JP2007320071A - テンプレートおよび転写微細パターンを有する処理基材の製造方法 - Google Patents

テンプレートおよび転写微細パターンを有する処理基材の製造方法 Download PDF

Info

Publication number
JP2007320071A
JP2007320071A JP2006150074A JP2006150074A JP2007320071A JP 2007320071 A JP2007320071 A JP 2007320071A JP 2006150074 A JP2006150074 A JP 2006150074A JP 2006150074 A JP2006150074 A JP 2006150074A JP 2007320071 A JP2007320071 A JP 2007320071A
Authority
JP
Japan
Prior art keywords
functional group
template
fluoropolymer
fine pattern
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006150074A
Other languages
English (en)
Inventor
Yasuhide Kawaguchi
泰秀 川口
Akihiko Asakawa
昭彦 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006150074A priority Critical patent/JP2007320071A/ja
Publication of JP2007320071A publication Critical patent/JP2007320071A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】光透過性、離型性、耐久性、機械的強度、形状安定性を備え、かつ微細パターンの寸法精度を備える、光硬化性樹脂を成形するための微細パターンを有するテンプレートの製造方法の提供。
【解決手段】微細パターンの反転パターンを有するモールド4の該パターン上に、反応性官能基(x)を実質的に有さない含フッ素重合体(A)を溶媒に溶解させた溶液を塗布し、溶媒を除去して、モールド4の表面に含フッ素重合体層1を形成する。含フッ素重合体層1の表面を処理して表面に反応性官能基(x)を導入し、ついで該表面と、反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体2の該表面とを張り合わせ、加圧して接着する。モールド4を含フッ素重合体層1から離脱し、微細パターンを表面に有する含フッ素重合体層1を形成し、テンプレート5を製造する。
【選択図】図1

