JP4955954B2 - 積層型有機太陽電池 - Google Patents

積層型有機太陽電池 Download PDF

Info

Publication number
JP4955954B2
JP4955954B2 JP2005221825A JP2005221825A JP4955954B2 JP 4955954 B2 JP4955954 B2 JP 4955954B2 JP 2005221825 A JP2005221825 A JP 2005221825A JP 2005221825 A JP2005221825 A JP 2005221825A JP 4955954 B2 JP4955954 B2 JP 4955954B2
Authority
JP
Japan
Prior art keywords
layer
power generation
generation layer
solar cell
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005221825A
Other languages
English (en)
Other versions
JP2006279011A (ja
Inventor
宜弘 伊藤
謙司 河野
卓哉 菰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005221825A priority Critical patent/JP4955954B2/ja
Publication of JP2006279011A publication Critical patent/JP2006279011A/ja
Application granted granted Critical
Publication of JP4955954B2 publication Critical patent/JP4955954B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、光を受けて発電する発電層を複数積層して形成される積層型有機太陽電池に関するものである。
近年、産業の発展に伴いエネルギーの使用量が飛躍的に増加している。その中で地球環境に負荷を与えない、経済的で高性能な新しいクリーンエネルギーの生産技術の開発が求められている。なかでも、太陽電池は無限にあるといってよい太陽光を利用することから新しいエネルギー源として注目されている。現在実用化されている太陽電池の大部分は、単結晶シリコン、多結晶シリコン、アモルファスシリコンを用いた無機太陽電池である。しかし、これら無機シリコン系太陽電池は、その製造プロセスが複雑でコストが高いという欠点を持ち合わせているため、広く一般家庭用に普及するには至ってない。このような欠点を解消するために、簡単なプロセスで低コスト・大面積化が可能な有機材料を用いた有機太陽電池の研究が盛んになってきている。
有機太陽電池における種類の中で、近年、スイスのローザンヌ工科大学のGratzel教授により、多孔質酸化チタン、ルテニウム色素、ヨウ素とヨウ素イオンを用いた光化学反応に基づく色素増感型太陽電池が10%という高い変換効率を有することが発表されている(B. O’ Regan, M. Gratzel, Nature,353, 737 (1991))。
一方、もう1種類の有機太陽電池に分類される有機薄膜型太陽電池においても、低分子材料の電子供与性材料(ドナー材料)と電子受容性材料(アクセプタ材料)を用いて真空蒸着法により形成した低分子型有機薄膜太陽電池において、3.6%の変換効率を得たことが報告されている(P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001))。
また光を受けて電気を発生する発電層の材料に高分子材料を用いた検討も進んでいる。これは、発電層の形成にコストの掛かる真空蒸着法を利用しないため、より低コスト化が期待できる。
また、共役系ポリマーとフラーレン誘導体との混合膜のタイプでも、2.5%の変換効率を得たことが報告された(S. E. Shaheen, Appl. Phys. Lett. 78, 841 (2001))ことを契機に、有機太陽電池に対する研究が再び注目されるようになり、高効率な有機太陽電池を得るために様々な工夫がなされている。
また更なる高効率化のために、例えば、電子を収集する背面陰極に凹凸を設け、光の閉じ込め、電子の収集向上を試みたり(M. Niggemann, e-MRS 2003, oral presentation(2003))、共役系ポリマーをよりホール移動度の高い材料を用い、有機太陽電池作製後、適度に加温することによって、共役系ポリマーの再配列やホール輸送材料と電子輸送材料の適度な混合状態を実現して電荷分離を向上させたり(F. Padinger, Adv. Funct. Mater. 13, 85 (2003)) する等の工夫がなされており、現在、3.5%の変換効率を得ている。
