WO2006077761A1 - サブキャリア信号生成装置および多重化信号復調装置 - Google Patents

サブキャリア信号生成装置および多重化信号復調装置 Download PDF

Info

Publication number
WO2006077761A1
WO2006077761A1 PCT/JP2006/300265 JP2006300265W WO2006077761A1 WO 2006077761 A1 WO2006077761 A1 WO 2006077761A1 JP 2006300265 W JP2006300265 W JP 2006300265W WO 2006077761 A1 WO2006077761 A1 WO 2006077761A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pilot
subcarrier
sub
shift
Prior art date
Application number
PCT/JP2006/300265
Other languages
English (en)
French (fr)
Inventor
Toshiaki Kubuki
Yuji Yamamoto
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to EP06711588A priority Critical patent/EP1852988A1/en
Priority to JP2006553863A priority patent/JP4070797B2/ja
Publication of WO2006077761A1 publication Critical patent/WO2006077761A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/54Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving generating subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1646Circuits adapted for the reception of stereophonic signals
    • H04B1/1653Detection of the presence of stereo signals and pilot signal regeneration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/63Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for separation improvements or adjustments

Definitions

  • the present invention relates to a subcarrier signal generation device and a multiplexed signal demodulation device, and more particularly, to a subcarrier signal generation device that generates a subcarrier signal by extracting a pilot signal from a detection signal of the multiplexed signal.
  • the present invention relates to a multiplexed signal demodulator.
  • a general FM stereo broadcast receiving apparatus receives an FM stereo signal, detects the received FM stereo signal by FM detection, and generates an FM detection signal, and the FM detection signal.
  • the main signal component (L + R) and sub signal component (LR) are separated, and the separated main signal component and sub signal component are combined by a matrix circuit to reproduce the demodulated L and R signals.
  • Built-in FM stereo demodulator for output.
  • the FM stereo demodulator is equipped with a function that separates the main signal component (L + R) and sub-signal component (LR) from the FM detection signal, and sub-signal component (L —R from the FM detection signal. ) Is included.
  • a pilot signal (19 kHz) is extracted from the FM detection signal, and based on this pilot signal, a frequency (SUB carrier) twice that of the pilot signal and a constant amplitude level is obtained.
  • a subcarrier signal (38kHz) is generated and this subcarrier signal is multiplied by the FM detection signal, and then the LPF is passed through to extract the subsignal component.
  • an AGC circuit is known in order to make the amplitude level of a subcarrier signal constant (for example, see Patent Document 1).
  • FIG. 5 is a diagram for explaining the characteristics of a subcarrier signal when an AGC circuit is used.
  • This figure shows the output characteristics of the sub-signal output from the sub-signal extractor when the frequency and amplitude of the sub-signal component in the FM detection signal are constant.
  • the horizontal axis represents time and the vertical axis Indicates amplitude.
  • the amplitude level of the pilot signal fluctuates, the AGC circuit cannot follow it, so the subcarrier signal amplitude level fluctuates.
  • the amplitude level of the sub signal output from the sub signal extraction device is not constant. For this reason, the separation of the R and L signals output from the stereo demodulation circuit fluctuates (deteriorates), and the R and L signals now contain the L and R components, respectively. Then there is a problem.
  • Patent Document 1 Pamphlet of International Publication No. 94Z014246
  • the present invention has been made in view of the above, and in the case where a subcarrier signal is generated from a pilot signal of a multiplexed signal, the subcarrier signal can always have a constant amplitude level. It is an object of the present invention to provide a carrier signal generation device and a multiplexed signal demodulation device.
  • the present invention provides a pilot signal extraction means for extracting the pilot signal from the detection signal power of a multiplexed signal including a main signal, a sub signal, and a pilot signal. And a phase shift means for generating a pilot shift signal obtained by shifting the phase of the extracted pilot signal by ⁇ Z2, and multiplying the extracted pilot signal and the pilot shift signal to generate a multiplication signal.
  • First multiplying means second multiplying means for squaring the extracted pilot signal, third multiplying means for squaring the pilot shift signal, the squared pilot signal, and the Adding means for adding a squared pilot shift signal to generate an addition signal; and division for generating a subcarrier signal by dividing the multiplication signal by the addition signal Means.
  • the present invention also provides main signal extraction means for extracting a main signal from a detection signal of a multiplexed signal including a main signal, a sub signal, and a pilot signal, and sub signal extraction for extracting the sub signal from the detection signal.
  • Means for generating a demodulated signal based on the extracted main signal and the extracted sub-signal, and the sub-signal extracting means extracts the pilot signal from the detected signal
  • First multiplication means for generating a multiplication signal by multiplication, second multiplication means for squaring the extracted pilot signal, third multiplication means for squaring the pilot shift signal, Addition means for adding the squared pilot signal and the squared pilot shift signal to generate an addition signal; and division means for generating a subcarrier signal by dividing the multiplication signal by the addition signal And a fourth multiplying means for multiplying the detection signal by the subcarrier signal and outputting, and a filter means for extracting the subsignal from the output signal of the fourth multiplying means.
  • FIG. 1 is a diagram showing a configuration example of a multiplexed signal receiving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the stereo demodulation circuit of FIG.
  • FIG. 3 is a diagram illustrating a configuration example of the subcarrier signal generation circuit in FIG. 2.
  • FIG. 4 is a diagram for explaining the characteristics of a subcarrier signal generated by the subcarrier signal generation circuit of FIG.
