WO2006059580A1 - モールド、および転写微細パターンを有する基材の製造方法 - Google Patents

モールド、および転写微細パターンを有する基材の製造方法 Download PDF

Info

Publication number
WO2006059580A1
WO2006059580A1 PCT/JP2005/021821 JP2005021821W WO2006059580A1 WO 2006059580 A1 WO2006059580 A1 WO 2006059580A1 JP 2005021821 W JP2005021821 W JP 2005021821W WO 2006059580 A1 WO2006059580 A1 WO 2006059580A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
layer
group
fine pattern
photocurable resin
Prior art date
Application number
PCT/JP2005/021821
Other languages
English (en)
French (fr)
Inventor
Yasuhide Kawaguchi
Yoshihiko Sakane
Daisuke Shirakawa
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to EP05809536A priority Critical patent/EP1820619A4/en
Priority to JP2006547915A priority patent/JP4655043B2/ja
Publication of WO2006059580A1 publication Critical patent/WO2006059580A1/ja
Priority to US11/754,526 priority patent/US7441745B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present invention relates to a mold and a method for producing a substrate having a transfer fine pattern comprising a cured product of a photocurable resin using the mold.
  • a mold having a fine pattern on its surface, a substrate, and a photocurable resin are used, and the photocurable resin is sandwiched between the fine pattern surface of the mold and the substrate surface.
  • a quartz mold As a mold in the manufacturing method, a quartz mold is generally used. However, when the mold is peeled off from the cured product having a low releasability, the precision of the fine pattern of the cured product tends to be lowered. As a method for improving the releasability, a method of applying a release agent to the fine pattern surface of the mold has been proposed. However, the fine pattern accuracy of the mold tends to be lowered due to uneven thickness of the applied release agent. Furthermore, when the mold is used continuously, it is necessary to re-apply the release agent, which tends to reduce the production efficiency.
  • Patent Document 3 describes a mold formed from a tetrafluoroethylene-based polymer, an ethylene Z tetrafluoroethylene-based copolymer, or a perfluoroalkoxybutyl ether-based polymer.
  • Patent Document 1 Japanese Translation of Special Publication 2004—504718
  • Patent Document 2 Japanese Translation of Special Publication 2002-539604
  • Patent Document 3 Japanese Translation of Special Publication 2005-515617
  • the mold described in Patent Document 3 is molded with a specific fluoropolymer force, the mechanical strength and shape stability are not sufficient. In order to improve this, it is conceivable to combine the fluoropolymer with another substrate having mechanical strength and shape stability.
  • the fluoropolymer is non-adhesive, it is not easy to combine the mold with another substrate. In particular, it is not easy to firmly bond and combine a mold having a high-precision fine pattern and another substrate.
  • the present invention provides a mold having a fine pattern for molding a photocurable resin, which has optical transparency, mold release and durability, and has mechanical strength, shape stability and dimensional accuracy of the fine pattern. The purpose is to provide
  • the gist of the present invention is as follows.
  • a mold having a fine pattern for molding a photocurable resin a transparent substrate having a chemical bond based on a functional group on the surface on which the intermediate layer (A) is formed;
  • a mold comprising: an intermediate layer (A) present between a substrate surface and the following surface layer (B); and the following surface layer (B) having a fine pattern.
  • ⁇ 4> The mold according to any one of ⁇ 1> to ⁇ 3>, wherein the functional group) is a hydroxyl group, an amino group, or an oxylanyl group, and the reactive group (y) is a carboxyl group.
  • ⁇ 5> The mold according to any one of ⁇ 1> to ⁇ 4>, wherein the transparent substrate having a functional group (X) on the surface is a glass substrate into which the functional group (X) has been introduced by surface treatment. .
  • a photo-curing property in which a step of sandwiching and pressing the fat, a step of irradiating light from the mold side to cure the photocurable resin to form a cured product, and a step of peeling the mold from the cured product cover are sequentially performed.
  • the mold of the present invention has the physical properties (such as mechanical strength) of the transparent substrate and a highly accurate fine pattern because the transparent substrate and the layer having the fine pattern are firmly bonded via the specific layer. is doing.
  • the fine pattern portion of the mold also has a high non-adhesive fluoropolymer power, it is possible to mold a highly adhesive photocurable resin. Further, the mold of the present invention is less likely to contaminate the fine pattern portion even after repeated use.
  • the transparent substrate in the mold of the present invention is a glass substrate (quartz, glass, etc.), a silicone resin substrate, or a transparent resin (fluorine resin, acrylic resin, polycarbonate resin, polyimide resin, etc. .)
  • a glass substrate is particularly preferable because it is excellent in mechanical strength, which is preferably a substrate.
  • the shape of the transparent substrate may be flat (such as a flat plate) or may be curved (such as a column, a triangular pyramid, or a spherical surface).
  • the transparent substrate preferably has a light transmittance of 90% or more for light having a wavelength of 200 to 500 nm, and more preferably 95% or more.
  • the light transmittance means the light transmittance of a transparent substrate having a thickness of 1 mm.
  • the functional group (X) in the transparent substrate is preferably a hydroxyl group, an oxylanyl group, or an amino group.
  • the functional group (X) may be a functional group derived from the material of the transparent substrate, or may be a functional group imparted to the surface of the transparent substrate by the surface treatment for introducing the functional group (X).
  • the functional group (X) is preferably the latter functional group because its kind and amount can be arbitrarily controlled.
  • the surface treatment method for introducing the functional group (X) includes a method of surface-treating the transparent substrate with a silane coupling agent having the functional group (X), or a transparent group with a silazane compound having the functional group (X). It is preferred to be a method of surface treatment of the body.
  • the silane coupling agent having a functional group (X) includes an amino group-containing silane coupling agent (aminopropyltriethoxysilane, aminopropylmethyljetoxysilane, aminoethyl-aminopropyltrimethoxysilane, Aminoethyl monoaminopropylmethyldimethoxysilane etc.) are preferred.
  • a silane coupling agent having an oxyl group is also preferred.
  • the fluorinated polymer (1) constituting the intermediate layer (A) and the fluorinated polymer (2) constituting the surface layer (B) are each fluorinated aliphatic in the main chain. It is a fluorine-containing polymer having a ring structure.
  • the fluorinated polymer is an amorphous or amorphous polymer, and is preferably a fluorinated polymer having high transparency.
  • the light transmittance of light having a wavelength of 200 to 500 nm of the fluoropolymer (1) and the fluoropolymer (2) is preferably 90% or more, respectively.
  • the light transmittance means the light transmittance of a fluoropolymer having a thickness of 100 m.
  • fluorinated polymer (1) and the fluorinated polymer (2) having a fluorinated aliphatic ring structure in the main chain means that the carbon atom constituting the ring of the fluorinated aliphatic ring in the polymer is One or more must be the carbon atoms that make up the main chain of the polymer!
  • the atoms constituting the ring of the fluorinated aliphatic ring include oxygen atoms, nitrogen atoms, etc. in addition to carbon atoms! / .
  • a preferred fluorine-containing aliphatic ring is a fluorine-containing aliphatic ring having 1 to 2 oxygen atoms.
  • the number of atoms constituting the fluorinated aliphatic ring is preferably 4-7.
  • the carbon atom constituting the main chain is a polymer obtained by polymerizing a cyclic monomer, it is derived from the carbon atom of the polymerizable double bond, and the gen-based monomer is cyclopolymerized. In the case of the polymer obtained by the process, it is derived from 4 carbon atoms of 2 polymerizable double bonds.
  • the cyclic monomer is a monomer having a fluorine-containing aliphatic ring and having a polymerizable double bond between carbon atoms constituting the fluorine-containing aliphatic ring, or fluorine-containing.
  • a gen-based monomer is a monomer having two polymerizable double bonds.
  • the cyclic monomer is preferably the following compound 1 or the following compound 2 (where X 1 is a fluorine atom or a perfluoroalkoxy group having 1 to 3 carbon atoms, and R 1 and R 2 are each A fluorine atom or a C 1-6 perfluoroalkyl group, and X 2 and X 3 each represents a fluorine atom or a C 1-9 perfluoroalkyl group.)
  • compound 2 include the following compounds:
  • Q represents a perfluoroalkylene group which may have an etheric oxygen atom having 1 to 3 carbon atoms.
  • the etheric oxygen atom may be present at one end of the group, or the group may be present at both ends of the group. May be present between the carbon atoms. From the viewpoint of cyclopolymerization, it is preferably present at one end of the group! /.
  • the monomer contains one or more monomer units which are selected by cyclopolymerization, and the group power consisting of the following monomer units (A), the following monomer units (B), and the following monomer units (C) is also selected. A nitrogen polymer is formed.
  • the main chain carbon atoms are derived from four carbon atoms of two polymerizable double bonds.
