WO2006093275A1 - 積層型有機太陽電池 - Google Patents

積層型有機太陽電池 Download PDF

Info

Publication number
WO2006093275A1
WO2006093275A1 PCT/JP2006/304107 JP2006304107W WO2006093275A1 WO 2006093275 A1 WO2006093275 A1 WO 2006093275A1 JP 2006304107 W JP2006304107 W JP 2006304107W WO 2006093275 A1 WO2006093275 A1 WO 2006093275A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
layer
generation layer
solar cell
adhesive layer
Prior art date
Application number
PCT/JP2006/304107
Other languages
English (en)
French (fr)
Inventor
Kenji Kawano
Norihiro Ito
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to EP06715190A priority Critical patent/EP1855323A4/en
Priority to US11/817,597 priority patent/US8237048B2/en
Priority to CN2006800070953A priority patent/CN101133499B/zh
Publication of WO2006093275A1 publication Critical patent/WO2006093275A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2072Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells comprising two or more photoelectrodes sensible to different parts of the solar spectrum, e.g. tandem cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a stacked organic solar cell formed by stacking a plurality of power generation layers that generate light by receiving light.
  • Organic thin-film solar cells which are classified as another type of organic solar cell, are also vacuum deposited using low-molecular-weight electron-donating materials (donor materials) and electron-accepting materials (acceptor materials). It has been reported that the conversion efficiency of 3.6% was obtained in the low-molecular-weight organic thin-film solar cell formed by (P. Peumans and SR Forrest, Appl. Phys. Lett. 79, 126 (2001)).
  • a concavity and convexity are provided on the back cathode that collects electrons to try to confine light and improve the collection of electrons (M. Niggemann, e-MRS 2003, oral presentation (2003)).
  • a material with higher hole mobility and after heating the organic solar cell, it is heated appropriately to realize a rearrangement of the conjugated polymer and an appropriate mixed state of the hole transport material and the electron transport material. Improvements in charge separation (F. Padinger, Adv. Funct. Mater. 13, 85 (2003)) have been devised, and currently a conversion efficiency of 3.5% has been achieved.
  • the layering of the power generation layer is one of the most effective methods for increasing the efficiency of organic thin-film solar cells.
  • the second power generation layer is stacked on the first power generation layer.
  • the first power generation layer is dissolved by the solvent used to form the second power generation layer, and the structure of the first power generation layer is destroyed or the function is deteriorated to form a stacked structure of the power generation layer. There was a problem that it was difficult.
  • Japanese Patent Publication No. 8-31616 discloses a plurality of layers formed by vapor deposition or the like.
  • a stacked organic solar cell in which a metal layer is provided between power generation layers is disclosed.
  • the solvent used to form the second power generation layer permeates the first power generation layer by applying a technique for providing such a metal layer between the power generation layers. This can be prevented by the metal layer, and it is possible to prevent the structure of the first power generation layer from being destroyed and its function from being deteriorated by this solvent.
  • increasing the film thickness of the metal layer decreases the light transmittance and decreases the power generation efficiency of the solar cell.
  • Japanese Unexamined Patent Publication No. 2001-319698 discloses that a single cell in which a conductive layer, an undercoat layer, a photosensitive layer (power generation layer), a charge transfer layer, and a counter electrode conductive layer are stacked in this order is stacked via a support such as glass.
  • a stacked organic solar cell is disclosed. By configuring in this way, each cell can be formed independently, so that deterioration during the formation of the power generation layer due to the application of the solution does not occur.
  • the number of layers is large and the structure is complicated, there is a possibility that the production cost increases, the light transmittance decreases, and the power generation efficiency of the solar cell decreases.
  • the object of the present invention is to form a second power generation layer in a solution of the second power generation layer when the second power generation layer is formed by laminating a solution on the first power generation layer. It is an object of the present invention to provide a stacked organic solar cell with high power generation efficiency in which the structure is not destroyed or its function is not deteriorated by the action of a solvent.
  • a stacked organic solar cell is formed on a first power generation layer containing a donor material and an acceptor material, and on the first power generation layer.
  • a second power generation layer formed from a solution of an organic compound containing a donor material and an acceptor material on the adhesive layer, the adhesive layer comprising a transparent oxide And at least one of transparent nitrides.
  • the stacked organic solar cell according to an aspect of the present invention is characterized in that the adhesive layer has a light transmittance of 70% or more.
  • At least one particle of the transparent oxide and the transparent nitride is separated in a solvent in which the adhesive layer does not dissolve the first power generation layer. It is a layer formed by applying the dispersed solution to the first power generation layer.
  • the adhesive layer is a layer formed by a vapor deposition method.
  • the thickness of the adhesive layer is 5 nm or more and 250 nm or less.
  • the adhesive layer formed as a transparent and dense film is formed on the first power generation layer, the adhesive layer is formed when the second power generation layer is formed by solution application. Prevents the solvent in the solution that forms the second power generation layer from penetrating into the first power generation layer, and the structure of the first power generation layer is destroyed or its function is reduced by the action of the solvent. Therefore, a laminated structure of power generation layers having high power generation efficiency can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a stacked organic solar cell that is an example of an embodiment of the present invention.
  • FIG. 1 shows an example of a layer structure of a stacked organic solar cell that is an organic photoelectric conversion device.
  • a transparent positive electrode layer 11 On a support substrate 10, a transparent positive electrode layer 11, a hole transport layer 12, and Power generation layer 1 (hereinafter referred to as the first power generation layer), adhesive layer 3, hole transport layer 13, power generation layer 2 (hereinafter referred to as the second power generation layer), electron transport layer 14, and negative electrode layer 15 are laminated in this order, and the outer surfaces of these laminates are covered with the surface protective layer 16.
  • the support substrate 10 is formed of a light-transmitting material, and may be slightly colored in addition to being colorless and transparent. It can be ground glass.
  • transparent glass plates such as soda lime glass and non-alkali glass, resins such as polyester, polyolefin, polyamide, epoxy, etc., fluororesins, etc.
  • Plastic films or plastic plates produced by any method may be used. it can.
  • particles and powder having a refractive index different from that of the substrate matrix are contained in the support substrate 10. It is also possible to use those having a light diffusing effect by containing bubbles, etc.
  • the material of the support substrate 10 is not particularly limited as long as it can support the solar cell portion.
  • the hole transport material constituting the hole transport layers 12 and 13 has the ability to transport holes, has a hole transfer effect from the power generation layers 1 and 2, and has a positive effect on the positive electrode.
  • a compound having an excellent hole transfer effect, a property of blocking electrons, and an excellent thin film forming ability is preferable.
  • phthalocyanine derivatives naphthalocyanine derivatives, porphyrin derivatives, N, N '—bis (3-methylphenyl) one (1, 1-biphenyl) _4, monodiamin (TPD), 4, monobis [N — (Naphthyl) -1-N-phenylamino] biphenyl (H-NPD) and other aromatic diamine compounds, oxazole, oxadiazomonore, triazonole, imidazole, imidazolone, stilbene derivatives, pyrazoline derivatives, tetrahydroimidazole, polyarylalkanes , Butadiene, 4, 4 ', 4 "-tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), and polyvinylcarbazole, polysilane, aminoviridine derivatives, polyethylenediosidethiophene ( Polymer materials such as conductive poly
  • the organic compound used to form the first power generation layer 1 and the second power generation layer 2 that generate electricity by receiving light includes a donor material that donates electrons and an acceptor material that accepts electrons. And are used.
  • Donor materials include phthalocyanine pigments, indigo, thioindigo pigments, quinacridone pigments, merocyanine compounds, cyanine compounds, squamous compounds, polycyclic aromatics, and charge transfer used in organic electrophotographic photoreceptors. Agents, electrically conductive organic charge transfer complexes, and conductive polymers can also be used.
  • the phthalocyanine pigments include divalent pigments such as Cu, Zn, Co, Ni, Pb, Pt, Fe, Mg, etc., metal-free phthalocyanine, aluminum black phthalocyanine, indium chlorophthalocyanine, gallium chrome.
  • divalent pigments such as Cu, Zn, Co, Ni, Pb, Pt, Fe, Mg, etc.
  • metal-free phthalocyanine aluminum black phthalocyanine, indium chlorophthalocyanine, gallium chrome.
  • Examples include trivalent metal phthalocyanines coordinated with halogen atoms such as oral phthalocyanine, and other phthalocyanines coordinated with oxygen such as vanadyl phthalocyanine and titanyl phthalocyanine.
  • polycyclic aromatic include anthracene, tetrathracene, pentacene, and derivatives thereof.
  • Examples include hydrazone compounds, pyrazoline compounds, triphenylmethane compounds, and triphenylamine compounds.
  • Examples of the electrically conductive organic charge transfer complex include tetrathiofulvalene and tetraphenylenylthiothiovalene.
  • Examples of the conductive polymer include those soluble in organic solvents such as toluene such as poly (3-alkylthiophene), polyparaphenylenevinylene derivatives, polyfluorene derivatives, and oligomers of conductive polymers. However, it is not particularly limited to these.
  • Examples of the acceptor material include compound semiconductor particles, and in particular, compound semiconductor nanocrystals can be used.