Description

本発明は、光硬化性樹脂を成形するための微細パターンを表面に有する含フッ素重合体層を備えるテンプレートの製造方法、および該テンプレートの微細パターンが転写された表面を有する光硬化性樹脂の硬化物からなる微細パターン成形体の製造方法に関する。
微細パターンを形成する方法としては、液状の光硬化性樹脂からなる膜に、所望の微細パターンを反転したパターンを有するモールドを押しあてた状態で、光硬化性樹脂に光を照射し、光硬化性樹脂を硬化させ、所望の微細パターンを形成する方法、いわゆるナノインプリント法が知られている(特許文献1参照)。
なかでも、微細パターンを表面に有するテンプレート、基材、および光硬化性樹脂とを使用し、テンプレートの微細パターン面と基材表面との間に光硬化性樹脂を挟持して押圧する工程、テンプレート側から光照射し光硬化性樹脂を硬化させて硬化物とする工程、および該硬化物からテンプレートを剥離する工程を順に行う、該硬化物からなる転写微細パターンを有する基材の製造方法が注目されている。
該製造方法におけるテンプレートとして、一般には石英製モールドが用いられる。しかし、該モールドは離型性が低く、硬化物からモールドを剥離する際に硬化物の微細パターン精度が低下しやすい。離型性を向上させる方法として、モールドの微細パターン面に離型剤を塗布する方法が提案されている。しかし、塗布された離型剤の厚さムラによりモールドの微細パターン精度が低下しやすい。さらにモールドを連続使用する場合は、離型剤を再塗布する必要があり生産効率が低下しやすい。
特許文献2には、微細パターンを表面に有するフッ素樹脂からなる層と他の基体とからなるモールドが記載されている。
特表2002−539604号公報 米国特許出願公開第2006/0021533号明細書
しかし、フッ素樹脂は非粘着性であるため、他の基体と組み合せるのは容易ではない。特に高精度な微細パターンを有するフッ素樹脂からなる層と他の基体を強固に接着させて組み合せるのは容易ではない。
本発明は、光透過性、離型性、耐久性、機械的強度、形状安定性を備え、かつ微細パターンの寸法精度に優れた、光硬化性樹脂を成形するための微細パターンを有するテンプレートの製造方法の提供を目的とする。
本発明は、前述の課題を解決すべくなされた発明である。
<1>光硬化性樹脂を成形するための微細パターンを表面に有する含フッ素重合体層と、透明基体とを有するテンプレートの製造方法であって、下記工程[1]、下記工程[2]、および下記工程[3]を備えることを特徴とするテンプレートの製造方法。
工程[1]:微細パターンの反転パターンを有するモールドの該パターン上に、反応性官能基(x)を実質的に有さない含フッ素重合体(A)を溶媒に溶解させた溶液を塗布し、溶媒を除去して、モールドの表面に含フッ素重合体層を形成する工程。
工程[2]:含フッ素重合体層の表面を処理して表面に反応性官能基(x)を導入し、ついで該表面と、反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体の該表面とを張り合わせ、加圧して接着する工程。
工程[3]:モールドを含フッ素重合体層から離脱し、微細パターンを表面に有する含フッ素重合体層を形成する工程。
<2>前記工程[2]において、含フッ素重合体層の表面をプラズマ処理する、<1>に記載の製造方法。
<3>前記工程[2]のかわりに、下記工程[21]を備える、<1>に記載の製造方法。
工程[21]:含フッ素重合体層の表面に、反応性官能基(x)を有する含フッ素重合体(B)を溶媒に溶解させた溶液を塗布し、つぎに溶媒を除去して、含フッ素重合体(B)からなる中間層を形成し、ついで該中間層の表面と、反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体の該表面とを張り合わせ、加圧して接着する工程。
<4>前記工程[2]のかわりに、下記工程[22]を備える、<1>に記載の製造方法。
工程[22]:反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体の該表面に、反応性官能基(x)を有する含フッ素重合体(B)を溶媒に溶解させた溶液を塗布し、つぎに溶媒を除去して、含フッ素重合体(B)からなる中間層を形成しておき、ついで含フッ素重合体層の表面と、中間層の表面とを張り合わせ、加圧して接着する工程。
<5>含フッ素重合体(A)および含フッ素重合体(B)は、主鎖に含フッ素脂肪族環構造を有する、<1>〜<4>のいずれかに記載の製造方法。
<6>反応性官能基(x)がカルボキシ基であり、反応性官能基(x)と化学結合を形成しうる基(y)が水酸基、アミノ基またはエポキシ基である、<1>〜<5>のいずれかに記載の製造方法。
<7>反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体は、ガラス基体を表面処理して官能基(y)を導入したものである、<1>〜<6>のいずれかに記載の製造方法。
<8>テンプレートの微細パターンが、凹凸構造からなり、凸構造部の高さの平均が1nm〜500μmである、<1>〜<7>のいずれかに記載の製造方法。
<9><1>〜<8>のいずれかに記載の製造方法で得られるテンプレート、基材、および光硬化性樹脂を使用し、テンプレートの微細パターン面と基材表面との間に光硬化性樹脂を挟持して押圧する工程、光照射により光硬化性樹脂を硬化させて硬化物とする工程、および該硬化物からテンプレートを離脱する工程を順に行う、光硬化性樹脂の硬化物からなる転写微細パターンを有する処理基材の製造方法。
<10><1>〜<8>のいずれかに記載の製造方法で得られるテンプレート、基材、および光硬化性樹脂を使用し、テンプレートの微細パターン面と基材表面との間に光硬化性樹脂を挟持して押圧する工程、光硬化性樹脂からテンプレートを離脱する工程、および光照射により光硬化性樹脂を硬化させて硬化物とする工程を順に行う、光硬化性樹脂の硬化物からなる転写微細パターンを有する処理基材の製造方法。
本発明の製造方法によって得られるテンプレートは、透明基体に、微細パターンを表面に有する含フッ素重合体層が強固に接着されているため、機械的強度、形状安定性を備える。また該テンプレートは、テンプレートの微細パターン部分が非粘着性の高い含フッ素重合体からなるため、高粘着性の光硬化性樹脂の成形に使用しても離型性に優れる。また該テンプレートは、繰り返し使用しても微細パターン部分が汚染されにくい。
本明細書において、式(1)で表される化合物を化合物1と記す。他式で表される化合物も同様に記す。
本発明は、光硬化性樹脂を成形するための微細パターンを表面に有する含フッ素重合体層と、透明基体とを有するテンプレートの製造方法である。微細パターンは凹凸構造からなる微細パターンであるのが好ましい。
凹凸構造における凸部は、パターン層の表面に延在する長尺の凸条、またはパターン層の表面に点在する突起である。
凹凸構造における凹部は、パターン層の表面に延在する長尺の溝、またはパターン層の表面に点在する孔である。
凸条または溝の形状としては、直線、曲線、折れ曲がり形状等が挙げられる。凸条または溝は、複数が平行に存在して縞状をなしていてもよい。
凸条または溝の、長手方向に直交する方向の断面形状としては、長方形、台形、三角形、半円形等が挙げられる。
突起または孔の形状としては、三角柱、四角柱、六角柱、円柱、三角錐、四角錐、六角錐、円錐半球、多面体等が挙げられる。