  • monomer examples include the following compounds.
  • a hydrogen atom bonded to a carbon atom and carbon The ratio of the number of fluorine atoms bonded to carbon atoms to the total number of fluorine atoms bonded to atoms is preferably 80% or more, particularly preferably 100%.
  • the ratio of the repeating unit having a fluorinated aliphatic ring structure to the total monomer units is respectively determined from the viewpoint of the transparency of the fluorinated polymer. It is particularly preferable that the amount is 20 mol% or more, and it is particularly preferable that only 40 mol% or more has a repeating unit force having a fluorinated aliphatic ring structure in the main chain.
  • the repeating unit having a fluorinated alicyclic structure is a monomer unit formed by polymerization of a cyclic monomer or a monomer unit formed by cyclopolymerization of a gen-based monomer.
  • the repeating unit having a fluorine-containing aliphatic ring structure in the fluorine-containing polymer (2) and the repeating unit having a fluorine-containing aliphatic ring structure in the fluorine-containing polymer (1) are the same repeating unit. Is preferred. In this case, the intermediate layer (A) and the surface layer (B) are more firmly bonded, and there is an effect that the durability of the mold is excellent.
  • the fluoropolymer (1) has a reactive group (y).
  • the type of reactive group (y) is appropriately selected according to the type of functional group (x).
  • the functional group (X) is a hydroxyl group, an oxyl group, or an amino group
  • the reactive group (y) is preferably a carboxyl group or a derivative thereof, and particularly preferably a carboxyl group! /.
  • the fluoropolymer (2) has substantially no reactive group (y). Having substantially no reactive group (y) means that the content of the reactive group (y) in the fluoropolymer (2) is below the detection limit! In addition, the fluoropolymer (2) preferably has no reactive groups other than the reactive group (y)! /.
  • the fluorinated polymer (1) and the fluorinated polymer (2) can each be obtained by a known method.
  • a fluoropolymer (1) in which the reactive group (y) is a carboxyl group is obtained by polymerizing a gen-based monomer or a cyclic monomer in the presence of a hydrocarbon-based radical polymerization initiator.
  • a fluorine-containing polymer having a fluorine-containing aliphatic ring structure is obtained, and then the fluorine-containing polymer is heat-treated in an oxygen gas atmosphere and further immersed in water. Further, by contacting the fluoropolymer with fluorine gas, A fluoropolymer (2) can be obtained without the reactive group (y).
  • the surface layer (B) in the present invention has a fine pattern on its surface.
  • the fine pattern is preferably a fine pattern having an uneven structure force.
  • the portion forming the convex structure in the concavo-convex structure exists in the form of a line or a dot on the surface of the surface layer (B), and the shape of the line or the point is not particularly limited.
  • the linear convex structure is not limited to a straight line, but may be a curved line or a bent shape. In addition, there are a lot of the lines in parallel to form a stripe, V.
  • the cross-sectional shape of the linear convex structure (the cross-sectional shape perpendicular to the direction in which the line extends) is not particularly limited, and examples thereof include a rectangle, a trapezoid, a triangle, and a semicircle.
  • the shape of the dotted convex structure is not particularly limited. For example, columnar or pyramidal shapes such as rectangles, squares, rhombuses, hexagons, triangles, circles, hemispheres, polyhedrons, etc. may be mentioned.
  • the average of the width of the linear convex structure portion (referring to the width of the bottom portion) is preferably from 1 nm to 500 m, particularly preferably from 10 nm to 300 m.
  • the average length of the bottom surface of the point-like convex structure portion is preferably 1 ⁇ to 500 / ⁇ ⁇ , more preferably 10 ⁇ to 300 / ⁇ m.
  • the length of the bottom surface of this point-shaped convex structure means the length in the direction perpendicular to the direction of extension when the point extends in a shape close to a line, and otherwise the length of the bottom surface shape. The maximum length.
  • the average height of the linear and dotted convex structures is Inn! It is preferably 10 nm to 300 ⁇ m, more preferably 10 nm to 10 ⁇ m, and most preferably 10 nm to 300 ⁇ m.
  • the thickness of the surface layer (B) is preferably equal to or higher than the height of the highest convex structure portion.
  • the average distance between adjacent convex structures is preferably 1 ⁇ to 500; ⁇ ⁇ is preferably 10nm to 300 Particularly preferred is m.
  • these minimum dimensions in the convex structure are preferably 500 m or less.
  • the lower limit is preferably lnm. This minimum dimension means the smallest of the width, length and height of the convex structure.
  • the mold of the present invention is a mold having a fluoropolymer layer having a fine pattern on the surface for molding a photocurable resin and a transparent substrate, and an intermediate layer (A) is formed.
  • the mold has an intermediate layer (A) and a surface layer (B) having a fine pattern formed of a fluoropolymer (2) formed on the surface of the intermediate layer (A).
  • the transparent substrate has a functional group (X) before the intermediate layer (A) is formed on the surface thereof.
  • part or all of the functional group (X) is part of the reactive group (y) of the fluoropolymer (1). Or they form chemical bonds with everything.
  • the transparent substrate in the mold of the present invention still has the functional group (X).
  • the transparent substrate in the mold of the present invention has the functional group (X).
  • the fluoropolymer (1) constituting the intermediate layer (A) and the fluoropolymer (2) constituting the surface layer (B) have a common structure (ie, The intermediate layer (A) and the surface layer (B) are firmly attached to each other because the fluorine-containing polymer force of the fluorine-containing aliphatic ring structure. Therefore, the present invention can appropriately select the type or shape of the transparent substrate, and can provide a mold having high releasability having powerful arbitrary strength and shape.
  • a photocurable resin molding mold having a fine pattern on the surface, the light transmittance of light having a wavelength of 200 to 500 nm is 90% or more.
  • examples thereof include a mold comprising a transparent substrate and a fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain formed on the substrate and treated with fluorine gas.
  • Examples of the method for producing the mold of the present invention include a method of sequentially performing the following step Ml, the following step M2, the following step M3, and the following step M4.
  • Fluorine-containing polymerization in a fluorine-containing solvent on the surface side of the transparent substrate having the functional group (X) on the surface The solution in which the body (1) is dissolved is applied, and then the fluorine-containing solvent is removed by drying, so that the fluorine-containing polymer (1) the intermediate layer (A) having a force is applied to the surface with a functional group). Forming on the surface side of the transparent substrate.
  • a solution in which the fluorinated polymer (2) is dissolved in a fluorinated solvent is applied, then the fluorinated solvent is removed by drying, and the surface of the intermediate layer (A) is removed.
  • the mold was peeled off, and the intermediate layer (A) had a surface formed with a fine transfer pattern of the mold.
  • Drying in step Ml is a chemical bond between part or all of the functional group (X) of the transparent substrate and part or all of the reactive group (y) of the fluorine-containing polymer (1). It is performed at a temperature at which can be formed. The temperature during drying is usually above 100 ° C.
  • the drying temperature in the step M2 is preferably carried out at or above the glass transition temperature of the fluoropolymer (1) and above the glass transition temperature of the fluoropolymer (2).
  • the middle layer is preferably carried out at or above the glass transition temperature of the fluoropolymer (1) and above the glass transition temperature of the fluoropolymer (2).
  • the present invention uses a mold, a substrate, and a photocurable resin manufactured through the above steps, and sandwiches the photocurable resin between the fine pattern surface of the mold and the substrate surface.
  • Pressing and pressing hereinafter referred to as step 1), mold side force light irradiation to cure the photocurable resin to form a cured product (hereinafter referred to as step 2), and the cured product force peeling the mold
  • step 3 a method for producing a substrate having a fine transfer pattern made of a cured product of a photocurable resin, in which the steps (hereinafter referred to as Step 3) are sequentially performed.
  • the photocurable resin in the present invention is not particularly limited as long as it is a resin that is cured by light irradiation to form a cured product.
  • the mold of the present invention has high transparency in a wide light wavelength region. Therefore, the wavelength of light in light irradiation is not particularly limited.
  • the wavelength of light is preferably 200 to 400 nm, and can be cured at a low temperature for a general photocurable resin that is preferably 200 to 500 nm! /.
  • the photocurable resin in the present invention is preferably a photocurable resin containing a polymerizable compound and a photopolymerization initiator.
