加速度《1 = { { Θ 1 } }を与えることを目標 とし、この際に重心 26に加速度を生じないような第 1バランサ 20、第 2バランサ 21の 加速条件を求める。
ここで、角加速度 α 1は、搭乗部 13に外力が加わることで搭乗部 13が傾斜する際 の角加速度であり、後述のジャイロセンサ 162で検出される。
[0208] まず、第 1バランサ 20に角加速度 a 2、第 2バランサ 21に角加速度 a 3を与えた場 合、次の式(1)が成り立つ。
なお、以下の式では、累乗数 nを Γη)で表し、例えば、 ρの 3乗は、 ρΧρΧρ= (ρ' 3)で表すこととする。
[0209] (l2+m2(r2"2)) α 2+ (l3+m3(r3"2)) α 3= - (Il+ml (rl"2)) αΐ (1) [0210] ここで、(I2+m2(r2'2)) α2は、第 1バランサモータ 22が第 1バランサ 20に加える バランサトルク τ 2に該当し、(I3+m3(r3'2)) «3は、第 2バランサモータ 23が第 2 ノランサ 21に加えるバランサトルクて 3に対応する。
一方、重心の周方向加速度 aGが 0となる条件は、次の式(2)で表される。
[0211] aG=Alcos( Θ G- Θ 1- j81) +A2cos( Θ G- θ 2- β 2) +A3cos( θ G— θ
3- β 3) =0 (2)
[0212] ここで、 Ai(i=l、 2、 3、以下同様)は、
Ai= (mi/M) ri ( ( α Γ 2) + ( ω Γ4) )
であり、 aiの関数である。
なお、 oi={ 0 i}、 M=∑miである。
∑は iに関する和を表し、 M=∑mi=ml+m2+m3となる。
また、 tan Θ Gは 0 G = Emirisin Θ i/∑miricos Θ iにより規定される。 また、 j8iは、
Figure imgf000049_0001
ただし、∑は iに関する和を表す。
このように j8 iは a iの関数で表される。
[0213] このように、式(2)が成立する α 2、 α 3を与えると重心の周方向の加速度 aG = 0と なり、全体の重心を車軸の周方向に動力さずに搭乗部 13を位置制御することができ る。
そこで、式(1)及び式 (2)の両式を満たす《2、《3を数値解析により算出し、第 1 バランサモータ 22にバランサトルク τ 2=(I2+m2(r2"2)) α2を出力させ、第 2バラ ンサモータ 23にバランサトルク τ 3=(I3+m3(r3"2)) α 3を出力させれば、車両全 体の重心を周方向に回転せずに搭乗部 13を位置制御することができる。 [0214] 次に、図 25を用いて車両のハードウェア構成について説明する。
図 25は、制御ユニット 16の構成を表したものである。
制御ユニット 16は、車両が第 1バランサ 20、第 2バランサ 21を用いて姿勢制御を行 V、ながら倒立振り子走行を行う機能を有して!/、る。
以下、制御ユ ット 16を構成する各構成要素について説明する。
[0215] 制御ユニット 16は、主制御装置 161、ジャイロセンサ 162、駆動モータ制御装置 16 3、第 1バランサモータ制御装置 165、第 2バランサモータ制御装置 166、記憶部 16 4を備えている。
そして、制御ユニット 16は、周辺の装置を構成する操縦装置 15、入力部 171、表 示部 172、バランサ検出部 173、タイヤ角度検出部 174、駆動モータ用インバータ 3 1、駆動モータ 12、第 1バランサモータ用インバータ 32、第 1バランサモータ 22、第 2 バランサモータ用インバータ 33、第 2バランサモータ 23、及び図示しないバッテリな どと接続されている。
[0216] 主制御装置 161は、メイン CPUを備え、図示しない各種プログラムやデータが格納 された ROM、作業領域として使用される RAM、外部記憶装置、インターフェース部 などを備えたコンピュータシステムで構成されている。
ROMには、バランサ 20、 21を用いて倒立振り子車両の姿勢を保持する姿勢制御 プログラム、操縦装置 15からの各種走行指令に基づ ヽて走行を制御する走行制御 プログラムなどの各種プログラムが格納されており、主制御装置 161は、これら各種 プログラムを実行することで対応する処理を行う。なお、これらプログラムは、記憶部 1 64に記憶しておき、メイン CPUがこれを読み出すように構成することもできる。
姿勢制御プログラムは、後述のセンサから車両の傾斜角度や傾斜角速度を検出し 、運転者が指示する走行指令に従って車両が走行するように、これらの検出値を用 いて先のバランサトルク τ 1、 τ 2を計算し、駆動モータ 12や第 1バランサモータ 22、 第 2バランサモータ 23を制御する。
[0217] ジャイロセンサ 162は、搭乗部 13の姿勢を感知する姿勢感知センサとして機能する ジャイロセンサ 162は、搭乗部 13の傾斜に基づく物理量として、搭乗部 13の傾斜 角度 θ 1と角加速度 α 1を検出する。
主制御装置 161は、ジャイロセンサ 162で検出される傾斜角度 θ 1から傾斜方向を 認識するようになって!/ヽる。
[0218] なお、本実施形態のジャイロセンサ 162では、角加速度 ex 1と傾斜角度 θ 1を検出 して主制御装置 161に供給するが、角速度だけを検出するようにしてもよい。
この場合、主制御装置 161は、ジャイロセンサ 162から供給される角速度を蓄積す ることで、角加速度 α 1と角度 θ 1を算出して傾斜角を取得するようにする。
[0219] また、姿勢感知センサとしてはジャイロセンサ 162以外に、液体ロータ型角加速度 計、渦電流式の角加速度計などの搭乗部 13が傾斜する際の角加速度に応じた信号 を出力する各種センサを使用することができる。
液体ロータ型角加速度計は、サーボ型加速度計の振り子の代わりに液体の動きを 検出し、この液体の動きをサーボ機構によりバランスさせるときのフィードバック電流 から角加速度を測定するものである。一方、渦電流を利用した角加速度計は、永久 磁石を用いて磁気回路を構成し、この回路内に円筒形のアルミニウム製のロータを 配置し、このロータの回転速度の変化に応じて発生する磁気起電力に基づき、角加 速度を検出するものである。
[0220] 駆動モータ制御装置 163は駆動モータ用インバータ 31を制御し、これによつて駆 動モータ 12を制御する。
駆動モータ制御装置 163は、駆動モータ 12用のトルク―電流マップを備えており、 このトルク—電流マップに従って、主制御装置 161から指令される駆動トルクに対応 する電流を駆動モータ 12に対して出力するように駆動モータ用インバータ 31を制御 する。
[0221] 駆動モータ用インバータ 31は、図示しないバッテリに接続されており、ノ ッテリが供 給する直流電流を駆動モータ制御装置 163の指示に従って交流に変換して駆動モ ータ 12に供給する。
このように、主制御装置 161、駆動モータ制御装置 163、駆動モータ用インバータ 3 1、及び駆動モータ 12は、このように協働して動作し、駆動輪駆動手段を構成してい る。 [0222] 第 1バランサモータ制御装置 165は第 1バランサモータ用インバータ 32を制御し、 これによつて第 1バランサモータ 22を制御する。
