WO2006059740A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2006059740A1
WO2006059740A1 PCT/JP2005/022232 JP2005022232W WO2006059740A1 WO 2006059740 A1 WO2006059740 A1 WO 2006059740A1 JP 2005022232 W JP2005022232 W JP 2005022232W WO 2006059740 A1 WO2006059740 A1 WO 2006059740A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
grain
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2005/022232
Other languages
English (en)
French (fr)
Inventor
Yukihiro Shingaki
Minoru Takashima
Tadashi Nakanishi
Takeshi Murai
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP05811523.9A priority Critical patent/EP1818420B1/en
Priority to US11/663,751 priority patent/US8177920B2/en
Publication of WO2006059740A1 publication Critical patent/WO2006059740A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet capable of obtaining stable magnetic properties and a method for producing the grain-oriented electrical steel sheet.
  • Oriented electrical steel sheet is a material mainly used for iron cores such as transformers.
  • iron cores such as transformers.
  • grain oriented electrical steel sheets which are core materials, are also required to have better magnetic properties, that is, low iron loss and high magnetic flux density.
  • a grain-oriented electrical steel sheet has a crystal structure in which the ⁇ 0 0 1> orientation, which is the axis of easy magnetization of iron, is highly aligned with the rolling direction of the steel sheet.
  • Such a texture is called the Goss orientation (1 1 0 ⁇ ⁇ 0 0 1> orientation, especially during finish annealing during the production process of grain-oriented electrical steel sheets.
  • It is formed through secondary recrystallization, which preferentially grows the crystal grains. Therefore, the crystal orientation of secondary recrystallized grains has a great influence on the magnetic properties of grain-oriented electrical steel sheets.
  • Conventionally, such grain-oriented electrical steel sheets are manufactured by the following processes. The S i 4.
  • This method is completely different in technical idea from the conventional method for producing grain-oriented electrical steel sheets.
  • secondary recrystallization was expressed using precipitates (inhibitors) such as Mn S, MnSe, and A1 N.
  • the inhibitorless method does not use these inhibitors, but rather increases the purity to reduce the resistance to grain boundary migration, thereby reducing the inherent grain boundary migration speed that depends on the structure of high energy grain boundaries. It is a technology that reveals the difference (Texture Inhibition effect) and develops secondary recrystallization.
  • This inhibitorless method does not require high-temperature slab heating or high-temperature and long-time finish annealing (that is, it eliminates the burden associated with the purification of the inhibitor), enabling the production of grain-oriented electrical steel sheets at a low cost. It became. Disclosure of the invention
  • An object of the present invention is to advantageously solve the above-described problem, and to propose a grain-oriented electrical steel sheet capable of stably obtaining excellent magnetic characteristics over the entire coil length and a method for manufacturing the grain-oriented electrical steel sheet.
  • the inventors have conducted extensive research to elucidate the cause of the difficulty in obtaining uniform magnetic characteristics over the entire length of the coil in the inhibitorless method.
  • the inhibitorless method is a technique for developing secondary recrystallization by the inherent difference in grain boundary movement speed due to the structure of high energy grain boundaries. It is desirable that the crystal grain size is uniform.
  • the inhibitorless component system does not use powerful inhibitors such as Mn S, MnSe, and A1 N, and by purifying the precipitates and elements that hinder grain boundary migration during secondary recrystallization. Reduced. However, this does not usually have the influence of acting as an inhibitor, and it affects the primary recrystallization of a small amount of precipitates (precipitated in the hot rolling process, etc.) caused by unavoidable impurities in the steel. This is considered to be a result of increasing the contrast.
  • Precipitates of the trace impurities are compositely precipitated using Ca or Mg or an oxide containing both of these components as a nucleus.
  • oxides that do not contain Ca and Mg hardly function as precipitation nuclei.
  • materials with a large number of oxides containing Ca, Mg, or both of these components have stable magnetic properties in the coil. Difficult to get
  • the present invention is based on the above findings. That is, the gist configuration of the present invention is as follows.
  • a grain-oriented electrical steel sheet manufactured by the inhibitorless method and in mass%, Si: 2.0% or more, 4.5% or less,
  • Mn 0.01% or more, 0.5% or less
  • oxide containing Ca and Z or Mg with a diameter of 1 to 3 ⁇ , unit area in transverse cross-section to rolling derection: 400 per 1 cm 2
  • the following is a grain-oriented electrical steel sheet with excellent magnetic properties.
  • the balance is preferably Fe and inevitable impurities.
  • oxides containing Ca and / or Mg A grain-oriented electrical steel sheet having a diameter of 1 to 3 and having a unit area of 400 or less per 1 cm 2 in a cross section perpendicular to the rolling direction.
  • oxides containing Ca and Pino or Mg those having a diameter of 1 to 3 ⁇ have a unit area of 150 or less per 1 cm 2 in a cross section perpendicular to the rolling direction.
  • the grain-oriented electrical steel sheet having excellent magnetic properties according to any one of (1) to (3), wherein the composition contains one or more selected from among the above.
  • the cold-rolled steel sheet is subjected to primary recrystallization annealing and secondary recrystallization annealing, and among the oxides containing Ca and Z or Mg in the hot-rolled steel sheet, those having a diameter of 1 to 3 m.
  • FIG. 1 is a diagram showing an example of the distribution of areal density by particle size of an oxide containing Ca and / or Mg.
  • Figure 2 shows the oxides contained in steel, oxides that do not contain Ca and Mg (a), and oxides that contain Ca and Mg (b).
  • Fig. 3 is a diagram schematically showing a cross section in the direction perpendicular to the rolling direction of a steel plate or the like.
  • Ca and Mg are useful as a slag adjusting agent in the refinement process, and at least one of them is contained as one of the main components of the slag. It is considered that the inclusions that cause actual damage are caused by the molten steel entraining the slag and the deoxidation product generated from the slag as a nucleus and compounded with the entrained slag.
  • (1) is the main component Ca or M g of slag or oxide containing both of (hereinafter, an oxide containing Ca and / or Mg), the diameter of 1 ⁇ 3 / ⁇ ⁇ size If there are more than 400 units per cm 2 in the cross section in the direction perpendicular to the rolling, complex precipitation of impurities will occur on the oxide through hot rolling and subsequent annealing. ,
  • the primary recrystallization structure before finish annealing becomes inhomogeneous in the coil and further affects the uniformity of the secondary recrystallization texture. Difficult to obtain magnetic properties,
  • the inclusions in question could be effectively reduced.
  • the basicity of the slag here, Ca 2 O 3 / SiO 2 : mass ratio
  • the T / D (tundish) flux is also highly basic (by doing so, the increase of inclusions due to reoxidation could be suppressed.
  • the diameter range of oxides for which the number of units per 1 cm 2 is limited to 400 or less is 1 to 3 ⁇ m. The reason for this will be described below.
  • the oxide particle diameter is determined by observing the oxide with a scanning electron microscope (SEM), and for oxides with a spherical shape or aspect ratio of 2 or less, The length of the diagonal dimension was taken as the particle size, and for those with an aspect ratio exceeding 2, the long side was found as the particle size.
  • the number of oxides with a grain size is measured from a hot-rolled sheet based on different steel plates, measuring a 1 cm 2 field of view including the total thickness in the thickness direction, and counting all oxides of 0.1 m or more. Asked.
  • the oxide is EDX (energy di spers ive X-ray analyzer).
  • the number of oxides of less than 1 / zm and more than 3 ⁇ m is relatively small compared to those of 1 to 3 m (1 to 3 by number ratio; about 1/3 or less of zm Therefore, no special management is required in the normal manufacturing method. That is, to control the effect of oxides containing Ca and Z or Mg, it is sufficient to control the particle size of 1 to 3 m.
  • the oxide distribution does not change in the plate width direction except at the edges.
  • Inclusions other than oxides containing Ca and / or Mg with a particle size of 1 to 3 im have little influence on the problem of variation in magnetic properties to be solved by the present invention. Therefore, there is no particular limitation as long as magnetic characteristics suitable for the intended purpose are achieved.
  • the total number of inclusions is preferably 2000 or less per 1 cm 2 , and more preferably 1000 or less. preferable.
  • the oxide contained in the steel contains Ca, oxides containing no Mg (a) (A1 2 0 3 principal) and Ca, oxide containing M g (b) were observed. Further, Ca, in the oxide containing M g, other oxides (Al 'Si' Fe oxide), nitride (TiN), sulfide (CuS, MnS) and the like are preferentially combined precipitation (Cu, Ti, etc. are present as impurities in steel without intentional addition). Here, the inevitable impurities that precipitate are mainly sulfides, and then 0 and N.
  • the material made that is, oxides containing Ca and / or Mg, with a diameter of 1 to 3 / xm, the unit area in the cross section perpendicular to the rolling direction: the number of materials per 1 cm 2 is 400 or less,
  • the fluctuation of the average grain size per 1 cm 2 in the cross-section along the rolling direction is i in the same coil at both the front and back surfaces, the coil rolling direction and the width direction.
  • the primary recrystallized structure which was very homogeneous as O.S / zm, was obtained.
  • An insulating coating was formed by applying a coating solution containing acid-colloidal shear force (including a solution containing colloidal solution such as colloid solution) to the steel sheet and baking at about 800 ° C.
  • the fluctuation value AW of the iron loss W 17/50 in the coil longitudinal direction of the grain-oriented electrical steel sheet thus obtained was 0.04 W / kg or less, and it was confirmed that uniform magnetic properties could be obtained over the entire coil length. .
  • the outer winding side is faster to heat and cool than the inner winding side.
  • the composition of the precipitate of impurities is considered to be substantially the same as the precipitate that is compositely deposited on the inclusion when the oxide inclusion containing Ca and / or Mg is present in the vicinity.
  • the main component is sulfide, and other oxides, nitrides, etc. exist alone or in combination. Therefore, in the present invention, among the inclusions contained in the steel sheet, particularly for oxides containing Ca and phosphorus or Mg having a diameter of 1 to 3 / xm, the unit area in the cross section perpendicular to the rolling direction is 1 The number per cm 2 was limited to 400 or less.
  • the number per unit area: 1 cm 2 or less should be ⁇ or less. This makes the effect more remarkable, and the variation is further reduced by about 30%.
  • the distribution of inclusions was confirmed on the hot-rolled sheet. By the way, oxides containing Ca and / or Mg having a diameter of 1 to 3 ⁇ m are not easily deformed or broken. Moreover, even if impurities are precipitated using the inclusions as nuclei, the amount of impurities themselves is small, so the influence on the dimensions can be almost ignored.
  • the comparatively light measurement time points are after hot-rolling or hot-rolled sheet annealing and after becoming a steel sheet product.
  • the oxide containing Ca and Pino or Mg examples include Ca0, Mg0, a composite oxide of both, and a composite oxide of these and alumina. Depending on the observation point in the process, a small amount of impurity deposits may adhere to the surface as shown in Fig. 2 (b).
  • the oxides containing Ca and Z or Mg in which the peak of Ca or Mg is observed in the EDX are used as an indication of the content. Therefore, it is considered that at least one of Ca and Mg should be present at about 0.1 lmass% or more.
