WO2006070541A1 - 送信装置、キーレスエントリーシステム、タイヤ空気圧監視システム - Google Patents

送信装置、キーレスエントリーシステム、タイヤ空気圧監視システム Download PDF

Info

Publication number
WO2006070541A1
WO2006070541A1 PCT/JP2005/021204 JP2005021204W WO2006070541A1 WO 2006070541 A1 WO2006070541 A1 WO 2006070541A1 JP 2005021204 W JP2005021204 W JP 2005021204W WO 2006070541 A1 WO2006070541 A1 WO 2006070541A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
unit
signal
reception unit
output
Prior art date
Application number
PCT/JP2005/021204
Other languages
English (en)
French (fr)
Inventor
Naoki Takahashi
Youichi Kajiwara
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to JP2006550621A priority Critical patent/JPWO2006070541A1/ja
Priority to US11/721,518 priority patent/US20080129477A1/en
Publication of WO2006070541A1 publication Critical patent/WO2006070541A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • H04Q9/04Arrangements for synchronous operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0438Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver
    • B60C23/044Near field triggers, e.g. magnets or triggers with 125 KHz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • B60R25/245Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user where the antenna reception area plays a role

Definitions

  • the present invention relates to a transmission device that transmits signals using an antenna.
  • TPMS Transmission Management System
  • Such keyless entry systems include a manual type that performs one-way communication from the remote control key carried by the user to the lock mechanism, and a passive type that performs two-way communication between the two.
  • a passive keyless entry system for a vehicle that automatically locks / unlocks a door lock mechanism in a non-contact manner, a space between a transmission / reception unit mounted on the vehicle and a remote control key carried by a user.
  • the locking / unlocking of the door lock mechanism was controlled according to the correctness of the two-way communication exchanged in More specifically, in the conventional key response system, the door lock mechanism is automatically locked when the user moves away from the vehicle to a distance where the bidirectional communication between the transmission / reception unit and the remote control key is interrupted. The door lock mechanism was automatically unlocked when the user approached the vehicle to a distance where bidirectional communication was possible.
  • the transmission antenna unit of the transmission / reception unit is generally composed of an RLC series resonance circuit (see, for example, Patent Document 1).
  • the request signal (start signal) for the remote control key was released into the space as radio waves.
  • the conventional transmission / reception unit has its power supply dependent on the output current value of the transmission antenna unit.
  • the radio wave reach range of the transmitting antenna unit is adjusted by appropriately selecting the resistance value of the external resistor constituting the RLC series resonant circuit.
  • transistor switches provided on individual transmission lines of a plurality of channels branched in a line symmetrical shape with respect to the common transmission line, By making the gate widths of the outer channel switch and the inner channel switch different from each other, the on-resistance of the transistor, and hence the transmission characteristics when the switch is on, is changed, and the transmission loss difference between the two channels is reduced.
  • a high-frequency signal switching device for compensation has been disclosed and proposed (for example, see Patent Document 2).
  • Patent Document 1 JP-A-5-291991
  • Patent Document 2 Japanese Patent Publication No. 2000-332502
  • the radio wave arrival range of the transmission antenna unit can be adjusted by appropriately selecting the external resistor of the RLC series resonance circuit.
  • changing the external resistor is a very cumbersome and time-consuming work, and if the productivity declines, the cost increases.
  • Patent Document 2 has a configuration in which transistor switch characteristics (on-resistance) for each channel are appropriately adjusted so that the insertion loss is uniform regardless of which channel is conducted. However, it was not possible to solve the above problems.
  • the conventional transmission / reception unit is configured to adjust the radio wave reachable range of the transmission antenna unit using a control signal from the outside of the unit, for example, an in-vehicle LSI, particularly an in-vehicle unit of a keyless entry system. If the door is set on the door side, there is a problem that the number of harnesses (electric wires) from the car body increases, and it is used for communication as much as possible. There was a request to suppress the increase in signal lines.
  • the present invention provides a transmission device capable of easily adjusting the radio wave reach of the transmission antenna unit as soon as complicated work is required, and a keyless entry system using the same. And a tire pressure monitoring system. Means for solving the problem
  • the transmitting apparatus that achieves the above object includes: a transmitting antenna unit; an output from a connection node of first and second switches connected in series between two different potentials to the transmitting antenna unit; An output unit that obtains current; an output drive unit that controls opening and closing of the first and second switches; and a duty ratio setting unit that variably sets the drive duty ratio of the first and second switches by the output drive unit; It is assumed that the configuration is the first configuration. With such a configuration, the current value of the output current flowing through the transmission antenna unit can be arbitrarily adjusted. Therefore, it is possible to easily adjust the radio wave arrival range of the transmitting antenna unit without adjusting the components of the transmitting antenna unit.
  • the duty ratio setting means includes a power supply voltage input unit that generates a reference voltage signal that varies according to the power supply voltage supplied to the device, and a constant waveform.
  • a triangular wave generation unit that generates a triangular wave signal of the output signal, and a comparison unit that compares the reference voltage signal and the triangular wave signal.
  • the output drive unit is based on a comparison result signal obtained by the comparison unit.
  • the first and second switch open / close control signals may be generated (second configuration).
  • a keyless entry system includes a remote key, a transmission / reception unit that performs bidirectional communication with the remote key, a power supply unit that supplies power to the transmission / reception unit, and the transmission / reception unit;
  • a keyless entry system having a lock mechanism that is locked / unlocked in accordance with the correctness of two-way communication exchanged with the remote control key.
  • the configuration includes a transmission device having the first configuration (third configuration).
  • a tire pressure monitoring system includes a sensor that monitors tire pressure and temperature, a transmission / reception unit that performs bidirectional communication with the sensor, and a power source that supplies power to the transmission / reception unit.
  • a tire pressure monitoring system that issues a warning in the event of an abnormality based on an electronic ID signal sent from the sensor.
  • a configuration (fourth configuration) including the transmission device having the first configuration is used as a signal transmission means of the transmission / reception unit.
  • the transmission device provides an output for obtaining an output current from the connection node of the first and second switches connected in series between two different potentials to the transmission antenna unit.
  • An output drive unit that controls opening and closing of the first and second switches in response to the first control signal, wherein each of the first and second switches includes a plurality of switch elements. Are connected to each other in parallel, and the output driver switches the switch to be opened / closed according to the first control signal among the plurality of switch elements based on the second control signal.
  • the element is selected (fifth structure).
  • the output drive unit is configured to select the switch element and adjust the output current (sixth configuration).
  • the output current is adjusted by the on-resistance of the switch element (seventh configuration).
  • the on-resistance of the first and second switches and, consequently, the current value of the output current flowing through the transmission antenna unit can be arbitrarily adjusted based on the second control signal. Can do. Therefore, it is possible to easily adjust the radio wave arrival range of the transmitting antenna unit without adjusting the components of the transmitting antenna unit.
  • the transmission device having the fifth configuration may have a configuration (eighth configuration) including means for generating a second control signal in accordance with the power supply voltage supplied to the device.
  • a keyless entry system includes a remote key and the remote key.
  • a transmission / reception unit that performs bidirectional communication with the power transmission / reception unit, a power supply unit that supplies power to the transmission / reception unit, and locking / unlocking according to the correctness of bidirectional communication between the transmission / reception unit and the remote control key.
  • a keyless entry system comprising: a transmission device having the fifth configuration as a signal transmission means of the transmission / reception unit (a ninth configuration); It has been done.
  • a tire pressure monitoring system includes a sensor that monitors tire pressure and temperature, a transmission / reception unit that performs bidirectional communication with the sensor, and a power source that supplies power to the transmission / reception unit.
  • a tire air pressure monitoring system that issues a warning in the event of an abnormality based on an electronic ID signal sent from the sensor, wherein the signal transmitting means of the transmitting / receiving unit is the fifth
  • the configuration is a configuration (tenth configuration) including a transmitter configured by the configuration.
  • FIG. 1 is a block diagram showing a first embodiment of a keyless entry system according to the present invention.
  • FIG. 2 is a flowchart showing a door lock control operation.
  • FIG. 3 is a diagram for explaining variable control of a radio wave arrival range in the first embodiment.
  • FIG. 4 is a diagram for explaining the relationship between the installation point of the transmitting antenna unit and the radio wave reachable range.
  • FIG. 5 is a block diagram showing a second embodiment of the keyless entry system according to the present invention. It is.
  • FIG. 6 is a diagram for explaining variable control of a radio wave reachable range in the second embodiment.
  • FIG. 7] is a block diagram showing a third embodiment of the keyless entry system according to the present invention.
  • FIG. 8 is a diagram for explaining variable control of a radio wave reach in the third embodiment.
  • FIG. 9 is a block diagram showing an example of application to TPMS.
  • Fig. 10 is a block diagram showing a configuration change example of the keyless entry system according to the present invention.
  • HN (l to n) N-channel field effect transistor (upper power transistor)
  • FIG. 1 is a block diagram showing a first embodiment of the keyless entry system according to the present invention (particularly, the periphery of a transmission block of a transmission / reception unit provided on the vehicle side).
  • the keyless entry system of the present embodiment includes a transmission / reception unit la and a power supply unit 2 for supplying power to the transmission / reception unit la on the vehicle side. It is configured to control the locking / unlocking of the door lock mechanism (not shown) according to the correctness of the bidirectional communication between the user and the remote control key (not shown) carried by the user.
  • the transmission / reception unit la includes a transmission antenna drive IC [Integrated Circuit] 10a and a transmission antenna. And a receiving block (not shown) for receiving a response signal from the remote control key.
  • the transmission antenna drive IClOa includes a power supply voltage input unit 11a, a triangular wave generation unit 12, a comparison unit 13a, a drive logic unit 14, a gate drive unit 15, and an output unit 16. This is a semiconductor integrated circuit device that controls the output of the antenna unit 20.
  • the power supply voltage input unit 11a includes resistors R1 to R4, a DC voltage source E, and an amplifier AMP.
  • One end of the resistor R1 is connected to the power supply terminal T1 to which the power supply voltage Vcc is applied from the power supply unit 2.
  • the other end of the resistor R1 is connected to one end of each of the resistors R2 and R3.
  • the other end of the resistor R2 is connected to the ground terminal T2 to which the ground voltage GND is applied from the power supply unit 2.
  • the other end of the resistor R3 is connected to the inverting input terminal (one) of the amplifier AMP.
  • the non-inverting input terminal (+) of the amplifier AMP is connected to the positive terminal of the DC voltage source E.
  • the negative terminal of the DC voltage source E is connected to the ground terminal T2.
  • the output terminal of the amplifier AMP is connected to the inverting input terminal (one) of the comparison unit 13, and is also connected to its own inverting input terminal (one) through the resistor R4.
  • the power supply voltage input unit 11 configured as described above inverts and amplifies the divided voltage of the power supply voltage Vcc obtained at the connection node of the resistors Rl and R2, and outputs an amplifier output signal (a reference voltage signal that varies according to the power supply voltage Vcc). ) Is output to the inverting input terminal (one) of the comparator 13: ⁇ .
  • the triangular wave generation unit 12 generates a triangular wave signal having a constant waveform by charging and discharging a capacitor (not shown) with a clock pulse CLK having a predetermined frequency supplied to the clock terminal T3, and compares the triangular wave signal. Send to part 13 non-inverting input (+).
  • the comparison unit 13a compares the amplifier output signal input from the power supply voltage input unit 1la with the triangular wave signal input from the triangular wave generation unit 12, and sends the comparison result to the drive logic unit 14. .
  • the output logic of the comparator 13a is low level if the amplifier output signal is higher in potential than the triangular wave signal, and high level if the opposite is the case.
  • the drive logic unit 14 generates a rectangular wave signal necessary for the gate signal generation process in the gate drive unit 15 based on the comparison result signal input from the comparison unit 13a. In addition to the above comparison result signal, the drive opening 14 does not accept various IC protection signals (high voltage lockout signal, low voltage lockout signal, overheat protection signal, overcurrent protection signal, etc.). And the function of controlling the operation of the gate drive unit 15 (whether or not the rectangular wave signal can be output) according to the IC protection signal.
  • IC protection signals high voltage lockout signal, low voltage lockout signal, overheat protection signal, overcurrent protection signal, etc.
  • the gate drive unit 15 operates upon receiving the boosted voltage, and generates a gate signal of the power transistor that constitutes the output unit 16 based on the rectangular wave signal input from the drive logic unit 14.
  • the output unit 16 includes upper and lower switches (N-channel field effect transistors HN and LN) connected in series between two different potentials (between Vcc and GND), and transmits from the connection node. This is a means for obtaining an output current to the antenna unit 20.
  • the drain of the transistor HN is connected to the power supply terminal T1.
  • the source of transistor HN is connected to output terminal T4.
  • the gate of the transistor HN is connected to the gate signal output terminal (upper side) of the gate driver 15.
  • the back gate of transistor HN is connected to its source.
  • the drain of transistor LN is connected to output terminal T4.
  • the source of transistor LN is connected to ground terminal T2.
  • the gate of the transistor LN is connected to the gate signal output terminal (lower side) of the gate driver 15.
  • the back gate of transistor LN is connected to its source.
  • the transistors HN and LN are controlled to open and close in accordance with the gate signal from the gate drive unit 15, and the output control of the transmission antenna unit 20 connected to the output terminal T4 is performed.
  • the transmission antenna unit 20 is an RLC series resonance circuit including an external resistor R, an external capacitor C, and an external coil L.
  • the output terminal T4 of the transmission antenna drive IClOa has a resistance R It is grounded via a capacitor C and a coil L.
  • the transmitting antenna unit 20 is not limited to the RLC series resonance circuit, and other types of oscillation circuits (LC series resonance circuit, etc.) may be used.
  • the transmission / reception unit la sends a request signal (start signal) to the remote control key at a predetermined cycle, while monitoring a response signal from the remote control key to perform the bidirectional communication. Controls the locking and unlocking of the door lock mechanism according to correctness (response signal reception correctness).
  • a remote control key carried by the user receives a request signal from the transmission / reception unit la and responds to the request signal. Send a response signal.
  • the transmission / reception unit la that has received the response signal from the remote control key confirms the establishment of bidirectional communication with the remote control key and sends an unlock command to the door lock mechanism.
  • the transmission / reception unit la determines that the two-way communication with the remote control key cannot be established, and sends a locking command to the door lock mechanism.
  • the door lock mechanism when the user approaches the vehicle up to a distance that allows bidirectional communication between the transmission / reception unit la and the remote control key, the door lock mechanism is automatically unlocked, and conversely When the user moves away from the vehicle to such a distance that the two-way communication is interrupted, the door lock mechanism is automatically locked.
  • FIG. 2 is a flowchart showing the door lock control operation described above.
  • Fig. 2 (a) shows the control operation when the door lock mechanism is locked
  • Fig. 2 (b) shows the control operation when the door lock mechanism is unlocked. I'm going.
  • Fig. 3 is a diagram for explaining variable control of the radio wave reach. From the top, power supply voltage Vcc, clock pulse CLK, input signal (amp output signal and triangular wave signal) to comparator 13a, output terminal The output voltage applied to T4 and the output current flowing through the output terminal T4 are shown.
  • the output level of the amplifier output signal input to the inverting input terminal (one) of the comparison unit 13a increases as the power supply voltage Vcc increases. Conversely, the lower the power supply voltage Vcc, the higher the output level. on the other hand, The triangular wave signal input to the non-inverting input terminal (+) of the comparator 13a has a constant waveform regardless of the power supply voltage Vcc.
  • the duty ratio of the comparison result signal output from the comparison unit 13a (the ratio of the high level output period occupying the total output period) becomes larger as the power supply voltage Vcc is higher (for example, the maximum value).
  • the lower the power supply voltage Vcc the smaller the value.
  • the drive logic unit 14 generates a rectangular wave signal necessary for the gate signal generation process in the gate drive unit 15 based on the comparison result signal input from the comparison unit 13a.
  • the gate drive unit 15 generates the gate signals of the power transistors HN and LN constituting the output unit 16 based on the rectangular wave signal input from the drive logic unit 14.
  • the transmission / reception unit la of the present embodiment is a means for variably setting the drive duty ratio (and hence the duty ratio of the output voltage) of the single transistors HN and LN according to the voltage value of the power supply voltage Vcc ( It can be said that the power supply voltage input unit lla, the triangular wave generation unit 12, and the comparison unit 13a) are configured.
  • the variable range of the power supply voltage Vcc for the transmission / reception unit la is determined in a range that does not hinder the operation of each part of the transmission / reception unit la, that is, the transmission / reception unit 1
  • the power supply voltage Vcc is within the allowable fluctuation range (for example, 3.5 to 7.0 [V]).
  • the number of variable stages of the power supply voltage Vcc is not limited to the example shown in FIG. 3, and can be increased / decreased as appropriate according to the desired variable control number of the radio wave arrival range in the transmitting antenna unit 20.
  • the power supply voltage Vcc can be variably controlled continuously.
  • the output value can be kept unchanged by simply setting the voltage value of the power supply voltage Vcc as appropriate.
  • the duty ratio of the voltage that is, the current value of the output current can be arbitrarily adjusted. Therefore, it is possible to easily adjust the radio wave reachable range of the transmitting antenna unit 20 without requiring replacement work of the external resistor R.
  • the transmission / reception unit la of the present embodiment is configured to increase or decrease the duty ratio of the output voltage in accordance with the power supply voltage Vcc, a separate control signal is used for adjusting the radio wave arrival range.
  • Transmitter antenna drive that does not need to be installed Unnecessarily increase the number of external terminals of IClOa There is no.
  • the voltage level of the amplifier output signal generated by the power supply voltage input unit 11a and the signal waveform of the triangular wave signal generated by the triangular wave generation unit 12 are appropriately set in advance so that a desired duty ratio can be obtained. Just set it up.
  • FIG. 4 is a diagram for explaining the relationship between the installation point of the transmission / reception unit and the radio wave reachable range.
  • the transmission / reception units placed at the installation points A1 to A4 outside the vehicle compartment should establish two-way communication with the remote control key located near the vehicle.
  • ⁇ A4 needs to be expanded to some extent.
  • the radio wave reach range of each transmission antenna unit can be set according to the installation point by simply setting the voltage value of the power supply voltage Vcc to each transmission / reception unit as appropriate. It can be adjusted appropriately.
  • the power supply voltage Vcc is set higher to increase the output voltage duty ratio, and the output current of the transmission antenna unit is increased.
  • the radio wave coverage al ⁇ a4 can be set wider.
  • the power voltage Vcc is set lower, the duty ratio of the output voltage is reduced, and the output current of the transmission antenna is reduced, thereby reaching the radio wave. Ranges a5 and a6 can be set narrower.
  • FIG. 5 is a block diagram showing a second embodiment of the keyless entry system according to the present invention (particularly, the periphery of the transmission block of the transmission / reception unit provided on the vehicle side).
  • the keyless entry system of the present embodiment has almost the same configuration power as that of the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals as those in FIG. 1, and the description thereof is omitted. In the following, the description will be focused on the features of the present embodiment. I do.
  • the power supply voltage of the transmission antenna drive ICl Ob is configured to directly send the divided voltage signal of the power supply voltage Vcc obtained at the connection node of the resistors Rl and R2 to the non-inverting input terminal (+) of the comparison section 13b.
  • the comparison unit 13b includes a divided voltage signal input from the power supply voltage input unit ib to the non-inverting input terminal (+) and a triangular wave input from the triangular wave generation unit 12 to the inverting input terminal (one).
  • the comparison result is sent to the drive logic unit 14.
  • the output logic of the comparator 13b is “No” or “No” if the divided voltage signal is higher in potential than the triangular wave signal, and “Low” if the opposite is the case.
  • Fig. 6 is a diagram for explaining variable control of the radio wave reach. From the top, power supply voltage Vcc, clock pulse CLK, input signal (divided voltage signal and triangular wave signal) to comparator 13b, output terminal The output voltage applied to T4 and the output current flowing through the output terminal T4 are shown.
  • the divided voltage signal input to the non-inverting input terminal (+) of the comparison unit 13b increases as the power supply voltage Vcc increases.
  • the lower the power supply voltage Vcc the lower the output level.
  • the triangular wave signal input to the inverting input terminal (one) of the comparison unit 13b is always a constant waveform regardless of the power supply voltage Vcc.
  • the duty ratio of the comparison result signal output from the comparison unit 13b (the ratio of the high level output period occupying the total output period) becomes larger as the power supply voltage Vcc is higher (for example, the maximum value).
  • the lower the power supply voltage Vcc the smaller the value.
  • a desired duty ratio can be obtained for the voltage level of the divided voltage signal generated by the power supply voltage input section l ib and the signal waveform of the triangular wave signal generated by the triangular wave generation section 12. It may be set appropriately in advance.
  • the keyless entry system of this embodiment has a simpler configuration than that of the first embodiment, but just sets the voltage value of the power supply voltage Vcc as appropriate as described above.
  • the duty ratio of the output voltage and the current value of the output current can be arbitrarily adjusted with the resistance value of the external resistor R unchanged. Therefore, it is possible to easily adjust the radio wave coverage of the transmitting antenna unit 20 without the need to replace the external resistor R. Can be adjusted.
  • the transmission / reception unit lb of the present embodiment is configured to increase or decrease the duty ratio of the output voltage in accordance with the power supply voltage Vcc, a separate control signal is used for adjusting the radio wave arrival range. Transmitting antenna drive that does not need to be installed The number of external terminals of IClOb is not increased unnecessarily.
  • FIG. 7 is a block diagram showing a third embodiment of the keyless entry system according to the present invention (particularly, the periphery of the transmission block of the transmission / reception unit provided on the vehicle side).
  • the keyless entry system according to the present embodiment includes a transmission / reception unit lc and a power supply unit 2 for supplying power to the transmission / reception unit lc on the vehicle side. It is configured to control locking / unlocking of a door lock mechanism (not shown) according to the correctness of bidirectional communication exchanged between the controller 1c and a remote control key (not shown) carried by the user.
  • the transmission / reception unit lc includes a transmission antenna drive IC 30 and a transmission antenna unit 20, and also includes a reception block (not shown) for receiving a response signal from a remote control key.
  • the transmission antenna drive IC 30 includes a power supply voltage input unit 31, an analog / digital conversion unit 32 (hereinafter referred to as an A / D [Analog / Digital] conversion unit 32), a drive logic unit 33, and a gate drive.
  • the semiconductor integrated circuit device includes a moving unit 34 and an output unit 35 and controls output of the transmitting antenna unit 20.
  • the power supply voltage input unit 31 includes resistors R1 to R4, a DC voltage source E, and an amplifier AMP.
  • One end of the resistor R1 is connected to the power supply terminal T1 to which the power supply voltage Vcc is applied from the power supply unit 2.
  • the other end of the resistor R1 is connected to one end of each of the resistors R2 and R3.
  • the other end of the resistor R2 is connected to the ground terminal T2 to which the ground voltage GND is applied from the power supply unit 2.
  • the other end of the resistor R3 is connected to the inverting input terminal (-) of the amplifier AMP.
  • the non-inverting input terminal (+) of the amplifier AMP is connected to the positive terminal of the DC voltage source E.
  • the negative terminal of the DC voltage source E is connected to the ground terminal T2.
  • the output terminal of the amplifier AMP is connected to the input terminal of the A / D converter 32, and is also connected to its own inverting input terminal (one) via the resistor R4.
  • the power supply voltage input unit 31 configured as described above is connected to the resistors Rl and R2.
  • the divided voltage of the power supply voltage Vcc obtained at the connection node is inverted and amplified and sent to the AZD converter 32.
  • the A / D conversion unit 32 converts the analog voltage (amplifier output voltage) input from the power supply voltage input unit 31 into a digital signal and sends it to the gate drive unit 34.
  • the drive logic unit 33 generates a rectangular wave signal necessary for the gate signal generation process in the gate drive unit 34, based on a clock pulse CL K having a predetermined frequency supplied to the clock terminal T3.
  • the drive logic unit 33 is not shown in the figure, and various IC protection signals (high voltage lockout signal, low voltage lockout signal, overheat protection signal, overcurrent protection signal, etc.) are not shown. ) And the function of controlling whether or not the gate drive unit 34 is operable (whether or not a rectangular wave signal can be output) according to the IC protection signal.
  • the gate drive unit 34 operates by receiving the boosted voltage, and is based on a rectangular wave signal (first control signal) input from the drive logic unit 33.
  • the gate of the power transistor that forms the output unit 35 Generate a signal.
  • the gate drive unit 34 of this embodiment should be driven based on the digital signal input from the A / D conversion unit 32 (that is, the second control signal corresponding to the voltage value of the power supply voltage Vcc).
  • a transistor selection function (that is, a power transistor drive gate number control function) for appropriately selecting a power transistor is provided. Note that the transistor selection function will be described in detail later.
  • the output unit 35 is a means for obtaining an output current from the connection node of the upper and lower switches connected in series between two different potentials (between Vcc and GND) to the transmitting antenna unit 20, and includes both upper and lower switches.
  • Each switch is a switch element group formed by connecting a plurality of switch elements in parallel. More specifically, the output unit 35 includes a plurality of N-channel field effect transistors (upper power transistors) ⁇ 1 to ⁇ as switch elements constituting the upper switch, and constitutes the lower switch.
  • the sources of the transistors ⁇ 1 to ⁇ are also connected to the output terminal T4.
  • the gates of the transistors ⁇ 1 to ⁇ are each connected to the gate signal output end (upper side) of the gate drive unit 34.
  • the back gates of the transistors HN1 to H Nn are connected to the respective sources.
  • Transistors LNl to LNn All rain is connected to output terminal T4.
  • the gates of the transistors LNl to LNn are connected to the gate signal output terminal (lower side) of the gate driver 34, respectively.
  • the back gates of the transistors LN1 to LNn are connected to the respective sources.
  • the transistors HNl to HNn, LN :! to LNn are controlled to open and close in accordance with the gate signal from the gate drive unit 34, and output control of the transmission antenna unit 20 connected to the output terminal T4 is performed. Is done.
  • the transmission antenna unit 20 is an RLC series resonance circuit including an external resistor R, an external capacitor C, and an external coil L.
  • the output terminal T4 of the transmission antenna drive IC 30 has a resistance It is grounded via R, capacitor, and coil L.
  • the transmitting antenna unit 20 is not limited to the RLC series resonance circuit, and other types of oscillation circuits (LC series resonance circuit, etc.) may be used.
  • FIG. 8 is a diagram for explaining the variable control of the radio wave arrival range. From the top, the power supply voltage Vcc, the clock pulse CLK, the on-resistance of the power transistor constituting the output unit 35, and the output terminal T4 are applied. The output voltage and the output current flowing through the output terminal T4 are shown.
  • the gate driving unit 34 is driven based on the digital signal (that is, the voltage value of the power supply voltage Vcc) input from the A / D conversion unit 32.
  • the digital signal that is, the voltage value of the power supply voltage Vcc
  • a function of appropriately selecting a power transistor to be provided is provided.
  • the gate drive unit 34 increases the number of drive gates for the upper and lower power transistor groups HNl to HNn and LNl to LNn as the power supply voltage Vcc is higher. Conversely, the lower the power supply voltage Vcc, the smaller the number of drive gates. In other words, when each of the upper and lower power transistor groups HNl to HNn and LN1 to LNn is considered as a single power transistor, the gate drive unit 34 decreases its on-resistance as the power supply voltage Vcc is higher. The lower the power supply voltage Vcc, the higher the on-resistance.
  • the transmission / reception unit lc The variable range of the power supply voltage Vcc is a range that does not interfere with the operation of each part of the transmission / reception unit lc, that is, within the allowable fluctuation range of the power supply voltage Vcc determined by the transmission / reception unit 1 (for example, 3.5 to 7.0 ]).
  • the number of variable stages of the power supply voltage Vcc is not limited to the example shown in FIG. 8, and can be increased / decreased as appropriate according to the desired variable control number of the radio wave arrival range in the transmitting antenna unit 20.
  • the power supply voltage Vcc can be variably controlled continuously.
  • the power value Vcc is simply set as appropriate, and the resistance value of the external resistor R remains unchanged. It is possible to arbitrarily adjust the on-resistance of the transistor, and thus the output current. Therefore, it is possible to easily adjust the radio wave arrival range of the transmitting antenna unit 20 without requiring replacement work of the external resistor R.
  • the transmission / reception unit lc of the present embodiment is configured to increase or decrease the number of drive gates of the output unit 35 according to the power supply voltage Vcc, it is necessary to provide a separate control signal for adjusting the radio wave reachable range The number of external terminals of the transmitting antenna driver IC10 is not increased unnecessarily.
  • the on-resistances of the power transistors ⁇ 1 to ⁇ , LNl to LNn constituting the output unit 35 may be uniform or may be different from each other. However, it is necessary to set each element size so that the maximum output current obtained when the number of drive gates of the NOR transistor is maximized reaches the desired value.
  • the number of power transistors HNl to HNn and LNl to LNn can be set appropriately according to the desired variable control number of the radio wave arrival range in the transmitting antenna unit 20.
  • the control accuracy of the output current value (and hence the radio wave arrival range of the transmission antenna unit 20) is improved as the capability is increased. It becomes possible.
  • a request signal transmission means ECU [Electronic Control Unit] 102 and transmission antenna units 103a to 103d
  • ECU Electronic Control Unit
  • the above-mentioned TPMS refers to the air pressure and temperature of the tires 104a to 104d monitored by the small TPMS sensors 101a to d mounted in the tire valve (not shown) of the automobile 100.
  • the TPMS sensor 101a In the event of an abnormal condition such as high temperature or abnormally high temperature, the TPMS sensor 101a ⁇ :! Inside the instrument panel, an electronic ID signal (specific signal for abnormal tires) is sent to the ECU 102 from the transmitter (not shown) built in the Old.
  • the above warning signal is transmitted from the transmitting antenna sections 103a to 103d to the TPMS sensor 101a to:! Old at a frequency of 125 [kHz], for example.
  • the present invention is widely applied to all transmission devices that transmit signals using antennas while limiting the radio wave reach to some extent (for example, transmission devices used in ticket gate systems for IC cards). It can be said that it is possible.
  • a vehicle system including a plurality of suspension units that are driven and controlled based on wireless communication with the main body unit (for example, a vehicle height adjustment system for a bus that tilts the vehicle body toward the sidewalk when a passenger goes up and down, unevenness on a road surface, etc.
  • the present invention as a transmission device for the main unit in an active suspension system that independently controls all four suspensions according to the state. According to such an application, the above system can be easily constructed not only at the vehicle assembly stage but also after assembly.
  • the present invention is applied to the transmission / reception unit of the keyless entry system, and the configuration in which the transmission / reception unit is installed in various parts of the vehicle has been described as an example.
  • the configuration is not limited to this, the transmission / reception units according to the present invention are aggregated in the ECU 201, and a request signal for transmitting a request signal to the smart key 203 is provided to various parts of the vehicle 200. Only the transmitting antenna portions 202a to 202e may be provided.
  • the request signal is transmitted from the transmission antenna units 202a to 202e, for example, at a frequency of 12 5 [kHz].
  • FIG. 1 As the upper switch element and the lower switch element of the output unit, The lasing was also explained by taking an example of a configuration using an N-channel field effect transistor.
  • the configuration of the present invention is not limited to this.
  • a P-channel field effect transistor is used as the upper switch element. Is also possible.
  • the present invention is, for example, a no-key keyless entry system for vehicles that automatically locks / unlocks the door lock mechanism in a non-contact manner, monitors the tire pressure and temperature, and warns when there is an abnormality such as a drop in air pressure or abnormally high temperature.
  • This technique is suitable for TPMS that emits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Lock And Its Accessories (AREA)
  • Measuring Fluid Pressure (AREA)
  • Transceivers (AREA)
  • Near-Field Transmission Systems (AREA)
  • Transmitters (AREA)

Abstract

 本発明に係る送信装置は、送信アンテナ部と;異なる2電位間に直列接続された第1、第2スイッチの接続ノードから前記送信アンテナ部への出力電流を得る出力部と;第1、第2スイッチの開閉制御を行う出力駆動部と;前記出力駆動部による第1、第2スイッチの駆動デューティ比を可変設定するデューティ比設定手段と;を有して成る構成とされている。本発明によれば、煩雑な作業を要するとなく、容易に送信アンテナ部の電波到達範囲を調整することが可能となる。

Description

明 細 書
送信装置、キーレスエントリーシステム、タイヤ空気圧監視システム 技術分野
[0001] 本発明は、アンテナを用いて信号の送信を行う送信装置に関するものであり、特に
、非接触でロック機構の施錠 Z解錠を行うキーレスエントリーシステム (スマートキーシ ステム)や、タイヤの空気圧や温度を監視し、空気圧低下や異常高温などの異常時 に警告を発するタイヤ空気圧監視システム(以下、 TPMS [Tire Pressure Monitorin g System]と呼ぶ)に用いられる送信装置に関するものである。
背景技術
[0002] 近年、非接触でロック機構の施錠/解錠を行うキーレスエントリーシステムが普及し 始めている。このようなキーレスエントリーシステムには、ユーザの携帯するリモコンキ 一からロック機構側に一方向通信を行うマニュアル型のほか、両者間で双方向通信 を行うパッシブ型が存在する。
[0003] 後者の一例として、非接触かつ自動でドアロック機構の施錠/解錠を行う車両用パ ッシブ型キーレスエントリーシステムでは、車両に搭載された送受信ユニットとユーザ の携帯するリモコンキーとの間で交わされる双方向通信の正否に応じて、ドアロック 機構の施錠/解錠が制御されていた。より具体的に述べると、従来のキーレスェント リーシステムでは、送受信ユニットとリモコンキーとの双方向通信が途絶える距離まで ユーザが車両から遠ざかると、ドアロック機構が自動的に施錠され、逆に、上記双方 向通信が可能な距離までユーザが車両に近付くと、ドアロック機構が自動的に解錠さ れる構成とされていた。
[0004] 上記のパッシブ型キーレスエントリーシステムを始めとする非接触伝送装置におい て、送受信ユニットの送信アンテナ部は、一般に RLC直列共振回路で構成されてお り(例えば、特許文献 1を参照)、当該 RLC直列共振回路に所定デューティ比(通常 5 0%)の矩形パルス信号を印加することで、リモコンキーに対するリクエスト信号 (起動 信号)が電波として空間中に放出されてレ、た。
[0005] なお、従来の送受信ユニットは、送信アンテナ部の出力電流値に依存してその電 波到達範囲が変動することに鑑み、 RLC直列共振回路を構成する外付け抵抗の抵 抗値を適宜選択することで、送信アンテナ部の電波到達範囲を調整する構成とされ ていた。
[0006] また、上記のほか、本願発明に関連のある従来技術としては、共通伝送線路に対し て線対称形状に分岐された複数チャネルの個別伝送線路上に各々設けられたトラン ジスタスイッチにつき、外側チャネルのスィッチと内側チャネルのスィッチとで、互いの ゲート幅を相異ならせることにより、トランジスタのオン抵抗、延いては、スィッチオン 時の伝送特性を変化させ、両チャネル間の伝送損失差を補償する高周波信号切替 装置が開示 ·提案されている (例えば、特許文献 2を参照)。
特許文献 1 :特開平 5— 291991号公報
特許文献 2:特開 2000— 332502号公幸艮
発明の開示
発明が解決しょうとする課題
[0007] 確かに、従来の送受信ユニットでも、 RLC直列共振回路の外付け抵抗を適宜選択 すれば、送信アンテナ部の電波到達範囲を調整することができる。し力 ながら、外 付け抵抗の付け替えは、非常に煩雑で手間の掛カる作業であり、生産性の低下ゃコ ストの上昇を招く要因となっていた。
[0008] なお、特許文献 2の従来技術は、あくまで、どのチャネルを導通させても挿入損失 が均一となるように、各チャネル毎のトランジスタスィッチ特性 (オン抵抗)を適宜調整 しておく構成に過ぎず、上記課題を解決し得るものではなかった。
[0009] また、従来の送受信ユニットにおいて、ユニット外部からの制御信号を用いて送信 アンテナ部の電波到達範囲を調整する構成とした場合、例えば、車載 LSI、特に、キ 一レスエントリーシステムの車載器のように、ドア側にセットされてレ、るものにっレヽては 、車本体からのハーネス(電線)を多くすることになつてしまうという課題があり、できる だけ通信等に用いられるための信号線の増加を抑えたいという要望があった。
[0010] 本発明は、上記の問題点に鑑み、煩雑な作業を要するとなぐ容易に送信アンテナ 部の電波到達範囲を調整することが可能な送信装置、並びに、これを用いたキーレ スエントリーシステム及びタイヤ空気圧監視システムを提供することを目的とする。 課題を解決するための手段
[0011] 上記目的を達成すベぐ本発明に係る送信装置は、送信アンテナ部と;異なる 2電 位間に直列接続された第 1、第 2スィッチの接続ノードから前記送信アンテナ部への 出力電流を得る出力部と;第 1、第 2スィッチの開閉制御を行う出力駆動部と;前記出 力駆動部による第 1、第 2スィッチの駆動デューティ比を可変設定するデューティ比 設定手段と;を有して成る構成 (第 1の構成)とされてレ、る。このような構成とすることに より、送信アンテナ部に流れる出力電流の電流値を任意に調整することができる。従 つて、送信アンテナ部の部品調整を行うことなぐ容易に送信アンテナ部の電波到達 範囲を調整することが可能となる。
[0012] なお、上記第 1の構成から成る送信装置において、前記デューティ比設定手段は、 装置に供給される電源電圧に応じて変動する参照電圧信号を生成する電源電圧入 力部と、一定波形の三角波信号を生成する三角波生成部と、前記参照電圧信号と 前記三角波信号を比較する比較部と、を有して成り、前記出力駆動部は、前記比較 部で得られる比較結果信号に基づいて、第 1、第 2スィッチの開閉制御信号を生成す る構成(第 2の構成)にするとよい。このような構成とすることにより、電源電圧の電圧 値を適宜設定するだけで、送信アンテナ部の電波到達範囲を調整することが可能と なる。従って、電波到達範囲の調整用に別途制御信号を設ける必要がなぐ装置規 模を不要に増大させることがない。
[0013] また、本発明に係るキーレスエントリーシステムは、リモートキーと、前記リモートキー との双方向通信を行う送受信ユニットと、前記送受信ユニットへの電力供給を行う電 源ユニットと、前記送受信ユニットと前記リモコンキーとの間で交わされる双方向通信 の正否に応じて施錠/解錠されるロック機構と、を有して成るキーレスエントリーシス テムであって、前記送受信ユニットの信号送信手段として、上記第 1の構成から成る 送信装置を備えた構成 (第 3の構成)とされている。
[0014] また、本発明に係るタイヤ空気圧監視システムは、タイヤの空気圧や温度を監視す るセンサと、前記センサとの双方向通信を行う送受信ユニットと、前記送受信ユニット への電力供給を行う電源ユニットと、を有して成り、前記センサから送られてくる電子 I D信号に基づいて、異常時に警告を発するタイヤ空気圧監視システムであって、前 記送受信ユニットの信号送信手段として、上記第 1の構成から成る送信装置を具備し た構成 (第 4の構成)とされてレヽる。
[0015] このような構成とすることにより、送受信ユニットの設置ポイント(或いは送信アンテ ナ部の設置ポイント)に応じて、送信アンテナ部の電波到達範囲を変える必要がある 場合であっても、送信アンテナ部の部品調整を行うことな 送信アンテナ部の電波 到達範囲を調整することが可能となり、延いては、リモコンキーやセンサとの通信精度 向上を実現することが可能となる。
[0016] また、本発明に係る送信装置は、送信アンテナ部と;異なる 2電位間に直列接続さ れた第 1、第 2スィッチの接続ノードから前記送信アンテナ部への出力電流を得る出 力部と;第 1制御信号に応じて第 1、第 2スィッチの開閉制御を行う出力駆動部と;を 有して成る送信装置であって、第 1、第 2スィッチは、各々複数のスィッチ素子を並列 接続して成るスィッチ素子群とされており、前記出力駆動部は、第 2制御信号に基づ いて、前記複数のスィッチ素子のうち、第 1制御信号に応じて開閉制御すべきスイツ チ素子を選択する構成 (第 5の構成)とされてレ、る。
[0017] より具体的に述べると、上記第 5の構成から成る送信装置において、前記出力駆動 部は前記スィッチ素子を選択して前記出力電流を調整する構成 (第 6の構成)とされ ており、前記出力電流は、前記スィッチ素子のオン抵抗によって調整される構成(第 7の構成)とされている。
[0018] このような構成とすることにより、第 2制御信号に基づいて、第 1、第 2スィッチのオン 抵抗、延いては、送信アンテナ部に流れる出力電流の電流値を任意に調整すること ができる。従って、送信アンテナ部の部品調整を行うことな 容易に送信アンテナ部 の電波到達範囲を調整することが可能となる。
[0019] なお、上記第 5の構成から成る送信装置は、装置に供給される電源電圧に応じて 第 2制御信号を生成する手段を有して成る構成(第 8の構成)にするとよい。このよう な構成とすることにより、電源電圧の電圧値を適宜設定するだけで、送信アンテナ部 の電波到達範囲を調整することが可能となる。従って、電波到達範囲の調整用に別 途制御信号を設ける必要がなぐ装置規模を不要に増大させることがない。
[0020] また、本発明に係るキーレスエントリーシステムは、リモートキーと、前記リモートキー との双方向通信を行う送受信ユニットと、前記送受信ユニットへの電力供給を行う電 源ユニットと、前記送受信ユニットと前記リモコンキーとの間で交わされる双方向通信 の正否に応じて施錠/解錠されるロック機構と、を有して成るキーレスエントリーシス テムであって、前記送受信ユニットの信号送信手段として、上記第 5の構成から成る 送信装置を有して成る構成 (第 9の構成)とされてレ、る。
[0021] また、本発明に係るタイヤ空気圧監視システムは、タイヤの空気圧や温度を監視す るセンサと、前記センサとの双方向通信を行う送受信ユニットと、前記送受信ユニット への電力供給を行う電源ユニットと、を有して成り、前記センサから送られてくる電子 I D信号に基づいて、異常時に警告を発するタイヤ空気圧監視システムであって、前 記送受信ユニットの信号送信手段として、上記第 5の構成から成る送信装置を具備し た構成(第 10の構成)とされている。
[0022] このような構成とすることにより、送受信ユニットの設置ポイント(或いは送信アンテ ナ部の設置ポイント)に応じて、送信アンテナ部の電波到達範囲を変える必要がある 場合であっても、送信アンテナ部の部品調整を行うことなぐ送信アンテナ部の電波 到達範囲を調整することが可能となり、延いては、リモコンキーやセンサとの通信精度 向上を実現することが可能となる。
発明の効果
[0023] 上記したように、本発明に係る送信装置、並びに、これを用いたキーレスエントリー システム及びタイヤ空気圧監視システムであれば、煩雑な作業を要するとな 容易 に送信アンテナ部の電波到達範囲を調整することが可能となる。
図面の簡単な説明
[0024] [図 1]は、本発明に係るキーレスエントリーシステムの第 1実施形態を示すブロック図 である。
[図 2]は、ドアロック制御動作を示すフローチャートである。
[図 3]は、第 1実施形態での電波到達範囲の可変制御を説明するための図である。
[図 4]は、送信アンテナ部の設置ポイントと電波到達範囲との関係を説明するための 図である。
[図 5]は、本発明に係るキーレスエントリーシステムの第 2実施形態を示すブロック図 である。
[図 6]は、第 2実施形態での電波到達範囲の可変制御を説明するための図である。 園 7]は、本発明に係るキーレスエントリーシステムの第 3実施形態を示すブロック図 である。
[図 8]は、第 3実施形態での電波到達範囲の可変制御を説明するための図である。
[図 9]は、 TPMSへの適用例を示すブロック図である。
園 10]は、本発明に係るキーレスエントリーシステムの構成変更例を示すブロック図 である。
符号の説明
la〜: lc 送受信ユニット(車載器)
2 電源ユニット
10a、 10b 送信アンテナ駆動 IC
11a, l ib 電源電圧入力部
12 三角波生成部
13a、 13b 比較部
14 駆動ロジック部
15 ゲート駆動部
16 出力部
30 送信アンテナ駆動 IC
31 電源電圧入力部
32 アナログ/ディジタル変換部
33 駆動ロジック部
34 ゲート駆動部
35 出力部
20 送信アンテナ部 (RLC直列共振回路)
T1 電源端子
T2 接地端子
T3 クロック端子 T4 出力端子
R1〜R4 抵抗
AMP アンプ
E 直流電圧源
HN (l〜n) Nチャネル電界効果トランジスタ(上側パワートランジスタ)
LN (l〜n) Nチャネル電界効果トランジスタ(下側パワートランジスタ)
R 外付け抵抗
C 外付けコンデンサ
L 外付けコイル
A1〜A6 設置ポイント
al〜a6 電波到達範囲
100、 200 自動車
101a〜: 101d TPMSセンサ
102、 201 ECU
103a〜103d、 202a〜202e 送信アンテナ部
104a〜104d タイヤ
204 スマートキー
発明を実施するための最良の形態
[0026] 以下では、車両用パッシブ型キーレスエントリーシステムに本発明を適用した場合 を例示して、実施形態の詳細な説明を行う。
[0027] まず、本発明に係るキーレスエントリーシステムの第 1実施形態について説明する。
[0028] 図 1は、本発明に係るキーレスエントリーシステムの第 1実施形態(特に、車両側に 設けられた送受信ユニットの送信ブロック周辺)を示すブロック図である。本図に示す ように、本実施形態のキーレスエントリーシステムは、車両側に、送受信ユニット laと、 該送受信ユニット laへの電力供給を行う電源ユニット 2と、を有して成り、送受信ュニ ット laとユーザの携帯するリモコンキー(不図示)との間で交わされる双方向通信の正 否に応じて、ドアロック機構(不図示)の施錠/解錠を制御する構成とされている。
[0029] 送受信ユニット laは、送信アンテナ駆動 IC [Integrated Circuit] 10aと、送信アンテ ナ部 20と、を有するほか、リモコンキーからのレスポンス信号を受信する受信ブロック (不図示)なども有して成る。
[0030] 送信アンテナ駆動 IClOaは、電源電圧入力部 11aと、三角波生成部 12と、比較部 13aと、駆動ロジック部 14と、ゲート駆動部 15と、出力部 16とを有して成り、送信アン テナ部 20の出力制御を行う半導体集積回路装置である。
[0031] 電源電圧入力部 11aは、抵抗 R1〜R4と、直流電圧源 Eと、アンプ AMPとを有して 成る。抵抗 R1の一端は、電源ユニット 2から電源電圧 Vccが印加される電源端子 T1 に接続されている。抵抗 R1の他端は、抵抗 R2、 R3の一端と各々接続されている。 抵抗 R2の他端は、電源ユニット 2から接地電圧 GNDが印加される接地端子 T2に接 続されている。抵抗 R3の他端は、アンプ AMPの反転入力端(一)に接続されている 。アンプ AMPの非反転入力端(+ )は、直流電圧源 Eの正極端に接続されている。 直流電圧源 Eの負極端は、接地端子 T2に接続されている。アンプ AMPの出力端は 、比較部 13の反転入力端(一)に接続される一方、抵抗 R4を介して自身の反転入力 端(一)にも接続されている。上記構成から成る電源電圧入力部 11は、抵抗 Rl、 R2 の接続ノードで得られる電源電圧 Vccの分圧電圧を反転増幅し、そのアンプ出力信 号 (電源電圧 Vccに応じて変動する参照電圧信号)を比較部 13の反転入力端(一) に:^出する。
[0032] 三角波生成部 12は、クロック端子 T3に供給される所定周波数のクロックパルス CL Kでコンデンサ(不図示)を充放電させることにより、一定波形の三角波信号を生成し 、当該三角波信号を比較部 13の非反転入力端(+ )に送出する。
[0033] 比較部 13aは、電源電圧入力部 1 laから入力されるアンプ出力信号と、三角波生 成部 12から入力される三角波信号とを比較し、その比較結果を駆動ロジック部 14に 送出する。なお、比較部 13aの出力論理は、アンプ出力信号が三角波信号よりも高 電位であれば、ローレべノレとなり、その逆であれば、ハイレベルとなる。
[0034] 駆動ロジック部 14は、比較部 13aから入力される比較結果信号に基づいて、ゲート 駆動部 15でのゲート信号生成処理に必要な矩形波信号を生成する。なお、駆動口 ジック部 14には、上記比較結果信号のほか、各種の IC保護信号(高電圧ロックアウト 信号、低電圧ロックアウト信号、過熱保護信号、過電流保護信号など、いずれも不図 示)が入力されており、当該 IC保護信号に応じてゲート駆動部 15の動作可否 (矩形 波信号の出力可否)を制御する機能も具備している。
[0035] ゲート駆動部 15は、昇圧電圧の供給を受けて動作し、駆動ロジック部 14から入力 される矩形波信号に基づいて、出力部 16を構成するパワートランジスタのゲート信号 を生成する。
[0036] 出力部 16は、異なる 2電位間 (Vcc 'GND間)に直列接続された上側、下側スイツ チ(Nチャネル電界効果トランジスタ HN、 LN)を有して成り、その接続ノードから送信 アンテナ部 20への出力電流を得る手段である。トランジスタ HNのドレインは、電源端 子 T1に接続されている。トランジスタ HNのソースは、出力端子 T4に接続されている 。トランジスタ HNのゲートは、ゲート駆動部 15のゲート信号出力端(上側)に接続さ れている。トランジスタ HNのバックゲートは、自身のソースに接続されている。トランジ スタ LNのドレインは、出力端子 T4に接続されている。トランジスタ LNのソースは、接 地端子 T2に接続されている。トランジスタ LNのゲートは、ゲート駆動部 15のゲート信 号出力端(下側)に接続されている。トランジスタ LNのバックゲートは、 自身のソース に接続されている。上記構成から成る出力部 16では、ゲート駆動部 15からのゲート 信号に応じて、トランジスタ HN、 LNが開閉制御され、出力端子 T4に接続される送 信アンテナ部 20の出力制御が行われる。
[0037] 送信アンテナ部 20は、外付け抵抗 Rと、外付けコンデンサ Cと、外付けコイル Lとを 有して成る RLC直列共振回路であり、送信アンテナ駆動 IClOaの出力端子 T4は、 抵抗 R、コンデンサ C、及び、コイル Lを介して接地された形となっている。なお、送信 アンテナ部 20としては、 RLC直列共振回路に限らず、他形式の発振回路 (LC直列 共振回路など)を用いても構わなレ、。
[0038] 上記構成から成るキーレスエントリーシステムにおいて、送受信ユニット laは、所定 周期でリモコンキーに対するリクエスト信号 (起動信号)を送出する一方で、リモコンキ 一からのレスポンス信号を監視し、当該双方向通信の正否(レスポンス信号の受信正 否)に応じて、ドアロック機構の施錠 Z解錠を制御する。
[0039] 例えば、ドアロック機構が施錠された車両にユーザが近付いた場合、ユーザの携帯 するリモコンキーは、送受信ユニット laのリクエスト信号を受信し、それに応答したレ スポンス信号を送出する。リモコンキーからのレスポンス信号を受信した送受信ュニッ ト laは、リモコンキーとの双方向通信成立を確認し、ドアロック機構に解錠命令を送 出する。
[0040] 一方、ドアロック機構が施錠された車両にユーザが近付かない場合、リクエスト信号 を受信するリモコンキーが存在しないため、送受信ユニット laがリクエスト信号を送出 しても、それに応答したレスポンス信号が受信されることはなレ、。このように、リモコン キーからのレスポンス信号を受信しない送受信ユニット laは、リモコンキーとの双方 向通信が非成立であると判断して、ドアロック機構の施錠状態を維持する。
[0041] また、ドアロック機構が解錠された車両からユーザが遠ざかった場合、それまでリク ェスト信号を受信していたリモコンキーが存在しなくなるため、送受信ユニット l aでは 、レスポンス信号が受信されなくなる。このように、リモコンキーからのレスポンス信号 を受信しなくなった送受信ユニット laは、リモコンキーとの双方向通信が成立し得なく なったと判断して、ドアロック機構に施錠命令を送出する。
[0042] すなわち、本実施形態のキーレスエントリーシステムでは、送受信ユニット laとリモ コンキーとの双方向通信が可能な距離までユーザが車両に近付くと、ドアロック機構 が自動的に解錠され、逆に、上記双方向通信が途絶える距離までユーザが車両から 遠ざかると、ドアロック機構が自動的に施錠される。
[0043] 図 2は、上述したドアロック制御動作を示すフローチャートである。なお、図 2 (a)は、 ドアロック機構が施錠されている場合の制御動作を示しており、図 2 (b)は、ドアロック 機構が解錠されてレ、る場合の制御動作を示してレ、る。
[0044] 次に、本実施形態のキーレスエントリーシステムにおける電波到達範囲の可変制御 について詳細に説明する。図 3は、電波到達範囲の可変制御を説明するための図で あり、上から順に、電源電圧 Vcc、クロックパルス CLK、比較部 13aへの入力信号(ァ ンプ出力信号及び三角波信号)、出力端子 T4に印加される出力電圧、及び、出力 端子 T4に流れる出力電流、を示している。
[0045] 本図に示すように、本実施形態の送受信ユニット laにおいて、比較部 13aの反転 入力端(一)に入力されるアンプ出力信号は、電源電圧 Vccが高いほど、その出カレ ベルが低くなり、逆に、電源電圧 Vccが低いほど、その出力レベルが高くなる。一方、 比較部 13aの非反転入力端(+ )に入力される三角波信号は、電源電圧 Vccに依る ことなぐ常に一定波形とされている。
[0046] 従って、比較部 13aから出力される比較結果信号のデューティ比(トータル出力期 間に占めるハイレベル出力期間の割り合い)は、電源電圧 Vccが高いほど、大きな値 となり(例えば、最大値 50%)、逆に、電源電圧 Vccが低いほど、小さな値となる。
[0047] また、先述した通り、駆動ロジック部 14は、比較部 13aから入力される比較結果信 号に基づいて、ゲート駆動部 15でのゲート信号生成処理に必要な矩形波信号を生 成し、ゲート駆動部 15は、駆動ロジック部 14から入力される矩形波信号に基づいて、 出力部 16を構成するパワートランジスタ HN、 LNの各ゲート信号を生成する。これを 鑑みると、本実施形態の送受信ユニット laは、電源電圧 Vccの電圧値に応じてパヮ 一トランジスタ HN、 LNの駆動デューティ比 (延いては出力電圧のデューティ比)を可 変設定する手段 (電源電圧入力部 l la、三角波生成部 12、及び、比較部 13a)を有 して成る構成とされている、と言うことができる。
[0048] なお、本実施形態のキーレスエントリーシステムにおいて、送受信ユニット laに対す る電源電圧 Vccの可変範囲は、送受信ユニット laの各部動作に支障を生じない範囲 、すなわち、送受信ユニット 1で定められた電源電圧 Vccの変動許容範囲内(例えば 3. 5〜7. 0 [V] )とされている。ただし、電源電圧 Vccの可変段数は、図 3の例示に 限定されるものではな 送信アンテナ部 20における電波到達範囲の所望可変制御 数に合わせて、適宜増段/減段が可能である。また、電源電圧 Vccを連続的に可変 制御する構成としても構わなレ、。
[0049] このような構成とすることにより、本実施形態のキーレスエントリーシステムでは、電 源電圧 Vccの電圧値を適宜設定するだけで、外付け抵抗 Rの抵抗値を不変としたま ま、出力電圧のデューティ比、延いては、出力電流の電流値を任意に調整することが できる。従って、外付け抵抗 Rの付け替え作業を要することなぐ容易に送信アンテナ 部 20の電波到達範囲を調整することが可能となる。
[0050] また、本実施形態の送受信ユニット laは、電源電圧 Vccに応じて出力電圧のデュ 一ティ比を増減する構成とされてレ、るため、電波到達範囲の調整用に別途制御信号 を設ける必要がなぐ送信アンテナ駆動 IClOaの外部端子数を不要に増加させるこ とがない。
[0051] なお、電源電圧入力部 11aで生成されるアンプ出力信号の電圧レベルや、三角波 生成部 12で生成される三角波信号の信号波形については、所望のデューティ比が 得られるように、予め適宜設定しておけばよい。
[0052] 図 4は、送受信ユニットの設置ポイントと電波到達範囲との関係を説明するための 図である。本図に示すように、車両室外の設置ポイント A1〜A4に配される送受信ュ ニットについては、車両近傍に存在するリモコンキーとの双方向通信を確立すベぐ 送信アンテナ部の電波到達範囲 al〜a4をある程度広げておく必要がある。一方、車 両室内の設置ポイント A5、 A6に配される送受信ユニットについては、車両室外への 電波漏れ等を防止すベぐ送信アンテナ部の電波到達範囲 a5、 a6を室内に限定し ておく必要がある。このような場合でも、本実施形態のキーレスエントリーシステムで あれば、各送受信ユニットへの電源電圧 Vccの電圧値を適宜設定するだけで、各送 信アンテナ部の電波到達範囲を設置ポイントに応じて適宜調整することができる。
[0053] より具体的に説明すると、設置ポイント A1〜A4に配される送受信ユニットについて は、電源電圧 Vccを高めに設定して、出力電圧のデューティ比を増大させ、送信アン テナ部の出力電流を大きくすることで、電波到達範囲 al〜a4を広めに設定すること が可能となる。一方、設置ポイント A5、 A6に配される送受信ユニットについては、電 源電圧 Vccを低めに設定して、出力電圧のデューティ比を減少させ、送信アンテナ 部の出力電流を小さくすることで、電波到達範囲 a5、 a6を狭めに設定することが可 能となる。
[0054] 次に、本発明に係るキーレスエントリーシステムの第 2実施形態について説明する。
[0055] 図 5は、本発明に係るキーレスエントリーシステムの第 2実施形態(特に、車両側に 設けられた送受信ユニットの送信ブロック周辺)を示すブロック図である。
[0056] なお、本図に示すように、本実施形態のキーレスエントリーシステムは、先述の第 1 実施形態とほぼ同様の構成力 成る。そこで、第 1実施形態と同様の構成要素につ いては、図 1と同一符号を付すことでその説明を省略し、以下では、本実施形態の特 徴部分にっレ、て重点的な説明を行う。
[0057] 本実施形態の送受信ユニット lbにおいて、送信アンテナ駆動 ICl Obの電源電圧 入力部 l ibは、抵抗 Rl、 R2の接続ノードで得られる電源電圧 Vccの分圧電圧信号 を比較部 13bの非反転入力端( + )に直接送出する構成とされてレ、る。
[0058] 一方、比較部 13bは、電源電圧入力部 l ibから非反転入力端(+ )に入力される分 圧電圧信号と、三角波生成部 12から反転入力端(一)に入力される三角波信号とを 比較し、その比較結果を駆動ロジック部 14に送出する構成とされている。なお、比較 部 13bの出力論理は、分圧電圧信号が三角波信号よりも高電位であれば、ノ、ィレべ ノレとなり、その逆であれば、ローレベルとなる。
[0059] 次に、本実施形態のキーレスエントリーシステムにおける電波到達範囲の可変制御 について詳細に説明する。図 6は、電波到達範囲の可変制御を説明するための図で あり、上から順に、電源電圧 Vcc、クロックパルス CLK、比較部 13bへの入力信号(分 圧電圧信号及び三角波信号)、出力端子 T4に印加される出力電圧、及び、出力端 子 T4に流れる出力電流、を示している。
[0060] 本図に示すように、本実施形態の送受信ユニット lbにおいて、比較部 13bの非反 転入力端(+ )に入力される分圧電圧信号は、電源電圧 Vccが高いほど、その出力 レベルが高くなり、逆に、電源電圧 Vccが低いほど、その出力レベルが低くなる。一 方、比較部 13bの反転入力端(一)に入力される三角波信号は、電源電圧 Vccに依 ることなく常に一定波形とされている。
[0061] 従って、比較部 13bから出力される比較結果信号のデューティ比(トータル出力期 間に占めるハイレベル出力期間の割り合い)は、電源電圧 Vccが高いほど、大きな値 となり(例えば、最大値 50%)、逆に、電源電圧 Vccが低いほど、小さな値となる。
[0062] なお、電源電圧入力部 l ibで生成される分圧電圧信号の電圧レベルや、三角波生 成部 12で生成される三角波信号の信号波形については、所望のデューティ比が得 られるように、予め適宜設定しておけばよい。
[0063] このような構成とすることにより、本実施形態のキーレスエントリーシステムでは、第 1 実施形態よりも簡易な構成でありながら、先述と同様、電源電圧 Vccの電圧値を適宜 設定するだけで、外付け抵抗 Rの抵抗値を不変としたまま、出力電圧のデューティ比 、延いては、出力電流の電流値を任意に調整することができる。従って、外付け抵抗 Rの付け替え作業を要することなぐ容易に送信アンテナ部 20の電波到達範囲を調 整することが可能となる。
[0064] また、本実施形態の送受信ユニット lbは、電源電圧 Vccに応じて出力電圧のデュ 一ティ比を増減する構成とされてレ、るため、電波到達範囲の調整用に別途制御信号 を設ける必要がなぐ送信アンテナ駆動 IClObの外部端子数を不要に増加させるこ とがない。
[0065] 次に、本発明に係るキーレスエントリーシステムの第 3実施形態について説明する。
[0066] 図 7は、本発明に係るキーレスエントリーシステムの第 3実施形態(特に、車両側に 設けられた送受信ユニットの送信ブロック周辺)を示すブロック図である。本図に示す ように、本実施形態のキーレスエントリーシステムは、車両側に、送受信ユニット lcと、 該送受信ユニット lcへの電力供給を行う電源ユニット 2と、を有して成り、送受信ュニ ット lcとユーザの携帯するリモコンキー(不図示)との間で交わされる双方向通信の正 否に応じて、ドアロック機構(不図示)の施錠/解錠を制御する構成とされている。
[0067] 送受信ユニット lcは、送信アンテナ駆動 IC30と、送信アンテナ部 20と、を有するほ か、リモコンキーからのレスポンス信号を受信する受信ブロック(不図示)なども有して 成る。
[0068] 送信アンテナ駆動 IC30は、電源電圧入力部 31と、アナログ/ディジタル変換部 3 2 (以下、 A/D [Analog/Digital]変換部 32と呼ぶ)と、駆動ロジック部 33と、ゲート駆 動部 34と、出力部 35と、を有して成り、送信アンテナ部 20の出力制御を行う半導体 集積回路装置である。
[0069] 電源電圧入力部 31は、抵抗 R1〜R4と、直流電圧源 Eと、アンプ AMPと、を有して 成る。抵抗 R1の一端は、電源ユニット 2から電源電圧 Vccが印加される電源端子 T1 に接続されている。抵抗 R1の他端は、抵抗 R2、 R3の一端と各々接続されている。 抵抗 R2の他端は、電源ユニット 2から接地電圧 GNDが印加される接地端子 T2に接 続されている。抵抗 R3の他端は、アンプ AMPの反転入力端(―)に接続されている 。アンプ AMPの非反転入力端(+ )は、直流電圧源 Eの正極端に接続されている。 直流電圧源 Eの負極端は、接地端子 T2に接続されている。アンプ AMPの出力端は 、 A/D変換部 32の入力端に接続される一方、抵抗 R4を介して自身の反転入力端( 一)にも接続されている。上記構成から成る電源電圧入力部 31は、抵抗 Rl、 R2の接 続ノードで得られる電源電圧 Vccの分圧電圧を反転増幅して AZD変換部 32に送 出する。
[0070] A/D変換部 32は、電源電圧入力部 31から入力されるアナログ電圧(アンプ出力 電圧)をディジタル信号に変換してゲート駆動部 34に送出する。
[0071] 駆動ロジック部 33は、クロック端子 T3に供給される所定周波数のクロックパルス CL Kに基づいて、ゲート駆動部 34でのゲート信号生成処理に必要な矩形波信号を生 成する。なお、駆動ロジック部 33には、クロックパルス CLKのほ力、各種の IC保護信 号 (高電圧ロックアウト信号、低電圧ロックアウト信号、過熱保護信号、過電流保護信 号など、いずれも不図示)が入力されており、当該 IC保護信号に応じてゲート駆動部 34の動作可否 (矩形波信号の出力可否)を制御する機能も具備している。
[0072] ゲート駆動部 34は、昇圧電圧の供給を受けて動作し、駆動ロジック部 33から入力 される矩形波信号 (第 1制御信号)に基づいて出力部 35を構成するパワートランジス タのゲート信号を生成する。また、本実施形態のゲート駆動部 34は、 A/D変換部 3 2から入力されるディジタル信号 (すなわち、電源電圧 Vccの電圧値に応じた第 2制 御信号)に基づいて、駆動すべきパワートランジスタを適宜選択するトランジスタ選択 機能 (すなわち、パワートランジスタの駆動ゲート数制御機能)を具備している。なお、 当該トランジスタ選択機能については、後ほど詳細な説明を行う。
[0073] 出力部 35は、異なる 2電位間 (Vcc 'GND間)に直列接続された上側、下側スイツ チの接続ノードから送信アンテナ部 20への出力電流を得る手段であり、上下両スイツ チは、各々複数のスィッチ素子を並列接続して成るスィッチ素子群とされている。具 体的に述べると、出力部 35は、上側スィッチを構成するスィッチ素子として、複数の Nチャネル電界効果トランジスタ(上側パワートランジスタ) ΗΝ1〜ΗΝηを有して成り 、下側スィッチを構成するスィッチ素子として、 Nチャネル電界効果トランジスタ(下側 パワートランジスタ) LN1〜: LNnを有して成る。トランジスタ ΗΝ1〜ΗΝηのドレインは 、いずれも電源端子 T1に接続されている。トランジスタ ΗΝ1〜ΗΝηのソースは、レヽ ずれも出力端子 T4に接続されている。トランジスタ ΗΝ1〜ΗΝηのゲートは、各々ゲ ート駆動部 34のゲート信号出力端(上側)に接続されている。トランジスタ HN1〜H Nnのバックゲートは、各々のソースに接続されている。トランジスタ LNl〜LNnのド レインは、いずれも出力端子 T4に接続されている。トランジスタ LN1〜: LNnのソース は、いずれも接地端子 T2に接続されている。トランジスタ LNl〜LNnのゲートは、各 々ゲート駆動部 34のゲート信号出力端(下側)に接続されている。トランジスタ LN1 〜LNnのバックゲートは、各々のソースに接続されている。上記構成から成る出力部 35では、ゲート駆動部 34からのゲート信号に応じて、トランジスタ HNl〜HNn、 LN :!〜 LNnが開閉制御され、出力端子 T4に接続される送信アンテナ部 20の出力制御 が行われる。
[0074] 送信アンテナ部 20は、外付け抵抗 Rと、外付けコンデンサ Cと、外付けコイル Lと、 を有して成る RLC直列共振回路であり、送信アンテナ駆動 IC30の出力端子 T4は、 抵抗 R、コンデンサお及び、コイル Lを介して接地された形となっている。なお、送信 アンテナ部 20としては、 RLC直列共振回路に限らず、他形式の発振回路 (LC直列 共振回路など)を用いても構わなレ、。
[0075] 次に、本実施形態のキーレスエントリーシステムにおける電波到達範囲の可変制御 について詳細に説明する。図 8は、電波到達範囲の可変制御を説明するための図で あり、上から順に、電源電圧 Vcc、クロックパルス CLK、出力部 35を構成するパワート ランジスタのオン抵抗、出力端子 T4に印加される出力電圧、及び、出力端子 T4に 流れる出力電流、を示している。
[0076] 先述した通り、本実施形態の送受信ユニット lcにおいて、ゲート駆動部 34は、 A/ D変換部 32から入力されるディジタル信号 (すなわち、電源電圧 Vccの電圧値)に基 づいて、駆動すべきパワートランジスタを適宜選択する機能を具備している。
[0077] 本図の例に従って具体的に説明すると、ゲート駆動部 34は、上下各パワートランジ スタ群 HNl〜HNn、 LNl〜LNnについて、電源電圧 Vccが高いほど、その駆動ゲ 一ト数を増加させ、逆に、電源電圧 Vccが低いほど、その駆動ゲート数を減少させる 構成とされている。言い換えれば、上下各パワートランジスタ群 HNl〜HNn、 LN1 〜LNnを各々単一のパワートランジスタとして考えた場合、ゲート駆動部 34は、電源 電圧 Vccが高いほど、そのオン抵抗を低下させ、逆に、電源電圧 Vccが低いほど、そ のオン抵抗を増大させる構成とされてレ、る。
[0078] なお、本実施形態のキーレスエントリーシステムにおいて、送受信ユニット lcに対す る電源電圧 Vccの可変範囲は、送受信ユニット lcの各部動作に支障を生じない範囲 、すなわち、送受信ユニット 1で定められた電源電圧 Vccの変動許容範囲内(例えば 3. 5〜7. 0 [V] )とされている。ただし、電源電圧 Vccの可変段数は、図 8の例示に 限定されるものではな 送信アンテナ部 20における電波到達範囲の所望可変制御 数に合わせて、適宜増段/減段が可能である。また、電源電圧 Vccを連続的に可変 制御する構成としても構わなレ、。
[0079] このような構成とすることにより、本実施形態のキーレスエントリーシステムでは、電 源電圧 Vccの電圧値を適宜設定するだけで、外付け抵抗 Rの抵抗値を不変としたま ま、パワートランジスタのオン抵抗、延いては、出力電流の電流値を任意に調整する こと力 Sできる。従って、外付け抵抗 Rの付け替え作業を要することなぐ容易に送信ァ ンテナ部 20の電波到達範囲を調整することが可能となる。
[0080] また、本実施形態の送受信ユニット lcは、電源電圧 Vccに応じて出力部 35の駆動 ゲート数を増減する構成とされているため、電波到達範囲の調整用に別途制御信号 を設ける必要がなぐ送信アンテナ駆動 IC10の外部端子数を不要に増加させること がない。
[0081] なお、出力部 35を構成するパワートランジスタ ΗΝ1〜ΗΝη、: LNl〜LNn各々の オン抵抗については、一律としてもよいし、個別に相異なる値としてもよい。ただし、 ノ ワートランジスタの駆動ゲート数を最大としたときに得られる最大出力電流が所望 値に達するように、各々の素子サイズを設定しておく必要がある。また、パワートラン ジスタ HNl〜HNn、 LNl〜LNnの個数については、送信アンテナ部 20における電 波到達範囲の所望可変制御数に合わせて、適宜設定すればょレ、。
[0082] また、 AZD変換部 32の分解能(量子化ビット数)については、その能力を高めるほ ど、出力電流値 (延いては、送信アンテナ部 20の電波到達範囲)の制御精度を向上 することが可能となる。
[0083] なお、上記の各実施形態では、車両用パッシブ型キーレスエントリーシステムに本 発明を適用した場合を例示して説明を行ったが、本発明の適用対象はこれに限定さ れるものではなぐ例えば、図 9に示すように、 自動車 100などに搭載される TPMSに おいて、 TPMSセンサ 101a〜: !Oldへのリクエスト信号送信手段(ECU[Electronic Control Unit] 102及び送信アンテナ部 103a〜103dを含む)としても好適に用レヽ ること力 Sできる。
[0084] 上記の TPMSとは、自動車 100のタイヤバルブ(不図示)内に装着された小型の T PMSセンサ 101a〜皿 dによって、タイヤ 104a〜104dの空気圧や温度を各々監 視し、空気圧低下や異常高温などの異常時には、 TPMSセンサ 101a〜: !Oldに内 蔵された送信機 (不図示)から ECU102に向けて電子 ID信号 (異常タイヤの特定信 号)を送信することで、インパネ内のワーニングランプ (不図示)にて警告を発するシス テムであり、上記のリクエスト信号は、例えば、 125 [kHz]の周波数で、送信アンテナ 部 103a〜103dから TPMSセンサ 101a〜: !Oldへ送信される。
[0085] すなわち、本発明は、アンテナを用いて、電波到達範囲をある程度限定しつつ、信 号の送信を行う送信装置全般 (例えば、 ICカードの改札システムに用いられる送信 装置)に広く適用することが可能であると言える。
[0086] また、本体ユニットとの無線通信に基づいて駆動制御されるサスペンションユニット を複数備えて成る車両システム (例えば、乗客昇降時に車体を歩道側に傾けるバス の車高調整システムや、路面の凹凸状態に応じて 4輪全てのサスペンションを独立 制御するアクティブサスペンションシステムなど)において、前記本体ユニットの送信 装置として本発明を適用することも考えられる。このような適用によれば、車両の組立 段階だけでな 組立後にも上記のシステムを容易に構築することが可能となる。
[0087] また、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種 々の変更を加えることが可能である。
[0088] 例えば、上記実施形態では、キーレスエントリーシステムの送受信ユニットに本発明 を適用し、当該送受信ユニットを自動車の車両各所に設置する構成を例に挙げて説 明を行ったが、本発明の構成はこれに限定されるものではなぐ図 10に示すように、 本発明に係る送受信ユニットを ECU201に集約しておき、 自動車 200の車両各所に は、スマートキー 203にリクエスト信号を送信するための送信アンテナ部 202a〜202 eのみを配設する構成としても構わない。なお、上記のリクエスト信号は、例えば、 12 5 [kHz]の周波数で、送信アンテナ部 202a〜202eから各々送信される。
[0089] また、図 1、図 5、図 7では、出力部の上側スィッチ素子及び下側スィッチ素子として レヽずれも Nチャネル型電界効果トランジスタを用いた構成を例に挙げて説明を行った 力 本発明の構成はこれに限定されるものではなぐ上側スィッチ素子として Pチヤネ ル型電界効果トランジスタを用いることも可能である。
産業上の利用可能性
本発明は、例えば、非接触かつ自動でドアロック機構の施錠/解錠を行う車両用 ノ ッシブ型キーレスエントリーシステムや、タイヤの空気圧や温度を監視し、空気圧 低下や異常高温などの異常時に警告を発する TPMSに好適な技術である。