  • a nanocrystal is a thing of size:! ⁇ LOOnm.
  • the shape of the nanocrystal includes a rod shape, a spherical shape, and a tetrapod shape.
  • Specific materials include ⁇ -V group compound semiconductor crystals such as InP, InAs, GaP, and GaAs, ⁇ -VI group compound semiconductor crystals such as CdSe, CdS, CdTe, and ZnS, ZnO, SiO, TiO, and AlO.
  • low molecular weight materials such as fullerene derivatives and conductive polymers can be used.
  • the adhesive layer 3 is formed of at least one of a transparent oxide and a transparent nitride.
  • Transparent oxides include ITO (indium tin oxide), SnO, GZO (gallium zinc oxide), AZO (
  • Aluminum zinc oxide), izO (indium zinc oxide), and the like, and transparent nitrides can include SiN and the like.
  • Examples of the material used for the electron transport layer 14 formed on the second power generation layer 2 include bathocuproin, bathofanant lin, and derivatives thereof, silole compounds, triazole compounds, tris (8- Hydroxyquinolinate) aluminum complex, bis (4-methyl-1-8-quinolinato) aluminum complex, oxadiazole compound, distyrylarylene derivative, silole compound, ⁇ (2, 2 ', 2 "_ (1, 3, 5 _Benzenetolyl) Tris_ [1_Pheninole 1H-Benzimidazole]) and other materials that have electron transport properties are not limited to these. mobility of 10 _ 6cm 2 / Vs or more, more preferably 10- 5cm 2 / Vs or more of the material is Yo les,.
  • the negative electrode layer 15 formed on the electron transport layer 14 effectively uses electrons generated in the power generation layers 1 and 2. It is an electrode for collecting efficiently, and it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture of these having a low work function and a work function of 5 eV or less. preferable.
  • the electrode material of the negative electrode layer 15 include alkali metals, alkali metal halides, alkali metal oxides, alkaline earth metals, rare earths, and alloys of these with other metals such as sodium. Examples thereof include sodium-potassium alloy, lithium, magnesium, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, AlZLiF mixture, and the like. Aluminum, Al / Al 2 O mixture, etc. can also be used. Also of alkali metal
  • the negative electrode layer 15 may be formed.
  • an alkali metal / A1 laminate, an alkali metal halide Z, an alkaline earth metal ZA1 laminate, an AlO / A1 laminate, and the like can be given as examples.
  • the negative electrode layer 15 is, for example,
  • Electrode materials can be produced by forming them into a thin film by a method such as vacuum deposition or sputtering.
  • the surface protective layer 16 covering the formed laminate is formed by laminating a metal such as A1 with a spatter, or a fluorine-based compound, a fluorine-based polymer, another organic molecule, or a polymer.
  • Etc. can be formed as a thin film by vapor deposition, sputtering, CVD, plasma polymerization, coating, ultraviolet curing, thermal curing or other methods. It is also possible to provide a film-like structure having optical transparency and gas barrier properties.
  • the light transmittance of the surface protective layer 16 is preferably 70% or more in order to allow the light to reach the power generation layers 1 and 2.
  • the first power generation layer 1 can be formed by dissolving or dispersing the organic compound in a solvent, applying the solution on the hole transporting layer 12, and drying the organic compound.
  • the formation method is not particularly limited as long as a film can be formed, such as a method of forming on the hole transport layer 12.
  • the adhesive layer 3 can be formed by applying a solution in which transparent oxide or transparent nitride particles are dispersed in a solvent to the first power generation layer 1 and then removing the solvent.
  • the adhesive layer 3 can be formed by a vapor phase growth method that does not use any solvent.
  • the vapor phase growth method include a vacuum vapor deposition method, a vacuum sputtering method, and an EB vapor deposition method, but are limited to these as long as they can be formed in a vapor phase by a formation method that does not use a solvent. Dena, The thickness of the adhesive layer 3 formed here is 5 nm or more and 250 nm or less.
  • the second power generation layer 2 is formed by applying a solution of an organic compound containing a donor material and an acceptor material onto the hole transport layer 13 formed on the adhesive layer 3, and then removing the solvent. Is formed.
  • the donor material the above-mentioned materials can be used.
  • the solvent polar solvents such as black mouth form, black mouth benzene, 1,2-dichlorobenzene, 1,2,4-trichloro mouth benzene, and toluene can be used.
  • the adhesive layer 3 formed on the first power generation layer 1 is formed by coating the first power generation layer 1 and a solution. 2 between the power generation layer 2 and the solvent in the solution is prevented from penetrating into the first power generation layer 1 to prevent the first power generation layer 1 from being affected by the solvent. . That is, the structure of the first power generation layer 1 is not destroyed or the function is not deteriorated because the first power generation layer 1 is dissolved in this solvent.
  • the battery has a laminated structure of power generation layers having high power generation efficiency.
  • the adhesive layer 3 is formed of a transparent oxide or transparent nitride, it can be formed as a transparent and dense film, and the adhesive layer 3 has a predetermined film thickness of 70% or more.
  • the light transmittance can be secured.
  • the efficiency of light absorption and power generation is increased even in the second power generation layer 2 formed on the first power generation layer 1.
  • Power generation layer 1
  • the film thickness of the adhesive layer 3 is within this range also in the examples described later in which the predetermined film thickness of the adhesive layer 3 is preferably 5 nm or more and 250 nm or less.
  • the predetermined film thickness of the adhesive layer 3 is preferably 5 nm or more and 250 nm or less.
  • the force for providing the hole transport layer 13 between the adhesive layer 3 and the second power generation layer 2 may be provided with another layer as required.
  • the second power generation layer 2 may be formed directly on the adhesive layer 3. Also in this case, since the penetration of the solvent in the solution forming the second power generation layer 2 can be prevented by the adhesive layer 3 as in the above embodiment, the first power generation layer 1 is dissolved and destroyed. Therefore, it is possible to construct a laminated structure of power generation layers having high power generation efficiency without any deterioration in function.
  • the specific configuration of the stacked organic solar cell is basically a positive electrode layer / first power generation layer / adhesion layer / second power generation layer / negative electrode layer.
  • the first power generation layer and the adhesive layer An electron transport layer may be provided between the first power generation layer Z and the electron transport layer excluding the hole transport layer.
  • the glass substrate with ITO film (Kuramoto Seisakusho Co., Ltd.), which is the positive electrode layer, is used with acetone, isopropyl alcohol (both manufactured by Kanto Chemical Co., Ltd.), Semico Clean (manufactured by Furuuchi Kagaku Co., Ltd.), and ultrapure water for over 10 minutes each. After sonic cleaning, it was cleaned with isopropyl alcohol vapor and dried. Next, this ITO is treated with an atmospheric pressure plasma surface treatment device (Matsushita Electric Works Co., Ltd.) for 3 minutes. Surface treatment of the substrate was performed.
  • polyethylenedioxythiophene polystyrene sulfonate (manufactured by Starck) was formed as a hole transport layer with a film thickness of 50 nm.
  • this substrate was transferred to a glove box in a dry Ar atmosphere with a dew point of 76 ° C or less and oxygen of 1ppm or less, and poly (2-methoxy_5_ (3,7-dimethyloctenolexoxy) as a donor material.
  • 1,4-Fenylenevinylene (American Dice Source, MDM ⁇ 1 PPV) 4mg, as an acceptor material, [6, 6] -phenyl C61-butyl acid methyl ester (American Dice Source)
  • the first organic power generation layer with a film thickness of lOOnm is formed by applying a solution prepared by dissolving 20 mg of PCBM in 20 mL of lmL of black benzene onto the hole transport layer by spin coating. did
  • this substrate is transferred to a DC sputtering apparatus (manufactured by Anelva Co., Ltd.), and the first organic power generation layer is damaged by using an IT ⁇ ceramic target (Tosoichi Co., Ltd.).
  • an IT ⁇ ceramic target Tosoichi Co., Ltd.
  • a hole transport layer is formed on the adhesive layer in the same manner as described above, and spins are further formed on the hole transport layer in the same manner as in the case of the first organic power generation layer.
  • a second organic power generation layer was formed by applying the solution by coating.
  • this substrate was set in a vacuum evaporation apparatus (manufactured by ULVAC), and bathocuproine (manufactured by Dojindo Laboratories Co., Ltd.) as an electron transport layer was formed on the second organic power generation layer with a thickness of 6 nm
  • a 150-nm-thick A1 thin film was formed thereon by vacuum deposition as a negative electrode layer for the counter electrode.
  • a barium oxide powder is placed as a water-absorbing material in an air-permeable bag, which is adhered to a glass sealing plate with an adhesive, and an ultraviolet curable resin is previously placed on the outer periphery of the sealing plate.
  • Fig. 1 shows the surface protection layer formed by applying a sealant made of the product, pasting the sealing plate to the IT board with the sealant in the glove box, and curing the sealant with UV.
  • a stacked organic solar cell was obtained as a layered organic photoelectric conversion device.
  • ITO ultrafine particles with a particle size of 5 to 20 nm (Sumitomo Osaka Cement Co., Ltd.) are dispersed in isopropyl alcohol at a concentration of 20 mg / mL is spin-coated, and a thickness of 200 nm is formed on the first organic power generation layer as an adhesive layer
  • a stacked organic solar cell was obtained in the same manner as in Example 1 except that the ITO film was formed.
  • Example 2 A sputtering apparatus similar to that of Example 1 was used, and an Ag metal target was used to form an Ag film with a thickness of 20 nm as an adhesive layer on the first organic power generation layer. In the same manner, a stacked organic solar cell was obtained.
  • Example 2 A sputtering apparatus similar to that in Example 1 was used, and an Ag metal target was used to form an Ag film with a thickness of 5 nm as an adhesive layer on the first organic power generation layer. In the same manner, a stacked organic solar cell was obtained.