  • FIG. 5 is a diagram for explaining the characteristics of a subcarrier signal when an AGC circuit is used.
  • FIG. 1 is a diagram showing a configuration example of a multiplexed signal receiving apparatus 1 according to an embodiment of the present invention.
  • the multiplexed signal receiver 1 shown in FIG. 1 particularly shows an FM stereo signal receiver that receives FM stereo signals.
  • the multiplexed signal receiving apparatus 1 includes an antenna 10, an RF amplifier 20, a tuner circuit 30, an FM detection circuit 40, and a stereo demodulation circuit 50.
  • FM signal including a main signal (L + R), a sub signal (LR), and a pilot signal is input to antenna 10.
  • the RF amplifier 20 amplifies and outputs the F ⁇ stereo signal input via the antenna 10.
  • the tuner circuit 30 includes a local oscillating unit 31 and a mixer 32.
  • the local transmission unit 31 outputs a local oscillation signal to the mixer 32.
  • the mixer 32 mixes the FM stereo signal input from the RF amplifier 20 and the local oscillation signal input from the local oscillation unit 31 to generate an IF signal (intermediate frequency signal).
  • the FM detection circuit 40 performs FM detection on the IF signal input from the mixer 32 and outputs an FM detection signal. Is output to the stereo demodulation circuit 50.
  • the stereo demodulation circuit 50 extracts the main signal (L + R) and the sub signal (L—R) from the FM detection signal input from the FM detection circuit 40, and extracts the extracted main signal (L + R) and sub signal.
  • the signal (LR) is combined and the demodulated L and R signals are reproduced and output.
  • FIG. 2 is a diagram illustrating a configuration example of the stereo demodulation circuit 50 of FIG.
  • the stereo demodulation circuit 50 includes a main signal extraction circuit 51, a sub signal extraction circuit 52, and a matrix circuit 53.
  • the main signal extraction circuit 51 is composed of an LPF 60 force, and this LPF 60 also extracts the main signal (L + R) from the FM detection signal force input from the FM detection circuit 40 and outputs it to the matrix circuit 53.
  • the sub-signal extraction circuit 52 also extracts the sub-signal (L—R) from the FM detection signal power input from the FM detection circuit 40 and outputs it to the matrix circuit 53.
  • the matrix circuit 53 adds and subtracts the main signal (L + R) input from the main signal extraction circuit 51 and the sub signal (L—R) input from the sub signal extraction circuit 52 to generate a demodulated signal. Play and output the L and R signals.
  • the sub-signal extraction circuit 52 includes a BPF (19 KHz bandpass filter) 101, a ⁇ 2 phase shifter 102, a subcarrier signal generation circuit 103, a mixer 104, LPF1 05 and with.
  • the pilot signal is indicated by Psin (cot). here
  • indicates the angular frequency of the pilot signal
  • indicates the amplitude of the pilot signal
  • BPF (19KHz bandpass filter) 101 receives FM detection signal from FM detection circuit 40, extracts 19KHz pilot signal Psin (cot) included in this FM detection signal, and ⁇ ⁇
  • Phase shifter 10 2 determines the phase of pilot signal Psin (co t) input from BPF101.
  • Subcarrier signal generation circuit 103 is based on pilot signal Psin (cot) input from BPF 101 and pilot shift signal Pcos (cot) input from ⁇ ⁇ ⁇ 2 phase shifter 102.
  • the mixer 104 multiplies the FM detection signal input from the FM detection circuit 40 by the subcarrier signal sin (2 ⁇ t), and generates a sub-signal (38k) in the FM detection signal. Hz ⁇ 15kHz) is converted to a low-frequency signal and output to LPF105.
  • the LPF 105 passes the sub signal (L—R) that is a low frequency band component of the signal input from the mixer 104.
  • FIG. 3 is a diagram illustrating a configuration example of the subcarrier signal generation circuit 103 in FIG.
  • the subcarrier signal generation circuit 103 includes a first multiplier 201, a second multiplier 202, a third multiplier 203, an adder 204, and a divider 205. ing.
  • the first multiplier 201 includes a pilot signal Psin (co t) input from the BPF 101, and ⁇ / 2
  • Third multiplier 203 squares pilot-shifted signal Pcos (co t) input from ⁇ 2 phase shifter 102 and outputs signal P 2 cos 2 (co t) to adder 204.
  • ⁇ ⁇ 5 2 ( ⁇ t) ⁇ P 2 is output to the divider 205.
  • the divider 205 starts from the first multiplier 201.
  • the pilot signal Psin (cot) As described above, in the subcarrier signal generation circuit 103, the pilot signal Psin (cot)
  • the amplitude level of the subcarrier signal sin (2 ⁇ t) can always be kept constant.
  • FIG. 4 is a diagram for explaining the characteristics of the subcarrier signal generated by the subcarrier signal generation circuit 103.
  • the figure shows the output characteristics of the sub signal (LR) output from the sub signal extraction circuit 52 when the frequency and amplitude of the sub signal (LR) included in the FM detection signal are constant.
  • the horizontal axis indicates time, and the vertical axis indicates amplitude.
  • the level (amplitude) of the subcarrier signal can always be kept constant. Therefore, when the frequency and amplitude of the subsignal (LR) included in the FM detection signal are kept constant, As shown, the amplitude of the sub signal (LR) output from the sub signal extraction circuit 52 is constant.
  • the BPF 101 also extracts the pilot signal from the FM detection signal power, and the ⁇ ⁇ 2 phase shifter 102 determines the phase of the pilot signal as ⁇ ⁇ ⁇ ⁇ ⁇ A pilot shifted signal shifted by two is generated, the first multiplier 201 multiplies the pilot signal and the pilot shifted signal to generate a multiplied signal, and the second multiplier 202 squares the pilot signal.
  • the third multiplier 203 squares the pilot shift signal, and the third multiplier 204 adds the squared pilot signal and the squared pilot shift signal to generate an addition signal and divide Since the unit 205 divides the multiplication signal by the addition signal to generate a subcarrier signal, the amplitude level of the subcarrier signal can be kept constant even when the amplitude level of the pilot signal fluctuates. , whil Thus enabling stable stereo demodulated prevent fluctuations in Separeshiyon of the R signal and L signal and output from the demodulation circuit 50 (degradation).
  • the present invention is not limited to this, and a case where a television signal and other multiplexed signals are received.
  • the present invention is also applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