  • the polymerizable compound is not particularly limited as long as it is a compound having a polymerizable group, and may be any of a polymerizable monomer, a polymerizable oligomer, and a polymerizable polymer.
  • the photopolymerization initiator is a photopolymerization initiator that causes a radical reaction or an ionic reaction by light.
  • the temperature of the system in Step 1, Step 2, and Step 3 is not higher than the glass transition temperature of the fluoropolymer (2).
  • step 1 Specific embodiments of the step 1 include the following step 11, the following step 12, and the following step 13.
  • Step 11 A step of placing the photocurable resin on the surface of the base material and pressing it after sandwiching the base material and the mold so that the photocurable resin is in contact with the non-turn surface of the mold.
  • Step 12 A photocurable resin is placed on the pattern surface of the mold, and then pressed after sandwiching the substrate and the mold so that the substrate surface is in contact with the photocurable resin. Process.
  • Step 13 Combining the substrate and the mold to form a gap between the substrate surface and the pattern surface of the mold, and then filling the void with a photocurable resin, A step of pressing after the photocurable resin is sandwiched between the substrates.
  • a transfer fine pattern made of a cured product of a photocurable resin is formed on the surface.
  • the transferred fine pattern is a fine pattern obtained by inverting the fine pattern of the mold of the present invention.
  • the fine transfer pattern is preferably a structure having a concavo-convex structure (hereinafter also referred to as a concavo-convex structure) made of a cured product of a photocurable resin.
  • the concavo-convex structure may have a layer structure composed of a continuum having a concavo-convex shape on the surface, or may have a structure that also has a collective force of independent protrusions.
  • the former refers to a structure in which the surface of the cured product of the photocurable resin, which is a layer force of the cured product of the photocurable resin covering the substrate surface, has an uneven shape.
  • the latter is based on a protrusion made of a cured product of a photocurable resin.
  • the concavo-convex structure may have a structure having these two structures at different positions on the substrate surface.
  • the processing substrate obtained by the production method of the present invention is an optical element such as a microlens array, an optical waveguide, optical switching, a Fresnel zone plate, a binary element, a blaze element, or a photo-titanium crystal; AR (Anti Reflection) Coated members, biochips, TAS (micro-total analysis systems) chips, microreactor chips, recording media, display materials, catalyst carriers, filters, sensor members, etc.
  • an optical element such as a microlens array, an optical waveguide, optical switching, a Fresnel zone plate, a binary element, a blaze element, or a photo-titanium crystal
  • AR Anti Reflection Coated members
  • biochips biochips
  • TAS micro-total analysis systems
  • the polymer (P) was a polymer composed of monomer units represented by the following formula (P), and the intrinsic viscosity was 0.34 dlZg in perfluoro (2-butyltetrahydrofuran) at 30 ° C.
  • the glass transition temperature of the polymer (P) was 108 ° C.
  • Example 2 A solution composition (hereinafter referred to as Composition 1) containing a polymer having a fluorine-containing aliphatic ring structure in the main chain and having a carboxyl group (hereinafter referred to as polymer (11)) .) Production example
  • Polymer in a hot air circulating oven under atmospheric pressure at 300 ° C for 1 hour. Then, it was immersed in ultrapure water at 110 ° C for 1 week, and further dried in a vacuum dryer at 100 ° C for 24 hours to obtain a polymer (11). As a result of measuring the infrared absorption spectrum of the polymer (11), a peak derived from a carboxyl group was confirmed.
  • the polymer (11) was processed into a film having a thickness of 100 m, and the light transmittance of light having a wavelength of 200 to 500 nm was measured. As a result, it was 93% or more.
  • a perfluorotributylamine solution containing 1% by mass of the polymer (11) was prepared, and the solution was filtered through a membrane filter (pore diameter 0.2 m, manufactured by PTFE) to obtain Composition 1.
  • Example 3 A solution containing a fluorine-containing aliphatic ring structure in the main chain and no reactive group! /, And a polymer (hereinafter referred to as polymer (21) t t).
  • Production Example of Composition (hereinafter Composition 2 and IV) Polymer (P) was placed in an autoclave (made of nickel, internal volume 1 L), and the inside of the autoclave was replaced with nitrogen gas three times. The pressure was reduced to OkPa (absolute pressure). After introducing fluorine gas diluted to 14% by volume with nitrogen gas into the autoclave up to 101.3 kPa, the internal temperature of the auto-talve was maintained at 230 ° C for 6 hours.
  • the contents of the autoclave were recovered to obtain a polymer (21).
  • a polymer (21) As a result of measuring the infrared absorption spectrum of the polymer (21), no peak due to the carboxyl group was confirmed.
  • the polymer (21) was covered with a film having a thickness of 100 m, and the light transmittance of light having a wavelength of 200 to 500 nm was measured and found to be 95% or more.
  • a perfluorotributylamine solution containing 9% by mass of the polymer (21) was prepared, and the solution was filtered through a membrane filter (pore size 0.2 m, manufactured by PTFE) to obtain a composition 2.
  • An ethanol solution containing 0.5% by mass of a silane coupling agent having an amino group (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-903) and 5% by mass of water has a light transmittance of 200 to 500 nm. It was applied on a quartz substrate of 90% or more (vertical 25 mm X horizontal 25 mm X thickness 1 mm) using the spin coat method. The quartz substrate was washed with water and then heated and dried at 70 ° C. for 1 hour to perform surface treatment for introducing amino groups derived from the silane coupling agent to the surface of the quartz substrate.
  • the surface of the surface of the quartz substrate was coated with the yarn composition 1 obtained in Example 2 using a spin coat method, and heated and dried at 180 ° C for 1 hour, so that the composition 1 Of perfluorotributylamine was volatilized.
  • a polymer (11) force layer is formed on the surface by chemically bonding the amino group on the quartz substrate surface with the carboxyl group of the polymer (11) to form an amide bond with the amino group.
  • An obtained quartz substrate was obtained.
  • Example 3 the composition 2 obtained in Example 3 was applied onto the layer using a spin coating method, followed by heating and drying at 180 ° C for 1 hour, so that perfluorotributyl in the composition 2 was obtained.
  • the amine was volatilized.
  • a quartz substrate having a polymer layer (21) (layer thickness: 1.3 m) formed on the outermost surface was obtained.
  • a silicon mold having a concavo-convex structure in which concave structures having a depth of 100 nm and a width of 0.7 ⁇ m are arranged at intervals of 9.3 ⁇ m is heated to 120 ° C. to obtain a polymer ( 21) It was pressure-bonded for 10 minutes at 2. OMPa (absolute pressure). The mold and the quartz substrate were brought to a temperature of 30 ° C or less and the mold was peeled off.
  • a quartz substrate, a polymer (11) layer, and a polymer (21) layer consisted of a fine pattern (height lOOnm X width 0. convex structure on the outermost surface of the polymer (21).
  • a mold having a concavo-convex structure arranged at intervals of force 9.) was obtained.
  • Example 4 The same ethanol solution and quartz substrate as in Example 4 were prepared, and a quartz substrate subjected to the same surface treatment was obtained.
  • the composition 1 obtained in Example 2 was applied to the surface-treated surface of the quartz substrate using a spin coating method, and dried by heating at 180 ° C. for 1 hour.
  • the composition 2 obtained in Example 3 was applied onto the surface using a spin coating method and dried by heating at 180 ° C. for 1 hour to form a thin film (thickness 1.3 / zm) made of the polymer (21). ) was obtained.
  • the same silicon mold as in Example 4 was heated to 120 ° C., and then pressed onto the thin film side of the quartz substrate at a pressure of 2. OMPa (absolute pressure) for 10 minutes.
  • OMPa absolute pressure
  • a formed quartz substrate was obtained.
  • CF CFCF C (CF) (OCH OCH) in a clean room with UV light cut
  • Photocuring initiator 1 (Ciba 'Specialty' Chemicals: Irgacure 651) 0.03 g and 0.03 g of photocuring initiator 2 (manufactured by Ciba 'Specialty' Chemicals: Irgacure 907) were sequentially mixed to obtain a photocurable resin.
  • the mold of the present invention is useful as a mold for nanoimprinting using a photocurable resin.
  • the treated substrate obtained using the mold of the present invention has a fine pattern on the surface and is useful for various applications.
  • the treated substrate is an optical element (microlens array, optical waveguide, optical switching, Fresnel zone plate, binary optical element, blaze optical element, photo-tus crystal, etc.), antireflection filter, biochip, microreactor.
  • One chip, a recording medium, a display material, a catalyst carrier and the like can be mentioned.
  • the specifications and claims of Japanese Patent Application No. 2004-346029 filed on November 30, 2004 and Japanese Patent Application No. 2005-247722 filed on August 29, 2005, And the entire contents of the abstract are hereby incorporated by reference as the disclosure of the specification of the present invention.