凸条または溝の幅は、平均で1nm〜500μmが好ましく、10nm〜300μmがより好ましく、50nm〜400nmが特に好ましい。凸条の幅とは、長手方向に直交する方向の断面における底辺の長さを意味する。溝の幅とは、長手方向に直交する方向の断面における上辺の長さを意味する。
突起または孔の幅は、平均で1nm〜500μmが好ましく、10nm〜300μmがより好ましく、50nm〜400nmが特に好ましい。突起の幅とは、底面が細長い場合、長手方向に直交する方向の断面における底辺の長さを意味し、そうでない場合、突起の底面における最大長さを意味する。孔の幅とは、開口部が細長い場合、長手方向に直交する方向の断面における上辺の長さを意味し、そうでない場合、孔の開口部における最大長さを意味する。
凸部の高さは、平均で1nm〜500μmが好ましく、10nm〜300μmがより好ましく、10nm〜10μmが特に好ましく、50nm〜400nmが最も好ましい。
凹部の深さは、平均で1nm〜500μmが好ましく、10nm〜300μmがより好ましく、10nm〜10μmが特に好ましく、50nm〜400nmが最も好ましい。
凹凸構造が密集している領域において、隣接する凸部(または凹部)間の距離は、平均で1nm〜500μmが好ましく、10nm〜300μmが特に好ましい。隣接する凸部間の距離とは、凸部の断面の底辺の終端から、隣接する凸部の断面の底辺の始端までの距離を意味する。隣接する凹部間の距離とは、凹部の断面の上辺の終端から、隣接する凹部の断面の上辺の始端までの距離を意味する。
凸部の最小寸法は、1nm〜500μm以下が好ましく、50nm〜500nmがより好ましい。最小寸法とは、凸部の幅、長さおよび高さのうち最小の寸法を意味する。
凹部の最小寸法は、1nm〜500μm以下が好ましく、50nm〜500nmがより好ましい。最小寸法とは、凹部の幅、長さおよび深さのうち最小の寸法を意味する。
パターン層の厚さは、最も高い凸部の高さ以上が好ましい。
以下、本発明のテンプレートの製造方法を、図を参照しながら詳しく説明する
<工程[1]>
本発明においては、上記の微細パターンを形成するために、図1(a)(図2(a)または図3(a))に示すように、所望の微細パターンの反転パターンを有するモールド4を用いる。該モールド4のパターン上に、含フッ素重合体(A)を溶媒に溶解させた溶液を塗布し、つぎに溶媒を除去して、モールド4の表面に含フッ素重合体層1を形成する。
該モールド4としては、石英ガラスや硼珪酸ガラス等のガラス製モールド、ニッケル、タンタル、シリコン、ステンレス、チタン、アルミニウム等の金属製モールド;炭化珪素や窒化珪素、サファイア等のセラミックス製モールド;PMMA、PVA、ポリ乳酸等のプラスチック製モールド;PDMSや含フッ素ゴム等のエラストマー製モールド;蓮の葉などの生体の一部を利用したモールドが挙げられる。
モールド4のパターン上に溶液を塗布する方法としては、キャスト法、スピンコート法、スプレーコート法、ディップコート法等が挙げられる。
溶媒としては、含フッ素溶媒が好ましい。例えば、ペルフルオロトリブチルアミン、ペンタフルオロベンゼン、ヘキサフルオロメタキシレン、ハイドロフルオロエーテルが挙げられる。溶媒としては、高沸点溶媒(100℃以上の沸点を持つ溶媒)と低沸点溶媒(100℃未満の沸点を持つ溶媒)を組み合わせたものを使用することにより、脱泡性がよくなる場合がある。
溶媒の除去温度は、80〜220℃が好ましく、130〜190℃がより好ましい。また、気流の存在下で、または、減圧下で行うことが好ましい。減圧下で行う場合は、含フッ素重合体層1に気泡が発生しない程度の減圧度にすることが望ましい。
含フッ素重合体層1の厚さは、0.5〜1000μmが好ましい。下限は1μm以上がより好ましい。上限は100μmがより好ましく、10μmが特に好ましい。
本発明における含フッ素重合体(A)は、溶媒に可溶なものであることが必要であり、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であるのが好ましい。該含フッ素重合体は無定形または非結晶性の重合体であり、透明性が高い含フッ素重合体であるのが好ましい。含フッ素重合体(A)の波長360〜500nmの光の光線透過率は、50%以上であるのが好ましく、90%以上であるのが特に好ましい。ここで光線透過率とは厚さ50μmの含フッ素重合体の光線透過率をいう。
含フッ素重合体(A)において、主鎖に含フッ素脂肪族環構造を有するとは、重合体における含フッ素脂肪族環の環を構成する炭素原子の1個以上が重合体の主鎖を構成する炭素原子であることをいう。含フッ素脂肪族環の環を構成する原子は、炭素原子以外に酸素原子や窒素原子等を含んでもいてもよい。好ましい含フッ素脂肪族環は1〜2個の酸素原子を有する含フッ素脂肪族環である。含フッ素脂肪族環を構成する原子の数は4〜7個であるのが好ましい。
主鎖を構成する炭素原子は、環状単量体を重合させて得た重合体である場合には重合性二重結合の炭素原子に由来し、ジエン系単量体を環化重合させて得た重合体である場合には2個の重合性二重結合の4個の炭素原子に由来する。
環状単量体とは、含フッ素脂肪族環を有し、かつ該含フッ素脂肪族環を構成する炭素原子−炭素原子間に重合性二重結合を有する単量体、または、含フッ素脂肪族環を有し、かつ該含フッ素脂肪族環を構成する炭素原子と含フッ素脂肪族環外の炭素原子の間に重合性二重結合を有する単量体である。
ジエン系単量体とは、2個の重合性二重結合を有する単量体である。
環状単量体は、下記化合物1または下記化合物2であるのが好ましい(ただし、Xはフッ素原子または炭素数1〜3のペルフルオロアルコキシ基を、RおよびRはそれぞれフッ素原子または炭素数1〜6のペルフルオロアルキル基を、XおよびXはそれぞれフッ素原子または炭素数1〜9のペルフルオロアルキル基を、示す。)。
Figure 2007320071
化合物1の具体例としては、下記化合物が挙げられる。
Figure 2007320071
化合物2の具体例としては、下記化合物が挙げられる。
Figure 2007320071
ジエン系単量体は、式CF=CF−Q−CF=CFで表される単量体であるのが好ましい。ただし、Qは側鎖を除いた炭素原子と酸素原子の合計数が2〜4のエーテル性酸素原子を有していてもよいペルフルオロアルキレン基を示す。エーテル性酸素原子を有するペルフルオロアルキレン基である場合、エーテル性酸素原子は該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子間に存在していてもよく、環化重合性の観点からは、該基の一方の末端に存在しているのが好ましい。
前記単量体は環化重合により、下記モノマー単位(i)、下記モノマー単位(ii)、および下記モノマー単位(iii)からなる群から選ばれる1以上のモノマー単位を含む含フッ素重合体を形成する。ジエン系単量体を環化重合させて得た含フッ素重合体において主鎖の炭素原子は、2個の重合性二重結合の4個の炭素原子に由来する。
Figure 2007320071
前記単量体の具体例としては、下記の化合物が挙げられる。
Figure 2007320071
環状単量体およびジエン系単量体において、炭素原子に結合した水素原子と炭素原子に結合したフッ素原子の合計数に対する炭素原子に結合したフッ素原子の数の割合は、それぞれ、80%以上であるのが好ましく、100%であるのが特に好ましい。