  • Si is a useful element that improves iron loss by increasing electrical resistance. If the content is less than 2.0 ma SS %, a sufficient iron loss reduction effect cannot be expected, while if it exceeds 4.5%, cold rolling becomes extremely difficult, so the Si content is 2.0% or more. 4. Limited to 5% or less.
  • Mn 0.01% or more, 0.5% or less
  • Mn is a useful element that improves the hot workability, but if the content is less than that, the effect of addition is poor, while if it exceeds 0.5%, the primary recrystallization texture is reduced. Because it deteriorates and it becomes difficult to obtain secondary recrystallized grains highly accumulated in the Goss orientation, Mn is limited to the range of 0.01% or more and 0.5% or less. Since the present invention is a grain-oriented electrical steel sheet produced by an inhibitorless method, it is preferable to reduce the inhibitor-forming elements such as A1, S, Se, and B as much as possible. Particularly suitable ranges for the components of the steel slab are as follows (both are based on mass ) 0
  • the more preferable contents of each are A1: 50 ppm or less, S: 30 ppm or less, Se: 30 ppm or less. These may be zero 0/0.
  • S, Se, and B in the steel sheet decrease, but when analyzed including the forsterite film that is normally formed when a magnesia-based annealing separator is applied, S (in the steel sheet) Se is 30 ppm or less, and B is 2 P pm or less. A1 also decreases to 50ppm or less. Residual amounts of S and B in the railway are S: 20 ppm or less and B: 1 ppm or less, respectively. N should be 50 ppm or less in the steel slab in order to prevent its action as an inhibitor and to prevent the formation of Si nitride after purification annealing.
  • O which may be an inhibitor-forming element
  • N is 50ppm or less even on product plates. Also, in the steel plate of the product plate, all will be 20ppm or less.
  • C is 0.01 to 0 ⁇ 10 mass of steel slab as required. /. Contained, after decarburization annealing, etc., the product plate should be 5 Oppm or less (may be 0%). By doing so, it is possible to prevent the grain growth from being suppressed by finish annealing while suppressing the coarsening of the crystal grain size until hot rolling.
  • the essential component and the inhibitory component have been described, but in the present invention, one or more of the following elements may be appropriately contained. Ni: 0.005 to 1.50%
  • Ni works to improve magnetic properties by increasing the uniformity of the hot-rolled sheet structure. However, if the content is less than 0.005%, the effect of addition is poor. On the other hand, if it exceeds 50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so Ni is 0.005- 1. It is desirable to make it contain in 50% of range.
  • Sn 0.01 to 0.50%
  • Sb 0.005 to 0.50%
  • Cu 0.01 to 0.50%
  • Mo 0.01 to 0.50%
  • P 0.0050 to 0. 50%
  • Cr One or more selected from 0.01 to 1.50%
  • Sn, Sb, and Cu are elements that may be regarded as auxiliary inhibitors, and inclusion above the upper limit is not preferable.
  • the balance is preferably made of steel, impurities other than those mentioned above, especially inevitable impurities.
  • the inhibitor-less method reduces grain boundary migration by reducing inhibitor formation elements and other impurity elements (high purity) and reducing the suppression of grain boundary migration during secondary recrystallization annealing. This is a method to increase the Goss direction accumulation due to the speed difference.
  • the inhibitor component sol. Al is reduced to less than lOOppm, S, Se, 0, N is reduced to 50 ppm or less, preferably B is reduced to less than 5 ppm, and low temperature slab heating (1300 ° C).
  • the following is a method for producing grain-oriented electrical steel sheets, in which hot-rolled sheets are obtained by hot rolling in the following or by directly forming thin slabs, followed by cold rolling, primary recrystallization annealing, and secondary recrystallization annealing. It is.
  • Steel slabs are manufactured by the usual ingot-making method or continuous forging method.
  • thin strips thin slabs with a thickness of 100 mm or less may be directly manufactured using the direct fabrication method.
  • oxides containing Ca and Z or Mg are reduced as much as possible with reference to a conventionally known method for reducing inclusions.
  • the basicity of the covered slag is effective to set the basicity of the covered slag to 0.8 or more and the TZD flux basicity to 1.0 or more, preferably 5 or more, after the molten steel discharged from the converter, electric furnace, etc. . It is also conceivable to dismiss the tundish.
  • the main component of the slag, Si, an oxide containing Ca and Z or M g, basicity of the slag is calculated at a weight ratio of CaOZ Si0 2.
  • T / D flux usually Ca0, other containing Si0 2, there also contain either more A1 2 0 3, without low such FeO and also.
  • Basicity may be similarly calculated by Ca0 / Si0 2.
  • the slab heating temperature before hot rolling is particularly desirable to reduce the slab heating temperature before hot rolling to 1250 ° C or less in order to reduce the amount of scale generated during hot rolling. It is also desirable to lower the slab heating temperature in order to make the crystal structure finer and to make the inhibitor-forming elements mixed in harmless.
  • a preferred lower limit for the slab heating temperature is 1050 ° C.
  • the hot-rolled sheet after hot rolling is then subjected to hot-rolled sheet annealing as necessary to improve the goth structure (structure accumulated in the goth direction) in the product plate (usually box annealing of the coil). At this time, it is preferable that the annealing temperature is about 800 ° C. to 1100 ° C. in order to develop the goth structure on the product plate.
  • the annealing temperature of the hot-rolled sheet is less than 800 ° C, the effect of eliminating the panda structure will be insufficient.On the other hand, if the annealing temperature exceeds 1100 ° C, the mixed inhibitor-forming elements will be adversely affected. The particle size becomes coarse. In any of these cases, the Goss organization improvement effect is hardly exhibited as expected.
  • the hot-rolled sheet annealing it is subjected to one cold rolling or two or more cold rollings sandwiching the intermediate annealing to obtain a final cold-rolled sheet, followed by primary recrystallization annealing.
  • decarburization annealing can be used in combination with primary recrystallization annealing or independently, and the amount of C in steel can be reduced to 50 ppm or less, preferably 30 ppm or less without magnetic aging. preferable.
  • the rolling temperature should be raised to 100 to 300 ° C, and aging treatment should be performed once or multiple times in the range of 100 to 300 ° C during the cold rolling. Is effective in further developing gothic tissue.
  • This primary recrystallization annealing is preferably performed in a range of 700 to 1000 ° C. using a humid atmosphere because it can also be used for decarburization.
  • a technique for increasing the Si content by a siliconization method may be applied.
  • an annealing separator is applied to the surface of the steel sheet, and it is applied to the coil and subjected to finish annealing, thereby developing a secondary recrystallized structure and forming a forsterite film as necessary.
  • an insulating film can be further formed thereon.
  • the annealing for secondary recrystallization is preferably performed at 800 to 900.
  • heat treatment for film formation or the like may be added continuously (the whole is called finish annealing). Separately, heat treatment may be performed to form a film. Any conventionally known separators such as magnesia and alumina-silicic force are suitable as the annealing separator.
  • the type of insulating coating is not particularly limited, and any conventionally known insulating coating such as phosphate-based or boric acid compound-based materials can be used.
  • the steel sheet of the present invention has less fluctuation in the magnetic properties in the coil, it is desirable to finish anneal with a coil having a weight of 5 tons or more, more preferably 10 tons or more in consideration of economy.
  • compositions are based on mass unless otherwise specified.
  • the present invention is not limited to the following examples.
  • inclusions are controlled mainly by changing the waiting time before fabrication, but the present invention is not limited to such control means, and the waiting time is managed within a specific range. Is not a requirement.
  • the slag basicity was adjusted to 0.4 to 1.2 by adding CaO, and after degassing, C: 0.07%, Si: 3.5%, Mn: 0.07%, Sol: Al: 30 ppm, N: 25 ppm, S: lOppm, Se: 0.1 lppm, O: 10 ppm, Sb: 0.02%, Sn: 0.02%, Cu: up to 0.15%, inhibitor forming elements
  • the molten steel which is sufficiently reduced and the balance is composed of Fe and inevitable impurities, is kept for 20 to 45 minutes before continuous forging, low basicity (about 0.8), high basicity (about 1 0, approx.1.5) 3 types of TZD flux
  • the steel slab subjected to the heating was heated to 1150 ° C and hot rolled to obtain a hot rolled sheet having a sheet thickness of 2.0 dragons.
  • the iron loss (W 17/5) , that is, the iron when excited at 50 Hz and 1.7 T, using a continuous iron loss measuring device. Loss) was measured, and the difference between the maximum and minimum iron loss was evaluated as.
  • the main component of the oxide was A1 oxide generated during A1 deoxidation, but as is clear from Table 1, regardless of the total number of inclusions. It can be seen that by reducing the number of oxides containing Ca and / or Mg having a diameter of 13 / Xm to 400 or less, the value of is reduced. In particular, the effect was remarkable when the number of oxides containing Ca and / or Mg having a diameter of 1 3 111 was set to 150 or less.
  • a coating solution containing phosphorus salt monomudate-colloidal sill force in a mass ratio of 3: 1: 2 was applied and baked at 800 ° C. to form an insulating film.
  • a steel piece was cut out from the center of the width of the coil end (longitudinal direction), the film was removed by pickling, and then rolled as in Example 1. was observed in a section perpendicular to 1 cm 2 of the field of view (sum of a plurality samples), and size and composition and type of inclusions found in the entire visual field, the total number, further and / or oxide containing M g ( The number of 1 to 3 ⁇ ) diameters was measured.
  • the iron loss (W 17/50 ) was continuously measured over the entire length of the obtained coil (weight 8-9 tons), and the difference between the maximum value and the minimum value of the iron loss was evaluated.
  • the inhibitor-forming elements are sufficiently reduced, and the balance is composed of the components listed in Table 3, Fe and inevitable impurities. Composition. Furthermore, after waiting for 25 to 48 minutes before continuous forging, the steel slab that has been forged to 1100 to 1150 ° C using high basicity (basicity of 5 or more) T / D flux After heating, it was hot rolled to obtain a hot rolled sheet with a thickness of 1.8 mm.
  • the cleanliness of the steel sheet thus obtained was investigated by the same method as in Example 1.
  • the total number of inclusions was 1000 / cm 2 or less.
  • the iron loss (W 17/5 ) is continuously measured over the entire length of the obtained coil (weight approximately 7 tons), the average value is calculated, and the maximum and minimum values of the iron loss are calculated. The difference was evaluated as. In some samples, six locations were cut out of the coil every 500 m and the magnetic flux density B 8 (value at a magnetizing force of 800 A / m) was also measured.
  • the number of oxides containing Ca and / or Mg with a diameter of 1 to 3 / zm is reduced to 400 or less, which is related to the level of iron loss. It can be seen that the AW value can be set to 0.07 W / kg or less, and the variation is reduced. As a result, in any steel grade, the portion of the coil that deviates from the grade (set in steps of approximately 0.1 lW / kg) can be greatly reduced, and the load such as coil split can be significantly reduced.
  • the AW value is 0.02 W / kg or less. The effect was even more remarkable.
  • N o. Mean values of B 8 in 1 1.892T in Comparative Example, Ca / Mg inclusions 400 or less in 1.889T, the 150 following ⁇ .894 ⁇ next, the variation width ⁇ 3 8 8 8 In the comparative example, 0.022T, Ca / Mg inclusion 400 or less, 0. OUT, and 150 or less, 0.005T. That is, the variation reduction effect according to the present invention was also observed in the magnetic flux density.
  • a grain-oriented electrical steel sheet that can be manufactured at low cost by the inhibitorless method, by controlling the precipitation form of a specific oxide contained in the steel sheet, stable magnetic properties can be achieved over the entire length of the coil. Characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