第 1バランサモータ制御装置 165は、第 1バランサモータ 22用のトルク—電流マツ プを備えており、このトルク 電流マップに従って、主制御装置 161から指令される ノ ランサトルクて 1に対応する電流を第 1バランサモータ 22に対して出力するように 第 1バランサモータ用インバータ 32を制御する。
[0223] 第 1バランサモータ用インバータ 32は、駆動モータ用インバータ 31と共にバッテリ に接続されており、バッテリが供給する直流電流を第 1バランサモータ制御装置 165 の指示に従って交流に変換して第 1バランサモータ 22に供給する。
これによつて、第 1バランサモータ 22は、第 1バランサモータ制御装置 165に指示さ れた回転方向に、指示された角加速度で回転する。
[0224] 第 2バランサモータ制御装置 166は第 2バランサモータ用インバータ 33を制御し、 これによつて第 2バランサモータ 23を制御する。
第 2バランサモータ制御装置 166は、第 2バランサモータ 23用のトルク—電流マツ プを備えており、このトルク 電流マップに従って、主制御装置 161から指令される ノ ランサトルクて 2に対応する電流を第 2バランサモータ 23に対して出力するように 第 2バランサモータ用インバータ 33を制御する。
[0225] このように、バランサトルク τ 1、 τ 2に対応する電流がバランサモータ 22、 23に供 給されることで、バランサ 20、 21が角加速度 a 2、 a 3で駆動される力 式(2)におけ る重心の周方向加速度 aGは 0となり、全体の重心を車軸の周方向に動力さずに搭乗 部 13を位置制御することができる。
[0226] 第 2バランサモータ用インバータ 33は、駆動モータ用インバータ 31、第 1バランサ モータ用インバータ 32と共にノ ッテリに接続されており、ノ ッテリが供給する直流電 流を第 2バランサモータ制御装置 166の指示に従って交流に変換して第 2バランサ モータ 23に供給する。
これによつて、第 2バランサモータ 23は、第 2バランサモータ制御装置 166に指示さ れた回転方向に、指示された角加速度で回転する。
このように、主制御装置 161、第 1バランサモータ制御装置 165、第 1バランサモー タ用インバータ 32、第 1バランサモータ 22、第 1バランサ 20、第 2バランサモータ制御 装置 166、第 2バランサモータ用インバータ 33、第 2バランサモータ 23、第 2バランサ 21は、協働して動作し、車両の姿勢 (運転操作部の姿勢)を所定位置に制御する姿 勢制御手段を構成している。
[0227] 記憶部 164には、プログラム類を記憶するほか、ナビゲーシヨンを行う場合は、ナビ ゲーシヨンプログラム、ナビゲーシヨンを行うための地図データなどが記憶される。 入力部 171は、表示'操作部 17 (図 1参照)に配置され、各種データや指示、選択 をするための入力手段として機能する。
[0228] 入力部 171は、表示部 172上に配置されたタツチパネルと、専用の選択ボタンで構 成される。タツチパネル部分は、表示部 172に表示された各種選択ボタンに対応して 運転者が押下 (タツチ)した位置が検出され、その押下位置と表示内容とから選択内 容が取得される。
表示部 172は、表示 ·操作部 17に配置される。表示部 172は、入力部 171からの 選択や入力対象となるボタンや説明などが表示されるようになって 、る。
[0229] タイヤ角度検出部 174も例えばレゾルバなどで構成され、駆動輪 11の角度を検出 し、これを主制御装置 161に供給する。
主制御装置 161は、タイヤ角度検出部 174から供給された角度を時間で微分する ことにより駆動輪の角速度を得ることができ、更にこれを時間で微分することにより角 加速度を得ることができる。
主制御装置 161は、このようにして得た駆動輪の角加速度と、目標とする角加速度 とを比較することで、駆動モータ制御装置 163をフィードバック制御することができる。
[0230] バランサ検出部 173は、第 1バランサ 20と第 2バランサ 21の傾斜角を検出し、これ を主制御装置 161に供給する。
第 1バランサ 20と第 2バランサ 21のストロークは有限であるため、この角度を超えて 第 1バランサ 20、第 2バランサ 21を回転させることはできな 、。
そのため、主制御装置 161は、第 1バランサ 20、第 2バランサ 21を駆動した後、バ ランサ検出部 173の検出値を参照しながら車両の姿勢制御に影響を与えない程度 の低回転速度で第 1バランサ 20、第 2バランサ 21を駆動した方向と逆の方向に回転 させて所定の定位置に復帰させる。これによつて、第 1バランサ 20と第 2バランサ 21 は、次回の姿勢制御用のストロークを確保することができる。
[0231] 次に図 26のフローチャートを用いて制御ユニット 16が行う走行制御処理について 説明する。
制御ユニット 16は、タイヤ角度検出部 174の検出値から車両速度を測定する (ステ ップ 15)。
次に制御ユニット 16は、操縦装置 15から運転者が行った入力(走行指令)を読み 取る (ステップ 20)。走行指令では、運転者が指示した車速などが指令される。
[0232] 次に、制御ユニット 16は、走行指令に従って車両を走行させるための車両の重心 位置を算出する (ステップ 25)。
この重心位置は、搭乗部 13を垂直に保ったまま第 1バランサ 20、第 2バランサ 21を 移動して実現してもよいし、あるいは、車両を進行方向に傾斜させて実現してもよい し、あるいは、両者を組み合わせてもよい。
次に、制御ユニット 16は、走行指令で指定された車速にて走行するために駆動モ ータ 12で発生させる走行駆動トルクの目標値を算出する (ステップ 30)。
[0233] そして、制御ユニット 16は、第 1バランサ 20、第 2バランサ 21を回転させて、ステツ プ 25で算出した所定の重心位置に車両全体の重心を設定すると共に、ステップ 30 で算出した走行駆動トルクにて駆動モータ 12を駆動して車両を走行させる (ステップ 35)。
[0234] 制御ユニット 16は、走行を継続する力否かを判断し (ステップ 40)、走行を継続する 場合は (ステップ 40 ; Y)、ステップ 15に戻り、走行を継続しない場合は (ステップ 40 ; N)、車両を停車して処理を終了する。
[0235] 次に図 27のフローチャートを用いて制御ユニット 16が行う姿勢制御処理について 説明する。
制御ユニット 16は、ジャイロセンサ 162から搭乗部 13の傾斜角 θ 1と傾斜角加速度 a 1を取得し (ステップ 60)、傾斜角が反転した力否かを判断する (ステップ 65)。 ここで、傾斜角 θ 1は、駆動輪 l la、 l ibの車軸を通る所定の基準線に対する傾斜 角度が検出され、傾斜角の反転は、傾斜角 Θ 1 >0の状態と傾斜角 Θ 1 < 0の状態 間の変化が該当する。また、傾斜角 Θ 1 =0 (安定状態)から傾斜角 Θ 1 >0や Θ 1 < 0への状態変化も、傾斜角の反転に含まれるものとする。