一方の低分子材料を用いた有機薄膜太陽電池においては、各層の機能を分離したり、入射光側のガラス基板にWistonタイプの光収集構造体を設けたり(P. Peumans, V. Bulovic and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000))、発電部分を0.5nm〜5nm程度の金属層を介して積層する取り組み(A. Yakimov and S. R. Forrest, Appl. Phys. Lett. 80, 1667 (2002))が検討されており、開放端電圧(Voc)が約2倍近く向上し、高効率化の手段として最も有効な手段の1つであることが示されている。
高分子材料を用いた場合においても、複数の発電層を積層して積層化する取り組みが検討されている。しかし、ドナー材料とアクセプタ材料を含有する溶液を塗布して発電層を形成する場合、発電層の上に他の発電層を形成して積層する際に、下の発電層がその上に発電層を形成するのに用いる溶媒によって溶解し、下の発電層の構造が破壊されたり、あるいは機能が劣化するという問題が発生するおそれがあり、積層構造を形成することが困難であった。
ここで、特許文献1には、蒸着法等で形成される複数層の発電層の間に金属層を設けた積層型の太陽電池が開示されている。そして上記のようにドナー材料とアクセプタ材料を含有する溶液を塗布して発電層を形成する場合に、このような発電層間に金属層を設ける技術を適用することによって、上に発電層を形成するのに用いる溶媒が下の発電層に作用することを金属層で遮断することができ、下の発電層の構造の破壊や機能劣化を防ぐことが可能である。
特公平8−31616号公報 特開2001−319698号公報
しかし、このように発電層の間に金属層を設ける場合、この金属層の厚みを厚くすると着色して光の透過率が低下し、太陽電池による発電効率が低下する。このため、金属層は非常に薄い膜厚で形成する必要があるが、薄い膜厚の場合は溶媒が透過し易く、下の発電層に溶媒が作用するおそれがあるという問題があった。
本発明は上記の点に鑑みてなされたものであり、下の発電層の上に溶液塗布で他の発電層を形成するにあたって、下の発電層が溶媒の作用を受けることを防止することができ、発電効率の高い積層型太陽電池を提供することを目的とするものである。
本発明の請求項1に係る積層型太陽電池は、ドナー材料として導電性高分子とアクセプタ材料としてフラーレン誘導体とを含有する溶液を塗布して形成される発電層1を、ドナー材料とアクセプタ材料として前記発電層1と同じものを用いて形成された他の発電層2の表面に接着層3を介して設けて形成されるものであり、接着層3をITO層とV層とからなる透明酸化物の層で形成して成ることを特徴とするものである。
また請求項2の発明は、請求項1において、接着層3の光透過率が70%以上であることを特徴とするものである。
また請求項3の発明は、請求項1又は2において、接着層3が、上記他の発電層2の機能を劣化させない溶媒中に、透明酸化物粒子を分散させた溶液を塗布して形成される層であることを特徴とするものである。
また請求項4の発明は、請求項1又は2において、接着層3が、気相成長法で形成される層であることを特徴とするものである。
また請求項5の発明は、請求項1乃至4のいずれかにおいて、接着層3の厚みが5nm以上250nm以下であることを特徴とするものである。
本発明によれば、ドナー材料とアクセプタ材料を含有する溶液を塗布して発電層1を形成するにあたって、他の発電層2の表面にこの溶液が作用することを接着層3で遮断して防ぐことができるものであり、発電層2の構造が破壊されたり機能が低下したりすることを防止できるものである。また接着層3をITO層を有する透明酸化物の層で形成することによって、接着層3を透明でかつ緻密な膜として形成することができ、所定膜厚に形成しても光の透過率を確保して高い発電効率を得ることができると共に、発電層1を形成する際の溶媒が発電層2に作用することを確実に防ぐことができるものである。
以下、本発明を実施するための最良の形態を説明する。
図1は有機光電変換装置からなる積層型太陽電池の層構成の一例を示すものであり、支持基板10の上に、透明な正極層11、正孔輸送層12、発電層2(以下第2の発電層という) 、接着層3、正孔輸送層13、発電層1(以下第1の発電層という)、電子輸送層14、負極層15がこの順に積層してあり、これらの積層体の外表面を表面保護層16によって覆ってある。