インヒビターレス法で製造した方向性電磁鋼板であり、質量%で、Si:2.0%以上、4.5%以下、Mn:0.01%以上、0.5%以下を含有する組成とすると共に、Caおよび/またはMgを含む酸化物のうち、直径が1~3μmの大きさのものの圧延直角方向断面における単位面積:1cm2当たりの個数を400個以下とすることにより、コイル全長にわたって安定して優れた磁気特性を有する方向性電磁鋼板を提供する。

Description

明 細 書 方向性電磁鋼板おょぴその製造方法 ― 技術分野
本発明は、安定した磁気特性が得られる方向性電磁鋼板(grain - orinented el ectrical steel sheet) およびその製造手段に関するものである。 背景技術
方向性電磁鋼板は、 トランスなどの鉄心に主に使用される材料である。近 年、かかる鉄心の省エネルギー化に対する要求が高まっている。それに伴い、 鉄心の素材である方向性電磁鋼板についても、 より優れた磁気特性、すなわ ち低鉄損で、 かつ高磁束密度であることが求められている。
方向性電磁鋼板は、 鉄の磁化容易軸 (axis of easy magnetization) であ る < 0 0 1 >方位が、鋼板の圧延方向に高度に揃った結晶組織を有するもの である。 このような集合組織は、 方向性電磁鋼板の製造工程中、 とくに仕上 焼鈍 (finish anneal ing) の際に、 いわゆるゴス方位 (Goss方位) と称され る { 1 1 0 } < 0 0 1 >方位の結晶粒を優先的に巨大成長させる、 二次再結 晶 ( secondary recrystal lizaion) を通じて形成される。 従って、 二次再結 晶粒の結晶方位が方向性電磁鋼板の磁気特性に大きな影響を及ぼす。 従来、 かような方向性電磁鋼板は、 下記の工程で製造される。 S iを 4. 5質 量0 /0程度以下含有し、 さらに Mn S , MnSe, A1 N , B Nなどのィンヒビター(良 好な二次再結晶を発現させるために、一次再結晶再結晶粒の粗大化を抑制す る微細な析出物。 二次再結晶過程においては、析出物自身が粗大化するなど して粒界のピンニング効果が弱まり、 二次再結晶が癸現する。) を形成する 元素を含有する鋼スラブを、 1300°C以上に加熱後、 熱間圧延し、 必要に応じ て熱延板焼鈍を施す。 その後、 1回または中間焼鈍を挾む 2回以上の冷間圧 延によって最終板厚とし、ついで湿潤水素雰囲気で一次再結晶焼鈍(primary 5 022232
2
recrystal l izaion) することにより、 一次再結晶およぴ脱炭を行う。 さらに マグネシァを主剤とする焼鈍分離剤を塗布してから、二次再結晶おょぴイン ヒビター形成元素の純化のために 1200°Cで 5時間程度の仕上焼鈍を施すこ とにより製造されてきた(例えば、 米国特許第 1965559号公報、 特公昭 40— 15644号公報、 特公昭 51— 13469号公報など)。
しかしながら、 このような方向性電磁鋼板の製造工程では、高温のスラブ 加熱おょぴ高温 '長時間の仕上焼鈍が不可欠であるため、その製造コストは 極めて高いものになる。 この点、 出願人会社は、 先に、 上記の問題を解決するものとして、 インヒ ビター形成元素を含有させなく とも二次再結晶を発現させることができる 方法、 いわゆるインヒビターレス法 ( a method for promoting secondary recrystal l ization without an inhibitor) を開発した (例えば、 特開 2000 一 129356号公報)。
この方法は、従来の方向性電磁鋼板の製造方法とは、技術思想を全く異に するものである。 すなわち、 従来の方法では、 Mn S、 MnSe、 A1 Nなど析出物 (インヒ ビター) を利用して、 二次再結晶を発現させていた。 これに対し、 インヒビターレス法では、 これらのインヒビターを用いず、むしろ高純度化 して粒界移動への抵抗を低減することにより、高エネルギー粒界の構造に依 存する本来的な粒界移動速度差を顕在化させ (Texture Inhibitio n効果)、 二次再結晶を発現させる技術である。 このイ ンヒビターレス法では、高温の スラブ加熱や高温長時間の仕上焼鈍が不要である(すなわちィンヒビターの 純化に伴う負担が不要となる) ため、低コス トでの方向性電磁鋼板の製造が 可能となった。 発明の開示
〔発明が解決しようとする課題〕
しかしながら、ィンヒビターレス法の開発を進める過程で、 スラブ中にィ ンヒビター形成元素を含有させずに製造された方向性電磁鋼板の磁気特性 が製造条件の変化に敏感であり、例えば 1 コイル内の条件変動でも鉄損値な ど磁気特性の変化が比較的大きくなるという現象が、未解決の問題として浮 上した。
本発明は、 上記の問題を有利に解決するもので、 コイル全長にわたって安 定して優れた磁気特性を得ることができる方向性電磁鋼板およびその製造 方法を提案することを目的とする。
〔課題を解決するための手段〕
さて、 発明者らは、 インヒ ビターレス法においては、 何故、 コイル全長に わたって均一な磁気特性が得難いの力 その原因を解明すべく鋭意研究を進 めた。
その結果、コイル内で磁気特性にパラツキが見られた方向性電磁鋼板では、 一次再結晶組織がすでにコイル内で不均一となつており、これが二次再結晶 挙動に影響していることが判明した。 すなわち、 インヒビターレス法は、 高 エネルギー粒界の構造に起因する本来的な粒界移動速度差によつて二次再 結晶を発現させる技術であるため、二次再結晶前の組織、すなわち一次再結 晶の粒径が均一であることが望ましい。
また、一次再結晶組織の不均一の原因として、不純物の不均一な析出状態 が影響していることが推測された。すなわち、ィンヒビターレス成分系では、 Mn S , MnSe, A1 Nのような強力なインヒビターを利用せず、 また高純度化に より、二次再結晶時の粒界移動を妨げる析出物や元素を低減している。 しか しこれがかえって、通常はインヒビターとして作用する程の影響力を持たな い、鋼中の不可避的な不純物に起因する微量の析出物 (熱延工程等において 析出する)の一次再結晶への影響を相对的に高める結果となるものと考えら れる。 この不純物起因の析出物は、量そのものは少ないために不均一な分布 となり易く、その影響を受けて、一次再結晶後に表裏面の粒径が異なったり、 長手方向 (圧延方向) でも粒径の差が生じたり し、 その結果コイル內で不均 一な一次再結晶組織が形成されるものと考えられる。 上記の問題を解決するには、極微量であっても、 これらの析出物をコイル 内に均一に分散させることが重要と考えられる。
そこで、製鋼介在物といった析出時の核となる物質が存在すると、 その周 りに優先的に析出が生じる結果、該介在物周辺に前記不純物の欠乏領域が生 じ、 析出物のコイル内不均一が生じると考え、 介在物形態と析出との関係、 またコイル内特性の変動の関係について検討を行った。
その結果、
a ) 前記微量不純物の析出物は、 Caまたは Mg、 あるいはこれら両成分を含 む酸化物を核として複合析出している、
b ) また、 Ca, Mgを含まない酸化物はほとんど析出核として機能しない、 c ) さらに、 Caまたは Mg、 あるいはこれら両成分を含む酸化物数の多い素 材ではコイル内で安定した磁気特性を得ることが困難である
ことの知見を得た。
本発明は、 上記の知見に立脚するものである。 すなわち、 本発明の要旨構成は次のとおりである。
( 1 ) インヒ ビターレス法で製造した方向性電磁鋼板であって、 質量%で、 Si : 2.0%以上、 4.5%以下、
Mn : 0.01%以上、 0.5%以下
を含有し、 Caおよび Zまたは Mgを含む酸化物のうち、 直径が 1〜 3 μηιの の 0 、 ϋ延直角方 断面 ( transverse cross-section to rolling derection) における単位面積: 1 c m 2当たり 400個以下である、 磁気特性 に優れた方向性電磁鋼板。
上記鋼板の組成において、残部は Feおよび不可避的不純物であることが好 ましい。
( 2 ) フオルステライ ト質被膜を有する方向性電磁鋼板であって、
質量0 /0で、 Si : 2.0%以上、 4.5%以下、 Mn : 0.01%以上、 0.5%以下を 含有し、 該フオルステライ ト質被膜を含む鋼板中の不純物が A1: 50 ppm 以下、 Se: 30 ppm以下、 N : 50 ppm以下、 および B : 2 ppm以下に低減され、 かつ地鉄中の Oが 20 ppm以下に低減され、 Caおよび/ /または Mgを含む酸化物 のうち、 直径が 1〜 3 わのものが、 圧延直角方向断面における単位面積: 1 c m2当たり 400個以下であることを特徴.とする、 方向性電磁鋼板。
( 3 ) 前記 Caおよぴノまたは Mgを含む酸化物のうち、 直径が 1〜 3 μπιのも のが、 圧延直角方向断面における単位面積: 1 c m2当たり 150個以下であ る、 上記 (1 ) または (2) に記載の磁気特性に優れた方向性電磁鋼板。
(4) 鋼板が、 さらに質量%で、
Ni ·· 0.005—1.50% Sn: 0.01〜0.50%、
Sb: 0.005~0.50% Cu: 0.01〜0.50%、
Mo: 0.01〜0.50%、 P : 0.0050〜0.50%および
Cr: 0.01~1.50%
のうちから選んだ 1種または 2種以上を含有する組成になる、 上記 ( 1 ) 〜 (3 ) のいずれかに記載の磁気特性に優れた方向性電磁鋼板。
( 5 ) 質量0 /0で、 Si : 2.0%以上、 4.5%以下、 Mn : 0.01%以上、 0.5%以下 を含有し、 かつ、 A1 : lOOppm未満、 S、 Se、 O 'および N :各 50ppm以下に抑 制し、 好ましくはさ らに Bを 5 ppm未満に抑制した組成である鋼スラブを熱 間圧延して熱延鋼板とし、該熱延鋼板を冷間圧延して冷延鋼板とし、該冷延 鋼板に一次再結晶焼鈍おょぴ二次再結晶焼鈍を施すととも.に、前記熱延鋼板 における Caおよび Zまたは Mgを含む酸化物のうち、直径が 1〜 3 mのもの を、 圧延直角方向断面における単位面積: 1 c m2当たり 400個以下に制御 する、 磁気特性に優れた方向性電磁鋼板の製造方法。
上記 (5 ) においても、 前記熱延鋼板において、 前記 Caおよび/または Mg を含む酸化物のうち、 直径が l〜 3 /z mの大きさのものを、圧延直角方向断 面における単位面積 : 1 c m2当たり 150個以下とすることが好ましい。 図面の簡単な説明