Abstract

 モールド、および転写微細パターンを有する基材の製造方法を提供する。  光硬化性樹脂を成形するための微細パターンを有するモールドであり、下記中間層(A)が形成される表面に官能基(x)に基づく化学結合を有する透明基体と;該透明基体表面と下記表面層(B)との間に存在する中間層(A)と;微細パターンを有する下記表面層(B)と;を有することを特徴とするモールド。  中間層(A):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前記官能基(x)と反応性の反応性基(y)を有する含フッ素重合体(1)からなる層。  表面層(B):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前記反応性基(y)を実質的に有しない含フッ素重合体(2)からなり、表面に微細パターンを有する層。

Description

明 細 書
モールド、および転写微細パターンを有する基材の製造方法
技術分野
[0001] 本発明は、モールド、および該モールドを用いた光硬化性榭脂の硬化物カゝらなる 転写微細パターンを有する基材の製造方法に関する。
背景技術
[0002] 近年、微細パターンを表面に有するモールドと基材を接触させて微細パターンの 反転パターンを基材表面に形成する方法 (いわゆる、ナノインプリント法。)が注目さ れている(特許文献 1および 2参照。 )0
[0003] なかでも、微細パターンを表面に有するモールド、基材、および光硬化性榭脂を使 用し、モールドの微細パターン面と基材表面との間に光硬化性榭脂を挟持して押圧 する工程、モールド側力 光照射し光硬化性榭脂を硬化させて硬化物とする工程、 および該硬化物力 モールドを剥離する工程を順に行う、該硬化物からなる転写微 細パターンを有する基材の製造方法が注目されて 、る。
[0004] 該製造方法におけるモールドとして、一般には石英製モールドが用いられる。しか し、該モールドは離型性が低ぐ硬化物からモールドを剥離する際に硬化物の微細 パターン精度が低下しやすい。離型性を向上させる方法として、モールドの微細パタ ーン面に離型剤を塗布する方法が提案されている。しかし、塗布された離型剤の厚 さムラによりモールドの微細パターン精度が低下しやすい。さらにモールドを連続使 用する場合は、離型剤を再塗布する必要があり生産効率が低下しやすい。
[0005] 特許文献 3には、テトラフルォロエチレン系重合体、エチレン Zテトラフルォロェチ レン系共重合体、またはペルフルォロアルコキシビュルエーテル系重合体から成形 されたモールドが記載されて 、る。
[0006] 特許文献 1 :特表 2004— 504718号公報
特許文献 2:特表 2002— 539604号公報
特許文献 3:特表 2005— 515617号公報
発明の開示 発明が解決しょうとする課題
[0007] しかし、特許文献 3に記載のモールドは特定の含フッ素重合体力 成形されるため 、機械的強度と形状安定性が充分でない。これを改良するために該含フッ素重合体 と機械的強度、形状安定性を有する他の基体を組み合わせることが考えられる。しか し、該含フッ素重合体は非粘着性であるため、該モールドと他の基体を組み合せる のは容易ではない。特に高精度な微細パターンを有するモールドと他の基体を強固 に接着させて組み合せるのは容易ではない。本発明は、光透過性、離型性および耐 久性を備え、かつ機械的強度、形状安定性および微細パターンの寸法精度を備える 、光硬化性榭脂を成形するための微細パターンを有するモールドの提供を目的とす る。
課題を解決するための手段
[0008] すなわち、本発明の要旨は、以下のとおりである。
< 1 >;光硬化性榭脂を成形するための微細パターンを有するモールドであり、下 記中間層 (A)が形成される表面に官能基 )に基づく化学結合を有する透明基体と ;該透明基体表面と下記表面層 (B)との間に存在する中間層 (A)と;微細パターンを 有する下記表面層(B)と;を有することを特徴とするモールド。
中間層 (A):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前 記官能基 (X)と反応性の反応性基 (y)を有する含フッ素重合体 (1)からなる層。 表面層 (B):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前記 反応性基 (y)を実質的に有しない含フッ素重合体 (2)からなり、表面に微細パターン を有する層。
< 2>;光硬化性榭脂を成形するための微細パターンを表面に有する含フッ素重 合体層と、透明基体とを有するモールドであり、中間層 (A)が形成される表面に官能 基 (X)を有する透明基体の該表面に形成した中間層 (A)と、該中間層 (A)の表面に 形成した表面層(B)とを有するモールド。
中間層 (A):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前 記官能基 (X)と反応性の反応性基 (y)を有する含フッ素重合体 (1)からなる層。 表面層 (B):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前記 反応性基 (y)を実質的に有しない含フッ素重合体 (2)からなり、表面に微細パターン を有する層。
< 3 >;モールドの微細パターンが、凹凸構造力もなり、凸構造部の高さの平均が 1 nm〜500 μ mである、前記 < 1 >または前記 < 2>に記載のモールド。
<4>;官能基 )が水酸基、アミノ基またはォキシラニル基であり、反応性基 (y)が カルボキシル基である、前記 < 1 >〜< 3 >のいずれかに記載のモールド。
< 5 >;表面に官能基 (X)を有する透明基体が、表面処理によって官能基 (X)が導 入されたガラス基体である、前記 < 1 >〜<4>のいずれかに記載のモールド。
< 6 >;前記 < 1 >〜< 5 >のいずれかに記載のモールド、基材、および光硬化性 榭脂を使用し、モールドの微細パターン面と基材表面との間に光硬化性榭脂を挟持 して押圧する工程、モールド側から光照射し光硬化性榭脂を硬化させて硬化物とす る工程、および該硬化物カゝらモールドを剥離する工程を順に行う、光硬化性榭脂の 硬化物からなる転写微細パターンを有する基材の製造方法。
発明の効果
[0009] 本発明のモールドは、特定層を介して透明基体と微細パターンを有する層が強固 に接着されているため、透明基体の物性 (機械的強度等。)と高精度な微細パターン を具備している。また本発明のモールドは、モールドの微細パターン部分が非粘着 性の高い含フッ素重合体力もなるため、高粘着性の光硬化性榭脂の成形も可能であ る。また本発明のモールドは、繰り返し使用しても微細パターン部分が汚染されにく い。
発明を実施するための最良の形態
[0010] 本発明において、式(1)で表される化合物をィ匕合物 1と記す。他式で表される化合 物も同様に記す。
[0011] 本発明のモールドにおける透明基体は、ガラス基体 (石英、ガラス等。)、シリコーン 榭脂製基体、または透明榭脂 (フッ素榭脂、アクリル榭脂、ポリカーボネート榭脂、ポ リイミド榭脂等。)製基体であるのが好ましぐ機械的強度に優れることから、ガラス基 体であるのが特に好ましい。透明基体の形状は、平面状 (平板状等。)であってよく曲 面状(円柱状、三角錐状、球面状等。)であってもよい。 [0012] 透明基体は、波長 200〜500nmの光の光線透過率力 90%以上であるのが好ま しぐ 95%以上であるのが特に好ましい。ここで光線透過率とは厚さ lmmの透明基 体の光線透過率をいう。
[0013] 透明基体における官能基 (X)は、水酸基、ォキシラニル基、またはアミノ基であるの が好ましい。官能基 (X)は、透明基体の材料に由来する官能基であってもよぐ官能 基 (X)を導入する表面処理により透明基体の表面に付与された官能基であってもよ い。官能基 (X)は、その種類および量を任意に制御できることから後者の官能基であ るのが好ましい。
[0014] 官能基 (X)を導入する表面処理の方法は、官能基 (X)を有するシランカップリング 剤で透明基体を表面処理する方法、または官能基 (X)を有するシラザン化合物で透 明基体を表面処理する方法であるのが好まし 、。
[0015] 官能基 (X)を有するシランカップリング剤は、アミノ基を有するシランカップリング剤 ( ァミノプロピルトリエトキシシラン、ァミノプロピルメチルジェトキシシラン、アミノエチル —ァミノプロピルトリメトキシシラン、アミノエチル一ァミノプロピルメチルジメトキシシラ ン等。)が好ましい。また、ォキシラ-ル基を有するシランカップリング剤(グリシドキシ プロピルトリメトキシシラン、グリシドキシプロピルメチルジメトキシシラン等。)も好まし い。
[0016] 本発明における、中間層 (A)を構成する含フッ素重合体(1)、および表面層(B)を 構成する含フッ素重合体 (2)は、それぞれ、主鎖に含フッ素脂肪族環構造を有する 含フッ素重合体である。該含フッ素重合体は無定形または非結晶性の重合体であり 透明性が高い含フッ素重合体であるのが好ましい。含フッ素重合体(1)、および含フ ッ素重合体(2)の波長 200〜500nmの光の光線透過率は、それぞれ、 90%以上で あるのが好ましい。ここで光線透過率とは厚さ 100 mの含フッ素重合体の光線透過 率をいう。
[0017] 含フッ素重合体(1)および含フッ素重合体 (2)において、主鎖に含フッ素脂肪族環 構造を有するとは、重合体における含フッ素脂肪族環の環を構成する炭素原子の 1 個以上が重合体の主鎖を構成する炭素原子であることを!、う。含フッ素脂肪族環の 環を構成する原子は、炭素原子以外に酸素原子や窒素原子等を含んで!/、てもよ ヽ 。好ましい含フッ素脂肪族環は 1〜2個の酸素原子を有する含フッ素脂肪族環である 。含フッ素脂肪族環を構成する原子の数は 4〜7個であるのが好ま 、。
[0018] 主鎖を構成する炭素原子は、環状単量体を重合させて得た重合体である場合には 重合性二重結合の炭素原子に由来し、ジェン系単量体を環化重合させて得た重合 体である場合には 2個の重合性二重結合の 4個の炭素原子に由来する。
[0019] 環状単量体とは、含フッ素脂肪族環を有し、かつ該含フッ素脂肪族環を構成する 炭素原子 炭素原子間に重合性二重結合を有する単量体、または、含フッ素脂肪 族環を有し、かつ該含フッ素脂肪族環を構成する炭素原子と含フッ素脂肪族環外の 炭素原子の間に重合性二重結合を有する単量体である。
ジェン系単量体とは、 2個の重合性二重結合を有する単量体である。
環状単量体は、下記化合物 1または下記化合物 2であるのが好ましい(ただし、 X1 はフッ素原子または炭素数 1〜3のペルフルォロアルコキシ基を、 R1および R2はそれ ぞれフッ素原子または炭素数 1〜6のペルフルォロアルキル基を、 X2および X3はそ れぞれフッ素原子または炭素数 1〜9のペルフルォロアルキル基を、示す。)。
[0020] [化 1]
CF=CXi X)CF
"ジ R 丫 CF2
(1) (2) 化合物 1の具体例としては、下記化合物が挙げられる。
[0021] [化 2]
Figure imgf000006_0001
化合物 2の具体例としては、下記化合物が挙げられる
[0022] [化 3]
Figure imgf000007_0001
[0023] ジェン系単量体は、式 CF =CF-Q-CF = CFで表される単量体であるのが好
2 2
ましい。ただし、 Qは炭素数 1〜3のエーテル性酸素原子を有していてもよいペルフ ルォロアルキレン基を示す。エーテル性酸素原子を有するペルフルォロアルキレン 基である場合、エーテル性酸素原子は該基の一方の末端に存在していてもよぐ該 基の両末端に存在していてもよぐ該基の炭素原子間に存在していてもよい。環化重 合性の観点からは、該基の一方の末端に存在して!/、るのが好ま 、。
[0024] 前記単量体は環化重合により、下記モノマー単位 (A)、下記モノマー単位 (B)、お よび下記モノマー単位 (C)からなる群力も選ばれる 1以上のモノマー単位を含む含フ ッ素重合体を形成する。ジェン系単量体を環化重合させて得た含フッ素重合体にお いて主鎖の炭素原子は、 2個の重合性二重結合の 4個の炭素原子に由来する。
[0025] [化 4]
CF2 z F2 CF2 ^CF2 Z \ ^CF2 ^CF2
"CF CF Z CF "CF ^CF CF
Q- Qノ Q
Figure imgf000007_0002
前記単量体の具体例としては、下記の化合物が挙げられる。
[0026] [化 5]
CF2=CFOCF2CF=CF2
CF2=CFOCF(CF3)CF=CF2
CF2=CFOCF2CF2CF=CF2
CF2=CFOCF(CF3)CF2CF=CF2
CF2=CFOCF2CF(CF3)CF=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOC(CF3)2OCF=CF2
CF2=CFCF2CF=CF2
CF2=CFCF2CF2CF=CF2
[0027] 環状単量体およびジェン系単量体において、炭素原子に結合した水素原子と炭素 原子に結合したフッ素原子の合計数に対する炭素原子に結合したフッ素原子の数 の割合は、それぞれ、 80%以上であるのが好ましぐ 100%であるのが特に好ましい
[0028] 含フッ素重合体(1)および含フッ素重合体(2)において、全モノマー単位に対する 含フッ素脂肪族環構造を有する繰り返し単位の割合は、含フッ素重合体の透明性の 観点から、それぞれ、 20モル%以上であるのが好ましぐ 40モル%以上であるのがよ り好ましぐ主鎖に含フッ素脂肪族環構造を有する繰り返し単位力 のみなるのが特 に好ましい。ただし、含フッ素脂肪族環構造を有する繰り返し単位とは、環状単量体 の重合により形成されたモノマー単位、またはジェン系単量体の環化重合により形成 されたモノマー単位である。
[0029] 含フッ素重合体 (2)における含フッ素脂肪族環構造を有する繰り返し単位と、含フ ッ素重合体(1)における含フッ素脂肪族環構造を有する繰り返し単位は、同じ繰り返 し単位であるのが好ましい。この場合、中間層(A)と表面層(B)とがより強固に接着さ れ、モールドの耐久性が優れる効果がある。
[0030] 含フッ素重合体 (1)は反応性基 (y)を有する。反応性基 (y)の種類は、官能基 (x) の種類に応じて適宜選択される。官能基 (X)が水酸基、ォキシラ-ル基、またはァミノ 基である場合の反応性基 (y)は、カルボキシル基またはその誘導体であるのが好ま しく、カルボキシル基であるのが特に好まし!/、。
[0031] 一方、含フッ素重合体 (2)は、反応性基 (y)を実質的に有さない。反応性基 (y)を 実質的に有さないとは、含フッ素重合体 (2)中の反応性基 (y)の含有量が検出限界 以下であることを!、う。また含フッ素重合体 (2)は反応性基 (y)以外の反応性基も実 質的に有さな!/、のが好ま U、。
[0032] 含フッ素重合体(1)および含フッ素重合体(2)は、それぞれ、公知の方法にしたが つて入手できる。たとえば、反応性基 (y)がカルボキシル基である含フッ素重合体(1 )は、炭化水素系ラジカル重合開始剤の存在下に、ジェン系単量体または環状単量 体を重合して主鎖に含フッ素脂肪族環構造を有する含フッ素重合体を得て、つぎに 該含フッ素重合体を酸素ガス雰囲気下に加熱処理し、さらに水中に浸漬することに より得られる。また該含フッ素重合体をフッ素ガスに接触させることにより、実質的に 反応性基 (y)を含まな 、含フッ素重合体 (2)を入手できる。
[0033] 本発明における表面層(B)は、その表面に微細パターンを有する。微細パターン は凹凸構造力もなる微細パターンであるのが好ましい。
[0034] 凹凸構造における凸構造をなす部分は、表面層(B)の表面に線状や点状に存在 し、その線や点の形状は特に限定されない。線状の凸構造部は直線に限られず、曲 線や折れ曲がり形状であってもよい。またその線が多数平行に存在して縞状をなして V、てもよ 、。線状の凸構造部の断面形状 (線の伸びる方向に対して直角方向の断面 の形状。)は特に限定されず、長方形、台形、三角形、半円形等が挙げられる。点状 の凸構造部の形状もまた特に限定されない。たとえば、底面形状が長方形、正方形 、菱形、六角形、三角形、円形等である柱状や錐状の形状、半球形、多面体形等が 挙げられる。
[0035] 線状の凸構造部の幅(底部の幅をいう)の平均は、 lnm〜500 mであるのが好ま しぐ 10nm〜300 mであるのが特に好ましい。点状の凸構造部の底面の長さの平 均は、 1ηπι〜500 /ζ πιであるのが好ましぐ 10ηπι〜300 /ζ mであるのが特に好まし い。ただし、この点状の凸構造部の底面の長さとは、点が線に近い形状に伸びてい る場合は、その伸びた方向とは直角方向の長さをいい、そうでない場合は底面形状 の最大長さをいう。
[0036] 線状および点状の凸構造部の高さの平均は、 Inn!〜 500 mであるのが好ましぐ 10nm〜300 μ mであるのが特に好ましぐ 10nm〜10 μ mであるのが最も好ましい 。また表面層(B)の厚さは、最も高い凸構造部の高さ以上であるのが好ましい。
[0037] 凹凸構造が密集している部分において、隣接する凸構造部間の距離 (底部間の距 離をいう。)の平均は 1ηπι〜500 ;ζ πιであるのが好ましぐ 10nm〜 300 mであるの が特に好ましい。このように、凸構造におけるこれらの最小寸法は、 500 m以下で あるのが好ましい。下限は lnmであるのが好ましい。この最小寸法とは上記凸構造 部の幅、長さおよび高さのうち最小のものをいう。
[0038] 本発明のモールドは、光硬化性榭脂を成形するための微細パターンを表面に有す る含フッ素重合体層と透明基体とを有するモールドであり、中間層 (A)が形成される 表面に官能基 (X)を有する透明基体の該表面に形成した含フッ素重合体(1)からな る中間層 (A)と、該中間層 (A)の表面に形成した、含フッ素重合体 (2)からなる、微 細パターンを有する表面層(B)とを有するモールドであるのが好ましい。
[0039] 本発明のモールドにおいて、透明基体は、その表面に中間層(A)が形成される前 には、官能基 (X)を有する。該透明基体の表面に中間層 (A)が形成されることによつ て、官能基 (X)の一部または全部が、含フッ素重合体(1)の反応性基 (y)の一部また は全部と化学結合を形成する。透明基体の官能基 (X)の一部が化学結合を形成した 場合には、本発明のモールドにおける透明基体はなお官能基 (X)を有している。一 方、透明基体の官能基 (X)の全部が化学結合を形成した場合には、本発明のモー ルドにおける透明基体は官能基 (X)を有して 、な 、。
[0040] Vヽずれにしても中間層 (A)を形成した後の透明基体表面には官能性基 (X)と反応 性基 (y)から形成された化学結合が存在する。化学結合としては、官能性基 (X)が力 ルポキシル基であり反応性基 (y)が水酸基またはォキシラニル基である場合のエステ ル結合、官能性基 (X)がカルボキシル基であり反応性基 (y)がァミノ基である場合の アミド結合等が挙げられる。したがって本発明のモールドにおいては、透明基体と中 間層 (A)が化学結合を介して強固に接着されている。
[0041] また本発明のモールドにおいては、中間層(A)を構成する含フッ素重合体(1)と表 面層 (B)を構成する含フッ素重合体 (2)が、共通構造 (すなわち、主鎖に含フッ素脂 肪族環構造。)の含フッ素重合体力もなるため、中間層 (A)と表面層 (B)が強固に接 着されている。そのため本発明は、透明基体の種類または形状を適宜選択でき、力 つ任意の強度と形状を有する離型性の高いモールドを提供できる。
[0042] 本発明のモールドの具体的な 1態様としては、表面に微細パターンを有する光硬化 性榭脂成形用モールドであって、波長 200〜500nmの光の光線透過率が 90%以 上の透明基体と、該基体上に形成された主鎖に含フッ素脂肪族環構造を有しフッ素 ガスで処理した含フッ素重合体とを含む、モールドが挙げられる。
[0043] 本発明のモールドの製造方法としては、下記工程 Ml、下記工程 M2、下記工程 M 3、および下記工程 M4を順に行う方法が挙げられる。
[0044] [工程 Ml]
表面に官能基 (X)を有する透明基体の該表面側に、含フッ素溶媒に含フッ素重合 体(1)を溶解させた溶液を塗布し、つぎに含フッ素溶媒を乾燥により除去して、含フ ッ素重合体 (1)力らなる中間層 (A)を、表面に官能基 )を有する透明基体の該表 面側に形成させる工程。
[0045] [工程 M2]
中間層 (A)の表面側に、含フッ素溶媒に含フッ素重合体 (2)を溶解させた溶液を 塗布し、つぎに乾燥により含フッ素溶媒を除去して、中間層 (A)の表面に含フッ素重 合体 (2)からなる層(BP)を形成させる工程。
[0046] [工程 M3]
層(BP)を含フッ素重合体(2)のガラス転移温度以上に加熱した後に、または微細 パターンの反転パターンを有するモールドを該ガラス転移温度以上に加熱した後に
、層(BP)側に微細パターンの反転パターンを表面に有するモールドの該反転パター ンを押圧する工程。
[0047] [工程 M4]
層(BP)およびモールドを含フッ素重合体 (2)のガラス転移温度以下に冷却した後 にモールドを剥離して、中間層(A)の表面にモールドの転写微細パターンが形成さ れた含フッ素重合体 (2)からなる表面層(B)を形成させる工程。
[0048] 工程 Mlにおける乾燥は、透明基材の官能基 (X)の一部または全部と、含フッ素重 合体(1)の反応性基 (y)の一部または全部との間に化学結合を形成しうる温度で行 われる。乾燥における温度は通常は 100°C以上である。
[0049] 工程 M2における乾燥の温度は、含フッ素重合体(1)のガラス転移温度以上、およ び含フッ素重合体(2)のガラス転移温度以上で行うのが好ましい。この場合、中間層
(A)と層 (BP)が高強度に接着される。
[0050] 本発明は、上記の工程を通じて製造されるモールド、基材、および光硬化性榭脂を 使用し、モールドの微細パターン面と基材表面との間に光硬化性榭脂を挟持して押 圧する工程 (以下、工程 1という。)、モールド側力 光照射し光硬化性榭脂を硬化さ せて硬化物とする工程 (以下、工程 2という。)、および該硬化物力 モールドを剥離 する工程 (以下、工程 3という。)を順に行う、光硬化性榭脂の硬化物からなる転写微 細パターンを有する基材の製造方法を提供する。 [0051] 本発明における光硬化性榭脂とは、光照射により硬化して硬化物を形成する榭脂 であれば特に限定されない。本発明のモールドは、広範囲の光波長領域において 高い透明性を有する。そのため光照射における光の波長は、特に限定されない。光 の波長は、 200〜500nmであるのが好ましぐ一般的な光硬化性榭脂を低温で硬化 できる、 200〜400nmであるのが特に好まし!/、。
[0052] 本発明における光硬化性榭脂は、重合性化合物と光重合開始剤を含む光硬化性 榭脂であるのが好ましい。重合性化合物は、重合性基を有する化合物であれば特に 限定されず、重合性モノマー、重合性オリゴマー、重合性ポリマーのいずれであって もよい。光重合開始剤とは、光によりラジカル反応またはイオン反応を引き起こす光 重合開始剤である。また工程 1、工程 2、および工程 3における系の温度は、含フッ素 重合体(2)のガラス転移温度以下であるの力好ま 、。
[0053] 工程 1の具体的な態様としては、下記工程 11、下記工程 12、および下記工程 13が 挙げられる。
工程 11:光硬化性榭脂を基材表面に配置し、次!ヽで光硬化性榭脂がモールドの ノターン面に接するように、該基材と前記モールドとを挟持した後に押圧する工程。
[0054] 工程 12:光硬化性榭脂をモールドのパターン面に配置し、次 、で基材表面が光硬 化性榭脂に接するように、前記基材と該モールドとを挟持した後に押圧する工程。
[0055] 工程 13 :基材とモールドを組み合せて、基材表面とモールドのパターン面との間に 空隙を形成し、次いで該空隙に光硬化性榭脂を充填して、モールドのパターン面と 基材の間に光硬化性榭脂を挟持した後に押圧する工程。
[0056] 本発明の製造方法で得られる処理基材は、光硬化性榭脂の硬化物からなる転写 微細パターンが表面に形成される。転写微細パターンは本発明のモールドの微細パ ターンが反転した微細パターンである。転写微細パターンは、光硬化性榭脂の硬化 物からなる、凹凸構造を有する構造体 (以下、凹凸構造体ともいう。)であるのが好ま しい。凹凸構造体は、凹凸形状を表面に有する連続体からなる層構造を有していて もよぐ独立した突起体の集合力もなる構造を有していてもよい。前者は、基材表面を 覆う光硬化性榭脂の硬化物の層力 なり光硬化性榭脂の硬化物の層の表面が凹凸 形状をなしている構造をいう。後者は、光硬化性榭脂の硬化物からなる突起体が基 材表面に独立して多数存在し、基材表面力もなる凹部とともに凹凸形状をなしている 構造をいう。いずれの場合においても、凸構造をなす部分 (突起体)は光硬化性榭脂 の硬化物力 なる。さらに、凹凸構造体はそれら 2つの構造を基材表面の異なる位置 で併有する構造を有して 、てもよ ヽ。
[0057] 本発明の製造方法で得られる処理基材は、マイクロレンズアレイ、光導波路、光ス イッチング、フレネルゾーンプレート、バイナリー素子、ブレーズ素子、フォト二タス結 晶等の光学素子; AR(Anti Reflection)コート部材、バイオチップ、 TAS (Mi cro- Total Analysis Systems)用のチップ、マイクロリアクターチップ、記録メデ ィァ、ディスプレイ材料、触媒の担持体、フィルター、センサー部材等として有用であ る。
実施例
[0058] 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定され ない。
[実施例 1 ]重合体 (P)の製造例
オートクレーブ(而ォ圧ガラス製)に、 CF =CFOCF CF CF = CFの 100g、メタノ
2 2 2 2
ールの 0. 5g、および((CH ) CHOCOO) の 0. 7gを加え、懸濁重合法を用いて
3 2 2
重合を行って重合体 (P)を得た。重合体 (P)は下式 (P)で表されるモノマー単位から なる重合体であり、固有粘度は 30°Cのペルフルォロ(2 ブチルテトラヒドロフラン)中 で 0. 34dlZgであった。重合体 (P)のガラス転移温度は 108°Cであった。
[0059] [化 6]
CF2 ^CF2
, 、CF— CF 、
I \ (P)
O /CF2
CF2
[0060] [実施例 2]主鎖に含フッ素脂肪族環構造を有し、かつカルボキシル基を有する重 合体 (以下、重合体(11)という)を含む溶液組成物(以下、組成物 1という。)の製造 例
重合体 )を、大気圧雰囲気下の熱風循環式オーブン中で 300°Cにて 1時間熱処 理し、つぎに超純水中で 110°Cにて 1週間浸漬し、さらに真空乾燥機中で 100°Cに て 24時間乾燥して重合体(11)を得た。重合体(11)の赤外吸収スペクトルを測定し た結果、カルボキシル基に由来するピークが確認された。重合体(11)を膜厚 100 mのフィルムに加工し、波長 200〜500nmの光の光線透過率を測定した結果、 93 %以上であった。重合体(11)の 1質量%を含むペルフルォロトリブチルァミン溶液を 調製し、該溶液をメンブレンフィルター(孔径 0. 2 m、 PTFE製)で濾過して組成物 1を得た。
[0061] [実施例 3]主鎖に含フッ素脂肪族環構造を有し、反応性基を有さな!/、重合体 (以 下、重合体(21) t ヽぅ。)を含む溶液組成物(以下、組成物 2と ヽぅ。)の製造例 重合体 (P)を、オートクレープ (ニッケル製、内容積 1L)に入れ、オートクレープ内を 窒素ガスで 3回置換してから 4. OkPa (絶対圧)まで減圧した。オートクレープ内に窒 素ガスで 14体積%に希釈したフッ素ガスを 101. 3kPaまで導入してから、オートタレ 一ブの内温を 6時間、 230°Cに保持した。オートクレープ内容物を回収して重合体(2 1)を得た。重合体(21)の赤外吸収スペクトルを測定した結果、カルボキシル基に起 因するピークは確認されな力つた。重合体(21)を膜厚 100 mのフィルムにカ卩ェし、 波長 200〜500nmの光の光線透過率を測定した結果、 95%以上であった。重合体 (21)の 9質量%を含むペルフルォロトリブチルァミン溶液を調製し、該溶液をメンブ レンフィルター(孔径 0. 2 m、 PTFE製)で濾過して組成物 2を得た。
[0062] [実施例 4]モールドの製造例 (試作例その 1)
アミノ基を有するシランカップリング剤 (信越ィ匕学社製: KBE— 903)の 0. 5質量% と水の 5質量%とを含むエタノール溶液を、波長 200〜500nmの光の光線透過率が 90%以上の石英基板(縦 25mm X横 25mm X厚さ 1mm)上にスピンコート法を用 いて塗布した。石英基板を水洗してから、 70°Cにて 1時間加熱乾燥して、該シラン力 ップリング剤由来のアミノ基を石英基板表面に導入する表面処理を行った。
[0063] つぎに石英基板の表面処理面にスピンコート法を用いて例 2で得た糸且成物 1を塗 布し、 180°Cにて 1時間、加熱乾燥して、組成物 1中のペルフルォロトリブチルァミン を揮発させた。同時に、石英基板表面のァミノ基と、重合体(11)のカルボキシル基と をィ匕学結合させ、ァミノ基とアミド結合を形成した重合体(11)力もなる層が表面に形 成した石英基板を得た。
[0064] つぎに、スピンコート法を用い例 3で得た組成物 2を該層上に塗布し、 180°Cにて 1 時間、加熱乾燥して、組成物 2中のペルフルォロトリブチルァミンを揮発させた。その 結果、重合体(21)からなる層(層厚 1. 3 m)が最表面に形成した石英基板を得た
[0065] さらに、深さ 100nm、幅 0. 7 μ mの凹構造が 9. 3 μ mの間隔で配置された凹凸構 造を有するシリコン製のモールドを 120°Cに加熱し、重合体(21)からなる層側に 2. OMPa (絶対圧)で 10分間、圧着させた。モールドと石英基板の温度を 30°C以下に して力もモールドを剥離した。
[0066] その結果、石英基板と、重合体(11)層と、重合体 (21)層とからなり、重合体 (21) の最表面に微細パターン(高さ lOOnm X幅 0. の凸構造力 9. の間隔 で配置された凹凸構造。)を有するモールドを得た。
[0067] [実施例 5]光硬化性榭脂成型用モールドの製造例 (試作例その 2)
例 4と同じエタノール溶液と石英基板を準備して、同様の表面処理を行った石英基 板を得た。つぎにスピンコート法を用いて例 2で得た組成物 1を石英基板の表面処理 された面上に塗布して、 180°Cにて 1時間加熱乾燥した。スピンコート法を用いて例 3 で得た組成物 2を該面上に塗布して、 180°Cにて 1時間加熱乾燥すると、重合体(21 )からなる薄膜 (膜厚 1. 3 /z m)が形成された石英基板を得た。つぎに、例 4と同じシリ コン製のモールドを 120°Cに加熱してから、石英基板の薄膜側に 2. OMPaの圧力( 絶対圧)で 10分間、圧着させた。
[0068] さらに、モールドと石英基板の温度を 30°C以下に冷却してから、モールドを石英基 板力 離脱させて、該モールドの凹凸構造が転写された重合体 (21)力 なる薄膜が 形成された石英基板を得た。該薄膜表面には高さ 100nm、幅 0. 7 /z mの凸構造が 9. 3 mの間隔で配置された凹凸構造が形成された。
[0069] [実施例 6]微細パターンが表面に形成された処理基材の製造方法
紫外光をカットしたクリーンルーム内にて、 CF =CFCF C (CF ) (OCH OCH )
2 2 3 2 3
CH CH = CHの 1. 31gと CF =CFCF C (CF ) (OH) CH CH = CHの 0. 14g
2 2 2 2 3 2 2 光硬化開始剤 1 (チバ'スペシャルティ'ケミカルズ社製:ィルガキュア 651)の 0. 03 g、および光硬化開始剤 2 (チバ'スペシャルティ'ケミカルズ社製:ィルガキュア 907 )の 0. 03gを順に混合して光硬化性榭脂を得た。
[0070] 光硬化性榭脂の 2滴をシリコンウェハ上に塗布して光硬化性榭脂からなる薄膜 (膜 厚 2. 5 m)が形成されたシリコンウェハを得た。該薄膜側と例 5で得たモールドの微 細パターン面とを押し付けた。モールド側カゝら紫外線 (波長 365nm、照度 63mWZc m2)を 10秒間、照射して光硬化性榭脂を硬化させた。つぎにモールドを離脱させて 、光硬化性榭脂の硬化物からなる、モールドの凸構造が反転して形成した微細バタ ーン (深さ 99nm、幅 0. の凹構造が 9. 3 mの間隔で配置された凹凸構造。) を表面に有するシリコンウェハを得た。
産業上の利用可能性
[0071] 本発明のモールドは、光硬化性榭脂を使用するナノインプリント用モールドとして有 用である。本発明のモールドを用いて得た処理基材は、微細パターンを表面に有す ることから種々の用途に有用である。該処理基材は、光学素子 (マイクロレンズアレイ 、光導波路、光スイッチング、フレネルゾーンプレート、バイナリー光学素子、ブレー ズ光学素子、フォト-タス結晶等。)、反射防止フィルター、バイオチップ、マイクロリア クタ一チップ、記録メディア、ディスプレイ材料、触媒担持体等が挙げられる。 なお、 2004年 11月 30曰〖こ出願された曰本特許出願 2004— 346029号、及び 20 05年 8月 29日に出願された日本特許出願 2005— 247722号の明細書、特許請求 の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入 れるものである。

Claims

請求の範囲
[1] 光硬化性榭脂を成形するための微細パターンを有するモールドであり、下記中間 層 (A)が形成される表面に官能基 (X)に基づく化学結合を有する透明基体と;該透 明基体表面と下記表面層 (B)との間に存在する中間層 (A)と;微細パターンを有す る下記表面層(B)と;を有することを特徴とするモールド。
中間層 (A):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前 記官能基 (X)と反応性の反応性基 (y)を有する含フッ素重合体 (1)からなる層。 表面層 (B):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前記 反応性基 (y)を実質的に有しない含フッ素重合体 (2)からなり、表面に微細パターン を有する層。
[2] 光硬化性榭脂を成形するための微細パターンを表面に有する含フッ素重合体層と 、透明基体とを有するモールドであり、下記中間層 (A)が形成される表面に官能基( X)を有する透明基体の表面に形成した下記含フッ素重合体(1)からなる中間層 (A) と、該中間層(A)の表面に形成した下記含フッ素重合体(2)からなる微細パターンを 有する表面層(B)とからなる含フッ素重合体層を有するモールド。
中間層 (A):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前 記官能基 (X)と反応性の反応性基 (y)を有する含フッ素重合体 (1)からなる層。 表面層 (B):主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であって、前記 反応性基 (y)を実質的に有しない含フッ素重合体 (2)からなり、表面に微細パターン を有する層。
[3] モールドの微細パターンが、凹凸構造力もなり、凸構造部の高さの平均が Inn!〜 5
00 μ mである、請求項 1または 2に記載のモールド。
[4] 官能基 (X)が水酸基、アミノ基またはォキシラニル基であり、反応性基 (y)がカルボ キシル基である、請求項 1〜3の!、ずれかに記載のモールド。
[5] 表面に官能基 (X)を有する透明基体が、表面処理によって官能基 (X)が導入され たガラス基体である、請求項 1〜4の 、ずれか〖こ記載のモールド。
[6] 請求項 1〜5の 、ずれかに記載のモールド、基材、および光硬化性榭脂を使用し、 モールドの微細パターン面と基材表面との間に光硬化性榭脂を挟持して押圧するェ 程、モールド側力 光照射し光硬化性榭脂を硬化させて硬化物とする工程、および 該硬化物からモールドを剥離する工程を順に行う、光硬化性榭脂の硬化物からなる 転写微細パターンを有する基材の製造方法。
PCT/JP2005/021821 2004-11-30 2005-11-28 モールド、および転写微細パターンを有する基材の製造方法 WO2006059580A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05809536A EP1820619A4 (en) 2004-11-30 2005-11-28 MOLD AND METHOD FOR MANUFACTURING SUBSTRATES HAVING MICROMOTIVES TRANSFERRED THEREON
JP2006547915A JP4655043B2 (ja) 2004-11-30 2005-11-28 モールド、および転写微細パターンを有する基材の製造方法
US11/754,526 US7441745B2 (en) 2004-11-30 2007-05-29 Mold, and process for producing base material having transferred micropattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004346029 2004-11-30
JP2004-346029 2004-11-30
JP2005247722 2005-08-29
JP2005-247722 2005-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/754,526 Continuation US7441745B2 (en) 2004-11-30 2007-05-29 Mold, and process for producing base material having transferred micropattern

Publications (1)

Publication Number Publication Date
WO2006059580A1 true WO2006059580A1 (ja) 2006-06-08

Family

ID=36565014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021821 WO2006059580A1 (ja) 2004-11-30 2005-11-28 モールド、および転写微細パターンを有する基材の製造方法

Country Status (6)

Country Link
US (1) US7441745B2 (ja)
EP (1) EP1820619A4 (ja)
JP (1) JP4655043B2 (ja)
KR (1) KR20070084250A (ja)
TW (1) TW200628399A (ja)
WO (1) WO2006059580A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000945A (ja) * 2006-06-21 2008-01-10 Toshiba Mach Co Ltd 転写用の型
WO2008015842A1 (fr) * 2006-08-03 2008-02-07 Asahi Glass Company, Limited Procédé permettant de produire un moule
WO2008132903A1 (ja) * 2007-04-12 2008-11-06 Kyowa Hakko Chemical Co., Ltd. パターン形成方法およびパターン形成装置
WO2008146542A1 (ja) 2007-05-24 2008-12-04 Asahi Glass Company, Limited モールド、その製造方法および転写微細パターンを有する基材の製造方法
WO2009125697A1 (ja) * 2008-04-08 2009-10-15 旭硝子株式会社 モールド、その製造方法および転写微細パターンを有する基材の製造方法
JP2011526553A (ja) * 2008-07-17 2011-10-13 エージェンシー・フォー・サイエンス・テクノロジー・アンド・リサーチ ポリマー構造上にインプリントを作製する方法
JP2012061832A (ja) * 2010-09-17 2012-03-29 Sony Corp 積層体の製造方法、原盤および転写装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655043B2 (ja) 2004-11-30 2011-03-23 旭硝子株式会社 モールド、および転写微細パターンを有する基材の製造方法
CN101160331B (zh) * 2005-04-21 2010-12-15 旭硝子株式会社 光固化性组合物、精细图案形成体及其制造方法
JP2007264594A (ja) * 2006-03-01 2007-10-11 Nissan Motor Co Ltd 反射防止微細構造、反射防止成形体及びその製造方法
JP5413195B2 (ja) * 2007-09-28 2014-02-12 旭硝子株式会社 微細パターン形成体、微細パターン形成体の製造方法、光学素子および光硬化性組成物
CN102027026B (zh) * 2008-05-29 2013-06-19 旭硝子株式会社 光固化性组合物及表面具有精细图案的成形体的制造方法
US9217968B2 (en) 2009-01-21 2015-12-22 Xerox Corporation Fuser topcoats comprising superhydrophobic nano-fabric coatings
US9062219B2 (en) * 2009-01-21 2015-06-23 Xerox Corporation Superhydrophobic nano-fabrics and coatings
JP5435824B2 (ja) 2009-02-17 2014-03-05 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ マイクロ構造を作製する方法
US9471019B2 (en) * 2010-01-25 2016-10-18 Xerox Corporation Polymer-based long life fusers
US9329544B2 (en) * 2010-01-25 2016-05-03 Xerox Corporation Polymer-based long life fusers and their methods of making
CN103052492B (zh) 2010-08-06 2014-12-31 综研化学株式会社 纳米压印用树脂制模具
KR101698256B1 (ko) * 2012-03-12 2017-01-19 아사히 가세이 이-매터리얼즈 가부시키가이샤 몰드, 레지스트 적층체 및 그 제조 방법 및 요철 구조체
US8852833B2 (en) 2012-04-27 2014-10-07 Xerox Corporation Imaging member and method of making an imaging member
CN105722670B (zh) 2013-12-02 2018-12-07 诺华股份有限公司 用于制备模制器件的新颖方法
CN107643652A (zh) * 2017-10-31 2018-01-30 武汉华星光电技术有限公司 纳米压印模板及其制作方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4627514Y1 (ja) * 1967-03-10 1971-09-22
JPH0133296Y2 (ja) * 1984-05-17 1989-10-09
JPH05245848A (ja) * 1992-03-04 1993-09-24 Shigetoshi Watanabe 成形金型の離型被膜およびその離型被膜を形成する方法
JP2000108137A (ja) * 1998-10-01 2000-04-18 Nippon Zeon Co Ltd 成形体の製造方法および樹脂型
JP2002283354A (ja) * 2001-03-27 2002-10-03 Daikin Ind Ltd インプリント加工用金型およびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808249A (en) * 1973-04-02 1974-04-30 Minnesota Mining & Mfg Fluoroaliphaticthiomethylsilanes
SE458212B (sv) 1987-07-17 1989-03-06 Valmet Paper Machinery Inc Formare foer formning av en pappersbana
JPH0818336B2 (ja) * 1991-02-06 1996-02-28 松下電器産業株式会社 成形用部材およびその製造方法
US5344677A (en) * 1992-08-27 1994-09-06 Hong Gilbert H Photochemically stable deep ultraviolet pellicles for excimer lasers
US5688642A (en) * 1994-12-01 1997-11-18 The United States Of America As Represented By The Secretary Of The Navy Selective attachment of nucleic acid molecules to patterned self-assembled surfaces
US5543217A (en) * 1995-02-06 1996-08-06 E. I. Du Pont De Nemours And Company Amorphous copolymers of tetrafluoroethylene and hexafluoropropylene
US6482742B1 (en) 2000-07-18 2002-11-19 Stephen Y. Chou Fluid pressure imprint lithography
GB9623185D0 (en) * 1996-11-09 1997-01-08 Epigem Limited Improved micro relief element and preparation thereof
JP3818344B2 (ja) * 1997-11-20 2006-09-06 旭硝子株式会社 含フッ素脂肪族環構造含有重合体の製造方法
US6334960B1 (en) 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
EP1275666A4 (en) * 2000-04-04 2007-10-24 Daikin Ind Ltd FLUOROPOLYMER COMPRISING A GROUP THAT REACTS TO ACIDS AND PHOTORESIST COMPOSITION WITH CHEMICAL AMPLIFICATION CONTAINING SAID FLUOROPOLYMER
US6692817B1 (en) * 2000-04-04 2004-02-17 Northrop Grumman Corporation Apparatus and method for forming a composite structure
DE10062203A1 (de) * 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Verfahren zur Abformung von hydrophoben Polymeren zur Erzeugung von Oberflächen mit beständig wasser- und ölabweisenden Eigenschaften
US20030071016A1 (en) * 2001-10-11 2003-04-17 Wu-Sheng Shih Patterned structure reproduction using nonsticking mold
US20050167894A1 (en) * 2002-10-08 2005-08-04 Wu-Sheng Shih Patterned structure reproduction using nonsticking mold
US7452574B2 (en) * 2003-02-27 2008-11-18 Molecular Imprints, Inc. Method to reduce adhesion between a polymerizable layer and a substrate employing a fluorine-containing layer
US7070406B2 (en) * 2003-04-29 2006-07-04 Hewlett-Packard Development Company, L.P. Apparatus for embossing a flexible substrate with a pattern carried by an optically transparent compliant media
JP2004346029A (ja) * 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd 重合性化合物および位相差板
CN1997691B (zh) * 2003-09-23 2011-07-20 北卡罗来纳大学查珀尔希尔分校 光固化的全氟聚醚用作微流体器件中的新材料
JP2006182011A (ja) * 2004-11-30 2006-07-13 Asahi Glass Co Ltd 光硬化性樹脂成型用モールドおよび該モールドを用いる硬化物の製造方法
JP4655043B2 (ja) 2004-11-30 2011-03-23 旭硝子株式会社 モールド、および転写微細パターンを有する基材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4627514Y1 (ja) * 1967-03-10 1971-09-22
JPH0133296Y2 (ja) * 1984-05-17 1989-10-09
JPH05245848A (ja) * 1992-03-04 1993-09-24 Shigetoshi Watanabe 成形金型の離型被膜およびその離型被膜を形成する方法
JP2000108137A (ja) * 1998-10-01 2000-04-18 Nippon Zeon Co Ltd 成形体の製造方法および樹脂型
JP2002283354A (ja) * 2001-03-27 2002-10-03 Daikin Ind Ltd インプリント加工用金型およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1820619A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000945A (ja) * 2006-06-21 2008-01-10 Toshiba Mach Co Ltd 転写用の型
WO2008015842A1 (fr) * 2006-08-03 2008-02-07 Asahi Glass Company, Limited Procédé permettant de produire un moule
WO2008132903A1 (ja) * 2007-04-12 2008-11-06 Kyowa Hakko Chemical Co., Ltd. パターン形成方法およびパターン形成装置
WO2008146542A1 (ja) 2007-05-24 2008-12-04 Asahi Glass Company, Limited モールド、その製造方法および転写微細パターンを有する基材の製造方法
EP2172320A1 (en) * 2007-05-24 2010-04-07 Asahi Glass Company, Limited Mold, method for production of the mold, and method for production of substrate having replicated fine pattern
EP2172320A4 (en) * 2007-05-24 2011-07-06 Asahi Glass Co Ltd MOLDING TOOL, METHOD FOR PRODUCING THE MOLDING TOOL AND METHOD FOR PRODUCING A SUBSTRATE WITH REPRODUCTION OF A FINE PATTERN
WO2009125697A1 (ja) * 2008-04-08 2009-10-15 旭硝子株式会社 モールド、その製造方法および転写微細パターンを有する基材の製造方法
JP2011526553A (ja) * 2008-07-17 2011-10-13 エージェンシー・フォー・サイエンス・テクノロジー・アンド・リサーチ ポリマー構造上にインプリントを作製する方法
JP2012061832A (ja) * 2010-09-17 2012-03-29 Sony Corp 積層体の製造方法、原盤および転写装置

Also Published As

Publication number Publication date
JP4655043B2 (ja) 2011-03-23
JPWO2006059580A1 (ja) 2008-06-05
TW200628399A (en) 2006-08-16
EP1820619A1 (en) 2007-08-22
EP1820619A4 (en) 2010-07-07
KR20070084250A (ko) 2007-08-24
US7441745B2 (en) 2008-10-28
US20070228619A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2006059580A1 (ja) モールド、および転写微細パターンを有する基材の製造方法
EP1873174B1 (en) Photocurable composition, article with fine pattern and method for producing same
JP2007245702A (ja) テンプレートおよび転写微細パターンを有する処理基材の製造方法
JP2009001002A (ja) モールド、その製造方法および転写微細パターンを有する基材の製造方法
JP2007320071A (ja) テンプレートおよび転写微細パターンを有する処理基材の製造方法
KR101652680B1 (ko) 광경화성 조성물 및 표면에 미세 패턴을 갖는 성형체의 제조 방법
KR101457254B1 (ko) 광경화성 조성물, 미세 패턴 형성체의 제조 방법 및 광학 소자
JP5594147B2 (ja) 光硬化性組成物および表面に微細パターンを有する成形体の製造方法
US20160214281A1 (en) Flexible nanoimprint mold, method for fabricating the same, and mold usage on planar and curved substrate
JP5292621B2 (ja) ナノインプリント用樹脂製モールド
JP2007320072A (ja) モールドおよびその製造方法
JP2007307752A (ja) モールドおよびその製造方法
JPWO2008015842A1 (ja) モールドの製造方法
JP2006182011A (ja) 光硬化性樹脂成型用モールドおよび該モールドを用いる硬化物の製造方法
WO2021182049A1 (ja) インプリントモールド用光硬化性樹脂組成物、樹脂モールド、該樹脂モールドを用いたパターン形成方法、該樹脂モールドを有する複合体、該複合体の製造方法及び光学部材の製造方法
JP2009214323A (ja) 微細パターンを有する物品の製造装置および製造方法
WO2006030625A1 (ja) 硬化性組成物、微細構造体の製造方法およびパターンの形成方法
WO2009125697A1 (ja) モールド、その製造方法および転写微細パターンを有する基材の製造方法
KR20120020012A (ko) 유기-무기 복합체 및 이로부터 제조된 나노임프린트용 스탬프
CN100575036C (zh) 模具及具有转印精细图形的基材的制造方法
KR101321104B1 (ko) 나노 임프린트용 스탬프의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547915

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077011052

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580040754.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11754526

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005809536

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005809536

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11754526

Country of ref document: US