WO2006063783A1 - Verfahren zur deacylierung von lipopeptiden - Google Patents

Verfahren zur deacylierung von lipopeptiden Download PDF

Info

Publication number
WO2006063783A1
WO2006063783A1 PCT/EP2005/013336 EP2005013336W WO2006063783A1 WO 2006063783 A1 WO2006063783 A1 WO 2006063783A1 EP 2005013336 W EP2005013336 W EP 2005013336W WO 2006063783 A1 WO2006063783 A1 WO 2006063783A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
lipopeptide
nucleus
group
biomass
Prior art date
Application number
PCT/EP2005/013336
Other languages
English (en)
French (fr)
Inventor
Eberhard Ehlers
Heinrich Decker
Sebastian Rissom
Guido Seidel
Reiner Olliger
Original Assignee
Sanofi-Aventis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi-Aventis Deutschland Gmbh filed Critical Sanofi-Aventis Deutschland Gmbh
Priority to RSP-2008/0294A priority Critical patent/RS50570B/sr
Priority to JP2007545925A priority patent/JP4922182B2/ja
Priority to PL05819403T priority patent/PL1828228T3/pl
Priority to ES05819403T priority patent/ES2304736T3/es
Priority to DK05819403T priority patent/DK1828228T3/da
Priority to DE502005004058T priority patent/DE502005004058D1/de
Priority to EP05819403A priority patent/EP1828228B1/de
Publication of WO2006063783A1 publication Critical patent/WO2006063783A1/de
Priority to US11/758,207 priority patent/US7785826B2/en
Priority to HR20080290T priority patent/HRP20080290T3/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics

Definitions

  • Lipopeptides are cyclohexapeptides that can be obtained by fermentation and have systemic antifungal activity, inhibiting (1,3) - ⁇ -D-glucan synthase, a key enzyme in cell wall biosynthesis of fungi. Furthermore, lipopeptides have antibacterial activity (Exp. Opin. Invest Drugs 2000, 9, 1797-1813). It is known that lipopeptides have unfavorable physico-chemical properties such as poor solubility in water or instability in alkaline solution. In addition, the natural lipopeptides show severe side effects such as damage to the venous endothelium, destruction and inflammation of tissues or local toxic effects at the site of application.
  • European patent application EP 0 460 882 describes the deacylation of the lipidic acyl position of lipopeptides by means of purified echinocandin B decyclase.
  • the enzyme is produced by fermentation of Actinoplanes utahensis (NRRL12052), after which it is cell-associated after fermentation, and first salting the cells together before the solubilized enzyme thus obtained is purified in an eight step process.
  • enzymatic side-chain cleavage from lipopeptides is accomplished by adding the purified lipopeptide to a culture or culture supernatant of a microorganism that produces a deacylase of broad substrate specificity.
  • a deacylase of broad substrate specificity may be a natural Actinoplanes utahensis strain (e.g., NRRL 12052; WO00 / 75177 and WO00 / 75178) or a recombinant deacylase producer, such as e.g. a recombinantly altered Streptomyces // V / c / ans strain.
  • Another alternative method is to add a purified deacylase to the solution or suspension of the purified lipopeptide. After Sokettenabspaltung the reaction supernatant is freed from insoluble constituents and the water-soluble nucleus contained in the filtrate purified. This procedure using purified or partially cleaned substrates is cumbersome and not industrially applicable.
  • the present invention relates to a method for the enzymatic cleavage of the N-acyl side chain from lipopeptides to form the corresponding nucleus, wherein (a) the lipopeptide is produced by fermentation, wherein the lipopeptide at the
  • Biomass is cell bound, and the biomass is separated with the adhered lipopeptide, (b) the biomass of the fermentation step (a) with the adherent
  • Lipopeptide is re-suspended in an aqueous system, (c) a suitable deacylase in dissolved or solid form is added to the biomass suspension of step (b) and the corresponding nucleus is formed, and
  • step (D) the nucleus is optionally isolated and purified, characterized in that in step (a) fermentatively obtained lipopeptide after fermentation end as cell-bound biomass without further purification in step (c) is reacted directly with a deacylase, whereby the over a Amide bond linked N-acyl chain is cleaved.
  • step (e) the nucleus is reacted with an acid derivative to form a semi-synthetic lipopeptide of the formula, the resulting amide function being replaced by a group of phenyl (C 5 -C 8 ) heteroaryl-phenyl, C (O) - Biphenyl or C (O) -Terphenyl is substituted.
  • the present invention further relates to a process for the enzymatic cleavage of the N-acyl side chain Rn from lipopeptides of the formula (I)
  • R x and Ry are independently H or (Ci-C ⁇ ) alkyl
  • R 2 H, OH, NH (CHA) 2 NH 2 ,
  • R 6 H, OH
  • R 7 H 1 OH
  • Rn a group C (O) - (C 6 -C 24 ) alkyl, a group C (O) - (C 6 -C 24 ) alkenyl, a Group C (O) - (C 6 -C 2 4) alkadienyl, or a group C (O) - (C 6 -C 24 ) alkatrienyl,
  • R-i-R-io have the meaning given for formula (I), and where available alkyl, alkenyl, alkadienyl and alkatrienyl groups in compounds of formula (I) and (II) can be branched or straight-chain,
  • the lipopeptide of the formula (I) is produced by fermentation, wherein the lipopeptide is cell-bound to the biomass, and the biomass is separated with the adhering lipopeptide,
  • step (c) adding a suitable deacylase in dissolved or solid form to the biomass suspension of step (b) to form the corresponding nucleus of formula (II), and
  • nucleus is optionally isolated and purified
  • step (a) lipopeptide after fermentation end as cell-bound biomass without further purification in Step (c) is reacted directly with a deacylase to cleave the N-acyl chain linked via an amide bond.
  • the present invention further relates to a process for the enzymatic cleavage of the N-acyl side chain R 2 o from lipopeptides of the formula (III)
  • R12, Ri3, Ru, Ri5, RI6, R17, RI8, RI9, Rx and Ry are independently H or (Ci-C 6) alkyl, and
  • R 20 a group C (O) -CH (CH 2 COR 2 I) -NH-CO- (C 6 -C 24 ) AlCl y, a group C (O) -CH (CH 2 COR 2 i) -NH- CO- (C 6 -C 24 ) alkenyl, a group C (O) -CH (CH 2 COR 2 i) -NH-CO- (C 6 -C 24) alkadienyl, or a group C (O) -CH (CH 2 COR 21 ) -NH-CO- (C 6 -C 24 ) alkatrienyl, wherein R 21 is OH or NH 2 ,
  • R12, R13, Ru, R15, Ri ⁇ , Ri7, Ri8, R19, Rx and R y are as defined for formula (III), and wherein alkyl, alkenyl, alkadienyl and alkatrienyl groups, if present, are present in compounds of formula (II) IUI) and (IV) can be branched or straight-chained,
  • the lipopeptide of the formula (III) is produced by fermentation, wherein the lipopeptide is cell-bound to the biomass, and the biomass is separated with the adhering lipopeptide,
  • step (c) adding a suitable deacylase in dissolved or solid form to the biomass suspension of step (b), and the corresponding
  • nucleus is optionally isolated and purified
  • step (a) lipopeptide is brought to fermentation end as cell-bound biomass without further purification in step (c) directly reacted with a deacylase, whereby the cleaved via an amide bond N-acyl chain is cleaved.
  • the nucleus (IV) is treated with an acid derivative to a semi-synthetic lipopeptide of formula (III 1 ) in which the group R 2 o is defined as a group C (O) -phenyl- (C 5 -C 8 ) heteroaryl-phenyl, C (O) - Biphenyl or C (O) -terphenyl.
  • Alkyl is a hydrocarbon radical having 1, 2, 3, 4, 5 or 6 C atoms.
  • Examples of (C ⁇ -CgJAlkylreste are methyl, ethyl, n-propyl, isopropyl
  • Alkyl accordingly denotes a hydrocarbon radical having 6 to 24 C atoms.
  • Alkyl radicals can be straight-chain or branched.
  • Preferred (Cg-C24) alkyl radicals are fatty acid radicals, for example hexyl, octyl, decanyl, undecanyl, dodecanyl, tridecanyl, tetradecanyl (myristyl), pentadecanyl, hexadecanyl, heptadecanyl, octadecanyl (stearyl), nonadecanyl, eicosanyl, dicosanyl, 9,11- Dimethyl tridecanyl, 11-methyl-tridecanyl.
  • biomass obtained in process step (a) with the adhering lipopeptide is washed with water before being resuspended in process step (b).
  • the aqueous system for resuspending the cell-bound lipopeptide in step (b) of the method according to the invention is water or an aqueous buffer solution, preferably with a pH of 7.2 to 4.5, particularly preferred from 6.0 to 5.0, especially preferred at a pH of 5.5.
  • buffer solutions all known to those skilled solutions can be used.
  • the subsequent deacylation can be carried out in the pH range of pH 4 to 9; preferred is a range of pH 4.6 to pH 7.8 with an optimum effect of the enzyme at pH 6-6.2.
  • the process according to the invention preferably relates to compounds of the formula (I) in which Rn
  • the lipopeptide starting material of the formula (I) is accessible by fermentation.
  • Examples of lipopeptides of the formula (I) are:
  • Echinocandin derivatives e.g. Echinocandin B, C or D (EP 1189933, FEBS Letters 1984, 173 (1), 134-138) - FR901379 (Biochim Biophys Acta 2002, 1587, 224-233)
  • Desoxymulundocandin, Echinocandin B or Mulundocandin can preferably be used as substrate in the process according to the invention.
  • deacylated compounds of formula (II) enables the preparation of semi-synthetic lipopeptides (I 1 ) having improved pharmacological, pharmacokinetic or chemotherapeutic properties, wherein in a further step (e) the nucleus (II) is re-acylated with an acid derivative for example, a corresponding acid in the presence of dimethylaminopyridine (DMAP) in dimethylformamide (DMF) (J. Antibiot. 1999, 52 (7), 674-676).
  • DMAP dimethylaminopyridine
  • DMF dimethylformamide
  • FK463 is obtainable from FR901379 by deacylation with FR901379 acylase via the corresponding nucleus FR179642 and subsequent acylation with an isoxazolyl-containing benzoyl side chain (Biochim, Biophys, Acta 2002, 1587, 224-233).
  • Semi-synthetic lipopeptides (I 1 ) correspond to compounds of the formula (I), but differ in the definition of the radical Rn.
  • the radicals R 1 -R 10 are as defined for the compound (I)
  • the group Rn is defined as a group C (O) -phenyl- (C 5 -C 8 ) heteroaryl Phenyl, C (O) biphenyl or C (O) -terphenyl, wherein the phenyl, biphenyl, terphenyl or heteroaryl groups are unsubstituted or substituted by one or two groups selected from the group (Ci-Cio) alkyl or O.
  • phenyl radicals can be unsubstituted or monosubstituted or polysubstituted, for example monosubstituted, disubstituted or trisubstituted, by identical or different radicals.
  • the substituent may be in the 2-position, the 3-position or the 4-position.
  • Double substituted phenyl may be substituted in 2,3-position, 2,4-position, 2,5-position, 2,6-position, 3,4-position or 3,5-position.
  • the substituents can be in 2,3,4-position, 2,3,5-position, 2,4,5-position, 2,4,6-position, 2,3,6-position or 3 , 4,5 position.
  • C 5 -Cs Heteroaryl radicals are aromatic ring compounds having a total of 5, 6, 7 or 8 atoms, in which one or more ring atoms are oxygen atoms, sulfur atoms or nitrogen atoms, eg. B. 1, 2 or 3 nitrogen atoms, 1 or 2 oxygen atoms, 1 or 2 sulfur atoms or a combination of different heteroatoms, for example a nitrogen and an oxygen atom.
  • heteroaryl radicals can be attached over all positions, for example via the 1 position, 2 position, 3 position, 4 position, 5 position, 6 position, 7 position or 8 position.
  • Heteroaryl radicals can be unsubstituted or monosubstituted or polysubstituted by identical or different radicals.
  • Heteroaryl means, for example, furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, indazolyl, quinolyl, isoquinolyl, phthalazinyl, quinoxalinyl, quinazolinyl and cinnolinyl.
  • the heteroaryl radicals are in particular isoxazolyl.
  • FK463 Antimicrob Agents Chemother 2000, 44, 57-62
  • pneumocandins e.g. Pneumocandin A or B (Tetrahedron Lett.
  • a particularly preferred example of a lipopeptide (I) is the deoxymulundocandin (V)
  • Lipopeptides of the formula (III) are known from the European patent applications EP629636 and EP 1068223.
  • the process according to the invention preferably relates to compounds of the formula (III) in which Ri 2, R13, Ru, R1 5, R16, R17, R18, R19, Rx and Ry are H.
  • the inventive method furthermore preferably relates to compounds of the formula (III) in which R 2 o
  • a particularly preferred example of a lipopeptide (III) is the compound of the formula (VII)
  • an advantage of the method according to the invention is that the deacylation substrate used is an unpurified lipopeptide (I) or (III) still adhering to the biomass in aqueous suspension, the purification of the
  • nucleus (II) or (IV) is possible on a large scale.
  • deacylation natural enzymes are used with a broad spectrum of activity in pure or partially purified form.
  • deacylases are Echinocandin B (ECB) deacylase obtained by cultivating an Actinoplanes utahensis species (La Verne et al., J. Antibiotics 1989, 42, 382-388), or polymyxin deacylase (161-16081 fatty acylase Pure, 164-16081 Fatty Acylase, Crude, Wako Pure Chemical Industries, Ltd.). Actinoplanes utahensis ECB deacylase can also be cloned and expressed in Streptomyces lividans.
  • the production of a recombinant enzyme of broad substrate specificity in a transformed Streptomyces lividans strain is preferred because significantly higher enzyme yields can be achieved in this way.
  • the deacylase can be added in step (c) in isolated form as a solution or as a solid to the biomass of the lipopeptide fermentation and is preferably previously prepared and concentrated separately. Methods for purifying lipopeptide deacylase from Actinoplanes utahensis are known from the literature (see EP460882).
  • the deacylation is carried out according to standard methods. For example, the deacylation with polymyxin acylase diminishes Yasuda et al, Agric. Biol. Chem., 53, 3245 (1989) and Kimura, Y., et al., Agric. Biol. Chem., 53,497 (1989).
  • deacylase The chromosomal DNA of Actinoplanes utahensis NRRL 12052 was isolated, digested with EcoRI and BgIW and separated on an agarose gel, 7-9 kb DNA fragments were isolated and cloned into plasmid pUC19 (EcoRI / ⁇ amHI site ). The ligation was transformed into E. coli and 250 resulting ampicillin-resistant clones (50 ⁇ g / ml) were examined by PCR. The primers were synthesized on the basis of the published DNA sequence of the deacylase (see GenBank Nucleotide Sequence Database Accession Number D90543, J. Inokoshi et al, Gene 1992, 119, 29-35).
  • the plasmid pCS1 contains the desired 8 kb EcoRI / ⁇ g / II fragment from A. utahensis NRRL 12052. This was also confirmed by restriction digestion of the fragment and comparison with the literature data (see J. Inokoshi et al, Gene 1992, 119, 29-35 ).
  • the plasmid pCS1 was digested with EcoRI / H / IIIl and the 8 kb fragment with the acylase was inserted into the plasmid pWHM3 (EcoRI / H / ⁇ dIII site; see J. Vara et al, J. Bacteriology 1989, 171, 5872-5881). cloned and transformed into E. coli. The transformants were selected with ampicillin (50 ⁇ g / ml).
  • the resulting plasmid pCS2 contains the 8 kb EcoRI / H / nIII fragment with the deacylase.
  • the plasmid pCS2 was then transformed by polyethyleneglycol (PEG) protoplast transformation into the strain Streptomyces IMdans TK64 JT46, on R2YE medium (Kieser et al., Practical Streptomyces Genetics, The John Innes Foundation, 2000, page 408), and clones selected with thiostrepton after 24 hours (20 ⁇ g / ml). Resulting thiostrepton-resistant transformants were isolated (in medium 1) and their productivity was tested in TSB medium in shake flasks. From a positive clone spore suspensions were then prepared (medium 1) and stored at -20 0 C in 20% glycerol.
  • PEG polyethyleneglycol
  • the medium 1 mentioned in the previous section contains the following
  • a recombinant Streptomyces // V / dans strain was used, as described in Example 1.
  • Such a strain can be cultured in a batch or fed-batch fermentation.
  • the normal process chain contained a preculture (TSB medium) in the shake flask, which was incubated for three days at 28 0 C and 220 rpm. With this flask, a fermenter up to 2000 L can be directly inoculated (0.15-6% v / v inoculum).
  • a second pre-culture in 10-50 L scale can be added to the process chain to accelerate the growth rate in the main stage by increasing the inoculum.
  • Fermentative production of the enzyme To reactivate the spores, a tube of an ampoule was slowly thawed. 200 ⁇ l of the suspension contained was sterile in an Erlenmeyer flask containing 500 ml of the following medium [additionally 10 ⁇ g / ml thiostrepton (50 mg / ml DMSO)]:
  • Preculture medium TSB medium (Soybean-Casein-Digest Medium U.S.P., ready prepared medium; OXOID LTD, England; product-no. CM129)
  • TSB medium Soybean-Casein-Digest Medium U.S.P., ready prepared medium; OXOID LTD, England; product-no. CM129
  • pH value 7.3 + 0.02, sterilization: 20 min, 121 ° C., 1 bar,
  • the mineral salt solution 1 added to the main culture medium has the following composition:
  • the sterilization of the medium can be carried out with direct steam or in an autoclave (at 121-125 0 C and 1, 1-1, 2 bar). After sterilization, the pH was about pH 6.5. The carbon source was added separately and sterile, with the pH dropping further to about pH 6. After filling the medium to the desired volume, the following fermentation conditions were followed during the fermentation:
  • Pressure 0.5-1 bar, preferably 0.5 bar
  • Fumigation 0.25-1.5 vvm, preferably 0.5 vvm, pO2:> 10% (controlled) pH control at 6.5-7.2 with phosphoric acid and / or sodium hydroxide solution, preferably pH 7.0 (controlled ).
  • an anti-foaming agent can be used, for example a branched, hydroxyl-containing polyester, preferably Desmophen® (Bayer Material Science, Leverkusen, Germany).
  • the productivity maximum was reached after 72-120 hours.
  • the expression of the enzyme was growth-coupled and did not have to be induced.
  • an offline rapid test (see Example 3) was used to determine the enzyme activity.
  • the fermentation was stopped at the time of maximum productivity.
  • a glucose solution (1-5 g / l * h) was preferably used in the fed batch with simultaneous increase in the power input via the stirrer speed (pO 2 control > 10%).
  • One unit (U) of deacylase activity is defined as the amount of enzyme required under the described assay conditions to produce 1 ⁇ mol of deoxymulundocandin nucleus in one minute.
  • Highly concentrated enzyme samples e.g. during the isolation of the deacylase are diluted with 200 mM sodium phosphate buffer (pH 5.5) to a correctly quantifiable in the enzyme assay concentration of 5-200 U / mL.
  • an analogous substrate for example compound (VII)
  • the resulting nucleus (VIII) was detected at a retention time of 2.4 minutes.
  • the supernatant of culture solutions which were prepared as described above, separated by known methods, preferably centrifugation and then concentrated, for example by ultrafiltration.
  • a separator eg type Westfalia SC 35
  • a concentration factor of about 10-20 is preferred over its original volume using polyethersulfone membranes having a nominal cut-off of 10-50 kDa, preferably about 20 kDa.
  • the circulation flow rate was 4500 l / h at a trans-membrane pressure of 2.5-3.5 bar; the permeate flow went during the filtration of initially 20-30 l / hm 2 to 4 10 l / hm back. The permeate was discarded.
  • aqueous enzyme concentrates could be stored cool in this form and then used directly for the deacylation of lipopeptides.
  • the enzyme by adding 2-propanol with a final concentration of 40-60% v / v, preferably 50-55% v / v.
  • the precipitation can be in the temperature range of 0-25 0 C, preferably in the range of 4-10 0 C, particularly preferably from 6 ° C to be made.
  • the deacylase can also be precipitated with acetone instead of 2-propanol, but 1-propanol is less suitable as precipitant.
  • the supernatant was decanted and then the enzyme from the remaining suspension after completion of precipitation centrifuged (eg with a CEPA tube centrifuge) and stored in a moist form until further use cool.
  • the moist enzyme obtained in pellets was dissolved in a phosphate buffer of suitable concentration. Insolubles are filtered off. The clear filtrate was used after activity determination directly for deacylation of deoxymulundocandins.
  • the precipitate may be stably stored for an extended period of time after previously adding additives such as salts (for example, ammonium sulfate), sugars (e.g., glucose) or sugar alcohols such as sorbitol or mannitol in lyophilized form.
  • additives such as salts (for example, ammonium sulfate), sugars (e.g., glucose) or sugar alcohols such as sorbitol or mannitol in lyophilized form.
  • sugars e.g., glucose
  • sugar alcohols such as sorbitol or mannitol in lyophilized form.
  • cyclic peptides of the formula (II), also called nucleus previously the corresponding lipopeptides of the formula (I) (exocyclic N-acyl derivatives of the nucleus) to be used as substrate were obtained by fermentation of the relevant microorganisms.
  • water-insoluble, biomass-adherent deoxymulundocandin (V) by cultivating Aspergillus sydowii, as described in European Patent Application 0 438 813 A1 and presented again below:
  • deoxymulundocandin For the production of deoxymulundocandin, a producer of Aspergillus sydowii, preferably a producer selected by classical strain improvement, was propagated in a batch fermentation process. Desoxymulundocandin is a classic secondary metabolite that is formed after approximately three days of fermentation:
  • the pH value after the sterilization of the medium was at pH 6.9 and was at the end of the culture pH 7-7.5.
  • the PMV value (percent myceiial volume) was between 15-20%.
  • a second preculture was fermented, which was carried out under the same conditions and with the same medium.
  • the main fermenter was treated with 1-6% inoculum from a shake culture or a Inoculated fermenter and contained the following medium:
  • Inoculation density 0.5-6%, preferably 1-2%
  • Fumigation 0-1.5 vvm, preferably 0.5-0.8 vvm
  • a cascade consisting of increasing stirrer speed (starting at 95 rpm, tip speed 1, 2 m / s) and increasing gassing rate (starting at 0.2 N / m 3 ) was preferably used.
  • the pH did not have to be regulated during the fermentation. But it helps to improve process robustness.
  • the pH was in the range of 5.5-7; preferably 6.2-6.5. From the 24-30. Hour, the pH was adjusted to pH 6.5 with sulfuric acid.
  • defoamers can be used; preference is given to Desmophen 3600 or Hodag AFM-5.
  • a preferred morphology should be sought throughout the fermentation process. This little one Pellet-shaped growth is influenced by the choice of stirrer; a disk stirrer is particularly suitable for pellet-like growth.
  • the total fermentation time may be more than 240 hours, with the product formation rate being fairly constant over a long period of time and the end of fermentation being determined via an accompanying offline analysis.
  • the product concentration at the end of a fermentation was in the range of 800-1200 mg / l of deoxymulundocandin.
  • the pH is adjusted to a pH of 6.5 to 5.5, preferably pH 6.0, the stability optimum of the deoxymulundocandin.
  • the culture broth was separated into culture supernatant and biomass.
  • various common filtration and separation techniques can be used.
  • a filter press is used.
  • the biomass was optionally washed once with water on the filter press and then transferred to a reaction vessel for deacylation. Filtrate and washings were discarded.
  • the biomass was re-suspended together with the adhered lipopeptide in water, preferably in 1-2 times the amount of water.
  • the initial concentration of deoxymulundocandin for deacylation being between 0.5-1.5 g / l.
  • the suspension was stirred until a homogeneous slurry was present.
  • the suspension was adjusted to the desired pH.
  • the deacylation process itself was - after dissolution of the enzyme in a phosphate buffer - carried out at temperatures of 20-80 0 C; was preferably a temperature range of 20-40 0 C, more preferably from 30 to 35 0 C. Higher temperatures byproduct formation such as ring opening and / or dehydration may favor.
  • the stirrer speed in a 200 L fermenter was 100-250 rpm, preferably 120-180 rpm.
  • the deacylase can be used in the pH range of pH 4 to 9; preferred is a range of pH 4.6 to pH 7.8 with an optimum effect of the enzyme at pH 5.2-6.2. Higher pH values are to be avoided, since in this case too, the formation of ring-open or dehydrated by-products of the formulas (IX) and (X) occurs to a greater extent:
  • the reaction time of the deacylation reaction varies and depends strongly on the chosen pH and temperature.
  • the end of the enzymatic cleavage of the side chain acid is determined by means of accompanying analytical HPLC by measuring the nucleus formation in the reaction supernatant. For example, in a deacylation of deoxymulundocandin 200 L scale deacylation was complete after 20-30 hours.
  • Example 6.2 Deacylation of Lipopeptides to the Corresponding Nucleus (2)
  • deacylation of deoxymulundocandin was carried out according to Example 6.1.
  • the deoxymulundocandin mycei was squeezed out and washed with water. Then the re-suspension was carried out in the same volume of water and the deacylation to the nucleus at pH 5.5 and 30 0 C:
  • Lyophilisate nucleus 34.1 g (yield 30%)
  • Lyophilisate purity 88.0 area% (HPLC) - 78.4% w / w (vs. internal standard).
  • the Aspergillus sydowii biomass was centrifuged off or filtered off, optionally with the addition of a filter aid. The separated biomass was discarded. The clear filtrate containing the water-soluble nucleus was then purified by column chromatography.
  • the stationary phase used was a hydrophobic polymer such as polystyrene-vinylbenzene copolymers, polyacrylates or polymethacrylates.
  • the nucleus may also be purified chromatographically on a cation exchanger. Preferred is a column chromatographic purification on a styrene-vinylbenzene copolymer as a stationary phase.
  • the eluent (mobile phase) used was water to which organic acids and alcohols were added as cosolvents to increase the selectivity.
  • Preferred as the mobile phase is water containing small amounts of acetic acid and 1- or 2-
  • the addition of acid serves for targeted depletion of existing impurities such as ring-open or dehydrated compounds.
  • the eluate was fractionally collected and the fractions containing the nucleus, after quantification by means of accompanying analytical HPLC, combined and concentrated by nanofiltration.
  • nanofiltration membranes were used, which can hold back 50-70% sodium chloride, preferably 50% NaCl.
  • the resulting nucleus concentrate (retentate) was then freeze-dried or spray-dried.
  • the resulting solid nucleus could be used directly and without additional purification as a starting material for the re-acylation with activated aromatic side chain acids.
  • the column pass is collected in a fraction and discarded after HPLC testing.
  • the stationary phase is washed with purified water under a linear flow of 100-150 cm / h until the absorption continuously measured in the column outlet reaches almost the baseline.
  • the wash solution is collected in a single fraction and discarded after HPLC testing.
  • the deoxymulundocandin nucleus is isocratically eluted under a linear flow of 100-150 cm / h with 10 bed volumes.
  • water to which 0.1% v / v acetic acid and 2% v / v 2-propanol (or 1-propanol) are added to increase selectivity is used.
  • the eluate is collected in fractions of 5-25 liters, the fraction size being controlled by the measured and continuously recorded absorbance.
  • nucleus retentate is then sterile filtered and then freeze-dried or spray-dried. Rand fractions of the column chromatographic purification of the deoxymulundocandin nucleus can be recycled.
  • the obtained solid deoxymulundocandin nucleus is filled into suitable plastic containers by HPLC analysis.
  • the containers are stored until further use at -25 0 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die Erfindung betrifft ein verbessertes Verfahren zur enzymatischen Deacylierung von Lipopeptiden zu dem entsprechenden Nukleus unter Abspaltung der Fettsäureseitenkette des Lipopeptids.