図 1は、 Caおよび/または Mgを含む酸化物の、 粒径別の面密度の分布の、 一例を示した図である。
図 2は、 鋼中に含まれる酸化物中、 Ca, Mgを含まない酸化物(a)と Ca, Mg を含む酸化物(b)とを示した図である。
図 3は、 鋼板等の圧延直角方向断面を模式的に示した図である。 発明を実施するための最良の形態
以下、 本発明を具体的に説明する。 ' く介在物 >
本発明において、 Caおよび Mgは、精鍊工程におけるスラグの調整剤として 有用であり、該スラグの主成分の一つとして、すくなく ともいずれかは含有 される。 実害が生じる介在物の生成は、 溶鋼が該スラグを巻き込むことと、 それを核として脱酸生成物が生成され巻き込みスラグと複合化することに より生じていると考えられる。
そこで、 かかる介在物の析出形態について調査を行った。
その結果、
( 1) スラグの主成分である Caまたは Mg、あるいはその両方を含む酸化物(以 下、 Caおよび/ または Mgを含む酸化物という) のうち、 直径が 1〜3 /ζ πιの 大きさのものが、 圧延直角方向断面における単位面積: 1 c m 2当たり 400 個を超えて存在すると、 熱間圧延工程や後工程の焼鈍を経ることによって、 該酸化物上に不純物の複合析出が生じること、
(2) 一方で母材中の該不純物の析出物は該酸化物の周辺などで部分的に 欠乏し、 不均一化すること、
(3) その結果、 仕上焼鈍前の一次再結晶組織が、 コイル内で不均質とな り、 さらに二次再結晶集合組織の均一性に影響するため、 コイル全長にわた つて安定的して良好な磁気特性を得ることが困難となること、
が究明された。 そこで、次に、上記したような Caおよび/または Mgを含む酸化物を効果的 に低減する方法について検討した。
その結果、 スラグ卷き込みによる酸化物の増加に対しては、巻き込んだス ラグの浮上に必要な時間を十分にとることと、スラグからの再酸化を防止す ることによって対応できることが判明した。
例えば、 鍀造前に 30分以上の待機時間 (精鍊終了後、 連続鎵造開始までの 時間) をとることによって、 問題となる介在物を効果的に低減することがで きた。 また、 同時に、 スラグへの Ca O添加により、 スラグ塩基度 (ここでは Ca O / Si02: 質量比) を 0. 8以上とし、 T / D (タンディッシュ) フラック スについても高塩基度化 (1. 0以上) することで、 再酸化による介在物の増 加を抑えることができた。 なお、 Caおよびノまたは Mgを含む酸化物について、圧延直角方向断面にお ける単位面積: 1 c m 2当たりの個数を 400個以下に制限する対象となる酸 化物の直径範囲を 1〜 3 μ mとした理由を以下に述べる。
図 1は、 C : 0. 03 %、 Si: 3. 3 %、 Mn: 0. 05 %、 sol. A1: 40ppm、 N : 20ppm、 S : 15Ppm、 (いずれも質量基準) その他ィンヒ ビター形成元素を含まない方 向性電磁鋼板素材を熟間圧延した後の、圧延直角方向断面における、 Caおよ ぴ /または Mgを含む酸化物を調査したものである。 ここで、横軸は該酸化物 を粒径でクラス分けしたもので、縦軸は各クラス毎の、該酸化物の面密度(個 _ c m 2 )である。 なお、 圧延直角方向断面は、 図 3に陰影部で模式的に示 すように、 圧延方向 (矢印) を横切る断面である。 また、 ここで酸化物の粒 径 (直径) は、 S E M ( scanning electron microscope) にて酸ィ匕物を観察 し、球形あるいはァスぺク ト比が 2以下の酸化物については当該粒断面の対 角寸法の長さを粒径とし、 ァスぺク ト比が 2を超えるものについては、 その 長辺を粒径として求めた。 粒径の酸化物の個数は、異なる出鋼に基づく熱 延板 1 0枚から各々板厚方向の全厚を含む 1 c m 2の視野を測定し、 0 . 1 m以上の酸化物を全て数えて求めた。酸化物は E D X ( energy di spers ive X-ray analyzer) により同定した。 図 1に示すとおり、 1 /z m未満や 3 μ m超の酸化物の個数は 1〜 3 mの ものに比べると相対的に相当少ない (個数比で 1〜 3 ;z mの約 1/3以下) た め、 通常の製造方法において管理をとくに必要としない。 すなわち、 Caおよ ぴ Zまたは Mgを含む酸化物の影響を管理するには、粒径が 1〜 3 mの大き さのものを制御すれば十分である。
なお、 酸化物の分布は端部を除き、 板幅方向でとくに変化はない。 これは 冷延鋼板でも同様である。 なお、 粒径が 1 ~ 3 i mの Caおよび/または Mgを含む酸化物以外の介在物 は、本発明が解決しよう とする磁気特性のばらつきの問題にはほとんど影響 しない。したがって、使用目的に適した磁気特性が達成される限りにおいて、 とくに限定する必要はない。含有する Siに見合った鉄損を確保したいのであ れば、 介在物 (粒径 1 VL m以上) の総数は 1 c m 2当たり 2000個以下とする ことが好ましく、 1000個以下とすることがさらに好ましい。 以下、 Caおよび Zまたは Mgを含む酸化物上記介在物の影響についその調查 実験の結果を示す。 ぐ実験 >
C: 0. 02 %、 Si: 3. 0%、 Mn: 0. 2%、 sol . A1: 5 ppm、 N: 30ppm、 S : 10ppm、 (いずれも質量基準) とし、 その他のインヒ ビター成分を不純物レベルに低 減した溶鋼について、 種々の錡造前待機を実施して、 介在物を浮上させ、 清 浄度を変化させたのち、 鐃造を行った。 ついで、 得られたスラブを、 スラブ 加熱後、 熱間圧延した。
かく して得られた熱延板の端部を切り出し、その断 ¾を E D Xを備えた S E Mによって観察した。
その結果、 図 2 (a) , (b)に例示するように、 鋼中に含まれる酸化物には、 Ca, Mgを含まない酸化物(a) (A1203主体) と Ca, Mgを含む酸化物(b)が観察 された。また、 Ca, Mgを含む酸化物には、その他の酸化物(Al ' Si ' Fe酸化物)、 窒化物(TiN)、 硫化物(CuS、 MnS)等が優先的に複合析出していることが明ら かとなつた (Cu、 Ti等は意図的に添加せずとも不純物として微量が鋼中に存 在する)。 ここで、 析出する不可避的不純物は、 主に硫化物であり、 次いで 0、 Nである。
他方、 Ca, Mgを含まない酸化物 (例えば A1203系介在物、 SiO系介在物等) には不純物の複合析出はあまり見られなかった。 ついで、 熱延板焼鈍後、 1回の冷間圧延で最終冷延板としたのち、 一次再 結晶焼鈍を施したが、 その際、 製鋼段階で Caあるいは Mgを含む酸化物の低減 が十分になされた素材、 すなわち Caおよび または Mgを含む酸化物のうち、 直径が 1〜3 /x mの大きさのものの圧延直角方向断面における単位面積: 1 c m 2当たりの個数が 400個以下の素材では、 一次再結晶焼鈍後に、 同一コ ィル内で、 表裏面やコイル圧延方向およぴ幅方向いずれの位置においても、 圧延方向に沿った断面 : 1 c m 2当たりの平均結晶粒径の変動が i O. S /z mと 極めて均質な一次再結晶組織が得られていた。
ついで、 鋼板の表面に焼鈍分離剤を塗布し、 仕上焼鈍を行ったのち、 特開 昭 50— 79442号公報や特開昭 48—39338号公報に記載されている、リン酸塩— ク口ム酸ーコロイダルシリ力を含有する塗布液(solution :コロイ ド溶液等、 分散質を含有する場合も含めるものとする) を鋼板に塗布し、 800°C程度で 焼き付けて、 絶縁被膜を形成した。
かく して得られた方向性電磁鋼板のコィル長手方向における鉄損 W 17/50 の変動値 A Wは 0. 04W/kg以下であり、コイル全長にわたって均一な磁気特性 が得られることが確認された。
すなわち、 Caおよぴノまたは Mgを含む酸化物系介在物(直径が 1〜 3 /X m ) の低減により、不純物の析出物の欠乏域が減少し、該析出物の分布の均一性 が向上したため、コイル内での熱履歴等の変動に対する磁気特性の変動が抑 制されたものと考えられる。 なお、 コイル内の熱履歴の変動要因としては、 例えば外巻き側の方が、内巻き側より加熱も冷却も早いことなどが挙げられ る。
なお、不純物の析出物の組成は、上記 Caおよび/または Mgを含む酸化物系 介在物が付近に存在する場合に該介在物上に複合析出する析出物と、実質的 に同じと考えられる。 具体的には、 硫化物を主体とし、 他に酸化物、 窒化物 等が単独または複合して存在すると考えられる。 従って、 本発明では、 鋼板中に含まれる介在物中、 特に Caおよびノまたは Mgを含む酸化物のうち直径が 1〜 3 /x mの大きさのものについて、 圧延直角 方向断面における単位面積: 1 c m 2当たりの個数を 400個以下に限定した のである。
より好ましぐは単位面積: 1 c m 2当たりの個数を ΙδΟ個以下にすること であり、 これにより、 その効果はより顕著なものとなり、 ばらつきはさらに 30 %程度低減される。 単位面積: 1 c m 2当たりの個数を 150個以下にする ためには、後述の酸化物低減策を強化すればよく、例えば鎳造前の待機時間 を 45分以上とすることが有効である。 なお、上記の例では介在物の分布は、熱延板において確認した。ところで、 Caおよび/または Mgを含む酸化物のうち直径が 1〜 3 μ mの大きさのものは 容易に変形や破断しない。 また、 不純物が該介在物を核として析出しても、 不純物の量自体は少ないため、寸法への影響はほぼ無視できる。したがって、 鎳造後から製品板に至るまで、該介在物の分布や寸法はあまり変らず、 どの 時点で該介在物を確認してもよい。 比較的負担の少ない測定時点は、熱延終 了後あるいは熱延板焼鈍終了後、 および鋼板製品となった後である。
なお、 Caおよぴノまたは Mgを含む酸化物としては、 Ca0、 Mg0、 両者の複合 酸化物、 およびこれらとアルミナの複合酸ィ'匕物が例示される。 また工程上の 観測時点によっては図 2 (b)のようにその表面に不純物の析出物が少量付着 していることもある。 また、前記 E D Xにおいて Caまたは Mgのピークが観察 されるものを Caおよび Zまたは Mgを含む酸化物としたが、含有量の目安とし ては Caおよび Mgの少なく ともいずれかが約 0. lmass %以上存在すればよいも のと考えられる。 なお、 上記知見を逆に応用して、 Caおよび/ ^または Mgを含む酸化物を 1 c m 2あたり 5000個以上とすることでも、 鉄損のばらつきを低減することが できる。 これは、 該酸化物 (介在物) 上に、 問題となる不可避的不純物の大 部分が複合析出し、母相が均質化されたことによると考えられる。 しかしな がら、 この方法では介在物の総数が増大するため、鉄損の絶対値を大幅に劣 化させてしまう。 したがって、 母相の均質化には、 該酸化物の低減による方 法が好ましい。 ぐ鋼組成 >
