WO2017146009A1 - 微生物の酵素生産性を制御する方法 - Google Patents

微生物の酵素生産性を制御する方法 Download PDF

Info

Publication number
WO2017146009A1
WO2017146009A1 PCT/JP2017/006238 JP2017006238W WO2017146009A1 WO 2017146009 A1 WO2017146009 A1 WO 2017146009A1 JP 2017006238 W JP2017006238 W JP 2017006238W WO 2017146009 A1 WO2017146009 A1 WO 2017146009A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
culture
pulsed electric
microorganism
regulated
Prior art date
Application number
PCT/JP2017/006238
Other languages
English (en)
French (fr)
Inventor
靖史 南谷
杉浦 敏行
Original Assignee
天野エンザイム株式会社
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社, 国立大学法人山形大学 filed Critical 天野エンザイム株式会社
Priority to US16/079,682 priority Critical patent/US11248222B2/en
Priority to JP2018501681A priority patent/JP7079447B2/ja
Publication of WO2017146009A1 publication Critical patent/WO2017146009A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/14Bioreactors or fermenters specially adapted for specific uses for producing enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/0102Alpha-glucosidase (3.2.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01022Alpha-galactosidase (3.2.1.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/11Aminopeptidases (3.4.11)
    • C12Y304/11001Leucyl aminopeptidase (3.4.11.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/11Aminopeptidases (3.4.11)
    • C12Y304/11007Glutamyl aminopeptidase (3.4.11.7)