そして、本実施形態における基準線は、車軸を通る鉛直線に設定されているが、基 準線を鉛直線カゝら所定角度 Θだけ傾斜させるようにしてもよい。この場合、搭乗部 13 が鉛直線に対して所定角度 Θだけ傾斜している状態が Θ 1 =0となる。例えば、走行 (前進、後進を含む)している場合に、走行している方向に所定角度 Θだけ傾斜させ ることで、不自然な感覚を解消することができる。この場合、車速が大きくなるほど所 定角度を大きくすることで、車速 Vの関数として Θ (V)を規定するようにしてもよい。
[0236] 制御ユニット 16は、傾斜角の反転が無ければ (ステップ 65 ; N)、ステップ 60に戻つ て弓 Iき続き姿勢の監視を継続する。
[0237] 一方、傾斜角の反転が検出された場合 (ステップ 65 ; Y)、制御ユニット 16は、ステツ プ 60で取得した搭乗部 13の角加速度 α 1、及び、バランサ検出部 173で検出した Θ 2、 Θ 3を式(1)、及び(2)に代入して第 1バランサモータ 22、第 2バランサモータ 2 3に出力させるバランサトルク τ 2、 τ 3を算出する (ステップ 70)。
[0238] より詳細には、バランサトルク τ 2、 τ 3は、それぞれ第 1バランサ 20、第 2バランサ 2 1の角加速度 α 2、 α 3の関数であるため、制御ユニット 16は、これら角加速度を式( 1)、式(2)で求め、これを用いてバランサトルク τ 2、 τ 3を算出する。このように制御 ユニット 16は、角加速度計算手段として機能する。
なお、 mi、 Ii、 riなどのパラメータは予め記憶部 164に記憶されている。 更に、搭乗部 13の ml、 II、 rlを運転者の体重などで補正する場合は、搭乗部 13 に体重計などの計測装置を装備し、制御ユニット 16はこれらの計測装置による出力 値を用いてこれらのパラメータを補正する。
[0239] 次に、制御ユニット 16は、算出したバランサトルク τ 1、 τ 2を出力するように第 1バ ランサモータ制御装置 165、第 2バランサモータ制御装置 166に命じる。
すると第 1バランサモータ制御装置 165、第 2バランサモータ制御装置 166は、それ ぞれ第 1バランサモータ用インバータ 32、第 2バランサモータ用インバータ 33を制御 し、第 1バランサモータ 22と第 2バランサモータ 23にそれぞれバランサトルク τ 1、 τ 2を出力させる (ステップ 75)。 [0240] これによつて、車両全体の重心位置はステップ 25で算出した所定値に保ったまま 搭乗部 13の姿勢が制御される。
すなわち、搭乗部 13が外力により基準線に対して例えば車両進行方向に θ 1だけ 傾斜した場合には、車両全体の重心位置を移動することなく第 1バランサ 20、第 2バ ランサ 21を回転させることで、搭乗部 13を基準線方向(外力により傾斜下方向と逆方 向)に戻される。
[0241] ついで、制御ユニット 16は、電源がオフされたか判断し (ステップ 80)、オフされれ ば(; Y)処理を終了し、オフされていなければ(; N)、ステップ 60に戻って姿勢制御を 継続する。
[0242] このように、基準線方向に戻された搭乗部 13は、そのまま基準線を越えて当初と反 対方向に傾斜することになる力 ステップ 60に戻ることで、この基準線を越えた時点 で傾斜角の反転がありと判断され (ステップ 65 ; Y)、再び基準線方向への姿勢制御 が行われる。
以後、同様に搭乗部 13の基準線に対する傾斜角の反転を検出した際の角加速度 a 1に対応したバランサトルク τ 1、 τ 2でバランサ 20、 21を回転させ、そのバランサ 21の移動による反力で搭乗部 13を基準線方向に戻す動作を繰り返す。このような搭 乗部 13の振り子運動を通して、基準線を中心とした最大の傾斜角 θ 1が徐々に 0に 収束し正常状態の姿勢に戻すことができる。
[0243] 以上に説明した第 6実施形態により次のような効果を得ることができる。
( 1)複数のバランサの反力トルクを組み合わせることにより、反力トルク方式の姿勢制 御を車両全体の重心移動を伴わずに行うことが可能となる。
(2)重心移動を伴わずに反力トルクを発生することができるため、姿勢制御が容易に なる。
(3)運転者の安定性が向上し、運転者の快適度を向上させることができる。
(4)走行時、停止時の運転者の走行方向への傾斜を低減することができ、運転者の 快適度を向上させることができる。
[0244] 以上、本発明の車両における各実施形態について説明したが、本発明は説明した 実施形態に限定されるものではなぐ各請求項に記載した範囲において各種の変形 を行うことが可能である。
例えば、説明した実施形態では、ノ ンサ歯車を回動させるために駆動軸 11の鉛 直線上で平行な軸線上にバランサモータ 181の回転軸を配置するようにしたが、バラ ンサ歯車 184の回転軸と直交する軸線上にバランサモータ 181の回転軸を配置し、 ウォームギアによりバランサ歯車 184を回動するようにしてもょ 、。
また、説明した実施形態では、バランサ歯車を外歯歯車としたが、内歯歯車としても よい。
[0245] 更に、ノ《ランサモータ 181で発生させたトルクをバランサ Bに伝達する機構としては 、歯車の他に、ベルト等の各種伝達機構を使用してもよい。
また、バランサ 182の移動方向を駆動輪 11の回転軸 111を中心とした回動方向と したが、制御ュ-ット 16と平行な方向を往復動可能に構成してもよ!/ヽ。
この場合、バランサ駆動部 18として、特許文献 2の図 29、 30で説明されているよう にリニアモータを使用してバランサを移動するようにしてもよ 、。
また、特許文献 1の図 13で説明されているように、モータの回転軸に配置したねじ 軸の回転により軸方向にバランサを移動するようにしてもよ!、。
[0246] また、説明した実施形態では、車両の姿勢を定常状態に維持するために、乗員 A の傾斜角加速度 { Θ }から求まるトルク T1を、バランサ Bの移動トルク T2の反力— T2 で相殺することで姿勢制御をする場合について説明した。
しかし、乗員 Aの傾斜によるトルク T1を相殺するために、バランサ Bの移動トルク T2 とホイール駆動モータ 12の駆動によるトルク T3で姿勢制御をするようにしてもよい。
[0247] すなわち、ノ ランサ Bの移動だけでは姿勢制御できな 、場合、例えば、バランサ B の最大出力トルク T2よりも乗員 Aの角加速度 { Θ }を発生させたトルク T1の方が大き い場合、ホイール駆動モータ 12を駆動し、駆動輪 11を駆動することで、姿勢制御を する。
[0248] 具体的には、車両が停止状態の場合であれば、車両が乗員 Aの傾斜方向に移動 するようにホイール駆動モータ 12を駆動することでトルク T3を発生させ、その反カー T3とバランサ Bの移動による反カー T2の合計トルク一(T2+T3)により乗員 Aの傾 斜によるトルクを相殺するようにする。 [0249] また、車両が定常走行状態の場合、車両の前方への傾斜( 0 >0)であれば、ホイ ール駆動モータ 12が分担するトルク T3分だけ加速するようにホイル駆動モータ 12を 制御する。
一方、車両の後方への傾斜( Θ < 0)であれば、トルク T3分だけ減速するようにホイ ール駆動モータ 12を制御する。
このように、バランサ Bの移動によるトルクの不足分をホイール駆動モータ 12の駆動 トルク T3により補正することで、大きなトルクによる乗員 Aの傾斜にも対応することが 可會 になる。