Description

Verfahren zur Deacylierung von Lipopeptiden
Lipopeptide sind Cyclohexapeptide, die fermentativ gewonnen werden können und eine systemisch antifungische Aktivität besitzen, wobei sie die (1 ,3)-ß-D-Glucan- Synthase, ein Schlüsselenzym der Zellwandbiosynthese von Pilzen hemmen. Ferner haben Lipopeptide antibakterielle Aktivität (Exp. Opin. Invest Drugs 2000, 9, 1797-1813). Es ist bekannt, dass Lipopeptide ungünstige physikalisch-chemische Eigenschaften wie Schwerlöslichkeit in Wasser oder eine Instabilität in alkalischer Lösung besitzen. Darüber hinaus zeigen die natürlichen Lipopeptide schwere Nebenwirkungen wie Schädigungen des Venenendothels, Zerstörung und Entzündungen von Geweben oder lokale toxische Effekte am Applikationsort.
Es besteht daher die Notwendigkeit zur Synthese neuer Lipopeptide mit verbesserten pharmakokinetischen und chemotherapeutischen Eigenschaften sowie geringerer Toxizität. Solche semisynthetischen Modifizierungen bestehen im allgemeinen in der Einführung saurer oder basischer Gruppen in das Molekülgerüst und im Ersatz der natürlichen aliphatischen Seitenkettensäure durch aromatische Acylkomponenten. Insbesondere der Abwandlung der Fettsäureseiten kette (N-Acylseitenkette) kommt zentrale Bedeutung bei Partialsynthesen von Lipopeptiden zu. Dies geschieht im allgemeinen derart, dass die N-Acyl-Seitenkette von Lipopeptiden mit einer natürlichen, Zell-assoziierten oder rekombinant erzeugten Deacylase breiter Substratspezifität auf enzymatischem Wege abgespalten wird und der resultierende Peptid-Zyklus, der sogenannte Nukleus, mit einer modifizierten aktivierten Säure re-acyliert wird (beispielsweise EP 1 189 932; EP 1 189 933).
Die europäische Patentanmeldung EP 0 460 882 beschreibt die Deacylierung der lipidischen Acylposition von Lipopeptiden mittels aufgereinigter Echinocandin B Decyclase. Das Enzym wird durch Fermentation von Actinoplanes utahensis (NRRL12052) produziert, wobei es nach der Fermentation zellassoziiert vorliegt, und zunächst mitteis Salzbehandlung von den Zellen gelöst wird, bevor das so erhaltene gelöste Enzym in einem achtstufigen Verfahren aufgereinigt wird.
Im allgemeinen erfolgt die enzymatische Seitenkettenabspaltung aus Lipopeptiden dadurch, dass man das gereinigte Lipopeptid mit einer Kultur oder einem Kulturüberstand eines Mikroorganismus versetzt, der eine Deacylase breiter Substratspezifität produziert. Dies kann ein natürlicher Actinoplanes utahensis- Stamm (z.B. NRRL 12052; WO00/75177 und WO00/75178) oder ein rekombinanter Deacylaseproduzent sein, wie z.B. ein rekombinant veränderter Streptomyces //V/c/ans-Stamm. Eine weitere Verfahrensalternative ist, zur Lösung oder Suspension des gereinigten Lipopeptids eine gereinigte Deacylase hinzufügen. Nach erfolgter Seitenkettenabspaltung wird der Reaktionsüberstand von unlöslichen Bestandteilen befreit und der im Filtrat enthaltene wasserlösliche Nukleus aufgereinigt. Diese Vorgehensweise unter Verwendung gereinigter oder partiell gereinigter Substrate ist umständlich und großtechnisch nicht anwendbar.
Die vorliegende Erfindung betrifft ein Verfahren zur enzymatischen Abspaltung der N-Acyl-Seitenkette aus Lipopeptiden unter Bildung des entsprechenden Nukleus, wobei (a) das Lipopeptid fermentativ hergestellt wird, wobei das Lipopeptid an der
Biomasse zellgebunden vorliegt, und die Biomasse mit dem anhaftenden Lipopeptid abgetrennt wird, (b) die Biomasse des Fermentationsschrittes (a) mit dem anhaftenden
Lipopeptid in einem wässrigen System re-suspendiert wird, (c) eine geeignete Deacylase in gelöster oder fester Form zu der Suspension der Biomasse aus Schritt (b) gegeben wird, und sich der entsprechende Nukleus bildet, und
(d) der Nukleus optional isoliert und gereinigt wird, dadurch gekennzeichnet, dass das in Schritt (a) fermentativ gewonnene Lipopeptid nach Fermentationsende als zellgebundene Biomasse ohne weitere Reinigung in Schritt (c) direkt mit einer Deacylase zur Reaktion gebracht wird, wodurch die über eine Amidbindung verknüpfte N-Acylkette abgespalten wird. Optional wird in einem weiteren Schritt (e) der Nukleus mit einem Säurederivat zu einem semi-synthetischen Lipopeptid der Formel umgesetzt, wobei die dabei entstehende Amidfunktion durch eine Gruppe Phenyl-(C5-C8)Heteroaryl-Phenyl, C(O)-Biphenyl oder C(O)-Terphenyl substituiert ist.
Die vorliegende Erfindung betrifft ferner ein Verfahren zur enzymatischen Abspaltung der N-Acyl-Seitenkette Rn aus Lipopeptiden der Formel (I)
Figure imgf000004_0001
wobei
Ri = H1 OH oder NRxRy ist, wobei
Rx und Ry unabhängig voneinander H oder (Ci-Cθ)Alkyl sind,
R2 = H, OH, NH(CHa)2NH2,
R3 = H, OH, R4 = H, Me, NH2, -NH-C(=NH)NH2,
R5 = H, Me1 CH2-C(=O)NH2l CH2CH2NH2,
R6 = H, OH,
R7 = H1 OH,
R8 = H1 OSO3H, OSO3Na, NH-C(=O)CH2NH2, R9 = Me, und
Rio = H, OH,
Rn = eine Gruppe C(O)-(C6-C24)Alkyl, eine Gruppe C(O)-(C6-C24)Alkenyl, eine Gruppe C(O)-(C6-C24)Alkadienyl, oder eine Gruppe C(O)-(C6-C24)Alkatrienyl,
unter Bildung des entsprechenden Nukleus der Formel (II)
Figure imgf000005_0001
wobei R-i-R-io die für Formel (I) genannte Bedeutung haben, und wobei sofern vorhanden Alkyl-, Alkenyl-, Alkadienyl- und Alkatrienylgruppen in Verbindungen der Formel (I) und (II) verzweigt oder geradkettig sein können,
wobei
(a) das Lipopeptid der Formel (I) fermentativ hergestellt wird, wobei das Lipopeptid an der Biomasse zellgebunden vorliegt, und die Biomasse mit dem anhaftenden Lipopeptid abgetrennt wird,
(b) die Biomasse des Fermentationsschrittes (a) mit dem anhaftenden Lipopeptid in einem wässrigen System re-suspendiert wird,
(c) eine geeignete Deacylase in gelöster oder fester Form zu der Suspension der Biomasse aus Schritt (b) gegeben wird, und sich der entsprechende Nukleus der Formel (II) bildet, und
(d) der Nukleus optional isoliert und gereinigt wird,
dadurch gekennzeichnet, dass das in Schritt (a) fermentativ gewonnene Lipopeptid nach Fermentationsende als zellgebundene Biomasse ohne weitere Reinigung in Schritt (c) direkt mit einer Deacylase zur Reaktion gebracht wird, wodurch die über eine Amidbindung verknüpfte N-Acylkette abgespalten wird.
Die vorliegende Erfindung betrifft ferner ein Verfahren zur enzymatischen Abspaltung der N-Acyl-Seitenkette R2o aus Lipopeptiden der Formel (III)
Figure imgf000006_0001
wobei
R12, Ri3, Ru, Ri5, Ri6, R17, Ri8, Ri9, Rx und Ry unabhängig voneinander H oder (Ci-C6)Alkyl sind, und
R20 = eine Gruppe C(O)-CH(CH2COR2I)-NH-CO-(C6-C24)AIlCyI, eine Gruppe C(O)-CH(CH2COR2i)-NH-CO-(C6-C24)Alkenyl, eine Gruppe C(O)-CH(CH2COR2i)-NH-CO-(C6-C24)Alkadienyl, oder eine Gruppe C(O)- CH(CH2COR21)-NH-CO-(C6-C24)Alkatrienyl, wobei R21 OH oder NH2 ist,
unter Bildung des entsprechenden Nukleus der Formel (IV)
Figure imgf000007_0001
wobei R12, R13, Ru, R15, Riβ, Ri7, Ri8, R19, Rx und Ry die für Formel (III) genannte Bedeutung haben, und wobei Alkyl-, Alkenyl-, Alkadienyl- und Alkatrienylgruppen sofern vorhanden in Verbindungen der Formel (IUI) und (IV) verzweigt oder geradketttig sein können,
wobei
(a) das Lipopeptid der Formel (III) fermentativ hergestellt wird, wobei das Lipopeptid an der Biomasse zellgebunden vorliegt, und die Biomasse mit dem anhaftenden Lipopeptid abgetrennt wird,
(b) die Biomasse des Fermentationsschrittes (a) mit dem anhaftenden Lipopeptid in einem wässrigen System re-suspendiert wird,
(c) eine geeignete Deacylase in gelöster oder fester Form zu der Suspension der Biomasse aus Schritt (b) gegeben wird, und sich der entsprechende
Nukleus der Formel (IV) bildet, und
(d) der Nukleus optional isoliert und gereinigt wird,
dadurch gekennzeichnet, dass das in Schritt (a) fermentativ gewonnene Lipopeptid nach Fermentationsende als zellgebundene Biomasse ohne weitere Reinigung in Schritt (c) direkt mit einer Deacylase zur Reaktion gebracht wird, wodurch die über eine Amidbindung verknüpfte N-Acylkette abgespalten wird.
Optional wird in einem weiteren Schritt (e) der Nukleus (IV) mit einem Säurederivat zu einem semi-synthetischen Lipopeptid der Formel (III1) umgesetzt wird, in dem die Gruppe R2o definiert ist als eine Gruppe C(O)-Phenyl-(C5-C8)Heteroaryl-Phenyl, C(O)-Biphenyl oder C(O)-Terphenyl.
(Ci-Cß)Alkyl bedeutet ein Kohlenwasserstoffrest mit 1 , 2, 3, 4, 5 oder 6 C-Atomen. Beispiele für (Cή-CgJAlkylreste sind Methyl, Ethyl, n-Propyl, Isopropyl
(1-Methylethyl), n-Butyl, Isobutyl (2-Methylpropyl), sec-Butyl (1-Methylpropyl), tert- Butyl (1 ,1-Dimethylethyl), n-Pentyl, Isopentyl, tert-Pentyl, Neopentyl, Hexyl.
(C6~C24)Alkyl bedeutet entsprechend ein Kohlenwasserstoffrest mit 6 bis 24 C- Atomen. Alkylreste können geradkettig oder verzweigt sein. Als (Cg-C24)Alkylreste sind Fettsäurereste bevorzugt, beispielsweise Hexyl, Octyl, Decanyl, Undecanyl, Dodecanyl, Tridecanyl, Tetradecanyl (Myristyl), Pentadecanyl, Hexadecanyl, Heptadecanyl, Octadecanyl (Stearyl), Nonadecanyl, Eicosanyl, Dicosanyl, 9,11- Dimethyl-tridecanyl, 11-Methyl-tridecanyl.
Die vorherige Isolierung und aufwendige Aufreinigung des Lipopeptid- Ausgangsmaterials entfällt bei dieser Vorgehensweise, da das an die Biomasse gebundene Lipopeptid direkt im Deacylierungsschritt eingesetzt wird. Das erfindungsgemäße Verfahren ist daher für den großtechnischen Maßstab geeignet. Verunreinigungen und Nebenprodukte, die sich in der komplexen Nährlösung des Verfahrensschritts (a) befinden, werden auf einfache Weise, z.B. durch Filtration oder Zentrifugieren, entfernt, bevor in Verfahrensschritt (b) die Deacylierung erfolgt. Verunreinigungen und Nebenprodukte sind beispielsweise Medienbestandteile, Stoffwechselprodukte des Stammes oder Enzyme.
Optional wird die in Verfahrensschritt (a) gewonnene Biomasse mit dem anhaftenden Lipopeptid vor dem Re-suspendieren in Verfahrensschritt (b) mit Wasser gewaschen.