Definitions

  • the present invention relates to the application of a pulsed electric field to an enzyme production system. Specifically, the present invention relates to a method for controlling enzyme productivity of microorganisms using a pulsed electric field.
  • microorganisms are cultured under suitable culture conditions, and the produced enzymes are recovered.
  • microorganisms produce various enzymes, so when you want to obtain more target enzymes, or when you want to suppress the production of specific enzymes, the medium components and culture conditions are changed to produce enzyme productivity, ie Control the amount and composition (balance) of the enzyme.
  • various regulations, allergenicity, residual agricultural chemicals, harmful substances, contaminants, danger, stable supply, cost, etc. are limited in selection, and usable components are restricted. There are many things. For this reason, it is general that the change of the medium requires a lot of labor, and an optimal medium cannot always be set. In addition, it is often necessary to reset the culture conditions as the medium components are changed.
  • Enzyme productivity is also controlled using genetic recombination technology. However, it is necessary to screen for specific microorganisms that meet the purpose from a vast population of microorganisms whose genes have been modified. In addition, with changes in genes, medium components and culture conditions suitable for the culture often change, and it may be necessary to reexamine the culture medium and culture conditions.
  • Patent Documents 1 to 3 the following techniques that use pulsed electric fields for microorganism / cell modification / control are cited.
  • productivity of the enzyme there are several methods for controlling the productivity of the enzyme, but each method requires a lot of labor and time, and often the purpose cannot be achieved sufficiently. If the productivity of the enzyme can be controlled without the medium components and culture conditions, and further, the genetic modification of the microorganism, it becomes a general-purpose and very effective enzyme production technique.
  • a method for controlling enzyme productivity of a microorganism which comprises applying a pulsed electric field to the microorganism.
  • the method according to [1] including a step of applying a pulsed electric field to a culture solution during culture of microorganisms.
  • microorganism is a microorganism selected from the group consisting of filamentous fungi, actinomycetes, yeast and bacteria.
  • the microorganism is Aspergillus, Mucor, Rhizomucor, Rhizopus, Penicillium, Trametes, Streptomyces, Candida, Saccharomyces, Sporoboromyces, Kluyveromyces, Picea
  • the microorganism comprises Aspergillus oryzae, Aspergillus niger, Mucor Yabanicus, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus circulans, Streptomyces griseus and Streptomyces thermocarboxydas
  • the microorganism is Bacillus subtilis, the application of the pulsed electric field is performed in the logarithmic phase during culture, and the production amount of leucine aminopeptidase is up-regulated; (5) The microorganism is Bacillus amyloliquefaciens, and the application of the pulsed electric field is performed in the logarithmic phase and / or stationary phase of the culture, and the amount of lipase produced is up-regulated or the amount of cellulase produced That is down-regulated; (6) The microorganism is Bacillus circulans, the application of the pulsed electric field is performed in the logarithmic phase during culture, and the production amount of ⁇ -galactosidase is up-regulated; (7) The microorganism is Streptomyces griseus, and the application of the pulsed electric field is performed in the logarithmic phase and / or stationary phase of the culture, and ⁇ -glucosidase production is up-regulated, or ⁇ - Amylase production is
  • the application of the pulse electric field is performed in the logarithmic phase of the culture, and is selected from the group consisting of ⁇ -amylase, ⁇ -galactosidase, ⁇ -glucosidase, ⁇ -galactosidase, protease, leucine peptidase, PPL aminopeptidase and lipase.
  • microorganism according to any one of [1] to [6], wherein the microorganism is Bacillus subtilis, the application of the pulsed electric field is performed in a logarithmic phase during culture, and the production amount of peptidase is up-regulated.
  • the method according to one item.
  • [25] Production of an enzyme composition comprising a step of recovering an enzyme from a culture solution and / or cells of a microorganism cultured by applying the method according to any one of [1] to [24] Method.
  • a method for producing an enzyme composition comprising a step of removing cells from a culture solution of a microorganism cultured by applying the method according to any one of [1] to [24].
  • the production method according to [26] further comprising a step of purifying the culture solution after removing the cells.
  • An enzyme composition obtained by the production method according to any one of [25] to [27].
  • An example of the pulse electric field generator which can be used by this invention An example of the pulse voltage waveform applied by this invention.
  • the top is 100 shots, the bottom is 400 shots.
  • the first aspect of the present invention relates to a method for controlling enzyme productivity of a microorganism (hereinafter also referred to as “control method of the present invention”).
  • the control method of the present invention is characterized in that a pulsed electric field is applied to microorganisms used for enzyme production.
  • a pulsed electric field is applied to a culture solution during culture of microorganisms to control enzyme productivity.
  • the microorganisms used in the control method of the present invention may be referred to as “production strains”.
  • the culture method may be in accordance with a conventional method. Usually, a medium and culture conditions (temperature, oxygen concentration, etc.) suitable for growth and growth of the production strain to be used are employed.
  • Enzyme productivity is defined by the type of enzyme produced and the amount of each enzyme produced. Therefore, when the control method of the present invention is applied, the type of enzyme produced is increased or decreased, the composition ratio or balance of the produced enzyme is changed or adjusted, and the production amount of a specific enzyme (one or more enzymes). The increase or decrease of the enzyme, the increase or decrease of the total enzyme production, etc. can be made according to the conditions to be adopted.
  • a pulsed electric field to the culture medium during culture of the production strain can be performed, for example, via an electrode provided inside the culture vessel.
  • a culture system including a culture container and a pulsed electric field generator in which an electrode thereof is provided inside the culture container is constructed, and culture of the production strain is started using the system. Then, a pulse electric field is generated at an appropriate time during the culture, and the pulse electric field is applied to the culture solution.
  • a culture system including a culture vessel provided with a circulation path, a liquid feeding means for feeding liquid to the circulation path, and a pulse electric field generator is constructed, and an electrode part of the pulse electric field generator is attached to the circulation path.
  • the pulsed electric field may be applied by feeding and circulating the culture solution in the circulation path. According to the system, continuous processing is possible, and a pulse electric field can be efficiently applied.
  • FIG. 1 An example of a circuit of a pulse electric field generator that can be used in the present invention is shown in FIG.
  • An example of the pulse waveform output by this apparatus is shown in FIG.
  • This device is composed of a high-voltage power supply, a resistor (2 M ⁇ ), a capacitor C, an inductance L, a trigger tron gap switch, and a trigger circuit, and L and C are parallel resonant circuits.
  • the high voltage power supply charges the capacitance C through a 2 M ⁇ resistor.
  • the gap switch is discharged to discharge the charge charged in C into the RLC circuit.
  • the current flowing in the RLC circuit has a damped oscillation waveform due to resonance between C and L, and is output to R, which is a sample solution connected in parallel.
  • This pulse electric field generator outputs a damped vibration waveform as shown in FIG. 2, but by using a circuit with the inductance L removed, it is also possible to output a damped waveform without vibration.
  • Such an apparatus can also be used in the present invention.
  • a water cooling device that cools the electrodes may be installed.
  • a water-cooling device is installed so that the ground-side electrode is cooled by flowing water into the ground-side electrode.
  • a heat exchange cooling fin it is preferable to attach a heat exchange cooling fin to the high-pressure side so that heat can be easily released. With such a configuration, the temperature rise of the sample during application of the electric field can be suppressed.
  • the electric field strength of the pulsed electric field is not particularly limited, but for example, 10 kV / cm to 50 kV / cm, preferably 10 kV / cm to 30 kV / cm, more preferably 20 kV / cm to 30 kV / cm.
  • the pulse electric field is preferably applied a plurality of times (that is, repeatedly). Therefore, the number of times of application is, for example, 10 shots (times) to 10,000 shots (times), preferably 100 shots (times) to 2,000 shots (times), and more preferably 100 shots (times) to 1,500 shots (times).
  • the number of repetitions can be set within a range where the temperature of the solution does not increase, for example, within a range of 1 pps to 1000 pps.
  • the production strain used in the present invention is not particularly limited.
  • a “useful enzyme” is an enzyme having at least one industrial use (eg, industrial use, food use, pharmaceutical use, diagnostic use, etc.).
  • the present invention is a general-purpose method, and various microorganisms can be employed as production strains.
  • production strains are filamentous fungi, actinomycetes, yeast, bacteria, preferably Aspergillus (more preferably Aspergillus oryzae (for example, RIB40 strain), Aspergillus niger) (for example, NBRC 9455)), genus Mucor (more preferably Mucor javanicus (eg IAM 6108 strain)), Rhizomucor, Rhizopus, Penicillium, Trametes Streptomyces genus (more preferably Streptomyces griseus (for example, IFO-12875 strain), Streptomyces thermocarboxydus (for example, JCM 10367 strain)), Candida, Saccharomyces, Sporobomyces olomyces), Kluyveromyces, Pichia, Cryptococcus, Bacillus (more preferably Bacillus subtilis) (for example, JCM 1465 strain), Bacillus amyloliquefaciens (Bacillus amyloliquefacience) (B
  • Producer strains produce one or more enzymes.
  • enzymes that can be produced by the production strain that is, enzymes whose production amount is controlled by the method of the present invention, include amylase ( ⁇ -amylase, ⁇ -amylase, glucoamylase), glucosidase ( ⁇ -glucosidase, ⁇ -Glucosidase), galactosidase ( ⁇ -galactosidase, ⁇ -galactosidase), protease (acidic protease, neutral protease, alkaline protease), peptidase (leucine peptidase, PPL (L-pyroglutamyl-L-phenylalanyl-L-leucine) Aminopeptidase, SAPA (succinyl-L-alanyl-L-prolyl-L-alanine) aminopeptidase, lipase, esterase, cellulase, phosphatase (acid
  • Production strain Streptomyces griseus (eg IFO 12875)
  • Application period of pulsed electric field logarithmic phase, stationary phase
  • enzymes produced ⁇ -amylase, ⁇ -glucosidase, protease
  • enzymes that increase production ⁇ -glucosidase (preferably apply pulsed electric field in logarithmic phase)
  • the control method of the present invention is applied to an enzyme production system using microorganisms, the enzyme productivity is different from that when not applied. Therefore, it becomes possible to produce a characteristic enzyme composition.
  • the 2nd aspect of this invention provides the manufacturing method (henceforth "the manufacturing method of this invention") of an enzyme composition as a use of the control method of this invention.
  • the “enzyme composition” is a composition containing at least one kind of enzyme. Therefore, even when it contains only one specific type of enzyme (no substantial contaminating enzyme activity), it also falls under the enzyme composition.
  • the enzyme is recovered from the culture solution or cells of the microorganism cultured by applying the control method of the present invention, or both.
  • the culture supernatant is filtered, centrifuged, etc. to remove insolubles, concentrated by ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis, ion exchange resin, etc.
  • An enzyme composition can be obtained by performing separation and purification by appropriately combining various types of chromatography.
  • recovering from the bacterial cells for example, the bacterial cells are crushed by pressure treatment, ultrasonic treatment, etc., and then separated and purified in the same manner as described above to obtain an enzyme composition.
  • recovering a microbial cell from a culture solution previously by filtration, a centrifugation process, etc. you may perform the said series of processes (crushing, isolation
  • a pulse electric field was applied to various microorganisms to examine the effects and influences on enzyme productivity.
  • Test microorganism strain Aspergillus oryzae RIB40 strain, Aspergillus niger NBRC 9455 strain, Mucor Yabanicus IAM 6108 strain, Bacillus subtilis JCM 1465, Bacillus amyloliquefaciens IFO 3034 strain, Bacillus circulans ATCC 21590 strain, Streptomy Seth Griseus IFO 12875, Streptomyces thermocarboxydas JCM 10367
  • Aspergillus oryzae RIB40 strain Medium / culture conditions: 50% bran medium, 28 ° C culture High electric field pulse application condition: electric field strength 15 kV / cm or 30 kV / cm; number of applications 100 shots; repetition rate 1 pps; Damped vibration wave
  • Bacillus subtilis JCM 1465 strain Medium / culture conditions SCD medium, 28 ° C culture High electric field pulse application condition: electric field strength 15 kV / cm or 30 kV / cm; number of application 100 shots; repetition rate 1 pps; Vibration wave
  • Bacillus amyloliquefaciens strain IFO 3034 Medium / culture conditions: SCD medium, 28 ° C culture High electric field pulse application conditions: electric field strength 15 kV / cm or 30 kV / cm; number of applications 100 shots; repetition rate 1 pps ; Wave form Damping vibration wave
  • Bacillus amyloliquefaciens strain IFO 3034 Medium / culture condition: YM broth medium, 28 ° C culture height
  • Electric field pulse application condition electric field strength 30 kV / cm; number of application 100 shots; repetition rate 1 pps; wave
  • Bacillus circulans ATCC 21590 strain Medium / culture condition YM broth medium, 28 ° C culture High electric field pulse application condition: electric field strength 30 kV / cm; number of applications 100 shots; repetition rate 1 pps;
  • the method for measuring the activity of each enzyme was as follows. ⁇ Used buffer> 100 mmol / L acetate buffer pH 4.2 100 mmol / L acetate buffer pH 5.0 100 mmol / L phosphate buffer pH 7.0 100 mmol / L PIPES buffer pH 7.1 100 mmol / L borate buffer pH 9.2
  • Soluble starch (manufactured by Merck) was dissolved in a buffer solution at a concentration of 1.0 g / dL to obtain a substrate solution. To this, an appropriately diluted enzyme sample solution was added to 1/5 of the substrate solution to initiate the reaction. Enzymatic activity was determined by adding 20 mmol / L iodine solution to one-sixth volume of the reaction solution, measuring color development by iodine starch reaction at an absorbance of 540 nm, and applying no pulsed electric field under each condition. Estimated as a relative value to the measured value.
  • Cellazyme C tablets manufactured by Cerazyme
  • a substrate solution 10 mL of buffer solution.
  • an appropriately diluted enzyme sample solution was added to 1/13 of the substrate solution to initiate the reaction.
  • the reaction solution is filtered through a cellulose filter, the azo dye-bound small molecules contained in the filtrate are measured at an absorbance of 590 nm, and relative to the measured value of the culture sample to which no pulsed electric field is applied under each condition. Estimated as a value.
  • p-Nitrophenyl-acetate manufactured by Wako Pure Chemical Industries, Ltd.
  • a buffer solution containing 30 g / dL ethanol so as to be 12 mmol / L was dissolved in a buffer solution containing 30 g / dL ethanol so as to be 12 mmol / L.
  • an appropriately diluted enzyme sample solution was added by a quarter amount of the substrate solution to initiate the reaction.
  • the enzyme activity was estimated as a relative value to the measured value of the culture sample in which the color development of the released p-nitrophenol was measured at an absorbance of 420 nm and no pulsed electric field was applied at each condition.
  • p-Nitrophenyl-stearate manufactured by Sigma Aldrich
  • a buffer solution containing 30 g / dL ethanol so as to be 0.31 mmol / L to obtain a substrate solution.
  • an appropriately diluted enzyme sample solution was added by a quarter amount of the substrate solution to initiate the reaction.
  • the enzyme activity was estimated as a relative value to the measured value of the culture sample in which the color development of the released p-nitrophenol was measured at an absorbance of 420 nm and no pulsed electric field was applied at each condition.
  • Casein manufactured by Calbiochem was dissolved or suspended in a buffer solution to a concentration of 0.1 g / dL to obtain a substrate solution.
  • an appropriately diluted enzyme sample solution was added in an amount of 1/10 of the substrate solution to initiate the reaction.
  • Enzyme activity was determined by measuring the solubilized peptide in the supernatant obtained by centrifugation at 15,000 rpm for 10 minutes after adding an equal amount of 400 mmol / L trichloroacetic acid solution to the substrate solution, and measuring the absorbance at 280 nm. It estimated as a relative value with respect to the measured value of the culture sample which did not apply the pulse electric field at all on conditions.
  • p-Nitrophenyl-phosphate manufactured by Wako Pure Chemical Industries, Ltd.
  • p-Nitrophenyl-phosphate manufactured by Wako Pure Chemical Industries, Ltd.
  • an appropriately diluted enzyme sample solution was added to 1/5 of the substrate solution to initiate the reaction.
  • Enzyme activity was determined by adding 1 g / dL sodium carbonate solution in an equal amount of the reaction solution, measuring the color of released p-nitrophenol at 420 nm absorbance, and applying no pulsed electric field under each condition. It was estimated as a relative value to the measured value.
  • an appropriately diluted enzyme sample solution was added by a quarter amount of the substrate solution to initiate the reaction.
  • the enzyme activity was estimated as a relative value to the measured value of the culture sample in which the color development of the released p-nitroanilide was measured at an absorbance of 450 nm and no pulsed electric field was applied at each condition.
  • ⁇ SAPA aminopeptidase> Contains 10 g / dL of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries) to 2.4 mmol / L of succinyl-L-alanyl-L-prolyl-L-alanine-p-nitroanilide (manufactured by Wako Pure Chemical Industries) Dissolved in a buffer solution to give a substrate solution. To this, an appropriately diluted enzyme sample solution was added by a quarter amount of the substrate solution to initiate the reaction. The enzyme activity was estimated as a relative value to the measured value of the culture sample in which the color development of the released p-nitroanilide was measured at an absorbance of 450 nm and no pulsed electric field was applied at each condition.
  • the culture solution was collected to prepare a sample, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity
  • the double underline represents a decrease in activity.
  • ⁇ -amylase increased in enzyme production by applying a pulsed electric field with an electric field strength of 15 kV / cm in the logarithmic phase.
  • ⁇ -galactosidase increased in enzyme production by applying a pulsed electric field in the logarithmic phase.
  • the amount of enzyme production increased by applying a pulsed electric field several times from the induction phase to the log phase.
  • Protease and peptidase increased in enzyme productivity when a pulsed electric field was applied in the logarithmic phase. Note that there was no significant difference in the change in enzyme production between the electric field strength of 15 kV / cm and 30 kV / cm.
  • the culture broth and cells were collected to prepare samples, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity
  • the double underline represents a decrease in activity.
  • Peptidase decreased in enzyme production when a pulsed electric field was applied from the logarithmic phase to the stationary phase. Both enzymes show the same relative activity inside and outside the cells, indicating that the efficiency of enzyme extraction from the cells was not improved by the application of a pulsed electric field, but the productivity of the enzymes was affected.
  • the culture solution was collected to prepare a sample, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity
  • the double underline represents a decrease in activity.
  • ⁇ -Amylase increased in enzyme production when a pulsed electric field was applied in the stationary phase.
  • protease production increased when a pulsed electric field was applied in the stationary phase.
  • the culture solution was collected to prepare a sample, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity.
  • ⁇ -Amylase increased in enzyme production when a pulsed electric field was applied in the stationary phase.
  • ⁇ -glucosidase the amount of enzyme produced increased when a pulsed electric field was applied in the logarithmic phase.
  • Mucor Yabanicus strain IAM 6108 (Comparison of intracellular and extracellular enzymes) The following test groups with different pulse electric field application times were set.
  • Both enzymes show the same activity inside and outside the cells, indicating that the efficiency of enzyme extraction from the cells was not improved by the application of a pulsed electric field, but the productivity of the enzymes was affected.
  • the culture solution was collected to prepare a sample, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity
  • the double underline represents a decrease in activity.
  • Peptidase increased in enzyme production when a pulsed electric field was applied in the logarithmic phase.
  • the culture solution was collected to prepare a sample, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity
  • the double underline represents a decrease in activity.
  • Lipase increased the amount of enzyme produced by applying a pulsed electric field in the logarithmic phase.
  • test groups (a), (b), and (c)
  • the culture solution was collected after 65 hours of culture to prepare samples, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • test group (a) the culture solution was collected after 65 hours of culture to prepare samples, and various enzyme activities were measured. The measurement results are shown in the following table.
  • the underline represents an increase in activity.
  • test groups (a) and (b) the culture solution was collected after 87 hours of culture to prepare samples, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity.
  • ⁇ -Galactosidase increased in enzyme production when a pulsed electric field was applied in the logarithmic phase.
  • test groups (a) to (f) the culture solution was collected after 65 hours of culture to prepare samples, and various enzyme activities were measured. The measurement results are shown in the following table.
  • the underline represents an increase in activity.
  • test groups (a), (b), (e) to (j) the culture solution was collected after 87 hours of culture to prepare samples, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity
  • the double underline represents a decrease in activity.
  • test groups (a) to (f) the culture solution was collected after 65 hours of culture to prepare samples, and various enzyme activities were measured. The measurement results are shown in the following table.
  • the underline represents an increase in activity.
  • test groups (a), (b), (e) to (j) the culture solution was collected after 87 hours of culture to prepare samples, and various enzyme activities were measured.
  • the measurement results are shown in the following table.
  • the underline represents an increase in activity.
  • the present invention using a pulsed electric field for controlling enzyme productivity of microorganisms is a highly versatile technique applicable to various microorganisms and various enzymes.
  • an enzyme composition or an enzyme preparation having a target enzyme composition that is, the enzyme composition is controlled) by increasing a specific enzyme production amount or suppressing a specific enzyme production amount. Can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