上記の支持基板10は、太陽電池の光入射面側に設ける場合、光透過性を有するもので形成されるものであり、無色透明の他に、多少着色されているものであっても、すりガラス状のものであってもよい。例えば、ソーダライムガラスや無アルカリガラスなどの透明ガラス板や、ポリエステル、ポリオレフィン、ポリアミド、エポキシ等の樹脂、フッ素系樹脂等から任意の方法によって作製されたプラスチックフィルムやプラスチック板などを用いることができる。また、支持基板10内に基板母剤と屈折率の異なる粒子、粉体、泡等を含有することによって、光拡散効果を有するものを使用することも可能である。支持基板10を太陽電池の光入射面側に設けない場合は、支持基板10の材質等は特に規定されるものではなく、太陽電池部分を支持できるものであれば何でも良い。
また正孔輸送層12,13を構成する正孔輸送材料としては、正孔を輸送する能力を有し、発電層1,2からの正孔移動効果を有するとともに、正極に対して優れた正孔移動効果を有し、また電子をブロックするような特性を有し、かつ薄膜形成能力の優れた化合物が好ましい。具体的にはフタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、N,N′ービス(3−メチルフェニル)−(1,1′−ビフェニル)−4,4′−ジアミン(TPD)や4,4′−ビス[N−(ナフチル)−N−フェニル−アミノ]ビフェニル(α−NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4′,4″−トリス(N−(3−メチルフェニル)N−フェニルアミノ)トリフェニルアミン(m−MTDATA)、及びポリビニルカルバゾール、ポリシラン、アミノピリジン誘導体、ポリエチレンジオイサイドチオフェン(PEDOT)等の導電性高分子等の高分子材料を挙げることができるが、これらに限定されるものではない。
また、光を受けて電気を発生する第2の発電層2や第1の発電層1の形成に使用する有機化合物としては、電子供与性材料(ドナー材料)と電子受容性材料(アクセプタ材料)が用いられる。そして電子を供与するドナー材料としては導電性高分子用い
電子を供与する導電性高分子としては、ポリ(3−アルキルチオフェン)、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体、導電性高分子のオリゴマー等のトルエン等の有機溶媒に可溶なものを挙げることができるが、特にこれに限定されるものではない。
また、電子を授受し輸送するアクセプタ材料としてはフラーレン誘導体を用いる
図1の積層型太陽電池の層構成において、下側の第2の発電層2の形成は、上記の有機化合物を溶媒に溶解乃至分散させて、正孔輸送層12の上に塗布して乾燥する方法や、上記の有機化合物を気相成長法で正孔輸送層12の上に形成する方法など、膜を形成することができれば方法は特に限定されるものではない。
そして本発明では、この第2の発電層2の上に接着層3を形成した後、接着層3の上に第1の発電層1を形成する。この接着層3はITO層を有する透明酸化物の層形成されるものである。
透明酸化物としては、ITO、SnOなどを挙げることができるが、V、MoO、WOなど第4族、第5族、第6族、第7族から選ばれる遷移金属の酸化物を挙げることもできる接着層3を形成する透明酸化物、光を通し、かつ第2の発電層2の機能を低下させないものであればよ。また接着層3は、ITOの層とVの層、ITOの層とMoOの層、ITOの層とSiの層などのように、複層膜で形成することもできる。
接着層3は、溶媒中に透明酸化物粒子を分散させた溶液を塗布した後、溶媒を除去することによって形成することができる。この場合、溶媒としては第2の発電層2を溶解させることがないなど、第2の発電層2の機能を劣化させないものを用いるのが好ましい。このような溶媒としては、メタノール、エタノール、イソプロピルアルコールなどのアルコール類や、水などを用いることができる。
また接着層3は溶媒を全く使用しない気相成長法で形成することができ、この場合には溶媒による第2の発電層2の機能劣化の問題は生じない。気相成長法としては、真空蒸着法、真空スパッタ法、EB蒸着法などを挙げることができるが、溶媒を用いない形成法で、気相で形成できるものであればこれらに限定されるものでない。
ここで、接着層3の光透過率は70%以上であることが好ましい。このように接着層3の光透過率が70%以上であると、第2の発電層2の上に形成された第1の発電層1においても、光吸収・発電の効率が高くなり、第2の発電層2の膜厚が薄いために吸収されずに反射などでロスしていた光を電気に変えることができ、発電効率が向上するものである。接着層3の光透過率は高ければ高いほどよいものであり、上限は特に設定されるものではない。
また接着層3の厚みは5nm以上250nm以下が好ましい。接着層3の厚みが250nm以下であると、有機太陽電池の内部抵抗を増加させることがなく、また接着層3の光透過率が70%以上であることを満足させることができるものである。後述のように第1の発電層1を溶液塗布で形成する際に、溶媒が浸透して第2の発電層2に作用することを防ぐために、接着層3の厚みは5nm以上であることが好ましい。第1の発電層1を溶液塗布で形成する際に第2の発電層2の機能が低下しない場合には、厚みは5nm未満であってもよい。