含フッ素重合体(A)において、全モノマー単位に対する含フッ素脂肪族環構造を有する繰り返し単位の割合は、含フッ素重合体の透明性の観点から、20モル%以上であるのが好ましく、40モル%以上であるのがより好ましく、主鎖に含フッ素脂肪族環構造を有する繰り返し単位からなるのが特に好ましい。ただし、含フッ素脂肪族環構造を有する繰り返し単位とは、環状単量体の重合により形成されたモノマー単位、またはジエン系単量体の環化重合により形成されたモノマー単位である。
含フッ素重合体(A)は、反応性官能基(x)を実質的に有さない。そのため、含フッ素重合体(A)は非粘着性が高く、これから形成される微細パターンを備えるテンプレートは高粘着性の光硬化性樹脂の成形においても離型性に優れる。反応性官能基(x)を実質的に有さないとは、含フッ素重合体(A)中の反応性官能基(x)の含有量が検出限界以下であることをいう。含フッ素重合体(A)の反応性官能基(x)のうち、不安定な末端官能基として存在するものとして、−COOH、−COF、−CHOH、−CF=CF等の末端官能基が挙げられる。
含フッ素重合体(A)は、公知の方法にしたがって入手できる。たとえば、ラジカル重合開始剤の存在下に、ジエン系単量体または環状単量体を重合して、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体が得られる。該含フッ素重合体をフッ素ガスに接触させることにより、反応性官能基(x)を実質的に有さない含フッ素重合体(A)が得られる。
<工程[2]>
図1(b)に示すように、モールド4の表面に形成された含フッ素重合体層1の表面を処理し、ついで図1(c)に示すように、該表面と、反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体2の該表面とを張り合わせ、加圧して接着する。
透明基体2と組み合わせることにより、含フッ素重合体層1のみからなるテンプレートに比べ、光硬化性樹脂の成形時の加圧による変形をおさえることができる。また、含フッ素重合体層1の厚みを薄くすることを可能とするため、含フッ素重合体層1の成形時の溶媒除去時間を短縮でき、製造コストを低くすることができる。
含フッ素重合体層1と透明基体2を強固に接着するために、含フッ素重合体層1の表面を処理して表面に反応性官能基(x)を導入する。含フッ素重合体層1と透明基体2とが接着する際に、含フッ素重合体(A)の反応性官能基(x)の一部または全部が、透明基体2の官能基(y)の一部または全部と化学結合を形成する。化学結合は共有結合、イオン結合、または水素結合であってもよい。該化学結合としては、反応性官能基(x)がカルボキシ基であり官能基(y)が水酸基またはエポキシ基である場合のエステル結合、反応性官能基(x)がカルボキシ基であり官能基(y)がアミノ基である場合のアミド結合、反応性官能基(x)がアミノ基であり官能基(y)がカルボキシ基である場合のアミド結合、反応性官能基(x)がアミノ基、シアノ基またはニトロ基であり官能基(y)が水酸基である場合の水素結合等が挙げられる。したがって、含フッ素重合体層1と透明基体2が化学結合を介して強固に接着することが可能となる。
含フッ素重合体層1の表面の処理方法としては、プラズマ処理、コロナ放電、紫外線照射、真空紫外線照射、電子線照射、紫外線オゾン処理、イオン照射等の方法が挙げられる。含フッ素重合体層1自体の損傷を抑え、含フッ素重合体層1の表面のみ確実に反応性官能基(x)を出現させることができるという点から特にプラズマ処理することが好ましい。プラズマ処理に用いられるガス種としてはO、N、CF、C、Ar、Cl、HCl、HBr、CHF、C、BCl、NH、CO等が挙げられ、これらのガスを任意に混合して用いてもよい。この中でもOまたはNを主成分として用いること好ましく、エッチングの制御が容易であることからNを主成分として用いることが特に好ましい。Nにより、アミノ基、シアノ基、ニトロ基等が生成する。
本発明における透明基体2は、ガラス基体(石英、ガラス等)、シリコーン樹脂製基体、または透明樹脂(溶媒不溶性フッ素樹脂、PET樹脂、ウレタン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリイミド樹脂等)製基体であるのが好ましく、機械的強度に優れることから、ガラス基体であるのが特に好ましい。透明基体2は、板状であってもよくフィルム状であってもよい。透明基体2の形状は、平面状(平板状等)であってよく曲面状(円柱状、三角錐状、球面状等)であってもよい。
透明基体2は、波長360〜500nmの光の光線透過率が、50%以上であるのが好ましく、70%以上であるのが特に好ましい。ここで光線透過率とは厚さ50μmの透明基体2の光線透過率をいう。
透明基体2の表面に存在する、反応性官能基(x)と化学結合を形成しうる官能基(y)の種類は、反応性官能基(x)の種類に応じて適宜選択される。反応性官能基(x)がカルボキシ基またはその誘導体である場合、官能基(y)は水酸基、オキシラニル基、またはアミノ基であるのが特に好ましい。官能基(y)は、透明基体2の材料に由来する官能基であってもよく、官能基(y)を導入する表面処理により透明基体2の表面に付与された官能基であってもよい。官能基(y)は、官能基の種類および量を任意に制御できることから後者の官能基であるのが好ましい。
透明基体2の表面に官能基(y)を導入する表面処理の方法は、透明基体2に官能基(y)を有するシランカップリング剤を塗布する方法、透明基体2に官能基(y)を有する機能性シラン化合物を塗布する方法、または透明基体2をプラズマ処理する方法が好ましい。
官能基(y)を有するシランカップリング剤としては、アミノ基を有するシランカップリング剤(3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン等。)、またはエポキシ基を有するシランカップリング剤(3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン等。)が好ましい。官能基(y)を有する機能性シラン化合物としては、テトラメトキシシラン、テトラエトキシシランなどが好ましい。
プラズマ処理に用いられるガス種としては、O、N、CF、C、Ar、Cl、HCl、HBr、CHF、C、BCl、NH、CO等が挙げられ、これらのガスを任意に混合して用いてもよい。
透明基体2と強固に接着するためには、図2(b)に示すように、含フッ素重合体層1の表面に、反応性官能基(x)を有する含フッ素重合体(B)を溶媒に溶解させた溶液を塗布し、つぎに溶媒を除去して、含フッ素重合体(B)からなる中間層3を形成することも好ましい(工程[21])。
含フッ素重合体(B)は反応性官能基(x)を有する。含フッ素重合体(B)の反応性官能基(x)としては、末端官能基の−COOH、−COF、−CHOH、−CF=CF等が挙げられ、カルボキシ基またはその誘導体であるのが好ましく、カルボキシ基であるのが特に好ましい。
含フッ素重合体(B)からなる中間層3と透明基体2とが接着する際に、含フッ素重合体(B)の反応性官能基(x)の一部または全部が、透明基体2の官能基(y)の一部または全部と化学結合を形成する。該化学結合としては、反応性官能基(x)がカルボキシ基であり官能基(y)が水酸基またはエポキシ基である場合のエステル結合、反応性官能基(x)がカルボキシ基であり官能基(y)がアミノ基である場合のアミド結合等が挙げられる。したがって、中間層3と透明基体2が化学結合を介して強固に接着することが可能となる。