微生物の酵素生産性を制御する新たな方法を提供することを課題とする。微生物にパルス電界を印加し、微生物の酵素生産性を制御する。

Description

微生物の酵素生産性を制御する方法
 本発明は、酵素生産系へのパルス電界の応用に関する。詳しくは、パルス電界を利用して微生物の酵素生産性を制御する方法に関する。本出願は、2016年2月24日に出願された日本国特許出願第2016-033589号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 一般に、微生物を利用して酵素を生産するためには、適した培地成分を使用し、適した培養条件下で微生物を培養し、生産された酵素を回収する。通常、微生物は各種酵素を生産することから、目的の酵素をより多く得たいときや、或いは特定の酵素の生産を抑制したいときには培地成分や培養条件を変更し、酵素生産性、即ち生産される酵素の量や組成(バランス)を制御する。しかしながら、特に培地成分の変更に関しては、各種レギュレーション、アレルゲン性、残留農薬、有害物質、夾雑物、危険性、安定供給面、コスト面等が選択の制限になり、使用可能な成分が制約を受けることも多い。そのため、培地の変更は非常に手間を要するのが一般的であり、また、必ずしも最適な培地を設定できるとは限らない。その上、培地成分の変更に伴い、培養条件の再設定が必要な場合も多い。
 遺伝子組換え技術を利用して酵素生産性を制御することも行われている。但し、遺伝子が改変された膨大な微生物母集団から、目的に合致した特定の微生物をスクリーニングする必要がある。また、遺伝子の改変に伴い、その培養に適した培地成分や培養条件が変化することも多く、改めて培地や培養条件の検討が必要になることもある。
 尚、パルス電界を微生物や細胞の改変/制御などに利用した技術を以下に引用する(特許文献1~3)。
特開平6-277060号公報 特開2012-213353号公報 特開2013-236600号公報
 上記の通り、酵素の生産性を制御する方法はいくつか存在するものの、いずれの方法も多くの手間や時間を要し、また、十分に目的を達成できないことも多い。培地成分や培養条件、更には微生物の遺伝子改変を伴わずに酵素の生産性を制御できれば、汎用的で且つ非常に有効な酵素生産技術となる。
 本発明者らは上記課題を解決すべく鋭意検討した。具体的には、パルス電界に着目し、その酵素生産性制御への応用の可能性を検討した。微生物細胞内の有用物質の放出(特許文献1)、微生物の改変(特許文献2)、微生物の活性の制御(特許文献3)にパルス電界を利用した例はあるものの、微生物の酵素生産性の制御にパルス電界を用いた例は聞かない。
 様々な微生物に対してパルス電界を印加し、その効果を調べた結果、同一の微生物株、同一の培地、更には同一の培養条件であっても、パルス電界の印加の有無やその条件の如何によって、酵素生産性が変化するという現象が認められた。即ち、パルス電界を利用すれば、培地組成及び培養条件を変更することなく、且つ遺伝子改変を伴うこともなく、酵素の生産性を制御できることが判明した。以下の発明は、主として上記の知見に基づく。
 [1]微生物にパルス電界を印加することを特徴とする、微生物の酵素生産性を制御する方法。
 [2]微生物の培養中の培養液にパルス電界を印加する工程を含む、[1]に記載の方法。
 [3]培養中において、前記パルス電界を発生させる電極部に培養液が循環する、[2]に記載の方法。
 [4]培養中に繰り返しパルス電界が印加される、[2]又は[3]に記載の方法。
 [5]前記パルス電界のパルス波形が減衰振動波形である、[1]~[4]のいずれか一項に記載の方法。
 [6]前記パルス電界の電界強度が10kV/cm~50kV/cmである、[1]~[5]のいずれか一項に記載の方法。
 [7]アミラーゼ、グルコシダーゼ、ガラクトシダーゼ、セルラーゼ、エステラーゼ、リパーゼ、プロテアーゼ、ホスファターゼ、ペプチダーゼ、ヌクレアーゼ、デアミナーゼ、オキシダーゼ、デヒドロゲナーゼ、グルタミナーゼ、ペクチナーゼ、カタラーゼ、デキストラナーゼ、トランスグルタミナーゼ、蛋白質脱アミド酵素及びプルラナーゼからなる群より選択される一以上の酵素の生産量が制御される、[1]~[6]のいずれか一項に記載の方法。
 [8]α-アミラーゼ、α-グルコシダーゼ、β-グルコシダーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、セルラーゼ、エステラーゼ、リパーゼ、プロテアーゼ、酸性ホスファターゼ、アルカリホスファターゼ、ロイシンペプチダーゼ、アラニンアミノペプチダーゼ、PPLアミノペプチダーゼ及びSAPAアミノペプチダーゼからなる群より選択される一以上の酵素の生産量が制御される、[1]~[6]のいずれか一項に記載の方法。
 [9]前記微生物が、糸状菌、放線菌、酵母及び細菌からなる群より選択される微生物である、[1]~[8]のいずれか一項に記載の方法。
 [10]前記微生物が、アスペルギルス属、ムコール属、リゾムコール属、リゾプス属、ペニシリウム属、トラメテス属、ストレプトマイセス属、カンジダ属、サッカロマイセス属、スポロボロマイセス属、クルイベロマイセス属、ピケア属、クリプトコッカス属、バチルス属、ストレプトコッカス属、シュードモナス属、バークホルデリア属、クロストリジウム属、ミロセシウム属、クレブシエラ属、クリセオバクテリウム属及びエスケリチア属からなる群より選択される微生物である、[1]~[8]のいずれか一項に記載の方法。
 [11]前記微生物が、アスペルギルス・オリゼ、アスペルギルス・ニガー、ムコール・ヤバニカス、バチルス・サチルス、バチルス・アミロリケファシエンス、バチルス・サーキュランス、ストレプトマイセス・グリセウス及びストレプトマイセス・サーモカルボキシダスからなる群より選択される微生物である、[1]~[8]のいずれか一項に記載の方法。
 [12]前記酵素生産性の制御が、以下の(1)~(8)のいずれかである、[1]~[6]のいずれか一項に記載の方法:
 (1)前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、α-アミラーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、プロテアーゼ、ロイシンアミノペプチダーゼ及びPPLアミノペプチダーゼ、エステラーゼからなる群より選択される一以上の酵素の生産量が上方制御されるもの、前記パルス電界の印加が培養中の誘導期に実施され、α-アミラーゼ、α-グルコシダーゼ、β-グルコシダーゼ、α-ガラクトシダーゼ、ロイシンアミノペプチダーゼ、エステラーゼからなる群より選択される一以上の酵素の生産量が下方制御されるもの、或いは前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、SAPAアミノペプチダーゼの生産量が下方制御されるもの;
 (2)前記微生物がアスペルギルス・ニガーであり、前記パルス電界の印加が培養中の定常期に実施され、α-アミラーゼ及び/又はプロテアーゼの生産量が上方制御されるもの;
 (3)前記微生物がムコール・ヤバニカスであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、α-アミラーゼ及び/又はβ-グルコシダーゼの生産量が上方制御されるもの;
 (4)前記微生物がバチルス・サチルスであり、前記パルス電界の印加が培養中の対数期に実施され、ロイシンアミノペプチダーゼの生産量が上方制御されるもの;
 (5)前記微生物がバチルス・アミロリケファシエンスであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、リパーゼの生産量が上方制御されるもの或いはセルラーゼの生産量が下方制御されるもの;
 (6)前記微生物がバチルス・サーキュランスであり、前記パルス電界の印加が培養中の対数期に実施され、β-ガラクトシダーゼの生産量が上方制御されるもの;
 (7)前記微生物がストレプトマイセス・グリセウスであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、β-グルコシダーゼの生産量が上方制御されるもの、或いはα-アミラーゼの生産量が下方制御されるもの;
 (8)前記微生物がストレプトマイセス・サーモカルボキシダスであり、前記パルス電界の印加が培養中の対数期に実施され、プロテアーゼの生産量が上方制御されるもの。
 [13]前記パルス電界の印加が培養中の誘導期に実施され、β-ガラクトシダーゼの生産量が上方制御される、[1]~[6]、[9]~[11]のいずれか一項に記載の方法。
 [14]前記パルス電界の印加が培養中の対数期に実施され、α-アミラーゼ、α-ガラクトシダーゼ、β-グルコシダーゼ、β-ガラクトシダーゼ、プロテアーゼ、ロイシンペプチダーゼ、PPLアミノペプチダーゼ及びリパーゼからなる群より選択される一以上の酵素の生産量が上方制御される、[1]~[6]、[9]~[11]のいずれか一項に記載の方法。
 [15]前記パルス電界の印加が培養中の定常期に実施され、α-アミラーゼ及び/又はプロテアーゼの生産量が上方制御される、[1]~[6]、[9]~[11]のいずれか一項に記載の方法。
 [16]前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、プロテアーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [17]前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、ペプチダーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [18]前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の誘導期及び又は対数期に実施され、β-ガラクトシダーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [19]前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、α-ガラクトシダーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [20]前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、α-アミラーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [21]前記微生物がアスペルギルス・ニガーであり、前記パルス電界の印加が培養中の定常期に実施され、プロテアーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [22]前記微生物がアスペルギルス・ニガーであり、前記パルス電界の印加が培養中の定常期に実施され、α-アミラーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [23]前記微生物がバチルス・サチルスであり、前記パルス電界の印加が培養中の対数期に実施され、ペプチダーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [24]前記微生物がバチルス・サーキュランスであり、前記パルス電界の印加が培養中の対数期に実施され、β-ガラクトシダーゼの産生量が上方制御される、[1]~[6]のいずれか一項に記載の方法。
 [25][1]~[24]のいずれか一項に記載の方法を適用して培養した微生物の培養液及び/又は菌体より、酵素を回収する工程、を含む、酵素組成物の製造方法。
 [26][1]~[24]のいずれか一項に記載の方法を適用して培養した微生物の培養液から菌体を除去する工程、を含む、酵素組成物の製造方法。
 [27]菌体除去後の培養液を精製する工程を更に含む、[26]に記載の製造方法。
 [28][25]~[27]のいずれか一項に記載の製造方法で得られた酵素組成物。
 [29][2]に記載の方法に使用する培養システムであって、培養容器と、その電極が該培養容器の内部に設けられるパルス電界発生装置と、を含む培養システム。
 [30][3]又は[4]に記載の方法に使用する培養システムであって、循環路を備えた培養容器と、前記循環路に送液するための送液手段と、パルス電界発生装置と、を含み、該パルス電界発生装置の電極部が前記循環路に付設されている、培養システム。
本発明で使用できるパルス電界発生装置の一例。 本発明で印加されるパルス電圧波形の一例。上は印加回数が100ショット、下は同400ショット。
1.酵素生産性の制御方法、培養システム
 本発明の第1の局面は、微生物の酵素生産性を制御する方法(以下、「本発明の制御方法」とも呼ぶ)に関する。本発明の制御方法は、酵素の生産に用いる微生物に対してパルス電界を印加する点に特徴を有する。典型的には、微生物の培養中の培養液にパルス電界を印加し、酵素生産性を制御する。本発明の制御方法に供する微生物のことを説明の便宜上、「生産株」と呼ぶことがある。培養方法は常法に従えばよく、通常は、使用する生産株の生育、増殖に適した培地及び培養条件(温度、酸素濃度等)を採用する。
 「酵素生産性」は、生産される酵素の種類及び各酵素の生産量によって規定される。従って、本発明の制御方法を適用すると、生産される酵素の種類の増加又は減少、生産される酵素の組成比ないしバランスの変化又は調整、特定の酵素(一又は二以上の酵素)の生産量の増加又は減少、酵素総生産量の増加又は減少等が、採用する条件に応じて可能となる。