また本発明では、接着層3の上に第1の発電層1を形成するにあたって、ドナー材料(電子供与性)とアクセプタ材料(電子受容性)を含有する溶液を塗布する溶液塗布で行なうものである。ドナー材料やアクセプタ材料としては第2の発電層2に用いたものと同じものを用いが、溶媒に溶解乃至分散して溶液となるものであれば、特に限定されない。この溶媒としては、クロロホルム、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼン、トルエンなどの極性溶媒を用いることができる。そして接着層3の上にドナー材料とアクセプタ材料を含有する溶液を塗布し、溶媒を除去することによって、第1の発電層1を形成することができるものであり、このとき、第2の発電層2と溶液塗布で形成される第1の発電層1との間には接着層3が介在しているので、第1の発電層1を形成する溶液中の溶媒が第2の発電層2に作用することを遮断して防ぐことができるものであり、第2の発電層2がこの溶媒に溶解するなどして、第2の発電層2の構造が破壊されたり、あるいは第2の発電層2の機能が劣化したりすることを防止できるものである。特に、接着層3は透明酸化物形成されているために、透明でかつ緻密な膜として形成することができるものであり、所定膜厚に形成しても光の透過率を確保することができ溶媒が第2の発電層2に作用することを確実に防ぐことができるものである。
尚、溶液塗布により形成する第1の発電層1は、接着層3を介して第2の発電層2上に直接形成するのみでなく、図1の実施の形態のように第1の発電層1と第2の発電層2の間に正孔輸送層13など別の層があってもよい。この場合も、第1の発電層1を形成する溶液中の溶媒の浸透を接着層3で阻止することができるので、第2の発電層2が溶解されたり破壊されたりすることはない。
次に、第1の発電層1の上に形成される電子輸送層14に用いられる材料としては、例えば、バソクプロイン、バソフェナントロリン、及びそれらの誘導体、シロール化合物、トリアゾール化合物、トリス(8−ヒドロキシキノリナート)アルミニウム錯体、ビス(4−メチル−8−キノリナート)アルミニウム錯体、オキサジアゾール化合物、ジスチリルアリレーン誘導体、シロール化合物、TPBI(2,2′,2″−(1,3,5−ベンゼントリル)トリス−[1−フェニル−1H−ベンツイミダゾール])などを挙げることができるが、電子輸送性の材料であればこれらに限定されるものでない。また電子移動度が10−6cm/Vs以上、より好ましくは10−5cm/Vs以上の材料が良い。
また電子輸送層14の上に形成される上記の負極層15は、発電層1,2に発生した電子を効率よく収集するための電極であり、仕事関数の小さい金属、合金、電気伝導性化合物及びこれらの混合物からなる電極材料を用いることが好ましく、仕事関数が5eV以下のものであることが好ましい。このような負極層15の電極材料としては、アルカリ金属、アルカリ金属のハロゲン化物、アルカリ金属の酸化物、アルカリ土類金属、希土類等、およびこれらと他の金属との合金、例えばナトリウム、ナトリウム−カリウム合金、リチウム、マグネシウム、マグネシウム−銀混合物、マグネシウム−インジウム混合物、アルミニウム−リチウム合金、Al/LiF混合物などを例として挙げることができる。また、アルミニウム、Al/Al混合物なども使用可能である。またアルカリ金属の酸化物、アルカリ金属のハロゲン化物、あるいは金属酸化物を負極層15の下地として用い、さらに上記の仕事関数が5eV以下である材料(あるいはこれらを含有する合金)を1層以上積層することによって、負極層15を形成するようにしてもよい。例えば、アルカリ金属/Alの積層、アルカリ金属のハロゲン化物/アルカリ土類金属/Alの積層、Al/Alの積層などを例として挙げることができる。負極層15は、例えば、これらの電極材料を真空蒸着法やスパッタリング法等の方法により、薄膜に形成することによって作製することができる。
そして、上記のように形成した各層を被覆する表面保護層16は、例えば、Al等の金属をスパッタで積層したり、あるいはフッ素系化合物、フッ素系高分子、その他の有機分子、高分子等を蒸着、スパッタ、CVD、プラズマ重合、塗布、紫外線硬化、熱硬化その他の方法で薄膜として形成することができる。また、光透過性で、ガスバリア性を有するフィルム状の構造物を設けることも可能である。光の入射面側にこの表面保護層16を設ける場合は、発電層1,2に光を到達させるために、表面保護層16の光透過率は70%以上であることが好ましい。