 本発明のサブキャリア信号生成装置は、FM検波信号からパイロット信号を抽出するBPFと、パイロット信号の位相をπ/2シフトさせたパイロットシフト信号を生成するπ/2移相器と、パイロット信号とパイロットシフト信号とを乗算して、乗算信号を生成する第1の乗算器と、パイロット信号を2乗する第2の乗算器と、パイロットシフト信号を2乗する第3の乗算器と、2乗されたパイロット信号と2乗されたパイロットシフト信号とを加算して、加算信号を生成する加算器と、乗算信号を加算信号で除算して、サブキャリア信号を生成する除算器とを備え、多重化信号のパイロット信号からサブキャリア信号を生成する場合に、常に、サブキャリア信号の振幅レベルを一定にする。

Description

明 細 書
サブキャリア信号生成装置および多重化信号復調装置
技術分野
[0001] 本発明は、サブキャリア信号生成装置および多重化信号復調装置に関し、詳細に は、多重化信号の検波信号からパイロット信号を抽出してサブキャリア信号を生成す るサブキャリア信号生成装置および多重化信号復調装置に関する。
背景技術
[0002] 従来、一般的な FMステレオ放送受信装置は、 FMステレオ信号を受信し、受信さ れた FMステレオ信号を FM検波して FM検波信号を生成する FM検波装置と、当該 FM検波信号からメイン信号成分 (L+R)およびサブ信号成分 (L R)を分離し、当 該分離されたメイン信号成分およびサブ信号成分をマトリクス回路にて合成し、復調 信号である L信号および R信号を再生出力する FMステレオ復調装置とが内蔵されて いる。
[0003] FMステレオ復調装置には、 FM検波信号からメイン信号成分 (L+R)とサブ信号 成分 (L R)とを分離する機能が備わっており、 FM検波信号からサブ信号成分 (L —R)のみを抽出するサブ信号抽出装置が内蔵されている。かかるサブ信号抽出装 置では、 FM検波信号からパイロット信号(19kHz)を抽出し、このパイロット信号に基 づいて、当該パイロット信号の 2倍の周波数 (SUBキャリア)で、かつ、一定の振幅レ ベルのサブキャリア信号(38kHz)を生成し、このサブキャリア信号を FM検波信号に 乗算した後、 LPFを通過させてサブ信号成分を抽出している。従来、サブキャリア信 号の振幅レベルを一定にするために、 AGC回路を使用するものが公知である(例え ば、特許文献 1参照)。
[0004] 図 5は、 AGC回路を使用した場合のサブキャリア信号の特性を説明するための図 である。同図は、 FM検波信号中のサブ信号成分の周波数および振幅を一定とした 場合に、サブ信号抽出装置カゝら出力されるサブ信号の出力特性を示しており、横軸 は時間、縦軸は振幅を示している。ノ ィロット信号の振幅レベルが変動した場合など には、 AGC回路で追従しきれないため、サブキャリア信号の振幅レベルが変動し、 同図に示すように、サブ信号抽出装置から出力されるサブ信号の振幅レベルは一定 とならない。このため、ステレオ復調回路から出力される R信号および L信号のセパレ ーシヨンが変動 (劣化)して、 R信号および L信号にそれぞれ L成分および R成分が含 まれるようになり、ステレオ感が悪くなると 、う問題がある。
特許文献 1:国際公開第 94Z014246号パンフレット
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、上記に鑑みてなされたものであり、多重化信号のパイロット信号からサブ キャリア信号を生成する場合に、常に、サブキャリア信号の振幅レベルを一定にする ことが可能なサブキャリア信号生成装置および多重化信号復調装置を提供すること を目的とする。
課題を解決するための手段
[0006] 上述した課題を解決し、目的を達成するために、本発明は、メイン信号、サブ信号、 およびパイロット信号を含む多重化信号の検波信号力も前記パイロット信号を抽出す るパイロット信号抽出手段と、前記抽出されたパイロット信号の位相を π Z2シフトさ せたパイロットシフト信号を生成する移相手段と、前記抽出されたパイロット信号と前 記パイロットシフト信号とを乗算して、乗算信号を生成する第 1の乗算手段と、前記抽 出されたパイロット信号を 2乗する第 2の乗算手段と、前記パイロットシフト信号を 2乗 する第 3の乗算手段と、前記 2乗されたパイロット信号と前記 2乗されたパイロットシフ ト信号とを加算して、加算信号を生成する加算手段と、前記乗算信号を前記加算信 号で除算して、サブキャリア信号を生成する除算手段と、を備えたことを特徴とする。