 生産株培養中の培養液へのパルス電界の印加は、例えば、培養容器内部に設けられた電極を介して行うことができる。具体的には、まず、培養容器と、その電極が培養容器内部に設けられるパルス電界発生装置を含む培養システムを構築し、当該システムを用いて生産株の培養を開始する。そして、培養中の適切な時期にパルス電界を発生させ、培養液にパルス電界を印加する。
 循環路を備えた培養容器と、循環路に送液するための送液手段と、パルス電界発生装置とを含み、パルス電界発生装置の電極部が循環路に付設されている培養システムを構築し、培養中に培養液を循環路内に送液・循環させてパルス電界を印加することにしてもよい。当該システムによれば連続的な処理が可能になり、効率的にパルス電界を印加することができる。
 本発明で用いることができるパルス電界発生装置の回路の一例を図1に示す。また、この装置で出力されるパルス波形の一例を図2に示す。この装置は高圧電源、抵抗(2MΩ)、コンデンサC、インダクタンスL、トリガトロンギャップスイッチ及びトリガ回路で構成され、LとCは並列共振回路となっている。使用するコンデンサはC=90nFである。
 動作原理について説明する。初めに高電圧電源により2MΩの抵抗を通してキャパシタンスCに電荷が充電される。充電後、ギャップスイッチで放電を起こすことにより、Cに充電された電荷がRLC回路内に放出される。RLC回路内に流れる電流はCとLの共振によって減衰振動波形となり、並列に接続された試料液であるRに出力される。
 このパルス電界発生装置では図2に示したような減衰振動波形が出力されるが、インダクタンスLを取り外した回路にすることで、振動のない減衰波形を出力させることもできる。このような装置を本発明に使用することも可能である。
 パルス電界の印加で発生する熱の影響を最小限にするため、電極部を冷却する水冷装置を設置するとよい。例えば、アース側の電極内にポンプにより水が流れることで、アース側の電極を冷やすように水冷装置を設置する。さらに、高圧側に熱交換用冷却フィンを取り付け、熱を逃がしやすくするとよい。このような構成にすれば、電界印加中の試料の温度上昇を抑えることができる。
 細胞にパルス電界を印加すると、細胞の電気的特性においてコンデンサとして働く細胞膜に電荷が蓄積される。これにより細胞膜の両側には電位差が生じる。半径aの細胞に電界強度Eの電界を与えた時、電界方向と角度θの位置にある膜にかかる電位差Vmは次式で表される。電位差は細胞の直径と電界強度に比例し、電界方向に対する膜位置で異なることになる。
Figure JPOXMLDOC01-appb-M000001
 この電位差が1Vを超えると細胞膜に絶縁破壊が起きる。細胞膜に絶縁破壊が起きると細胞に細孔ができる。このようにパルス電界により細胞に細孔をあけることをエレクトロポレーションという。1Vの電位差は細胞膜に2×106V/cmという非常に大きな電界を発生させる。この細孔はあまり大きくなければ細胞自身によって修復される可逆的な破壊であるが、電界強度を大きくしたり、パルス幅を長くしたりして、加えるエネルギーを大きくすると、もはや自己では修復できない不可逆的な細胞膜破壊がおきる。そうすると細胞内の組織が外部に流出し、細胞が壊死する。直径の大きい細胞ほど細胞膜にかかる電位差は大きくなるので、細胞膜が破壊されやすい。例えば、酵母は大腸菌よりも直径が大きいので、パルス電界を印加したときに細胞膜にかかる電位差が大きくなる。
 酵素生産性の制御が可能である限り、パルス電界の電界強度は特に限定されないが、例えば10kV/cm~50kV/cm、好ましくは10kV/cm~30kV/cm、更に好ましくは20kV/cm~30kV/cmである。また、パルス電界は複数回(即ち、繰り返し)、印加することが好ましい。そこで、印加回数を例えば10ショット(回)~10000ショット(回)、好ましくは100ショット(回)~2,000ショット(回)、更に好ましくは100ショット(回)~1,500ショット(回)とする。尚、繰り返し数は溶液の温度が上昇しない範囲、例えば1pps~1000ppsの範囲内で設定可能である。
 有用な酵素を産生する限り、本発明で使用する生産株は特に限定されない。「有用な酵素」とは、少なくとも一つの産業上の用途(例えば、工業用途、食品用途、医薬用途、診断用途など)を有する酵素である。本発明は汎用的な方法であり、様々な微生物を生産株として採用することができる。生産株の例を挙げると、糸状菌、放線菌、酵母、細菌であり、好ましくはアスペルギルス属(より好ましくはアスペルギルス・オリゼ(Aspergillus oryzae)(例えばRIB40株)、アスペルギルス・ニガー(Aspergillus niger)(例えばNBRC 9455株))、ムコール属(より好ましくはムコール・ヤバニカス(Mucor javanicus)(例えばIAM 6108株))、リゾムコール属(Rhizomucor)、リゾプス属(Rhizopus)、ペニシリウム属(Penicillium)、トラメテス属(Trametes)、ストレプトマイセス属(より好ましくはストレプトマイセス・グリセウス(Streptomyces griseus)(例えばIFO 12875株)、ストレプトマイセス・サーモカルボキシダス(Streptomyces thermocarboxydus)(例えばJCM 10367株))、カンジダ属(Candida)、サッカロマイセス属(Saccharomyces)、スポロボロマイセス属(Sporobolomyces)、クルイベロマイセス属(Kluyveromyces)、ピケア属(Pichia)、クリプトコッカス属(Cryptococcus)、バチルス属(より好ましくはバチルス・サチルス(Bacillus subtilis)(例えばJCM 1465株)、バチルス・アミロリケファシエンス(Bacillus amyloliquefacience)(例えばIFO 3034株)、バチルス・サーキュランス(Bacillus circulans)(例えばATCC 21590株))、ストレプトコッカス属(Streptococcus)、シュードモナス属(Pseudomonas)、バークホルデリア属(Burkholderia)、クロストリジウム属(Clostridium)、ミロセシウム属(Myrothecium)、クレブシエラ属(Klebsiella)、クリセオバクテリウム属(Chryseobacterium)、エスケリチア属(より好ましくはエスケリチア・コリ(Escherichia coli))である。二種類以上の微生物を共培養することにしてもよい。
 生産株は一種又は二種以上の酵素を生産する。生産株が生産可能な酵素、即ち、本発明の方法でその生産量が制御される酵素の例を挙げると、アミラーゼ(α-アミラーゼ、β-アミラーゼ、グルコアミラーゼ)、グルコシダーゼ(α-グルコシダーゼ、β-グルコシダーゼ)、ガラクトシダーゼ(α-ガラクトシダーゼ、β-ガラクトシダーゼ)、プロテアーゼ(酸性プロテアーゼ、中性プロテアーゼ、アルカリプロテアーゼ)、ペプチダーゼ(ロイシンペプチダーゼ、PPL(L-ピログルタミル-L-フェニルアラニル-L-ロイシン)アミノペプチダーゼ、SAPA(スクシニル-L-アラニル-L-プロリル-L-アラニン)アミノペプチダーゼ)、リパーゼ、エステラーゼ、セルラーゼ、ホスファターゼ(酸性ホスファターゼ、アルカリホスファターゼ)、ヌクレアーゼ、デアミナーゼ、オキシダーゼ、デヒドロゲナーゼ、グルタミナーゼ、ペクチナーゼ、カタラーゼ、デキストラナーゼ、トランスグルタミナーゼ、蛋白質脱アミド酵素、プルラナーゼである。
 詳細な検討(後述の実施例を参照)の結果、以下に示す通り、特定の生産株について特に有効なパルス電界印加条件、及びそれによる効果が明らかとなった。
(1)生産株アスペルギルス・オリゼ(例えばRIB40株)
 パルス電界の印加時期:誘導期、対数期、定常期
 生産される酵素の例:α-アミラーゼ、α-グルコシダーゼ、β-グルコシダーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、プロテアーゼ、ロイシンアミノペプチダーゼ、PPLアミノペプチダーゼ、エステラーゼ、SAPAアミノペプチダーゼ、酸性ホスファターゼ、アルカリホスファターゼ
 生産量が増加する酵素の例:α-アミラーゼ(好ましくは対数期にパルス電界を印加)、α-ガラクトシダーゼ(好ましくは対数期にパルス電界を印加)、β-ガラクトシダーゼ(好ましくは誘導期から対数期にかけて複数の時期にパルス電界を印加)、プロテアーゼ(好ましくは対数期にパルス電界を印加)、ロイシンアミノペプチダーゼ(好ましくは対数期にパルス電界を印加)、PPLアミノペプチダーゼ(好ましくは対数期にパルス電界を印加)、エステラーゼ(好ましくは対数期にパルス電界を印加)
 生産量が減少する酵素の例:α-アミラーゼ(好ましくは誘導期にパルス電界を印加)、α-グルコシダーゼ(好ましくは誘導期にパルス電界を印加)、β-グルコシダーゼ(好ましくは誘導期から対数期にパルス電界を印加)、α-ガラクトシダーゼ(好ましくは誘導期にパルス電界を印加)、ロイシンアミノペプチダーゼ(好ましくは誘導期にパルス電界を印加)、SAPAアミノペプチダーゼ(好ましくは対数期~定常期にパルス電界を印加)、エステラーゼ(好ましくは誘導期にパルス電界を印加)
(2)生産株アスペルギルス・ニガー(例えばNBRC 9455株)
 パルス電界の印加時期:対数期、定常期
 生産される酵素の例:α-アミラーゼ、α-グルコシダーゼ、β-グルコシダーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、プロテアーゼ、酸性ホスファターゼ、リパーゼ
 生産量が増加する酵素の例:α-アミラーゼ(好ましくは定常期にパルス電界を印加)、プロテアーゼ(好ましくは定常期にパルス電界を印加)
 生産量が減少する酵素の例:α-ガラクトシダーゼ(好ましくは定常期にパルス電界を印加)、β-ガラクトシダーゼ(好ましくは定常期にパルス電界を印加)
(3)生産株ムコール・ヤバニカス(例えばIAM 6108株)
 パルス電界の印加時期:対数期、定常期
 生産される酵素の例:α-アミラーゼ、α-グルコシダーゼ、β-グルコシダーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、プロテアーゼ、ロイシンアミノペプチダーゼ、アラニンアミノペプチダーゼ、リパーゼ
 生産量が増加する酵素の例:α-アミラーゼ(好ましくは定常期にパルス電界を印加)、β-グルコシダーゼ(好ましくは対数期にパルス電界を印加)
(4)生産株バチルス・サチルス(例えばJCM 1465株)
 パルス電界の印加時期:対数期
 生産される酵素の例:α-アミラーゼ、α-グルコシダーゼ、プロテアーゼ、ロイシンアミノペプチダーゼ、アルカリホスファターゼ、リパーゼ
 生産量が増加する酵素の例:ロイシンアミノペプチダーゼ(好ましくは対数期にパルス電界を印加)
(5)生産株バチルス・アミロリケファシエンス(例えばIFO 3034株)
 パルス電界の印加時期:対数期、定常期
 生産される酵素の例:α-アミラーゼ、α-グルコシダーゼ、プロテアーゼ、ロイシンアミノペプチダーゼ、アルカリホスファターゼ、リパーゼ
 生産量が増加する酵素の例:リパーゼ(好ましくは対数期から定常期にパルス電界を印加)
 生産量が減少する酵素の例:セルラーゼ(好ましくは対数期から定常期にパルス電界を印加)
(6)生産株バチルス・サーキュランス(例えばATCC 21590株)
 パルス電界の印加時期:対数期
 生産される酵素の例:α-アミラーゼ、β-ガラクトシダーゼ、プロテアーゼ
 生産量が増加する酵素の例:β-ガラクトシダーゼ(好ましくは対数期にパルス電界を印加)
(7)生産株ストレプトマイセス・グリセウス(例えばIFO 12875株)
 パルス電界の印加時期:対数期、定常期
 生産される酵素の例:α-アミラーゼ、β-グルコシダーゼ、プロテアーゼ
 生産量が増加する酵素の例:β-グルコシダーゼ(好ましくは対数期にパルス電界を印加)
 生産量が減少する酵素の例:α-アミラーゼ(好ましくは対数期から定常期にパルス電界を印加)
(8)生産株ストレプトマイセス・サーモカルボキシダス(例えばJCM 10367株)
 パルス電界の印加時期:対数期
 生産される酵素の例:α-アミラーゼ、プロテアーゼ
 生産量が増加する酵素の例:プロテアーゼ(好ましくは対数期にパルス電界を印加)
2.酵素組成物の製造方法、酵素組成物
 微生物を利用した酵素の生産系に本発明の制御方法を適用すると、適用しない場合とは異なる酵素生産性を示すことになる。従って、特徴的な酵素組成物を製造することが可能となる。そこで本発明の第2の局面は、本発明の制御方法の用途として、酵素組成物の製造方法(以下、「本発明の製造方法」とも呼ぶ)を提供する。尚、「酵素組成物」とは、少なくとも1種類の酵素を含む組成物である。従って、特定の1種類の酵素のみを含む(実質的な夾雑酵素活性がない)場合も、酵素組成物に該当する。
 本発明の製造方法の一態様では、本発明の制御方法を適用して培養した微生物の培養液又は菌体、或いはこの両者から酵素を回収する。培養液から回収する場合には、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことにより酵素組成物を得ることができる。他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理などによって破砕した後、上記と同様に分離、精製を行うことにより酵素組成物を得ることができる。尚、ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。