[0250] また、説明した実施形態では、独立したバランサ 182を配置するようにしたが、バラ ンサモータ 181をバランサとして使用するようにしてもよい。
この場合、バランサモータ 181が駆動輪 11の回転軸を中心とする円弧上を往復動 し、または、水平面上を往復道するように構成する。
[0251] また、バランサモータ 181とバランサ 182の両者が移動するようにしてもよい。この場 合バランサモータ 181とバランサ 182とを一体として移動するようにしてもよぐ通常バ ランサ 182のみを移動し、所定以上のトルクが必要である場合にバランサモータを移 動させるようにしてもよく、その逆でもよい。
[0252] また、バランサとして、独立したバランサ 182を配置するのではなぐこれに代えて、 またはこれに加えて、車両搭載装置をバランサとして使用するようにしてもょ 、。 例えば、ノ ッテリ 160をバランサとして使用したり、さらにバッテリ 16を含む制御ュ- ットをバランサとして使用するようにしてもょ 、。
[0253] また、説明した実施形態では、鉛直線を基準として姿勢が鉛直線上となるように姿 勢制御する場合について説明した。例えば、図 5で説明した姿勢制御では、鉛直線 を基準にした傾斜角 Θ力^になるように姿勢を制御する場合について説明した。 これに対して、姿勢制御の基準線を鉛直線力 所定角度 Θだけ傾斜させるようにし てもよい。
例えば、走行 (前進、行進を含む)している場合に、走行している方向に所定角 Θ だけ傾斜させることで、不自然な感覚を解消することができる。
この場合、車速が大きくなるほど Θを大きくすることで、車速 Vの関数として Θ (V)を 規定するようにしてもよ ヽ。
[0254] そして、この場合、図 5のステップ 51では、傾斜角 Θは、鉛直線から Θだけ進行方 向に傾斜した角を基準にして反転があった力否かを判断する。
この場合においても、安定状態である傾斜角 Θ =0 (鉛直線から Θ傾斜)ら傾斜角
Θ >0や Θ < 0への状態変化も、傾斜角 Θの反転に含まれる。
[0255] また図 1、図 6で説明した両実施形態では、バランサ駆動部 18又はバランサ 182 ( 以下バランサ 18等という)を搭乗部 13の下側に配置した場合について説明したが、 他の位置に配置するようにしてもよ!、。
この場合、乗員重心よりもバランサ重心が高 、位置となるようにバランサ駆動部を配 置するようにしてちょい。
[0256] 例えば、搭乗部 13に肘掛けを配置してその内部にバランサ 18等を配置することが できる。
また、本実施形態の車両をカバーする本体を設け、搭乗部をカバーするドア部分 等の車両側面(一方、又は両方)内部にバランサ等を配置するようにしてもよい。 さらに、車両の上部に屋根部を配置し、この屋根部にバランサ 18等を配置するよう にしてもよい。
これらの各場合において、ノ《ランサ 182の駆動は、回転運動、直線運動のいずれ の方式を採用するようにしてもよい。
[0257] このように、乗員重心よりもバランサ重心が高 、位置にバランサ 182を配置すること で、説明した実施形態よりも、バランサを駆動する際の角加速度(回転運動の場合)、 加速度 (直線運動の場合)を小さくすることができる。その結果、小型のバランサモー タを使用することが可能になる。
[0258] また説明した実施形態では、水平面に対して直角で進行方向と平行な平面内にお いて、所定の軸を中心としてバランサ 182を回動させる場合について説明した力 水 平面内において所定の軸を中心としてバランサ 182を回動させるようにしてもよい。 すなわち、制御ユニット 16の下部に、座面 131の略中心部分となる所定位置を回 転軸として水平面内で回転するバランサ 182配置する。
また、車両の屋根部の水平面に、屋根の略中心部分となる所定位置回転軸として 水平面内で回転するバランサ 182を配置するようにしてもょ 、。
ノ ンサ 182を水平面上で回転させることで、車両内の空間を有効に使用すること ができる。
[0259] また、説明した姿勢制御では、ステップ 51 (図 5、図 8、図 10)において傾斜角 Θの 反転を検出したことを条件として、バランサ 182を傾斜方向に移動させる場合につい て説明した。
これに対して、 Θ =0になる直前の角度 θ 1でバランサ 182を反対側( θ 1の反対側 )に移動させるようにしてもよい。
この場合の θ 1は、ノランサ 182を反対側に動力さな力つた場合に、 Θ =0の基準 線 (鉛直線、又は鉛直線から Θ傾いた線)を通過する角加速度 { θ z}を算出し、その 角加速度 { Θ z}に応じて決定する。
この場合、角加速度 { θ z}が大きいほど θ 1を大きくする。
これにより、より早く基準線上に姿勢を戻すことが可能になる。
[0260] また説明した実施形態では、ステップ 51において、傾斜角 Θ =0から Θ≠0になつ た場合に、傾斜角の反転がありと判断した。
これに対して、搭乗部 (乗員 A)の傾斜角度 Θが所定の許容角度 Θ aを超えた場合 、すなわち、 θ > Θ aとなった場合に傾斜角の反転がありと判断して姿勢制御を行う ようにしてもよい。
この場合、式(1)から T1を算出するための乗員 Aの角加速度 { θ 1 }は、 θ > Θ aと なった際の角加速度とするが、 Θ≠0となった際の角加速度とすることも可能である。
[0261] また、説明した第 2実施形態及び、第 3実施形態では、駆動モータ 12による加算ト ルク T3として特に閾値を設定しな力つた。
しかし、駆動モータ 12から出力される駆動トルクは全て駆動輪 11の回転に使用さ れる訳ではなぐその一部は、路面抵抗 (転がり抵抗)及びタイヤ (ゴム)の変形に使 用される。このため、駆動モータ 12を駆動したとしても、ただちに駆動輪 11が始動す る訳ではない。
[0262] そこで、駆動輪 11が停止状態力 駆動を開始する始動トルク値を第 1閾値とし、乗 員 Aの移動によるトルク T1が、この第 1閾値よりも小さい場合には、駆動モータ 12に よる加減トルク T3 >Τ1 (く第 1閾値)で姿勢制御を行うようにしてもょ 、。
[0263] この場合、トルク T1が第 1閾値以上で第 2閾値未満である場合、駆動モータ 12によ り加減トルク Τ3を第 1閾値未満の所定値とし、ノ《ランサ Βの移動によるトルク Τ2を T1 第 1閾値とする。
ここで第 2閾値は、 Tmax+第 1閾値未満とする。
[0264] また、トルク T1が第 2閾値以上である場合、バランサ Bの移動によるトルク T2を Tma
Xとし、駆動モータ 12による加減トルク T3を T3 >T1— T2maxとする。
[0265] この変形例により、トルク T1が第 1閾値より小さい場合では、車両が移動したり(制 止状態の場合)、走行速度が変わったり(走行状態の場合)することなぐ姿勢制御を 行うことができる。
また、バランサ Bを動力さないので、その後の大きな外力にたいしてバランサ Bの位 置を鉛直線上等の所定位置に保持しておくことができる。
[0266] また、本実施形態では、走行状態による、バランサ駆動モータと車輪駆動モータの 負荷や効率に応じ、安定制御(姿勢制御)に用いるモータを選択的に使用するように してちよい。
例えば、車両の停車中はバランサモータを優先的に使用し、車両の走行中は駆動 モータの使用を優先的に使用する。
[0267] また、トルク T1が T2max以上である場合、バランサ Bのトルク T2=T2maxとする場 合について説明した力 トルク T2が T2max未満となる範囲であれば、トルク T1を、ト ルク T2と加減トルク T3に所定割合で分担させるようにしてもよ!、。
[0268] 第 5実施形態については、次のような変形が可能である。
例えば、車軸 25とバランサ 21の回転軸を必ずしも同一軸上としなくてもよい。ただ し、ノ ンサ 21の回転軸と車軸 25を同軸とした方が姿勢制御処理が簡単になる。 また、バランサ 21の回転軸と車軸 25が垂直でなければ、必ずしもバランサ 21の回 転軸と車軸 25が平行である必要はない。ただし、ノ《ランサ 21の回転軸と車軸 25が平 行である方が反力の効果は大きくなる。
[0269] 第 6実施形態については、次のような変形が可能である。
例えば、第 1バランサ 20と第 2バランサ 21のうち、何れか一方をフライホイールにて 構成することが可能である。バランサの一方をフライホイールにて構成することにより ストロークによるバランサの移動制限はなくなる。
なお、第 1バランサ 20と第 2バランサ 21の両方をフライホイールとすると、第 1バラン サ 20と第 2バランサ 21を駆動しても車両全体の重心位置を制御することができない ため、少なくとも一方のバランサは、回転軸の回りに対して非対称な形状を有すること が必要である。
[0270] また、説明した第 6実施形態では、第 1バランサ 20と第 2バランサ 21を特に区別し なかったが、一方を反力トルク発生用の重心バランサとし、他方を重心位置の維持の ためのカウンタバランサとすることも可能である。
この場合、重心バランサの慣性モーメントをカウンタバランサの慣性モーメントよりも 大きくするなど、それぞれの役割を果たすのに効果的なパラメータを設定することが できる。
更に、実施形態では、第 1バランサ 20と第 2バランサ 21の回転軸を車軸 25と同軸と したが、必ずしも同一軸上でなくてもよい。
[0271] また、説明した第 6実施形態では、姿勢制御において式(2)を用いて、 α 2、 α 3を 算出するようにした力 次の式(3)により近似してもよい。
すなわち、車両がほぼ鉛直軸上で直立している場合は 0 1、 0 2、 0 3、 ω 1、 ω 2、 ω 3が何れも約 0となるため、式(2)は、次の式(3)で近似することができる。
この近似式(3)を使用することで、 《2、 《3の算出が容易になる。
[0272] aG=mlrl a l/M+m2r2 a 2/M+m3r3 a 3/M (3)
[0273] なお、本実施形態の車両は次のように構成することも可能である。
(1)構成 A
一軸上に配置された駆動輪と、
搭乗部と、
前記搭乗部の傾斜に基づく物理量を検出する姿勢感知センサと、
前記搭乗部に対して移動可能に配置されたバランサと、
搭乗者による駆動指令と加減トルク値に従って前記駆動輪を駆動制御する駆動制 御部と、 前記物理量が第 1閾値よりも小さい場合に、姿勢制御に必要な前記駆動輪の第 1の 加減トルク値を前記駆動制御部に供給し、
前記物理量が第 1閾値以上で第 2閾値以下である場合に、前記物理量に対応する 反力トルクが発生するように前記バランサを前記搭乗部の傾斜方向に移動させ、 該物理量が第 2閾値より大きい場合、該第 2閾値に対応する反力トルクが発生するよ うに前記バランサを前記搭乗部の傾斜方向に移動させると共に、姿勢制御に必要な 前記駆動輪の第 2の加減トルク値を前記駆動制御部に供給する、
ことで前記搭乗部の姿勢制御を行う姿勢制御手段と、
を具備することを特徴とする車両。
(2)構成 B
前記第 1の閾値は、前記駆動輪が停止状態力 駆動を開始する始動トルク値に対 応する物理量であることを特徴とする構成 Aに記載の車両。
図面の簡単な説明
[図 1]本発明の車両における一実施例である倒立振り子車両の外観構成図である。
[図 2]バランサ駆動部の構成図である。
[図 3]倒立振り子車両の制御ユニットの構成図である。
[図 4]倒立振り子車両における姿勢制御の原理についての説明図である。
[図 5]姿勢制動処理の動作を表したフローチャートである。
[図 6]他の倒立振り子車両の外観構成図である。
[図 7]第 2実施形態における、倒立振り子車両のトルクバランスについて表した説明図 である。
[図 8]第 2実施形態において、主制御装置の姿勢制御動作を表したフローチャートで ある。
[図 9]第 3実施形態における、車両走行中の各部の状態を表した説明図である。
[図 10]第 3実施形態において、主制御装置の姿勢制御動作を表したフローチャート である。
[図 11]発進又は加減速における第 1動作の概要とが第 2動作の概要を表した説明図 である。
[図 12]第 2動作による発進時、加減速時の制御動作を表したフローチャートである。 圆 13]360度回転可能なバランサの構成を表した説明図である。
圆 14]バランサモータでバランサを構成した場合の説明図である。
圆 15]水平面を車両の前後方向に移動するバランサの説明図である。
圆 16]第 4実施形態におけるバランサの動きについて表した説明図である。
圆 17]第 5実施形態における車両の外観構成図である。
圆 18]第 5実施形態におけるバランサによる姿勢制御の原理についての説明図であ る。
圆 19]第 5実施形態における倒立振り子車両における姿勢制御の原理について説 明した図である。
圆 20]第 5実施形態における車両のハードウ ア的な構成についての説明図である
[図 21]第 5実施形態における制御ユニットによる姿勢制御の処理を表すフローチヤ一 トである。
圆 22]従来のバランサを用いた姿勢制御の説明図である。
圆 23]第 6実施形態におけるバランサによる姿勢制御の原理についての説明図であ る。
圆 24]第 6実施形態におけるバランサによる姿勢制御の原理についての説明図であ る。
圆 25]第 6実施形態における車両のハードウ ア的な構成についての説明図である
[図 26]第 6実施形態における制御ユニットによる走行制御の処理を表すフローチヤ一 トである。
[図 27]第 6実施形態における制御ユニットによる姿勢制御の処理を表すフローチヤ一 トである。
圆 28]従来のバランサを用いた姿勢制御の説明図である。
符号の説明 駆動輪
ホイ一ノレ駆動モータ 搭乗部
1 座面部
2 背もたれ部
3 ヘッドレスト 支持部材
操縦装置
制御ユニット
0 パッテリ
1 主制御装置
2 ジャイロセンサ
3 モータ制御装置 バランサ駆動部
1 パランサモータ2 バランサ
3 ノ ランサ駆動機構4 バランサ歯車
5 軸受け
6 歯車支持部
7 モータ歯車
表示,操作部
バランサ
バランサモータ 車軸
駆動モータ用インバータ バランサモータ用インバ4 記憶部 165 バランサモータ制御装置
171 入力部
172 表示部
173 バランサ検出部
174 タイヤ角度検出部
20 第 1バランサ
21 第 2バランサ
22 第 1バランサモータ
23 第 2バランサモータ
32 第 1バランサモータ用インバータ
33 第 2バランサモータ用インバータ

Claims

請求の範囲
[1] 一軸上に配置された駆動輪と、
搭乗部と、
前記搭乗部の傾斜に基づく物理量を検出する姿勢感知センサと、
前記搭乗部に対して移動可能に配置されたバランサと、
搭乗者による駆動指令に従って前記駆動輪を駆動制御する駆動制御部と、 前記検出した搭乗部の物理量に応じて前記検出した搭乗部の傾斜方向に前記バ ランサを移動し、これにより生じる反力トルクで前記搭乗部を元の姿勢位置に戻すこ とで前記搭乗部の姿勢制御を行う姿勢制御手段と、
を具備することを特徴とする車両。
[2] 一軸上に配置された駆動輪と、
搭乗部と、
前記搭乗部の傾斜に基づく物理量を検出する姿勢感知センサと、
前記搭乗部に対して移動可能に配置されたバランサと、
搭乗者による駆動指令に従って前記駆動輪を駆動制御する駆動制御部と、 前記検出した搭乗部の物理量に応じて、前記バランサを該傾斜方向に移動させる ことで前記搭乗部の姿勢制御を行う姿勢制御手段と、
を具備し、
前記姿勢制御手段は、前記検出した物理量が所定値を超える場合に、該所定値 に対応する反力トルクが発生するように前記バランサを移動すると共に、姿勢制御に 必要な前記駆動輪の加減トルク値を前記駆動制御部に供給し、
前記駆動制御部は、前記駆動指令及び前記加減トルク値に従って前記駆動輪を 駆動制御する、ことを特徴とする車両。
[3] 前記姿勢制御手段は、車速が所定値以下の場合は前記バランサの移動と前記加 減トルク値の供給により、車速が前記所定値より大き!/、場合は前記加減トルク値の供 給により、姿勢制御を行うことを特徴とする請求項 2に記載の車両。
[4] 一軸上に配置された駆動輪と、
搭乗部と、 前記搭乗部の傾斜に基づく物理量を検出する姿勢感知センサと、 前記搭乗部に対して移動可能に配置されたバランサと、
搭乗者による駆動指令に従って前記駆動輪を駆動制御する駆動制御部と、 前記検出した搭乗部の物理量に応じて前記搭乗部の姿勢制御を行う姿勢制御手 段と、
を具備し、
前記姿勢制御手段は、車両の発進時において、進行方向と逆方向に前記バランサ を移動し、その反力トルクで車両全体の重心を進行方向に移動させる、ことを特徴と する車両。
[5] 前記姿勢制御手段は、車両の加速時において進行方向と逆方向に前記バランサ を移動し、減速時において進行方向に前記バランサを移動する、ことを特徴とする請 求項 4に記載の車両。
[6] 一軸の車軸上に配置された駆動輪を駆動する駆動輪駆動手段と、
前記駆動輪の上方に配置され、前記駆動輪の運転操作を行う運転操作部と、 前記運転操作部に対して移動可能に配置された複数のバランサと、
車両の重心位置を所定位置に保つように前記複数のバランサを個別に移動し、そ の際に生じる反力により前記運転操作部の姿勢を所定の位置に制御する姿勢制御 手段と、
を具備したことを特徴とする車両。
[7] 前記複数のバランサは、前記車軸の回りに移動可能に配置されており、前記姿勢 制御手段は、前記複数のノ ンサを前記車軸の回りに個別に回転させることにより移 動させることを特徴とする請求項 6に記載の車両。
[8] 前記姿勢制御手段は、前記バランサを、前記検出した物理量に対するトルク T1以 上のトルク T2を発生させる角加速度又は角速度で移動させることを特徴とする請求 項 1から請求項 7のうちのいずれ力 1の請求項に記載の車両。
[9] 前記バランサを移動させるバランサモータを備え、
前記姿勢制御手段は、前記バランサモータにより前記バランサを前記搭乗部の傾 斜方向に移動させることを特徴とする請求項 1から請求項 8のうちのいずれか 1の請 求項に記載の車両。
[10] 前記姿勢制御手段は、前記バランサと共に前記バランサモータを、前記搭乗部の 傾斜方向に移動させることを特徴とする請求項 1から請求項 9のうちのいずれか 1の 請求項に記載の車両。
[11] 前記バランサは、前記バランサモータに電力を供給する電源であることを特徴とす る請求項 1から請求項 10のうちのいずれ力 1の請求項に記載の車両。
[12] 一軸の車軸上に配置された駆動輪を駆動する駆動輪駆動手段と、
前記駆動輪の上方に配置され、前記駆動輪の運転操作を行う運転操作部と、 前記車軸と同一軸上の回転軸の回りに回転する回転体と、
前記回転体の回転を加速し、その際に生じる反力により前記運転操作部の姿勢を 所定の位置に制御する姿勢制御手段と、
を具備したことを特徴とする車両。
[13] 前記姿勢制御手段は、前記運転操作部が前記所定の位置から前記車軸の回りに 傾いた方向と同じ方向に前記回転体を加速することを特徴とする請求項 12に記載の 单両。
[14] 前記姿勢維持手段は、前記前記運転操作部が前記所定の位置にある場合、前記 回転体を自由回転させることを特徴とする請求項 12、又は請求項 13に記載の車両。
PCT/JP2006/304624 2005-03-11 2006-03-09 車両 WO2006095823A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/885,872 US8016060B2 (en) 2005-03-11 2006-03-09 Vehicle

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-070116 2005-03-11
JP2005070116 2005-03-11
JP2005103342 2005-03-31
JP2005-103342 2005-03-31
JP2005227672A JP5110416B2 (ja) 2005-08-05 2005-08-05 車両
JP2005-227672 2005-08-05
JP2005-254879 2005-09-02
JP2005254879A JP4789061B2 (ja) 2005-09-02 2005-09-02 車両

Publications (1)

Publication Number Publication Date
WO2006095823A1 true WO2006095823A1 (ja) 2006-09-14

Family

ID=36953416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304624 WO2006095823A1 (ja) 2005-03-11 2006-03-09 車両

Country Status (2)

Country Link
US (1) US8016060B2 (ja)
WO (1) WO2006095823A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203965A (ja) * 2006-02-03 2007-08-16 Toyota Motor Corp 倒立車輪型の走行体
WO2008041731A1 (fr) * 2006-10-03 2008-04-10 Toyota Jidosha Kabushiki Kaisha Dispositif de course et procédé de commande de véhicule pour bicyclettes parallèles
WO2008065853A1 (fr) * 2006-11-30 2008-06-05 Equos Research Co., Ltd. Véhicule
JP2008160935A (ja) * 2006-12-21 2008-07-10 Equos Research Co Ltd 車両
WO2008117602A1 (ja) * 2007-03-27 2008-10-02 Equos Research Co., Ltd. 車両
JP2008238980A (ja) * 2007-03-27 2008-10-09 Equos Research Co Ltd 車両
JP2008238981A (ja) * 2007-03-27 2008-10-09 Equos Research Co Ltd 車両
WO2009020184A1 (ja) * 2007-08-07 2009-02-12 Equos Research Co., Ltd. 車両
WO2009048004A1 (ja) * 2007-10-12 2009-04-16 Equos Research Co., Ltd. 車両
US20100305840A1 (en) * 2007-12-27 2010-12-02 Equos Research Co., Ltd. Vehicle
JP2012031435A (ja) * 2011-11-15 2012-02-16 Teijin Chem Ltd 自動車部品の製造方法
JP2012041555A (ja) * 2011-11-15 2012-03-01 Teijin Chem Ltd 電子機器外装部品の製造方法
JP2012041554A (ja) * 2011-11-15 2012-03-01 Teijin Chem Ltd 電気・電子部品の製造方法
US8170781B2 (en) * 2007-04-27 2012-05-01 Toyota Jidosha Kabushiki Kaisha Inverted wheel type moving body and method of controlling the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957889B2 (ja) * 2006-08-29 2012-06-20 株式会社エクォス・リサーチ 走行車両
JP4779982B2 (ja) * 2007-02-02 2011-09-28 トヨタ自動車株式会社 移動体及び移動体の制御方法
JP4924179B2 (ja) * 2007-04-25 2012-04-25 トヨタ自動車株式会社 倒立車輪型移動体、及びその制御方法
CN101687528B (zh) * 2007-06-29 2013-03-06 爱考斯研究株式会社 车辆
JP2010125969A (ja) * 2008-11-27 2010-06-10 Toyota Motor Corp 移動体
US8567537B2 (en) * 2009-09-18 2013-10-29 Honda Motor Co., Ltd Inverted pendulum type vehicle
CN102574560B (zh) * 2009-09-18 2014-06-18 本田技研工业株式会社 倒立摆型移动体
US8513917B2 (en) * 2009-09-18 2013-08-20 Honda Motor Co., Ltd. Recharging system for a rechargeable battery of an inverted pendulum type vehicle
JP5553431B2 (ja) 2009-12-15 2014-07-16 トヨタ自動車株式会社 バランス訓練装置、及び、バランス訓練用プログラム
WO2011125117A1 (ja) * 2010-04-06 2011-10-13 トヨタ自動車株式会社 走行装置、その制御方法及び制御プログラム
CN101870265B (zh) * 2010-05-19 2012-08-29 江苏科技大学 一种电动车调速装置及其控制方法
US8418705B2 (en) * 2010-07-30 2013-04-16 Toyota Motor Engineering & Manufacturing North America, Inc. Robotic cane devices
US8403095B1 (en) * 2011-12-05 2013-03-26 Bryce A. Ecklein Step on-step off motorized utility vehicle
JP5916520B2 (ja) * 2012-05-14 2016-05-11 本田技研工業株式会社 倒立振子型車両
CN102798448B (zh) * 2012-09-06 2015-02-04 上海新世纪机器人有限公司 自平衡两轮车负载在线检测装置
WO2014045857A1 (ja) * 2012-09-18 2014-03-27 株式会社村田製作所 移動体
DE102012222884A1 (de) * 2012-12-12 2014-06-12 Robert Bosch Gmbh Verfahren zur Stabilisierung eines Zweirads
CN103407532A (zh) * 2013-08-26 2013-11-27 刘石创 一种单轮单杆自平衡电动车
US10843765B2 (en) * 2015-08-04 2020-11-24 Shane Chen Two-wheel self-balancing vehicle with platform borne sensor control
US10556636B2 (en) * 2016-01-17 2020-02-11 Shane Chen Self-balancing load bearing vehicle
USD941948S1 (en) 2016-07-20 2022-01-25 Razor Usa Llc Two wheeled board
USD840872S1 (en) 2016-07-20 2019-02-19 Razor Usa Llc Two wheeled board
USD803963S1 (en) 2016-07-20 2017-11-28 Razor Usa Llc Two wheeled board
JP6791014B2 (ja) * 2017-05-29 2020-11-25 トヨタ自動車株式会社 電動車椅子操作装置及びその車両操作方法
JP2021506671A (ja) 2017-12-22 2021-02-22 レイザー・ユーエスエー・エルエルシー 電動バランス車両

