WO2006068028A1 - 吸音構造 - Google Patents

吸音構造 Download PDF

Info

Publication number
WO2006068028A1
WO2006068028A1 PCT/JP2005/023056 JP2005023056W WO2006068028A1 WO 2006068028 A1 WO2006068028 A1 WO 2006068028A1 JP 2005023056 W JP2005023056 W JP 2005023056W WO 2006068028 A1 WO2006068028 A1 WO 2006068028A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
sound absorbing
absorbing structure
fibrous material
perforated plate
Prior art date
Application number
PCT/JP2005/023056
Other languages
English (en)
French (fr)
Inventor
Zenzo Yamaguchi
Ichiro Yamagiwa
Toshimitsu Tanaka
Hiroki Ueda
Kensuke Tsubota
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US11/792,297 priority Critical patent/US7654364B2/en
Priority to DE112005003232T priority patent/DE112005003232B4/de
Publication of WO2006068028A1 publication Critical patent/WO2006068028A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0838Insulating elements, e.g. for sound insulation for engine compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0861Insulating elements, e.g. for sound insulation for covering undersurfaces of vehicles, e.g. wheel houses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0876Insulating elements, e.g. for sound insulation for mounting around heat sources, e.g. exhaust pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0884Insulating elements, e.g. for sound insulation for mounting around noise sources, e.g. air blowers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general

Definitions

  • the present invention relates to a sound absorbing structure with excellent sound absorbing performance that can achieve a sound absorption coefficient of 0.4 or more, such as vehicle applications such as automobiles, structural applications such as soundproof walls and tunnel inner walls, or other sound absorbing structures.
  • the present invention relates to a sound absorbing structure that can be applied to various uses in various fields. Background art
  • a sound absorbing material that constitutes a sound absorbing structure for suppressing noise generated on the sound source side of the vehicle is attached to the vehicle.
  • an interior board in which a large number of through holes are formed on the entire plate surface is disposed opposite to the exterior board via an air layer.
  • a porous soundproof structure that uses the Lumholz resonance principle to provide soundproofing.
  • a sound absorbing material that is attached to a hood panel, a roof panel, a floor panel, an engine cover, and the like to suppress noise from propagating to the outside, the vehicle compartment, and the like.
  • the sound absorbing material is provided so as to overlap with a high frequency region absorbing layer made of a non-woven fiber layer, and a low frequency region made of a perforated plate and an air layer behind it. And an absorption layer.
  • An air layer is provided between the two absorption layers to absorb the high frequency region.
  • the collection layer is arranged on the side close to the noise source, and the low frequency region absorption layer is arranged on the far side and side of the noise source.
  • the effect of the sound absorbing material is that when noise is incident on the high frequency region absorbing layer, the energy of the noise is attenuated by the viscous resistance and heat conduction of air between the non-woven fibers in the layer. It is done.
  • the non-woven fiber itself vibrates and friction is generated between the non-woven fibers that are in contact with each other, so that the energy of the noise is converted into vibration heat and friction heat. The energy possessed is attenuated.
  • noise in the low frequency region can be absorbed mainly by the low frequency region absorption layer.
  • the noise in the relatively low frequency region that has passed through the high frequency region absorption layer is attenuated by the resonance effect in the low frequency region absorption layer.
  • a generator that uses an engine as a noise source, a bonnet part and an engine lower cover part of an automobile that uses an engine as a noise source, a ceiling part of an automobile that uses an acoustic device as a noise source, Alternatively, there is a soundproof structure provided in the tank back cover of a motorcycle that uses an engine as a noise source.
  • the soundproofing member is disposed with an air layer inside at least a part of the outer plate of the silencer.
  • the soundproofing member is provided so as to overlap with a sound absorbing material mainly made of fiber or a foamable material and the outer surface, inner or inner surface of the sound absorbing material, and a large number of through holes or a number of cuts are formed in a dispersed manner. And made of metal foil such as aluminum.
  • the noise generated from the noise source makes it easy to vibrate around a large number of cuts such as aluminum foil or through holes. Due to this vibration, the acoustic energy of the noise is attenuated by being converted into vibration energy of the aluminum foil on the outer surface.
  • a soundproofing member is disposed inside the outer plate with an air layer separated, the diffused sound leaking from the cut or through hole is reflected by the outer plate and is taken into the sound absorbing material again to absorb the sound. Can be attenuated. This is more effective in reducing noise.
  • a porous soundproof structure formed by opposingly arranging an exterior plate and an interior plate having a large number of through holes, a thickness, a hole diameter, and an opening ratio of the interior plate are equal to each other. It must be set to satisfy the design conditions for generating a viscous action in the air flowing through
  • a multi-porous porous soundproof structure that has special features. .
  • the through-through hole provided in the perforated hole plate described above is a large hole having a hole diameter of about 00..55mmmm. It is a hole. .
  • the through-through hole provided in the above-mentioned Aarumimininiumum foil foil is also a large hole having a hole diameter of about ⁇ 11 mmmm. It's ah. .
  • Non-woven woven fabrics such as ordinary felt tortue, guglalas woorl, rolock kuool, and the like, and a fibrous material made of a fibrous material.
  • the sound absorption and sound absorption rate of a single material is also less than 00..44 or less depending on the density and thickness. It is a degree. . Therefore, in order to improve the sound absorption and sound absorption rate, it is necessary to make the thickness thick and large. In the case where there is a limit on the amount of heavy weight between the arrangement and placement of the sound absorbing and absorbing sound structure, the sound absorbing and absorbing sound rate ratio is 00..44 or higher. There are cases where the above cannot be achieved. .
  • an inner interior board having a through-hole is provided. Hole diameter of plate ((multi-porous plate))
  • a through-hole having a small and small hole diameter such as the one shown here is used. It is very difficult to set up a metal plate on a relatively thin metal plate. .
  • the Aalluminuminium foil foil has a thickness of only about 2200 zz mm, even within the multi-porous plate, soft and soft. It's quality. . Therefore, it is possible to provide a large number of fine through-holes on the aluminum foil foil as shown here. The craft was accompanied by extraordinary hardships and high costs. .
  • the sound absorption coefficient is further increased without reducing the pore diameter of the multi-porous plate without reducing the diameter.
  • the objective is to provide a sound-absorbing and sound-absorbing sound structure that can be further improved. .
  • the gist of the present invention sound absorption sound absorbing structure is generated on the sound source side.
  • the sound absorbing and absorbing sound structure is designed to suppress and suppress the noise caused by the noise, and is opposed to the previously described recording sound source side.
  • the above-mentioned fiber fibrillar material is the following: Satisfy the formula ((11)) ,, before the Symbol multi-perforated hole plate plate to Sururu and Toto and the thigh that plus there is Ruru Oh is in and that this teeming feet Susururu the under following following formula formula ((22)). .
  • the product of the density ⁇ and the thickness t of the fibrous material is set to a value greater than or equal to the above value.
  • the fibrous material and the porous plate have the above-mentioned mutual relationship, that is, the fibrous material satisfies the above formula (1) and the porous plate satisfies the above formula (2).
  • the perforated plate is a thin plate such as an aluminum foil, and the through hole has a large hole diameter in order to facilitate the processing of providing a large number of through holes in the perforated plate, the sound absorption coefficient is 0.4. It is possible to provide a sound absorbing structure with excellent sound absorbing performance that can achieve the above.
  • FIG. 1 is a cross-sectional view showing an embodiment of a sound absorbing structure of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view of FIG.
  • FIG. 3 is a partially enlarged cross-sectional view of FIG.
  • FIG. 4 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 5 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 6 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 7 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 8 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 9 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 10 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 11 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 12 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 13 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 14 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 15 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 16 is an explanatory view showing a sound absorbing effect of a comparative sound absorbing structure.
  • FIG. 17 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 18 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 19 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 20 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 21 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 22 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 23 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 24 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 25 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 26 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 27 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 28 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 29 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 30 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 31 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 32 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 33 is a cross-sectional view showing another embodiment of the sound absorbing structure of the present invention.
  • FIG. 34 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 35 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 36 is an explanatory view showing a sound absorbing effect of the sound absorbing structure of the present invention.
  • FIG. 1 is a cross-sectional view showing an embodiment in which the vehicle sound absorbing structure of the present invention is arranged on the back surface of a hood of an automobile
  • FIG. 2 is a partial cross-sectional view of FIG. 1, and FIG.
  • the sound absorbing structure 1 of the present invention in FIG. 1 is disposed on the engine sound source side of the back surface of the hood 6 of an automobile. Suppresses noise generated on the engine sound source side.
  • the mode of the sound absorbing structure 1 in FIG. 1 basically has a fibrous material 4 and a large number of through holes 3 in order from the engine sound source side, and is provided so as to overlap the fibrous material 4.
  • the perforated plate 2 and the air layer 5 behind the perforated plate 2 are provided.
  • the same effect can be obtained by disposing the perforated plate 2 on the front surface on the sound source side instead of the fiber material 4 and arranging the fiber material 4 so as to overlap the perforated plate 2 behind it. .
  • the fibrous material 4 is a fibrous material including an open-cell foam material.
  • the fiber material 4 is disposed on the front surface against noise (sound wave) from the engine sound source side in order to exert a sound absorbing effect.
  • noise sound wave
  • the fibrous material 4 is arranged so as to overlap the porous plate 2 behind it, the sound absorbing effect of the fibrous material 4 is the same. can get.
  • the density p of the fibrous material is preferably in the range of 10 to 400 kg / m 3 . If the density p of the fibrous material is less than 10 kg / m 3 or more than 400 kg /, the sound absorbing effect of the fibrous material 4 may be reduced.
  • the fibrous material having such a density p is preferably a porous fibrous material.
  • a porous fibrous material a cotton-like material defined in the acoustic terminology dictionary (Japan Society for Acoustics), which is intertwined with non-woven fabrics such as felt, glass wool, rock wool, and fibers, becomes porous.
  • Known sound-absorbing materials, open-cell foam materials, and the like can be used, and are appropriately selected from these materials.
  • the density p (kg / m 3 ) of the fibrous material and the thickness t (mm) of the fibrous material shown in FIG. 2 satisfy the following formula (1). It is necessary.
  • the porous plate 2 A high sound absorption coefficient of 0.4 or more can be obtained regardless of the plate thickness.
  • the aperture ratio j3 of the through hole 3 of the porous plate 2 satisfies the above equation (2). Even if this is the case, the sound absorption coefficient decreases as well as the sound absorption coefficient when only the porous plate 2 exists.
  • FIG. 1 shows an embodiment in which a metal foil such as aluminum that contributes to weight reduction (hereinafter simply referred to as an aluminum foil) is used as the porous plate 2.
  • a metal foil such as aluminum that contributes to weight reduction
  • the porous plate of the present invention includes a very thin plate such as a foil film that is not only a normal plate.
  • the perforated plate 2 absorbs sound by the Helmholtz resonance principle, as in the prior art described above.
  • the hole diameter d (mm) of each through hole 3 (see Fig. 3) in the perforated plate 2 is The aperture ratio (%) of the through hole, which is the ratio of the total area of all through holes to the surface area of the hole plate 2, satisfies the following formula (2).
  • the selection of the material and thickness of the porous plate 2 is preferably a material that is as thin as possible and lightweight and strong, including the light weight and sound absorption effects.
  • the thickness of the porous plate is preferably a thin plate of less than 0.5 mm.
  • a steel plate As a material, a steel plate, an aluminum alloy plate, a resin plate, etc. can be used as appropriate.
  • an aluminum alloy plate which is also aluminum, is advantageous in terms of weight reduction and sound absorption effect.
  • a foil is preferred.
  • the air layer 5 acts as a noise resonance chamber, and can efficiently absorb noise of a plurality of frequencies and noise of a specific frequency together with the through holes 3 of the perforated plate 2.
  • the optimum thickness of the air layer 5 varies depending on the site where the sound absorbing structure is used, the state of noise, and the need for noise reduction, but it is preferable to select a force in the range of 10 to 50 mm.
  • the air layer 5 communicates only from the through hole 3 of the perforated plate 2 and the other part is airtightly held by the shielding member 8 disposed in the periphery from the viewpoint of increasing the sound absorption coefficient.
  • the sound absorbing structure 1 of the present invention can be attached to the hood 6 by, for example, forming the air layer 5 on the peripheral edge of the back surface of the inner panel of the hood 6 with an adhesive or mechanical fasteners such as bolts and nuts. , Fixed and integrated.
  • the sound absorbing structure 1 of the present invention is not necessarily required to cover or cover the entire back surface of the hood 6 or the back surface of the inner panel.
  • the sound absorbing structure 1 may be arranged partially or in a distributed manner at an appropriate location on the back side of the hood 6 depending on the part of the vehicle used, the state of noise, and the need for noise reduction. good.
  • FIGS. 4 to 9 show another embodiment of how the sound absorbing structure 1 of the present invention is attached to the hood.
  • Fig. 4 shows that when the inner panel 10 of the hood is formed in a concave-convex shape such as a so-called multi-corner type having a large number of conical depressions, a flat fibrous material 4 and, in order from the engine sound source side, A mode in which a flat porous plate 2 having a large number of through holes 3 and provided so as to be superimposed on a fibrous material 4 and an air layer 5 behind the porous plate 2 is shown.
  • the perforated plate 2 may be directly joined to the inner panel 10 of the hood with the air layer 5 behind.
  • FIGS. 5, 6, and 7 show an example in which the basic configuration is the same as FIG. 4, but the fibrous material 4 and the porous plate 2 provided in an overlapping manner are provided with unevenness to improve rigidity.
  • the concave and convex portions having a circular arc cross section are continuous
  • the concave and convex portions having a triangular cross section are continuous
  • the concave portion having the trapezoidal cross section and the convex portion having the triangular cross section are continuously displayed.
  • FIGS. 8, 9, 10, 11, and 12 have the same basic configuration as FIG. An example will be shown in which a slight gap (air layer) is provided in the middle when overlapping. In this way, when the fiber material 4 and the perforated plate 2 are overlapped, an air layer may be provided in the middle.
  • FIG. 8 shows an example in which a flat fibrous material 4 and a flat porous plate 2 are provided, and an intermediate air layer 5 a is formed between the fibrous material 4 and the porous plate 2.
  • 9, 10 and 11 show examples in which a flat fibrous material 4 and an uneven porous plate 2 are provided. In the case of FIGS. 9, 10, and 11, the region surrounded by the unevenness of the perforated plate 2 and the flat fibrous material 4 is an intermediate air layer 5a.
  • FIG. 12 shows an example in which an uneven fibrous material 4 and a flat porous plate 2 are provided. In the case of FIG. 12, a region surrounded by the unevenness of the fibrous material 4 and the flat porous plate 2 is an intermediate air layer 5a.
  • the fibrous material 4 is first arranged on the front surface with respect to the sound source inside the vehicle body such as engine sound, and then the perforated plate 2 and the air layer 5 are arranged in this order.
  • noise from a sound source such as an engine first collides with, for example, the fibrous material 4 disposed on the front surface. For this reason, noise is absorbed while passing through the porous portion of the fibrous material 4 in accordance with the sound absorption characteristics of the fibrous material 4, and the remaining noise that is not absorbed passes through the pores of the fibrous material 4. Become.
  • the fibrous material 4 satisfies the density (p (kg / m 3 )) of the fibrous material, the thickness t (mm) of the fibrous material, and the force (1). Therefore, even in the case of the perforated plate 2 having a large hole diameter d exceeding 0.8 mm, in which the through hole 3 is easy to process, the sound absorption coefficient can be set to 0.4 or more.
  • the remaining noise transmitted through the fibrous material 4 is then introduced into the air layer 5 through (through) the through hole 3 portion of the perforated plate 2.
  • the through-hole 3 of the perforated plate 2 functions as a noise resonance hole, and the air layer 5 also functions as a noise resonance chamber, so that noise of a specific frequency can be efficiently absorbed.
  • the fibrous material 4 is disposed on the surface of the porous plate 2, the attenuation of the fibrous material 4 is added to the sound absorbing effect of the through-hole 3 of the porous plate, which is higher than the configuration of the porous plate 2 alone. It becomes performance.
  • the sound absorbing effect described above is that the porous plate 2 is first arranged on the front surface instead of the fiber material 4 for the sound source inside the vehicle body such as engine sound, and then the fiber material. 4 is placed so as to overlap behind the perforated plate 2, and the air layer 5 is placed behind the fibrous material 4 in order. It is also demonstrated when placed.
  • the porous plate 2 has a through-hole which is the ratio of the hole area d (mm) of each through-hole 3 and the total area of the hole diameters d of all the through-holes to the surface area of the porous plate.
  • the aperture ratio (%) of the lens satisfies the above formula (2).
  • the sound absorption coefficient can be set to 0.4 or more, particularly when the through hole 3 is easily processed to have a large hole diameter d exceeding 0.8 mm.
  • the sound absorbing structure 1 of the present invention has such a configuration and action, it is possible to synergize the effects of the fibrous material 4, the porous plate 2, and the air layer 5. That is, even when a thin aluminum foil is used as the perforated plate 2 and the through hole 3 is easily processed to have a large hole diameter d exceeding 0.8 mm, each of these sound absorbing means alone is used as in the examples described later. Compared to the sound absorption effect in the case, the sound absorption performance of a specific frequency as well as the sound absorption performance of a wide frequency range can be significantly improved. For this reason, the sound absorbing structure itself can be reduced in weight, and the through hole of the perforated plate can be easily processed. Therefore, the increase in vehicle weight and the increase in vehicle cost due to the addition of the sound absorbing structure can be minimized.
  • the sound absorbing structure 1 having the shape and structure shown in FIG. 1 is prepared, and p and t in the equation (1) of the fiber material are changed. From the equation (2), a sound absorption coefficient of 0.4 or more is achieved. The relationship between the hole diameter of the perforated plate and the aperture ratio was determined.
  • the sound absorption rate was measured using an acoustic tube.
  • one end of the acoustic tube was used as a rigid wall (simulating a food panel), and a speaker as a sound source was placed at the other end.
  • a fiber material 4 is erected on the front surface of this speaker with a certain interval, and an aluminum foil having a porous plate 2 is erected so as to overlap behind the fiber material 4.
  • the air layer 5 exists between the rigid wall surfaces behind the perforated plate 2. Then, sound waves were transmitted from the speakers, and the sound pressure was measured by measuring the sound pressure with two microphones near the sound-absorbing structure specimen.
  • the noise frequency ranges from 800 to 4000 Hz including low to high frequencies
  • the porous plate is 80 xm (0.08 mm) thick aluminum foil
  • the air layer thickness is 35 mm. It was.
  • FIGS. FIGS. 13, 14 and 15 show the invention column
  • FIG. 16 shows a comparative example in which no fibrous material is provided in FIG.
  • the vertical axis represents the pore diameter of the porous plate
  • the horizontal axis represents the aperture ratio of the porous plate.
  • the white area is the area where the sound absorption coefficient is 0.6 or more
  • the gray area is the area where the sound absorption coefficient is 0.4 to 0.6
  • the black area is less than 0.4. It is an area.
  • Fig. 1 to Fig. 12 For the fiber material 4 of 12, adjust the characteristics such as the sound absorption effect and rigidity, or because of the production and installation of the fiber material, the fiber material 4 is not only one layer but two layers or more As a multi-layered structure made of fibrous material. When the fibrous material 4 has such a multilayer structure, the same material may be laminated or different materials may be laminated according to the purpose. May be laminated in combination with each other.
  • the fibrous material 4 is not limited to the multilayer arrangement in the direction to the sound source (the direction of sound wave travel), but in the same layer or the same plane with respect to the sound source (horizontal or vertical depending on the direction of the sound absorbing structure). In-plane), different fiber materials or fiber materials with different sound absorption rates can be properly arranged 1J. In such an embodiment, there are regions having different sound absorption rates in the same layer or in the same plane with respect to the sound source, so that a sound absorption effect can be obtained in a wide frequency band.
  • FIGs 1 to 12 When using a very thin material such as an aluminum porous foil in the porous plate 2 shown in Fig. 12, a different material can be used instead of just making the porous plate 2 a single aluminum porous foil. You may laminate. For example, if the porous plate 2 is made by bonding a non-woven fabric such as felt, glass wool, rock wool, or a fibrous material to the porous porous plate 2, the porous plate 2 can be given rigidity and thickness.
  • a non-woven fabric such as felt, glass wool, rock wool, or a fibrous material
  • the bonded perforated plate 2 has an advantage that the perforating process is smooth. That is, a fibrous material made of the above-mentioned nonwoven fabric or fiber is bonded in advance to a non-perforated aluminum foil, and the bonded aluminum foil is subjected to perforating processing for sound absorption. Perforated plate 2). According to such an embodiment, the rigidity and thickness necessary for the drilling process can be provided, and the drilling process itself becomes easier than the process of drilling a very thin aluminum foil alone. Therefore, in the sound absorbing structure 1 shown in FIGS. 1 to 12 as well, the shells of the fibrous material 4 and the porous plate 2 may be mechanically joined, but may be performed by the above-described adhesive. It is simple.
  • FIG. 17 An example of this bonded perforated plate is shown in FIG.
  • a nonwoven fabric 8 is bonded to an anodized porous foil 2 to form a porous plate, and a glass wool is bonded to the fiber material 4 as a porous plate.
  • FIGS. 18 to 21 show the sound absorption performance (sound absorption rate) when the thickness conditions of each part of the sound absorbing structure in FIG. 17 are changed.
  • the measurement method and test conditions of the sound absorption structure and sound absorption rate were the same as in the above-described example.
  • P and t in the equation (1) of the fiber material 4 are changed, and a sound absorption coefficient of 0.4 or more is achieved from the equation (2).
  • the relationship between the hole diameter of the perforated plate and the aperture ratio is obtained.
  • the sound absorbing structure in FIGS. 18 and 19 is formed on an aluminum porous foil having a thickness of 80 xm (0.08 mm) and a thickness of 0.1 mm (area density: 40 g / m 2).
  • non-woven fabric and fiber material made of fibers were bonded to form a porous plate. Then, glass wool having a density p: 80 kg / m 3 and a thickness t: 2 mm (FIG. 18) or 5 mm (FIG. 19) was bonded to the fiber material 4. The total thickness of the sound absorbing structure including the air layer behind the perforated plate was 35 mm.
  • the sound-absorbing structure in FIG. 20 is a porous plate made by bonding glass wool with a thickness of 2 mm (density: 80 kg / m 3 ) to an aluminum porous foil with a thickness of 80 / im (0.08 mm).
  • glass wool having a density p: 32 kg / m 3 and a thickness t: 2 mm was bonded.
  • the total thickness of the sound absorbing structure including the air layer behind the perforated plate was 35 mm.
  • the sound-absorbing structure in Fig. 21 is obtained by bonding glass wool of lmm thickness (density: 80kg / m 3 ) to aluminum porous foil of thickness 80 ⁇ ⁇ (0.08 mm) to form a porous plate with fibers.
  • glass wool having a density p: 32 kg / m 3 and a thickness t: 1 mm was bonded.
  • the total thickness of the sound absorbing structure including the air layer behind the perforated plate was 35 mm.
  • the vertical axis represents the pore diameter of the porous plate
  • the horizontal axis represents the aperture ratio of the porous plate.
  • the white area is the area where the sound absorption coefficient is 0.6 or more
  • the gray area is the area where the sound absorption coefficient is 0.4 to 0.6
  • the black area is the area where the sound absorption coefficient is less than 0.4. Is . From these figures, it can be seen that even when the hole diameter of the perforated plate is ⁇ ⁇ .
  • the fibrous material 4 of the porous plate and the fibrous material made of non-woven fabric or fiber such as the glass wool 8 bonded to the porous plate are the fibrous material.
  • p X t ⁇ 0. so as to O lkgZm 2 the satisfaction of the sum force the equation of the surface density p X t of all the layers (1) of. This is the same in the embodiments shown in FIGS.
  • one of the layers of the fibrous material 4 or the fibrous material layer made of nonwoven fabric or fiber such as the glass wool 8 is p X t ⁇ in the above formula (1). 0. If OlkgZm 2 is satisfied, the total value of the surface density p X t of all the layers of the fiber material naturally satisfies p X t ⁇ 0.01 kg / m 2 . Therefore, in other words, if any one layer of fibrous material only to satisfy the p X t ⁇ 0. OlkgZm 2, other fibrous material satisfies p X t ⁇ 0. 01kg / m 2 Tei It is not necessary.
  • the preferred density p range (10 to 400 kg / m 3 ) of the above-mentioned fibrous material is such that each fibrous material layer is within this range in such a laminated porous plate embodiment. It is preferable that This is satisfied in the embodiments shown in FIGS.
  • Fig. 22 shows the acoustic wave between the porous plate of Fig. 17 (a porous plate in which a nonwoven fabric is bonded to an aluminum porous foil and structural damping is added) and a porous plate that is not aluminum but only has a structural damping.
  • the perforated plate with thickened structure (thick line) does not have a drastic decrease in sound absorption even with the frequency of sound waves.
  • the perforated plate (thin wire) without added structural attenuation the sound absorption coefficient is extremely lowered at frequencies around 500 to 700 Hz. This is because the resonance of the perforated plate is generated in this frequency band.
  • the fibrous material 4 has a multilayer structure as described above, when the fibrous material 4 and the porous plate 2 are bonded together, as shown in FIG. Perforated plate (porous foil) 2 is inserted between the fiber material 8 layer on the rear side of the sound wave, or the porous plate 2 is sandwiched between the fiber material 4 and 8 layers.
  • Perforated plate (porous foil) 2 is inserted between the fiber material 8 layer on the rear side of the sound wave, or the porous plate 2 is sandwiched between the fiber material 4 and 8 layers.
  • the transmission loss is increased and the sound insulation is improved.
  • Such a structure does not significantly affect the sound absorption rate and does not lower the sound absorption rate. Therefore, it is preferable to use this mode for applications that require sound insulation.
  • the transmission loss for each frequency of the sound absorbing structure in which the porous plate 2 is inserted between the layers of the fibrous materials 4 and 8 is shown in FIG. 24, and the sound absorption rate for each frequency is shown in FIG. Figure 25 shows each bold line.
  • Sound absorbing structure of Figure 23 the perforated plate having a thickness of 0. 3 mm, density 60KgZm 3, and the fiber material with a thickness of 20 mm, density 60KgZm 3, is obtained by inserting between the fiber material with a thickness of 10mm .
  • the transmission loss is shown in Fig. 24 and the sound absorption rate is shown by thin lines in the case of fiber material with a density of 60kgZm 3 only (thickness 30mm).
  • the transmission loss increases when the porous plate 2 is inserted between the layers of the fibrous materials 4 and 8, compared to the structure of the fibrous material alone. It can be seen that the sound insulation is improved. Further, it can be seen that there is no significant difference between the case where the porous plate 2 is inserted between the layers of the fibrous materials 4 and 8 and the structure of the fibrous material alone in terms of the sound absorption coefficient.
  • the aperture ratio (%) of the through hole which is the ratio of the total area of all the through holes to the surface area of the perforated plate 2, satisfies the above formula (2), but the hole diameter d (mm There is a preferable range for increasing the sound absorption coefficient.
  • the two formulas and the three formulas have a lower limit and an upper limit, respectively, and it is more preferable that both the above formulas 2 and 3 are satisfied after the above formula (2) is satisfied.
  • the aperture ratio / 3 is in a range between the two formulas (lower limit) and the three formulas (upper limit) while satisfying the formula (2).
  • the sound absorbing structure shown in FIG. 26 was used. That is, a material in which glass wool is bonded as the fibrous material 4 to the aluminum porous foil 2 having a thickness of 80 ⁇ (0.08 mm) is used. Then, the density p of the fibrous material 4 was kept constant, and the thickness p of the fibrous material 4 was changed to change p from 0.01 to 1.0.
  • FIGS. 27 to 31 as in FIGS. 18 to 21, the relationship between the hole diameter and the aperture ratio of the perforated plate that can achieve a sound absorption coefficient of 0.4 or more is obtained from the equation (2).
  • the white area is the area where the sound absorption coefficient is 0.6 or more
  • the gray area is the area where the sound absorption coefficient is 0.4 to 0.6
  • the black area is the area where the sound absorption coefficient is less than 0.4.
  • the sound absorption rate can be particularly improved by setting the aperture ratio / 3 and the hole diameter d of the through-holes to values within a range satisfying all of the formulas 1 to 3.
  • this The trend of pXt as shown in Figs. 27 to 31 is the same for other types of bonding and sandwiching.
  • the effect of improving the sound absorption coefficient of the bonded perforated plate described above is also due to the fact that the rigidity of the perforated plate is improved and the structural attenuation of the perforated plate is increased by shelling.
  • the sound absorption rate improves as the vibration speed of the sound wave passing through the hole increases.
  • the perforated plate resonates with sound waves, along with the sound waves that pass through the holes? L itself will also move. As a result, the vibration speed of the sound wave passing through the hole portion becomes relatively slow, and the sound absorption rate is extremely lowered.
  • the porous plate may be formed by using a fibrous material made of a nonwoven fabric or fiber, or a damping material, a film, or the like in the bonded porous plate. Paste to.
  • the perforated plate (perforated foil) itself is embossed to create irregularities.
  • the high rigidity of the perforated plate or the embossing of the perforated plate has the effect of improving the sound absorption rate as well as the high rigidity.
  • Fig. 32 shows the sound absorption coefficient for each frequency when the aluminum porous foil 2 is embossed and when it is not embossed.
  • the dark line is embossed
  • the thin line is not embossed. From Fig. 32, it can be seen that the sound absorption rate is improved when embossing is applied.
  • FIG. 33 shows a sound absorbing structure in which a perforated plate 9 such as a punching metal made of a thin steel plate is further disposed outside the sound absorbing structure (aspect of FIG. 23) (sound wave side) to protect the sound absorbing structure. I'm going.
  • a perforated plate 9 such as a punching metal made of a thin steel plate
  • a porous protective film may be used.
  • FIGS. 34 to 36 show the respective sound absorption coefficients for each frequency when the conditions of the fiber materials 4 and 8 made of glass wool shown in FIG. 33 are changed.
  • Fig. 34 shows that the diameter of the fiber material 4 and 8 of the fiber materials 4 and 8 is 4 to 5 zm, the thickness of the fiber material 4 on the front side is 10 mm, and the thickness of the porous foil 2 The thickness of the fiber material 8 on the rear side was 30 mm, and the air layer 5 behind was a thin layer of 1 mm or less.
  • the diameter of glass wool is the same as in Fig. 34.
  • Porous foil 2 The thickness of fibrous material 4 on the front side is 10 mm, the thickness of porous foil 2 and the fibrous material 8 on the rear side is 20 mm, and the air layer behind The thickness of 5 was 10 mm.
  • white square marks are invention examples, and black square marks are comparative examples with the same conditions as the invention examples except that the porous foil 2 is not provided. From FIG. 34 and FIG. 35, it can be seen that the inventive example provided with the porous foil 2 has a higher sound absorption coefficient.
  • each thickness condition is the same as in FIG. 34, and in each of the invention examples in which the porous foil 2 is provided, the effects of the glass wool diameters of the fibrous materials 4 and 8 are compared.
  • the white square mark is the fibrous material 4 and 8
  • the black square mark is the fibrous material 4
  • the diameter of the glass wool of 8 and 8 is relatively thin (about 4 to 5 ⁇ m) (described as a thin fiber absorbent material). From Fig. 36, it can be said that the sound absorption rate is higher when the fiber material 4 and 8 is described as a fine wire fiber sound absorbing material with a smaller glass wool diameter.
  • the perforated plate is a thin plate such as an aluminum foil and the through hole has a large hole diameter in order to facilitate the processing of providing a large number of through holes in the perforated plate, It is possible to provide a sound absorbing structure with excellent sound absorbing performance that can achieve a sound absorption coefficient of 0.4 or higher.
  • the present invention can be applied not only to the reduction of noise mainly from engine sounds such as bonnets and engine undercovers, but also to other fenders and roofs by simply improving the body itself. It can be used freely for body panels such as doors, dashboard panels, etc. that want to reduce noise.
  • the present invention can be applied to structural uses such as a soundproof wall and a tunnel inner wall, or other uses in various fields that require sound absorption.
  • the explanation of each structure of the sound absorbing structure related to the vehicle application will be made according to the vehicle terminology, the use part and term of other application, the noise situation of other application, and the necessity of noise reduction. By re-reading, it is possible to select an optimum embodiment for the application.

Abstract

 車体の軽量化を損なわない範囲で多孔板がアルミニウム箔のような薄板であり、その多孔板に貫通孔を多数設ける加工を容易とするために貫通孔が大きな孔径を有している場合でも、吸音率で0.4以上を達成可能な吸音性能に優れた吸音構造を提供する。  この吸音構造1は、音源側で発生した騒音を抑制するための吸音構造1であって、音源側に対向するように設けられるとともに、互いが重なるように設けられた多数の貫通孔3を有する多孔板2および繊維質材4と、多孔板2の背後に設けられた空気層5とを備えた吸音構造において、繊維質材4の密度と厚さ、および多孔板2の貫通孔3の孔径と開口率とが、各々特定の関係を有する。

Description

明 細 書
吸音構造
技術分野
[0001] 本発明は、吸音率で 0. 4以上を達成可能な吸音性能に優れた吸音構造に関し、 自動車などの車両用途や、防音壁、トンネル内壁などの構造物用途、あるいは他の 吸音が必要な種々の分野の用途に適用可能な吸音構造に関するものである。 背景技術
[0002] 以下の説明は、本発明吸音構造による、吸音が必要な種々の分野の内、主要な用 途としての車両用途を例にとって行なう。
[0003] 近年、 自動車には、車両走行の快適化のために、車両の音源側で発生した騒音を 抑制することが求められている。例えば、 自動車のボンネットであれば、車体内部の エンジン音を吸音して低減する吸音効果が求められる。
[0004] このため、当該車両の音源側で発生した騒音を抑制するための吸音構造を構成す る吸音材が、車両に取り付けられるようになつている。
[0005] このような吸音構造を構成する吸音材として、多数の貫通穴が板面全体に形成され た内装板を外装板に対して空気層を介して対向配置した構成とすることによって、へ ルムホルツ共鳴原理を利用して防音する多孔質防音構造体がある。
[0006] 例えば、ヘルムホルツ共鳴原理の一般式が" f = (ο/2 π ) Χ ^Γ{ j3 / (t+l . 6b) d} " であることに着目し、この一般式に基づいて特定の共鳴周波数 fの騒音を効率良く低 減するように構成された多孔質防音構造体がある。尚、上記の一般式は、音速 cと開 口率 /3と内装板の板厚 tと孔径 bと背後空気層厚 dとをパラメータとして共鳴周波数 f を示したものである。
[0007] また、フードパネル、ルーフパネル、フロアパネル、エンジンカバー等に取着され、 騒音が外部や車両室内等に伝播するのを抑制するための吸音材がある。
[0008] この吸音材は、具体的には、不織繊維層よりなる高周波数領域吸収層と、これに重 ねられるように設けられ、有孔板及びその背後の空気層よりなる低周波数領域吸収 層とを備えている。そして、この両吸収層の間に空気層を設けて、高周波数領域吸 収層を騒音の発生源に近い側に配置すると共に、低周波数領域吸収層を騒音の発 生源に遠レ、側に配置してレ、る。
[0009] この吸音材の作用としては、騒音が高周波数領域吸収層に入射されると、同層内 の不織繊維間の空気の粘性抵抗と熱伝導により、騒音の有するエネルギーの減衰 が図られる。また、不織繊維自身が微振動すると共に、相互に接触している不織繊 維同士間に摩擦が生じることにより、騒音の有するエネルギーが振動熱および摩擦 熱に変換されることによって、騒音の有するエネルギーの減衰が図られる。
[0010] また、主として低周波数領域吸収層により、低周波数領域の騒音が吸収されうる。
即ち、高周波数領域吸収層を通過した比較的低周波数領域の騒音は、低周波数領 域吸収層における共鳴作用により騒音の有するエネルギーの減衰が図られる。
[0011] また、エンジンを騒音源とする発電機、エンジンを騒音源とする自動四輪車のボン ネット部分やエンジン下カバー部分、音響機器を騒音源とする自動四輪車の天井部 分、または、エンジンを騒音源とする自動二輪車のタンク裏カバー部分等に設けられ る防音構造がある。
[0012] この防音構造では、具体的には、消音装置の外板の少なくとも一部の内側に空気 層を隔てて防音部材を配設している。そして、この防音部材を、主に繊維又は発泡 性素材からなる吸音材と、この吸音材の外表面、内部又は内表面に重ねて設けられ 、多数の貫通孔又は多数の切れ目が分散状に形成されたアルミニウムなどの金属箔 とによって構成している。
[0013] この防音構造では、騒音源から発せられる騒音により、アルミニウム箔などの多数の 切れ目又は貫通孔の周囲が細力べ振動しやすくなる。この振動により、騒音の音響ェ ネルギ一は、外表面のアルミニウム箔の振動エネルギーに変換されて減衰する。さら に、上記外板の内側に空気層を隔てて防音部材を配設しているので、上記切れ目 又は貫通孔から漏れた拡散音を外板で反射させるとともに、再度吸音材に取り込む ことにより吸音減衰させることができる。これにより、騒音減少により有効である。
[0014] また、外装板と多数の貫通穴を有した内装板とを対向配置して形成された多孔質 防音構造体において、前記内装板の板厚、穴径および開口率が、前記貫通穴を流 通する空気に粘性作用を発生させる設計条件を満足するように設定されていることを 特特徴徴ととすするる多多孔孔質質防防音音構構造造体体ががああるる。。
発発明明のの開開示示
[0015] 上上記記のの有有孔孔板板にに設設けけらられれたた貫貫通通孔孔はは、、孔孔径径がが 00.. 55mmmm程程度度のの大大ききなな孔孔ででああるる。。まま たた、、上上記記アアルルミミニニウウムム箔箔にに設設けけらられれたた貫貫通通孔孔もも、、孔孔径径がが φφ 11mmmm程程度度のの大大ききなな孔孔ででああ るる。。
[0016] ここののたためめ、、ここれれららでではは、、共共鳴鳴周周波波数数 ff以以外外のの周周波波数数のの騒騒音音にに対対すするる吸吸音音率率がが極極めめてて 低低くくななるるここととががああるる。。ししたたががっってて、、吸吸音音性性能能上上、、複複数数のの周周波波数数ををピピーークク成成分分ととししてて含含むむ 騒騒音音にに対対ししてて十十分分にに吸吸音音性性能能をを発発揮揮すするるここととががででききずず、、吸吸音音率率でで 00.. 44未未満満ととななるる場場 合合ががああるる。。
[0017] 通通常常ののフフェェルルトト、、ググララススウウーールル、、ロロッッククウウーールル等等のの不不織織布布やや繊繊維維かかららななるる繊繊維維質質材材単単 体体ででのの吸吸音音率率もも、、密密度度やや厚厚ささにによよっっててはは吸吸音音率率がが 00.. 44以以下下程程度度ででああるる。。ししたたががっってて、、 吸吸音音率率をを向向上上ささせせるるたためめににはは厚厚みみをを大大ききくくすするる必必要要ががあありり、、吸吸音音構構造造のの配配置置空空間間やや 重重量量がが制制限限さされれてていいるる場場合合ににはは、、吸吸音音率率 00.. 44以以上上をを達達成成ででききなないい場場合合ががああるる。。
[0018] ここのの吸吸音音率率をを 00.. 44以以上上とと高高めめるるたためめににはは、、貫貫通通孔孔をを有有ししたた内内装装板板((多多孔孔板板))のの穴穴径径
((孔孔径径))ががででききるるだだけけ細細かかレレ、、方方がが好好ままししレレ、、。。
[0019] ししかかしし、、多多孔孔板板をを制制作作すするる際際にに、、ここののよよううなな小小ささいい孔孔径径のの貫貫通通孔孔をを、、比比較較的的薄薄いい金金 属属板板にに設設けけるるここととはは非非常常にに困困難難ででああるる。。特特にに、、アアルルミミニニウウムム箔箔はは、、多多孔孔板板のの中中ででもも 2200 zz mm程程度度のの厚厚みみししかかななぐぐしし力力 軟軟質質ででああるる。。ししたたががっってて、、ここののよよううななアアルルミミニニウウムム箔箔にに 、、微微細細なな貫貫通通孔孔をを多多数数設設けけるる加加工工はは、、非非常常なな困困難難ととココスストト高高ととをを伴伴ううももののででああっったた。。
[0020] 従従っってて、、本本発発明明はは、、多多孔孔板板のの孔孔径径をを小小径径化化せせずずにに、、吸吸音音率率のの更更ななるる向向上上がが可可能能なな 吸吸音音構構造造をを提提供供すするるここととをを目目的的ととすするるももののででああるる。。
[0021] 上上記記目目的的をを達達成成すするるたためめのの、、本本発発明明吸吸音音構構造造のの要要旨旨はは、、音音源源側側でで発発生生ししたた騒騒音音をを 抑抑制制すするるたためめのの吸吸音音構構造造ででああっってて、、前前記記音音源源側側にに対対向向すするるよよううにに設設けけらられれるるととととももにに 、、互互いいがが重重ななるるよよううにに設設けけらられれたた多多数数のの貫貫通通孔孔をを有有すするる多多孔孔板板おおよよびび繊繊維維質質材材とと、、前前 記記多多孔孔板板ままたたはは前前記記繊繊維維質質材材のの背背後後にに設設けけらられれたた空空気気層層ととをを備備ええたた吸吸音音構構造造ににおお いいてて、、前前記記繊繊維維質質材材がが下下記記式式((11))をを満満足足すするるととととももにに、、前前記記多多孔孔板板がが下下記記式式((22))をを満満 足足すするるここととででああるる。。
[0022] * ·· ·· ·· ·· ·· ((11)) β≥10x (2)
但し、
x=4/3 X Log d- 1/3
10
P:繊維質材の密度 (kg/m3 )
t :繊維質材の厚さ(mm)
d:多孔板の貫通孔の孔径(mm)
β:多孔板の貫通孔の開口率(%)
[0023] 本発明吸音構造は、繊維質材の密度 ρと厚さ tとの積を上記一定以上の値とした 上で、多孔板の貫通孔の開口率 /3も、貫通孔の孔径 dとの関係で規定する。
[0024] このように繊維質材と多孔板とを上記相互関係とすることで、即ち、繊維質材が上 記式(1)、前記多孔板が上記式(2)を、各々満足することで、多孔板がアルミニウム 箔のような薄板であり、その多孔板に貫通孔を多数設ける加工を容易とするために貫 通孔が大きな孔径を有している場合でも、吸音率で 0. 4以上を達成可能な吸音性能 に優れた吸音構造を提供できる。
図面の簡単な説明
[0025] [図 1]本発明吸音構造の一実施態様を示す断面図である。
[図 2]図 1を部分的に拡大した断面図である。
[図 3]図 1を部分的に拡大した断面図である。
[図 4]本発明吸音構造の他の実施態様を示す断面図である。
[図 5]本発明吸音構造の他の実施態様を示す断面図である。
[図 6]本発明吸音構造の他の実施態様を示す断面図である。
[図 7]本発明吸音構造の他の実施態様を示す断面図である。
[図 8]本発明吸音構造の他の実施態様を示す断面図である。
[図 9]本発明吸音構造の他の実施態様を示す断面図である。
[図 10]本発明吸音構造の他の実施態様を示す断面図である。
[図 11]本発明吸音構造の他の実施態様を示す断面図である。
[図 12]本発明吸音構造の他の実施態様を示す断面図である。
[図 13]本発明吸音構造の吸音効果を示す説明図である。 [図 14]本発明吸音構造の吸音効果を示す説明図である。
[図 15]本発明吸音構造の吸音効果を示す説明図である。
[図 16]比較例吸音構造の吸音効果を示す説明図である。
[図 17]本発明吸音構造の他の態様を示す断面図である。
[図 18]本発明吸音構造の吸音効果を示す説明図である。
[図 19]本発明吸音構造の吸音効果を示す説明図である。
[図 20]本発明吸音構造の吸音効果を示す説明図である。
[図 21]本発明吸音構造の吸音効果を示す説明図である。
[図 22]本発明吸音構造の吸音効果を示す説明図である。
[図 23]本発明吸音構造の他の態様を示す断面図である。
[図 24]本発明吸音構造の吸音効果を示す説明図である。
[図 25]本発明吸音構造の吸音効果を示す説明図である。
[図 26]本発明吸音構造の他の態様を示す断面図である。
[図 27]本発明吸音構造の吸音効果を示す説明図である。
[図 28]本発明吸音構造の吸音効果を示す説明図である。
[図 29]本発明吸音構造の吸音効果を示す説明図である。
[図 30]本発明吸音構造の吸音効果を示す説明図である。
[図 31]本発明吸音構造の吸音効果を示す説明図である。
[図 32]本発明吸音構造の吸音効果を示す説明図である。
[図 33]本発明吸音構造の他の態様を示す断面図である。
[図 34]本発明吸音構造の吸音効果を示す説明図である。
[図 35]本発明吸音構造の吸音効果を示す説明図である。
[図 36]本発明吸音構造の吸音効果を示す説明図である。
発明を実施するための最良の形態
[0026] 図 1から図 3を用いて、本発明を車両用吸音構造に適用した場合の実施態様を具 体的に説明する。図 1は自動車のフード裏面に本発明車両用吸音構造を配置した 態様を示す断面図、図 2は図 1の部分断面図、図 3も図 1の部分断面図である。
[0027] 図 1の本発明吸音構造 1は、自動車のフード 6裏面のエンジン音源側に配置され、 エンジン音源側で発生した騒音を抑制する。
[0028] 図 1の吸音構造 1の態様は、基本的に、エンジン音源側から順に、繊維質材 4と、多 数の貫通孔 3を有し、繊維質材 4に重ねられるようにして設けられた多孔板 2と、この 多孔板 2の背後の空気層 5とを備えている。但し、繊維質材 4に代えて、音源側の前 面に、多孔板 2を配置し、その背後に多孔板 2と重なるように、繊維質材 4を配置して も同様の効果が得られる。
[0029] (繊維質材)
本実施例において、繊維質材 4は、連続気泡の発泡材等を含む繊維質材料である 。この繊維質材 4は吸音効果を発揮するために、エンジン音源側からの騒音 (音波) に対し、前面に配置されている。なお、上記した通り、音源側の前面に、多孔板 2を 配置し、その背後に多孔板 2と重なるように、繊維質材 4を配置しても、繊維質材 4の 吸音効果が同様に得られる。
[0030] この吸音効果を発揮するためには、前記繊維質材の密度 pが 10〜400kg/m3の 範囲であることが好ましレ、。繊維質材の密度 pが 10kg/m3未満、あるいは、 400kg / を超えた場合、いずれも繊維質材 4の吸音効果が低下する可能性がある。
[0031] このような密度 pを有する繊維質材としては多孔繊維質である材料が良い。この多 孔繊維質である材料として、フェルト、グラスウール、ロックウール等の不織布や繊維 が絡み合って多孔質となるような、音響用語辞典(日本音響学会偏)で定義される、 綿状の材料、公知の吸音材料、連続気泡の発泡材などが使用可能であり、この中か ら適宜選択される。
[0032] 更に、繊維質材 4は、図 2に示す、繊維質材の密度 p (kg/m3 )と、繊維質材の厚 さ t (mm)が、下記式(1 )を満足することが必要である。
[0033] p X t≥0. O lkg/m2 ( 1 )
[0034] 前記繊維質材の密度 pと、繊維質材の厚さ tが、この式(1 )を満足した場合には、 多孔板 2と空気層 5とを組み合わせた構成において、多孔板 2の板厚などによらず、 0 . 4以上の高い吸音率が得られる。一方、繊維質材の密度 pと、繊維質材の厚さ tが 、この式(1 )を満足しない場合には、多孔板 2の貫通孔 3の開口率 j3が前記式(2)を 満足したとしても、多孔板 2のみが存在する場合の吸音率並に吸音率が低下する。 即ち、密度 pや厚さ tのレ、ずれか、あるいは両方が小さ過ぎることによって式(1)を満 足しない場合には、特に、貫通孔 3を加工しやすい 0. 8mmを超える大きな孔径 dと した際の吸音率を 0. 4以上とすることができない。
[0035] (多孔板)
図 1では、多孔板 2として、軽量化に寄与するアルミニウムなどの金属箔(以下、単 にアルミニウム箔と言う)を用いた態様を示している。本発明吸音構造 1は、 自動車の フード 6裏面のエンジン音源側に新たに付加して配置される部材であるので、できる だけ軽量であることが好ましい。この点、薄肉のアルミニウム箔を用いた場合、アルミ ニゥム合金板などを用いるよりも、部材自体の軽量ィ匕が図れる。したがって、本発明 の多孔板は、通常の板のみではなぐ箔ゃ膜などの厚みの極く薄いものも含むもので ある。
[0036] 多孔板 2は、前記した従来技術と同様に、ヘルムホルツ共鳴原理によって吸音する 力 本発明では、多孔板 2における個々の貫通孔 3 (図 3参照)の孔径 d (mm)と、多 孔板 2の表面積に対する全貫通孔の合計面積の比である貫通孔の開口率 (%)と は、下記式(2)を満足するものとする。
[0037] β≥10χ 但し、 x=4/3 X Log d— 1/3 (2)
10
[0038] 貫通孔 3の開口率 がこの式(2)を満足した場合には、繊維質材 4と空気層 5とを 組み合わせた構成において、多孔板 2の板厚などによらず、 0. 4以上の高い吸音率 が得られる。一方、貫通孔 3の開口率 がこの式(2)を満足しない場合には、繊維質 材の密度 Pと繊維質材の厚さ tが前記式(1)を満足したとしても、吸音率が低下する 。即ち、貫通孔 3の数が少な過ぎることによって、開口率 が小さ過ぎる場合、特に、 貫通孔 3を加工しやすい 0. 8mmを超える大きな孔径 dとした場合には吸音率を 0. 4 以上とすることができない。
[0039] 多孔板 2の材質や板厚の選択は、前記軽量化や吸音効果の観点も含めると、でき るだけ薄板で軽量かつ強度が有る材料が好ましい。この点、多孔板の板厚は 0. 5m m未満の薄板であることが好ましレ、。
[0040] また、材質としても、鋼板、アルミニウム合金板、樹脂板などが適宜使用可能である 力 その中でも、軽量化や吸音効果の点で、アルミニウム合金板、それもアルミニウム 箔が好ましい。
[0041] (空気層)
空気層 5は、騒音の共鳴室として作用し、多孔板 2の貫通孔 3と合わせて、複数の 周波数の騒音や特定周波数の騒音を効率的に吸収することができる。この空気層 5 の最適厚みは、吸音構造の使用部位や騒音の状況、騒音の低減の必要性に応じて 異なるものの、 10〜50mmの範囲力 選択するのが好ましレ、。また、空気層 5は多孔 板 2の貫通孔 3からのみ連通し、他の部分は、周囲に配置された遮蔽部材 8によって 気密に保持されていることが、吸音率を高める点で好ましい。
[0042] (吸音構造の取り付け)
本発明吸音構造 1の、フード 6への取り付け方は、例えば、フード 6のインナパネル 裏面の周縁部に、接着剤あるいはボルト、ナットなどの機械的な締結具により、空気 層 5を形成しつつ、固定および一体化する。
[0043] なお、本発明吸音構造 1は、必ずしも、フード 6裏面乃至インナパネル裏面を全て 覆う乃至カバーする必要はない。言い換えると、車両の使用部位や騒音の状況、騒 音の低減の必要性に応じて、吸音構造 1をフード 6裏面側の適宜の箇所に部分的に 、あるいは分散して配置するようにしても良い。
[0044] 本発明吸音構造 1のフードへの取り付け方の別の態様を、図 4〜9に示す。図 4は、 フードのインナパネル 10が多数の円錐型の窪みを有する、いわゆるマルタイコーン 型等の凹凸形状に形成されている場合に、エンジン音源側から順に、平板状の繊維 質材 4と、多数の貫通孔 3を有するとともに繊維質材 4に重ねられるようにして設けら れた平板状の多孔板 2と、この多孔板 2の背後の空気層 5とを備えた態様を示す。な お、この多孔板 2は、背後の空気層 5を備えた上で、フードのインナパネル 10に直接 接合しても良い。
[0045] 図 5、 6、 7は、図 4と基本的な構成は同じだが、重ね合わせて設けた繊維質材 4と 多孔板 2とに、凹凸を設けて剛性を向上させた例を示す。図 5は断面円弧状の凹凸 が連続し、図 6は断面三角形状の凹凸が連続し、図 7は断面台形状の凹部と断面三 角形状の凸部とが連続してレ、る。
[0046] 図 8、 9、 10、 11、 12は、図 4と基本的な構成は同じだ力 繊維質材 4と多孔板 2とを 重ね合わせる際に、中間に若干の隙間(空気層)を設けた例を示す。このように、繊 維質材 4と多孔板 2とを重ね合わせる際に、中間に空気層を設けても良い。
[0047] 図 8は平板状の繊維質材 4と平板状の多孔板 2とを設けた例で、繊維質材 4と多孔 板 2との間が中間の空気層 5aとなる。図 9、 10、 11は平板状の繊維質材 4と凹凸状 の多孔板 2とを設けた例を示している。図 9、 10、 11の場合、多孔板 2の凹凸と、平板 状の繊維質材 4で囲まれた領域が中間の空気層 5aとなる。図 12は凹凸状の繊維質 材 4と平板状の多孔板 2とを設けた例を示している。図 12の場合、繊維質材 4の凹凸 と、平板状の多孔板 2とで囲まれた領域が中間の空気層 5aとなる。
[0048] (作用)
本発明吸音構造 1では、エンジン音などの車体内部の音源に対して、繊維質材 4が まず前面に配置され、次いで、多孔板 2、空気層 5の順に配置されている。
[0049] この結果、本発明吸音構造 1では、エンジンなどの音源からの騒音が、まず、例え ば、前面に配置された繊維質材 4に衝突する。このため、繊維質材 4の吸音特性に 対応して、繊維質材 4の多孔質部分を通過中に騒音が吸収され、吸収されない残り の騒音は繊維質材 4の孔部分を透過することとなる。
[0050] この際、前記した通り、繊維質材 4は、繊維質材の密度 p (kg/m3 )と、繊維質材 の厚さ t (mm)と力 前記式(1)を満足する関係となっているので、特に、貫通孔 3を 加工しやすい 0. 8mmを超える大きな孔径 dとした多孔板 2の場合でも、吸音率を 0. 4以上とすることができる。
[0051] 前記繊維質材 4を透過した残りの騒音は、次いで、多孔板 2の貫通孔 3部分を介し て (透過して)、空気層 5へ導入される。そして、多孔板 2の貫通孔 3が騒音の共鳴穴 として作用するとともに、空気層 5も騒音の共鳴室として作用し、特定周波数の騒音を 効率的に吸収することができる。また、多孔板 2の表面に繊維質材 4が配置されること で、多孔板の貫通孔 3による吸音作用に、繊維質材 4の減衰が付加され、多孔板 2の みの構成より高い吸音性能となる。
[0052] なお、以上の吸音効果は、前記した通り、エンジン音などの車体内部の音源に対し て、繊維質材 4に代えて、多孔板 2をまず前面に配置し、次いで、繊維質材 4をこの 多孔板 2の背後に重なるように配置し、そして繊維質材 4の背後に空気層 5を順に配 置した場合にも同様に発揮される。
[0053] この際、多孔板 2は、前記した通り、個々の貫通孔 3の孔径 d (mm)と、多孔板の表 面積に対する全貫通孔の孔径 dの合計面積の比である、貫通孔の開口率 (%)と は、前記した通り、上記式(2)を満足するものとされている。
[0054] この結果、特に、貫通孔 3を加工しやすい 0. 8mmを超える大きな孔径 dとした際に も、吸音率を 0. 4以上とすることができる。
[0055] 本発明吸音構造 1では、このような構成と作用を有するため、繊維質材 4と、多孔板 2と、空気層 5との互いの効果を相乗させることが可能である。即ち、薄いアルミニウム 箔を多孔板 2として用レ、、かつ、貫通孔 3を加工しやすい 0. 8mmを超える大きな孔 径 dとした場合でも、後述する実施例の通り、これら各吸音手段単独の場合の吸音効 果に比して、幅広い周波数範囲の吸音性能とともに特定周波数の吸音性能をも著し く高めること力できる。このため、吸音構造自体の軽量化が可能で、多孔板の貫通孔 も加工しやすい。したがって、吸音構造付加による車体重量の増加や車体コストの増 加も最小限に抑制できる。
[0056] (実施例)
次に、本発明の実施例を説明する。前記図 1に示した形状構造の吸音構造 1を準 備して、繊維質材の前記式(1)における p及び tを変化させ、前記式(2)から、吸音 率 0. 4以上が達成できる多孔板の孔径と開口率との関係を求めた。
[0057] 吸音測定は音響管を用いて吸音率を測定した。まず、音響管の一端を剛壁面 (フ ードパネルを模擬)として、もう一方の端部に音源であるスピーカーを配置した。この スピーカーの前面に、一定の間隔を設けて、繊維質材 4を立設し、この繊維質材 4の 背後に重なるように、多孔板 2である多孔が形成されたアルミニウム箔を立設し、この 多孔板 2の背後の剛壁面間に、空気層 5が存在するようにした。そして、スピーカーか ら音波を発信し、吸音構造供試体近傍の 2点のマイクロホンで音圧を測定することに より、入射波と反射波との比を求め、吸音率を計算した。
[0058] 試験条件として、騒音の周波数は低周波数から高周波数までを含む 800〜4000 Hzの範囲、多孔板としては厚さ 80 x m (0. 08mm)のアルミニウム箔、空気層の厚 みは 35mmとした。 [0059] これらの結果を図 13、 14、 15、 16に示す。図 13、 14、 15は発明 ί列、図 16は、図 1 において繊維質材を設けず、多孔板と背後の空気層のみを設けた比較例を示す。 各図において、縦軸は多孔板の孔径、横軸は多孔板の開口率を示す。また、各図に おいて、白い領域が吸音率 0. 6以上となる領域であり、灰色の領域が吸音率 0. 4〜 0. 6となる領域、黒い領域が吸音率 0. 4未満となる領域である。
[0060] 〔発明例:図 13〕
繊維質材として、グラスウールを用レ、、密度 p : 80kg/m3、厚さ t : 2mmとし、前記 式( の X t≥0. Olkg/m2を満足するように、 p X t = 0. 16kg/m2とした。図 1 3から、多孔板の孔径が φ θ. 5mm以上でも、吸音率 0. 6以上となる領域 (範囲)が 広がっていることが分かる。
[0061] 〔発明例:図 14〕
繊維質材として、フエノレトを用レ、、密度 p : 250kg/m3、厚さ t : 0. 64mmとし、前 記式(1)の p X t≥0. Olkg/m2を満足するように、 X t = 0. 16kg/m2とした。 図 14から、多孔板の孔径が φ θ. 5mm以上でも、吸音率 0. 6以上となる領域 (範囲) が広がっていることが分かる。
[0062] 〔発明例:図 15〕
繊維質材として、ロックウールを用い、密度 p : 138kg/m3、厚さ t : l . 2mmとし、 前記式(1)の p X t≥0. Olkg/m2を満足するように、 X t = 0. 16kg/m2とした 。図 15から、多孔板の孔径が φ θ. 5mm以上でも、吸音率 0. 6以上となる領域 (範 囲)が広がってレ、ることが分かる。
[0063] 〔比較例:図 16〕
繊維質材が無い場合であり、前記式(1)の p X t≥0. Olkg/m2を満足しなレ、。こ の結果、図 16から、吸音率 0. 6以上となる領域 (範囲)が、上記発明例に比して、著 しく小さくなつており、多孔板の孔径が φ θ. 5mm以上では、吸音率 0. 6以上となら ないことが分かる。したがって、吸音率を上げるためには、多孔板により加工が困難 な小さな孔径の孔を設ける必要がある。
[0064] (発明を実施するためのその他の形態)
以下に、発明を実施するためのその他の形態について説明する。 [0065] (繊維質材)
前記図 1〜: 12の繊維質材 4において、吸音効果や剛性などの特性の調整、あるい は繊維質材制作や取り付けの都合から、繊維質材 4は、 1層だけではなぐ 2層以上 の繊維質材からなる多層構造として良レ、。繊維質材 4をこのような多層構造にする場 合は、前記目的に応じて、同じ材料同士を積層しても良ぐまた、違う材料同士を積 層しても良ぐあるいは、これらの積層を互いに組み合わせて積層しても良い。
[0066] 更に、繊維質材 4は、このような音源に対する方向(音波の進行方向)での多層配 列だけではなぐ音源に対する同じ層内あるいは同じ面内(吸音構造の向きによって 水平面内あるいは垂直面内)で、異なる繊維質材あるいは異なる吸音率の繊維質材 同士を適宜配歹 1Jしても良レ、。このような態様であれば、音源に対する同じ層内あるい は同じ面内で異なる吸音率を有する領域が存在するので、幅広い周波数帯域で吸 音効果を得ることができる。
[0067] (貼り合わせ型多孔板)
前記図 1〜: 12の多孔板 2において、アルミニウム多孔箔のようなごく薄い材料を用 レ、る場合には、多孔板 2をアルミニウム多孔箔単一とするだけではなぐこれに違う材 料を積層してもよい。例えば、アルミニウム多孔箔に、フェルト、グラスウール、ロックゥ ール等の不織布や繊維からなる繊維質材を貼り合わせて多孔板 2とすれば、多孔板 2に剛性や厚みを持たせることができる。
[0068] そして、この貼り合わせ型多孔板 2の上記不織布や繊維からなる繊維質材側と、前 記繊維質材 4とを接着剤により接着すれば、アルミニウム多孔箔側に接着剤を塗布 する必要がない。このため、アルミニウム箔の多孔部分を接着剤で目詰まりさせず、 吸音効果を低下させずに、多孔板 2と繊維質材 4とを貼り合わせできる利点がある。
[0069] 更に、この貼り合わせ型多孔板 2は孔開け加工がしゃすいという利点がある。即ち、 孔開けしていないアルミニウム箔に予め上記不織布や繊維からなる繊維質材を貼り 合わせ、この貼り合わせたアルミニウム箔に、吸音のための孔開け加工を行なレ、、ァ ノレミニゥム多孔箔(多孔板 2)とする。このような態様によれば、孔開け加工に必要な 剛性や厚みを持たせることができ、ごく薄いアルミニウム箔単独に孔開け加工するより も、孔開け加工自体が容易となる。 [0070] したがって、前記図 1〜: 12の吸音構造 1においても、繊維質材 4と多孔板 2同士の 貝占り合わせは、機械的な接合でも良いが、上記した接着剤により行なうのが簡便であ る。
[0071] (貼り合わせ型多孔板の吸音性能)
この貼り合わせ型多孔板の一例を図 17に示す。図 17の吸音構造においては、ァ ノレミニゥム多孔箔 2に不織布 8を貼り合わせて多孔板とし、これに繊維質材 4としてグ ラスウールを貼り合わせている。この図 17の吸音構造の各部の厚み条件を変えた場 合の吸音性能(吸音率)を図 18〜21に示す。吸音構造および吸音率の測定方法と 試験条件は、前記した実施例と同様に行なった。図 18〜21においては、前記図 13 〜16と同様に、繊維質材 4の前記式(1)における P及び tを変化させ、前記式(2)か ら、吸音率 0. 4以上が達成できる多孔板の孔径と開口率との関係を求めている。
[0072] 図 18および図 19の吸音構造は、厚さ 80 x m (0. 08mm)のアルミニウム多孔箔に 、厚さ 0. 1mm (面密度: 40g/m2
)の上記不織布や繊維からなる繊維質材を貼り合わせて多孔板とした。そして、これ に、繊維質材 4として、密度 p : 80kg/m3、厚さ t : 2mm (図 18)または 5mm (図 19) のグラスウールを貼り合わせた。多孔板背後の空気層を含む吸音構造全体の厚みは 35mmとした。
[0073] 図 20の吸音構造は、厚さ 80 /i m (0. 08mm)のアルミニウム多孔箔に、厚さ 2mm ( 密度: 80kg/m3 )のグラスウールを貼り合わせて多孔板とし、これに繊維質材 4とし て、密度 p: 32kg/m3、厚さ t : 2mmのグラスウールを貼り合わせた。多孔板背後の 空気層を含む吸音構造全体の厚みは 35mmとした。
[0074] 図 21の吸音構造は、厚さ 80 μ πι (0. 08mm)のアルミニウム多孔箔に、厚さ lmm ( 密度: 80kg/m3 )のグラスウールを貼り合わせて多孔板とし、これに繊維質材 4とし て、密度 p: 32kg/m3、厚さ t : 1mmのグラスウールを貼り合わせた。多孔板背後の 空気層を含む吸音構造全体の厚みは 35mmとした。
[0075] これら図 18〜21の各図において、縦軸は多孔板の孔径、横軸は多孔板の開口率 を示す。また、各図において、白い領域が吸音率 0. 6以上となる領域であり、灰色の 領域が吸音率 0. 4〜0. 6となる領域、黒い領域が吸音率 0. 4未満となる領域である 。これら各図から、多孔板の孔径が φ θ. 5mm以上でも、吸音率 0. 6以上となる領域 (範囲)が広がってレ、ることが分かる。
[0076] このような貼り合わせ型多孔板の態様では、多孔板の繊維質材 4と多孔板に貼り合 わせた上記グラスウール 8などの不織布や繊維からなる繊維質材とは、これら繊維質 材の全ての層の面密度 p X tの合計値力 前記式(1)の p X t≥0. O lkgZm2を満 足するようにする。これは、前記図 18〜21の態様でも、後述する態様でも同様である
[0077] なお、この場合、繊維質材 4の層か、上記グラスウール 8などの不織布や繊維からな る繊維質材の層か、いずれかの 1層が前記式(1)の p X t≥0. OlkgZm2を満足し ていれば、当然、繊維質材の全ての層の面密度 p X tの合計値も p X t≥0. 01kg /m2を満足する。したがって、言い換えると、繊維質材のいずれかの 1層が p X t≥ 0. OlkgZm2を満足していれば、他の繊維質材が p X t≥0. 01kg/m2を満足し ていなくても良い。
[0078] これに対して、前記した繊維質材の好ましい密度 pの範囲(10〜400kg/m3 )は 、このような貼り合わせ型多孔板の態様では、各繊維質材層が各々この範囲にあるこ とが好ましい。上記図 18〜21における態様では、これを満足している。
[0079] 図 22に、図 17の多孔板(アルミニウム多孔箔に不織布を貼り合わせ、構造減衰を 付加した多孔板)と、アルミニウム多孔箔のみとして構造減衰を付加していない多孔 板との音波の周波数 (横軸)による吸音率 (縦軸)の変化を示す。構造減衰を付加し た多孔板 (太線)は、音波の周波数によっても吸音率の極端な低下はない。これに対 して、構造減衰を付加していない多孔板(薄線)では、周波数が 500〜700Hz当たり で吸音率が極端に低下している。これは、この周波数帯域で、多孔板の上記共振が 発生していることが原因である。
[0080] (繊維質材間への多孔板の挟み込み)
繊維質材 4を前記した多層構造にした場合、繊維質材 4と多孔板 2とを貼り合わせ る際に、図 23に示すように、音波に対し前面側の繊維質材 4の層と、音波に対し後面 側の繊維質材 8の層との間に多孔板(多孔箔) 2を揷入する、あるいは繊維質材 4お よび 8の層の間に多孔板 2を挟み込むようにして設けた場合には、繊維質材 4のみの 場合に比して、透過損失が大きくなり、遮音性が向上する。そして、このような構造は 、吸音率にはあまり影響せず、吸音率を低下させない。したがって、遮音性が要求さ れる用途には、このような態様を採用することが好ましレ、。
[0081] この図 23のように、繊維質材 4および 8の層の間に多孔板 2を揷入した吸音構造の 、各周波数毎の透過損失を図 24に、各周波数毎の吸音率を図 25に、各々太線で示 す。図 23の吸音構造は、厚さ 0. 3mmの多孔板を、密度 60kgZm3、厚さ 20mmの 繊維質材と、密度 60kgZm3、厚さ 10mmの繊維質材との間に挿入したものである。 比較として、密度 60kgZm3の繊維質材のみの場合 (厚さ 30mm)の透過損失を図 2 4に、吸音率を図 25に、各々細線で示す。
[0082] 図 24および図 25から、繊維質材 4および 8の層の間に多孔板 2を揷入した場合の 方が、繊維質材のみの構造に比して、透過損失が大きくなり、遮音性が向上している ことが分かる。また、繊維質材 4および 8の層の間に多孔板 2を揷入した場合と、繊維 質材のみの構造とを、吸音率で比較すると大差ないことが分かる。
[0083] (多孔板の貫通孔の開口率 の好ましい態様)
ここで、貫通孔の開口率 の好ましい態様について以下に説明する。前記した通り 、多孔板 2の表面積に対する全貫通孔の合計面積の比である貫通孔の開口率 (% )は、前記式(2)を満足するものとするが、貫通孔の孔径 d (mm)との関係で、吸音率 を高めるための好ましい範囲がある。
[0084] 具体的には、開口率 (%)は、前記式(2)を満足した上で、 β≥ 10y但し、 y=— 0 . 67 X Log d- 1. 67 : 2式力、 β≤10ζ但し、 ζ=— 0. 67 X Log d+ 0. 15 : 3式の
10 10
レヽずれかを満足することが好ましレ、。
[0085] この 2式と 3式とは各々下限、上限の関係にあり、前記式(2)を満足した上で、上記 2式、 3式の両方を満足することがより好ましい。言い換えると、開口率 /3は、前記式( 2)を満足した上で、これら 2式(下限)と 3式 (上限)とで挟まれる(囲まれる)範囲にあ ることがより好ましい。
[0086] 前記した貼り合わせ型多孔板の例である前記図 18〜21の各図(図 17の貼り合わ せ型多孔板例)において、前記式(2)を 1式とした際の、 1式、前記 2式および前記 3 式を各々満足する範囲を各々〇で囲んだ 1、 2、 3の数字の線と矢印とで示す。この 図 18〜図 21の各図において、繊維質材の密度 pと繊維質材の厚さ tとが前記式(1) を満足することを前提にすると、開口率 が 1式と 3式とを満足する範囲、 1式と 2式と を満足する範囲および 1式〜 3式をいずれも満足する範囲(1式〜 3式で挟まれる範 囲)では、この順番で吸音率の高い領域の占める比率が大きくなつていくことがわか る。すなわち、開口率 j3および貫通孔の孔径 dを、 1式〜 3式をいずれも満足する範 囲内の値に設定することにより、吸音率を特に向上させることが可能であることがわか る。
[0087] ここで、繊維質材の密度 pと繊維質材の厚さ tとが前記式(1)の p X t≥0. Olkg/ m2を満足することを前提に、 p X tを 0. 01〜: 1. 0まで変化させた場合の吸音性能( 吸音率)を図 27〜31に示す。吸音構造、吸音率の測定方法と試験条件は、前記し た実施例と同様に行なった。
[0088] 吸音構造は図 26のものを用いた。即ち、厚さ 80 μ πι (0. 08mm)のアルミニウム多 孔箔 2に繊維質材 4としてグラスウールを貼り合わせたものを用いている。そして、繊 維質材 4の密度 pを一定にして、繊維質材 4の厚さ tを変えることにより p を0. 01 〜1. 0まで変化させた。これらの図 27〜31では、前記図 18〜21と同様に、前記式( 2)から、吸音率 0. 4以上が達成できる多孔板の孔径と開口率との関係を求めている 。各図において、白い領域が吸音率 0. 6以上となる領域であり、灰色の領域が吸音 率 0. 4〜0. 6となる領域、黒い領域が吸音率 0. 4未満となる領域である。図 30およ び図 31から、多孔板の孔径が φ θ. 5mm以上でも、吸音率 0. 6以上となる領域 (範 囲)が広がってレ、ることが分かる。
[0089] また、図 27〜31の各図において、前記式(2)を 1式とした際の、 1式、前記 2式およ び前記 3式を各々満足する範囲を、各々〇で囲んだ 1、 2、 3の数字の線と矢印とで 示す。この図 27〜図 31の各図において、繊維質材の密度 pと繊維質材の厚さ tとが 前記式(1)を満足することを前提にすると、開口率 /3力 ^式と 2式または 3式のいずれ か一方とを満足する範囲よりも 1式〜 3式をいずれも満足する範囲(1式〜 3式で挟ま れる範囲)の方が、吸音率の高い領域の占める比率が大きいことがわかる。すなわち 、開口率 /3および貫通孔の孔径 dを、 1式〜 3式をいずれも満足する範囲内の値に 設定することにより、吸音率を特に向上させることが可能であることがわかる。なお、こ の図 27〜31のような p X tの傾向は、他の貼り合わせ型や挟み込み型の態様でも同 様となる。
[0090] (多孔板の剛性向上)
前記した貼り合わせ型多孔板の吸音率向上効果は、貝占り合わせによって、多孔板 の剛性を向上させ、多孔板の構造減衰を大きくしたことにもよる。多孔板は孔部を通 過する音波の振動速度が大きいほど吸音率が向上する。しかし、多孔板が音波によ つて共振した場合、孔部を通過する音波と一緒に、? L自体も動くこととなる。この結果 、孔部を通過する音波の振動速度は相対的に遅くなり、吸音率が極端に低下する。
[0091] これに対して、多孔板の剛性を向上させると、多孔板の構造減衰が大きくなり、多孔 板自体の音波による共振が抑制される。この結果、孔部を通過する音波の振動速度 (音波の相対速度)は相対的に速くなり、吸音率が向上する。
[0092] 多孔板の剛性を向上させる方法としては、多孔板(多孔箔)に、前記した貼り合わせ 型多孔板における不織布や繊維からなる繊維質材、あるいは制振材、フィルム、など を多孔板に貼り合わせる。また、多孔板(多孔箔)自体にエンボス加工を施し、凹凸を 付ける。この多孔板の高剛性化、乃至多孔板のエンボス加工は、高剛性化だけでは なぐ吸音率を向上させる効果もある。
[0093] アルミニウム多孔箔 2に、エンボス加工を施した場合と、エンボス加工を施さない場 合との、周波数毎の吸音率を図 32に示す。図 32において、濃い線がエンボス加工 を施した場合、薄い線がエンボス加工を施さない場合を示す。図 32から、エンボス加 ェを施した方が吸音率が向上していることが分かる。
[0094] (吸音構造の保護)
図 33は、吸音構造(図 23の態様)の外側 (音波側)に、更に、鋼薄板からなるパン チングメタルなどの表面多孔板 9を、吸音構造保護のために配置した吸音構造を示 してレ、る。吸音構造保護のためには、パンチングメタルに限らず、多孔な保護フィル ムで被覆しても良い。
[0095] この図 33に示したグラスウールからなる繊維質材 4および 8の条件を変えた場合の 周波数毎の各吸音率を図 34〜 36に示す。図 34は、繊維質材 4および 8のグラスゥ 一ノレの径を 4〜5 z mとし、多孔箔 2前面側の繊維質材 4の厚みを 10mm、多孔箔 2 後面側の繊維質材 8の厚みを 30mmとし、背後の空気層 5を lmm以下の薄層とした 。図 35は、グラスウールの径は図 34と同じだ力 多孔箔 2前面側の繊維質材 4の厚 みを 10mm、多孔箔 2後面側の繊維質材 8の厚みを 20mmとし、背後の空気層 5の 厚みを 10mmとした。これら図 34および図 35において、白四角印が発明例、黒四角 印が多孔箔 2を設けない他は発明例と条件を同じとした比較例である。図 34および 図 35から、多孔箔 2を設けた発明例の方が吸音率が高いことが分かる。
[0096] 図 36では、各厚み条件は図 34と同じとし、いずれも多孔箔 2を設けた発明例にお いて、繊維質材 4および 8のグラスウールの径の大小による影響を比較している。図 3 6におレ、て、白四角印が繊維質材 4および 8のグラスウールの径が 7〜8 μ mの比較 的太い場合 (繊維吸音材と記載)、黒四角印が繊維質材 4および 8のグラスウールの 径が 4〜5 μ m程度の比較的細い場合である(細線繊維吸音材と記載)。図 36から、 繊維質材 4、 8のグラスウールの径が細かい、細線繊維吸音材と記載した方が、吸音 率が高くなつてレ、ることが分力る。
産業上の利用可能性
[0097] 本発明によれば、多孔板がアルミニウム箔のような薄板であり、その多孔板に貫通 孔を多数設ける加工を容易とするために貫通孔が大きな孔径を有している場合でも 、吸音率で 0. 4以上を達成可能な吸音性能に優れた吸音構造を提供することができ る。この結果、自動車などの車両用途では、車体自体の簡便な改良によって、本発 明をボンネット、エンジンアンダーカバーなどのエンジン音を主体とする騒音の低減 に適用可能なだけではなく他のフェンダー、ルーフ、ドア、ダッシュボードパネルなど の、要は騒音を低減したい車体パネルに自由に用いることができる。
[0098] また、これ以外にも、本発明を防音壁、トンネル内壁などの構造物用途、あるいは 他の吸音が必要な種々の分野の用途に適用することが可能である。その場合には、 前記車両用途に関する吸音構造の各構成の説明を、車両用語から、他の用途の使 用部位や用語、あるいは他の用途の騒音の状況、騒音の低減の必要性に応じて読 み替えることによって、その用途に対する最適な実施態様の選択が可能である。

Claims

請求の範囲
音源側で発生した騒音を抑制するための吸音構造であって、前記音源側に対向す るように設けられるとともに、互いが重なるように設けられた多数の貫通孔を有する多 孔板および繊維質材と、前記多孔板または前記繊維質材の背後に設けられた空気 層とを備えた吸音構造において、前記繊維質材が下記式(1)を満足するとともに、前 記多孔板が下記式 (2)を満足することを特徴とする吸音構造。
Figure imgf000021_0001
β≥10χ (2)
但し、
χ= (4/3 X Log d- 1/3)
10
P:繊維質材の密度 (kg/m3 )
t :繊維質材の厚さ(mm)
d:多孔板の貫通孔の孔径 (mm)
β:多孔板の貫通孔の開口率(%)
前記多孔板の板厚が 0. 5mm未満である請求項 1に記載の吸音構造。
前記繊維質材の密度 pが 10〜400kgZm3の範囲である請求項 1または 2に記載 の吸音構造。
前記繊維質材が 2層以上の繊維質材からなる請求項 1乃至 3のいずれ力 4項に記 載の吸音構造。
前記 2層以上の繊維質材の層間に前記多孔板を挿入した請求項 4に記載の吸音 構造。
前記多孔板の貫通孔の開口率 /3が、 j3≥10y 但し、 y= _ 0. 67 X Log d_ 1. 6
10
7とレヽぅ第 1の条件と、 13≤10z 但し、 z =— 0. 67 X Log d + 0. 15とレヽぅ第 2の条件
10
とのうち少なくとも一方を満足する請求項 1乃至 5のいずれ力 4項に記載の吸音構造 前記多孔板の貫通孔の開口率 i3が、 i3≥10y 但し、 y=—0. 67 X Log d— 1. 6
10
7とレヽぅ前記第 1の条件と、 3≤10z 但し、 z =—0. 67 X Log d + 0. 15という前記
10
第 2の条件との両方を満足する請求項 6に記載の吸音構造。 前記吸音構造が、車両に取り付けられ、当該車両の音源側で発生した騒音を抑制 するための車両用吸音構造である請求項 1乃至 7のいずれか 1項に記載の吸音構造
PCT/JP2005/023056 2004-12-24 2005-12-15 吸音構造 WO2006068028A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/792,297 US7654364B2 (en) 2004-12-24 2005-12-15 Sound absorbing structure
DE112005003232T DE112005003232B4 (de) 2004-12-24 2005-12-15 Schallschluckende Struktur

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004374160 2004-12-24
JP2004-374160 2004-12-24
JP2005-343516 2005-11-29
JP2005343516A JP2006199276A (ja) 2004-12-24 2005-11-29 吸音構造

Publications (1)

Publication Number Publication Date
WO2006068028A1 true WO2006068028A1 (ja) 2006-06-29

Family

ID=36601628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023056 WO2006068028A1 (ja) 2004-12-24 2005-12-15 吸音構造

Country Status (4)

Country Link
US (1) US7654364B2 (ja)
JP (1) JP2006199276A (ja)
DE (1) DE112005003232B4 (ja)
WO (1) WO2006068028A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923642A1 (fr) * 2007-11-08 2009-05-15 Cellulairees Tech Sa Soc D Dispositif d'isolation phonique pour insonoriser un local, un compartiment machine ou similaire
US7654364B2 (en) 2004-12-24 2010-02-02 Kabushiki Kaisha Kobe Seiko Sho Sound absorbing structure
JPWO2019021483A1 (ja) * 2017-07-28 2020-05-28 イビデン株式会社 吸音部材、車両用部品及び自動車
RU2754697C2 (ru) * 2017-03-03 2021-09-06 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" (ИММС НАН Беларуси) Звукопоглощающая слоистая конструкция

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060285697A1 (en) * 2005-06-17 2006-12-21 Comfozone, Inc. Open-air noise cancellation for diffraction control applications
WO2007002479A2 (en) 2005-06-24 2007-01-04 Tire Acoustics, Llc Tire and wheel noise reducing device and system
US7741121B2 (en) * 2006-08-24 2010-06-22 Siemens Medical Solutions Usa, Inc. System for purification and analysis of radiochemical products yielded by microfluidic synthesis devices
EP2117823B1 (en) * 2007-03-06 2014-05-07 Futuris Automotive Interiors Us, Inc. Tufted PET carpet
AU2008224870A1 (en) * 2007-03-14 2008-09-18 Futuris Automotive Interiors (Us), Inc. Low mass acoustically enhanced floor carpet system
US20080223653A1 (en) * 2007-03-16 2008-09-18 Seoul National University Industry Foundation Poroelastic acoustical foam having enhanced sound-absorbing performance
US7712579B2 (en) * 2007-09-06 2010-05-11 Toyota Boshoku Kabushiki Kaisha Floor silencer
KR101793278B1 (ko) * 2008-04-22 2017-11-02 쓰리엠 이노베이티브 프로퍼티즈 컴파니 하이브리드 흡음 시트
CN102099850B (zh) * 2008-07-17 2014-04-16 名古屋油化株式会社 缓冲吸音材以及吸音构造
JP5359167B2 (ja) * 2008-10-07 2013-12-04 ヤマハ株式会社 車体構造体および荷室
US20100093098A1 (en) * 2008-10-14 2010-04-15 Siemens Medical Solutions Nonflow-through appratus and mehod using enhanced flow mechanisms
US8110148B2 (en) * 2008-11-06 2012-02-07 Siemens Medical Solutions Usa, Inc. Apparatus and method using rotary flow distribution mechanisms
IT1392422B1 (it) * 2008-12-19 2012-03-02 Temi S R L Schermo termico-fonoassorbente perfezionato
JP5387085B2 (ja) * 2009-03-24 2014-01-15 トヨタ紡織株式会社 車両天井構造
KR101001217B1 (ko) * 2009-06-19 2010-12-17 (주)엘지하우시스 흡음형 방음 패널
DE102009036761A1 (de) 2009-08-08 2010-03-25 Daimler Ag Motorhaubendämpfung für einen Kraftwagen und Motorhaube für einen Kraftwagen mit einer Motorhaubendämpfung
JP5459838B2 (ja) * 2009-09-18 2014-04-02 ニチアス株式会社 防音カバー及びその製造方法
US20110177283A1 (en) * 2010-01-18 2011-07-21 Futuris Automotive Interiors (Us), Inc. PET Carpet With Additive
JP2013541741A (ja) 2010-11-09 2013-11-14 カリフォルニア インスティチュート オブ テクノロジー 音響抑制システム及び関連方法
JP6110056B2 (ja) * 2011-08-25 2017-04-05 スリーエム イノベイティブ プロパティズ カンパニー 吸音材
FR2983803B1 (fr) * 2011-12-12 2013-11-29 Peugeot Citroen Automobiles Sa Dispositif ameliore de limitation de la propagation d'ondes acoustiques emises par un moteur d'un vehicule automobile vers l'habitacle du vehicule, planche de bord et vehicule contenant un tel dispositif
FR2990395B1 (fr) * 2012-05-11 2015-01-02 Renault Sas Ecran accoustique pour moteur de vehicule automobile, moteur comportant un tel ecran acoustique et procede de fabrication d'un ecran acoustique
JP5918662B2 (ja) 2012-09-04 2016-05-18 株式会社神戸製鋼所 多孔吸音構造
KR101846574B1 (ko) * 2012-11-26 2018-04-06 현대자동차주식회사 자동차용 복합흡음재 및 그 제조방법
KR101438974B1 (ko) * 2012-12-28 2014-09-11 현대자동차주식회사 차량용 휠가드
JP6165466B2 (ja) * 2013-02-27 2017-07-19 株式会社神戸製鋼所 防音構造
DE102013004502A1 (de) * 2013-03-14 2014-09-18 Musikon Gmbh Akustikmodul
US9388731B2 (en) 2013-03-15 2016-07-12 Kohler Co. Noise suppression system
US9752494B2 (en) 2013-03-15 2017-09-05 Kohler Co. Noise suppression systems
EP2858066A3 (en) * 2013-10-03 2015-04-15 Kohler Co. Noise suppression systems
JP6185859B2 (ja) * 2014-02-19 2017-08-23 河西工業株式会社 車体パネル構造体
US9251778B2 (en) 2014-06-06 2016-02-02 Industrial Technology Research Institute Metal foil with microcracks, method of manufacturing the same, and sound-absorbing structure having the same
JP6594644B2 (ja) * 2015-04-03 2019-10-23 旭ファイバーグラス株式会社 ガラス繊維断熱吸音体及びその使用方法
CN104849897B (zh) * 2015-05-27 2019-05-28 合肥鑫晟光电科技有限公司 触控显示面板及其制备方法和显示装置
CN110049956A (zh) * 2016-11-04 2019-07-23 康宁公司 微穿孔板系统、应用以及制造微穿孔板系统的方法
WO2019021478A1 (ja) * 2017-07-28 2019-01-31 イビデン株式会社 防音構造体、車両用部品及び自動車
JPWO2019021480A1 (ja) * 2017-07-28 2020-05-28 イビデン株式会社 吸音部材、車両用部品、自動車及び吸音部材の製造方法
JPWO2019021477A1 (ja) * 2017-07-28 2020-05-28 イビデン株式会社 吸音部材、車両用部品及び自動車
US10741159B2 (en) 2017-09-10 2020-08-11 Douglas Peter Magyari Acoustic-absorber system and method
KR102446926B1 (ko) * 2017-10-24 2022-10-04 현대자동차주식회사 흡차음 복합판재
CN108725337B (zh) * 2018-05-24 2023-05-02 江苏徐工国重实验室科技有限公司 一种驾驶室内饰板
JP7028125B2 (ja) * 2018-09-25 2022-03-02 トヨタ車体株式会社 吸遮音構造
CN109733299A (zh) * 2018-12-10 2019-05-10 山东国金汽车制造有限公司 一种具有吸声作用的汽车中控台及其制作方法
WO2020213139A1 (ja) * 2019-04-18 2020-10-22 日立化成株式会社 吸音材
US11732467B2 (en) 2019-05-30 2023-08-22 Biomimicry Inventions, LLC Acoustic tile
US11560751B2 (en) * 2019-09-11 2023-01-24 Catalyst Acoustics Group, Inc. Sound damping door
JP7328353B2 (ja) * 2019-12-12 2023-08-16 旭化成株式会社 多層吸音材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298014A (ja) * 1993-04-19 1994-10-25 Kasai Kogyo Co Ltd 車両用防音部材
JPH10264281A (ja) * 1997-03-27 1998-10-06 Toyoda Gosei Co Ltd 防音部材
JP2000020070A (ja) * 1998-07-06 2000-01-21 Tamagawa Seni Kogyosho:Kk 吸音シート
JP2002175083A (ja) * 2000-09-29 2002-06-21 Kobe Steel Ltd 多孔質防音構造体
JP2002274287A (ja) * 2001-03-21 2002-09-25 Toyota Motor Corp 車体吸音パネル
JP3521577B2 (ja) * 1995-11-09 2004-04-19 豊田合成株式会社 吸音材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300978A (en) * 1979-07-06 1981-11-17 Rohr Industries, Inc. Bonding tool for venting honeycomb noise attenuation structure during manufacture
US4553631A (en) * 1983-05-19 1985-11-19 United Mcgill Corporation Sound absorption method and apparatus
US4607466A (en) * 1984-05-29 1986-08-26 Allred John C Method and apparatus for controlling reverberation of sound in enclosed environments
WO1998018656A1 (de) * 1996-10-29 1998-05-07 Rieter Automotive (International) Ag Ultraleichter multifunktionaler, schallisolierender bausatz
JP3652828B2 (ja) * 1996-12-26 2005-05-25 神鋼鋼線工業株式会社 低音域騒音吸音構造
JPH113082A (ja) 1997-06-12 1999-01-06 Kobe Steel Ltd 金属製吸音材
JPH11268158A (ja) * 1997-11-27 1999-10-05 Nisshin Steel Co Ltd 吸音持続性及びnox,sox分解特性に優れた吸音構造体
JP2003050586A (ja) 2000-09-29 2003-02-21 Kobe Steel Ltd 多孔質防音構造体およびその製造方法
JP2003022077A (ja) 2001-07-10 2003-01-24 Nippon Glass Fiber Kogyo Kk 装置の防音構造及び防音部材
JP2006199276A (ja) 2004-12-24 2006-08-03 Kobe Steel Ltd 吸音構造
US20070062758A1 (en) * 2005-09-20 2007-03-22 Jensen Charles E Laminated steel having non-continuous viscoelastic layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298014A (ja) * 1993-04-19 1994-10-25 Kasai Kogyo Co Ltd 車両用防音部材
JP3521577B2 (ja) * 1995-11-09 2004-04-19 豊田合成株式会社 吸音材
JPH10264281A (ja) * 1997-03-27 1998-10-06 Toyoda Gosei Co Ltd 防音部材
JP2000020070A (ja) * 1998-07-06 2000-01-21 Tamagawa Seni Kogyosho:Kk 吸音シート
JP2002175083A (ja) * 2000-09-29 2002-06-21 Kobe Steel Ltd 多孔質防音構造体
JP2002274287A (ja) * 2001-03-21 2002-09-25 Toyota Motor Corp 車体吸音パネル

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654364B2 (en) 2004-12-24 2010-02-02 Kabushiki Kaisha Kobe Seiko Sho Sound absorbing structure
FR2923642A1 (fr) * 2007-11-08 2009-05-15 Cellulairees Tech Sa Soc D Dispositif d'isolation phonique pour insonoriser un local, un compartiment machine ou similaire
RU2754697C2 (ru) * 2017-03-03 2021-09-06 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" (ИММС НАН Беларуси) Звукопоглощающая слоистая конструкция
JPWO2019021483A1 (ja) * 2017-07-28 2020-05-28 イビデン株式会社 吸音部材、車両用部品及び自動車
JP7012085B2 (ja) 2017-07-28 2022-01-27 イビデン株式会社 吸音部材、車両用部品及び自動車

Also Published As

Publication number Publication date
DE112005003232B4 (de) 2012-04-12
US7654364B2 (en) 2010-02-02
JP2006199276A (ja) 2006-08-03
DE112005003232T5 (de) 2008-03-06
US20080128201A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2006068028A1 (ja) 吸音構造
US6601673B2 (en) Sound absorbing structure
US7322440B2 (en) Ultralight trim composite
JP4691388B2 (ja) 超軽量な防音材
JP4635847B2 (ja) 防音材
WO2007029697A1 (ja) 二重壁構造体
KR20110004418A (ko) 다층 흡음 시트
CN110588683A (zh) 一种面向厢体结构低频宽带降噪的复合板
US5545861A (en) Membranous-vibration sound absorbing materials
JP2016052817A (ja) 車両用防音体及び車両用サイレンサー
CA2460531A1 (en) Engine intake manifold made of noise barrier composit material
US20070009728A1 (en) Sound absorbing device for ultra-low frequency sound
WO2014038445A1 (ja) 多孔吸音構造
JP2001184076A (ja) 吸音構造体
WO2019004153A1 (ja) 防音用被覆材およびエンジンユニット
GB2418641A (en) Automobile interior trim sound absorbing components
JP3530522B1 (ja) 超軽量な防音材
JP4027068B2 (ja) 吸音制振材
JP3749050B2 (ja) 吸音構造体
JP6929532B2 (ja) 防音パネル
RU2042547C1 (ru) Звукопоглощающая внутренняя панель кабины транспортного средства
KR100765842B1 (ko) 흡차음 기능을 갖는 대쉬패널
JP4303183B2 (ja) 二重壁構造体
JP4680963B2 (ja) 枠体付き二重壁構造体
JP3525569B2 (ja) 防音材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11792297

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050032329

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816682

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5816682

Country of ref document: EP

RET De translation (de og part 6b)

Ref document number: 112005003232

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

WWP Wipo information: published in national office

Ref document number: 11792297

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607