尚、具体的な積層型有機太陽電池の構成としては、正極層/第2の発電層/接着層/第1の発電層/負極層の構成が基本であるが、上記の図1のような正極層/正孔輸送層/第2の発電層/接着層/正孔輸送層/第1の発電層/電子輸送層/負極層の構成、正極層/正孔輸送層/第2の発電層/接着層/正孔輸送層/第1の発電層/負極層の構成、正極層/正孔輸送層/第2の発電層/接着層/第1の発電層/負極層の構成、正極層/正孔輸送層/第2の発電層/接着層/第1の発電層/電子輸送層/負極層の構成などを挙げることができ、さらに上記の構成において、第2の発電層と接着層の間に電子輸送層を設けるようにしてもよく、あるいは正孔輸送層を除いた第2の発電層/電子輸送層の構成であってもよい。
次に、本発明を実施例によって具体的に説明する。
(実施例1)
正極層となるITO膜付きの硝子基板(倉元製作所(株)製) をアセトン、イソプロピルアルコール(ともに(株)関東化学製)、セミコクリーン(フルウチ科学社製)、超純水で各10分間超音波洗浄を行ったのち、イソプロピルアルコールの蒸気で洗浄し、乾燥させた。次に、大気圧プラズマ表面処理装置(松下電工(株)製)で3分間、このITO基板の表面処理を行った。
次にITO膜からなる正極層の上に、正孔輸送層として、ポリエチレンジオキシチオフェン:ポリスチレンスルフォネート(スタルク社製)を50nmの膜厚で形成した。
次に、この基板を露点−76℃以下、酸素1ppm以下のドライAr雰囲気のグローブボックスに移送し、ドナー材料として、ポリ(2−メトキシ−5−(3,7−ジメチルオクチルオキシ)−1,4−フェニレンビニレン(アメリカンダイソース社製、MDMO−PPV)を4mg、アクセプタ材料として、フラーレン誘導体である[6,6]−フェニルC61−ブチリック アシッド メチル エステル(アメリカンダイソース社製、PCBMと略す)を20mg、1mLのクロロベンゼンに溶解して調製した溶液を、スピンコーティングにより正孔輸送層の上に塗布することによって、膜厚100nmの第2の有機発電層を形成した。
次に、この基板をDCスパッタリング装置(アネルバ(株)製)に搬送し、ITOのセラミックターゲット(東ソー(株))を用いて、第2の有機発電層にダメージが入らないように、第2の有機発電層の上に接着層としてITO薄膜を20nmの膜厚で形成した。
次に、接着層の上に上記と同様にして正孔輸送層を形成し、さらにこの正孔輸送層の上に、上記の第2の有機発電層の場合と同様にして、スピンコーティングによる溶液塗布で第1の有機発電層を形成した。
次にこの基板を、真空蒸着装置(アルバック社製)にセットし、第1の有機発電層の上に、電子輸送層としてバソクプロイン((株)同仁化学研究所製)を6nmの膜厚で形成し、さらにその上に、対向電極の負極層として、150nmの膜厚のAl薄膜を、真空蒸着法を用いて形成した。
次に、この各層を形成したITO基板を露点−76℃以下のドライ窒素雰囲気のグローブボックスに大気に暴露することなく搬送した。一方、通気性を有する袋に吸水材として酸化バリウムの粉末を入れ、これをガラス製の封止板に粘着剤で貼り付けておき、また、封止板の外周部には予め紫外線硬化樹脂製のシール剤を塗布しておき、グローブボックス内においてITO基板に封止板をシール剤で張り合わせ、UVでシール剤を硬化させて表面保護層を形成することによって、図1のような層構成の有機光電変換装置として積層型有機太陽電池を得た。
(実施例2)
粒径5〜20nmのITO超微粒子(住友大阪セメント社製)をイソプロピルアルコールに20mg/mLの濃度で分散させた溶液をスピンコーティングして、第2の有機発電層の上に接着層として厚み200nmのITO膜を形成するようにした他は、実施例1と同様にして積層型有機太陽電池を得た。
(実施例3)
実施例1と同様にして、硝子基板のITO膜からなる正極層の上に、正孔輸送層、第2の有機発電層を形成し、さらにITO薄膜を形成した。次に、基板をRFスパッタリング装置(アネルバ(株)製)にセットし、Vメタルターゲットを用いて、酸素を導入した反応性スパッタリングにより、ITO薄膜の上に膜厚10nmのV膜を積層することによって、ITOとVの2層膜からなる接着層を形成した。その後は、実施例1と同様にして、積層型有機太陽電池を得た。
(比較例1)
実施例1と同様なスパッタ装置を用い、Agの金属ターゲットで、第2の有機発電層の上に接着層としてAg膜を20nmの膜厚で形成するようにした他は、実施例1と同様にして積層型有機太陽電池を得た。
(比較例2)
実施例1と同様なスパッタ装置を用い、Agの金属ターゲットで、第2の有機発電層の上に接着層としてAg膜を5nmの膜厚で形成するようにした他は、実施例1と同様にして積層型有機太陽電池を得た。
上記の実施例1〜3及び比較例1〜2で得られた積層型有機太陽電池に対し、ソーラーシミュレータ(山下電装社製)により擬似太陽光(AM1.5,1sun)を照射したときの光透過率(可視光線の波長500nmにおける光の透過率)と変換効率を求めた。結果を表1に示す。
Figure 0004955954
表1にみられるように、各実施例のものは、光透過率が高く、また開放端電圧が高く発電効率が高いことが確認される。
本発明の実施の形態の一例を示す概略断面図である。
符号の説明
1 発電層
2 発電層
3 接着層