次に、本発明において、鋼板の成分組成を前記の範囲に限定した理由につ いて説明する。 なお、 成分に関する 「%」 表示は特に断らない限り質量%を 意味するものとする。
S i : 2. 0%以上、 4. 5 %以下
Siは、 電気抵抗を高めることによって鉄損を改善する有用な元素である。 含有量が 2. 0ma S S %に満たないと十分な鉄損低減効果が望めず、 一方 4. 5% を超えると冷間圧延が著しく困難になるため、 Si量は 2. 0%以上、 4. 5%以下 の範囲に限定した。
Mn : 0. 01 %以上、 0. 5 %以下
Mnは、熱間加工性を向上させる有用な元素であるが、含有量が未'満ではそ の添加効果に乏しく、 一方 0. 5 %を超えて含有した場合、 一次再結晶集合組 織が劣化し、 Goss方位に高度に集積した二次再結晶粒が得難くなるので、 Mn は 0. 01 %以上、 0. 5 %以下の範囲に限定した。 本発明は、 インヒビターレス法で製造される方向性電磁鋼板であるので、 A1や S, Se, B等のインヒ ビター形成元素は極力低減することが好ましい。 鋼スラブの成分として特に好適な範囲は次のとおりである(いずれも質量基 ) 0
Al 100 ppm未満、 S, Se: それぞれ 50ppm以下、 B ·· 5 ppm未満
Al , S , Se, Bが、 過剰に存在すると二次再結晶が困難となる。 この理由 は、 スラブ加熱によって粗大化した A1 N, Mn S , MnSe , B N等が一次再結晶 組織を不均一にするためである。従って、 インヒビターとして作用しないよ う、 A1は 100 ppm未満、 S , Seはそれぞれ 50 ppm以下、 Bは 5 ppm未満に抑制 することが好ましい。 各々のより好ましい含有量は、 A1 : 50ppm以下、 S : 30ppm以下、 Se: 30ppm以下である。 これらは零0 /0でもよい。
仕上焼鈍後、 鋼板中の S、 Se、 Bは減少するが、 マグネシア系錄鈍分離剤 を塗布した場合に通常形成されるフオルステライ ト被膜も含めて分析した 場合、製品板では S (鋼板中の Sに起因するもの)、 Seはそれぞれ 30ppm以下、 Bは 2 Ppm以下となる。 また、 A1も 50ppm以下まで低下する。 なお、 Sおよび Bの地鉄中の残留量はそれぞれ、 S : 20ppm以下および B: 1 ppm以下である。 なお、 Nについては、 インヒビターとしての作用を防止し、 また純化焼鈍 後に Si窒化物の生成を防止するために、 鋼スラブで 50ppm以下にすることが 望ましい。 また、 インヒ ビター形成元素とされることもある Oの量が 50 ρρπι を超えると、粗大な酸化物に起因して二次再結晶が困難になるので、鋼スラ ブで 50ppm以下とすることが望ましい。 これらは零%でもよい。 Nについて は製品板でも 50ppm以下となる。 また、 製品板の地鉄中ではいずれも 20ppm 以下となる。
なお、 Cは必要に応じ、 鋼スラブで 0. 01 ~ 0· 10質量。/。含有され、 脱炭焼鈍 等を経て、 製品板では5 Oppm以下 (零%でもよい) とする。 このよ うにする ことで、熱延までは結晶粒径の粗大化を抑制する一方、仕上焼鈍では粒成長 を抑制しないようにすることができる。 以上、 必須成分おょぴ抑制成分について説明したが、 この発明では、 その 他にも以下に述べる元素から 1種または 2種以上を適宜含有させることが できる。 Ni: 0. 005〜1. 50%
Niは、熱延板組織の均一性を高めることにより、磁気特性を改善する働き がある。 しかしながら、 含有量が 0. 005 %に満たないとその添加効果に乏し く、一方 1. 50%を超えると二次再結晶が不安定となり、磁気特性が劣化する ので、 Niは 0. 005〜1. 50%の範囲で含有させることが望ましい。
Sn : 0. 01〜0. 50 %、 Sb : 0. 005—0. 50%、Cu : 0. 01〜0. 50 %、 Mo; 0. 01〜0. 50%、 P : 0. 0050〜0. 50 %および Cr: 0. 01〜1. 50 %のうちから選んだ 1種または 2種以上
これらの元素はいずれも、鉄損の改善に有効に寄与するが、含有量が下限 値に満たないとその添加効果に乏しく、一方上限値を超えると二次再結晶粒 の発達が抑制されるため、それぞれ上記の範囲で含有させることが好ましい。 とくに、 Sn、Sb、Cuは補助ィンヒビターと見なされることもある元素であり、 上記の上限以上の含有は好ましくない。
残部については鉄おょぴ、 上記に述べた以外の不純物、 とくに不可避的不 純物とすることが好ましい。
<製造方法 >
次に、 本発明の方向性電磁鋼板の製造方法について説明する。
インヒビターレス法は、既に述べたように、インヒビター形成元素やその 他の不純物元素を低減して (高純度化)、 二次再結晶焼鈍における粒界移動 の抑制を低減することにより、粒界移動速度差によるゴス方位の集積を高め る方法である。
具体的には、 スラブ組成として、インヒビター成分である sol. Alを lOOppm 未満、 S、 Se、 0、 Nを 50ppm以下、好ましくは Bを 5 ppm未満にまで低減し、 低温スラブ加熱 (1300°C以下) での熱間圧延、 あるいは直接薄スラブへの鐯 造によって熱延板を得、その後冷間圧延、 一次再結晶焼鈍おょぴ二次再結晶 焼鈍を施す、 方向性電磁鋼板の製造方法である。
なお、 '以下に特記した以外の工程や条件については、 前述の特開 2000— 129356号公報等に準じればよい。 さらに、 従来のィンヒビターを用いる製造 方法も、 技術思想が類似する範囲 (例えば上塗り絶縁皮膜、 焼鈍分離剤等) において参考にすることができる。 まず、 上記の好適成分組成に調整した溶鋼を、 転炉、 電気炉などを用いる 公知の方法で精練し、 必要が有れば真空処理 (真空精鍊) などを施したのち
(精練の終了)、 通常の造塊法や連続鎵造法で鋼スラブを製造する。 また、 直接鎳造法を用いて 100mm以下の厚さの薄鍚片 (薄スラブ) を直接製造して もよい。
本発明では、上記の鋼スラブ製造に際し、従来から知られている介在物低 減方法を参考に、 Caおよび Zまたは Mgを含む酸化物を極力低減する。
まず、 スラグ巻き込みによる酸化物の増加に対しては、巻き込み自体の低 減を図ることはもちろん有効であるが、巻き込んだスラグの浮上による分離 を促すことも有効である。例えば錶造前に 30分以上、好ましくは 45分以上の 待機時間をとることが有効である。 また、 精鍊工程、 とくに真空精鍊におい て強撹拌あるいは長時間撹拌を加えて介在物を粗大化させ、浮上を容易とす ることも考えられる。 また、脱酸後の還流時間を長時間化することによって も同様の結果が期待される。
また、 スラグからの再酸化を防止することも有効である。 例えば、 転炉、 電気炉等から払い出された後の溶鋼を覆ぅスラグの塩基度を 0. 8以上、 T Z Dフラックス塩基度を 1. 0以上、好ましくは 5以上とすることが有効である。 また、 タンディッシュを断気することも考えられる。
なお、 上記スラグの主成分は、 Si、 Caおよび Zまたは Mgを含有する酸化物 であり、 上記のスラグの塩基度は、 CaOZ Si02の質量比で算出する。 また、 T / Dフラックスは通常は Ca0、 Si02を含有する他、 さらに A1203、 FeO等の少 なく ともいずれかを含有することもある。 塩基度は同様に Ca0/ Si02により 算出すればよい。 得られた鋼スラブは、 通常の方法で加熱して熱間圧延するが、 铸造後、 加 熱せずに直ちに熱延してもよい。 また、 薄铸片の場合には、 熱間圧延を行つ ても良いし、 熱間圧延を省略してそのまま以後の工程に供してもよい。 なお、 熱間圧延前のスラブ加熱温度は、 1250°C以下に抑えることが、 熱延 時に生成するスケール量を低減する上で特に望ましい。 また、結晶組織の微 細化および混入したィンヒビター形成元素を無害化する意味でもスラブ加 熱温度は低温化することが望ましい。 スラブ加熱温度の好ましい下限は 1050°Cである。 ついで、 熱間圧延後の熱延板に、 製品版におけるゴス組織 (ゴス方位に集 積した組織) の改善のため、 必要に応じ熱延板焼鈍を施す (通常、 コイルを 箱焼鈍)。 この際、 ゴス組織を製品板において高度に発達させるためには、 焼鈍温度は 800°C〜1100°C程度とすることが好適である。 熱延板焼鈍温度が 800°C未満では、 パン ド組織の解消効果が不充分となり.、 一方、 焼鈍温度が 1100°Cを超えると、混入したィンヒビター形成元素の悪影響が現われ、 また 焼鈍後の粒径が粗大化する。これらのいずれの場合もゴス組織改善効果が期 待通りに発揮されにくい。 上記の熱延板焼鈍後、 1回の冷間圧延、 または中間焼鈍を挟む 2回以上の 冷間圧延を施して、最終の冷延板としたのち、一次再結晶焼鈍を施す。また、 一次再結晶焼鈍と兼用して、 またはこれとは独立して脱炭焼鈍を施して、.鋼 中 C量'を磁気時効の起こらない 50ppm以下、好ましくは 30ppm以下まで低減す ることが好ましい。
なお、冷間圧延に際しては、圧延温度を 100~ 300°Cに上昇させて行うこと、 およぴ冷間圧延途中で 100〜300°Cの範囲で時効処理を 1回または複数回行 うことは、 ゴス組織をさらに発達させる上で有効である。
この一次再結晶焼鈍は、 湿潤雰囲気を使用して 700〜1000°Cの範囲で行う ことが脱炭処理も兼用でき好適である。 また、 この一次再結晶焼鈍後に、 浸 珪法により Si量を増加させる技術を適用してもよい。 ついで、鋼板の表面に焼鈍分離剤を適用してコイルに卷き、仕上焼鈍を施 すことにより、 二次再結晶組織を発達させると共に、必要に応じてフォルス テライ ト被膜を形成する。 さらに、 その上にさらに絶縁被膜を形成すること もできる。二次再結晶のための焼鈍は 800〜900でで行うことが好ましい。前 述のように被膜形成等を目的とした熱処理を継続して付加してもよい(全体 を仕上焼鈍と呼ぶ)。 また別途、 被膜形成のため熱処理を施してもよい。 焼鈍分離剤としては、 マグネシア系、 アルミナーシリ力系など、 従来から 公知のものいずれもが適合する。 また、 絶縁被膜の種類についても、 特に限 定されず、 リン酸塩系、 ホウ酸化合物系など、 従来公知の絶縁被膜いずれも が適合する。
本発明の鋼板はコイル内の磁気特性変動が少ないので、経済性を考慮して 重量 5 トン以上、より好ましくは 1 0 トン以上のコイルで仕上焼鈍する事が 望ましい。
〔実施例〕
以下の実施例において、特記ある場合を除き、組成は全て質量基準である。 また、 本発明は以下の実施例に限定されるものではない。 例えば、 以下の 例では主に鎵造前の待機時間を変化させて介在物を制御したが、本発明はそ のような制御手段に限定されず、また待機時間を特定の範囲に管理すること を必須とするものでもない。
<実施例 1 >
転炉出鋼時、 CaO添加によってスラグ塩基度を 0. 4〜1. 2に調整し、 脱ガス 処理後、 C : 0. 07%、 Si: 3. 5 %、 Mn: 0. 07%、 sol . Al: 30ppm、 N: 25ppm、 S : lOppm, Se: 0. lppm、 O : 10ppm、 Sb: 0. 02% , Sn: 0. 02%、 Cu: 0. 15 % まで、 インヒビター形成元素を十分に低減し、残部は Feおよび不可避的不純 物の組成とした溶鋼を、 連続錶造前に 20〜45分待機させた後、 低塩基度 (約 0. 8)、 高塩基度 (約 1. 0、 約 1. 5) の 3種の T Z Dフラックスを使用し、 鎵造 を行った鋼スラブを、 1150°Cに加熱後、 熱間圧延により板厚: 2.0龍の熱延 板とした。
ここで、熱延板の清浄度を確認するために、 コイル幅中央部から鋼片を切 り出し、 その圧延直角方向の断面を 1 c m2の視野について EDX付きの S £Mで観察し、 視野全域に見られる介在物の寸法 '成分 '種類と、 その総数 を調査し、 合わせて Caおよび/または Mgを含む酸化物 (直径 1〜 3 μ m) の 個数を測定した。 なお、 介在物の粒径測定は図 1 と同様の方法で行ったが、 直径 1 a m未満の介在物は観察対象外とした。 ついで、 1000°C, 30秒の熱延板焼鈍後、 冷間圧延により板厚: 0.30膽の冷 延板としたのち、 均熱温度: 850°Cで 70秒の一次再結晶焼鈍 (脱炭焼鈍を兼 ねる) を施し、 その後 MgO : 95%、 Ti02: 5 % (質量比) の組成になる焼鈍 分離剤を水スラリーとして鋼板に塗布してから、 800〜900°CX50時間熱処理 (二次再結晶処理) 後に 1150 X 5時間熱処理する条件で、仕上焼鈍を行つ た。 ついで、 リン酸アルミ二ゥム、 コロイ ド状シリ力、 無水クロム酸 (質量 比で約 5 : 4 : 1 ) からなる塗布液を塗布し、 800°Cで焼 付けて絶縁被膜 を形成した。
かく して得られたコイル (重量 5〜15トン) の全長に渡り、 連続鉄損測定 装置を用いて連続的に鉄損 (W17/5。、 すなわち 50Hz, 1.7Tで励磁した際の 鉄損) 測定を行い、 その鉄損の最大値と最小値の差を として評価を行つ た。
得られた結果を表 1に示す。
Ca'Mgを含む
待機時間 スラゲ T/Dフラックス 総介在物数 Δνν17/5ο
No. 酸化物数 備考 (分) ίπΰ / 基/ ¾t (個/ cm2) (W/kg)
(個ん m2)
1 33 1.0 1.5 334 725 0.058 発明例 1
2 45 1.2 1.0 122 212 0.008 発明例 2
3 40 0.9 1.4 105 264 0.004 発明例 3
4 25 0.8 0.8 461 576 0.148 比較例 1
5 30 0.4 1.0 698 873 0.283 比較例 2
6 20 0.5 0.7 953 1722 0.411 比較例 3
熱延板段階における介在物の観察の結果、酸化物の主成分は A1脱酸時に生 じた A1系酸化物であつたが、表 1から明らかなように、介在物の総数に関わ りなく、 Caおよぴ または Mgを含む酸化物のうち、 直径が 1 3 /X mの大き さのものの個数を 400個以下とすることによって 、 の値が小さくなつて いることが分かる。 特に、 Caおよび または Mgを含む酸化物のうち、 直径が 1 3 111の大きさのものの個数を 150個以下とした場合には、その効果が顕 著であった。 ぐ実施例 2 >
転炉出鋼時に CaOを添加することによって、 スラグ塩基度を 1.0±0.1とし た溶鋼を、 脱ガス処理後、 C : 0.03%、 Si : 3.2% Mn : 0.10%、 sol.Al : 5ppm、 N : 40ppms S : 20ppm、 O : 20ppm、 Sb: 0.04% Cu: 0.05%まで、 インヒビター形成元素を十分に低減し、残部は Feおよび不可避的不純物の組 成とした。 さらに、連続铸造前に 10 50分待機させたのち、髙塩基度(> 1.5) TZDブラックスを使用し、 铸造を行った鋼スラブを、 1180°Cに加熱後、 熱 間圧延により板厚: 1.8mmの熱延板とした。 ついで 1050°C 30秒の熱延板焼 鈍後、 冷間圧延により板厚: 0.30mmの冷延板としたのち、 均熱温度 : 850°C で 70秒の一次再結晶焼鈍 (脱炭焼鈍を兼ねる) を施し、 その後 Mg0 : 95%、 SrS04: 5 %の組成になる焼鈍分離剤を水スラリーとして鋼板に塗布してか ら、 800 900°C X50時間処理後 1150°C X 5時間処理する仕上焼鈍を行った。 ついで、 リン ^塩一ク口ム酸塩—コロイダルシリ力を質量比 3 : 1 : 2で含 有する塗布液を塗布し、 800°Cで焼き付けて絶縁被膜を形成した。 かく して得られた鋼板の清浄度を確認するために、コイル端部(長手方向) の幅中央部から鋼片を切り出し、酸洗により被膜を除去した後、実施例 1 と 同 に、圧延直角方向の断面を 1 c m2の視野(複数試料で合算)で観察し、 その視野全域に見られる介在物の寸法 ·成分 ·種類と、 その総数、 さらに および/または Mgを含む酸化物 (直径 1〜 3 μ πι) の個数を測定した。 また、 得られたコイル (重量 8〜 9 トン) の全長にわたって連続的に鉄損 (W17/50) の測定を行い、 その鉄損の最大値と最小値の差を として評価 を行った。
得られた結果を表 2に示す。
表 2
Figure imgf000021_0001
製品板段階での介在物の観察結果では、 Siを主とする酸化物が多数見られ たが、 表 2に示したように、 介在物の総数に関わりなく、 Caおよびノまたは Mgを含む酸化物のうち、直径が l〜 3 /zmの大きさのものの個数を 400個以下 とすることによって 、 AWの値が小さくなつていることが分かる。 特に、 Caおよび//または Mgを含む酸化物のうち、 直径が 1〜 3 ;zmの大きさのもの の個数を 150個以下とした場合には、 その効果が顕著であった。 く実施例 3 >
転炉出鋼時に CaOを添加することによって、スラグ塩基度を 1. 2とした溶鋼 を、 脱ガス処理後、 sol. A1: 60ppm N : 26ppm、 S : 18ppm、 Se: 2 ppm、 O : 20ppm、 Sb : 0. 01 %、 Sn : 0. 01 %、 Cu : 0. 1 %まで、 インヒ ビター形成元素等 を十分に低減し、残部は表 3に記載の成分と Feおよび不可避的不純物からな る組成とした。 さらに、連続鎳造前に 25~ 48分待機させたのち、高塩基度(塩 基度 5以上) T / Dフラ ックスを使用し、 鐯造を行った鋼スラブを、 1100 〜1150°Cに加熱後、 熱間圧延により板厚 : 1. 8mmの熱延板と した。 ついで 1000°C、 20秒の熱延板焼鈍後、 冷間圧延により板厚: 0. 30mmの冷延板とした のち、 均熱温度: 800〜820°Cで 60秒の一次再結晶焼鈍 (脱炭焼鈍を兼ねる) を施し、 その後 Mg0 : 95 %、 TiO: 5 %の組成になる焼鈍分離剤を水スラ リー として鋼板に塗布してから、 800〜900°C X 10時間処理後 1000〜1100°C X 20 時間処理する仕上焼鈍を行った。 ついで、 リン酸塩—ク口ム酸塩一コロイダ ルシリカを質量比 3 : 1 : 2で含有する塗布液を塗布し、 800°Cで焼き付け て絶縁被膜を形成した。
かく して得られた鋼板の清浄度を、実施例 1 と同様の方法で調査した。介 在物総数は 1000個/ c m 2以下であった。 また、 得られたコイル (重量約 7 トン) の全長にわたって連続的に鉄損 (W17/5。) の測定を行い、 平均値を算 出すると共に、 その鉄損の最大値と最小値の差を として評価を行った。 なお、 一部のサンプルではコイルから 500m毎に 6箇所切り出して磁束密度 B 8 (磁化力 800A/mにおける値) も測定した。
得られた結果を表 3に示す。
表 3
Figure imgf000023_0001
*) 厶 W17/50/平均 W17/50
表 3から明らかなように、 Caおよび/または Mgを含む酸化物のうち、直径 が 1〜3 /zmの大きさのものの個数を 400個以下とすることによつて、鉄損の 水準に関わらず、 AWの値を 0.07W/kg以下とすることができ、 ばらつきが小 さくなつていることが分かる。 この結果、 いずれの鋼種でも、 コイル内でグ レード (概ね 0. lW/kgきざみで設定) から外れる部分を格段に減らすことが でき、 コィル分割などの負荷を顕著に減らすことができる。
なお、 Caおよび/または Mgを含む酸化物のうち、 直径が l ~3 /xmの大き さのものの個数を 150個以下とした場合には、 AWの値は 0.02W/kg以下とな り、 その効果がさらに顕著であった。
なお、 N o . 1における B 8の平均値は比較例で 1.892T、 Ca/Mg介在物 400 個以下で 1.889T、 同 150個以下で Γ.894Τとなり、 88の変動幅厶 38は、 比 較例で 0.022T、 Ca/Mg介在物 400個以下で 0. OUT, 同 150個以下で 0.005Tと なった。 すなわち、 磁束密度においても、 本発明によるばらつき低減効果が 認められた。 産業上の利用の可能性
本発明によれば、ィンヒビターレス法により安価に製造可能な方向性電磁 鋼板において、該鋼板中に含まれる特定の酸化物の析出形態を制御すること により、 コイル全長にわたり安定して優れた磁気特性を得ることができる。

Claims

請求の範囲
1. インヒビターレス法で製造した方向性電磁鋼板であって、 質量0 /0で、 Si : 2.0%以上、 4.5%以下、 Mn : 0.01%以上、 0.5%以下を含有し、 Caおよび/または Mgを含む酸化物のうち、 直径が 1〜 3 z mのものカ 、 圧延直角方向断面における単位面積: 1 c in2当たり 400個以下である方向 性電磁鋼板。
2. 前記 Caおよび Zまたは Mgを含む酸化物のうち、 直径が 1〜 3 μ mのも のが、 圧延直角方向断面における単位面積: 1 c m 2当たり 150個以下であ る、 請求項 1に記載の方向性電磁鋼板。
3. 鋼板が、 さらに質量%で、 '
Ni : 0.005~1.50%、 Sn: 0.01〜0.50%、
Sb: 0.005~0.50%、 Cu: 0.01~0.50%、
Mo: 0.01— 0.50%, P : 0.0050~0.50%および
Cr: 0.01— 1.50%
のうちから選ばれた 1種または 2種以上を含有する組成になることを特 徴とする、 請求項 1または 2に記載の方向性電磁鋼板。
4. ■ フォルステラィ ト質被膜を有する方向性電磁鋼板であって、
質量%で、 Si : 2.0%以上、 4.5%以下、 Mn : 0.01%以上、 0.5%以下を 含有し、
該フオルステライ ト質被膜を含む鋼板中の不純物が A1 : 50 ppm以下、 Se : 30 ppm以下、 N : 50 ppm以下、 および B : 2 ppm以下に低減され、'かつ 地鉄中の Oが 20 ppm以下に低減され、
Caおよぴ/ /または Mgを含む酸化物のうち、 直径が 1〜 3 μ mのものが、 圧延直角方向断面における単位面積: 1 c m2当たり 400個以下であること を特徴とする、 方向性電磁鋼板。
5. 前記 Caおよび/または Mgを含む酸化物のうち、直径が 1〜 3 mのも のが、 圧延直角方向断面における単位面積: 1 c m2当たり 150個以下であ る、 請求項 4に記載の方向性電磁鋼板。
6. 鋼板が、 さらに質量%で、
Ni: 0.005~1.50%、 Sn: 0.01~0.50%、
Sb: 0.005~0.50%、 Cu: 0.01~0.50%、
Mo: 0.01〜0.50%、 P : 0.0050~0.50%および
Cr: 0.01〜1.50%
のうちから選ばれた 1種または 2種以上を含有する組成になることを特 徴とする、 請求項 4または 5に記載の方向性電磁鋼板。
7. 質量%で、 Si : 2.0%以上、 4.5° /。以下、 Mn : 0.01%以上'、 0.5%以下 を含有し、 かつ、 A1: lOOppm未満、 S、 Se、 Oおよび N :各 50ppm以下に抑 制した組成である鋼スラブを熱間圧延して熱延鋼板とし、
該熱延鋼板を冷間圧延して冷延鋼板とし、
該冷延鋼板に一次再結晶焼鈍おょぴ二次再結晶焼鈍を施すとともに、 前記熱延鋼板における Caおよび/ ^または Mgを含む酸化物のうち、直径が
:!〜 3 /Z K1のものを、 圧延直角方向断面における単位面積: 1 c m2当たり
400個以下に制御する、 方向性電磁鋼板の製造方法。
8. 鋼スラブの組成において、 さらに Bを 5 ppm未満に抑制した、 請求項 7に記載の方向性電磁鋼板の製造方法。
9. 前記熱延鋼板において、 前記 Caおよび Zまたは Mgを含む酸化物のうち、 直径が l〜3 /z mのものを、 圧延直角方向断面における単位面積: 1 c m2当 たり 150個以下とする、 請求項 7または 8に記載の方向性電磁鋼板。
PCT/JP2005/022232 2004-11-30 2005-11-28 方向性電磁鋼板およびその製造方法 WO2006059740A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05811523.9A EP1818420B1 (en) 2004-11-30 2005-11-28 Grain-oriented electromagnetic steel sheet and process for producing the same
US11/663,751 US8177920B2 (en) 2004-11-30 2005-11-28 Grain-oriented electrical steel sheet and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-345604 2004-11-30
JP2004345604A JP4747564B2 (ja) 2004-11-30 2004-11-30 方向性電磁鋼板

Publications (1)

Publication Number Publication Date
WO2006059740A1 true WO2006059740A1 (ja) 2006-06-08