[0007] また、本発明は、メイン信号、サブ信号、およびパイロット信号を含む多重化信号の 検波信号からメイン信号を抽出するメイン信号抽出手段と、前記検波信号からサブ 信号を抽出するサブ信号抽出手段と、前記抽出されたメイン信号と前記抽出された サブ信号とに基づいて、復調信号を生成する合成手段と、を備え、前記サブ信号抽 出手段は、前記検波信号から前記パイロット信号を抽出するパイロット信号抽出手段 と、前記抽出されたパイロット信号の位相を π Ζ2シフトさせたパイロットシフト信号を 生成する移相手段と、前記抽出されたパイロット信号と前記パイロットシフト信号とを 乗算して、乗算信号を生成する第 1の乗算手段と、前記抽出されたパイロット信号を 2 乗する第 2の乗算手段と、前記パイロットシフト信号を 2乗する第 3の乗算手段と、前 記 2乗されたパイロット信号と前記 2乗されたパイロットシフト信号とを加算して、加算 信号を生成する加算手段と、前記乗算信号を前記加算信号で除算して、サブキヤリ ァ信号を生成する除算手段と、前記検波信号に前記サブキャリア信号を乗算して出 力する第 4の乗算手段と、前記第 4の乗算手段の出力信号からサブ信号を抽出する フィルタ手段と、を含むことを特徴とする。
図面の簡単な説明
[0008] [図 1]図 1は、本発明の一実施の形態に係る多重化信号受信装置の構成例を示す図 である。
[図 2]図 2は、図 1のステレオ復調回路の構成例を示す図である。
[図 3]図 3は、図 2のサブキャリア信号生成回路の構成例を示す図である。
[図 4]図 4は、図 2のサブキャリア信号生成回路で生成されるサブキャリア信号の特性 を説明するための図である。
[図 5]図 5は、 AGC回路を使用した場合のサブキャリア信号の特性を説明するための 図である。
符号の説明
[0009] 1 多重化信号受信装置
10 アンテナ
20 RFアンプ
30 チューナー回路
40 FM検波回路
50 ステレオ復調回路
51 メイン信号抽出回路
52 サブ信号抽出回路
53 マトリクス回路
60 LPF
101 BPF (19KHz帯域通過濾波器) 102 π Ζ2移相器
103 サブキャリア信号生成回路
104 ミキサ
105 LPF
201 第 1の乗算器
202 第 2の乗算器
203 第 3の乗算器
204 加算器
205 除算器
発明を実施するための最良の形態
[0010] 以下に添付図面を参照して、この発明に係るサブキャリア信号生成装置および多 重化信号復調装置を適用した多重化信号受信装置の実施の形態を詳細に説明す る。なお、この実施の形態によりこの発明が限定されるものではなぐまた、実施の形 態の中で説明されて!、る特徴の組み合わせのすべてが発明の解決手段に必要であ るとは限らない。また、下記実施の形態における構成要素には、当業者が容易に想 定できるものまたは実質的に同一のものが含まれる。
[0011] 図 1は、本発明の一実施の形態に係る多重化信号受信装置 1の構成例を示す図で ある。図 1に示す多重化信号受信装置 1は、特に、 FMステレオ信号を受信する FM ステレオ信号受信装置を示して!/ヽる。
[0012] 多重化信号受信装置 1は、図 1に示すように、アンテナ 10と、 RFアンプ 20と、チュ ーナー回路 30と、 FM検波回路 40と、ステレオ復調回路 50とを備えている。
[0013] アンテナ 10には、メイン信号 (L+R)、サブ信号 (L— R)、およびパイロット信号を含 む FMステレオ信号が入力される。 RFアンプ 20は、アンテナ 10を介して入力される F Μステレオ信号を増幅して出力する。チューナー回路 30は、局部発振部 31とミキサ 32とを備えている。局部発信部 31は局部発振信号をミキサ 32に出力する。ミキサ 32 は、 RFアンプ 20から入力される FMステレオ信号と局部発振部 31から入力される局 部発振信号とを混合して IF信号(中間周波数信号)を生成する。