Claims

請求の範囲
[1] 送信アンテナ部と;異なる 2電位間に直列接続された第 1、第 2スィッチの接続ノード から前記送信アンテナ部への出力電流を得る出力部と;第 1、第 2スィッチの開閉制 御を行う出力駆動部と;前記出力駆動部による第 1、第 2スィッチの駆動デューティ比 を可変設定するデューティ比設定手段と;を有して成ることを特徴とする送信装置。
[2] 前記デューティ比設定手段は、装置に供給される電源電圧に応じて変動する参照 電圧信号を生成する電源電圧入力部と、一定波形の三角波信号を生成する三角波 生成部と、前記参照電圧信号と前記三角波信号を比較する比較部と、を有して成り、 前記出力駆動部は、前記比較部で得られる比較結果信号に基づいて、第 1、第 2ス イッチの開閉制御信号を生成することを特徴とする請求項 1に記載の送信装置。
[3] リモートキーと、前記リモートキーとの双方向通信を行う送受信ユニットと、前記送受 信ユニットへの電力供給を行う電源ユニットと、前記送受信ユニットと前記リモコンキ 一との間で交わされる双方向通信の正否に応じて施錠/解錠されるロック機構と、を 有して成るキーレスエントリーシステムであって、前記送受信ユニットの信号送信手段 として、請求項 1に記載の送信装置を有して成ることを特徴とするキーレスエントリー システム。
[4] タイヤの空気圧や温度を監視するセンサと、前記センサとの双方向通信を行う送受 信ユニットと、前記送受信ユニットへの電力供給を行う電源ユニットと、を有して成り、 前記センサから送られてくる電子 ID信号に基づいて、異常時に警告を発するタイヤ 空気圧監視システムであって、前記送受信ユニットの信号送信手段として、請求項 1 に記載の送信装置を有して成ることを特徴とするタイヤ空気圧監視システム。
[5] 送信アンテナ部と;異なる 2電位間に直列接続された第 1、第 2スィッチの接続ノード 力 前記送信アンテナ部への出力電流を得る出力部と;第 1制御信号に応じて第 1、 第 2スィッチの開閉制御を行う出力駆動部と;を有して成る送信装置であって、第 1、 第 2スィッチは、各々複数のスィッチ素子を並列接続して成るスィッチ素子群とされて おり、前記出力駆動部は、第 2制御信号に基づいて、前記複数のスィッチ素子のうち 、第 1制御信号に応じて開閉制御すべきスィッチ素子を選択することを特徴とする送 信装置。
[6] 前記出力駆動部は、前記スィッチ素子を選択して前記出力電流を調整することを 特徴とする請求項 5に記載の送信装置。
[7] 前記出力電流は、前記スィッチ素子のオン抵抗によって調整されることを特徴とす る請求項 5に記載の送信装置。
[8] 装置に供給される電源電圧に応じて第 2制御信号を生成する手段を有して成ること を特徴とする請求項 5に記載の送信装置。
[9] リモートキーと、前記リモートキーとの双方向通信を行う送受信ユニットと、前記送受 信ユニットへの電力供給を行う電源ユニットと、前記送受信ユニットと前記リモコンキ 一との間で交わされる双方向通信の正否に応じて施錠/解錠されるロック機構と、を 有して成るキーレスエントリーシステムであって、前記送受信ユニットの信号送信手段 として、請求項 5に記載の送信装置を有して成ることを特徴とするキーレスエントリー システム。
[10] タイヤの空気圧や温度を監視するセンサと、前記センサとの双方向通信を行う送受 信ユニットと、前記送受信ユニットへの電力供給を行う電源ユニットと、を有して成り、 前記センサから送られてくる電子 ID信号に基づいて、異常時に警告を発するタイヤ 空気圧監視システムであって、前記送受信ユニットの信号送信手段として、請求項 5 に記載の送信装置を有して成ることを特徴とするタイヤ空気圧監視システム。
PCT/JP2005/021204 2004-12-28 2005-11-18 送信装置、キーレスエントリーシステム、タイヤ空気圧監視システム WO2006070541A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006550621A JPWO2006070541A1 (ja) 2004-12-28 2005-11-18 送信装置、キーレスエントリーシステム、タイヤ空気圧監視システム
US11/721,518 US20080129477A1 (en) 2004-12-28 2005-11-18 Transmission Device, Keyless Entry System, and Tire Pneumatic Pressure Monitoring System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004380821 2004-12-28
JP2004-380831 2004-12-28
JP2004380831 2004-12-28
JP2004-380821 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070541A1 true WO2006070541A1 (ja) 2006-07-06

Family

ID=36614667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021204 WO2006070541A1 (ja) 2004-12-28 2005-11-18 送信装置、キーレスエントリーシステム、タイヤ空気圧監視システム

Country Status (5)

Country Link
US (1) US20080129477A1 (ja)
JP (1) JPWO2006070541A1 (ja)
KR (1) KR20070089827A (ja)
TW (1) TW200637202A (ja)
WO (1) WO2006070541A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072211A (ja) * 2006-09-12 2008-03-27 Denso Corp 車載用無線送信装置及び車載用無線送信システム
JP2008098816A (ja) * 2006-10-10 2008-04-24 Matsushita Electric Ind Co Ltd アンテナ装置
JP2009021829A (ja) * 2007-07-12 2009-01-29 Omron Corp 送信装置および方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662211B2 (ja) * 2006-09-12 2011-03-30 株式会社デンソー 車載用無線送信装置
US20090265048A1 (en) * 2008-04-18 2009-10-22 Fujitsu Ten Limited Remote startup device, remote startup system, and remote startup method
JP5508309B2 (ja) * 2011-02-08 2014-05-28 株式会社東海理化電機製作所 バルブ識別情報登録システム
DE102012214199A1 (de) 2012-08-09 2014-04-03 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zur Positionierung durch Triangulation
DE102012214201A1 (de) * 2012-08-09 2014-05-22 Bayerische Motoren Werke Aktiengesellschaft Positionierung mit funkbasiertem Schließsystem
US20140292581A1 (en) * 2013-03-27 2014-10-02 Mitsubishi Electric Research Laboratories, Inc. Method and System for Determining Locations of Smartkeys
CN104943653A (zh) * 2014-03-24 2015-09-30 辉创电子科技(苏州)有限公司 集成主动式胎压监测的无钥匙进入启动装置
JP6519926B2 (ja) * 2015-11-05 2019-05-29 株式会社ホンダロック 携帯端末装置認証システム、および車載装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139685A (ja) * 1994-11-14 1996-05-31 Oki Electric Ind Co Ltd 送受信装置
JPH10166966A (ja) * 1996-12-13 1998-06-23 Yazaki Corp ワイヤレスリモートコントロールシステム
JP2002247891A (ja) * 2001-02-19 2002-08-30 Nikon Corp モータ装置、ステージ装置及び露光装置
JP2002321511A (ja) * 2001-04-26 2002-11-05 Nippon Seiki Co Ltd タイヤ空気圧監視装置及びその装置におけるidの登録方法
JP2004040644A (ja) * 2002-07-05 2004-02-05 Denso Corp 電力増幅器及び電力増幅器の調整方法
JP2004084406A (ja) * 2002-08-29 2004-03-18 Mitsubishi Electric Corp 車載機器遠隔制御システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042084A (en) * 1989-09-07 1991-08-20 Cochlear Pty. Limited Three wire system for Cochlear implant processor
US5276910A (en) * 1991-09-13 1994-01-04 Resound Corporation Energy recovering hearing system
JPH095430A (ja) * 1995-06-22 1997-01-10 Fujitsu Ten Ltd トランスポンダ用アンテナ駆動装置
FR2814013B1 (fr) * 2000-09-13 2002-10-11 Valeo Electronique Procede de calibrage d'un systeme d'acces mains libres de vehicule automobile
JP4136580B2 (ja) * 2002-10-02 2008-08-20 アルプス電気株式会社 送信器用増幅回路
JP2005120656A (ja) * 2003-10-15 2005-05-12 Alps Electric Co Ltd キーレスエントリ受信機
DE602004016265D1 (de) * 2003-11-19 2008-10-16 Siemens Vdo Automotive Corp Asynchrone Verschachtelung von RF-Signalen
US7505790B2 (en) * 2005-06-07 2009-03-17 Integrated Systems Solution Corp. Antenna diversity switch of wireless dual-mode co-existence systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139685A (ja) * 1994-11-14 1996-05-31 Oki Electric Ind Co Ltd 送受信装置
JPH10166966A (ja) * 1996-12-13 1998-06-23 Yazaki Corp ワイヤレスリモートコントロールシステム
JP2002247891A (ja) * 2001-02-19 2002-08-30 Nikon Corp モータ装置、ステージ装置及び露光装置
JP2002321511A (ja) * 2001-04-26 2002-11-05 Nippon Seiki Co Ltd タイヤ空気圧監視装置及びその装置におけるidの登録方法
JP2004040644A (ja) * 2002-07-05 2004-02-05 Denso Corp 電力増幅器及び電力増幅器の調整方法
JP2004084406A (ja) * 2002-08-29 2004-03-18 Mitsubishi Electric Corp 車載機器遠隔制御システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072211A (ja) * 2006-09-12 2008-03-27 Denso Corp 車載用無線送信装置及び車載用無線送信システム
JP2008098816A (ja) * 2006-10-10 2008-04-24 Matsushita Electric Ind Co Ltd アンテナ装置
JP2009021829A (ja) * 2007-07-12 2009-01-29 Omron Corp 送信装置および方法

Also Published As

Publication number Publication date
US20080129477A1 (en) 2008-06-05
KR20070089827A (ko) 2007-09-03
TW200637202A (en) 2006-10-16
JPWO2006070541A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006070541A1 (ja) 送信装置、キーレスエントリーシステム、タイヤ空気圧監視システム
EP1999690B1 (en) Wireless sourceless sensor
US7728717B2 (en) Switching regulator, transceiver circuit, and keyless access control system
CN102395492B (zh) 局域互联网络总线远程控制系统
EP1796273B1 (en) Antenna drive
EP2015458A2 (en) Transmitting apparatus and method
JP2015149735A (ja) 学習可能無線制御システム
CN104467425A (zh) 天线驱动装置
JP5137703B2 (ja) 無線送信装置、それを用いた車両のエントリシステム及び車両のタイヤ空気圧モニタリングシステム
JP4328295B2 (ja) 通信線上の被切換信号のための受信機
US8461974B2 (en) Electric circuit for an access control and for an immobilizer of a vehicle and method for calibrating an antenna driver
EP1620293A1 (en) Electronic communications system
US7683756B2 (en) Wireless access system and method
EP1717550B1 (en) Angular velocity sensor and automobile using the same
JP2012015946A (ja) 負荷駆動装置
JP4905042B2 (ja) アンテナ装置
EP2688140A2 (en) Antenna drive apparatus
JP3675740B2 (ja) 電源電力給電型通信線を有する通信装置
US7171178B2 (en) Tuning circuit having amplitude-varying function
US20070149141A1 (en) Method for operating a transmitting device and working transmitting device
JP2008022233A (ja) アンテナのオープン異常検出装置及び無線送信装置
JP6211360B2 (ja) アンテナ駆動装置
CN105984426B (zh) 车辆、车辆智能钥匙系统及其的寻卡方法
US20050040969A1 (en) Actuator unit and actuator control system for a motor vehicle
JP2008148279A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11721518

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580044985.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077014673

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05807071

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11721518

Country of ref document: US