Family

ID=36565172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022232 WO2006059740A1 (ja) 2004-11-30 2005-11-28 方向性電磁鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US8177920B2 (ja)
EP (1) EP1818420B1 (ja)
JP (1) JP4747564B2 (ja)
KR (1) KR100937123B1 (ja)
CN (1) CN100523257C (ja)
TW (1) TWI286770B (ja)
WO (1) WO2006059740A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477186A (zh) * 2016-07-29 2019-03-15 杰富意钢铁株式会社 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242912A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 含Ti極低炭素鋼の溶製方法および含Ti極低炭素鋼鋳片の製造方法
CN101768697B (zh) * 2008-12-31 2012-09-19 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
TWI397590B (zh) * 2009-12-18 2013-06-01 China Steel Corp Radiation Annealing Process of Directional Electromagnetic Steel Sheet
KR101263839B1 (ko) 2009-12-23 2013-05-13 주식회사 포스코 자성이 우수한 방향성 전기강판의 안정적 제조방법 및 여기에 사용되는 방향성 전기강판 슬라브
KR101263795B1 (ko) 2009-12-28 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판과 그 제조방법 및 여기에 사용되는 방향성 전기강판 슬라브
KR101263851B1 (ko) 2010-07-19 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판의 제조방법
KR101263852B1 (ko) 2010-07-21 2013-05-13 주식회사 포스코 자성이 우수한 방향성 전기강판의 제조방법
KR101263796B1 (ko) 2010-10-15 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR101223115B1 (ko) 2010-12-23 2013-01-17 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
KR101263842B1 (ko) 2010-12-24 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판의 제조방법
KR101263841B1 (ko) 2010-12-24 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판의 제조방법
KR101263843B1 (ko) 2010-12-24 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판의 제조방법
KR101263845B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 자성이 우수하고 경도가 낮은 무방향성 전기강판의 제조방법
KR101263850B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 자성이 우수한 방향성 전기강판의 제조방법
KR101263849B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 자성이 우수한 방향성 전기강판의 제조방법
KR101263847B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR101263797B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 자성이 우수한 무방향성 전기강판의 제조방법
KR101263798B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR101263848B1 (ko) 2010-12-27 2013-05-22 주식회사 포스코 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR101263844B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 자성이 우수한 무방향성 전기강판의 제조방법
KR101263799B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 자성이 우수한 방향성 전기강판의 제조방법
KR101263846B1 (ko) 2010-12-27 2013-05-13 주식회사 포스코 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR101453235B1 (ko) * 2011-01-12 2014-10-22 신닛테츠스미킨 카부시키카이샤 방향성 전자기 강판 및 그 제조 방법
RU2712795C1 (ru) * 2016-11-25 2020-01-31 ДжФЕ СТИЛ КОРПОРЕЙШН Листовая электротехническая сталь с неориентированной структурой и способ ее производства
JP6601649B1 (ja) 2017-12-28 2019-11-06 Jfeスチール株式会社 低鉄損方向性電磁鋼板とその製造方法
CN113260719B (zh) * 2019-01-08 2023-01-20 日本制铁株式会社 方向性电磁钢板、退火分离剂及方向性电磁钢板的制造方法
EP3913083A4 (en) * 2019-01-16 2022-10-05 Nippon Steel Corporation GRAIN-ORIENTED ELECTRICAL STEEL SHEET, INTERMEDIATE STEEL SHEET FOR GRAIN-ORIENTED ELECTRICAL STEEL SHEET, AND METHOD OF MANUFACTURING THEREOF
CN114364821B (zh) 2019-09-06 2023-10-20 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
US20230243009A1 (en) * 2020-06-30 2023-08-03 Jfe Steel Corporation Production method for grain-oriented electrical steel sheet, and production line
WO2024204623A1 (ja) * 2023-03-30 2024-10-03 Jfeスチール株式会社 方向性電磁鋼板および巻鉄心

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279760A (ja) * 1992-04-01 1993-10-26 Nippon Steel Corp 銅含有鉄合金の精錬方法
JPH06128618A (ja) * 1992-10-19 1994-05-10 Nkk Corp 介在物の少ない電磁鋼板の製造方法
JPH08199239A (ja) * 1995-01-20 1996-08-06 Nippon Steel Corp 高磁束密度方向性電磁鋼板の製造法
JP2002097513A (ja) * 2000-09-19 2002-04-02 Kawasaki Steel Corp 高Si含有溶鋼のAl濃度調整方法
JP2003049250A (ja) * 2001-08-06 2003-02-21 Kawasaki Steel Corp 曲げ加工性に優れた方向性電磁鋼板およびその製造方法
JP2004238734A (ja) * 2003-01-15 2004-08-26 Nippon Steel Corp 高磁場鉄損と被膜特性に優れる超高磁束密度一方向性電磁鋼板

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965559A (en) * 1933-08-07 1934-07-03 Cold Metal Process Co Electrical sheet and method and apparatus for its manufacture and test
BE789262A (fr) * 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5113469B2 (ja) * 1972-10-13 1976-04-28
JPS5652117B2 (ja) * 1973-11-17 1981-12-10
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
GB2038367B (en) * 1978-10-12 1982-09-29 Nippon Steel Corp Controlling the aluminium content of continuously cast silicon steels
JPS62267447A (ja) 1986-05-15 1987-11-20 Nippon Kokan Kk <Nkk> 高周波磁気特性の優れた高珪素鉄板
JP2724659B2 (ja) 1992-11-26 1998-03-09 新日本製鐵株式会社 磁気特性の優れた高磁束密度一方向性電磁鋼板
JPH09157747A (ja) * 1995-12-11 1997-06-17 Sumitomo Metal Ind Ltd 方向性電磁鋼板の製造方法
JPH1112702A (ja) 1997-06-26 1999-01-19 Sumitomo Metal Ind Ltd 磁気異方性が小さく打抜き後の寸法精度に優れた電磁鋼板
US6309473B1 (en) 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
JP3707268B2 (ja) * 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4123653B2 (ja) * 1999-10-12 2008-07-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP4258151B2 (ja) * 2002-01-11 2009-04-30 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4211260B2 (ja) * 2002-01-28 2009-01-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4258185B2 (ja) * 2002-08-22 2009-04-30 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP4258349B2 (ja) * 2002-10-29 2009-04-30 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279760A (ja) * 1992-04-01 1993-10-26 Nippon Steel Corp 銅含有鉄合金の精錬方法
JPH06128618A (ja) * 1992-10-19 1994-05-10 Nkk Corp 介在物の少ない電磁鋼板の製造方法
JPH08199239A (ja) * 1995-01-20 1996-08-06 Nippon Steel Corp 高磁束密度方向性電磁鋼板の製造法
JP2002097513A (ja) * 2000-09-19 2002-04-02 Kawasaki Steel Corp 高Si含有溶鋼のAl濃度調整方法
JP2003049250A (ja) * 2001-08-06 2003-02-21 Kawasaki Steel Corp 曲げ加工性に優れた方向性電磁鋼板およびその製造方法
JP2004238734A (ja) * 2003-01-15 2004-08-26 Nippon Steel Corp 高磁場鉄損と被膜特性に優れる超高磁束密度一方向性電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1818420A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477186A (zh) * 2016-07-29 2019-03-15 杰富意钢铁株式会社 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法
CN109477186B (zh) * 2016-07-29 2020-11-27 杰富意钢铁株式会社 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法

Also Published As

Publication number Publication date
US8177920B2 (en) 2012-05-15
CN100523257C (zh) 2009-08-05
EP1818420A4 (en) 2011-04-06
TWI286770B (en) 2007-09-11
KR100937123B1 (ko) 2010-01-18
JP4747564B2 (ja) 2011-08-17
JP2006152387A (ja) 2006-06-15
KR20070057256A (ko) 2007-06-04
EP1818420B1 (en) 2015-08-19
CN101048523A (zh) 2007-10-03
EP1818420A1 (en) 2007-08-15
TW200627482A (en) 2006-08-01
US20090101248A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2006059740A1 (ja) 方向性電磁鋼板およびその製造方法
JP7171636B2 (ja) 方向性ケイ素鋼板を製造する方法、方向性電磁鋼板およびこれらの使用
KR100912974B1 (ko) 저철손 무방향성 전자기 강판
EP3243921B1 (en) Non-oriented electromagnetic steel sheet and method for producing same
KR100727333B1 (ko) 소형 철심에 적합한 전자강판 및 그 제조방법
CN110678568A (zh) 无方向性电磁钢板及其制造方法
EP3594373A1 (en) Oriented magnetic steel sheet and method for manufacturing same
JP7253054B2 (ja) 磁性に優れる無方向性電磁鋼板およびその製造方法
JP3997712B2 (ja) Eiコア用の方向性電磁鋼板の製造方法
KR102427606B1 (ko) 방향성 전자 강판
CN114286871B (zh) 无取向性电磁钢板的制造方法
JP4692518B2 (ja) Eiコア用の方向性電磁鋼板
JP3928275B2 (ja) 電磁鋼板
JP2019035116A (ja) 無方向性電磁鋼板およびその製造方法
JP2005002401A (ja) 無方向性電磁鋼板の製造方法
JP7037657B2 (ja) 方向性電磁鋼板およびその製造方法
JP3551849B2 (ja) 一方向性電磁鋼板用の一次再結晶焼鈍板
JP2000017330A (ja) 鉄損の低い無方向性電磁鋼板の製造方法
WO2024080140A1 (ja) 無方向性電磁鋼板とその製造方法
WO2023149287A1 (ja) 無方向性電磁鋼板用熱延鋼板の製造方法、無方向性電磁鋼板の製造方法、および無方向性電磁鋼板用熱延鋼板
JP7338812B1 (ja) 方向性電磁鋼板の製造方法
JP2001158948A (ja) 鉄損の低い無方向性電磁鋼板およびその製造方法
WO2022250158A1 (ja) 方向性電磁鋼板の製造方法
JP4910539B2 (ja) 一方向性電磁鋼板の製造方法
JPH10317111A (ja) 鉄損の低い無方向性電磁鋼板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005811523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077009327

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580036732.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005811523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663751

Country of ref document: US