Claims (5)

  1. ドナー材料として導電性高分子とアクセプタ材料としてフラーレン誘導体とを含有する溶液を塗布して形成される発電層を、ドナー材料とアクセプタ材料として前記発電層と同じものを用いて形成された他の発電層の表面に接着層を介して設け、接着層をITO層とV層とからなる透明酸化物の層で形成して成ることを特徴とする積層型有機太陽電池。
  2. 接着層の光透過率が70%以上であることを特徴とする請求項1に記載の積層型有機太陽電池。
  3. 接着層が、上記他の発電層の機能を劣化させない溶媒中に、透明酸化物の粒子を分散させた溶液を塗布して形成される層であることを特徴とする請求項1又は2に記載の積層型有機太陽電池。
  4. 接着層が、気相成長法で形成される層であることを特徴とする請求項1又は2に記載の積層型有機太陽電池。
  5. 接着層の厚みが5nm以上250nm以下であることを特徴とする請求項1乃至4のいずれかに記載の積層型有機太陽電池。
JP2005221825A 2005-03-04 2005-07-29 積層型有機太陽電池 Expired - Fee Related JP4955954B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221825A JP4955954B2 (ja) 2005-03-04 2005-07-29 積層型有機太陽電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005061364 2005-03-04
JP2005061364 2005-03-04
JP2005221825A JP4955954B2 (ja) 2005-03-04 2005-07-29 積層型有機太陽電池