[0014] FM検波回路 40は、ミキサ 32から入力される IF信号を FM検波して、 FM検波信号 をステレオ復調回路 50に出力する。ステレオ復調回路 50は、 FM検波回路 40から 入力される FM検波信号からメイン信号 (L+R)およびサブ信号 (L—R)を抽出し、 当該抽出されたメイン信号 (L+R)およびサブ信号 (L R)を合成して復調信号であ る L信号および R信号を再生出力する。
[0015] 図 2は、図 1のステレオ復調回路 50の構成例を示す図である。ステレオ復調回路 5 0は、図 2に示すように、メイン信号抽出回路 51と、サブ信号抽出回路 52と、マトリク ス回路 53とを備えている。メイン信号抽出回路 51は、 LPF60力らなり、この LPF60 は、 FM検波回路 40から入力される FM検波信号力もメイン信号 (L+R)を抽出して 、マトリクス回路 53に出力する。サブ信号抽出回路 52は、 FM検波回路 40から入力 される FM検波信号力もサブ信号 (L—R)を抽出して、マトリクス回路 53に出力する。 マトリクス回路 53は、メイン信号抽出回路 51から入力されるメイン信号 (L+R)と、サ ブ信号抽出回路 52から入力されるサブ信号 (L—R)とを加減算して、復調信号であ る L信号および R信号を再生出力する。
[0016] 上記サブ信号抽出回路 52は、図 2に示すように、 BPF (19KHz帯域通過濾波器) 101と、 π Ζ2移相器 102と、サブキャリア信号生成回路 103と、ミキサ 104と、 LPF1 05とを備えている。同図においては、パイロット信号を Psin ( co t)で示している。ここ
P
で、 ω
Ρはノ ィロット信号の角周波数、 Ρはパイロット信号の振幅を示している。
[0017] BPF (19KHz帯域通過濾波器) 101は、 FM検波回路 40から FM検波信号が入力 され、この FM検波信号に含まれる 19KHzのパイロット信号 Psin( co t)を抽出して π ρ
Ζ2移相器 102およびサブキャリア信号生成回路 103に出力する。 π Ζ2移相器 10 2は、 BPF101から入力されるパイロット信号 Psin( co t)の位相を
Ρ π Ζ2シフトさせた パイロットシフト信号 pcos ( co t)を生成して、サブキャリア信号生成回路 103に出力
P
する。
[0018] サブキャリア信号生成回路 103は、 BPF101から入力されるパイロット信号 Psin( co t)と、 π Ζ2移相器 102から入力されるノ ィロットシフト信号 Pcos ( co t)とに基づい
P P
て、パイロット信号 psin ( co t)に同期した 38kHzのサブキャリア信号 sin (2 ω t)を生
P P
成してミキサ 104に出力する。ミキサ 104は、 FM検波回路 40から入力される FM検 波信号にサブキャリア信号 sin (2 ω t)を乗算して、 FM検波信号中のサブ信号(38k Hz±15kHz)を低域の信号に変換して LPF105に出力する。 LPF105は、ミキサ 1 04から入力される信号の低周波帯域成分であるサブ信号 (L—R)を通過させる。
[0019] 図 3は、図 2のサブキャリア信号生成回路 103の構成例を示す図である。サブキヤリ ァ信号生成回路 103は、図 3に示すように、第 1の乗算器 201と、第 2の乗算器 202と 、第 3の乗算器 203と、加算器 204と、除算器 205とを備えている。
[0020] 第 1の乗算器 201は、 BPF101から入力されるパイロット信号 Psin(co t)と、 π/2
Ρ
移相器 102から入力されるパイロットシフト信号 PCOS(co t)とを乗算して、乗算信号(
P
P2/2) -sin(2to t)を除算器 205に出力する。第 2の乗算器 202は、 BPF101力
P
入力されるパイロット信号 Psin(co t)を 2乗して、信号 P2sin2(co t)を加算器 204に
P P
出力する。第 3の乗算器 203は、 πΖ2移相器 102から入力されるパイロットシフト信 号 Pcos(co t)を 2乗して信号 P2cos2(co t)を加算器 204に出力する。
P P
[0021] 加算器 204は、第 2の乗算器 203から入力される信号 P2sin2 ( ω t)と、第 3の乗算
P
器 203から入力される信号 P2 COS 2(co t)とを加算して、加算信号 {P2'sin2(co t)+P2
P P
·οο52(ω t)}=P2を除算器 205に出力する。除算器 205は、第 1の乗算器 201から
P
入力される乗算信号 (Ρ2Ζ2) ·5ίη (ω t)を、加算器 204から入力される加算信号 {P
P
2-sin (ω t)+P2-cos2(W t) } =P2で除算してサブキャリア信号 sin (2 ω t)を生成し
P P P
て、ミキサ 104に出力する。
[0022] このように、サブキャリア信号生成回路 103では、パイロット信号 Psin(co t)とパイ口
P
ット信号 Psin(c t)の位相を πΖ2シフトさせたパイロットシフト信号 Pcos(o) との
P P
積(P2/2) 'sin(2co t)を、パイロット信号 Psin(co t)およびパイロット信号 Psin( ω
Ρ Ρ Ρ
t)の位相を π Ζ2シフトさせたパイロットシフト信号 Pcos ( ω t)のそれぞれの
p 2乗の和
{P2-sin (ω t)+P2'cos2(co t) } =P2で除算してサブキャリア信号 sin (2 ω t)を生
P P P
成しているので、パイロット信号の振幅レベルが変動した場合等においても、サブキ ャリア信号 sin (2 ω t)の振幅レベルを常に一定にすることができる。
P
[0023] 図 4は、サブキャリア信号生成回路 103で生成されるサブキャリア信号の特性を説 明するための図である。同図は、 FM検波信号に含まれるサブ信号 (L R)の周波 数および振幅を一定とした場合に、サブ信号抽出回路 52から出力されるサブ信号( L—R)の出力特性を示しており、横軸は時間、縦軸は振幅を示している。本実施の 形態においては、サブキャリア信号のレベル (振幅)を常に一定にすることができるた め、 FM検波信号に含まれるサブ信号 (L R)の周波数および振幅を一定とした場 合には、図 4に示すように、サブ信号抽出回路 52から出力されるサブ信号 (L—R)の 振幅は一定となる。
[0024] 以上説明したように、本実施の形態のサブ信号抽出回路 52によれば、 BPF101は FM検波信号力もパイロット信号を抽出し、 π Ζ2移相器 102は、パイロット信号の位 相を π Ζ2シフトさせたパイロットシフト信号を生成し、第 1の乗算器 201はパイロット 信号とパイロットシフト信号とを乗算して、乗算信号を生成し、第 2の乗算器 202はパ ィロット信号を 2乗し、第 3の乗算器 203はパイロットシフト信号を 2乗し、第 3の乗算器 204は 2乗されたパイロット信号と 2乗されたパイロットシフト信号とを加算して、加算 信号を生成し、除算器 205は乗算信号を加算信号で除算して、サブキャリア信号を 生成しているので、パイロット信号の振幅レベルが変動した場合等においても、サブ キャリア信号の振幅レベルを常に一定にすることができ、ステレオ復調回路 50から出 力される R信号および L信号のセパレーシヨンの変動(劣化)を防止して安定したステ レオ復調が可能となる。
[0025] なお、上記実施の形態では、多重化信号として FMステレオ信号を受信する場合を 例示したが、本発明はこれに限られるものではなぐテレビジョン信号や他の多重化 信号を受信する場合においても本発明は適用可能である。
産業上の利用可能性
[0026] 以上のように、本発明に係るサブキャリア信号生成装置および多重化信号復調装 置は、多重化信号からパイロット信号を抽出して、サブキャリア信号を生成する装置 に有用であり、 FMラジオ、テレビチューナ等の無線受信装置に広く適用可能である