 以下、本発明の実施例(実験例)を示すが、本発明は、これにより何ら限定されるものではない。
 各種微生物に対してパルス電界を印加し、酵素生産性に与える効果・影響を調べた。
1.供試微生物菌株
 アスペルギルス・オリゼRIB40株、アスペルギルス・ニガーNBRC 9455株、ムコール・ヤバニカスIAM 6108株、バチルス・サチルスJCM 1465、バチルス・アミロリケファシエンスIFO 3034株、バチルス・サーキュランスATCC 21590株、ストレプトマイセス・グリセウスIFO 12875株、ストレプトマイセス・サーモカルボキシダスJCM 10367株
2.実験方法
 各微生物菌株を培養し、所定の時期(誘導期、対数期前期、対数期後期、定常期)にパルス電界を印加した。その後、所定のタイミングで培養液又は菌体を回収し、酵素活性測定用のサンプルを調製した。培養液については、遠心分離により上清を回収し、細胞外サンプルとした。菌体内容物については、遠心分離による沈殿物を、酸化アルミニウム処理
により破砕し、その遠心上清を回収し、細胞内サンプルとした。各サンプルについて各種酵素活性を測定した。以下、微生物菌株毎に培地・培養条件、パルス電界の印加条件を示す。
(1)アスペルギルス・オリゼRIB40株
 培地・培養条件:50% ふすま培地、28℃培養
 高電界パルス印加条件:電界強度 15 kV/cm又は30 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
(2)アスペルギルス・ニガーNBRC 9455株
 培地・培養条件:50% ふすま培地、28℃培養
 高電界パルス印加条件:電界強度 15 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
(3)ムコール・ヤバニカスIAM 6108株
 培地・培養条件:50% ふすま培地、28℃培養
 高電界パルス印加条件:電界強度 15 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
(4)バチルス・サチルスJCM 1465株
 培地・培養条件:SCD培地、28℃培養
 高電界パルス印加条件:電界強度 15 kV/cm又は30 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
(5)バチルス・アミロリケファシエンスIFO 3034株
 培地・培養条件:SCD培地、28℃培養
 高電界パルス印加条件:電界強度 15 kV/cm又は30 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
(6)バチルス・アミロリケファシエンスIFO 3034株
 培地・培養条件:YM broth培地、28℃培養
高 電界パルス印加条件:電界強度 30 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
(7)バチルス・サーキュランスATCC 21590株
 培地・培養条件:YM broth培地、28℃培養
 高電界パルス印加条件:電界強度 30 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
(8)ストレプトマイセス・グリセウスIFO 12875株
 培地・培養条件:YM broth培地、28℃培養
 高電界パルス印加条件1:電界強度 30 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
 高電界パルス印加条件2:電界強度 30 kV/cm;印加回数 400ショット;繰返し数 3 pps;波形 減衰振動波
(9)ストレプトマイセス・サーモカルボキシダスJCM 10367株
 培地・培養条件:YM broth培地、28℃培養
 高電界パルス印加条件1:電界強度 30 kV/cm;印加回数 100ショット;繰返し数 1 pps;波形 減衰振動波
 高電界パルス印加条件2:電界強度 30 kV/cm;印加回数 400ショット;繰返し数 3 pps;波形 減衰振動波
 尚、各微生物菌株について、培養時間と増殖時期の関係を以下の通り定義した。
<糸状菌(アスペルギルス・オリゼ、アスペルギルス・ニガー、ムコール・ヤバニカス)>
 培養4時間後:誘導期
 培養18時間後、培養22時間後:対数期前期
 培養39時間後、培養44時間後:対数期後期
 培養66時間後:定常期(静止期)
<バチルス・サチルス、バチルス・アミロリケファシエンス>
培養21時間後、培養22時間後:対数期前期
培養43時間後、培養44時間後:対数期後期
培養65時間後:定常期(静止期)
<バチルス・サーキュランス>
 培養43時間後、培養44時間後:対数期前期
 培養65時間後:対数期後期
*接種菌体量が少なく生育が遅れたため、他のバチルス属細菌と異なる
<放線菌(ストレプトマイセス・グリセウス、ストレプトマイセス・サーモカルボキシダス)>
 培養21時間後:対数期前期
 培養43時間後:対数期後期
 培養65時間後:定常期(静止期)
 各酵素の活性測定法は以下の通りとした。
<使用緩衝液>
 100 mmol/L 酢酸緩衝液 pH 4.2
 100 mmol/L 酢酸緩衝液 pH 5.0
 100 mmol/L リン酸緩衝液 pH 7.0
 100 mmol/L PIPES緩衝液 pH 7.1
 100 mmol/L ホウ酸緩衝液 pH 9.2
<α-アミラーゼ>
 可溶性でんぷん(メルク製)を1.0 g/dLになるように緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の5分の1量添加して反応開始した。酵素活性は、20 mmol/Lヨウ素溶液を反応液の6分の1量添加し、ヨウ素でんぷん反応による発色を540 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<α-グルコシダーゼ>
 p-ニトロフェニルα-D-グルコピラノシド(シグマアルドリッチ製)を12 mmol/Lになるように緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、1 g/dL炭酸ナトリウム溶液を反応液の等量添加し、遊離したp-ニトロフェノールの発色を420 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<β-グルコシダーゼ>
 p-ニトロフェニルβ-D-グルコピラノシド(シグマアルドリッチ製)を12 mmol/Lになるように緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、1 g/dL炭酸ナトリウム溶液を反応液の等量添加し、遊離したp-ニトロフェノールの発色を420 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<α-ガラクトシダーゼ>
 p-ニトロフェニルα-D-ガラクトピラノシド(シグマアルドリッチ製)を12 mmol/Lになるように緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、1 g/dL炭酸ナトリウム溶液を反応液の等量添加し、遊離したp-ニトロフェノールの発色を420 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<β-ガラクトシダーゼ>
 p-ニトロフェニルβ-D-ガラクトピラノシド(シグマアルドリッチ製)を12 mmol/Lになるように緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、1 g/dL炭酸ナトリウム溶液を反応液の等量添加し、遊離したp-ニトロフェノールの発色を420 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<セルラーゼ>
 Cellazyme C tablets(セラザイム製)1錠あたり10 mLの緩衝液に懸濁し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の13分の1量添加して反応開始した。反応終了後、反応液をセルロースフィルターでろ過し、ろ液に含まれるアゾ色素結合低分子を590 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<エステラーゼ>
 p-ニトロフェニル-アセテート(和光純薬工業製)を12 mmol/Lになるように、30 g/dLエタノールを含む緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、遊離したp-ニトロフェノールの発色を420 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<リパーゼ>
 p-ニトロフェニル-ステアレート(シグマアルドリッチ製)を0.31 mmol/Lになるように、30 g/dLエタノールを含む緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、遊離したp-ニトロフェノールの発色を420 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<プロテアーゼ>
 カゼイン(カルビオケム製)を0.1 g/dLになるように緩衝液に溶解または懸濁し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の10分の1量添加して反応開始した。酵素活性は、400 mmol/Lトリクロロ酢酸溶液を基質溶液の等量添加後、15,000回転、10分間遠心分離して得られた上清中の可溶化したペプチドを280 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<ホスファターゼ>
 p-ニトロフェニル-ホスフェイト(和光純薬工業製)を2 mmol/Lになるように緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の5分の1量添加して反応開始した。酵素活性は、1 g/dL炭酸ナトリウム溶液を反応液の等量添加し、遊離したp-ニトロフェノールの発色を420 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<ロイシンアミノペプチダーゼ>
 L-ロイシン- p-ニトロアニリド(和光純薬工業製)を4.8 mmol/Lになるように5 g/dLのジメチルスルホキシド(和光純薬工業製)を含む緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、遊離したp-ニトロアニリドの発色を450 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<アラニンアミノペプチダーゼ>
 L-アラニン- p-ニトロアニリド(和光純薬工業製)を4.8 mmol/Lになるように5 g/dLのジメチルスルホキシド(和光純薬工業製)を含む緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、遊離したp-ニトロアニリドの発色を450 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<PPLアミノペプチダーゼ>
 L-ピログルタミル-L-フェニルアラニル-L-ロイシン- p-ニトロアニリド(和光純薬工業製)を2.4 mmol/Lになるように20 g/dLのジメチルスルホキシド(和光純薬工業製)を含む緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、遊離したp-ニトロアニリドの発色を450 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
<SAPAアミノペプチダーゼ>
 スクシニル-L-アラニル-L-プロリル-L-アラニン- p-ニトロアニリド(和光純薬工業製)を2.4 mmol/Lになるように10 g/dLのジメチルスルホキシド(和光純薬工業製)を含む緩衝液に溶解し、基質溶液とした。これに、適当希釈した酵素サンプル溶液を基質溶液の4分の1量添加して反応開始した。酵素活性は、遊離したp-ニトロアニリドの発色を450 nmの吸光度で測定し、各条件においてパルス電界を全く印加しなかった培養サンプルの測定値に対する相対値として見積もった。
3.実験結果
(1)アスペルギルス・オリゼRIB40株(印加時期と電界強度の検討)
 パルス電界の印加時期と電界強度が異なる以下の試験群を設定した。
 (a)培養4時間後(誘導期)に電界強度15kV/cmのパルス電界を印加
 (b)培養4時間後に電界強度30kV/cmのパルス電界を印加
 (c)培養4時間後と培養18時間後(対数期前期)に電界強度15kV/cmのパルス電界を印加
 (d)培養4時間後と培養18時間後に電界強度30kV/cmのパルス電界を印加
 (e)培養18時間後に電界強度15kV/cmのパルス電界を印加
 (f)培養18時間後に電界強度30kV/cmのパルス電界を印加
 (g)培養18時間後と培養39時間後(対数期後期)に電界強度15kV/cmのパルス電界を印加
 (h)培養18時間後と培養39時間後に電界強度30kV/cmのパルス電界を印加
 培養88時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇、二重下線は活性の低下を表す。
Figure JPOXMLDOC01-appb-T000002
 誘導期のパルス電界印加にてほとんどの酵素生産量が低下した。一方、α-アミラーゼは対数期に電界強度15kV/cmのパルス電界印加で酵素生産量が増加した。また、α-ガラクトシダーゼは対数期にパルス電界を印加することで酵素生産量が増加した。β-ガラクトシダーゼについては、誘導期から対数期にかけて複数回、パルス電界を印加することで酵素生産量が増加した。プロテアーゼとペプチダーゼは対数期にパルス電界を印加すると酵素生産性が増加した。尚、電界強度15kV/cmと30kV/cmの間で、酵素生産量の変化に顕著な差は見られなかった。
(2)アスペルギルス・オリゼRIB40株(細胞内酵素と細胞外酵素の比較)
 パルス電界の印加時期が異なる以下の試験群を設定した。
 (a)培養44時間後(対数期後期)に電界強度15kV/cmのパルス電界を印加
 (b)培養66時間後(定常期)に電界強度15kV/cmのパルス電界を印加
 培養88時間後に培養液と菌体を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇、二重下線は活性の低下を表す。
Figure JPOXMLDOC01-appb-T000003
 ペプチダーゼは、対数期から定常期にかけてパルス電界を印加すると酵素生産量が減少した。いずれの酵素も細胞内と細胞外で同等の相対活性を示しており、パルス電界の印加によって細胞からの酵素抽出効率が向上したのではなく、酵素の生産性が影響を受けたことがわかる。
(3)アスペルギルス・ニガーNBRC 9455株(印加時期の検討)
 パルス電界の印加時期が異なる以下の試験群を設定した。
 (a)培養22時間後(対数期前期)に電界強度15kV/cmのパルス電界を印加
 (b)培養44時間後(対数期後期)に電界強度15kV/cmのパルス電界を印加
 (c)培養66時間後(定常期)に電界強度15kV/cmのパルス電界を印加
 培養88時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇、二重下線は活性の低下を表す。
Figure JPOXMLDOC01-appb-T000004
 α-アミラーゼは定常期にパルス電界を印加すると酵素生産量が増加した。プロテアーゼも同様に、定常期にパルス電界を印加すると酵素生産量が増加した。
(4)ムコール・ヤバニカスIAM 6108株(印加時期の検討)
 パルス電界の印加時期が異なる以下の試験群を設定した。
 (a)培養22時間後(対数期前期)に電界強度15kV/cmのパルス電界を印加
 (b)培養44時間後(対数期後期)に電界強度15kV/cmのパルス電界を印加
 (c)培養66時間後(定常期)に電界強度15kV/cmのパルス電界を印加
 培養88時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇を表す。
Figure JPOXMLDOC01-appb-T000005
 α-アミラーゼは定常期にパルス電界を印加すると酵素生産量が増加した。β-グルコシダーゼについては対数期にパルス電界を印加すると酵素生産量が増加した。
(5)ムコール・ヤバニカスIAM 6108株(細胞内酵素と細胞外酵素の比較)
 パルス電界の印加時期が異なる以下の試験群を設定した。
 (a)培養22時間後(対数期前期)に電界強度15kV/cmのパルス電界を印加
 (b)培養44時間後(対数期後期)に電界強度15kV/cmのパルス電界を印加
 (c)培養66時間後(定常期)に電界強度15kV/cmのパルス電界を印加
 培養88時間後に培養液及び菌体を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000006
 いずれの酵素も細胞内と細胞外で同等の活性を示しており、パルス電界の印加によって細胞からの酵素抽出効率が向上したのではなく、酵素の生産性が影響を受けたことがわかる。
(6)バチルス・サチルスJCM 1465株(印加時期と電界強度の検討)
 パルス電界の印加時期と電界強度が異なる以下の試験群を設定した。
 (a)培養22時間後(対数期前期)に電界強度15kV/cmのパルス電界を印加
 (b)培養22時間後に電界強度30kV/cmのパルス電界を印加
 (c)培養44時間後(対数期後期)に電界強度15kV/cmのパルス電界を印加
 (d)培養44時間後に電界強度30kV/cmのパルス電界を印加
 培養66時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇、二重下線は活性の低下を表す。
Figure JPOXMLDOC01-appb-T000007
 ペプチダーゼは対数期にパルス電界を印加すると酵素生産量が増加した。
(7)バチルス・アミロリケファシエンスIFO 3034株(SCD培地)(印加時期と電界強度の検討)
 パルス電界の印加時期と電界強度が異なる以下の試験群を設定した。
 (a)培養22時間後(対数期前期)に電界強度15kV/cmのパルス電界を印加
 (b)培養22時間後に電界強度30kV/cmのパルス電界を印加
 (c)培養44時間後(対数期後期)に電界強度15kV/cmのパルス電界を印加
 (d)培養44時間後に電界強度30kV/cmのパルス電界を印加
 培養66時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇、二重下線は活性の低下を表す。
Figure JPOXMLDOC01-appb-T000008
 リパーゼは対数期にパルス電界を印加することで酵素生産量が増加した。
(8)バチルス・アミロリケファシエンスIFO 3034株(YM broth培地)(印加時期と培地の検討)
 パルス電界の印加時期が異なる以下の試験群を設定した。
 (a)培養21時間後(対数期前期)に電界強度30kV/cmのパルス電界を印加
 (b)培養43時間後(対数期後期)に電界強度30kV/cmのパルス電界を印加
 (c)培養21時間後と培養43時間後に電界強度30kV/cmのパルス電界を印加
 (d)培養21時間後と培養43時間後と培養65時間後(定常期)に電界強度30kV/cmのパルス電界を印加
 (e)培養43時間後と培養65時間後に電界強度30kV/cmのパルス電界を印加
 試験群(a)、(b)、(c)について培養65時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000009
 一方、試験群(a)、(c)、(d)、(e)について培養87時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、二重下線は活性の低下を表す。
Figure JPOXMLDOC01-appb-T000010
 異なる培地で培養しても同様の結果が得られた。セルラーゼは対数期にパルス電界を印加することで酵素生産量が減少した。リパーゼについてはパルス電界を複数の時期に印加することで酵素生産量が増加した。
(9)バチルス・サーキュランスATCC 21590株(印加時期の検討)
 パルス電界の印加時期が異なる以下の試験群を設定した。
 (a)培養43時間後(対数期前期)に電界強度30kV/cmのパルス電界を印加
 (b)培養43時間後と培養65時間後(対数期後期)に電界強度30kV/cmのパルス電界を印加
 試験群(a)について培養65時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇を表す。
Figure JPOXMLDOC01-appb-T000011
 一方、試験群(a)、(b)について培養87時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇を表す。
Figure JPOXMLDOC01-appb-T000012
 β-ガラクトシダーゼは対数期にパルス電界を印加すると酵素生産量が増加した。
(10)ストレプトマイセス・グリセウスIFO 12875株(印加時期と印加回数の検討)
 パルス電界の印加時期及びショット回数が異なる以下の試験群を設定した。
 (a)培養21時間後(対数期前期)に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (b)培養21時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (c)培養43時間後(対数期後期)に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (d)培養43時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (e)培養21時間後と培養43時間後に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (f)培養21時間後と培養43時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (g)培養21時間後と培養43時間後と培養65時間後(定常期)に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (h)培養21時間後と培養43時間後と培養65時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (i)培養43時間後と培養65時間後に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (j)培養43時間後と培養65時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 試験群(a)~(f)について培養65時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇を表す。
Figure JPOXMLDOC01-appb-T000013
 一方、試験群(a)、(b)、(e)~(j)について培養87時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇、二重下線は活性の低下を表す。
Figure JPOXMLDOC01-appb-T000014
 ショット回数の違いによる顕著な差は見られなかった。α-アミラーゼは対数期から定常期にかけてパルス電界を印加すると酵素生産量が減少した。β-グルコシダーゼについて対数期にパルス電界を印加すると酵素生産量が増加した。
(11)ストレプトマイセス・サーモカルボキシダスJCM 10367株(印加時期と印加回数の検討)
 パルス電界の印加時期及びショット回数が異なる以下の試験群を設定した。
 (a)培養21時間後(対数期前期)に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (b)培養21時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (c)培養43時間後(対数期後期)に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (d)培養43時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (e)培養21時間後と培養43時間後に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (f)培養21時間後と培養43時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (g)培養21時間後と培養43時間後と培養65時間後(定常期)に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (h)培養21時間後と培養43時間後と培養65時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 (i)培養43時間後と培養65時間後に電界強度30kV/cm、ショット回数100のパルス電界を印加
 (j)培養43時間後と培養65時間後に電界強度30kV/cm、ショット回数400のパルス電界を印加
 試験群(a)~(f)について培養65時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇を表す。
Figure JPOXMLDOC01-appb-T000015
 一方、試験群(a)、(b)、(e)~(j)について培養87時間後に培養液を回収してサンプルを調製し、各種酵素活性を測定した。測定結果を以下の表に示す。尚、下線は活性の上昇を表す。
Figure JPOXMLDOC01-appb-T000016
 ショット回数の違いによる顕著な差は見られなかった。プロテアーゼは対数期にパルス電界を印加すると酵素生産量が増加した。
 以上の通り、パルス電界の印加によって、各種微生物の酵素生産性を変化させることが可能であった。換言すれば、微生物の酵素生産性を制御する手段としてパルス電界の印加が有効であることが示された。
 微生物の酵素生産性の制御にパルス電界を利用する本発明は、様々な微生物、様々な酵素に適用可能な汎用性の高い技術となる。本発明によれば、特定の酵素生産量を増加させたり、特定の酵素生産量を抑制させたりすることにより、目的の酵素組成(即ち、酵素組成が制御された)の酵素組成物や酵素製剤を得ることが可能となる。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (30)