含フッ素重合体(B)は、溶媒に可溶なものであることが必要であり、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であるのが好ましい。含フッ素重合体(B)における含フッ素脂肪族環構造を有する繰り返し単位は、含フッ素重合体(A)において説明したのと同様であるのが好ましい。含フッ素重合体(B)の波長360〜500nmの光の光線透過率は、50%以上であるのが好ましく、90%以上であるのが特に好ましい。ここで光線透過率とは厚さ50μmの含フッ素重合体の光線透過率をいう。
含フッ素重合体(B)における含フッ素脂肪族環構造を有する繰り返し単位は、含フッ素重合体(A)における含フッ素脂肪族環構造を有する繰り返し単位と、同じ繰り返し単位であるのが好ましい。この場合、中間層3と含フッ素重合体層1がより強固に接着され、テンプレートの耐久性が優れる効果がある。
含フッ素重合体(B)は、公知の方法にしたがって入手できる。たとえば、反応性基(y)がカルボキシ基である含フッ素重合体(B)は、炭化水素系ラジカル重合開始剤の存在下に、ジエン系単量体または環状単量体を重合して主鎖に含フッ素脂肪族環構造を有する含フッ素重合体を得て、つぎに該含フッ素重合体を酸素ガス雰囲気下に加熱処理し、さらに水中に浸漬することにより得られる。
中間層3の形成において用いる溶媒、溶媒の除去方法については、含フッ素重合体層1において説明したのと同様である。中間層3の厚さは、1μm以下が好ましい。
含フッ素重合体(B)からなる中間層3は表面処理をしなくても透明基体2と接着することが可能だが、含フッ素重合体層1と同様の表面処理をすることで、透明基体2とより強固に接着させることができる。すなわち、中間層3の表面を、プラズマ処理、コロナ放電、紫外線照射、真空紫外線照射、電子線照射、紫外線オゾン処理、イオン照射等の方法により、処理することが好ましい。
含フッ素重合体(B)からなる中間層3は、透明基体2の側に形成してもよい(工程[22])。すなわち、図3(b)に示すように、透明基体2の官能基(y)の存在する表面に、含フッ素重合体(B)を溶媒に溶解させた溶液を塗布し、つぎに溶媒を除去して、含フッ素重合体(B)からなる中間層3を形成しておく。そして、図3(c)に示すように、この中間層3と、モールド4上の含フッ素重合体層1とを張り合わせてもよい。
工程[2]における含フッ素重合体層1と透明基体2の接着、工程[21]における中間層3と透明基体2の接着、または工程[22]における含フッ素重合体層1と中間層3の接着を行う際には、各層間の接着をさらに強固なものにするために、各層の表面を溶剤接着させることが好ましい。溶剤接着は接着させる2つの表面を溶かして接着させる手法であり、接着させる2つの表面を溶解しうる溶剤を使用する。
工程[2]における含フッ素重合体層1と透明基体2の接着、工程[21]における中間層3と透明基体2の接着、または工程[22]における含フッ素重合体層1と中間層3の接着は加圧して行う。
加圧は、手で押さえつけたり、プレス機を用いたり、重石を載せたりして行う。加圧時の圧力は100MPa以下が好ましく、0.1KPa〜10MPaがより好ましく、特に1KPa〜1MPaが好ましい。またプレス時の保持時間は15分以下が好ましく、特に3〜10分が好ましい。
接着は、10〜70℃で行うことが好ましい。
<工程[3]>
図1(d)(図2(d)または図3(d))に示すように、モールド4を含フッ素重合体層1から離脱することにより、本発明におけるテンプレートが得られる。モールド4を含フッ素重合体層1から離脱する際は、常温(10〜40℃)で行うことが好ましい。
本発明の製造方法で得られるテンプレートは波長360〜500nmの光の透過率が45%以上であることが好ましい。
また、本発明は、上記の工程を通じて製造されるテンプレート、基材、および光硬化性樹脂を使用し、光硬化性樹脂の硬化物からなる転写微細パターンを有する処理基材の製造方法を提供する。該製造方法は、以下の工程P1〜工程P3を順に行う方法、工程Q1〜工程Q3を順に行う方法が好ましい。
(工程P1)テンプレートの微細パターン面と基材表面との間に光硬化性樹脂を挟持して押圧する工程、
(工程P2)光照射により光硬化性樹脂を硬化させて硬化物とする工程、
(工程P3)該硬化物からテンプレートを離脱する工程。
(工程Q1)テンプレートの微細パターン面と基材表面との間に光硬化性樹脂を挟持して押圧する工程、
(工程Q2)光硬化性樹脂からテンプレートを離脱する工程、
(工程Q3)光照射により光硬化性樹脂を硬化させて硬化物とする工程。
本発明における光硬化性樹脂とは、光照射により硬化して硬化物を形成する樹脂であれば特に限定されない。本発明における光硬化性樹脂は、重合性化合物と光重合開始剤を含む光硬化性樹脂であるのが好ましい。重合性化合物は、重合性基を有する化合物であれば特に限定されず、重合性モノマー、重合性オリゴマー、重合性ポリマーのいずれであってもよい。光重合開始剤とは、光によりラジカル反応またはイオン反応を引き起こす光重合開始剤である。
光照射の方向は限定されないが、テンプレート側から照射することが好ましい。本発明により得られるテンプレートは、広範囲の光波長領域において高い透明性を有する。そのため光照射における光の波長は、特に限定されない。光の波長は、200〜500nmであるのが好ましく、一般的な光硬化性樹脂を低温で硬化できる、200〜400nmであるのが特に好ましい。
上記処理基材の製造方法の各工程における系の温度は、含フッ素重合体(A)のガラス転移温度以下であるのが好ましい。
本発明の製造方法で得られる処理基材は、光硬化性樹脂の硬化物からなる転写微細パターンが表面に形成される。転写微細パターンは本発明のテンプレートの微細パターンが反転した微細パターンである。転写微細パターンは、光硬化性樹脂の硬化物からなる、凹凸構造を有する構造体(以下、凹凸構造体ともいう。)であるのが好ましい。凹凸構造体は、凹凸形状を表面に有する連続体からなる層構造を有していてもよく、独立した突起体の集合からなる構造を有していてもよい。前者は、基材表面を覆う光硬化性樹脂の硬化物の層からなり光硬化性樹脂の硬化物の層の表面が凹凸形状をなしている構造をいう。後者は、光硬化性樹脂の硬化物からなる突起体が基材表面に独立して多数存在し、基材表面からなる凹部とともに凹凸形状をなしている構造をいう。いずれの場合においても、凸構造をなす部分(突起体)は光硬化性樹脂の硬化物からなる。さらに、凹凸構造体はそれら2つの構造を基材表面の異なる位置で併有する構造を有していてもよい。
以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されない。
[例1]重合体(P)の製造例
オートクレーブ(耐圧ガラス製)に、CF=CFOCFCFCF=CF(100g)、メタノール(0.5g)、および[(CHCHOCOO](0.7g)を加え、懸濁重合法を用いて重合を行って重合体(P)を得た。重合体(P)は下式(p)で表されるモノマー単位からなる重合体であり、固有粘度は30℃のペルフルオロ(2−ブチルテトラヒドロフラン)中で0.34dl/gであった。重合体(P)のガラス転移温度は108℃であった。
Figure 2007320071
[例2]主鎖に含フッ素脂肪族環構造を有し、反応性基を有さない重合体(以下、重合体(A1)という。)の製造例