Publications (2)

Publication Number Publication Date
JP2006279011A JP2006279011A (ja) 2006-10-12
JP4955954B2 true JP4955954B2 (ja) 2012-06-20

Family

ID=37213381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221825A Expired - Fee Related JP4955954B2 (ja) 2005-03-04 2005-07-29 積層型有機太陽電池

Country Status (1)

Country Link
JP (1) JP4955954B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147135A (ja) * 2008-12-17 2010-07-01 Konica Minolta Holdings Inc 有機光電変換素子の製造方法
JP5207251B2 (ja) * 2009-03-10 2013-06-12 日本放送協会 有機光電変換膜及びこれを含む電子素子
KR101038469B1 (ko) * 2009-04-13 2011-06-01 광주과학기술원 고분자 전해질층을 이용한 적층형 유기태양전지 및 그 제조방법
GB0912041D0 (en) * 2009-07-10 2009-08-19 Cambridge Entpr Ltd Optoelectronic devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196583A (ja) * 1985-02-25 1986-08-30 Sharp Corp 光起電力装置
JPS62229971A (ja) * 1986-03-31 1987-10-08 Toshiba Corp 有機薄膜素子及びその製造方法
JPH04192376A (ja) * 1990-11-22 1992-07-10 Sekisui Chem Co Ltd タンデム型有機太陽電池
JP3229079B2 (ja) * 1992-08-14 2001-11-12 旭化成株式会社 有機膜素子
JP3648756B2 (ja) * 1994-03-22 2005-05-18 Jsr株式会社 半導体素子用コーテイング材
JPH11261087A (ja) * 1998-03-13 1999-09-24 Canon Inc 光起電力素子
CA2306833C (en) * 1998-08-19 2013-02-12 The Trustees Of Princeton University Organic photosensitive optoelectronic device
JP2001274430A (ja) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換装置
JP2003158254A (ja) * 2001-11-22 2003-05-30 Nippon Hoso Kyokai <Nhk> 光導電膜および固体撮像装置
JP4578065B2 (ja) * 2003-05-07 2010-11-10 大日本印刷株式会社 有機薄膜太陽電池の製造方法および転写シート
JP2004349657A (ja) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd 有機太陽電池
JP2005032793A (ja) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd 有機光電変換素子

Also Published As

Publication number Publication date
JP2006279011A (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
US8237048B2 (en) Multilayer organic solar cell
US20100147385A1 (en) Organic photovoltaic device
US7180110B2 (en) Organic photoelectric conversion element
JP5488595B2 (ja) 有機光電変換素子
US9385348B2 (en) Organic electronic devices with multiple solution-processed layers
US9099652B2 (en) Organic electronic devices with multiple solution-processed layers
WO2011065353A1 (ja) 有機太陽電池
ES2791753T3 (es) Dispositivos fotosensibles orgánicos con filtros portadores de carga de bloqueo de excitones
JP2004165516A (ja) 有機太陽電池
JP2004165513A (ja) 有機光電変換素子及び有機光電変換素子用封止部材
JP2010153411A (ja) 光電変換素子
WO2015061771A1 (en) Exciton management in organic photovoltaic multi-donor energy cascades
JP5673343B2 (ja) 有機光電変換素子およびその製造方法
JP2004165512A (ja) 有機光電変換素子
JP5118296B2 (ja) 積層型有機太陽電池
JP4955954B2 (ja) 積層型有機太陽電池
JP2011198811A (ja) 光電変換素子及び有機薄膜太陽電池
JP5161699B2 (ja) 有機発電素子の製造方法
WO2016011443A2 (en) Stable organic photosensitive devices with exciton-blocking charge carrier filters utilizing high glass transition temperature materials
JP5608040B2 (ja) 有機光電変換素子
JP2013128025A (ja) 有機発電素子
JP2012134337A (ja) 有機光電変換素子
Park et al. Thin film encapsulation for flexible organic solar cells
JP5320641B2 (ja) 有機薄膜太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees