WO2006064920A1 - カレントトランス用磁心、カレントトランス及び電力量計 - Google Patents

カレントトランス用磁心、カレントトランス及び電力量計 Download PDF

Info

Publication number
WO2006064920A1
WO2006064920A1 PCT/JP2005/023181 JP2005023181W WO2006064920A1 WO 2006064920 A1 WO2006064920 A1 WO 2006064920A1 JP 2005023181 W JP2005023181 W JP 2005023181W WO 2006064920 A1 WO2006064920 A1 WO 2006064920A1
Authority
WO
WIPO (PCT)
Prior art keywords
current transformer
current
magnetic core
magnetic
force
Prior art date
Application number
PCT/JP2005/023181
Other languages
English (en)
French (fr)
Inventor
Yoshihito Yoshizawa
Masamu Naoe
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to JP2006548947A priority Critical patent/JP4716033B2/ja
Priority to EP05816635.6A priority patent/EP1840906B1/en
Priority to ES05816635.6T priority patent/ES2542019T3/es
Priority to US11/721,941 priority patent/US7473325B2/en
Priority to PL05816635T priority patent/PL1840906T3/pl
Publication of WO2006064920A1 publication Critical patent/WO2006064920A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions

Definitions

  • the present invention relates to a current transformer magnetic core suitable for detecting an alternating current of an asymmetric waveform such as a half-wave sine wave alternating current or an alternating current superimposed with a direct current, and a current transformer and a watt hour meter using the same. .
  • inductive watt hour meter and an electronic watt hour meter as watt hour meters used to detect the power consumption of electric equipment and facilities in the home and industrial fields.
  • inductive watt-hour meters using a rotating disk were the mainstream.
  • electronic watt-hour meters are becoming more popular with the development of electronic technology.
  • a watt-hour meter compatible with conventional standards such as IEC62053-22 cannot accurately detect a distorted waveform current such as a half-wave sine wave AC current, and cannot accurately measure power. For this reason, in Europe, the standard IEC62053-21 for watt-hour meters adapted to the distorted waveform (half-wave rectified waveform) was established.
  • CTs Current transformers
  • Hall elements are used for current detection.
  • An electricity meter that conforms to 21 is being applied.
  • current transformers play an important role in the detection of alternating currents with distorted waveforms and alternating currents with superimposed DC.
  • a gap is formed in a magnetic core, a Hall element is disposed in the gap portion, a conducting wire through which a measurement current flows is passed through the closed magnetic core, and the current generated in the gap portion is substantially reduced.
  • Current detection is performed by detecting a proportional magnetic field with a Hall element.
  • a current transformer has a secondary winding wound around a closed magnetic circuit core with a relatively large number of turns, and the primary line (the line through which the measurement current flows) is normally used by passing through the closed magnetic circuit.
  • Figure 8 shows the configuration of a current transformer (CT) current sensor.
  • CT current transformer
  • the method of winding a ring-type magnetic core enables the size to be reduced and the leakage flux to be reduced, realizing performance close to the theoretical operation.
  • the ideal output current i is I / N (N: second order) under the condition of AC through current I and R «2 ⁇ f'L
  • the output voltage E is I -R / N (R: load resistance). Actually, the loss of the core material
  • a material having a low magnetic permeability is used as the magnetic core material, this tendency becomes large. Therefore, if a minute current must be measured with high accuracy, a magnetic core material having a high magnetic permeability is used.
  • the ratio error is an error ratio between an ideal value and an actual measurement value at each measurement point and represents the accuracy of the current value
  • the coupling coefficient characteristic is related to the ratio error characteristic.
  • the phase difference represents the accuracy of the waveform and represents the phase shift of the output waveform with respect to the original measurement waveform.
  • the current transformer output is normally in the lead phase.
  • a material such as permalloy having a high initial permeability is generally used in order to increase the coupling coefficient K and reduce the relative error and the phase difference.
  • the maximum through current I of the current transformer is the maximum current that ensures linearity.
  • the saturation magnetic flux density of the magnetic core material is as high as possible.
  • Fe-based amorphous alloys have a problem of large fluctuations in ratio error and phase difference when used in current transformers.
  • Special Table 2002-525863 is excellent as a current transformer (CT) for detecting asymmetrical waveform current because a Co-based amorphous alloy heat-treated in a magnetic field has a magnetic curve with good linearity and small hysteresis. It is disclosed to show the characteristics.
  • Co-based amorphous alloy with low magnetic permeability of about 1500 and magnetic linear curve with good linearity is used for current transformer (CT) for current detection corresponding to the above-mentioned IEC62053-21 standard of electricity meter .
  • the saturation flux density of Co-based amorphous alloys is less than 1.2 T, and there is a problem that they are thermally unstable. For this reason, current measurement is restricted when a large current force S bias is applied, so it is not necessarily sufficient in terms of miniaturization and stability! Considering the, and! /, Problems and DC superposition, the magnetic permeability cannot be increased so much, and there is a problem that the relative error and phase difference, which are important characteristics as a current transformer, increase. Moreover, since it contains a large amount of expensive Co, it is disadvantageous in terms of cost.
  • a magnetic core using a material such as Permalloy having a relatively high permeability has been used for a current transformer magnetic core used in an integrating watt hour meter corresponding to a conventional standard such as IEC62053-22.
  • Such high-permeability materials can measure power from positive and negative current and voltage waveforms, but accurately measure asymmetric current waveforms and distorted current waveforms (asymmetric current waveforms). I can't.
  • Fe-based nanocrystalline alloys are used in magnetic cores such as common mode choke coils, high-frequency transformers, and nor- s transformers because they exhibit high magnetic permeability and excellent soft magnetic properties.
  • the typical composition of Fe-based nanocrystalline alloys is Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -Si described in JP-B-4-4393 and JP-A-1-1-242755.
  • B Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) — B, etc.
  • These Fe-based nanocrystalline alloys are usually produced by quenching from the liquid phase or gas phase to an amorphous alloy and then microcrystallizing by heat treatment.
  • Fe-based nanocrystalline alloys are known to exhibit excellent soft magnetic properties with high saturation magnetic flux density and low magnetostriction comparable to Fe-based amorphous alloys.
  • Japanese Unexamined Patent Publication Nos. 1-235213, 5-203679 and 2002-530854 It is described that the base nanocrystal material is suitable as a current sensor (current transformer) used in an earth leakage breaker, an integrating watt-hour meter, and the like.
  • current transformer cores that use conventional permalloy or Fe-based nanocrystalline soft magnetic alloys as magnetic core materials use high-permeability materials. There is a problem that sufficient current detection cannot be performed due to magnetic saturation of the magnetic field. Fe-based nanocrystalline soft magnetic alloy cores have high saturation magnetic flux density and high magnetic permeability, so that they are suitable for current transformers such as earth leakage vibrations.
  • the magnetic core is magnetically saturated and current measurement becomes difficult.
  • a current transformer used for a half-wave sine wave current if the peak value of the half-wave sine wave current is I ma, a DC current of I / 2 ⁇ is superimposed. For this reason, it is described in Special Table 2002-530854 etc.
  • the conventional Fe-based nanocrystalline soft magnetic alloy core which has a high permeability of 12000 or more, causes a DC magnetic field to be noisy in the magnetic core of the current transformer, resulting in magnetic saturation of the magnetic core. For this reason, it is not suitable for current measurement of such an asymmetric waveform.
  • a magnetic material capable of accurately measuring the asymmetric current waveform force and the amount of electric power has been demanded. It is required to be able to measure alternating current accurately even when a direct current is superimposed, such as an asymmetrical current waveform such as a half-wave sine wave current waveform.
  • a transformer core is required.
  • an object of the present invention is to provide a magnetic core for a current transformer that can accurately measure the amount of power of an asymmetric current waveform or a distorted current waveform (asymmetric current waveform) force.
  • Another object of the present invention is to provide a magnetic core for a current transformer that can be reduced in size, has a wide measurement current range, is thermally stable, and is inexpensive.
  • Still another object of the present invention is to provide a current transformer and a watt hour meter using a powerful magnetic core. Means for solving the problem
  • the present inventors have found that (a) the content of Co and Z or Ni is increased, and at least part or all of the structure has crystal grains with an average grain size of 50 nm or less.
  • Fe-based nanocrystalline alloy consisting of magnetic flux density at 8000 Am- 1 B force T or more and anisotropic
  • the current transformer magnetic core of the present invention has a general formula: Fe M Cu M ′ X ′ (original
  • the M content X is preferably 15 ⁇ x ⁇ 40.
  • the content of B is preferably a 4 to 12 atom 0/0.
  • the Si content is preferably 0.5 to 17 atomic%.
  • a part of M ′ is Cr, Mn, Sn, Zn, In, Ag, Au,
  • Substitution may be made with at least one element selected from the group consisting of Sc, white metal elements, Mg, Ca, Sr, Ba, Y, rare earth elements, N, O and S.
  • a part of X ′ may be substituted with at least one element selected from C, Ge, Ga, Al, Be and P.
  • the magnetic core for current transformer of the present invention is maintained at a temperature of 450 to 700 ° C for 24 hours or less while applying a magnetic field of 40 kAm- 1 or more in the height direction of the magnetic core, and then cooled to room temperature. It can be produced by heat treatment in a magnetic field.
  • the current transformer magnetic core of the present invention is used to detect a half-wave sine wave alternating current. Is preferred.
  • a current transformer of the present invention includes the current transformer core, a primary winding, at least one secondary detection winding, and a burden resistor connected in parallel to the secondary detection winding. It is characterized by that.
  • the primary winding is preferably one turn.
  • the phase difference in the rated current range at 23 ° C is within 5 ° and the absolute value of the ratio error is within 3%.
  • the watt-hour meter of the present invention is characterized in that the electric power used is calculated by integrating the current value obtained from the current transformer and the voltage at that time.
  • the magnetic core for current transformer of the present invention has a low residual magnetic flux density, small hysteresis, a magnetic linear curve with good linearity, and a relatively large anisotropic magnetic field H that is difficult to saturate.
  • FIG. 1 Fe Co Cu Nb Si B ( atomic 0/0) for use in the current transformer core of the present invention 80 alloy
  • 3 is a graph showing a direct magnetic field H.
  • FIG. 8 is a perspective view showing an example of a current transformer (CT) type current sensor of the present invention.
  • CT current transformer
  • the Fe-based nanocrystalline alloy for the current transformer magnetic core of the present invention has the general formula: Fe M Cu
  • M 'X' (atomic 0 / o) (where M is Co and Z or Ni, and M 'is a group force consisting of V, Ti, Zr, Nb, Mo, Hf, Ta and W at least selected.
  • X ' is Si and Z or B, X, a, y and c are 10 ⁇ x ⁇ 50, 0.1 ⁇ a ⁇ 3, l ⁇ y ⁇ 10, 2 ⁇ c ⁇ 30, respectively And a number satisfying 7 ⁇ y + c ⁇ 31.
  • M is Co and Z or Ni, increases the induced magnetic anisotropy, improves the linearity of the BH loop, adjusts the anisotropy magnetic field H, and measures half-wave sinusoidal alternating current, etc. If the direct current is
  • M quantity X is 10 ⁇ x ⁇ 50.
  • H force is lost.
  • a preferred M amount X is 15 ⁇ x ⁇ 40, more preferably 18 ⁇ x ⁇ 37, most preferably 22 ⁇ x ⁇ 35.
  • x is in the range of 10 to 50, accurate current measurement is possible even when direct current is superimposed, so a highly accurate and balanced current transformer can be realized.
  • Cu amount a is 0.1 ⁇ a ⁇ 3. When a is less than 0.1 atomic%, the phase difference becomes large, and when a exceeds 3 atomic%, the material becomes brittle and it becomes difficult to mold the core.
  • the preferred Cu amount a is 0.3 ⁇ a ⁇ 2.
  • M ' is an element that promotes amorphous formation.
  • M ′ is at least one element selected from the group consisting of V, Ti, Zr, Nb, Mo, Hf, Ta, and W, and the amount y is in the range of l ⁇ y ⁇ 10. If y is less than 1 atomic%, a fine grain structure cannot be obtained after heat treatment, The absolute value of the ratio error increases. If y exceeds 10 atomic%, H decreases due to a significant decrease in saturation magnetic flux density, and when DC is biased, current measurement becomes difficult due to magnetic saturation.
  • the preferred M 'amount y is 1.5 ⁇ y ⁇ 9.
  • X ' is also an element that promotes amorphous formation.
  • X ' is Si and Z or B, and its quantity c is in the range 2 ⁇ c ⁇ 30.
  • the amount of X 'c is less than 2 atomic%, the absolute value of the phase difference and the ratio error increases, and when it exceeds 30 atomic%, H decreases due to the significant decrease in saturation magnetic flux density, and the
  • the X 'quantity c is preferably 5 ⁇ c ⁇ 25, more preferably 7 ⁇ c ⁇ 24.
  • the sum of the quantity y of M 'and the quantity c of X' satisfies the condition 7 ⁇ y + c ⁇ 31.
  • y + c is less than 7 atomic%, the phase difference increases significantly, and when it exceeds 31 atomic%, the saturation magnetic flux density decreases.
  • the amount of y + c is preferably 10 ⁇ y + c ⁇ 28, more preferably 13 ⁇ y + c ⁇ 27.
  • the content power of B is -12 atomic%, it is preferable because a magnetic core for a current transformer having a small phase difference can be realized.
  • a particularly preferable B content is 7 to 10 atomic%.
  • the Si content is 0.5 to 17 atomic%, even if a direct current is biased when measuring a half-wave sine wave alternating current with a small absolute value of phase difference and ratio error, current measurement with high measurement accuracy is possible. is there.
  • the Si content is 0.7 to 5 atomic%.
  • a part of X ′ may be replaced with at least one element selected from the group force consisting of C, Ge, Ga, Al, Be, and P.
  • the magnetic core for a current transformer of the present invention is obtained by quenching the molten alloy having the above composition by a rapid quenching method such as a single roll method, once producing an amorphous alloy ribbon, slitting it as necessary, and making it into a ring shape. It is made by winding to make a magnetic core, raising the temperature above the crystallization temperature and performing heat treatment to form microcrystals with an average grain size of 50 nm or less.
  • the amorphous alloy ribbon prior to heat treatment does not contain a crystalline phase, but it is desirable, but a crystalline phase may be partly included.
  • the ultra-quenching method such as the single roll method can be performed in the atmosphere if it does not contain active metals.
  • the surface roughness Ra of the alloy ribbon is preferably as small as possible, specifically 5 m or less, more preferably 2 m or less.
  • At least one surface of the alloy ribbon is coated with SiO, MgO, Al 2 O, etc. as necessary, and subjected to chemical conversion treatment
  • an insulating layer is formed by anodic oxidation or the like, it becomes possible to measure current with high accuracy when measuring current containing high-frequency components.
  • the thickness of the insulating layer is preferably 0.5 m or less to prevent a decrease in the space factor.
  • amorphous alloy ribbon After winding the amorphous alloy ribbon to form a magnetic core, heat treatment is performed in an inert gas such as argon gas, nitrogen gas, helium gas or in vacuum in order to obtain a magnetic core with small variations in performance.
  • Magnetic anisotropy is imparted by applying a magnetic field of sufficient strength (eg, 40 kAm- 1 or more) to saturate the alloy for at least part of the heat treatment.
  • the applied magnetic field direction is the height direction of the magnetic core.
  • the applied magnetic field may be direct current, alternating current, or pulsed magnetic field.
  • the maximum temperature during the heat treatment is equal to or higher than the crystallization temperature, specifically 450 to 700 ° C.
  • the holding time is usually 24 hours or less, preferably 4 hours or less from the viewpoint of mass productivity.
  • the average heating rate during the heat treatment is preferably 0.1 to 100 ° C / min, more preferably 0.1 to 50 ° C / min.
  • the average cooling rate is preferably 0.1 to 50 ° C / min, more preferably 0.1 to 10 ° C / min. Cool down to room temperature.
  • the heat treatment is not limited to one stage, and may be performed in multiple stages.
  • the crystallization is progressed slowly by increasing the temperature near the crystallization temperature at a low speed or maintaining the temperature near the crystallization temperature. This is to prevent the core temperature from excessively rising due to heat generation during crystallization and thereby deteriorating the characteristics.
  • Heat treatment Although it is preferable to use an electric furnace, direct current, alternating current, or pulsed current may be passed through the alloy to generate heat.
  • the obtained magnetic core is preferably put in an insulating case such as phenol resin that does not exert stress in order to prevent performance deterioration, but may be impregnated or coated with resin if necessary.
  • a current transformer is obtained by drawing a detection wire on a case containing a magnetic core.
  • the current transformer core of the present invention exhibits the most performance for currents with superimposed direct current, and is particularly suitable for current transformers for integrated watt-hour meters that comply with IEC62053-21, which is a standard adapted to distortion waveforms.
  • the Fe-based nanocrystalline alloy for a magnetic core for current transformer of the present invention has crystal grains having an average grain size of 50 or less at least partially or entirely.
  • the proportion of crystal grains is preferably 30% or more of the structure, more preferably 50% or more, and particularly preferably 60% or more.
  • the absolute value of phase difference and ratio error is small. ⁇ ⁇ Desirable for obtaining a magnetic core for current transformer! / ⁇
  • the average grain size is 230 nm.
  • the crystal grains in the Fe-based nanocrystalline alloy have a body-centered cubic structure (bcc) mainly composed of FeCo and FeNi, and Si, B, Al, Ge, Zr, etc. are in solid solution. It may contain a regular lattice.
  • the alloy may have a face-centered cubic (fee) phase partially containing Cu. The compound phase is preferred, but may be included if there is a slight amount!
  • the phase is mainly an amorphous phase.
  • the crystal grains are refined by suppressing the crystal grain growth, the resistivity of the alloy is increased, and the hysteresis of the magnetic domain is reduced, so that the phase difference of the current transformer is reduced. Improved.
  • the magnetic flux density B in Fe-based nanocrystalline alloy at 8000 Am- 1 must be 1.2 T or more.
  • the anisotropic magnetic field H cannot be increased, and a large DC bias is applied.
  • B can be made 1.6 T or more, and further 1.65 T or more.
  • Anisotropic magnetic field H is a physical property value that indicates the saturation magnetic field of the magnetic core.
  • the magnetic core for a current transformer of the present invention has an anisotropic magnetic field H of 150 to 1500 Am- 1 .
  • the squareness ratio B / B of the Fe-based nanocrystalline alloy needs to be 5% or less. If the B / B force exceeds r 8000 r 8000, the absolute value of the phase difference and ratio error of the current transformer will increase, and the characteristic of the current detection will change easily after measuring a large current just by degrading the characteristics. . By adjusting the alloy composition, B / B can be made 3% or less, and further 2.5% or less. Where r 8000
  • B is the residual magnetic flux density, and B is the magnetic flux density when a magnetic field of 8000 Am- 1 is applied. r 8000
  • AC relative initial permeability at 50 Hz and 0.05 Am- 1 of Fe-based nanocrystalline alloy is 800-700 0.
  • the magnetic core for current transformer which has the Fe-based nanocrystalline alloy force with such an AC ratio initial permeability, has a small phase difference and a small change in absolute value of the ratio error in current measurement with a half-wave waveform or DC bias. Conversion can be done.
  • the AC ratio initial permeability can be made 5000 or less, and further 4000 or less.
  • the current transformer of the present invention includes the magnetic core, a primary winding, at least one secondary detection winding, and a load resistor connected in parallel to the secondary detection winding.
  • the primary shoreline is usually one turn through.
  • the current transformer of the present invention makes it possible to perform accurate and accurate current measurement even when a half-wave waveform current or a DC bias current is used, so that the absolute value of the phase difference or the ratio error is small.
  • a resistor is attached to the detection wire according to the current specification to be measured.
  • the current transformer of the present invention can realize high-precision measurement with a phase difference in the rated current range of 5 ° or less and an absolute value of the ratio error within 3% in the measurement of half-wave sine wave AC current.
  • the current transformer of the present invention is superior in temperature characteristics to those using conventional permalloy or Co-based amorphous alloy.
  • the watt-hour meter configured with the current transformer force of the present invention can also comply with IEC62053-21, which is a standard adapted to a distorted waveform (half-wave rectified waveform), and therefore can also measure the power of a distorted current waveform. is there.
  • a molten alloy of Fe Co Cu Nb Si B (atomic%) is quenched by the single roll method, and the width is 5 mm.
  • An amorphous alloy ribbon with a thickness of 21 ⁇ m was obtained.
  • This amorphous alloy ribbon was wound to an outer diameter of 30 mm and an inner diameter of 21 mm to produce a toroidal magnetic core.
  • the magnetic core was inserted into a heat treatment furnace in a nitrogen gas atmosphere, and heat treatment was performed while applying a magnetic field of 280 kAm- 1 in the direction perpendicular to the magnetic path of the magnetic core (the width direction of the alloy ribbon, that is, the height of the magnetic core). Went.
  • the heat treatment pattern was 10 ° C / min temperature rise, 550 ° C hold for 1 hour, and 2 ° C / min cooling.
  • the range showed a relatively high magnetic flux density B.
  • the squareness ratio B / B is Co 3-50 atomic%
  • the range was as low as 5% or less.
  • the coercive force H increased abruptly when Co was in the range of 3-50 atomic% and the force was relatively low, exceeding 50 atomic%.
  • the AC ratio initial permeability decreased with an increase in Co content, from 3 atomic% to 7000 or less, and above 50 atomic% to less than 800.
  • the anisotropy field H increases with the amount of Co, and at 3 atomic% or more, it is 150 Am— 1 or more.
  • phase difference ⁇ was 0.5 ° and the relative error RE was 0.1% when the Co amount X force was atomic%.
  • phase difference ⁇ is 1.3 ° and relative error RE is 0.2%.
  • phase difference ⁇ is 2.5 ° and relative error RE is
  • the phase difference ⁇ was 2.6 ° and the relative error RE was 1.1%.
  • the following criteria were used to evaluate whether a half-wave sine wave AC current with a peak value of 30 A could be measured. The results are shown in Table 1.
  • the current transformer magnetic core of the present invention made of an Fe-based nanocrystalline alloy having a Co content X of 10 to 50 was able to measure a DC superimposed current such as a half-wave sine wave AC current.
  • the phase difference was 3 ° or less and the absolute value of the ratio error was 2% or less.
  • the molten alloy having the composition shown in Table 2 was quenched in the Ar atmosphere by a single roll method, and an amorphous alloy ribbon having a width of 5 mm and a thickness of 21 ⁇ m was obtained.
  • the amorphous alloy ribbon was wound to an outer diameter of 30 mm and an inner diameter of 21 mm to produce a current transformer core.
  • magnetic measurements were performed. Ultrafine crystal grains with a grain size of 50 or less were formed in the structure of the alloy after the heat treatment.
  • No. 33 is the magnetic core of the comparative Fe-based nanocrystalline alloy
  • No. 34 is the magnetic core of the comparative Co-based amorphous alloy
  • No. 35 is the magnetic core of the comparative permalloy.
  • the current transformer magnetic core of the present invention has a small absolute value of phase difference and ratio error.
  • it can be seen that it can be used as a current transformer even in the case of an asymmetrical current waveform such as a half-wave sine wave AC current.
  • the conventional Fe-based nanocrystalline alloy magnetic core (No. 33) and Permalloy (No. 35) have been difficult to accurately measure half-wave sine wave alternating current.
  • the conventional Co-based amorphous alloy core (No. 34) has a greater absolute value of phase difference and ratio error than the current transformer core of the present invention. It has been found that the current transformer core of the present invention can be used for current transformers in a wide range of fields such as integrating watt hour meters and industrial equipment.
  • An amorphous alloy ribbon having a thickness of 21 ⁇ m was obtained.
  • the amorphous alloy ribbon was wound to an outer diameter of 30 mm and an inner diameter of 21 mm to produce a toroidal magnetic core.
  • the magnetic core was inserted into a heat treatment furnace in a nitrogen gas atmosphere, and heat treatment was performed in the same manner as in Example 1.
  • the heat treatment pattern was a temperature increase at 5 ° C / min, a hold at 530 ° C for 2 hours, and a cooling at 1 ° C / min.
  • about 72% of the structure of the heat-treated alloy had a body-centered cubic structure with a grain size of about 10 nm, and the balance was mainly an amorphous phase. From the X-ray diffraction pattern, a crystal peak showing a body-centered cubic structure phase was observed.
  • Density B is 1.50 T, squareness ratio ⁇ / ⁇ is 1%, coercivity ⁇ is 2.1 Am 50 Hz, 0.05 Am—
  • the AC ratio initial permeability was 2200, and the anisotropic magnetic field H was 406 Am- 1 .
  • Fig. 6 shows an example of a direct current BH loop of the current transformer core of the present invention and a conventional Co-based amorphous core (Comparative Example No. 34 manufactured in Example 2)
  • Fig. 7 shows the current transformer core of the present invention.
  • the magnetic field dependence of the AC ratio initial permeability at 50 Hz is shown.
  • the current transformer magnetic core of the present invention has a higher AC ratio initial permeability than a Co-based amorphous alloy core having the same H level.
  • the V current transformer of the present invention can be used even when a direct current is superimposed like a half-wave sine wave alternating current, and can be expected to exhibit excellent characteristics.
  • a primary winding of 1 turn and a secondary detection winding of 2500 turns were applied to these magnetic cores, and a load resistance of 100 ⁇ was connected in parallel to the secondary detection winding to produce a current transformer.
  • the absolute values of the phase difference and ratio error of the current transformer of the present invention at 23 ° C when sinusoidal AC current of 50 Hz and 30 A flows through the shoreline are 2.0% and 2.4 °, respectively.
  • the current transformers of Amorfas alloy were 3.6% and 4.6 °, respectively.
  • the watt-hour meter manufactured using the current transformer of the present invention was able to measure the electric energy even for a half-wave sine wave AC current that is not only a positive and negative symmetric sine wave AC current.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Soft Magnetic Materials (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 一般式:Fe100-x-a-y-cMxCuaM'yX'c(原子%)(ただし、MはCo及び/又はNiであり、M'はV, Ti, Zr, Nb, Mo, Hf, Ta及びWからなる群から選ばれた少なくとも一種の元素であり、X'はSi及び/又はBであり、x, a, y及びcはそれぞれ10≦x≦50、0.1≦a≦3、1≦y≦10、2≦c≦30、及び7≦y+c≦31を満たす数字である。)により表される組成を有し、組織の少なくとも一部又は全部が平均粒径50 nm以下の結晶粒からなる合金からなるカレントトランス用磁心。

Description

明 細 書
カレントトランス用磁心、カレントトランス及び電力量計
技術分野
[0001] 本発明は、半波正弦波交流電流等の非対称な波形の交流電流や直流が重畳した 交流電流の検出に好適なカレントトランス用磁心、及びそれを用いたカレントトランス 並びに電力量計に関する。
背景技術
[0002] 家庭及び産業分野において電気機器や設備の電力消費量を検出するために用い られる電力量計には、誘導型電力量計と電子式電力量計がある。従来は、回転盤を 用いた誘導型電力量計が主流であった力 近年は電子技術の発達に伴 、電子式電 力量計の普及が進みつつある。 IEC62053-22等の従来の規格に対応した電力量計 では、半波正弦波交流電流等の歪んだ波形の電流の正確な検出ができず、正確な 電力の計測ができない問題があった。このため、欧州では、歪み波形 (半波整流波 形)に適応した電力量計に関する規格 IEC62053-21が制定された。欧州以外におい ても、歪んだ波形の正確な電力量計測ができな 、現在の回転盤方式等の電力量計 は廃止され、カレントトランス(CT)又はホール素子を電流検出に用いた、 IEC62053- 21に適合した電力量計が適用されつつある。インバータ等産業用の用途においても カレントトランスは歪んだ波形の交番電流や直流が重畳した交番電流の検出に重要 な役割を果たしている。
[0003] ホール素子を用いた電流センサは、磁心にギャップを形成しギャップ部にホール素 子を配置し、測定電流の流れる導線を磁心閉磁路内に貫通させ、ギャップ部に発生 した電流にほぼ比例した磁界をホール素子で検出することにより電流検出を行う。
[0004] カレントトランス (CT)は一つの閉磁路磁心に 2次卷線を比較的多いターン数巻き、 通常 1次線 (測定電流の流れる線)は閉磁路内を貫通させて使用する。図 8にカレン トトランス (CT)型電流センサの構成を示す。磁心の形状はリング型や組コア型がある 力 リング型卷磁心に卷線した方式は、形状の小型化や漏洩磁束の低減を可能とし 、理論動作に近い性能を実現できる。 [0005] 交流の貫通電流 Iで、かつ R «2 π f'Lの条件で理想的な出力電流 iは I /N (N:2次
0 L 2 0 卷線数)であり、出力電圧 Eは I -R /N (R:負荷抵抗)である。実際には、磁心材の損
0 0 し
失や漏洩磁束等の影響を受けて、出力電圧 Eは理想値よりも低下する。カレントトラ
0
ンスの感度は E /1に相当するが、実際にはこの値は一次と二次の結合係数によって
0 0
決定される。結合係数を Kとすれば、 E =1 -R ·Κ/Ν(Κ:結合係数)となる。
0 0 し
[0006] 理想的なカレントトランスでは、結合係数 Κは 1となる力 実際のカレントトランスでは 卷線の内部抵抗及び負荷抵抗に要する励磁電流、漏洩磁束及び透磁率の非直線 性等に影響を受ける力 Rが 100 Ω以下では Κ=0.95〜0.99程度の値となる。 Κの値 し
は磁路内にギャップがあると低下するので、ギャップの無いトロイダル磁心が結合度 の最も高い理想的なカレントトランスを実現できる。 Κ値は断面積 Sが大きいほど、 2次 卷線数 Νが多い程、負荷抵抗 Rが小さいほど 1に近づく。この Κ値は貫通電流 Iによ し 0 つても変化し、 I力 S100 mA以下の微少電流の場合、 K値は低下する傾向を示す。特
0
に磁心材料として透磁率の低い材料を用いるとこの傾向は大きくなるため、微少電流 を高精度で測定しなければならな 、場合は、透磁率の高 、磁心材料が用いられる。
[0007] 比誤差は各測定点における理想値と実測値の誤差比率であり電流値の精度を表 し、結合係数特性は比誤差特性と関連する。位相差は波形の精度を表し、測定原波 形に対する出力波形の位相ずれを表す。カレントトランス出力は通常進み位相となる 。これらの 2つの特性は、積算電力量計等に使用されるカレントトランスにとって特に 重要な特性である。
[0008] 微少電流を測定する必要のあるカレントトランスでは、結合係数 Kを高めて比誤差と 位相差を小さくするため、一般的には初透磁率が高いパーマロイ等の材料が用いら れる。カレントトランスの最大貫通電流 I はリニアリティが確保される最大電流であり
Omax
、負荷抵抗や内部抵抗だけでなぐ使用されている磁心材料の磁気特性に影響され る。大電流まで測定可能とするためには、磁心材料の飽和磁束密度はできるだけ高 い方が望ましい。
[0009] カレントトランスに使用されている磁心材料としては珪素鋼、パーマロイ、ァモルファ ス合金、 Fe基ナノ結晶合金材料等が知られている。材料が安価で磁束密度が高い 珪素鋼板は、透磁率が低ぐヒステリシスが大きぐ磁化ループのリニアリティにも劣る ため、比誤差や位相差が大きくかつ変動し、精度が高いカレントトランスの実現が困 難である。また残留磁束密度が大きいため、半波電流等非対称の電流に対しては正 確な電流測定が困難である。
[0010] Fe基アモルファス合金は、カレントトランスに用いた場合に比誤差や位相差の変動 が大きいという問題がある。特表 2002-525863号は、磁界中熱処理した Co基ァモルフ ァス合金が、直線性の良い磁ィ匕曲線及び小さなヒステリシスを有するため、非対称波 形の電流を検出するカレントトランス (CT)として優れた特性を示すことを開示してい る。 1500程度と低い透磁率、及び直線性の良い磁ィ匕曲線を有する Co基アモルファス 合金は、前述の電力量計の規格 IEC62053-21に対応した電流検出用カレントトランス (CT)に使用されている。しかし、 Co基アモルファス合金の飽和磁束密度は 1.2 T以 下と十分とは言えず、熱的にも不安定であるという問題がある。このため、大きな電流 力 Sバイアスされると電流測定が制約を受けるため、小型化や安定性の面で必ずしも 十分でな!、と!/、う問題や直流重畳を考慮すると磁気的飽和の観点力 透磁率をあま り高くできないため、カレントトランスとして重要な特性である比誤差や位相差が大きく なるという問題がある。また、高価な Coを多量に含むためにコスト面でも不利である。
[0011] IEC62053-22等の従来の規格に対応した積算電力量計に使用されているカレントト ランス用磁心には、比較的透磁率の高いパーマロイ等の材料を用いた磁心が使われ てきた。このような高透磁率材料は、正負対称な電流や電圧波形から電力量を測定 することはできるが、非対称な電流波形や歪んだ電流波形 (非対称電流波形)力 電 力量を正確に測定することができない。
[0012] Fe基ナノ結晶合金は高透磁率で優れた軟磁気特性を示すため、コモンモードチヨ ークコイル、高周波トランス、ノ ルストランス等の磁心に使用されている。 Fe基ナノ結 晶合金の代表的組成は、特公平 4-4393号ゃ特開平 1-242755号に記載の Fe-Cu-(N b, Ti, Zr, Hf, Mo, W, Ta)— Si— B、 Fe- Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta)— B等である。こ れらの Fe基ナノ結晶合金は、通常液相や気相から急冷して非晶質合金とした後、熱 処理により微結晶化することにより作製される。 Fe基ナノ結晶合金は Fe系ァモルファ ス合金と同程度の高い飽和磁束密度と低磁歪で優れた軟磁気特性を示すことが知 られている。特開平 1-235213号、特開平 5-203679号及び特表 2002-530854号は、 Fe 基ナノ結晶材料が漏電ブレーカや積算電力量計等に用いられている電流センサ (変 流器 (カレントトランス) )として好適なことを記載して 、る。
[0013] し力しながら、従来のパーマロイや Fe基ナノ結晶軟磁性合金を磁心材料に用いた カレントトランス用磁心は、高透磁率材料を用いているため、特に直流がバイアスされ た場合、磁心の磁気的飽和により十分な電流検出ができないという問題があった。 Fe 基ナノ結晶軟磁性合金磁心は飽和磁束密度が高くかつ透磁率が高いため漏電ブレ 一力等のカレントトランスには適している力 Hが小さいため直流電流がバイアスされ
K
る用途の場合、磁心が磁気的に飽和してしまい電流計測が困難となる問題がある。 半波正弦波電流に使用するカレントトランスの場合、半波正弦波電流のピーク値を I ma とすると、 I /2 πの直流電流が重畳する。このため、特表 2002-530854号等に記載
X max
されている従来の Fe基ナノ結晶軟磁性合金磁心は、透磁率力 12000以上と高いため に、カレントトランスの磁心に直流磁界がノィァスされる状態となり、磁心が磁気的飽 和してしまう。このため、このような非対称波形の電流計測には適していない。
[0014] よって非対称電流波形力 電力量を正確に測定できる磁性材料が要求されるよう になってきた。半波正弦波電流波形のような非対称電流波形のような、直流電流が 重畳した場合にも正確に交番電流測定を可能とすることが要求されて 、る。このよう な要求を満たすには、低い残留磁束密度、小さなヒステリシス、直線性の良い磁ィ匕曲 線、及び飽和しにくい比較的大きな異方性磁界 Hを有する磁心材料を用いたカレン
K
トトランス用磁心が必要である。
発明の開示
発明が解決しょうとする課題
[0015] 従って本発明の目的は、非対称な電流波形や歪んだ電流波形 (非対称電流波形) 力も電力量を正確に測定することができるカレントトランス用の磁心を提供することに ある。
[0016] 本発明のもう一つの目的は、小型化が可能で、広い測定電流範囲を有し、熱的に 安定で、安価なカレントトランス用の磁心を提供することにある。
[0017] 本発明のさらにもう一つの目的は、力かる磁心を用いたカレントトランス及び電力量 計を提供することにある。 課題を解決するための手段
[0018] 上記目的に鑑み鋭意研究の結果、本発明者等は、 (a) Co及び Z又は Niの含有量 を増大させ、組織の少なくとも一部又は全部が平均粒径 50 nm以下の結晶粒からな る Fe基ナノ結晶合金は、 8000 Am— 1における磁束密度 B 力 T以上であり、異方
8000
性磁界 H力 150〜1500 Am— 1であり、角形比 B /B 力 以下であり、 50 Hz及び 0.0
K r 8000
5 Am— 1における交流比初透磁率 力 00〜7000であり、 (b)この合金からなるカレント トランス用磁心は、非対称波形や直流がバイアスされた電流検出用のカレントトランス に使用した場合に優れた特性を示すことを見出し、本発明に想到した。
[0019] すなわち、本発明のカレントトランス用磁心は、一般式: Fe M Cu M' X' (原
100— x - a— y^c x a y c 子%) (ただし、 Mは Co及び Z又は Niであり、 M'は V, Ti, Zr, Nb, Mo, Hf, Ta及び Wか らなる群力 選ばれた少なくとも一種の元素であり、 X'は Si及び Z又は Bであり、 X, a, y及び cはそれぞれ 10≤x≤50、 0.1≤a≤3、 l≤y≤10、 2≤c≤30、及び 7≤y+c≤3 1を満たす数字である。 )により表される組成を有し、組織の少なくとも一部又は全部 が平均粒径 50 nm以下の結晶粒からなり、 8000 Am— 1における磁束密度 B 力 T
8000 以上であり、異方性磁界 H力 S150〜1500 Am— 1であり、角形比 B /B 力 以下であ
K r 8000
り、 50 Hz及び 0.05 Am— 1における交流比初透磁率 力 00〜7000である合金からな ることを特徴とする。
[0020] 本発明のカレントトランス用磁心において、 Mの含有量 Xは 15≤x≤40であるのが好 ましい。 Bの含有量は 4〜12原子0 /0であるのが好ましい。 Siの含有量は 0.5〜17原子 %であるのが好ましい。
[0021] 本発明のカレントトランス用磁心において、 M'の一部を Cr, Mn, Sn, Zn, In, Ag, Au,
Sc,白金属元素, Mg, Ca, Sr, Ba, Y,希土類元素 ,N, O及び Sからなる群から選ばれた 少なくとも一種の元素で置換しても良い。また X'の一部を C, Ge, Ga, Al, Be及び Pか ら選ばれた少なくとも一種の元素で置換しても良い。
[0022] 本発明のカレントトランス用磁心は、磁心の高さ方向に 40 kAm— 1以上の磁界を印加 しながら 450〜700°Cの温度に 24時間以下の時間保持した後に室温まで冷却し、磁 界中熱処理することにより作製することができる。
[0023] 本発明のカレントトランス用磁心は、半波正弦波交流電流を検出するために用いる のが好ましい。
[0024] 本発明のカレントトランスは、上記カレントトランス用磁心と、一次卷線と、少なくとも 1つの二次検出卷線と、前記二次検出卷線に並列に接続された負担抵抗とを具備 することを特徴とする。
[0025] 本発明のカレントトランスにおいて、一次卷線は 1ターンであるのが好ましい。また 2 3°Cで定格電流範囲における位相差が 5° 以内であり、比誤差の絶対値が 3%以内 であるのが好ましい。
[0026] 本発明の電力量計は、上記カレントトランスより得た電流値と、その時の電圧を積算 処理することにより、使用電力を計算することを特徴とする。
発明の効果
[0027] 本発明のカレントトランス用磁心は、低い残留磁束密度、小さなヒステリシス、直線 性の良い磁ィ匕曲線、及び飽和しにくい比較的大きな異方性磁界 Hを有するため、小
K
型で、広い測定電流範囲を有し、熱的に安定で、安価なカレントトランス並びに電力 量計を提供することができる。特に半波正弦波電流波形のような非対称電流波形や 、直流電流が重畳した交流電流であっても正確に交流電流測定が可能になる。 図面の簡単な説明
[0028] [図 1]本発明のカレントトランス磁心に用いる Fe Co Cu Nb Si B (原子0 /0)合金の 80
83-x x 1 7 1 8
00 Am— 1における磁束密度 B を示すグラフである。
8000
[図 2]本発明のカレントトランス磁心に用いる Fe Co Cu Nb Si B (原子%)合金の角
83-x x 1 7 1 8
形比 B /B を示すグラフである。
r 8000
[図 3]本発明のカレントトランス磁心に用いる Fe Co Cu Nb Si B (原子%)合金の保
83-x x 1 7 1 8
磁力 を示すグラフである。
[図 4]本発明のカレントトランス磁心に用いる Fe Co Cu Nb Si B (原子0 /o)合金の 50
83-x x 1 7 1 8
Hz及び 0.05 Am— 1における交流比初透磁率 を示すグラフである。
[図 5]本発明のカレントトランス磁心に用いる Fe Co Cu Nb Si B (原子0 /o)合金の異
83-x x 1 7 1 8
方性磁界 Hを示すグラフである。
K
[図 6]本発明のカレントトランス磁心に用いる Fe Co Cu Nb Si B (原子%)合金磁
53.8 25 0.7 2.6 9 9
心と従来の Co基アモルファス合金磁心の直流 B-Hループを示すグラフである。 [図 7]本発明のカレントトランス磁心に用いる Fe Co Cu Nb Si B (原子0 /0)合金磁
53.8 25 0.7 2.6 9 9
心の 50 Hzにおける交流比初透磁率 の磁界依存性を示すグラフである。
[図 8]本発明のカレントトランス (CT)型電流センサの一例を示す斜視図である。
[図 9]カレントトランス磁心の磁ィ匕困難軸方向の B-Hループにおける異方性磁界 Hを
K
示すグラフである。
発明を実施するための最良の形態
[0029] [l] Fe基ナノ結晶合金
(1)組成
本発明のカレントトランス磁心用の Fe基ナノ結晶合金は、一般式: Fe M Cu
ΙΟΟ-χ-a-y-c x a
M' X' (原子0 /o) (ただし、 Mは Co及び Z又は Niであり、 M'は V, Ti, Zr, Nb, Mo, Hf, T a及び Wからなる群力 選ばれた少なくとも一種の元素であり、 X'は Si及び Z又は Bで あり、 X, a, y及び cはそれぞれ 10≤x≤50、 0.1≤a≤3、 l≤y≤10、 2≤c≤30、及び 7 ≤y+c≤31を満たす数字である。 )により表される組成を有する。
[0030] Mは Co及び Z又は Niであり、誘導磁気異方性を大きくし、 B-Hループの直線性を改 善し、異方性磁界 Hを調整し半波正弦波交流電流等を計測する場合等直流がバイ
K
ァスされた状態でもカレントトランスとして動作させる作用を有する。 M量 Xは 10≤x≤5 0である。 Xが 10原子%未満では H力 、さいために、直流が重畳されると磁心が飽和
K
し、電流測定が困難である。 Xが 50原子%を超えると Hが大きくなりすぎ、位相差や比
K
誤差の絶対値が増加しすぎる。好ましい M量 Xは 15≤x≤40であり、より好ましくは 18 ≤x≤37であり、最も好ましくは 22≤x≤ 35である。 xが 10〜50の範囲では直流が重畳 しても正確な電流測定が可能であるので、高精度でバランンスの取れたカレントトラン スの実現が可能となる。
[0031] Cu量 aは 0.1≤a≤3である。 aが 0.1原子%未満では位相差が大きくなり、 aが 3原子 %を超えると材料が脆ィ匕し、磁心成形が困難になる。好ましい Cu量 aは 0.3≤a≤2で ある。
[0032] M'はアモルファス形成を促進する元素である。 M'は V, Ti, Zr, Nb, Mo, Hf, Ta及び Wからなる群から選ばれた少なくとも一種の元素であり、その量 yは l≤y≤10の範囲 である。 yが 1原子%未満では熱処理後に微細な結晶粒組織が得られず、位相差や 比誤差の絶対値が増大する。 yが 10原子%を超えると飽和磁束密度の著しい低下に より Hが減少し、直流がバイアスされた場合、磁気的飽和により電流測定が困難とな
K
る。好ましい M'量 yは 1.5≤y≤9である。
[0033] X'もアモルファス形成を促進する元素である。 X'は Si及び Z又は Bであり、その量 c は 2≤c≤30の範囲である。 X'量 cが 2原子%未満では位相差や比誤差の絶対値が 増加し、 30原子%を超えると飽和磁束密度の著しい低下により Hが減少し、直流が
K
ノィァスされた場合、磁気的飽和により電流測定が困難となる。 X'量 cは好ましくは 5 ≤c≤25であり、より好ましくは 7≤c≤24である。
[0034] M'の量 yと X'の量 cの合計は 7≤y+c≤31の条件を満たす。 y+cが 7原子%未満で は位相差の著しい増加を招き、 31原子%を超えると飽和磁束密度が低下する。 y+c 量は好ましくは 10≤y+c≤28であり、より好ましくは 13≤y+c≤27である。
[0035] 特に Bの含有量力 〜12原子%である場合、位相差が小さいカレントトランス用磁心 を実現できるため好ましい。特に好ましい Bの含有量は 7〜10原子%である。また Siの 含有量 0.5〜17原子%である場合、位相差や比誤差の絶対値が小さぐ半波正弦波 交流電流の計測時に直流がバイアスされても、測定精度の良い電流測定が可能で ある。特に好まし 、Siの含有量は 0.7〜5原子%である。
[0036] 合金の耐食性、位相差及び比誤差の調整を行うため、 M'の一部を Cr, Mn, Sn, Zn,
In, Ag, Au, Sc,白金族元素, Mg, Ca, Sr, Ba, Y,希土類元素 ,N, O及び Sからなる群 カゝら選ばれた少なくとも一種の元素で置換しても良ぐまた位相差及び比誤差を調整 するため、 X'の一部を C, Ge, Ga, Al, Be及び Pからなる群力も選ばれた少なくとも一 種の元素で置換しても良 、。
[0037] (2)製造方法
本発明のカレントトランス用磁心は、前記組成の合金溶湯を単ロール法等の超急 冷法により急冷し、一旦アモルファス合金薄帯を作製後、これを必要に応じてスリット 加工し、リング状に卷回して卷磁心とし、結晶化温度以上に昇温して熱処理を行い 平均粒径 50 nm以下の微結晶を形成させることにより作製する。熱処理前のァモルフ ァス合金薄帯は結晶相を含まな 、方が望ま 、が、一部に結晶相を含んでも良 、。 単ロール法等の超急冷法は活性な金属を含まない場合は大気中で行うことができる 力 活性な金属を含む場合は Ar、 He等の不活性ガス中又は真空中で行う。また窒素 ガス、一酸ィ匕炭素又は二酸ィ匕炭素ガスを含む雰囲気で製造することもある。合金薄 帯の表面粗さ Raは小さい程よぐ具体的には 5 m以下が好ましぐ 2 m以下がより 好ましい。
[0038] 合金薄帯の少なくとも片面に、必要に応じて SiO、 MgO、 Al O等の被覆、化成処理
2 2 3
、アノード酸化処理等により絶縁層を形成すると、高周波成分を含む電流測定の際 に高精度の電流測定が可能になる。絶縁層の厚さは、占積率低下を防ぐため、 0.5 m以下が望ましい。
[0039] アモルファス合金薄帯を卷回して卷磁心とした後、性能のばらつきが小さい磁心を 得るために、アルゴンガス、窒素ガス、ヘリウムガス等の不活性ガス中又は真空中で 熱処理を行う。熱処理中の少なくとも一部の期間、合金が飽和するのに十分な強さ( 例えば 40 kAm—1以上)の磁界を印加し、磁気異方性を付与する。印加する磁界方向 は卷磁心の高さ方向である。印加する磁界は、直流、交流、パルス磁界のいずれで も良い。磁界は 200°C以上の温度で通常 20分以上印加し、かつ昇温中、一定温度に 保持中、及び冷却中も印加した方が角形比も小さくなり、 B-Hループの直線性も向上 し、位相差や比誤差の絶対値の小さいカレントトランスが実現できる。これに対して、 磁界中熱処理を適用しない場合は、カレントトランスとしての性能が著しく劣る。
[0040] 熱処理の際の最高温度は結晶化温度以上であり、具体的には 450〜700°Cである。
一定温度に保持する熱処理パターンの場合、保持時間は量産性の観点から通常 24 時間以下であり、好ましくは 4時間以下である。熱処理の際の平均昇温速度は好まし くは 0.1〜100°C/分であり、より好ましくは 0.1〜50°C/分である。また平均冷却速度は 好ましくは 0.1〜50°C/分であり、より好ましくは 0.1〜10°C/分である。冷却は室温まで 行う。この熱処理により、特にリニアリティが良好な B-Hループが得られ、位相差が小 さく比誤差の絶対値変化が小さいカレントトランスが得られる。
[0041] 熱処理は 1段に限らず、多段で行っても良い。磁心が大きい場合や多数の磁心を 熱処理する場合、結晶化温度付近を低速で昇温するか、結晶化温度付近で保持す ることにより、ゆっくりと結晶化を進行させるのが好ましい。これは、結晶化の際の発熱 により磁心温度が上がりすぎて特性が劣化するのを防止するためである。熱処理は 電気炉により行うのが好ましいが、合金に直流、交流又はパルス電流を流して合金を 発熱させても良い。
[0042] 得られた磁心は、性能劣化を防ぐため、応力が力からないフエノール榭脂等の絶縁 性ケースに入れるのが好ましいが、必要に応じて榭脂の含浸や被覆を行っても良い 。磁心を入れたケースの上に検出卷線を卷くことにより、カレントトランスとする。本発 明のカレントトランス磁心は直流が重畳された電流用に最も性能を発揮し、特に歪み 波形に適応した規格である IEC62053-21に対応した積算電力量計用カレントトランス 用に好適である。
[0043] (3)結晶構造
本発明のカレントトランス用磁心用の Fe基ナノ結晶合金は、少なくとも一部又は全 部に平均粒径 50 以下の結晶粒を有する。結晶粒の割合は組織の 30%以上であ るの好ましぐより好ましくは 50%以上であり、特に好ましくは 60%以上である。位相差 や比誤差の絶対値が小さ ヽカレントトランス用磁心を得るのに望まし!/ヽ平均結晶粒径 は 2 30 nmである。
[0044] Fe基ナノ結晶合金中の結晶粒は、主に FeCoや FeNiを主体とする体心立方構造 (b cc)を有し、 Si, B, Al, Ge, Zr等が固溶していても良ぐ規則格子を含んでいても良い 。また合金中に部分的に Cuを含む面心立方 (fee)相を有していても良い。化合物相 はな 、方が好まし 、が、僅かであれば含んでも良!、。
[0045] 合金中に結晶粒以外の相がある場合、その相は主にアモルファス相である。ァモル ファス相が結晶粒の周囲に存在すると、結晶粒成長の抑制により結晶粒が微細化さ れ、合金の抵抗率が高くなり、磁ィ匕のヒステリシスが小さくなるので、カレントトランスの 位相差が改善される。
[0046] (4)特性
(a)磁束密度
Fe基ナノ結晶合金の 8000 Am— 1における磁束密度 B は 1.2 T以上である必要があ
8000
る。 B 力 Sl.2 T未満では異方性磁界 Hを大きくできず、大きな直流バイアスが力かる
8000 K
用途や測定する電流が大きい場合にカレントトランスとして十分な特性を発揮できな い。合金組成の調整により B を 1.6 T以上、さらに 1.65 T以上にすることができる。 [0047] (b)異方性磁界
異方性磁界 Hは磁心の飽和磁界を示す物性値であり、図 9に示すように B-Hルー
K
プの屈曲点における磁界に相当する。本発明のカレントトランス用磁心は 150〜1500 Am— 1の異方性磁界 Hを有する。高飽和磁束密度とともに、この範囲の異方性磁界 H
K K
を有することにより、ヒステリシスが小さぐリニアリティに優れた B-Hループを有する力 レントトランス用磁心が得られる。
[0048] (c)角形比
Fe基ナノ結晶合金の角形比 B /B は 5%以下である必要がある。 B /B 力 を r 8000 r 8000 超えると、カレントトランスの位相差や比誤差の絶対値が大きくなり、特性が劣化する だけでなぐ大きな電流を測定した後の電流検出の特性変化が生じやすくなる。合金 組成の調整により、 B /B は 3%以下、さらに 2.5%以下にすることができる。ここで、 r 8000
Bは残留磁束密度であり、 B は 8000 Am— 1の磁界を印加した際の磁束密度である。 r 8000
[0049] (d)交流比初透磁率
Fe基ナノ結晶合金の 50 Hz及び 0.05 Am— 1における交流比初透磁率 は 800〜700 0である。このような交流比初透磁率 を有する Fe基ナノ結晶合金力 なるカレントト ランス用磁心は、半波波形や直流がバイアスされた電流測定において、位相差が小 さく比誤差の絶対値変化が小さい電流変換をすることができる。合金組成の調整によ り、交流比初透磁率 を 5000以下、さらに 4000以下にすることもできる。
[0050] [2]カレントトランス及び電力量計
本発明のカレントトランスは、上記磁心と、一次卷線と、少なくとも一つの二次検出 卷線と、二次検出卷線に並列に接続された負荷抵抗とを具備する。一次卷線は通常 貫通 1ターンである。本発明のカレントトランスは、半波波形の電流や直流バイアス電 流の場合等でも、位相差や比誤差の絶対値が小さぐ補正が容易で精度良い電流 測定が可能である。本発明のカレントトランスは、測定する電流仕様に応じて抵抗を 検出卷線に取り付ける。特に本発明のカレントトランスは半波正弦波交流電流の計 測において定格電流範囲における位相差が 5° 以下、比誤差の絶対値が 3%以内 の高精度の測定を実現できる。さらに本発明のカレントトランスは従来のパーマロイや Co基アモルファス合金を使用したものより温度特性に優れている。 [0051] 本発明のカレントトランス力 構成された電力量計は、歪み波形 (半波整流波形)に 適応した規格である IEC62053-21にも対応できるため、歪んだ電流波形の電力測定 も可能である。
[0052] 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定され るものではない。
[0053] 実施例 1
Fe Co Cu Nb Si B (原子%)の合金溶湯を単ロール法により急冷し、幅 5 mm及び
83- 1 7 1 8
厚さ 21 μ mのアモルファス合金薄帯を得た。このアモルファス合金薄帯を外径 30 mm 及び内径 21 mmに卷回し、トロイダル磁心を作製した。磁心を窒素ガス雰囲気の熱処 理炉に挿入し、磁心の磁路と垂直方向(合金薄帯の幅方向、すなわち磁心の高さ方 向)に 280 kAm—1の磁界を印加しながら、熱処理を行った。熱処理パターンは、 10°C/ 分での昇温、 550°Cで 1時間の保持、及び 2°C/分での冷却とした。電子顕微鏡観察 の結果、熱処理後の合金は組織の 70%程度が粒径 10 nm程度の体心立方構造の結 晶粒からなり、結晶相には一部規則格子も認められた。残部の組織は主にァモルフ ァス相であった。 X線回折パターンからは体心立方構造の相を示す結晶ピークが認 められた。
[0054] この Fe Co Cu Nb Si B (原子0 /0)合金の 8000 Am— 1における磁束密度 B 、角形
83- 1 7 1 8 8000 比 B /B 、保磁力 H、 50 Hz,0.05 Am— 1における交流比初透磁率 、及び異方性磁 r 8000 c r
界 Hを測定した。結果をそれぞれ図 1〜5に示す。この合金は、 Coが 3〜50原子%の
K
範囲では比較的高い磁束密度 B を示した。角形比 B /B は、 Coが 3〜50原子%
8000 r 8000
の範囲で 5%以下と低かった。保磁力 Hは Coが 3〜50原子%の範囲で比較的低か つた力 50原子%を超えると急激に増加した。交流比初透磁率 は Co量の増加に 伴い減少し、 3原子%以上で 7000以下となり、 50原子%を超えると 800未満となった。 異方性磁界 Hは Co量の増加に伴い増加し、 3原子%以上では 150 Am— 1以上であり
K
、 50原子%では 1500 Am— 1であった。
[0055] x=25原子%の磁心に、 1ターンの一次卷線及び 2500ターンの二次検出卷線を施 し、二次検出卷線に並列に 100 Ωの負荷抵抗を接続して、カレントトランスを作製し た。一次卷線に 50 Hz及び 30 Aの正弦波交流電流を流し、 23°Cにおける位相差と比 誤差 (絶対値で表す)を測定した結果、 Co量 X力 原子%の時の位相差 Θは 0.5° 、 比誤差 REは 0.1%であった。また、 Co量 Xが 16原子%の時の位相差 Θは 1.3° 、比誤 差 REは 0.2%であり、 Co量 Xが 25原子%の時の位相差 Θは 2.5° 、比誤差 REは 1.7% であり、 Co量 Xが 30原子%の時の位相差 Θは 2.6° 、比誤差 REは 1.1%であった。ま た波高値が 30 Aの半波正弦波交流電流の測定の可否ついて、下記基準により評価 した。結果を表 1に示す。
〇:精確に測定できた。
△:測定できたが、精確でなかった。
X:測定できな力つた。
[0056] [表 1]
Figure imgf000015_0001
[0057] Co量 Xが 10〜50の Fe基ナノ結晶合金からなる本発明のカレントトランス磁心は、半 波正弦波交流電流のような直流重畳電流の計測が可能であった。また位相差が 3° 以下、及び比誤差の絶対値が 2%以下と小さな値を示した。
[0058] 実施例 2
表 2に示す組成の合金溶湯を Ar雰囲気中で単ロール法により急冷し、幅 5 mm及び 厚さ 21 μ mのアモルファス合金薄帯を得た。このアモルファス合金薄帯を外径 30 mm 及び内径 21 mmに卷回し、カレントトランス磁心を作製した。各磁心に実施例 1と同じ 熱処理を行った後、磁気測定を行った。熱処理後の合金の組織中には粒径 50應以 下の極微細な結晶粒が形成されて 、た。 No.33は比較例の Fe基ナノ結晶合金の磁 心、 No.34は比較例の Co基アモルファス合金の磁心、 No.35は比較例のパーマロイの 磁心である。
[0059] 各磁心を用いて作製したカレントトランスに対して、実施例 1と同様にして、 23°Cに おける定格電流の位相差及び比誤差 (絶対値で表す)、磁束密度 B
8000、角形比 B /B r 8
、交流比初透磁率 、及び異方性磁界 Hを測定した。また波高値が 30Aの半波 正弦波交流電流に対する測定の可否を下記基準により評価した。評価した。結果を 表 2に示す。
〇:正確な測定が可能。
X:正確な測定が不可能。
[表 2]
Figure imgf000016_0001
注: *比較例。 2 (続き)
Figure imgf000017_0001
注: *比較例。
表 2のデータから、本発明のカレントトランス磁心は位相差や比誤差の絶対値が小 さぐ特に半波正弦波交流電流のような非対称の電流波形の場合にもカレントトラン スとして使用可能であることが分かる。これに対して、従来の Fe基ナノ結晶合金磁心( No.33)やパーマロイ (No.35)は半波正弦波交流電流の正確な測定が困難であった。 また従来の Co基アモルファス合金磁心(No.34)は本発明のカレントトランス用磁心よ り位相差や比誤差の絶対値が大き力つた。本発明のカレントトランス磁心は、積算電 力量計や産業機器用等、幅広い分野のカレントトランスに使用可能であることが分か つた o
[0063] 実施例 3
Fe Co Cu Nb Si B (原子%)の合金溶湯を単ロール法により急冷し、幅 5 mm
53.8 25 0.7 2.6 9 9
及び厚さ 21 μ mのアモルファス合金薄帯を得た。このアモルファス合金薄帯を外径 30 mm及び内径 21 mmに卷回し、トロイダル磁心を作製した。
磁心を窒素ガス雰囲気の熱処理炉に挿入し、実施例 1と同様に熱処理を行った。た だし、熱処理パターンは、 5°C/分での昇温、 530°Cで 2時間の保持、及び 1°C/分で の冷却とした。電子顕微鏡観察の結果、熱処理後の合金は組織の 72%程度が粒径 1 0 nm程度の体心立方構造の結晶粒力 なり、残部は主にアモルファス相であった。 X 線回折パターンからは体心立方構造の相を示す結晶ピークが認められた。
[0064] 測定の結果、この Fe Co Cu Nb Si B (原子0 /0)合金の 8000 Am— 1における磁束
53.8 25 0.7 2.6 9 9
密度 B は 1.50 T、角形比 Β /Β は 1%、保磁力 Ηは 2.1 Am 50 Hz, 0.05 Am— こ
8000 r 8000 c
おける交流比初透磁率 は 2200、異方性磁界 Hは 406Am— 1であった。
r K
[0065] 図 6に本発明のカレントトランス磁心と従来の Co基アモルファス磁心(実施例 2で作 製した比較例 No.34)の直流 B-Hループの一例、図 7に本発明のカレントトランス磁心 の 50 Hzにおける交流比初透磁率 の磁界依存性を示す。本発明のカレントトランス 磁心は同程度の Hである Co基アモルファス合金磁心よりも交流比初透磁率 が高
K r ぐ H以下の磁界の領域でほぼ一定の交流比初透磁率 を示した。この磁心を用
K r
Vヽた本発明のカレントトランスは、半波正弦波交流電流のように直流が重畳しても使 用でき、優れた特性を示すことが期待できる。
[0066] これらの磁心に、 1ターンの一次卷線及び 2500ターンの二次検出卷線を施し、二次 検出卷線に並列に 100 Ωの負荷抵抗を接続して、カレントトランスを作製した。一次 卷線に 50 Hz及び 30 Aの正弦波交流電流を流した時の、 23°Cにおける本発明のカレ ントトランスの位相差と比誤差の絶対値はそれぞれ 2.0%及び 2.4° であり、 Co基ァモ ルファス合金のカレントトランスはそれぞれ 3.6%と 4.6° であった。
本発明のカレントトランスを用いて作製した電力量計は、正負対称の正弦波交流電 流だけでなぐ半波正弦波交流電流に対しても電力量測定が可能であった。

Claims

請求の範囲
[1] 一般式: Fe M Cu M' X' (原子%) (ただし、 Mは Co及び Z又は Niであり、 M'
100— X - a~y— c x a y c
は V, Ti, Zr, Nb, Mo, Hf, Ta及び Wからなる群から選ばれた少なくとも一種の元素で あり、 X'は Si及び Z又は Bであり、 X, a, y及び cはそれぞれ 10≤x≤50、 0.1≤a≤3、 1 ≤y≤10、 2≤c≤30、及び 7≤y+c≤31を満たす数字である。 )により表される組成を 有し、組織の少なくとも一部又は全部が平均粒径 50 nm以下の結晶粒からなり、 8000 Am— 1における磁束密度 B 力 l.2 T以上であり、異方性磁界 H力 l50〜1500 Am— 1
8000 K
あり、角形比 B /B カ %以下であり、 50 Hz及び 0.05 Am— 1における交流比初透磁 r 8000
率 μ力 00〜7000である合金力もなることを特徴とするカレントトランス用磁心。
[2] 請求項 1に記載のカレントトランス用磁心において、前記 Μの含有量 Xが 15≤χ≤40 であることを特徴とするカレントトランス用磁心。
[3] 請求項 1又は 2に記載のカレントトランス用磁心において、 Βの含有量が 4〜12原子
%であることを特徴とするカレントトランス用磁心。
[4] 請求項 1〜3のいずれかに記載のカレントトランス用磁心において、 Siの含有量が 0.
5〜17原子%であることを特徴とするカレントトランス用磁心。
[5] 請求項 1〜4のいずれかに記載のカレントトランス用磁心において、前記 M'の一部 が Cr, Mn, Sn, Zn, In, Ag, Au, Sc,白金属元素, Mg, Ca, Sr, Ba, Y,希土類元素 ,N, O 及び Sからなる群力 選ばれた少なくとも一種の元素で置換されていることを特徴とす るカレントトランス用磁心。
[6] 請求項 1〜5のいずれかに記載のカレントトランス用磁心において、前記 X'の一部 を C, Ge, Ga, Al, Be及び Pから選ばれた少なくとも一種の元素で置換した合金力もな ることを特徴とするカレントトランス用磁心。
[7] 請求項 1〜6のいずれかに記載のカレントトランス用磁心において、磁心の高さ方向 に 40 kAm— 1以上の磁界を印加しながら 450〜700°Cの温度に 24時間以下の時間保持 した後に室温まで冷却し、磁界中熱処理したことを特徴とするカレントトランス用磁心
[8] 請求項 1〜7に記載のカレントトランス用磁心において、半波正弦波交流電流を検 出するために用いることを特徴とするカレントトランス用磁心。
[9] 請求項 1〜8のいずれかに記載のカレントトランス用磁心と、一次卷線と、少なくとも 1つの二次検出卷線と、前記二次検出卷線に並列に接続された負担抵抗とを具備 することを特徴とするカレントトランス。
[10] 請求項 9に記載のカレントトランスにおいて、一次卷線が 1ターンであることを特徴と するカレントトランス。
[11] 請求項 9又は 10に記載のカレントトランスにおいて、 23°Cで定格電流範囲における 位相差が 5° 以内であり、比誤差の絶対値が 3%以内であることを特徴とするカレント トランス。
[12] 請求項 9〜11のいずれかに記載のカレントトランスより得た電流値と、その時の電圧 を積算処理することにより、使用電力を計算することを特徴とする電力量計。
PCT/JP2005/023181 2004-12-17 2005-12-16 カレントトランス用磁心、カレントトランス及び電力量計 WO2006064920A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006548947A JP4716033B2 (ja) 2004-12-17 2005-12-16 カレントトランス用磁心、カレントトランス及び電力量計
EP05816635.6A EP1840906B1 (en) 2004-12-17 2005-12-16 Magnetic core for current transformer, current transformer and watthour meter
ES05816635.6T ES2542019T3 (es) 2004-12-17 2005-12-16 Núcleo magnético para transformador de corriente, transformador de corriente y vatihorímetro
US11/721,941 US7473325B2 (en) 2004-12-17 2005-12-16 Current transformer core, current transformer and power meter
PL05816635T PL1840906T3 (pl) 2004-12-17 2005-12-16 Rdzeń magnetyczny do przekładnika prądowego, przekładnik prądowy i licznik watogodzinowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004365957 2004-12-17
JP2004-365957 2004-12-17

Publications (1)

Publication Number Publication Date
WO2006064920A1 true WO2006064920A1 (ja) 2006-06-22

Family

ID=36587969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023181 WO2006064920A1 (ja) 2004-12-17 2005-12-16 カレントトランス用磁心、カレントトランス及び電力量計

Country Status (8)

Country Link
US (1) US7473325B2 (ja)
EP (1) EP1840906B1 (ja)
JP (1) JP4716033B2 (ja)
CN (1) CN101080788A (ja)
ES (1) ES2542019T3 (ja)
HU (1) HUE027441T2 (ja)
PL (1) PL1840906T3 (ja)
WO (1) WO2006064920A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125690A1 (ja) * 2006-04-28 2007-11-08 Hitachi Metals, Ltd. カレントトランス用磁心、カレントトランスならびに電力量計
JP2008311323A (ja) * 2007-06-13 2008-12-25 Kodensha:Kk 電池レス化用誘導コイルの取付方法
CN103430427A (zh) * 2011-03-31 2013-12-04 日新制钢株式会社 Ipm马达的转子以及使用该转子的ipm马达
WO2016104000A1 (ja) * 2014-12-22 2016-06-30 日立金属株式会社 Fe基軟磁性合金薄帯およびそれを用いた磁心
JP2023529751A (ja) * 2020-06-22 2023-07-11 マグネテック・ゲーエムベーハー センサ、保護遮断器、充電ケーブル、及び充電ステーション

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904664B1 (ko) * 2008-06-03 2009-06-25 주식회사 에이엠오 전류 센서용 자기 코어
CN101620906B (zh) * 2009-06-10 2011-08-03 中国科学院上海硅酸盐研究所 一种块体纳米晶软磁合金材料及其制备方法
KR101270565B1 (ko) 2009-08-24 2013-06-03 고쿠리츠다이가쿠호진 도호쿠다이가쿠 합금 조성물, Fe기 나노 결정 합금 및 그 제조 방법
CN102169754B (zh) * 2011-01-26 2012-09-19 北京水木源华电气有限公司 电流电压互感器
EP2791376A1 (en) * 2011-12-12 2014-10-22 OCAS Onderzoekscentrum voor Aanwending van Staal N.V. Fe-based soft magnetic glassy alloy material
TWI470255B (zh) * 2013-02-04 2015-01-21 China Steel Corp Thin strip magnetic measuring device
CN103258612B (zh) * 2013-05-22 2017-07-21 安泰科技股份有限公司 一种低导磁磁芯及其制造方法和用途
CN103258623A (zh) * 2013-05-22 2013-08-21 安泰科技股份有限公司 一种恒导磁磁芯及其制造方法和用途
US9293245B2 (en) * 2013-08-05 2016-03-22 Qualcomm Mems Technologies, Inc. Integration of a coil and a discontinuous magnetic core
US9852837B2 (en) * 2014-01-28 2017-12-26 General Electric Company Multi-winding high sensitivity current transformer
WO2016056136A1 (ja) * 2014-10-10 2016-04-14 日立金属株式会社 電流検出方法、電流検出装置、電流検出装置の信号補正方法、及び電流検出装置の信号補正装置
KR101730228B1 (ko) * 2015-01-27 2017-04-26 삼성전기주식회사 자성체 조성물을 포함하는 인덕터 및 그 제조 방법
CN105755368A (zh) * 2016-04-08 2016-07-13 郑州大学 一种铁基纳米晶态软磁合金及其应用
CN106298141A (zh) * 2016-10-11 2017-01-04 东南大学 一种铁基纳米晶软磁合金材料及其制备方法
KR101884428B1 (ko) * 2016-10-26 2018-08-01 주식회사 포스코 방향성 전기강판 및 이의 제조방법
WO2019036722A1 (en) * 2017-08-18 2019-02-21 Northeastern University METHOD FOR PRODUCING TETRATENITE AND SYSTEM THEREOF
JP6428884B1 (ja) 2017-09-11 2018-11-28 愛知製鋼株式会社 磁気センサ用感磁ワイヤおよびその製造方法
CN109298066A (zh) * 2018-09-10 2019-02-01 兰州交通大学 一种开口式电流互感器铁芯锈蚀检测装置
JP6791227B2 (ja) * 2018-11-02 2020-11-25 愛知製鋼株式会社 磁気センサ用感磁ワイヤおよびその製造方法
CN109507280A (zh) * 2018-11-12 2019-03-22 中国计量大学 一种用于低频电磁检测的交流饱和磁化装置
DE102019105215A1 (de) 2019-03-01 2020-09-03 Vacuumschmelze Gmbh & Co. Kg Legierung und Verfahren zur Herstellung eines Magnetkerns
EP4009506A1 (en) * 2020-12-07 2022-06-08 Tridonic GmbH & Co. KG Synchronous converter and lighting system comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271346A (ja) * 1990-03-20 1991-12-03 Tdk Corp 軟磁性合金
JPH0950907A (ja) * 1995-08-04 1997-02-18 Hitachi Metals Ltd ガス絶縁開閉機器用磁心
JP2000119821A (ja) * 1998-10-15 2000-04-25 Hitachi Metals Ltd 恒透磁率性に優れた高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP2000252111A (ja) * 1999-02-25 2000-09-14 Hitachi Metals Ltd 高周波用可飽和磁心ならびにこれを用いた装置
JP2001052933A (ja) * 1999-08-12 2001-02-23 Toshiba Corp 磁気コアおよび磁気コアを用いた電流センサ
JP2001155946A (ja) * 1999-11-25 2001-06-08 Hitachi Metals Ltd カレントトランスおよびその製造方法
JP2004218037A (ja) * 2003-01-17 2004-08-05 Hitachi Metals Ltd 高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP2004353090A (ja) * 1999-04-15 2004-12-16 Hitachi Metals Ltd 合金薄帯並びにそれを用いた部材

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JP2672306B2 (ja) * 1987-09-09 1997-11-05 日立金属株式会社 Fe基アモルファス合金
JP2501860B2 (ja) 1988-03-15 1996-05-29 日立金属株式会社 磁気センサ―及び電流センサ―並びにこれを用いた装置
JPH01242755A (ja) 1988-03-23 1989-09-27 Hitachi Metals Ltd Fe基磁性合金
JP2710949B2 (ja) * 1988-03-30 1998-02-10 日立金属株式会社 超微結晶軟磁性合金の製造方法
US5252148A (en) * 1989-05-27 1993-10-12 Tdk Corporation Soft magnetic alloy, method for making, magnetic core, magnetic shield and compressed powder core using the same
EP0435680B1 (en) * 1989-12-28 1995-04-05 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of producing same and magnetic core made of same
CA2040741C (en) * 1990-04-24 2000-02-08 Kiyonori Suzuki Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials
JPH05203679A (ja) 1991-05-30 1993-08-10 Matsushita Electric Works Ltd 電流センサー
JPH05255820A (ja) * 1992-01-09 1993-10-05 Toshiba Corp 恒透磁率性を有するFe基合金とその製造方法、およびそれを用いたFe基磁心
JP3233313B2 (ja) * 1993-07-21 2001-11-26 日立金属株式会社 パルス減衰特性に優れたナノ結晶合金の製造方法
JPH11102827A (ja) * 1997-09-26 1999-04-13 Hitachi Metals Ltd 可飽和リアクトル用コア、およびこれを用いた磁気増幅器方式多出力スイッチングレギュレータ、並びにこれを用いたコンピュータ
JPH11297521A (ja) * 1998-04-09 1999-10-29 Hitachi Metals Ltd ナノ結晶高磁歪合金ならびにそれを用いたセンサー
JP4755340B2 (ja) 1998-09-17 2011-08-24 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー 直流電流公差を有する変流器
KR100606515B1 (ko) 1998-11-13 2006-07-31 바쿰슈멜체 게엠베하 운트 코. 카게 변류기에 사용하기에 적합한 자기 코어, 상기 자기 코어의 제조 방법 및 상기 자기 코어를 구비한 변류기
EP1045402B1 (en) 1999-04-15 2011-08-31 Hitachi Metals, Ltd. Soft magnetic alloy strip, manufacturing method and use thereof
EP1237165B1 (en) * 2001-03-01 2008-01-02 Hitachi Metals, Ltd. Co-based magnetic alloy and magnetic members made of the same
US7061355B2 (en) * 2002-08-30 2006-06-13 Hitachi Metals, Ltd. Ferrite core, CATV equipment and bi-directional CATV system
WO2004088681A2 (de) * 2003-04-02 2004-10-14 Vacuumschmelze Gmbh & Co. Kg Magnetkern, verfahren zur herstellung eines solchen magnetkerns, anwendungen eines solchen magnetkerns insbesondere bei stromtransformatoren und stromkompensierten drosseln sowie legierungen und bänder zur herstellung eines solchen magnetkerns

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271346A (ja) * 1990-03-20 1991-12-03 Tdk Corp 軟磁性合金
JPH0950907A (ja) * 1995-08-04 1997-02-18 Hitachi Metals Ltd ガス絶縁開閉機器用磁心
JP2000119821A (ja) * 1998-10-15 2000-04-25 Hitachi Metals Ltd 恒透磁率性に優れた高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP2000252111A (ja) * 1999-02-25 2000-09-14 Hitachi Metals Ltd 高周波用可飽和磁心ならびにこれを用いた装置
JP2004353090A (ja) * 1999-04-15 2004-12-16 Hitachi Metals Ltd 合金薄帯並びにそれを用いた部材
JP2001052933A (ja) * 1999-08-12 2001-02-23 Toshiba Corp 磁気コアおよび磁気コアを用いた電流センサ
JP2001155946A (ja) * 1999-11-25 2001-06-08 Hitachi Metals Ltd カレントトランスおよびその製造方法
JP2004218037A (ja) * 2003-01-17 2004-08-05 Hitachi Metals Ltd 高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1840906A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125690A1 (ja) * 2006-04-28 2007-11-08 Hitachi Metals, Ltd. カレントトランス用磁心、カレントトランスならびに電力量計
US7837807B2 (en) 2006-04-28 2010-11-23 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer, and watt-hour meter
JP2008311323A (ja) * 2007-06-13 2008-12-25 Kodensha:Kk 電池レス化用誘導コイルの取付方法
CN103430427A (zh) * 2011-03-31 2013-12-04 日新制钢株式会社 Ipm马达的转子以及使用该转子的ipm马达
WO2016104000A1 (ja) * 2014-12-22 2016-06-30 日立金属株式会社 Fe基軟磁性合金薄帯およびそれを用いた磁心
KR20170097041A (ko) 2014-12-22 2017-08-25 히타치 긴조쿠 가부시키가이샤 Fe기 연자성 합금 박대 및 그것을 이용한 자심
JPWO2016104000A1 (ja) * 2014-12-22 2017-10-12 日立金属株式会社 Fe基軟磁性合金薄帯およびそれを用いた磁心
US10546674B2 (en) 2014-12-22 2020-01-28 Hitachi Metals, Ltd. Fe-based soft magnetic alloy ribbon and magnetic core comprising same
KR102282630B1 (ko) 2014-12-22 2021-07-27 히타치 긴조쿠 가부시키가이샤 Fe기 연자성 합금 박대 및 그것을 이용한 자심
JP2023529751A (ja) * 2020-06-22 2023-07-11 マグネテック・ゲーエムベーハー センサ、保護遮断器、充電ケーブル、及び充電ステーション
US11796607B2 (en) 2020-06-22 2023-10-24 Magnetec Gmbh Sensor, circuit breaker, charging cable and charging station

Also Published As

Publication number Publication date
EP1840906B1 (en) 2015-06-03
EP1840906A4 (en) 2010-07-28
PL1840906T3 (pl) 2015-11-30
US20080129437A1 (en) 2008-06-05
EP1840906A1 (en) 2007-10-03
JP4716033B2 (ja) 2011-07-06
US7473325B2 (en) 2009-01-06
JPWO2006064920A1 (ja) 2008-06-12
HUE027441T2 (en) 2016-10-28
ES2542019T3 (es) 2015-07-29
CN101080788A (zh) 2007-11-28

Similar Documents

Publication Publication Date Title
JP4716033B2 (ja) カレントトランス用磁心、カレントトランス及び電力量計
JP2007299838A (ja) カレントトランス用磁心、カレントトランスならびに電力量計
JP7028290B2 (ja) ナノ結晶合金磁心の製造方法
JP6669082B2 (ja) Fe基軟磁性合金薄帯およびそれを用いた磁心
JP5316920B2 (ja) 軟磁性合金、アモルファス相を主相とする合金薄帯、および磁性部品
JP4755340B2 (ja) 直流電流公差を有する変流器
JPS6130404B2 (ja)
JP2002530854A (ja) 変流器での使用に適した磁心、磁心の製造方法及び変流器
JP4547671B2 (ja) 高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
WO2022019335A1 (ja) Fe基ナノ結晶軟磁性合金及び磁性部品
JP2011102438A (ja) 直線的なbhループを有する鉄系アモルファス合金
JP2002541331A (ja) 高周波用途のための磁性ガラス状合金
JP2005537631A (ja) アモルファスFeを主成分とするコアを有する変流器
JP2000119821A (ja) 恒透磁率性に優れた高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP4310738B2 (ja) 軟磁性合金並びに磁性部品
JP7354674B2 (ja) 巻磁心、並びに、巻磁心、及び、カレントトランスの製造方法
JP3251126B2 (ja) Fe基軟磁性合金
US20110121821A1 (en) Magnetic core for electric current sensors
JPS62167840A (ja) 磁性材料とその製造方法
JPS6019125B2 (ja) 捲鉄心材料
JP2008150637A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品
JP2000173813A (ja) 磁性部品
JPH02114139A (ja) センサー

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11721941

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580043553.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005816635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5186/DELNP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005816635

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11721941

Country of ref document: US