  1.  微生物にパルス電界を印加することを特徴とする、微生物の酵素生産性を制御する方法。
  2.  微生物の培養中の培養液にパルス電界を印加する工程を含む、請求項1に記載の方法。
  3.  培養中において、前記パルス電界を発生させる電極部に培養液が循環する、請求項2に記載の方法。
  4.  培養中に繰り返しパルス電界が印加される、請求項2又は3に記載の方法。
  5.  前記パルス電界のパルス波形が減衰振動波形である、請求項1~4のいずれか一項に記載の方法。
  6.  前記パルス電界の電界強度が10kV/cm~50kV/cmである、請求項1~5のいずれか一項に記載の方法。
  7.  アミラーゼ、グルコシダーゼ、ガラクトシダーゼ、セルラーゼ、エステラーゼ、リパーゼ、プロテアーゼ、ホスファターゼ、ペプチダーゼ、ヌクレアーゼ、デアミナーゼ、オキシダーゼ、デヒドロゲナーゼ、グルタミナーゼ、ペクチナーゼ、カタラーゼ、デキストラナーゼ、トランスグルタミナーゼ、蛋白質脱アミド酵素及びプルラナーゼからなる群より選択される一以上の酵素の生産量が制御される、請求項1~6のいずれか一項に記載の方法。
  8.  α-アミラーゼ、α-グルコシダーゼ、β-グルコシダーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、セルラーゼ、エステラーゼ、リパーゼ、プロテアーゼ、酸性ホスファターゼ、アルカリホスファターゼ、ロイシンペプチダーゼ、アラニンアミノペプチダーゼ、PPLアミノペプチダーゼ及びSAPAアミノペプチダーゼからなる群より選択される一以上の酵素の生産量が制御される、請求項1~6のいずれか一項に記載の方法。
  9.  前記微生物が、糸状菌、放線菌、酵母及び細菌からなる群より選択される微生物である、請求項1~8のいずれか一項に記載の方法。
  10.  前記微生物が、アスペルギルス属、ムコール属、リゾムコール属、リゾプス属、ペニシリウム属、トラメテス属、ストレプトマイセス属、カンジダ属、サッカロマイセス属、スポロボロマイセス属、クルイベロマイセス属、ピケア属、クリプトコッカス属、バチルス属、ストレプトコッカス属、シュードモナス属、バークホルデリア属、クロストリジウム属、ミロセシウム属、クレブシエラ属、クリセオバクテリウム属及びエスケリチア属からなる群より選択される微生物である、請求項1~8のいずれか一項に記載の方法。
  11.  前記微生物が、アスペルギルス・オリゼ、アスペルギルス・ニガー、ムコール・ヤバニカス、バチルス・サチルス、バチルス・アミロリケファシエンス、バチルス・サーキュランス、ストレプトマイセス・グリセウス及びストレプトマイセス・サーモカルボキシダスからなる群より選択される微生物である、請求項1~8のいずれか一項に記載の方法。
  12.  前記酵素生産性の制御が、以下の(1)~(8)のいずれかである、請求項1~6のいずれか一項に記載の方法:
     (1)前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、α-アミラーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼ、プロテアーゼ、ロイシンアミノペプチダーゼ及びPPLアミノペプチダーゼ、エステラーゼからなる群より選択される一以上の酵素の生産量が上方制御されるもの、前記パルス電界の印加が培養中の誘導期に実施され、α-アミラーゼ、α-グルコシダーゼ、β-グルコシダーゼ、α-ガラクトシダーゼ、ロイシンアミノペプチダーゼ、エステラーゼからなる群より選択される一以上の酵素の生産量が下方制御されるもの、或いは前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、SAPAアミノペプチダーゼの生産量が下方制御されるもの;
     (2)前記微生物がアスペルギルス・ニガーであり、前記パルス電界の印加が培養中の定常期に実施され、α-アミラーゼ及び/又はプロテアーゼの生産量が上方制御されるもの;
     (3)前記微生物がムコール・ヤバニカスであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、α-アミラーゼ及び/又はβ-グルコシダーゼの生産量が上方制御されるもの;
     (4)前記微生物がバチルス・サチルスであり、前記パルス電界の印加が培養中の対数期に実施され、ロイシンアミノペプチダーゼの生産量が上方制御されるもの;
     (5)前記微生物がバチルス・アミロリケファシエンスであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、リパーゼの生産量が上方制御されるもの或いはセルラーゼの生産量が下方制御されるもの;
     (6)前記微生物がバチルス・サーキュランスであり、前記パルス電界の印加が培養中の対数期に実施され、β-ガラクトシダーゼの生産量が上方制御されるもの;
     (7)前記微生物がストレプトマイセス・グリセウスであり、前記パルス電界の印加が培養中の対数期及び/又は定常期に実施され、β-グルコシダーゼの生産量が上方制御されるもの、或いはα-アミラーゼの生産量が下方制御されるもの;
     (8)前記微生物がストレプトマイセス・サーモカルボキシダスであり、前記パルス電界の印加が培養中の対数期に実施され、プロテアーゼの生産量が上方制御されるもの。
  13.  前記パルス電界の印加が培養中の誘導期に実施され、β-ガラクトシダーゼの生産量が上方制御される、請求項1~6、9~11のいずれか一項に記載の方法。
  14.  前記パルス電界の印加が培養中の対数期に実施され、α-アミラーゼ、α-ガラクトシダーゼ、β-グルコシダーゼ、β-ガラクトシダーゼ、プロテアーゼ、ロイシンペプチダーゼ、PPLアミノペプチダーゼ及びリパーゼからなる群より選択される一以上の酵素の生産量が上方制御される、請求項1~6、9~11のいずれか一項に記載の方法。
  15.  前記パルス電界の印加が培養中の定常期に実施され、α-アミラーゼ及び/又はプロテアーゼの生産量が上方制御される、請求項1~6、9~11のいずれか一項に記載の方法。
  16.  前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、プロテアーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  17.  前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、ペプチダーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  18.  前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の誘導期及び又は対数期に実施され、β-ガラクトシダーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  19.  前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、α-ガラクトシダーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  20.  前記微生物がアスペルギルス・オリゼであり、前記パルス電界の印加が培養中の対数期に実施され、α-アミラーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  21.  前記微生物がアスペルギルス・ニガーであり、前記パルス電界の印加が培養中の定常期に実施され、プロテアーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  22.  前記微生物がアスペルギルス・ニガーであり、前記パルス電界の印加が培養中の定常期に実施され、α-アミラーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  23.  前記微生物がバチルス・サチルスであり、前記パルス電界の印加が培養中の対数期に実施され、ペプチダーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  24.  前記微生物がバチルス・サーキュランスであり、前記パルス電界の印加が培養中の対数期に実施され、β-ガラクトシダーゼの産生量が上方制御される、請求項1~6のいずれか一項に記載の方法。
  25.  請求項1~24のいずれか一項に記載の方法を適用して培養した微生物の培養液及び/又は菌体より、酵素を回収する工程、を含む、酵素組成物の製造方法。
  26.  請求項1~24のいずれか一項に記載の方法を適用して培養した微生物の培養液から菌体を除去する工程、を含む、酵素組成物の製造方法。
  27.  菌体除去後の培養液を精製する工程を更に含む、請求項26に記載の製造方法。
  28.  請求項25~27のいずれか一項に記載の製造方法で得られた酵素組成物。
  29.  請求項2に記載の方法に使用する培養システムであって、培養容器と、その電極が該培養容器の内部に設けられるパルス電界発生装置と、を含む培養システム。
  30.  請求項3又は4に記載の方法に使用する培養システムであって、循環路を備えた培養容器と、前記循環路に送液するための送液手段と、パルス電界発生装置と、を含み、該パルス電界発生装置の電極部が前記循環路に付設されている、培養システム。
PCT/JP2017/006238 2016-02-24 2017-02-20 微生物の酵素生産性を制御する方法 WO2017146009A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/079,682 US11248222B2 (en) 2016-02-24 2017-02-20 Method for controlling enzyme productivity of microorganisms
JP2018501681A JP7079447B2 (ja) 2016-02-24 2017-02-20 微生物の酵素生産性を制御する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-033589 2016-02-24
JP2016033589 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017146009A1 true WO2017146009A1 (ja) 2017-08-31