Claims

請求の範囲
[1] メイン信号、サブ信号、およびパイロット信号を含む多重化信号の検波信号から前 記パイロット信号を抽出するパイロット信号抽出手段と、
前記抽出されたパイロット信号の位相を π Ζ2シフトさせたパイロットシフト信号を生 成する移相手段と、
前記抽出されたパイロット信号と前記パイロットシフト信号とを乗算して、乗算信号を 生成する第 1の乗算手段と、
前記抽出されたパイロット信号を 2乗する第 2の乗算手段と、
前記パイロットシフト信号を 2乗する第 3の乗算手段と、
前記 2乗されたパイロット信号と前記 2乗されたパイロットシフト信号とを加算して、加 算信号を生成する加算手段と、
前記乗算信号を前記加算信号で除算して、サブキャリア信号を生成する除算手段 と、
を備えたことを特徴とするサブキャリア信号生成装置。
[2] 前記多重化信号は、 FMステレオ信号であることを特徴とする請求項 1に記載のサ ブキャリア信号生成装置。
[3] メイン信号、サブ信号、およびパイロット信号を含む多重化信号の検波信号からメイ ン信号を抽出するメイン信号抽出手段と、
前記検波信号からサブ信号を抽出するサブ信号抽出手段と、
前記抽出されたメイン信号と前記抽出されたサブ信号とに基づいて、復調信号を生 成する合成手段と、
を備え、
前記サブ信号抽出手段は、
前記検波信号から前記パイロット信号を抽出するパイロット信号抽出手段と、 前記抽出されたパイロット信号の位相を π Ζ2シフトさせたパイロットシフト信号を生 成する移相手段と、
前記抽出されたパイロット信号と前記パイロットシフト信号とを乗算して、乗算信号を 生成する第 1の乗算手段と、 前記抽出されたパイロット信号を 2乗する第 2の乗算手段と、 前記パイロットシフト信号を 2乗する第 3の乗算手段と、
前記 2乗されたパイロット信号と前記 2乗されたパイロットシフト信号とを加算して、加 算信号を生成する加算手段と、
前記乗算信号を前記加算信号で除算して、サブキャリア信号を生成する除算手段 と、
前記検波信号に前記サブキャリア信号を乗算して出力する第 4の乗算手段と、 前記第 4の乗算手段の出力信号からサブ信号を抽出するフィルタ手段と、 を含むことを特徴とする多重化信号復調装置。
前記多重化信号は、 FMステレオ信号であることを特徴とする請求項 3に記載の多 重化信号復調装置。
PCT/JP2006/300265 2005-01-24 2006-01-12 サブキャリア信号生成装置および多重化信号復調装置 WO2006077761A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06711588A EP1852988A1 (en) 2005-01-24 2006-01-12 Subcarrier signal generator and multiplexed signal demodulator
JP2006553863A JP4070797B2 (ja) 2005-01-24 2006-01-12 サブキャリア信号生成装置および多重化信号復調装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005015802 2005-01-24
JP2005-015802 2005-01-24

Publications (1)

Publication Number Publication Date
WO2006077761A1 true WO2006077761A1 (ja) 2006-07-27

Family

ID=36692151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300265 WO2006077761A1 (ja) 2005-01-24 2006-01-12 サブキャリア信号生成装置および多重化信号復調装置

Country Status (3)

Country Link
EP (1) EP1852988A1 (ja)
JP (1) JP4070797B2 (ja)
WO (1) WO2006077761A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210734A (ja) * 1985-02-22 1986-09-18 アールシーエー トムソン ライセンシング コーポレーシヨン デイジタル化された復調fmステレオ信号を復号するデイジタル回路
JPH0787041A (ja) * 1993-09-16 1995-03-31 Nec Corp パイロット信号検出回路
JPH08504549A (ja) * 1992-12-14 1996-05-14 フォード モーター カンパニー ディジタル無線受信器の同期検波と抑止用の適合フィルタを用いたコヒーレント信号の発生
JPH08508142A (ja) * 1993-03-24 1996-08-27 ブラウプンクト−ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング 受信した多重信号の音質に依存した音質信号の導出用回路装置
JPH09214252A (ja) * 1996-02-02 1997-08-15 Fujitsu Ten Ltd ダイレクト検波を用いたam/fmチューナ
JP2001285226A (ja) * 2000-03-31 2001-10-12 Pioneer Electronic Corp Fmステレオ信号復調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210734A (ja) * 1985-02-22 1986-09-18 アールシーエー トムソン ライセンシング コーポレーシヨン デイジタル化された復調fmステレオ信号を復号するデイジタル回路
JPH08504549A (ja) * 1992-12-14 1996-05-14 フォード モーター カンパニー ディジタル無線受信器の同期検波と抑止用の適合フィルタを用いたコヒーレント信号の発生
JPH08508142A (ja) * 1993-03-24 1996-08-27 ブラウプンクト−ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング 受信した多重信号の音質に依存した音質信号の導出用回路装置
JPH0787041A (ja) * 1993-09-16 1995-03-31 Nec Corp パイロット信号検出回路
JPH09214252A (ja) * 1996-02-02 1997-08-15 Fujitsu Ten Ltd ダイレクト検波を用いたam/fmチューナ
JP2001285226A (ja) * 2000-03-31 2001-10-12 Pioneer Electronic Corp Fmステレオ信号復調装置

Also Published As

Publication number Publication date
JP4070797B2 (ja) 2008-04-02
JPWO2006077761A1 (ja) 2008-06-19
EP1852988A1 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP3647894B2 (ja) アナログオーバーサンプリングを用いて信号帯域幅を増大する中間周波数fm受信機
JP4714543B2 (ja) 伝送制御信号受信回路、伝送制御信号受信機及びそれを用いた地上デジタルテレビジョン放送受信機
US9356705B2 (en) Optical homodyne coherent receiver and method for receiving a multichannel optical signal
JP2008529397A (ja) アナログテレビジョン及びディジタルテレビジョン双方の中間周波信号を処理するための中間周波処理装置
JP3169690B2 (ja) 受信装置
US4232189A (en) AM Stereo receivers
EP1094627A1 (en) Method and device to retrieve RDS information
EP1559221A1 (en) Digital fm stereo decoder and method of operation
WO2006077761A1 (ja) サブキャリア信号生成装置および多重化信号復調装置
US7295631B2 (en) Stereo demultiplexer
JPS6033014B2 (ja) ラジオ放送方式に用いる受信機
JP3640669B2 (ja) 受信した多重信号の音質に依存した音質信号の導出用回路装置
JP2777717B2 (ja) Fm放送受信装置
GB2238213A (en) Multiplex stereophonic demodulator for A2 and NICAM
JPS5944828B2 (ja) Fm受信機
JP2663266B2 (ja) Rdsラジオ受信機
JP2002290868A (ja) 周波数変換回路、復調回路及びテレビ受信装置
JP3645208B2 (ja) 中波ステレオ放送受信回路
JPS6387052A (ja) Fm多重放送受信機におけるデ−タ復調回路
JP3798516B2 (ja) 通信装置
JPS62629B2 (ja)
JP2010004145A (ja) 無線受信装置
JPH0548550A (ja) Fm復調装置
JPH04339418A (ja) Cs放送受信機
JPH04239804A (ja) 復調回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553863

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006711588

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006711588

Country of ref document: EP