Abstract

 本発明に係る積層型有機太陽電池は、第1の発電層(1)と第2の発電層(2)の間に接着層(3)を設けた構成としている。本構成は、ドナー材料とアクセプタ材料とを含有する有機化合物の溶液から形成される第1の発電層(1)の上に、接着層(3)を形成し、さらに接着層(3)の上にドナー材料とアクセプタ材料とを含有する有機化合物の溶液を塗布して第2の発電層(2)を形成してなるものである。接着層(3)は、透明酸化物と透明窒化物の少なくとも一方で形成されている。この構成により、第1の発電層(1)の上に溶液塗布によって第2の発電層(2)を形成する際、接着層(3)は、第1の発電層(1)に第2の発電層(2)の溶液中の溶媒が浸透することを阻止し、第1の発電層(1)の構造が破壊されたり、機能が劣化したりすることがない。

Description

明 細 書
積層型有機太陽電池
技術分野
[0001] 本発明は、光を受けて発電する発電層を複数積層して形成される積層型有機太陽 電池に関する。
背景技術
[0002] 近年、産業の発展に伴いエネルギーの使用量が飛躍的に増加しており、今後も更 なるエネルギー需要の増大が見込まれる。こうした背景のもと、地球環境に負荷を与 えない、経済的で高性能な新しいクリーンエネルギーの生産技術の開発に期待が寄 せられている。なかでも、太陽電池は無限にあるといってよい太陽光を利用すること 力 新しレ、エネルギー源として注目されてレ、る。現在実用化されてレ、る太陽電池の大 部分は、単結晶シリコン、多結晶シリコン、アモルファスシリコンを用いた無機太陽電 池である。しかし、これら無機シリコン系太陽電池は、その製造プロセスが複雑でコス トが高レ、とレ、う欠点を持ち合わせてレ、るため、広く一般家庭用に普及するには至って ない。このような欠点を解消するために、簡単なプロセスで低コスト化'大面積化が可 能な有機材料を用いた有機太陽電池の研究が盛んになってきている。
[0003] こうした有機太陽電池の研究においては、有機太陽電池の一種である色素増感型 太陽電池では、近年、スイスのローザンヌ工科大学の Gratzel教授により、多孔質酸 ィ匕チタン、ルテニウム色素、ヨウ素とヨウ素イオンを用いた光化学反応に基づくものが 10%という高い変換効率を有することが発表されている(B. O ' Regan, Μ· Gratzel, Nature, 353、 737 (1991))。
[0004] もう 1種類の有機太陽電池に分類される有機薄膜型太陽電池についても、低分子 材料の電子供与性材料 (ドナー材料)と電子受容性材料 (ァクセプタ材料)を用いて真 空蒸着法により形成した低分子型有機薄膜太陽電池において、 3. 6%の変換効率 を得たことが報告されている(P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79、 126 (2001))。
[0005] また、光を受けて電気を発生する発電層の材料に高分子材料を用いた検討も進ん でいる。これは、発電層の形成にコストの掛カる真空蒸着法を利用しないため、より低 コスト化が期待できる。
[0006] また、共役系ポリマーとフラーレン誘導体との混合膜のタイプでも、 2. 5%の変換効 率を得たことが報告された(S. E. Shaheen, Appl. Phys. Lett. 78、 841 (2001))ことを 契機に、有機太陽電池に対する研究が再び注目されるようになり、高効率な有機太 陽電池を得るために様々な工夫がなされている。
[0007] また、例えば、電子を収集する背面陰極に凹凸を設け、光の閉じ込め、電子の収集 向上を試みたり (M. Niggemann、 e- MRS 2003、 oral presentation(2003))、共役系ポリ マーをよりホール移動度の高い材料を用レ、、有機太陽電池作製後、適度に加温する ことによって、共役系ポリマーの再配列やホール輸送材料と電子輸送材料の適度な 混合状態を実現して電荷分離を向上させたり (F. Padinger, Adv. Funct. Mater. 13、 85 (2003))するなどの工夫がなされており、現在、 3. 5%の変換効率を得ている。
[0008] 上記の他の有機薄膜太陽電池の高効率化のための手法として、発電層を積層す る取り組みが積極的になされている。低分子材料を用いた有機薄膜太陽電池におい ては、各層の機能を分離したり、入射光側のガラス基板に Wistonタイプの光収集構 造体を設けたり (P. Peumans、 V. Bulovic and S. R. Forrest, Appl. Phys. Lett. 76、 2650 (2000))、発電部分を 0. 5nm〜5nm程度の金属層を介して積層する取り組み( A. Yakimov and S. R. Forrest, Appl. Phys. Lett. 80、 1667 (2002))が検討されてお り、開放端電圧 (Voc)が約 2倍近く向上した例がある。また、高分子材料を用いた場合 においても、複数の発電層を積層化する取り組みが検討されている。このように、発 電層の積層化は、有機薄膜太陽電池の高効率化のために最も有効な手法の 1つで あること力 S示されてレ、る。
[0009] しかし、ドナー材料とァクセプタ材料とを含有する有機化合物の溶液を塗布して発 電層を形成する場合、第 1の発電層の上に第 2の発電層を積層して形成するときに、 第 1の発電層が第 2の発電層の形成に用いる溶媒によって溶解し、第 1の発電層の 構造が破壊されたり、機能が劣化したりして、発電層の積層構造を形成することが困 難であるという問題があった。
[0010] ところで、 日本国特公平 8— 31616号公報には、蒸着法等で形成される複数層の 発電層の間に金属層を設けた積層型有機太陽電池が開示されている。上記のように 溶液を塗布して発電層を形成する場合に、こうした金属層を発電層間に設ける技術 を適用することにより、第 2の発電層の形成に用いる溶媒が第 1の発電層に浸透する ことを金属層で阻止することができ、この溶媒による第 1の発電層の構造の破壊や機 能劣化を防ぐことが可能である。しかし、このような金属層を発電層の間に設ける場 合、金属層の膜厚を厚くすると光透過率が低下し、太陽電池の発電効率が低下する 。このため、金属層は非常に薄い膜厚で形成する必要があるが、金属層の膜厚を薄 くすると溶媒が透過し易くなり、第 1の発電層に溶媒が浸透し作用するおそれがある。 また、 日本国特開 2001— 319698号公報には、導電層、下塗り層、感光層(発電層 )、電荷移動層、対極導電層の順に積層した単セルをガラスなどの支持体を介して積 層する積層型有機太陽電池が開示されている。このように構成することで、各セルは 独立に形成することができるので、上記の溶液塗布による発電層の形成時の劣化等 は発生しない。しかし、層数が多く構造が複雑になるために、生産コストの上昇や、光 透過率が低下し、太陽電池の発電効率が低下するおそれがある。
発明の開示
[0011] 本発明の目的は、第 1の発電層の上に溶液塗布により第 2の発電層を積層して形 成する際に、第 1の発電層が第 2の発電層の溶液中の溶媒の作用を受けて構造が 破壊されたり、機能が劣化したりすることのない、発電効率の高い積層型有機太陽電 池を提供することにある。
[0012] 上記目的を達成するため、本発明の一態様に係る積層型有機太陽電池は、ドナー 材料とァクセプタ材料とを含有する第 1の発電層と、前記第 1の発電層の上に形成さ れた接着層と、前記接着層の上にドナー材料とァクセプタ材料とを含有する有機化 合物の溶液から形成された第 2の発電層と、を備え、前記接着層は、透明酸化物と 透明窒化物の少なくとも一方で形成されていることを特徴とする。
[0013] また、本発明の一態様に係る積層型有機太陽電池は、前記接着層の光透過率が 7 0%以上であることを特徴とする。
[0014] また、本発明の一態様に係る積層型有機太陽電池は、前記接着層が前記第 1の発 電層を溶解させない溶媒中に透明酸化物と透明窒化物の少なくとも一方の粒子を分 散させた溶液を前記第 1の発電層に塗布することにより形成される層であることを特 徴とする。
[0015] また、本発明の一態様に係る積層型有機太陽電池は、前記接着層が気相成長法 で形成される層であることを特徴とする。
[0016] また、本発明の一態様に係る積層型有機太陽電池は、前記接着層の厚みが 5nm 以上 250nm以下であることを特徴とする。
[0017] このような構成によれば、第 1の発電層の上に透明かつ緻密な膜として形成された 接着層を有するので、溶液塗布により第 2の発電層を形成する際に、接着層は、第 2 の発電層を形成する溶液中の溶媒が第 1の発電層に浸透することを阻止し、溶媒の 作用により第 1の発電層の構造が破壊されたり機能が低下したりすることが防止され 、高い発電効率を有する発電層の積層構造を得ることができる。
図面の簡単な説明
[0018] [図 1]図 1は、本発明の実施の形態の一例である積層型有機太陽電池の構造を示す 概略断面図である。
発明を実施するための最良の形態
[0019] 以下、本発明の一実施形態に係る積層型有機太陽電池について、図面を参照し つつ詳細に説明する。
[0020] 図 1は、有機光電変換装置である積層型有機太陽電池の層構成の一例を示すも のであり、支持基板 10の上に、透明な正極層 11と、正孔輸送層 12と、発電層 1 (以 下第 1の発電層という)と、接着層 3と、正孔輸送層 13と、発電層 2 (以下第 2の発電 層という)と、電子輸送層 14と、負極層 15と、がこの順で積層しており、これらの積層 体の外表面は、表面保護層 16により覆われている。
[0021] 支持基板 10は、太陽電池の光入射面側に設ける場合、光透過性を有するもので 形成されるものであり、無色透明の他に、多少着色されているものであっても、すりガ ラス状のものであってもよレ、。例えば、ソーダライムガラスや無アルカリガラスなどの透 明ガラス板や、ポリエステル、ポリオレフイン、ポリアミド、エポキシ等の樹脂、フッ素系 樹脂等力 任意の方法によって作製されたプラスチックフィルムやプラスチック板など を用いることができる。また、支持基板 10内に基板母剤と屈折率の異なる粒子、粉体 、泡等を含有することによって、光拡散効果を有するものを使用することも可能である
。支持基板 10を太陽電池の光入射面側に設けない場合は、支持基板 10の材質等 は特に規定されるものではなぐ太陽電池部分を支持できるものであればよい。
[0022] また、正孔輸送層 12、 13を構成する正孔輸送材料としては、正孔を輸送する能力 を有し、発電層 1、 2からの正孔移動効果を有するとともに、正極に対して優れた正孔 移動効果を有し、また、電子をブロックするような特性を有し、かつ薄膜形成能力の 優れた化合物が好ましい。具体的にはフタロシアニン誘導体、ナフタロシアニン誘導 体、ポルフィリン誘導体、 N、 N' —ビス (3—メチルフエ二ル)一(1、 1 —ビフエニル) _4、 一ジァミン(TPD)や 4、 一ビス [N— (ナフチル)一N—フエ二ル一ァミノ ]ビフヱニル(ひ—NPD)等の芳香族ジァミン化合物、ォキサゾール、ォキサジァゾ一 ノレ、トリァゾーノレ、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、 テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、 4、 4' 、 4" —トリス(N - (3—メチルフエニル) N—フエニルァミノ)トリフエニルァミン(m— MTDATA)、及 びポリビニルカルバゾール、ポリシラン、アミノビリジン誘導体、ポリエチレンジオイサイ ドチォフェン (PEDOT)等の導電性高分子等の高分子材料を挙げることができるが、 特にこれらに限定されるものではない。
[0023] また、光を受けて電気を発生する第 1の発電層 1や第 2の発電層 2の形成に使用す る有機化合物としては、電子を供与するドナー材料と電子を受容するァクセプタ材料 とが用いられる。そしてドナー材料としては、フタロシアニン系顔料、インジゴ、チオイ ンジゴ系顔料、キナクリドン系顔料、メロシアニン化合物、シァニンィ匕合物、スクァリウ ム化合物、多環芳香族、また、有機電子写真感光体に用いられる電荷移動剤、電気 伝導性有機電荷移動錯体ゃ導電性高分子も用いることができる。
[0024] フタロシアニン系顔料としては、中心金属が Cu、 Zn、 Co、 Ni、 Pb、 Pt、 Fe、 Mg等 の 2価のもの、無金属フタロシアニン、アルミニウムクロ口フタロシアニン、インジウムク ロロフタロシアニン、ガリウムクロ口フタロシアニン等のハロゲン原子が配位した 3価金 属のフタロシアニン、その他バァナジルフタロシアニン、チタニルフタロシアニン等の 酸素が配位したフタロシアニン等がある。また、多環芳香族としては、アントラセン、テ トラセン、ペンタセン、またはこれらの誘導体などがある。また、電荷移動剤としては、 ヒドラゾン化合物、ピラゾリン化合物、トリフエニルメタン化合物、トリフエニルァミン化合 物等がある。また、電気伝導性有機電荷移動錯体としては、テトラチォフルバレン、テ トラフエニルテトラチオフラバレン等がある。また、導電性高分子としては、ポリ (3—ァ ルキルチオフェン)、ポリパラフエ二レンビニレン誘導体、ポリフルオレン誘導体、導電 性高分子のオリゴマー等のトルエン等の有機溶媒に可溶なものを挙げることができる が、特にこれらに限定されるものではない。
[0025] ァクセプタ材料としては、化合物半導体粒子を挙げることができ、特に化合物半導 体ナノ結晶を用いることができる。ここで、ナノ結晶とは、サイズが:!〜 lOOnmのもの である。また、ナノ結晶の形状にはロッド状、球状、テトラポッド状が含まれる。具体的 な材料としては InP、 InAs、 GaP、 GaAs等の ΠΙ-V族化合物半導体結晶、 CdSe、 C dS、 CdTe、 ZnS等の Π-VI族化合物半導体結晶、 Zn〇、 SiO、 TiO、 Al O等の酸
2 2 2 3 化物半導体結晶、 CuInSe、 CuInS等を挙げることができるが、これらに限定される
2
ものではなく、電子を輸送する材料であれば、フラーレン誘導体などからなる低分子 材料や導電性高分子なども用いることができる。
[0026] 接着層 3は、透明酸化物と透明窒化物の少なくとも一方で形成される。透明酸化物 としては、 ITO (インジウムスズ酸化物)、 SnO、 GZO (ガリウム亜鉛酸化物) 、AZO (
2
アルミニウム亜鉛酸化物)、 iz〇(インジウム亜鉛酸化物)などを挙げることができ、透 明窒化物としては、 Si Nなどを挙げることができる力 光を通し、かつ第 1の発電層 1
3 4
の機能を低下させないものであればよぐ特にこれらに限定されるものではない。
[0027] 第 2の発電層 2の上に形成される電子輸送層 14に用いられる材料としては、例えば 、バソクプロイン、バソフヱナント口リン、及びそれらの誘導体、シロール化合物、トリア ゾール化合物、トリス(8—ヒドロキシキノリナート)アルミニウム錯体、ビス(4—メチル一 8 _キノリナート)アルミニウム錯体、ォキサジァゾール化合物、ジスチリルァリレーン 誘導体、シロール化合物、 ΤΡΒΙ (2、 2' 、 2" _ (1、 3、 5 _ベンゼントリル)トリス_ [ 1 _フエ二ノレ一 1H—ベンツイミダゾール] )などを挙げることができる力 電子輸送性 の材料であればよぐこれらに限定されるものでなレ、。また、電子移動度が 10 _ 6cm 2/Vs以上、より好ましくは 10— 5cm2/Vs以上の材料がょレ、。
[0028] 電子輸送層 14の上に形成される負極層 15は、各発電層 1、 2に発生した電子を効 率よく収集するための電極であり、仕事関数の小さい金属、合金、電気伝導性化合 物及びこれらの混合物からなる電極材料を用いることが好ましぐ仕事関数が 5eV以 下のものであることが好ましい。このような負極層 15の電極材料としては、アルカリ金 属、アルカリ金属のハロゲン化物、アルカリ金属の酸化物、アルカリ土類金属、希土 類等、およびこれらと他の金属との合金、例えばナトリウム、ナトリウム—カリウム合金 、リチウム、マグネシウム、マグネシウム—銀混合物、マグネシウム—インジウム混合 物、アルミニウム一リチウム合金、 AlZLiF混合物などを例として挙げることができる。 また、アルミニウム、 Al/Al O混合物なども使用可能である。また、アルカリ金属の
2 3
酸化物、アルカリ金属のハロゲン化物、あるいは金属酸化物を負極層 15の下地とし て用い、さらに上記の仕事関数が 5eV以下である材料 (あるいはこれらを含有する合 金)を 1層以上積層することによって、負極層 15を形成するようにしてもよい。例えば 、アルカリ金属/ A1の積層、アルカリ金属のハロゲンィ匕物 Zアルカリ土類金属 ZA1 の積層、 Al〇 /A1の積層などを例として挙げることができる。負極層 15は、例えば
2 3
、これらの電極材料を真空蒸着法やスパッタリング法等の方法により、薄膜に形成す ることによって作製すること力 sできる。
[0029] そして、形成した積層体を被覆する表面保護層 16は、例えば、 A1等の金属をスパ ッタで積層し、あるいはフッ素系化合物、フッ素系高分子、その他の有機分子、高分 子等を蒸着、スパッタ、 CVD、プラズマ重合、塗布、紫外線硬化、熱硬化その他の方 法で薄膜として形成することができる。また、光透過性、ガスバリア性を有するフィル ム状の構造物を設けることも可能である。光の入射面側にこの表面保護層 16を設け る場合は、発電層 1、 2に光を到達させるために、表面保護層 16の光透過率は 70% 以上であることが好ましい。
[0030] 次に、発電層 1、 2及び接着層 3の層形成について説明する。これらの層は、第 1の 発電層 1の上に接着層 3を形成した後、接着層 3の上に正孔輸送層 13及び第 2の発 電層 2をこの順で形成するものである。なお、第 1の発電層 1の形成は、上記の有機 化合物を溶媒に溶解乃至分散させて、正孔輸送層 12の上に塗布して乾燥する方法 や、上記の有機化合物を気相成長法で正孔輸送層 12の上に形成する方法など膜を 形成することができれば、形成方法は特に限定されるものではない。 [0031] 接着層 3は、溶媒中に透明酸化物や透明窒化物の粒子を分散させた溶液を第 1の 発電層 1に塗布した後、溶媒を除去することによって形成することができる。この場合 、溶媒としては第 1の発電層 1を溶解させることがないなど、第 1の発電層 1の機能を 劣化させないものを用いるのが好ましレ、。このような溶媒として、メタノーノレ、エタノー ノレ、イソプロピルアルコールなどのアルコール類や、水などを用いることができる。ま た、接着層 3は溶媒を全く使用しない気相成長法で形成することができ、この場合に は溶媒による第 1の発電層 1機能劣化の問題は生じない。気相成長法としては、真空 蒸着法、真空スパッタ法、 EB蒸着法などを挙げることができるが、溶媒を用いない形 成法で、気相で形成できるものであればこれらに限定されるものでなレ、。なお、ここで 形成される接着層 3の厚みは 5nm以上 250nm以下とする。
[0032] 第 2の発電層 2は、接着層 3上に形成した正孔輸送層 13の上にドナー材料とァクセ プタ材料とを含有する有機化合物の溶液を塗布した後、溶媒を除去することにより形 成する。ドナー材料ゃァクセプタ材料としては上記のものを用いることができる。溶媒 としては、クロ口ホルム、クロ口ベンゼン、 1、 2—ジクロロベンゼン、 1、 2、 4—トリクロ口 ベンゼン、トルエンなどの極性溶媒を用いることができる。
[0033] 以上のような積層型有機太陽電池を構成することにより、第 1の発電層 1の上に形 成された接着層 3が、第 1の発電層 1と溶液塗布により形成される第 2の発電層 2との 間に介在して、溶液中の溶媒が第 1の発電層 1に浸透することを阻止して、第 1の発 電層 1へ溶媒による作用が及ぶことを防止する。すなわち、第 1の発電層 1がこの溶 媒に溶解するなどして、第 1の発電層 1の構造が破壊されたり、機能が劣化したりする ことがないので、構成された積層型有機太陽電池は、高い発電効率を有する発電層 の積層構造となる。
[0034] また、接着層 3は、透明酸化物や透明窒化物で形成されているために、透明でか つ緻密な膜として形成することができ、接着層 3の所定膜厚において 70%以上の光 透過率を確保することができる。接着層 3の光透過率が 70%以上であると、第 1の発 電層 1の上に形成された第 2の発電層 2においても、光吸収'発電の効率が高くなり、 第 1の発電層 1
の膜厚が薄いために吸収されずに反射などでロスしていた光を電気に変えることが でき、発電効率が向上するものである。接着層 3の光透過率が高ければ高いほど発 電の効率はよぐ上限は特に設定されるものではない。なお、接着層 3の所定膜厚は 5nm以上 250nm以下が好ましぐ後述する実施例においても、接着層 3の膜厚はこ の範囲としている。接着層 3の膜厚を 5nm以上とすることにより、第 2の発電層 2を溶 液塗布で形成する際に、溶媒が浸透して第 1の発電層 1に作用することを防ぐことが できる。また、接着層 3の膜厚を 250nm以下にすることにより、 70%以上の光透過率 を得ることができる他、有機太陽電池の内部抵抗を増加させないという利点もある。
[0035] なお、本実施形態では、接着層 3と第 2の発電層 2の間に正孔輸送層 13を設けて いる力 必要に応じて別の層を設けてもよい。また、接着層 3の上に直接、第 2の発電 層 2を形成してもよい。この場合も、上記実施形態と同様に第 2の発電層 2を形成する 溶液中の溶媒の浸透を接着層 3で阻止することができるので、第 1の発電層 1が溶解 されて破壊されたり、機能が劣化したりすることは無ぐ高い発電効率を有する発電 層の積層構造を構成することができる。
[0036] なお、具体的な積層型有機太陽電池の構成としては、正極層/第 1の発電層/接 着層/第 2の発電層/負極層の構成が基本であるが、正極層/正孔輸送層/第 1 の発電層/接着層/正孔輸送層/第 2の発電層/電子輸送層/負極層の構成、 正極層/正孔輸送層/第 1の発電層/接着層/正孔輸送層/第 2の発電層/負 極層の構成、正極層/正孔輸送層/第 1の発電層/接着層/第 2の発電層/負極 層の構成、正極層/正孔輸送層/第 1の発電層/接着層/第 2の発電層/電子輸 送層/負極層の構成などを挙げることができ、さらに上記の構成において、第 1の発 電層と接着層の間に電子輸送層を設けるようにしてもよぐまた、正孔輸送層を除い た第 1の発電層 Z電子輸送層の構成であってもよい。
[0037] 次に、本発明を実施例によって具体的に説明する。
[0038] (実施例 1)
正極層となる ITO膜付きの硝子基板 (倉元製作所 (株)製) をアセトン、イソプロピル アルコール(ともに (株)関東化学製)、セミコクリーン (フルゥチ科学社製)、超純水で 各 10分間超音波洗浄を行ったのち、イソプロピルアルコールの蒸気で洗浄し、乾燥 させた。次に、大気圧プラズマ表面処理装置 (松下電工 (株)製)で 3分間、この ITO 基板の表面処理を行った。
[0039] 次に、 ITO膜からなる正極層の上に、正孔輸送層として、ポリエチレンジォキシチォ フェン:ポリスチレンスルフォネート(スタルク社製)を 50nmの膜厚で形成した。
[0040] 次に、この基板を露点一 76°C以下、酸素 lppm以下のドライ Ar雰囲気のグローブ ボックスに移送し、ドナー材料として、ポリ(2—メトキシ _ 5_ (3、 7—ジメチルォクチ ノレォキシ)一1、 4—フエ二レンビニレン(アメリカンダイソース社製、 MDM〇一 PPV) を 4mg、ァクセプタ材料として、フラーレン誘導体である [6、 6]—フエニル C61—ブ チリック アシッド メチル エステル(アメリカンダイソース社製、 PCBMと略す)を 20 mg、 lmLのクロ口ベンゼンに溶解して調製した溶液を、スピンコーティングにより正 孔輸送層の上に塗布することによって、膜厚 lOOnmの第 1の有機発電層を形成した
[0041] 次に、この基板を DCスパッタリング装置(ァネルバ(株)製)に搬送し、 IT〇のセラミ ックターゲット(東ソ一(株))を用いて、第 1の有機発電層にダメージが入らなレ、ように 、第 1の有機発電層の上に接着層として ΙΤΟ薄膜を 20nmの膜厚で形成した。
[0042] 次に、接着層の上に上記と同様にして正孔輸送層を形成し、さらにこの正孔輸送 層の上に、上記の第 1の有機発電層の場合と同様にして、スピンコーティングによる 溶液塗布で第 2の有機発電層を形成した。
[0043] 次に、この基板を、真空蒸着装置 (アルバック社製)にセットし、第 2の有機発電層 の上に、電子輸送層としてバソクプロイン((株)同仁化学研究所製)を 6nmの膜厚で 形成し、さらにその上に、対向電極の負極層として、 150nmの膜厚の A1薄膜を、真 空蒸着法を用いて形成した。
[0044] 次に、この各層を形成した IT〇基板を露点 _ 76°C以下のドライ窒素雰囲気のグロ ーブボックスに大気に暴露することなく搬送した。一方、通気性を有する袋に吸水材 として酸化バリウムの粉末を入れ、これをガラス製の封止板に粘着剤で貼り付けてお き、また、封止板の外周部には予め紫外線硬化樹脂製のシール剤を塗布しておき、 グローブボックス内において IT〇基板に封止板をシール剤で張り合わせ、 UVでシー ノレ剤を硬化させて表面保護層を形成することによって、図 1のような層構成の有機光 電変換装置として積層型有機太陽電池を得た。 [0045] (実施例 2)
粒径 5〜20nmの ITO超微粒子(住友大阪セメント社製)をイソプロピルアルコール に 20mg/mLの濃度で分散させた溶液をスピンコーティングして、第 1の有機発電 層の上に接着層として厚み 200nmの IT〇膜を形成するようにした他は、実施例 1と 同様にして積層型有機太陽電池を得た。
[0046] (比較例 1)
実施例 1と同様なスパッタ装置を用レ、、 Agの金属ターゲットで、第 1の有機発電層 の上に接着層として Ag膜を 20nmの膜厚で形成するようにした他は、実施例 1と同様 にして積層型有機太陽電池を得た。
[0047] (比較例 2)
実施例 1と同様なスパッタ装置を用レ、、 Agの金属ターゲットで、第 1の有機発電層 の上に接着層として Ag膜を 5nmの膜厚で形成するようにした他は、実施例 1と同様 にして積層型有機太陽電池を得た。
[0048] 上記の実施例:!〜 2及び比較例:!〜 2で得られた積層型有機太陽電池に対し、ソー ラーシミュレータ(山下電装社製)により擬似太陽光 (AMI . 5、 lsun)を照射したとき の光透過率(可視光線の波長 500nmにおける光の透過率)と変換効率を求めた。結 果を表 1に示す。
[0049] [表 1]
Figure imgf000013_0001
[0050] 表 1にみられるように、各実施例に係る積層型有機太陽電池は、各比較例のものに 対して光透過率及び開放端電圧が高ぐ発電効率が高いことが確認された。
[0051] 本発明は、添付した図面を参照した実施の形態により十分に記載されているけれど も、さまざまな変更や変形が可能であることは、この分野の通常の知識を有するもの にとつて明らかであろう。それゆえ、そのような変更及び変形は、本願発明の範囲を 逸脱するものではなぐ本発明の範囲に含まれると解釈されるべきである。
また、本出願は、 日本国特許出願 2005— 061364号に基づいており、その内容は 、上記特許出願の明細書及び図面を参照することによって結果的に本願発明に合 体されるべきものである。

Claims

請求の範囲
[1] 1. ドナー材料とァクセプタ材料とを含有する第 1の発電層と、
前記第 1の発電層の上に形成された接着層と、
前記接着層の上にドナー材料とァクセプタ材料とを含有する有機化合物の溶液か ら形成された第 2の発電層と、を備え、
前記接着層は、透明酸化物と透明窒化物の少なくとも一方で形成されていることを 特徴とする積層型有機太陽電池。
[2] 2. 前記接着層の光透過率は 70%以上であることを特徴とする請求項 1に記載の 積層型有機太陽電池。
[3] 3. 前記接着層は、前記第 1の発電層を溶解させない溶媒中に透明酸化物と透明 窒化物の少なくとも一方の粒子を分散させた溶液を前記第 1の発電層に塗布するこ とにより形成される層であることを特徴とする請求項 1又は請求項 2に記載の積層型 有機太陽電池。
[4] 4. 前記接着層は、気相成長法により形成される層であることを特徴とする請求項
1又は請求項 2に記載の積層型有機太陽電池。
[5] 5. 前記接着層の厚みは、 5nm以上 250nm以下であることを特徴とする請求項 1 乃至請求項 4のレ、ずれかに記載の積層型有機太陽電池。
PCT/JP2006/304107 2005-03-04 2006-03-03 積層型有機太陽電池 WO2006093275A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06715190A EP1855323A4 (en) 2005-03-04 2006-03-03 MULTILAYER ORGANIC SOLAR BATTERY
US11/817,597 US8237048B2 (en) 2005-03-04 2006-03-03 Multilayer organic solar cell
CN2006800070953A CN101133499B (zh) 2005-03-04 2006-03-03 多层有机太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-061364 2005-03-04
JP2005061364 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006093275A1 true WO2006093275A1 (ja) 2006-09-08

Family

ID=36941305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304107 WO2006093275A1 (ja) 2005-03-04 2006-03-03 積層型有機太陽電池

Country Status (5)

Country Link
US (1) US8237048B2 (ja)
EP (1) EP1855323A4 (ja)
KR (1) KR20070110049A (ja)
CN (1) CN101133499B (ja)
WO (1) WO2006093275A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076667A (ja) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd 有機薄膜太陽電池
WO2009119871A1 (ja) * 2008-03-25 2009-10-01 住友化学株式会社 有機光電変換素子
JP2012009894A (ja) * 2011-09-09 2012-01-12 Dainippon Printing Co Ltd 有機薄膜太陽電池