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192906A (ja) * 1984-10-13 1986-05-10 Toyoda Autom Loom Works Ltd 自動車
JPS63305082A (ja) * 1987-06-05 1988-12-13 Ckd Corp 同軸二輪車における姿勢制御方法
JP2003237665A (ja) * 2002-02-14 2003-08-27 Sigma Solutions:Kk 二重反転ホイールを内蔵する自立式二輪走行装置
JP2004129435A (ja) * 2002-10-04 2004-04-22 Sony Corp 搬送装置、制御方法、及び駆動機構
US6789640B1 (en) * 2000-10-13 2004-09-14 Deka Products Limited Partnership Yaw control for a personal transporter
JP2004276727A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 人用移動機器とその制動方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561294B1 (en) * 1995-02-03 2003-05-13 Deka Products Limited Partnership Balancing vehicle with passive pivotable support
US7152882B2 (en) * 2002-03-28 2006-12-26 Sanyo Electric Co., Ltd. Mobile carriage
JP3981733B2 (ja) 2003-09-17 2007-09-26 独立行政法人産業技術総合研究所 平行2輪乗用台車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192906A (ja) * 1984-10-13 1986-05-10 Toyoda Autom Loom Works Ltd 自動車
JPS63305082A (ja) * 1987-06-05 1988-12-13 Ckd Corp 同軸二輪車における姿勢制御方法
US6789640B1 (en) * 2000-10-13 2004-09-14 Deka Products Limited Partnership Yaw control for a personal transporter
JP2003237665A (ja) * 2002-02-14 2003-08-27 Sigma Solutions:Kk 二重反転ホイールを内蔵する自立式二輪走行装置
JP2004129435A (ja) * 2002-10-04 2004-04-22 Sony Corp 搬送装置、制御方法、及び駆動機構
JP2004276727A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 人用移動機器とその制動方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203965A (ja) * 2006-02-03 2007-08-16 Toyota Motor Corp 倒立車輪型の走行体
WO2008041731A1 (fr) * 2006-10-03 2008-04-10 Toyota Jidosha Kabushiki Kaisha Dispositif de course et procédé de commande de véhicule pour bicyclettes parallèles
WO2008065853A1 (fr) * 2006-11-30 2008-06-05 Equos Research Co., Ltd. Véhicule
JPWO2008065853A1 (ja) * 2006-11-30 2010-03-04 株式会社エクォス・リサーチ 車両
JP2008160935A (ja) * 2006-12-21 2008-07-10 Equos Research Co Ltd 車両
JP2008238981A (ja) * 2007-03-27 2008-10-09 Equos Research Co Ltd 車両
CN101646595B (zh) * 2007-03-27 2011-09-21 爱考斯研究株式会社 车辆
US8423274B2 (en) * 2007-03-27 2013-04-16 Equos Research Co., Ltd. Vehicle
JP2008238980A (ja) * 2007-03-27 2008-10-09 Equos Research Co Ltd 車両
WO2008117602A1 (ja) * 2007-03-27 2008-10-02 Equos Research Co., Ltd. 車両
US20100114420A1 (en) * 2007-03-27 2010-05-06 Equos Research Co., Ltd. Vehicle
US8170781B2 (en) * 2007-04-27 2012-05-01 Toyota Jidosha Kabushiki Kaisha Inverted wheel type moving body and method of controlling the same
WO2009020184A1 (ja) * 2007-08-07 2009-02-12 Equos Research Co., Ltd. 車両
JP2009044828A (ja) * 2007-08-07 2009-02-26 Equos Research Co Ltd 車両
JP2009090938A (ja) * 2007-10-12 2009-04-30 Equos Research Co Ltd 車両
WO2009048004A1 (ja) * 2007-10-12 2009-04-16 Equos Research Co., Ltd. 車両
US8504282B2 (en) 2007-10-12 2013-08-06 Equos Research Co., Ltd. Vehicle
US20100305840A1 (en) * 2007-12-27 2010-12-02 Equos Research Co., Ltd. Vehicle
US8374774B2 (en) * 2007-12-27 2013-02-12 Equos Research Co., Ltd. Vehicle
JP2012031435A (ja) * 2011-11-15 2012-02-16 Teijin Chem Ltd 自動車部品の製造方法
JP2012041555A (ja) * 2011-11-15 2012-03-01 Teijin Chem Ltd 電子機器外装部品の製造方法
JP2012041554A (ja) * 2011-11-15 2012-03-01 Teijin Chem Ltd 電気・電子部品の製造方法

Also Published As

Publication number Publication date
US8016060B2 (en) 2011-09-13
US20080164083A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
WO2006095823A1 (ja) 車両
JP4794327B2 (ja) 車両
JP4794328B2 (ja) 車両
JP4887865B2 (ja) 車両
JP5395157B2 (ja) 搬送車及びその制御方法
JP5013256B2 (ja) 車両
WO2008065853A1 (fr) Véhicule
WO2008032587A1 (fr) Vehicule
US9845101B2 (en) Pushcart
JPWO2011033595A1 (ja) 倒立振子型車両の制御装置
WO2022059714A1 (ja) 二輪車
JPWO2011033578A1 (ja) 倒立振子型車両の制御装置
JP5379235B2 (ja) 倒立振子型車両の制御装置
JP4793252B2 (ja) 車両
JP4831490B2 (ja) 車両
JP2007118807A (ja) 車両
JP5110416B2 (ja) 車両
JP4789061B2 (ja) 車両
JP5181923B2 (ja) 車両
JP2011093398A (ja) 全方向移動車両の制御装置
JP2009136057A (ja) 車輌制御装置
JP5152627B2 (ja) 車両
JP5386283B2 (ja) 倒立振子型移動体、制御装置、および、制御方法
JP5041224B2 (ja) 車両
JP2011062474A (ja) 歩行補助システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11885872

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728841

Country of ref document: EP

Kind code of ref document: A1