Family

ID=59685664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006238 WO2017146009A1 (ja) 2016-02-24 2017-02-20 微生物の酵素生産性を制御する方法

Country Status (3)

Country Link
US (1) US11248222B2 (ja)
JP (1) JP7079447B2 (ja)
WO (1) WO2017146009A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655292A (zh) * 2018-07-01 2020-01-07 才莉 复合微生物配方
CN113005157A (zh) * 2021-03-29 2021-06-22 吉林大学 一种大豆异黄酮苷元的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041373A1 (en) * 1980-05-30 1981-12-09 Ppg Industries, Inc. Electrostimulation of microbial reactions
JPH06277060A (ja) * 1993-03-26 1994-10-04 Kirin Brewery Co Ltd 高電圧パルスによる細胞内有用物質の放出方法
JPH09322761A (ja) * 1996-06-07 1997-12-16 Nisshin Flour Milling Co Ltd アミラーゼ生産用培地
JP2011182207A (ja) * 2010-03-02 2011-09-15 Sekisui Chem Co Ltd パルスパワー発生装置および水処理装置
WO2012133804A1 (ja) * 2011-03-31 2012-10-04 国立大学法人熊本大学 細胞改変方法
JP2013027360A (ja) * 2011-07-29 2013-02-07 Ihi Corp 抽出装置および抽出方法
JP2013236600A (ja) * 2012-05-16 2013-11-28 Meiji Co Ltd パルス電界印加による微生物の活性の制御方法
CN105002239A (zh) * 2015-07-24 2015-10-28 北京大学 一种提高阿维菌素产量的方法
WO2016194782A1 (ja) * 2015-05-29 2016-12-08 天野エンザイム株式会社 菌体内酵素の調製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815640B1 (fr) 2000-10-19 2004-01-30 Centre Nat Rech Scient Procede de production de proteines par electropulsation de levures
DE102004060750A1 (de) 2004-12-15 2006-07-13 Sanofi-Aventis Deutschland Gmbh Verfahren zur Deacylierung von Lipopeptiden
WO2008001903A1 (en) 2006-06-29 2008-01-03 Ikeda Food Research Co., Ltd. Fad-conjugated glucose dehydrogenase gene
DK2439270T3 (en) * 2009-06-05 2016-01-11 Amano Enzyme Inc Galactosidase SECONDARY obtained from Bacillus circulans
WO2011004654A1 (ja) 2009-07-10 2011-01-13 天野エンザイム株式会社 ムコール属由来のグルコースデヒドロゲナーゼ
KR20140038946A (ko) 2011-01-12 2014-03-31 비피 코포레이션 노쓰 아메리카 인코포레이티드 탄화수소 전환 촉매 제조 및 사용 방법
BG66937B1 (bg) * 2012-03-07 2019-08-15 "Дафлорн" Оод Асоциация от пробиотични млечнокисели микроорганизми за получаване на диетични млечни продукти
CN104735999A (zh) 2012-08-03 2015-06-24 杜邦营养生物科学有限公司 饲料添加剂组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041373A1 (en) * 1980-05-30 1981-12-09 Ppg Industries, Inc. Electrostimulation of microbial reactions
JPH06277060A (ja) * 1993-03-26 1994-10-04 Kirin Brewery Co Ltd 高電圧パルスによる細胞内有用物質の放出方法
JPH09322761A (ja) * 1996-06-07 1997-12-16 Nisshin Flour Milling Co Ltd アミラーゼ生産用培地
JP2011182207A (ja) * 2010-03-02 2011-09-15 Sekisui Chem Co Ltd パルスパワー発生装置および水処理装置
WO2012133804A1 (ja) * 2011-03-31 2012-10-04 国立大学法人熊本大学 細胞改変方法
JP2013027360A (ja) * 2011-07-29 2013-02-07 Ihi Corp 抽出装置および抽出方法
JP2013236600A (ja) * 2012-05-16 2013-11-28 Meiji Co Ltd パルス電界印加による微生物の活性の制御方法
WO2016194782A1 (ja) * 2015-05-29 2016-12-08 天野エンザイム株式会社 菌体内酵素の調製方法
CN105002239A (zh) * 2015-07-24 2015-10-28 北京大学 一种提高阿维菌素产量的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EWE JA ET AL.: "Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin- supplemented soymilk by electroporation", INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, vol. 63, no. 5, 2012, pages 580 - 596, XP055410410 *
SHUTA SAITO ET AL.: "Koden'atsu Pulse Denkai ni yoru Koso Kasseika Joken no Kento", NATIONAL CONVENTION RECORD I.E.E. JAPAN, vol. 2016, 5 January 2016 (2016-01-05), pages 124 *
TATSUYA SAITO ET AL.: "Effects of Electrical Stimulation on Edible Mushroom Yield and Laccase Activity", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO, 2011, pages 61 - 65 *
YANG RJ ET AL.: "Effects of Pulsed Electric Fields on the Activity of Enzymes in Aqueous Solution", J OURNAL OF FOODS SCIENCE, vol. 69, no. 4, 2004, XP055410414 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655292A (zh) * 2018-07-01 2020-01-07 才莉 复合微生物配方
CN113005157A (zh) * 2021-03-29 2021-06-22 吉林大学 一种大豆异黄酮苷元的制备方法

Also Published As

Publication number Publication date
US11248222B2 (en) 2022-02-15
US20190055539A1 (en) 2019-02-21
JPWO2017146009A1 (ja) 2018-12-13
JP7079447B2 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
Barsotti et al. Effects of high voltage electric pulses on protein-based food constituents and structures
Comas-Riu et al. Flow cytometry applications in the food industry
Merheb et al. Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein
Rehman et al. Characterization of pectin degrading polygalacturonase produced by Bacillus licheniformis KIBGE-IB21
Tian et al. Effects of pulsed electric field (PEF) treatment on enhancing activity and conformation of α-amylase
Lin et al. Effect of Triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111
Li et al. Halostable cellulase with organic solvent tolerance from Haloarcula sp. LLSG7 and its application in bioethanol fermentation using agricultural wastes
García et al. Biosynthetic requirements for the repair of sublethal membrane damage in Escherichia coli cells after pulsed electric fields
WO2017146009A1 (ja) 微生物の酵素生産性を制御する方法
Saraç et al. A green alternative for oily wastewater treatment: lipase from Acinetobacter haemolyticus NS02-30
Prihanto et al. Purification and characterization of neutral protease from Bacillus substilis UBT7 isolated from terasi, Indonesian fermented fish
Ohshima et al. Releasing profiles of gene products from recombinant Escherichia coli in a high-voltage pulsed electric field
Mahadik et al. Production of acidic lipase by a mutant of Aspergillus niger NCIM 1207 in submerged fermentation
Yadav et al. Purification, characterisation and application of α‐l‐rhamnosidase from Penicillium citrinum MTCC‐8897
Sharma et al. Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY
Shastry et al. Extracellular protease from Pseudomonas sp.(CL 1457) active against Xanthomonas campestris
Sharma et al. Thermostable and alkalistable exopolygalacturonase of Bacillus pumilus dcsr1: Characteristics and applicability
Amoozegar et al. Hydrolytic enzymes in halophilic bacteria, properties and biotechnological potential
WO2016194782A1 (ja) 菌体内酵素の調製方法
Thangavelu et al. Production, Purification and Characterization of extracellular tannase from a Newly isolated Yeast, Geotrichum cucujoidarum.
Seshagiri et al. Production, properties and applications of proteases from pongamia oil seed cakes
Kumar et al. Characterization of smallest active monomeric penicillin V acylase from new source: a yeast, Rhodotorula aurantiaca (NCIM 3425)
Ghoshal et al. Isolation, Screening and Optimization of Xylanase Production in Submerged Fermentation Using P. citrinum.
Li et al. Influence of abiotic stress on β-D-Glucosidase activity of two typical Oenococcus oeni strains in China
Khan et al. Purification and characterization of lipase enzyme from endophytic Bacillus pumilus WSS5 for application in detergent industry

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501681

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756447

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756447

Country of ref document: EP

Kind code of ref document: A1