重合体(P)を、オートクレーブ(ニッケル製、内容積1L)に入れ、オートクレーブ内を窒素ガスで3回置換してから4.0kPa(絶対圧)まで減圧した。オートクレーブ内に窒素ガスで14体積%に希釈したフッ素ガスを101.3kPaまで導入してから、オートクレーブの内温を6時間、230℃に保持した。オートクレーブ内容物を回収して重合体(A1)を得た。重合体(A1)の赤外吸収スペクトルを測定した結果、カルボキシ基に起因するピークは確認されなかった。重合体(A1)を膜厚100μmのフィルムに加工し、波長360〜500nmの光の光線透過率を測定した結果、95%以上であった。
[例3]主鎖に含フッ素脂肪族環構造を有し、かつカルボキシ基を有する重合体(以下、重合体(B1)という。)の製造例
重合体(P)を、大気圧雰囲気下の熱風循環式オーブン中で300℃にて1時間熱処理し、つぎに超純水中で110℃にて1週間浸漬し、さらに真空乾燥機中で100℃にて24時間乾燥して重合体(B1)を得た。重合体(B1)の赤外吸収スペクトルを測定した結果、カルボキシ基に由来するピークが確認された。重合体(B1)を膜厚100μmのフィルムに加工し、波長360〜500nmの光の光線透過率を測定した結果、93%以上であった。
[例4(実施例)]テンプレート1の製造例
帯電防止剤(インスコン・テック社製、コニソルF−205)を、水/イソプロパノール(1/7質量比)の混合溶剤にて5倍に希釈し、塗布用の帯電防止剤を調製した。該帯電防止剤を、A4版サイズのPETフィルム(東洋紡社製、A4100、厚さ100μm)の易接着面に、No.5のバーを用いてバーコート法にて塗布した。PETフィルムを乾燥機に入れ、100℃で30分間乾燥させ、帯電防止層を形成した。
例3で得た重合体(B1)をペルフルオロトリブチルアミンに溶解し、重合体(B1)の5質量%溶液を調製し、該溶液を孔径0.2μmのPTFEメンブレンフィルタにて濾過した。該溶液を帯電防止層上に、No.7のバーを用いたバーコート法にて塗布した。PETフィルムを乾燥機に入れ、140℃で2時間乾燥させ、重合体(B1)からなる膜を形成し、第1の中間体を得た。該第1の中間体を2cm×2cmにカットした。
1cm×1cmのシリコン製のモールドを用意した。該モールドの表面には、幅400nm、深さ100nm、長さ5μmの溝が形成されている。
例2で得た重合体(A1)をペルフルオロトリブチルアミンに溶解し、重合体(A1)の9質量%溶液を調製し、該溶液を孔径0.2μmのPTFEメンブレンフィルタにて濾過した。該溶液を、40kPa程度に減圧した雰囲気下で、前記モールド上にキャスト法を用いて塗布した。その後、180℃で3時間乾燥させ、モールド上に重合体(A1)からなる膜(厚さ3.0μm)を形成し、第2の中間体を得た。
ついで、第2の中間体の重合体(A1)からなる膜の表面に、前記重合体(B1)の5質量%溶液を数滴垂らした後、第1の中間体の重合体(B1)からなる膜側と貼り合わせ、140℃に加熱して0.5MPaの圧力にてプレスすることで接着させた。その後、モールドを含む、第1の中間体と第2の中間体との貼着体を30℃まで冷却し、重合体(A1)からなる膜からモールドをゆっくり分離し、モールドの溝が反転したパターンを有するパターン層を形成し、フィルム状のテンプレート1を得た。
[例5(比較例)]テンプレート2の製造例
帯電防止剤(インスコン・テック社製、コニソルF−205)を、水/イソプロパノール(1/7質量比)の混合溶剤にて5倍に希釈し、塗布用の帯電防止剤を調製した。該帯電防止剤を、A4版サイズのPETフィルム(東洋紡社製、A4100、厚さ100μm)の易接着面に、No.5のバーを用いてバーコート法にて塗布した。PETフィルムを乾燥機に入れ、100℃で30分間乾燥させ、帯電防止層を形成し、第1の中間体を得た。該第1の中間体を2cm×2cmにカットした。
1cm×1cmのシリコン製のモールドを用意した。該モールドの表面には、幅400nm、深さ100nm、長さ5μmの溝が形成されている。
重合体(A1)をペルフルオロトリブチルアミンに溶解し、重合体(A1)の9質量%溶液を調製し、該溶液を孔径0.2μmのPTFEメンブレンフィルタにて濾過した。該溶液を、40kPa程度に減圧した雰囲気下で、前記モールド上にキャスト法を用いて塗布した。その後、180℃で3時間乾燥させ、モールド上に重合体(A1)からなる膜(厚さ3.0μm)を形成し、第2の中間体を得た。
ついで、第2の中間体の重合体(A1)からなる膜の表面に、第1の中間体の帯電防止層側を貼り合わせ、140℃に加熱して0.5MPaの圧力にてプレスすることで接着させた。その後、モールドを含む、第1の中間体と第2の中間体との貼着体を30℃まで冷却し、重合体(A1)からなる膜からモールドをゆっくり分離し、モールドの溝が反転したパターンを有するパターン層を形成し、フィルム状のテンプレート2を得た。
[テンプレートの各層間の密着性]
例1および2で得られたテンプレートをアセトンに浸漬し、超音波をかけて、各層間の密着性を調べた。結果を表1に示した。表中の記号は以下の意を示す。
○:超音波を5分照射しても剥れない。
×:アセトン浸漬のみで簡単に剥れる。
[テンプレートのパターン寸法]
例1および2で得られたテンプレートの微細パターンの寸法を表1に示した。
Figure 2007320071
[例6(実施例)]微細パターンが表面に形成された処理基材の製造例
紫外光をカットしたクリーンルーム内にて、CF=CFCFC(CF)(OCHOCH)CHCH=CH(1.31g)とCF=CFCFC(CF)(OH)CHCH=CH(0.14g)、光硬化開始剤1(チバ・スペシャルティ・ケミカルズ株式会社製:イルガキュア 651、0.03g)、および光硬化開始剤2(チバ・スペシャルティ・ケミカルズ株式会社製:イルガキュア 907、0.03g)を順に混合して光硬化性樹脂を得た。
光硬化性樹脂の2滴をシリコンウェハ上に塗布して光硬化性樹脂からなる薄膜(膜厚2.5μm)が形成されたシリコンウェハを得た。次に例4で得たテンプレート1の微細パターン面を光硬化性樹脂からなる薄膜に押し付けた。テンプレート1側から紫外線(波長365nm、照度63mW/cm)を10秒間、照射して光硬化性樹脂を硬化させた。つぎにテンプレート1を離脱させて、光硬化性樹脂の硬化物からなる、テンプレート1の凸凹構造が反転して形成した微細パターン(深さ99nm、幅399nmの溝が配置された凹凸構造。)を表面に有するシリコンウェハを得た。
本発明の製造方法で得られるテンプレートは、光硬化性樹脂を使用するナノインプリント用テンプレートとして用いることができる。テンプレートを用いて得られた光硬化性樹脂の硬化物からなる転写微細パターンを有する処理基材は、微細パターンを表面に有することから種々の用途に有用である。該処理基材は、光学素子(マイクロレンズアレイ、光導波路、波長フィルター、偏光板、光スイッチング、フレネルゾーンプレート、バイナリー光学素子、ブレーズ光学素子、フォトニクス結晶等。)、反射防止フィルター、バイオチップ、マイクロリアクターチップ、記録メディア、リブ等のディスプレイ材料、触媒の担持体、フィルター、センサー部材、超撥水材料、エネルギー関連部材(燃料電池、三次元電池、キャパシタ、ペルチェ素子、太陽電池等)、MEMS製造用のテンプレート等として用いることができる。
本発明のテンプレートの製造方法の一例を説明するため概略断面図。 本発明のテンプレートの製造方法の他の例を説明するため概略断面図。 本発明のテンプレートの製造方法の他の例を説明するため概略断面図。
符号の説明
1:透明基体
2:含フッ素重合体層
3:中間層
4:モールド
5:テンプレート

Claims (10)

  1. 光硬化性樹脂を成形するための微細パターンを表面に有する含フッ素重合体層と、透明基体とを有するテンプレートの製造方法であって、下記工程[1]、下記工程[2]、および下記工程[3]を備えることを特徴とするテンプレートの製造方法。
    工程[1]:微細パターンの反転パターンを有するモールドの該パターン上に、反応性官能基(x)を実質的に有さない含フッ素重合体(A)を溶媒に溶解させた溶液を塗布し、溶媒を除去して、モールドの表面に含フッ素重合体層を形成する工程。
    工程[2]:含フッ素重合体層の表面を処理して表面に反応性官能基(x)を導入し、
    ついで該表面と、反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体の該表面とを張り合わせ、加圧して接着する工程。
    工程[3]:モールドを含フッ素重合体層から離脱し、微細パターンを表面に有する含フッ素重合体層を形成する工程。
  2. 前記工程[2]において、含フッ素重合体層の表面をプラズマ処理する、請求項1に記載の製造方法。
  3. 前記工程[2]のかわりに、下記工程[21]を備える、請求項1に記載の製造方法。
    工程[21]:含フッ素重合体層の表面に、反応性官能基(x)を有する含フッ素重合体(B)を溶媒に溶解させた溶液を塗布し、つぎに溶媒を除去して、含フッ素重合体(B)からなる中間層を形成し、
    ついで該中間層の表面と、反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体の該表面とを張り合わせ、加圧して接着する工程。
  4. 前記工程[2]のかわりに、下記工程[22]を備える、請求項1に記載の製造方法。
    工程[22]:反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体の該表面に、反応性官能基(x)を有する含フッ素重合体(B)を溶媒に溶解させた溶液を塗布し、つぎに溶媒を除去して、含フッ素重合体(B)からなる中間層を形成しておき、
    ついで含フッ素重合体層の表面と、中間層の表面とを張り合わせ、加圧して接着する工程。
  5. 含フッ素重合体(A)および含フッ素重合体(B)は、主鎖に含フッ素脂肪族環構造を有する、請求項1〜4のいずれかに記載の製造方法。
  6. 反応性官能基(x)がカルボキシ基であり、反応性官能基(x)と化学結合を形成しうる基(y)が水酸基、アミノ基またはエポキシ基である、請求項1〜5のいずれかに記載の製造方法。
  7. 反応性官能基(x)と化学結合を形成しうる官能基(y)を表面に有する透明基体は、ガラス基体を表面処理して官能基(y)を導入したものである、請求項1〜6のいずれかに記載の製造方法。
  8. テンプレートの微細パターンが、凹凸構造からなり、凸構造部の高さの平均が1nm〜500μmである、請求項1〜7のいずれかに記載の製造方法。
  9. 請求項1〜8のいずれかに記載の製造方法で得られるテンプレート、基材、および光硬化性樹脂を使用し、テンプレートの微細パターン面と基材表面との間に光硬化性樹脂を挟持して押圧する工程、光照射により光硬化性樹脂を硬化させて硬化物とする工程、および
    該硬化物からテンプレートを離脱する工程を順に行う、光硬化性樹脂の硬化物からなる転写微細パターンを有する処理基材の製造方法。
  10. 請求項1〜8のいずれかに記載の製造方法で得られるテンプレート、基材、および光硬化性樹脂を使用し、テンプレートの微細パターン面と基材表面との間に光硬化性樹脂を挟持して押圧する工程、光硬化性樹脂からテンプレートを離脱する工程、および光照射により光硬化性樹脂を硬化させて硬化物とする工程を順に行う、光硬化性樹脂の硬化物からなる転写微細パターンを有する処理基材の製造方法。
JP2006150074A 2006-05-30 2006-05-30 テンプレートおよび転写微細パターンを有する処理基材の製造方法 Withdrawn JP2007320071A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150074A JP2007320071A (ja) 2006-05-30 2006-05-30 テンプレートおよび転写微細パターンを有する処理基材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150074A JP2007320071A (ja) 2006-05-30 2006-05-30 テンプレートおよび転写微細パターンを有する処理基材の製造方法