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558348B (zh) 2006-09-29 2013-03-06 佛罗里达大学研究基金公司 用于红外检测和显示的方法和设备
KR100979677B1 (ko) * 2008-04-28 2010-09-02 한국화학연구원 에어로졸 젯 인쇄법을 이용한 유기태양전지 광활성층의 제조방법
US8962982B2 (en) 2008-06-24 2015-02-24 Nippon Soda Co., Ltd. Dye-sensitized solar cell
KR101038469B1 (ko) * 2009-04-13 2011-06-01 광주과학기술원 고분자 전해질층을 이용한 적층형 유기태양전지 및 그 제조방법
TWI538271B (zh) * 2009-11-04 2016-06-11 國立清華大學 具有載子指向性分佈結構之有機太陽能電池及其製造方法
KR101820772B1 (ko) 2010-05-24 2018-01-22 유니버시티 오브 플로리다 리서치 파운데이션, 인크. 적외선 업-컨버젼 장치 상에 전하 차단층을 제공하기 위한 방법 및 장치
CN102382484A (zh) * 2010-08-31 2012-03-21 中国石油大学(北京) 一种多核芳烃光敏材料和由其制备的染料敏化太阳能电池
US20120060907A1 (en) * 2010-09-13 2012-03-15 University Of Central Florida Photovoltaic cell structure and method including common cathode
CN102088060A (zh) * 2010-12-06 2011-06-08 电子科技大学 一种叠层有机薄膜太阳能电池及其制备方法
CA2819899A1 (en) 2011-02-01 2012-08-09 University Of South Florida A partially-sprayed layer organic solar photovoltaic cell using a self-assembled monolayer and method of manufacture
US9099605B2 (en) 2011-02-14 2015-08-04 University Of South Florida Organic photovoltaic array and method of manufacture
JP2014507816A (ja) 2011-03-08 2014-03-27 ユニヴァーシティ オブ サウス フロリダ 微小電気機械システム用逆型有機太陽電池マイクロアレイ
CN103493199B (zh) * 2011-04-05 2016-11-23 佛罗里达大学研究基金会有限公司 用于将红外(ir)光伏电池集成在薄膜光伏电池上的方法和装置
RU2014102650A (ru) 2011-06-30 2015-08-10 Юниверсити Оф Флорида Рисеч Фаундэйшн, Инк. Усиливающий инфракрасный фотодетектор и его применение для обнаружения ик-излучения
CN103178557A (zh) * 2011-12-20 2013-06-26 苏州洲通光电科技有限公司 一种新能源汽车的太阳能车载充电装置
WO2014145609A1 (en) 2013-03-15 2014-09-18 University Of South Florida Mask-stack-shift method to fabricate organic solar array by spray
EP3308113A4 (en) 2015-06-11 2019-03-20 University of Florida Research Foundation, Incorporated MONODISPERSED IR ABSORPTION NANOPARTICLES AND METHODS AND DEVICES THEREOF
WO2017069716A1 (en) * 2015-10-19 2017-04-27 Icelli Orhan Usage of boric acid in the production of pedot:pss film
WO2019113170A1 (en) * 2017-12-05 2019-06-13 Board Of Trustees Of Michigan State University Enhancing the lifetime of organic and organic salt photovoltaics
FR3083228B1 (fr) * 2018-06-27 2020-06-26 Saint-Gobain Glass France Vitrage muni d'un empilement de couches minces agissant sur le rayonnement solaire et d'une couche barriere
CN112038363A (zh) * 2019-06-03 2020-12-04 中国科学院宁波材料技术与工程研究所 一种有机叠层太阳能电池单元及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196583A (ja) * 1985-02-25 1986-08-30 Sharp Corp 光起電力装置
JPS62229971A (ja) * 1986-03-31 1987-10-08 Toshiba Corp 有機薄膜素子及びその製造方法
JPH07263722A (ja) * 1994-03-22 1995-10-13 Japan Synthetic Rubber Co Ltd 半導体素子用コーテイング材
JPH09511102A (ja) * 1994-03-31 1997-11-04 パシフィック ソーラー ピーティーワイ リミテッド 埋設接触子を有する薄膜多層太陽電池
JPH09306554A (ja) * 1996-05-08 1997-11-28 Kagaku Gijutsu Shinko Jigyodan 色素増感系乾式光電池の製造方法
JP2002523904A (ja) * 1998-08-19 2002-07-30 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機感光性光電子装置
JP2002531958A (ja) * 1998-11-27 2002-09-24 マイスナ−、ディ−タ− 有機太陽電池あるいは発光ダイオード
JP2003264085A (ja) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd 有機半導体素子、有機エレクトロルミネッセンス素子及び有機太陽電池
JP2003298152A (ja) * 2002-04-01 2003-10-17 Sharp Corp ヘテロ接合素子
JP2004335737A (ja) * 2003-05-07 2004-11-25 Dainippon Printing Co Ltd 有機薄膜太陽電池の製造方法および転写シート

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453857B2 (ja) 1994-07-20 2003-10-06 松下電器産業株式会社 積層型バリスタの製造方法
US6352777B1 (en) * 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
US6198091B1 (en) * 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration
JP2001319698A (ja) 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd 光電変換素子および光電池
US6657378B2 (en) * 2001-09-06 2003-12-02 The Trustees Of Princeton University Organic photovoltaic devices
SG176316A1 (en) * 2001-12-05 2011-12-29 Semiconductor Energy Lab Organic semiconductor element
US8586967B2 (en) * 2004-04-13 2013-11-19 The Trustees Of Princeton University High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196583A (ja) * 1985-02-25 1986-08-30 Sharp Corp 光起電力装置
JPS62229971A (ja) * 1986-03-31 1987-10-08 Toshiba Corp 有機薄膜素子及びその製造方法
JPH07263722A (ja) * 1994-03-22 1995-10-13 Japan Synthetic Rubber Co Ltd 半導体素子用コーテイング材
JPH09511102A (ja) * 1994-03-31 1997-11-04 パシフィック ソーラー ピーティーワイ リミテッド 埋設接触子を有する薄膜多層太陽電池
JPH09306554A (ja) * 1996-05-08 1997-11-28 Kagaku Gijutsu Shinko Jigyodan 色素増感系乾式光電池の製造方法
JP2002523904A (ja) * 1998-08-19 2002-07-30 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機感光性光電子装置
JP2002531958A (ja) * 1998-11-27 2002-09-24 マイスナ−、ディ−タ− 有機太陽電池あるいは発光ダイオード
JP2003264085A (ja) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd 有機半導体素子、有機エレクトロルミネッセンス素子及び有機太陽電池
JP2003298152A (ja) * 2002-04-01 2003-10-17 Sharp Corp ヘテロ接合素子
JP2004335737A (ja) * 2003-05-07 2004-11-25 Dainippon Printing Co Ltd 有機薄膜太陽電池の製造方法および転写シート

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP1855323A4 *
TRIYANA K. ET AL.: "Tandem-type organic solar cells by stacking different heterojunction materials", THIN SOLID FILMS, vol. 477, 22 April 2005 (2005-04-22), pages 198 - 202, XP004772280 *
XUE J. ET AL.: "Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions", APPLIED PHYSICS LETTERS, vol. 85, no. 23, 6 December 2004 (2004-12-06), pages 5757 - 5759, XP002354833 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076667A (ja) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd 有機薄膜太陽電池
WO2009119871A1 (ja) * 2008-03-25 2009-10-01 住友化学株式会社 有機光電変換素子
JP2012009894A (ja) * 2011-09-09 2012-01-12 Dainippon Printing Co Ltd 有機薄膜太陽電池

Also Published As

Publication number Publication date
EP1855323A4 (en) 2010-05-05
US20090301556A1 (en) 2009-12-10
EP1855323A1 (en) 2007-11-14
US8237048B2 (en) 2012-08-07
CN101133499A (zh) 2008-02-27
CN101133499B (zh) 2010-06-16
KR20070110049A (ko) 2007-11-15

Similar Documents

Publication Publication Date Title
WO2006093275A1 (ja) 積層型有機太陽電池
WO2007013496A1 (ja) 有機発電素子
US7419846B2 (en) Method of fabricating an optoelectronic device having a bulk heterojunction
Yang et al. Effects of thin film processing on pentacene/C60 bilayer solar cell performance
WO2010134432A1 (ja) 有機光電変換素子
CA2627992A1 (en) Organic photovoltaic cells utilizing ultrathin sensitizing layer
JP2004165516A (ja) 有機太陽電池
JP2006245073A (ja) 有機薄膜太陽電池
Kumar et al. Broad spectral sensitivity and improved efficiency in CuPc/Sub-Pc organic photovoltaic devices
WO2011065353A1 (ja) 有機太陽電池
JP2004165513A (ja) 有機光電変換素子及び有機光電変換素子用封止部材
US20120061658A1 (en) Structural templating for organic electronic devices having an organic film with long range order
EP2171776A1 (en) Efficient solar cells using all-organic nanocrystalline networks
US20150228916A1 (en) Bottom-up ultra-thin functional optoelectronic films and devices
TW201535818A (zh) 在有機光伏打多供體能量串聯中之激子管理
JP5118296B2 (ja) 積層型有機太陽電池
WO2014015288A1 (en) Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers
KR101541205B1 (ko) 질서화된 결정질 유기 막의 성장 방법
JP4955954B2 (ja) 積層型有機太陽電池
WO2012160911A1 (ja) 有機発電素子
JP5161699B2 (ja) 有機発電素子の製造方法
JP2011198811A (ja) 光電変換素子及び有機薄膜太陽電池
JP2012234945A (ja) 有機光電変換素子およびその製造方法
JP2013128025A (ja) 有機発電素子
JP2012134337A (ja) 有機光電変換素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007095.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006715190

Country of ref document: EP

Ref document number: 1020077019773

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11817597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715190

Country of ref document: EP