Das wässrige System zum Re-suspendieren des zellgebundenen Lipopeptids in Schritt (b) des erfindungsgemäßen Verfahrens ist Wasser oder eine wässrige Pufferlösung, vorzugsweise mit einen pH-Wert von 7,2 bis 4,5, besonders bevorzugt von 6,0 bis 5,0, speziell bevorzugt bei einem pH-Wert von 5,5. Als Pufferlösungen können alle dem Fachmann bekannte Lösungen verwendet werden. Die anschließende Deacylierung kann im pH-Bereich von pH 4 bis 9 durchgeführt werden; bevorzugt ist ein Bereich von pH 4,6 bis pH 7,8 mit einem Wirkungsoptimum des Enzyms bei pH 6-6,2.
Das erfindungsgemäße Verfahren betrifft vorzugsweise Verbindungen der Formel (I), in denen Rn
Figure imgf000009_0001
Das Lipopeptid-Ausgangsmaterial der Formel (I) ist fermentativ zugänglich. Beispiele für Lipopeptide der Formel (I) sind:
- Aculeacin (US 4212858)
- Desoxymulundocandin (EP 438813)
- Echinocandin-Derivate, z.B. Echinocandin B, C oder D (EP 1189933; FEBS Letters 1984, 173(1), 134-138) - FR901379 (Biochim. Biophys. Acta 2002, 1587, 224-233)
- Mulundocandin (Bioorg. Med. Chem. Lett. 2004, 14, 1123-1128)
- Syringomycin (FEBS Letters 1999, 462, 151-154) Bevorzugt kann in dem erfindungsgemäßen Verfahren Desoxymulundocandin, Echinocandin B oder Mulundocandin als Substrat eingesetzt werden.
Die Bereitstellung deacylierter Verbindungen der Formel (II) ermöglicht die Herstellung von semi-synthetischen Lipopeptiden (I1) mit verbesserten pharmakologischen, pharmakokinetischen oder chemotherapeutischen Eigenschaften, wobei in einem weiteren Schritt (e) der Nukleus (II) mit einem Säurederivat re-acyliert wird, beispielsweise einer entsprechenden Säure in Gegenwart von Dimethylaminopyridin (DMAP) in Dimethylformamid (DMF) (J. Antibiot. 1999, 52(7), 674-676). Beispielsweise ist FK463 aus FR901379 mittels Deacylierung mit FR901379-Acylase über den entsprechenden Nukleus FR179642 und anschließende Acylierung mit einer Isoxazolyl-enthaltenden Benzoylseitenkette zugänglich (Biochim. Biophys. Acta 2002, 1587, 224-233).
Auch semi-synthetisch hergestellte Verbindungen der Formel (I) lassen sich in dem erfindungsgemäßen Verfahren zu der entsprechenden Verbindung der Formel (II) deacylieren.
Semi-synthetische Lipopeptide (I1) entsprechen Verbindungen der Formel (I), unterscheiden sich aber in der Definition des Restes Rn. In semi-synthetischen Lipopeptiden (I') sind die Reste R1-R10 wie für die Verbindung (I) definiert, und die Gruppe Rn ist definiert als eine Gruppe C(O)-Phenyl-(C5-C8)Heteroaryl-Phenyl, C(O)-Biphenyl oder C(O)-Terphenyl, wobei die Phenyl-, Biphenyl, Terphenyl- oder Heteroarylgruppen unsubstituiert sind oder substituiert sind mit einer oder zwei Gruppen ausgewählt aus der Gruppe (Ci-Cio)Alkyl oder O(Ci-Cio)Alkyl. In Verbindungen (I') können Phenylreste unsubstituiert sein oder einfach oder mehrfach, zum Beispiel einfach, zweifach oder dreifach, durch gleiche oder verschiedene Reste substituiert sein. In monosubstituierten Phenylresten kann sich der Substituent in der 2-Position, der 3-Position oder der 4-Position befinden. Zweifach substituiertes Phenyl kann in 2,3-Position, 2,4-Position, 2,5-Position, 2,6- Position, 3,4-Position oder 3,5-Position substituiert sein. In dreifach substituierten Phenylresten können sich die Substituenten in 2,3,4-Position, 2,3,5-Position, 2,4,5- Position, 2,4,6-Position, 2,3,6-Position oder 3,4,5-Position befinden. (C5-Cs)Heteroarylreste sind aromatische Ringverbindungen mit insgesamt 5, 6, 7 oder 8 Atomen, in denen ein oder mehrere Ringatome Sauerstoffatome, Schwefelatome oder Stickstoffatome sind, z. B. 1 , 2 oder 3 Stickstoffatome, 1 oder 2 Sauerstoffatome, 1 oder 2 Schwefelatome oder eine Kombination aus verschiedenen Heteroatomen, z.B. ein Stickstoff- und ein Sauerstoffatom. Die Heteroarylreste können über alle Positionen angebunden sein, zum Beispiel über die 1 -Position, 2-Position, 3-Position, 4-Position, 5-Position, 6-Position, 7-Position oder 8-Position. Heteroarylreste können unsubstituiert sein oder einfach oder mehrfach durch gleiche oder verschiedene Reste substituiert sein. Heteroaryl bedeutet zum Beispiel Furanyl, Thienyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Triazolyl, Tetrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Isothiazolyl, Pyridyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Indolyl, Indazolyl, Chinolyl, Isochinolyl, Phthalazinyl, Chinoxalinyl, Chinazolinyl und Cinnolinyl. Als Heteroarylreste gilt insbesondere Isoxazolyl.
Verbindungen der Formel (I') sind beispielsweise beschrieben in der europäischen Patentanmeldung EP1189933.
Beispiele für semi-synthetische Lipopeptide der Formel (I1) sind: - A-1720132 (Antimicrob. Agents Chemother. 1998, 42, 389-393)
- A-192411.29 (Antimicrob. Agents Chemother. 2000, 44, 1242-1246)
- Caspofungin (MK-0991 ; Antimicrob. Agents Chemother. 1997, 41 , 2326- 2332)
- FK463 (Antimicrob. Agents Chemother. 2000, 44, 57-62) - Pneumocandine, z.B. Pneumocandin A oder B (Tetrahedron Lett. 1992,
33(32), 4529-4532)
Ferner ist es mit dem erfindungsgemäßen Verfahren möglich, aus fermentativ zugänglichen Lipopeptiden (I) durch Deacylierung/Re-acylierung andere prinzipiell fermentativ zugängliche Lipopeptide herzustellen.
Ein besonders bevorzugtes Beispiel eines Lipopeptids (I) ist das Desoxymulundocandin (V)
Figure imgf000012_0001
wobei in dem erfindungsgemäßen Verfahren durch Deacylierung ausgehend von Desoxymulundocandin (V) der Desoxymulundocandin-Nukleus (VI) hergestellt wird:
Figure imgf000012_0002
Lipopeptide der Formel (III) sind aus den europäischen Patentanmeldungen EP629636 und EP 1068223 bekannt.
Das erfindungsgemäße Verfahren betrifft bevorzugt Verbindungen der Formel (III), in denen Ri2, R13, Ru, R15, R16, R17, R18, R19, Rx und Ry gleich H sind.
Das erfindungsgemäße Verfahren betrifft femer bevorzugt Verbindungen der Formel (III), in denen R2o
Figure imgf000013_0001
Ein besonders bevorzugtes Beispiel eines Lipopeptids (III) ist die Verbindung der Formel (VII)
Figure imgf000013_0002
wobei durch Deacylierung der entsprechende Nukleus (VIII) hergestellt wird:
Figure imgf000014_0001
Ein Vorteil des erfindungsgemäßen Verfahrens ist, dass als Substrat der Deacylierung ein ungereinigtes, der Biomasse noch anhaftendes Lipopeptid (I) bzw. (III) in wässriger Suspension verwendet wird, die Aufreinigung des
Ausgangsmaterials obsolet wird und so eine Produktion des Nukleus (II) bzw. (IV) in großtechnischem Maßstab möglich wird.
Zur Deacylierung werden natürliche Enzyme mit breitem Wirkungsspektrum in reiner oder partiell gereinigter Form eingesetzt. Beispiele für Deacylasen sind Echinocandin B (ECB) Deacylase, die durch Kultivierung einer Actinoplanes utahensis-Spezles erhalten wird (La Verne et al., J.Antibiotics 1989, 42, 382-388), oder Polymyxin-Deacylase (161-16081 Fatty Acylase, Pure; 164-16081 Fatty Acylase, Crude; Wako Pure Chemical Industries, Ltd.). Die ECB Deacylase aus Actinoplanes utahensis kann ebenso in Streptomyces lividans geklont und exprimiert werden. Die Herstellung eines rekombinanten Enzyms breiter Substratspezifität in einem transformierten Streptomyces lividans-Stamm ist bevorzugt, weil auf diese Weise signifikant höhere Enzymausbeuten zu erzielen sind. Die Deacylase kann in Schritt (c) in isolierter Form als Lösung oder als Feststoff zu der Biomasse der Lipopeptid-Fermentierung gegeben werden und wird vorzugsweise zuvor separat hergestellt und aufkonzentriert. Methoden zur Aufreinigung von Lipopeptid-Deacylase aus Actinoplanes utahensis sind literaturbekannt (siehe EP460882). Die Deacylierung wird nach Standardmethoden durchgeführt. Zum Beispiel wird die Deacylierung mit Polymyxin acylase nach Yasuda et al, Agric. Biol. Chem., 53,3245 (1989) und Kimura, Y., et al.,Agric. Biol. Chem., 53,497 (1989) durchgeführt.
Beispiel 1: Herstellung des rekombinanten Deacylase-Produzenten
Aus dem Stamm Actinoplanes utahensis NRRL 12052 wurde ein DNS-Fragment isoliert, das für die Deacylase codiert. Das Fragment wurde Moniert (Plasmid pCS1) und umkloniert (Plasmid pCS2), und das Plasmid pCS2 in einen S. IMdans Stamm transformiert. Von einer Einzelkolonie des rekombinanten S.lividans-Stammes wurden Sporensuspensionen hergestellt und bei -200C in Ampullen eingelagert.
Klonierunq der Deacylase: Die chromosomale DNS von Actinoplanes utahensis NRRL 12052 wurde isoliert, mit EcoRI und BgIW verdaut und auf einem Agarosegel getrennt, DNS-Fragmente mit einer Länge von 7-9 kb wurden isoliert und in das Plasmid pUC19 Moniert (EcoRI/ßamHI Schnittstelle). Die Ligation wurde in E. coli transformiert und 250 resultierende Ampicillin-resistente Klone (50 μg/ml) wurden mittels PCR untersucht. Die Primer wurden auf Basis der publizierten DNS-Sequenz der Deacylase synthetisiert (siehe GenBank Nucleotide Sequence Database Accession Number D90543; J.Inokoshi et al, Gene 1992, 119, 29-35).
Das Plasmid pCS1 enthält das gesuchte 8 kb EcoRI/ßg/ll Fragment aus A. utahensis NRRL 12052. Dies wurde auch durch Restriktionsverdau des Fragments und Vergleich mit den Literaturdaten bestätigt (siehe J.Inokoshi et al, Gene 1992, 119, 29-35). Das Plasmid pCS1 wurde mit EcoRI/H/ndlll verdaut und das 8 kb Fragment mit der Acylase in das Plasmid pWHM3 (EcoRI/H/πdlll-Schnittstelle; siehe J.Vara et al, J. Bacteriology 1989, 171 , 5872-5881) kloniert und in E. coli transformiert. Die Transformanten wurden mit Ampicillin selektioniert (50μg/ml). Das resultierende Plasmid pCS2 enthält das 8 kb EcoRI/H/ndlll-Fragment mit der Deacylase.
Das Plasmid pCS2 wurde danach durch Polyethylenglykol (PEG)- Protoplastentransformation in den Stamm Streptomyces IMdans TK64 JT46 transformiert, auf R2YE Medium (Kieser et al., Practical Streptomyces Genetics, The John Innes Foundation, 2000, page 408), ausplattiert und Klone mit Thiostrepton nach 24 Stunden selektioniert (20 μg/ml). Resultierende Thiostrepton- resistente Transformanten wurden vereinzelt (in Medium 1) und ihre Produktivität in TSB-Medium in Schüttelkolben geprüft. Von einem positiven Klon wurden dann Sporensuspensionen hergestellt (Medium 1) und diese bei -20 0C in 20% Glycerol eingelagert. Allgemeine molekularbiologische Methoden (Ligation, Transformation, PCR, Restriktionsverdau, Agarosegele) sind bei Sambrook et al. (in „Molecular Cloning", CoId Spring Habor Laboratory Press, Second Edition, 1989, ISBN 0- 87969-906-6) nachzulesen und Methoden zur Isolierung chromosomaler DNS aus Actinomyceten und Transformation von Streptomyces lividans, spezielle Methoden zur PCR von DNS aus Actinomyceten sowie Regeneration der Protoplasten sind bei Hopwood et al. (in „Practical Streptomyces Genetics", The John Innes Foundation, 2000, ISBN 0-7084-0623-8) zu finden.
Das im voranstehenden Abschnitt erwähnte Medium 1 enthält folgende
Bestandteile:
Malzextrakt 10 g/L
Hefeextrakt 4 g/L
Glucose 4 g/L Agar 15 g/L pH 7,2
Beispiel 2: Fermentative Hersteilung der Deacylase
Zur Produktion des Enzyms wurde ein rekombinanter Streptomyces //V/dans-Stamm verwendet, wie er in Beispiel 1 beschrieben wurde. Ein solcher Stamm kann in einer Batch- oder Fed-Batch-Fermentation kultiviert werden. Die normale Prozesskette enthielt eine Vorkultur (TSB-Medium) im Schüttelkolben, welche drei Tage bei 28 0C und 220 rpm inkubiert wurde. Mit diesem Kolben kann ein Fermenter bis 2000 L direkt angeimpft werden (0,15 - 6 % v/v Inokulum). Alternativ dazu kann auch eine zweite Vorkultur im 10-50 L Maßstab in die Prozesskette eingefügt werden, um durch Erhöhung des Inokulums die Anwachsgeschwindigkeit in der Hauptstufe zu beschleunigen. Fermentative Herstellung des Enzyms: Für die Reaktivierung der Sporen wurde ein Röhrchen einer Ampulle langsam aufgetaut. Mit 200μl der enthaltenen Suspension wurde ein Erlenmeyerkolben steril beimpft, der 500 ml des folgenden Medium enthielt [zusätzlich 10 μg/ ml Thiostrepton (50 mg/ml DMSO)]:
Medium der Vorkultur: TSB-Medium (Soybean-Casein-Digest Medium U. S. P.; ready prepared medium; OXOID LTD, England; product-no. CM129)
Figure imgf000017_0001
pH-Wert : 7,3 + 0,02, Sterilisation : 20 min, 121 0C, 1 bar,
Inkubation : 3 Tage; 28 0C und 220 rpm (Hub: 2,5 cm).
Am Ende der Vorkultur wurde diese den Animpfvorgaben entsprechend in einen Fermenter transferiert, der folgendes Medium enthält:
Medium der Hauptkultur:
Figure imgf000017_0002
Die dem Hauptkulturmedium zugesetzte Mineralsalzlösung 1 besitzt folgende Zusammensetzung:
Mineralsalzlösung 1 :
Substanz Konzentration
[g/L]
MgSO4 * 7 H2O 28,9
FeSO4 * 7 H2O 0,5
ZnSO4 * 7 H2O 0,5
MnSO4 * 7 H2O 0,1
CuSO4 * 7 H2O 0,05
CoCI2 * 6 \ \2o 0,04
Die Sterilisation des Mediums kann mit Direktdampf oder im Autoklaven durchgeführt werden (bei 121-125 0C und 1 ,1-1 ,2 bar). Nach der Sterilisation betrug der pH-Wert etwa pH 6,5. Die Kohlenstoffquelle wurde separat und steril zugeführt, wobei der pH-Wert weiter auf etwa pH 6 abfiel. Nach Auffüllen des Mediums auf das gewünschte Volumen wurden während der Fermentation folgende Fermentationsbedingungen eingehalten:
Temperatur: 25-33 0C, vorzugsweise 28°C,
Druck: 0,5-1 bar, vorzugsweise 0,5 bar
Tip speed des Rührers: 1-2 m/s,
Begasung: 0,25-1,5 vvm, vorzugsweise 0,5 vvm, pO2: >10 % (kontrolliert) pH-Regelung bei 6,5-7,2 mit Phosphorsäure und/oder Natronlauge, vorzugsweise pH 7,0 (kontrolliert).
Optional kann ein Antischaummittel eingesetzt werden, beispielsweise ein verzweigter, Hydroxylgruppen-haltiger Polyester, vorzugsweise Desmophen® (Bayer Material Science, Leverkusen, Germany).
Nach etwa 100 Stunden war die Kohlenstoffquelle verbraucht und es fanden sich zwischen 50-150 U/ L in der Fermentationslösung.
Nach Einstellen dieser Parameter und Animpfen mit dem gewünschten Inokulum- Volumen wurde das Produktivitätsmaximum nach 72-120 Stunden erreicht. Die Expression des Enzyms erfolgte wachstumsgekoppelt und musste nicht induziert werden. Zur Überwachung der Expression bzw. der Produktion des Enzyms wurde für die Bestimmung der Enzymaktivität ein offline Schnelltest (siehe Beispiel 3) eingesetzt. Die Fermentation wurde zum Zeitpunkt maximaler Produktivität beendet. Durch Anwendung eines Fed-Batch-Verfahrens konnte die Produktivität und die Raum-Zeit-Ausbeute beträchtlich gesteigert werden. Hierzu wurde bevorzugt eine Glucose-Lösung (1-5 g/l*h) im Fed-Batch unter gleichzeitiger Erhöhung des Leistungseintrags über die Rührergeschwindigkeit (pO2-Regelung > 10 %) verwendet.
Beispiel 3: Aktivitätsbestimmung der Deacylase
Zur Kontrolle der Enzymaktivität während der fermentativen Herstellung der Deacylase, während der Isolierung des Enzyms oder während der enzymatischen Seitenkettenabspaltung aus Lipopeptiden wie Desoxymulundocandin dient folgender enzymatischer Schnelltest:
Zu 500 μl_ einer auf 60 0C vorgeheizten Lösung von 2,5 g/L Desoxymulundocandin (V), 0,5 %v/v Brij 35 in 20OmM Natriumphosphatpuffer (pH 5,5) werden 20 μL einer die Deacylase-enthaltenden Probe gegeben. Die Lösung wird unter Schütteln 10 Minuten bei 60 0C inkubiert. Die Deacylierung wird anschließend durch Zugabe von 480 μL 0,85 %v/v Phosphorsäure gestoppt.
Nach Zentrifugation und Abtrennung von unlöslichen Bestandteilen wird die Menge des gebildeten Desoxymulundocandin-Nukleus (VI) in einer begleitenden HPLC- Analytik bestimmt. Hierzu werden 5 μL der Lösung auf eine Merck-Purospher-Star- RP-Säule (4*55mm) injiziert und mit einem dreiminütigen, linearen Gradienten von 4→20 %v/v Acetonitril, angesäuert mit 0,1 %v/v Phosphorsäure, bei einem Fluss von 2,5 ml/min eluiert. Die Detektion erfolgt bei λ = 220 nm. Der Nukleus besitzt eine Retentionszeit von 1 ,4 Minuten. Die Quantifizierung erfolgt mittels eines externen Standards.
Eine Einheit (Unit) (U) an Deacylase-Aktivität wird definiert als die Menge an Enzym, die unter den beschriebenen Analysenbedingungen benötigt wird, um in einer Minute 1 μmol an Desoxymulundocandin-Nukleus zu produzieren.
Hochkonzenztrierte Enzymproben, wie sie z.B. während der Isolierung der Deacylase anfallen, werden mit 200 mM Natriumphosphatpuffer (pH 5,5) auf eine im Enzymtest korrekt quantifizierbare Konzentration von 5-200 U/mL verdünnt. Bei Enzymproben, die Desoxymulundocandin oder den Desoxymulundocandin-Nukleus enthalten, wird ein Analogsubstrat, zum Beispiel die Verbindung (VII) im Schnelltest verwendet. Der resultierende Nukleus (VIII) wurde bei einer Retentionszeit von 2,4 Minuten detektiert.
Beispiel 4: Isolierung der Deacylase
Zur Isolierung des Enzyms wurde der Überstand von Kulturlösungen, die wie voranstehend beschrieben hergestellt wurden, mittels an sich bekannter Methoden, vorzugsweise Zentrifugation abgetrennt und danach aufkonzentriert, beispielsweise mittels Ultrafiltration. Beispielsweise werden nach beendeter Fermentation Kulturlösungen (ca. 2000 L) des rekombinanten Streptomyces lividans-Stammes gegebenenfalls mit geeigneten Desinfektionsmitteln abgetötet und der das Enzym enthaltende Überstand mit einem Separator (z.B. Typ Westfalia SC 35) bei einem Durchsatz von 1000-1300 l/h abgetrennt. Die abgetrennte Biomasse wurde verworfen. Die Qualität der Fest-Flüssig-Trennung kann durch Messung der optischen Dichte bei λ = 540 nm im Klarlauf getestet werden. Für die Aufkonzentrierung des geklärten Überstandes ist bevorzugt ein Konzentrierungsfaktor von etwa 10-20 im Vergleich zu seinem ursprünglichen Volumen unter Verwendung von Polyethersulfon-Membranen mit einer nominalen Ausschlussgrenze (cut-off) von 10-50 kDa, vorzugsweise um 20 kDa. Die Zirkulationsflussrate betrug 4500 l/h bei einem Trans-Membran-Druck von 2,5-3,5 bar; der Permeatfluss ging während der Filtration von anfänglich 20-30 l/hm2 auf 4- 10 l/hm zurück. Das Permeat wurde verworfen.
Die wässrigen Enzym-Konzentrate (Retentate) konnten in dieser Form kühl gelagert und danach direkt zur Deacylierung von Lipopeptiden eingesetzt werden.
Alternativ dazu gelang es auch, das Enzym durch Zusatz von 2-Propanol mit einer Endkonzentration von 40-60 %v/v, vorzugsweise 50-55 %v/v, zu fällen. Die Fällung kann im Temperaturbereich von 0-25 0C, vorzugsweise im Bereich von 4-10 0C, besonders bevorzugt 6°C vorgenommen werden. Die Deacylase lässt sich anstelle von 2-Propanol auch mit Aceton fällen, 1-Propanol ist jedoch als Fällungsmittel weniger gut geeignet. Der Überstand wurde dekantiert und danach das Enzym aus der verbleibenden Suspension nach beendeter Fällung abzentrifugiert (z.B. mit einer CEPA-Röhrenzentrifuge) und in feuchter Form bis zur weiteren Verwendung kühl gelagert.
Das feuchte, in Pellets anfallende Enzym wurde in einem Phosphatpuffer geeigneter Konzentration gelöst. Unlösliche Bestandteile werden abfiltriert. Das klare Filtrat wurde nach Aktivitätsbestimmung direkt zur Deacylierung des Desoxymulundocandins eingesetzt.
Das Präzipitat kann ferner nach vorherigem Zusatz von Additiven wie Salzen (beispielsweise Ammoniumsulfat), Zuckern (z.B. Glucose) oder Zuckeralkoholen wie Sorbitol oder Mannitol in lyophilisierter Form über einen längeren Zeitraum stabil aufbewahrt werden. Die Verwendung eines Enzympräzipitats ist bevorzugt, weil auf diese Weise Medienkomponenten der Streptomyces //V/c/ans-Fermentation vor der Seitenkettenabspaltung eliminiert werden können.
Beispiel 5: Fermentative Herstellung von Lipopeptiden
Zur Herstellung zyklischer Peptide der Formel (II), auch Nukleus genannt, wurden zuvor die entsprechenden, als Substrat zu verwendeten Lipopeptide der Formel (I) (exozyklische N-Acyl-Derivate des Nukleus) durch Kultivierung der betreffenden Mikroorganismen fermentativ gewonnen. Zum Beispiel erhält man das wasserunlösliche, der Biomasse anhaftende Desoxymulundocandin (V) durch Kultivierung von Aspergillus sydowii, wie dies in der Europäischen Patentanmeldung 0 438 813 A1 beschrieben ist und nachfolgend nochmals vorgestellt wird:
Zur Produktion von Desoxymulundocandin wurde ein Produzent von Aspergillus sydowii, vorzugsweise ein durch klassische Stammverbesserung ausgewählter Produzent, in einem Batch Fermentationsprozess vermehrt. Desoxymulundocandin ist ein klassischer Sekundärmetabolit, der erst nach ca. drei Tagen Fermentationsdauer gebildet wird:
Der Desoxymulundocandin produzierende Aspergillus sydowii Stamm wurde in einem Erlenmeyerkolben als Vorkultur angezogen. Die Kolben wurden mit 1 ml einer Sporensuspension direkt aus der Ampulle angeimpft. Folgende Parameter wurden eingehalten: T = 28 0C; 240 rpm, 48-72 Stunden.
Als Vorkulturmedium wurde eingesetzt:
Figure imgf000022_0001
Der pH Wert lag nach der Sterilisation des Mediums bei pH 6.9 und betrug am Ende der Kultur pH 7-7,5. Der PMV-Wert (percent myceiial volume) lag zwischen 15-20 %. Für einen industriellen Prozess wurde eine zweite Vorkultur fermentiert, die unter den gleichen Bedingungen und mit dem gleichen Medium durchgeführt wurde.
Der Hauptfermenter wurde mit 1-6% Inokulum aus einer Schüttelkultur oder einem Vorfermenter beimpft und enthielt folgendes Medium:
Hauptkulturmedium (MF3)
Figure imgf000023_0001
Fermentationsparameter:
Animpfdichte: 0,5-6%, bevorzugt 1-2 %,
Temperatur: 25-33 0C, bevorzugt 27-30 0C,
Begasung: 0-1,5 vvm, bevorzugt 0,5-0,8 vvm,
Tip speed des Rührers: 1 ,4 m/s (abhängig vom verwendeten Rührer)
Die Fermentation wurde bei T= 25-35 0C, bevorzugt bei 28-320C durchgeführt. Es wurde ein leichter Überdruck von 0,2-1 bar angewandt und kontinuierlich eine Konzentration an gelöstem Sauerstoff >30% geregelt. Hierzu verwendete man bevorzugt eine Kaskade aus steigender Rührergeschwindigkeit (startend mit 95 rpm, Tipp speed 1 ,2 m/s) und steigender Begasungsrate (startend mit 0.2 N/m3). Der pH-Wert mußte während der Fermentation nicht geregelt werden. Zur Verbesserung der Prozessrobustheit ist es aber dienlich. Der pH-Wert lag im Bereich von 5,5-7; bevorzugt 6,2-6,5. Ab der 24-30. Stunde wurde der pH-Wert mit Schwefelsäure auf pH 6.5 geregelt. Zur Vermeidung von Schaumbildung können unterschiedliche Entschäumer verwendet werden, bevorzugt sind Desmophen 3600 oder Hodag AFM-5. Zur Produktion von Desoxymulundocandin ist eine bevorzugte Morphologie über den gesamten Fermentationsprozess anzustreben. Dieses kleine Pellet-förmige Wachstum wird durch die Wahl des Rührers beeinflusst; ein Scheibenrührer ist für Pellet-artiges Wachstum besonders geeignet.
Die Gesamtfermentationsdauer kann mehr als 240 Stunden betragen, wobei die Produktbildungsrate über einen langen Zeitraum recht konstant verläuft und das Fermentationsende über eine begleitende offline-Analytik festgelegt wird. Die Produktkonzentration am Ende einer Fermentation lag im Bereich von 800-1200 mg/l an Desoxymulundocandin.
Vor dem Ernten der Biomasse wird der pH-Wert auf einen pH-Wert von 6,5 bis 5,5, vorzugsweise pH 6,0 eingestellt, dem Stabilitätsoptimum des Desoxymulundocandins.
Beispiel 6.1: Deacylierung von Lipopeptiden zum entsprechenden Nukleus (1)
Nach beendeter Fermentation wurde die Kulturbrühe in Kulturüberstand und Biomasse getrennt. Hierzu können verschiedene, gängige Filtrations- und Separationstechniken genutzt werden. Vorzugsweise wird eine Filterpresse verwendet. Die Biomasse wurde auf der Filterpresse gegebenenfalls einmal mit Wasser gewaschen und danach für die Deacylierung in einen Reaktionsbehälter übergeführt. Filtrat und Waschwasser wurden verworfen.
Anschließend wurde die Biomasse zusammen mit dem anhaftenden Lipopeptid in Wasser re-suspendiert, vorzugsweise in der 1-2fachen Menge an Wasser. Beispielsweise wurde nach beendeter Desoxymulundocandin-Fermentation 30-50 kg an feuchter Biomasse in 100-150 Liter Wasser re-suspendiert, wobei die Ausgangskonzentration an Desoxymulundocandin zur Deacylierung zwischen 0,5- 1 ,5 g/L lag. Die Suspension wurde solange gerührt, bis ein homogener Brei vorlag.
Die Suspension wurde auf den gewünschten pH-Wert eingestellt. Zur
Seitenkettenabspaltung wurde dann das Reaktionsgemisch mit einer Lösung der Deacylase versetzt, wobei 20-50 Units an Enzym pro Gramm Lipopeptid, vorzugsweise 25-40 U/g, zur Anwendung kamen, entsprechend 25-150 U/L, bevorzugt 25-80 U/L.
Der Deacylierungsprozess selbst wurde - nach Auflösen des Enzyms in einem Phosphatpuffer - bei Temperaturen von 20-80 0C durchgeführt; bevorzugt war ein Temperaturbereich von 20-40 0C, besonders bevorzugt 30-350C. Höhere Temperaturen können die Nebenproduktbildung wie Ringöffnung und/oder Dehydratisierung begünstigen. Die Rührergeschwindigkeit betrug in einem 200L- Fermenter 100-250 rpm, bevorzugt 120-180 rpm.
Die Deacylase kann im pH-Bereich von pH 4 bis 9 eingesetzt werden; bevorzugt ist ein Bereich von pH 4,6 bis pH 7,8 mit einem Wirkungsoptimum des Enzyms bei pH 5,2-6,2. Höhere pH-Werte sind zu vermeiden, da auch in diesem Fall die Bildung ringoffener oder dehydratisierter Nebenprodukte der Formeln (IX) und (X) verstärkt eintritt:
Figure imgf000025_0001
Die Reaktionszeit der Deacylierungsreaktion variiert und hängt stark vom gewählten pH-Wert und der gewählten Temperatur ab. Das Ende der enzymatischen Abspaltung der Seitenkettensäure wird mittels begleitender analytischer HPLC durch Messung der Nukleus-Bildung im Reaktionsüberstand bestimmt. Beispielsweise war bei einer Deacylierung von Desoxymulundocandin im 200L- Maßstab die Deacylierung nach 20-30 Stunden komplett abgelaufen. Beispiel 6.2: Deacylierung von Lipopeptiden zum entsprechenden Nukleus (2)
Die Deacylierung von Deoxymulundocandin wurde entsprechend Beispiel 6.1 durchgeführt. Dabei wurde das Deoxymulundocandin-Mycei abgepresst und mit Wasser gewaschen. Dann erfolgte die Re-suspension im gleichen Volumen Wasser und die Deacylierung zum Nucleus bei pH 5,5 und 300C:
Kulturfiltrat: 160 Liter
Kulturfiltrat-Reinheit: 72,3 area% (HPLC) Beladung: 3,8 g/L
Hauptfraktion: 55 Liter
Hauptfraktion-Reinheit: 95,1 area% (HPLC)
Lyophilisat-Nucleus: 34,1 g (Ausbeute 30%)
Lyophilisat-Reinheit: 88,0 area% (HPLC) - 78,4 %w/w (gegen internen Standard).
Beispiel 7: Isolierung und Reinigung des Nukleus
Nach beendeter Deacylierung wurde die Aspergillus sydowii-Biomasse abzentrifugiert oder abfiltriert, wobei gegebenenfalls ein Filterhilfsmittels zugesetzt wurde. Die abgetrennte Biomasse wurde verworfen. Das klare Filtrat, das den wasserlöslichen Nukleus enthält, wurde anschließend säulenchromatographisch gereinigt. Als stationäre Phase diente ein hydrophobes Polymer wie Polystyren- Vinylbenzen-Copolymerisate, Polyacrylate oder Polymethacrylate. Alternativ dazu kann der Nukleus auch an einem Kationenaustauscher chromatographisch gereinigt werden. Bevorzugt ist eine säulenchromatographische Reinigung an einem Styren- Vinylbenzen-Copolymer als stationäre Phase.
Als Elutionsmittel (mobile Phase) diente Wasser, dem zur Erhöhung der Selektivität organische Säuren und Alkohole als Cosolventien zugesetzt wurden. Bevorzugt als mobile Phase ist Wasser, das geringe Mengen an Essigsäure und 1- bzw. 2-
Propanol enthält. Der Säurezusatz dient zur gezielten Abreicherung vorhandener Verunreinigungen wie ringoffenen oder dehydratisierten Verbindungen. Das Eluat wurde fraktioniert aufgefangen und die den Nukleus enthaltenen Fraktionen - nach erfolgter Quantifizierung mittels begleitender analytischer HPLC - vereinigt und durch Nanofiltration konzentriert. Für die Nanofiltration wurden Membranen eingesetzt, die 50-70 % Natriumchlorid, vorzugsweise 50 % NaCI, zurückhalten können.
Das erhaltene Nukleus-Konzentrat (Retentat) wurde anschließend gefriergetrocknet oder sprühgetrocknet. Der resultierende feste Nukleus konnte direkt und ohne zusätzliche Reinigung als Ausgangsmaterial für die Re-Acylierung mit aktivierten aromatischen Seitenkettensäuren eingesetzt werden.
Isolierung und Reinigung des Desoxymulundocandin-Nukleus im großtechnischen Maßstab:
Nach beendeter enzymatischer Seitenkettenabspaltung wird ein 1000 Liter-
Deacylierungsansatz über eine Filterpresse filtriert. Die abgetrennte Biomasse wird auf der Filterpresse mit Wasser gewaschen und danach verworfen. Filtrat und Waschwasser werden vereinigt und nochmals über eine Schicht (Seitz Typ K-200) klarfiltriert. Die filtrierte Lösung sollte einen pH-Wert von 6-6,5 besitzen. Gegebenenfalls ist der pH-Wert mit 2 M-Essigsäure oder 2 M-Natriumhydroxid- Lösung nachzustellen.
750 Liter der klaren Lösung, die zwischen 500-700 mg/L an Desoxymulundocandin- Nukleus enthalten kann, werden mit einem linearen Fluss von 100-200 cm/h auf eine Chromatographiesäule aufgetragen, die mit 25 Liter Amberchrom®-CG161m als stationäre Phase gefüllt ist. Die Betthöhe der stationären Phase beträgt 26 cm, der innere Säulendurchmesser 35 cm. Die Leitfähigkeit der Lösung ist unkritisch.
Während des gesamten Chromatographieverlaufs werden die Absorption bei λ= 280 nm, der pH-Wert und die Leitfähigkeit kontinuierlich gemessen und aufgezeichnet. Der Säulendurchlauf wird in einer Fraktion aufgefangen und nach HPLC-Testung verworfen. Nach beendeter Beladung wird die stationäre Phase solange mit gereinigtem Wasser unter einem linearen Fluß von 100-150 cm/h gewaschen, bis die im Säulenauslauf kontinuierlich gemessene Absorption nahezu die Basislinie erreicht hat. Die Waschlösung wird in einer einzigen Fraktion gesammelt und nach HPLC- Testung verworfen.
Nach beendetem Waschen wird der Desoxymulundocandin-Nukleus unter einem linearen Fluss von 100-150 cm/h mit 10 Bettvolumina isokratisch eluiert. Zur Desorption wird Wasser, dem zur Erhöhung der Selektivität 0,1 %v/v Essigsäure und 2 %v/v 2-Propanol (oder 1-Propanol) zugesetzt werden, verwendet. Das Eluat wird in Fraktionen zu 5-25 Liter aufgefangen, wobei die Fraktionsgröße über die gemessene und kontinuierlich aufgezeichnete Absorption gesteuert wird.
Allen Fraktionen werden Aliquots entnommen und darin mittels begleitender HPLC- Analytik die Reinheit und der Gehalt an Desoxymulundocandin-Nukleus bestimmt. Nukleus-enthaltende Fraktionen mit einer Reinheit > 90 Area% werden vereinigt. Anschließend wird das Gesamteluat (50-100 Liter) mittels Nanofiltration um den Faktor 2-5 aufkonzentriert unter Verwendung einer Membran, deren Natriumchlorid- Rückhalt 50% beträgt.
Das erhaltene Nukleus-Retentat wird danach sterilfiltriert und dann gefriergetrocknet oder sprühgetrocknet. Randfraktionen der säulenchromatographischen Reinigung des Desoxymulundocandin-Nukleus können recyclisiert werden.
Nach vollständiger Trocknung wird der erhaltene, feste Desoxymulundocandin- Nukleus nach HPLC-Analyse in geeignete Kunststoffbehälter abgefüllt. Die Gebinde werden bis zur weiteren Verwendung bei -25 0C aufbewahrt.

Claims

Patentansprüche
1. Verfahren zur enzymatischen Abspaltung der N-Acyl-Seitenkette aus Lipopeptiden unter Bildung des entsprechenden Nukleus, wobei
(a) das Lipopeptid fermentativ hergestellt wird, wobei das Lipopeptid an der Biomasse zellgebunden vorliegt, und die Biomasse mit dem anhaftenden Lipopeptid abgetrennt wird,
(b) die Biomasse mit dem anhaftenden Lipopeptid aus Schritt (a) in einem wässrigem System re-suspendiert wird,
(c) eine geeignete Deacylase in gelöster oder fester Form zu der Suspension der Biomasse aus Schritt (b) gegeben wird, und sich der entsprechende Nukleus bildet, und
(d) der Nukleus optional isoliert und gereinigt wird, dadurch gekennzeichnet, dass das in Schritt (a) fermentativ gewonnene Lipopeptid nach Fermentationsende als zellgebundene Biomasse ohne weitere Reinigung in Schritt (c) direkt mit einer Deacylase zur Reaktion gebracht wird, wodurch die über eine Amidbindung verknüpfte N-Acylkette abgespalten wird.
2. Verfahren gemäß Anspruch 1 , wobei das Lipopeptid die Formel (I) hat
Figure imgf000029_0001
(0> und wobei
R1 = H1 OH oder NRxRy ist, wobei
Rx und Ry unabhängig voneinander H oder (CrC6)Alkyl sind,
R2 = H, OH, NH(CHz)2NH2,
R3 = H, OH,
R4 = H, Me, NH2, -NH-C(=NH)NH2,
R5 = H, Me, CH2-C(=O)NH2, CH2CH2NH2,
R6 = H, OH,
R7 = H, OH,
R8 = H, OSO3H, OSO3Na, NH-C(=O)CH2NH2,
R9 = Me, und
Rio = H, OH,
Rn = eine Gruppe C(O)-(C6-C24)AIkVl, eine Gruppe C(O)-(C6-C24)Alkenyl, eine
Gruppe C(O)-(C6-C24)Alkadienyl, oder eine Gruppe C(O)-(C6-C24)Alkatrienyl,
unter Bildung des entsprechenden Nukleus der Formel (II)
Figure imgf000030_0001
wobei R1-R10 die für Formel (I) genannte Bedeutung haben, und wobei sofern vorhanden Alkyl-, Alkenyl-, Alkadienyl- und Alkatrienylgruppen in Verbindungen der Formel (I) und (II) verzweigt oder geradketttig sein können.
3. Verfahren gemäß Anspruch 2, wobei in einem weiteren Schritt
(e) der Nukleus (II) mit einem Säurederivat zu einem semi-synthetischen Lipopeptid der Formel (I1) umgesetzt wird, in dem R1-R10 die für Formel (I) genannte Bedeutung haben und die Gruppe Rn definiert ist als eine Gruppe C(O)-Phenyl-(C5-C8)Heteroaryl-Phenyl, C(O)-Biphenyl oder C(O)-Terphenyl.
4. Verfahren gemäß einem der Ansprüche 2 oder 3, wobei der (C6-C24)Alkyl in Rest Rn der Verbindung (I) n-Hexyl, n-Octyl, n-Decanyl, n-Undecanyl, n-Dodecanyl, n-Tridecanyl, n-Tetradecanyl, n-Pentadecanyl, n-Hexadecanyl, n-Heptadecanyl, n-Octadecanyl, n-Nonadecanyl, n-Eicosanyl, n-Dicosanyl, 9,11-Dimethyl-tridecanyl oder 11-Methyl-tridecanyl bedeutet.
5. Verfahren gemäß einem der Ansprüche 2 bis 4, wobei in Verbindung (I) Rn
Figure imgf000031_0001
6. Verfahren gemäß einem der Ansprüche 2 bis 5, wobei in Schritt (a) die Verbindung Desoxymulundocandin (V)
Figure imgf000032_0001
hergestellt wird,
und sich in Schritt (c) der Desoxymulundocandin-Nukleus (VI)
bildet.
7. Verfahren gemäß Anspruch 1 , wobei das Lipopeptid die Formel (III)
Figure imgf000033_0001
hat, wobei
R12, Ri3, Ri4, Ri5, Ri6, R17, R18, Ri9, Rx und Ry unabhängig voneinander H oder (C1-C6)AIkYl sind, und
R20 = eine Gruppe C(O)-CH(CH2COR2I)-NH-CO-(C6-C24)AIKyI, eine Gruppe C(O)-CH(CH2COR21)-NH-CO-(C6-C24)Alkenyl, eine Gruppe C(O)-CH(CH2COR21)-NH-CO-(C6-C24)Alkadienyl, oder eine Gruppe C(O)- CH(CH2COR2i)-NH-CO-(C6-C24)Alkatrienyl, wobei R21 OH oder NH2 ist,
unter Bildung des entsprechenden Nukleus der Formel (IV)
Figure imgf000033_0002
wobei R-I2, Ri3, Ru, R15, Ri6, R17, R18, R19, Rx und Ry die für Formel (III) genannte Bedeutung haben, und wobei Alkyl-, Alkenyl-, Alkadienyl- und Alkatrienylgruppen sofern vorhanden in Verbindungen der Formel (III) und (IV) verzweigt oder geradketttig sein können.
8. Verfahren gemäß Anspruch 7, wobei R12, R13, R14, Ris> R16, R17, R18, R19, Rx und Ry gleich H sind.
9. Verfahren nach einem der Ansprüche 7 oder 8, wobei R2o
Figure imgf000034_0001
ist.
10. Verfahren nach einem der Ansprüche 7 bis 9, wobei in Schritt (a) die Verbindung (VII)
Figure imgf000034_0002
hergestellt wird,
und sich in Schritt (c) die Verbindung (VIII)
Figure imgf000035_0001
bildet.
11. Verfahren gemäß einem der Ansprüche 1 bis 10, wobei die Deacylase durch Kultivierung von Actinoplanes utahensis erhalten wurde.
12. Verfahren gemäß einem der Ansprüche 1 bis 10, wobei die Deacylase rekombinant durch Kultivierung von transformierten Streptomyces lividans erhalten wird.
PCT/EP2005/013336 2004-12-15 2005-12-13 Verfahren zur deacylierung von lipopeptiden WO2006063783A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RSP-2008/0294A RS50570B (sr) 2004-12-15 2005-12-13 Postupak deacilovanja lipopeptida
JP2007545925A JP4922182B2 (ja) 2004-12-15 2005-12-13 リポペプチド類の脱アシル化の方法
PL05819403T PL1828228T3 (pl) 2004-12-15 2005-12-13 Sposób deacylowania lipopeptydów
ES05819403T ES2304736T3 (es) 2004-12-15 2005-12-13 Procedimiento para desacilar lipopeptidos.
DK05819403T DK1828228T3 (da) 2004-12-15 2005-12-13 Fremgangsmåde til deacylering af lipopeptider
DE502005004058T DE502005004058D1 (de) 2004-12-15 2005-12-13 Verfahren zur deacylierung von lipopeptiden
EP05819403A EP1828228B1 (de) 2004-12-15 2005-12-13 Verfahren zur deacylierung von lipopeptiden
US11/758,207 US7785826B2 (en) 2004-12-15 2007-06-05 Method for the deacylation of lipopeptides
HR20080290T HRP20080290T3 (en) 2004-12-15 2008-06-23 Method for the deacylation of lipopeptides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004060750.8 2004-12-15
DE102004060750A DE102004060750A1 (de) 2004-12-15 2004-12-15 Verfahren zur Deacylierung von Lipopeptiden

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/758,207 Continuation US7785826B2 (en) 2004-12-15 2007-06-05 Method for the deacylation of lipopeptides

Publications (1)

Publication Number Publication Date
WO2006063783A1 true WO2006063783A1 (de) 2006-06-22

Family

ID=36283779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/013336 WO2006063783A1 (de) 2004-12-15 2005-12-13 Verfahren zur deacylierung von lipopeptiden

Country Status (14)

Country Link
US (1) US7785826B2 (de)
EP (1) EP1828228B1 (de)
JP (1) JP4922182B2 (de)
AT (1) ATE394416T1 (de)
CY (1) CY1108188T1 (de)
DE (2) DE102004060750A1 (de)
DK (1) DK1828228T3 (de)
ES (1) ES2304736T3 (de)
HR (1) HRP20080290T3 (de)
PL (1) PL1828228T3 (de)
PT (1) PT1828228E (de)
RS (1) RS50570B (de)
SI (1) SI1828228T1 (de)
WO (1) WO2006063783A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044803A1 (en) * 2012-09-24 2014-03-27 Dsm Sinochem Pharmaceuticals Netherlands B.V. Method for producing a cyclic peptide

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2813330A1 (en) * 2010-09-29 2012-04-05 Shanghai Techwell Biopharmaceutical Co., Ltd. Process for purifying cyclolipopeptide compounds or the salts thereof
US8877777B2 (en) * 2010-09-30 2014-11-04 Shanghai Techwell Biopharmaceutical Co., Ltd. Process for purifying cyclolipopeptide compounds or the salts thereof
CN102443560A (zh) * 2010-10-13 2012-05-09 上海医药工业研究院 一种高效转化棘白菌素b的基因工程菌及其制备方法
CN102443561B (zh) * 2010-10-13 2014-08-27 上海医药工业研究院 一种高效转化棘白菌素b的基因工程菌及其制备方法
CN103074403B (zh) * 2011-10-26 2014-07-09 上海医药工业研究院 微生物酶转化棘白菌素b的方法
CN103374593B (zh) * 2012-04-13 2016-04-20 浙江震元制药有限公司 微生物发酵将棘白菌素b转化为棘白菌素b母核的方法
CN103387606B (zh) * 2012-05-11 2015-05-20 浙江震元制药有限公司 制备棘白菌素b母核的方法
KR101425108B1 (ko) * 2012-09-25 2014-07-31 동국제약 주식회사 탈아실화된 환상 리포펩티드의 제조방법
CN104447961B (zh) * 2013-09-13 2018-05-15 浙江震元制药有限公司 棘白菌素b母核的提取方法
CN103910783B (zh) * 2014-04-23 2016-07-06 华北制药集团新药研究开发有限责任公司 一种高纯度棘白霉素b母核的制备方法
WO2017146009A1 (ja) 2016-02-24 2017-08-31 天野エンザイム株式会社 微生物の酵素生産性を制御する方法
US10606170B2 (en) 2017-09-14 2020-03-31 Canon Kabushiki Kaisha Template for imprint lithography and methods of making and using the same
CN110438012B (zh) * 2019-08-05 2021-10-26 四川大学 一种产花青素的萨氏曲霉h-1及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460882A2 (de) * 1990-06-07 1991-12-11 Eli Lilly And Company Lipopeptid Deacylase

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE886577A (fr) * 1979-12-13 1981-06-10 Lilly Co Eli Noyaux peptidiques cycliques et leur preparation
BE886575A (fr) * 1979-12-13 1981-06-10 Lilly Co Eli Derives de noyaux peptidiques cycliques, leur preparation et leur utilisation comme agents antifongiques
US4293482A (en) * 1979-12-13 1981-10-06 Eli Lilly And Company A-30912A Nucleus
US5310873A (en) * 1990-03-12 1994-05-10 Merck & Co., Inc. Cyclohexapeptide compound
TW455591B (en) 1993-06-08 2001-09-21 Hoechst Ag Lipopeptides from actinoplanes sp. with pharmacological action, process for their production and the use thereof
EP1064299A1 (de) * 1998-03-16 2001-01-03 Fujisawa Pharmaceutical Co., Ltd. Cyclohexapeptid wf14573, dessen herstellung und verwendung
PT1137663E (pt) * 1998-12-09 2006-12-29 Lilly Co Eli Purificação de compostos ciclopéptidos equinocandina
FR2794746B1 (fr) 1999-06-09 2002-12-06 Hoechst Marion Roussel Inc Nouveaux derives de l'echinocandine, leur procede de preparation et leur application comme anti-fongiques
FR2794747B1 (fr) 1999-06-09 2004-04-16 Hoechst Marion Roussel Inc Nouveaux derives de l'echinocandine, leur procede de preparation et leur application comme anti-fongiques
HUP0202315A2 (en) * 1999-07-15 2002-10-28 Lilly Co Eli Process for deacylation of lipodepsipeptides
US6511962B1 (en) * 2000-07-17 2003-01-28 Micrologix Biotech Inc. Derivatives of laspartomycin and preparation and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460882A2 (de) * 1990-06-07 1991-12-11 Eli Lilly And Company Lipopeptid Deacylase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L D BOECK ET AL.: "Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by actinoplanes utahensis", JOURNAL OF ANTIBIOTICS., vol. 41, no. 8, August 1988 (1988-08-01), JP JAPAN ANTIBIOTICS RESEARCH ASSOCIATION, TOKYO., pages 1085 - 1092, XP001028754 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044803A1 (en) * 2012-09-24 2014-03-27 Dsm Sinochem Pharmaceuticals Netherlands B.V. Method for producing a cyclic peptide
CN104768966A (zh) * 2012-09-24 2015-07-08 中化帝斯曼制药有限公司荷兰公司 生产环肽的方法
CN104768966B (zh) * 2012-09-24 2018-11-02 中化帝斯曼制药有限公司荷兰公司 生产环肽的方法

Also Published As

Publication number Publication date
US7785826B2 (en) 2010-08-31
CY1108188T1 (el) 2014-02-12
HRP20080290T3 (en) 2008-07-31
PL1828228T3 (pl) 2008-09-30
DK1828228T3 (da) 2008-09-01
EP1828228B1 (de) 2008-05-07
DE102004060750A1 (de) 2006-07-13
ATE394416T1 (de) 2008-05-15
EP1828228A1 (de) 2007-09-05
JP2008523789A (ja) 2008-07-10
JP4922182B2 (ja) 2012-04-25
RS50570B (sr) 2010-05-07
DE502005004058D1 (de) 2008-06-19
SI1828228T1 (sl) 2008-08-31
PT1828228E (pt) 2008-07-04
ES2304736T3 (es) 2008-10-16
US20080076149A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
EP1828228B1 (de) Verfahren zur deacylierung von lipopeptiden
DE68914344T2 (de) Immununterdrückende Verbindungen.
DE68921934T2 (de) Immunsuppressives Agens.
JP3111470B2 (ja) 新規ポリペプチド化合物およびその製造法
TWI291464B (en) Methods for the preparation, isolation and purification of epothilone B, and X-ray crystal structures of epothilone B
EP0459564A2 (de) Reduktionsverfahren für Echinocandin-ähnliche Zyklohexapeptidverbindungen
EP0388153A3 (de) Immunosuppressives Mittel
US5310873A (en) Cyclohexapeptide compound
CA2007680A1 (en) Microbial transformation product of l-683,590
KR101579766B1 (ko) 일종의 사이클릭 리포펩티드 화합물의 제조방법
EP0468504A1 (de) Antibiotikum Balmimycin, dessen Verfahren zur Herstellung und dessen Verwendung als Arznei
US5171836A (en) Antibiotics plusbacin
US6730776B1 (en) WF14573 or its salt, production thereof and use thereof
JPS6316399B2 (de)
EP0139158B1 (de) Antibiotika SB 22484
CA2393518C (en) Amycomycin, a process for its production and its use as a pharmaceutical
GB2241955A (en) Cyclohexapeptide compounds
US3728448A (en) Antibiotic bl617 and process for producing same
JP3448334B2 (ja) 新規生理活性物質ピペラスタチンaおよびその製造法
JPH04198193A (ja) 新規酵素阻害物質ベナルチンならびにその製造法
JP2003012687A (ja) 抗生物質カプラザマイシンd、g、d1、g1とその製造法
JPH06256275A (ja) 抗血小板薬
JPH08176157A (ja) 新規生理活性物質エポスタチン、その製造法およびその用途
HU185021B (en) Process for the preparation of cyclic hexapeptides
JPH07238082A (ja) 新規化合物 tg−488aおよびその製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005819403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11758207

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007545925

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005819403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11758207

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005819403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P-2008/0294

Country of ref document: RS