Publications (1)

Publication Number Publication Date
JP2007320071A true JP2007320071A (ja) 2007-12-13

Family

ID=38853278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150074A Withdrawn JP2007320071A (ja) 2006-05-30 2006-05-30 テンプレートおよび転写微細パターンを有する処理基材の製造方法

Country Status (1)

Country Link
JP (1) JP2007320071A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000945A (ja) * 2006-06-21 2008-01-10 Toshiba Mach Co Ltd 転写用の型
WO2009125697A1 (ja) * 2008-04-08 2009-10-15 旭硝子株式会社 モールド、その製造方法および転写微細パターンを有する基材の製造方法
JP2009241330A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 微細構造転写スタンパ及び微細構造転写装置
JP2010080670A (ja) * 2008-09-26 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd 微細構造体及びその製造方法
JP2010076333A (ja) * 2008-09-26 2010-04-08 Asahi Kasei E-Materials Corp 成形体、並びに成形体の製造方法、及び成形体を転写した転写体の製造方法
JP2010080865A (ja) * 2008-09-29 2010-04-08 Dainippon Printing Co Ltd マイクロコンタクトプリンティング(μCP)用スタンプの製造方法
JP2010199298A (ja) * 2009-02-25 2010-09-09 Toshiba Corp 凹凸パターンの形成方法および凹凸パターン形成用シート
JP2011066273A (ja) * 2009-09-18 2011-03-31 Konica Minolta Holdings Inc 微細マスクパターンの形成方法、ナノインプリントリソグラフィ方法および微細構造体の製造方法
JP2012195599A (ja) * 2012-05-14 2012-10-11 Hitachi Industrial Equipment Systems Co Ltd 微細構造体の製造方法
JP2013165278A (ja) * 2013-03-25 2013-08-22 Canon Inc 加工装置
CN103842861A (zh) * 2011-07-28 2014-06-04 Lg伊诺特有限公司 用于纳米压印的模具的制造方法
CN106082111A (zh) * 2016-06-16 2016-11-09 哈尔滨工业大学 一种各向同性和各项异性可切换超疏水表面的制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000945A (ja) * 2006-06-21 2008-01-10 Toshiba Mach Co Ltd 転写用の型
US8192637B2 (en) 2008-03-31 2012-06-05 Hitachi, Ltd. Method and apparatus for imprinting microstructure and stamper therefor
JP2009241330A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 微細構造転写スタンパ及び微細構造転写装置
WO2009125697A1 (ja) * 2008-04-08 2009-10-15 旭硝子株式会社 モールド、その製造方法および転写微細パターンを有する基材の製造方法
JP2010080670A (ja) * 2008-09-26 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd 微細構造体及びその製造方法
JP2010076333A (ja) * 2008-09-26 2010-04-08 Asahi Kasei E-Materials Corp 成形体、並びに成形体の製造方法、及び成形体を転写した転写体の製造方法
JP2010080865A (ja) * 2008-09-29 2010-04-08 Dainippon Printing Co Ltd マイクロコンタクトプリンティング(μCP)用スタンプの製造方法
JP2010199298A (ja) * 2009-02-25 2010-09-09 Toshiba Corp 凹凸パターンの形成方法および凹凸パターン形成用シート
US20130065007A1 (en) * 2009-02-25 2013-03-14 Toshiro Hiraoka Method for manufacturing fine concave-convex pattern and sheet for manufacturing fine concave-convex pattern
US9114592B2 (en) 2009-02-25 2015-08-25 Kabushiki Kaisha Toshiba Method for manufacturing fine concave-convex pattern and sheet for manufacturing fine concave-convex pattern
JP2011066273A (ja) * 2009-09-18 2011-03-31 Konica Minolta Holdings Inc 微細マスクパターンの形成方法、ナノインプリントリソグラフィ方法および微細構造体の製造方法
CN103842861A (zh) * 2011-07-28 2014-06-04 Lg伊诺特有限公司 用于纳米压印的模具的制造方法
JP2012195599A (ja) * 2012-05-14 2012-10-11 Hitachi Industrial Equipment Systems Co Ltd 微細構造体の製造方法
JP2013165278A (ja) * 2013-03-25 2013-08-22 Canon Inc 加工装置
CN106082111A (zh) * 2016-06-16 2016-11-09 哈尔滨工业大学 一种各向同性和各项异性可切换超疏水表面的制备方法

Similar Documents

Publication Publication Date Title
JP2007320071A (ja) テンプレートおよび転写微細パターンを有する処理基材の製造方法
JP4655043B2 (ja) モールド、および転写微細パターンを有する基材の製造方法
JP2007245702A (ja) テンプレートおよび転写微細パターンを有する処理基材の製造方法
JP2007320072A (ja) モールドおよびその製造方法
JP6038261B2 (ja) 樹脂モールド及びその製造方法
TWI510354B (zh) A method of manufacturing an article having a fine concavo-convex structure on its surface, and a method of manufacturing a wire-grid polarizing plate
JP2017201698A (ja) レジスト積層体の製造方法
JP2007307752A (ja) モールドおよびその製造方法
JP2009001002A (ja) モールド、その製造方法および転写微細パターンを有する基材の製造方法
EP2602088A1 (en) Resin mold for nanoimprinting
JP5868393B2 (ja) ナノインプリント用モールドおよび曲面体の製造方法
KR20090045888A (ko) 몰드의 제조 방법
JP2006198883A (ja) モールドおよび表面に微細パターンを有する物品
JP5658001B2 (ja) 樹脂モールド
JP2009214323A (ja) 微細パターンを有する物品の製造装置および製造方法
JP2022174051A (ja) 赤外線センサカバー、赤外線センサモジュール及びカメラ
WO2009125697A1 (ja) モールド、その製造方法および転写微細パターンを有する基材の製造方法
JP2011183554A (ja) 微細構造体の製造方法
JP2012169434A (ja) 微細パターンを有する成型体の製造方法
WO2014163041A1 (ja) 転写フィルムおよび凹凸構造付基板
CN100575036C (zh) 模具及具有转印精细图形的基材的制造方法
JP2012101483A (ja) 樹脂モールド製造方法
JP2012116108A (ja) 樹脂モールド
TWI571381B (zh) 保護貼片及其製造方法
KR20120071067A (ko) 나노 임프린트용 스탬프의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090311

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110215