WO2006054447A1 - 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法 - Google Patents

鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法 Download PDF

Info

Publication number
WO2006054447A1
WO2006054447A1 PCT/JP2005/020233 JP2005020233W WO2006054447A1 WO 2006054447 A1 WO2006054447 A1 WO 2006054447A1 JP 2005020233 W JP2005020233 W JP 2005020233W WO 2006054447 A1 WO2006054447 A1 WO 2006054447A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
catalyst
hydrocracking
iron
mass
Prior art date
Application number
PCT/JP2005/020233
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Inamura
Hiroshi Iida
Yoshihiro Okazaki
Akira Iino
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2006544865A priority Critical patent/JP5231735B2/ja
Priority to EP05805533A priority patent/EP1826178A4/en
Priority to US11/719,860 priority patent/US7674367B2/en
Publication of WO2006054447A1 publication Critical patent/WO2006054447A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/065Galloaluminosilicates; Group IVB- metalloaluminosilicates; Ferroaluminosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • Iron-containing crystalline aluminosilicate Iron-containing crystalline aluminosilicate, hydrocracking catalyst containing the aluminosilicate, and hydrocracking method using the catalyst
  • the present invention relates to an iron-containing crystalline aluminosilicate, a hydrocracking catalyst containing the aluminosilicate, and a hydrocracking method using the catalyst.
  • the present invention relates to hydrogen containing iron-containing crystalline aluminosilicate that can increase the production of kerosene oil in the hydrocracking of heavy oil and can easily obtain high quality kerosene oil with low sulfur and nitrogen content.
  • the present invention relates to a hydrocracking catalyst and a hydrocracking method using the catalyst.
  • hydrocracking catalysts containing crystalline aluminosilicate in the hydrocracking process of heavy oil such as residual oil or vacuum gas oil (VG0).
  • heavy oil such as residual oil or vacuum gas oil (VG0).
  • zeolite crystalline aluminosilicate
  • Patent Documents 1 and 2 It is known that a catalyst made of iron-containing zeolite, which is obtained by subjecting zeolite to an iron salt treatment, is particularly excellent in hydrocracking activity because its hydrogen transfer ability is increased and deterioration due to the production of coatus is suppressed (for example, Patent Documents 1 and 2)
  • zeolite is treated with excessive steaming (high temperature treatment in a steam atmosphere) or acid treatment in a low pH range, and zeola is used.
  • Zeolite catalysts have been modified to break down heavy components by breaking some of the crystal and generating some mesopores.
  • Patent Document 1 Japanese Patent Publication No. 6-074135
  • Patent Document 2 JP 2000-86233 A
  • Patent Document 3 Japanese Patent No. 1739396
  • the present invention has been made in view of the above, and contains iron that is suitable as a carrier component of a hydrocracking catalyst for hydrocarbon oils that maintains and improves the selectivity of middle distillate and has high hydrocracking activity. It is to provide a crystalline aluminosilicate.
  • the present invention is particularly suitable for the hydrocracking of various hydrocarbon oils including heavy oil, while maintaining the selectivity of middle distillate, and in particular, high-quality middle distillate from heavy oil. It is an object of the present invention to provide a hydrocracking catalyst containing iron-containing crystalline aluminosilicate capable of increasing the production of (kerosene oil fraction) and a hydrocracking method of hydrocarbon oil using the catalyst.
  • iron-containing crystalline aluminosilicate (hereinafter sometimes referred to as iron-containing zeolite) having a specific composition and specific pore volume maintains high hydrocracking activity while improving the selectivity and removal of middle distillates.
  • iron-containing zeolite having a specific composition and specific pore volume maintains high hydrocracking activity while improving the selectivity and removal of middle distillates.
  • the inventors have found that the improvement of the sulfur content can be achieved at a high level and have completed the present invention.
  • the present invention has been completed based on powerful knowledge.
  • the present invention provides:
  • the support comprising 5 to 85% by mass of the iron-containing crystalline aluminosilicate described in 1 above and 95 to 15% by mass of the inorganic oxide, and at least one selected from Group 6, 8 to 10 metals of the periodic table
  • a hydrocracking catalyst comprising a metal of
  • Heavy oil is heavy light oil, vacuum gas oil, cracked gas oil, solvent history oil, atmospheric residue, vacuum residue, solvent history oil, pyrolysis oil, coker oil, tar sand oil and shale oil
  • the hydrocracking method of hydrocarbon oil as described in 4 above which is at least one selected from
  • the molar ratio of A10 is 20 to 100, preferably 30 to 60, and the content as Fe 2 O is 0.2 to 5.0% by mass, preferably 0.5 to 2.0% by mass. .
  • the iron-containing zeolite of the present invention has (B) a specific surface area of 700 m 2 Zg or more and a total pore volume of pores having a pore diameter of 200 nm or less of 0.6 mLZg or more.
  • the upper limit of the specific surface area is not particularly limited, but is usually about 850 m 2 / g, and the preferred specific surface area is in the range of 700 to 800 m 2 / g.
  • the pore volume of pores having a pore diameter of 200 nm or less (hereinafter, unless otherwise specified, the pore volume of pores having an Itoda pore diameter of 200 nm or less is abbreviated as total pore volume).
  • total pore volume When it is 6 mL / g or more, good catalytic activity can be exhibited when the iron-containing zeolite is used as a support for a hydrocracking catalyst.
  • the upper limit of the total pore volume is not particularly limited, but is usually about 0.80 mL / g, and the preferable total pore volume is in the range of 0.60 to 0.70 mL / g.
  • the iron-containing zeolite of the present invention is produced by the method described below. Is preferred.
  • examples of the starting material include Na ion exchange faujasite type zeolite, preferably Na ion exchange Y type zeolite.
  • / A10 is 4.8 or more, preferably 5.1 or more.
  • the content of Na 2 O is preferably about 10. 0-15. 0% by mass, especially 12. 0-14. 0% by mass
  • the specific surface area is 680 m 2 Zg or more, preferably 700 m 2 / g or more.
  • the crystal lattice constant (UD) evaluated by the X-ray diffraction peak (XRD) should be in the range of 2.450-2.470 nm, and preferably in the range of 2.460-2.470 nm. Power S is preferable.
  • the Na ion-exchanged Y-type zeolite as the starting material is subjected to an ion exchange treatment and then a steaming treatment to obtain a hydrogen ion-exchanged Y-type zeolite having a high SiO 2 / A10 molar ratio.
  • the Na ion-exchanged Y-type zeolite is subjected to ion exchange treatment with ammonia in accordance with a conventional method to obtain NH ion-exchanged Y-type zeolite, followed by a steaming treatment.
  • the steaming treatment may be appropriately selected according to various situations, but in general, the treatment is preferably performed in the presence of water vapor at a temperature of 540 to 810 ° C.
  • Water vapor may be introduced from the outside, or physically adsorbed water or crystal water contained in zeolite.
  • the obtained steamed Y-type zeolite has a silica (skeleton SiO / AlO molar ratio) with respect to alumina of the zeolite crystal component of 20 or more, preferably 30 or more.
  • the content of NaO is 1.0% by mass or less, preferably 0.3% by mass or less.
  • the crystal lattice constant (UD) evaluated by the X-ray diffraction peak (XRD) is in the range of 2.425 to 2.445 mm, preferably 2.430 to 2.440 mm.
  • hydrochloric acid, nitric acid, sulfuric acid, etc. are common, and other acids such as phosphoric acid, perchloric acid, peroxonisulfonic acid, thionic acid, sulfamic acid, nitrososulfonic acid, etc.
  • organic acids such as inorganic acids, formic acid, trichloroacetic acid and trifluoroacetic acid.
  • the amount of mineral acid is 0.5 to 15 monolayers, preferably 3 to 11 moles per kg of zeolite.
  • the concentration of the mineral acid is 0.5 to 50% by mass solution, preferably 1 to 20% by mass solution.
  • the treatment temperature is from room temperature to 100 ° C, preferably from 50 to 100 ° C.
  • the processing time is 0.:! ⁇ 12 hours.
  • iron sulfate is added to this system and mixed and stirred to carry out iron loading, further dealumination from the zeolite structure skeleton, and washing of the dropped aluminum.
  • the treatment temperature is usually 30 to: 100 ° C, preferably 50 to 80 ° C
  • the treatment time is 0.:! To 12 hours, preferably 0.5 to 5 hours.
  • the treatment pH is not more than 2.0, preferably not more than 1.5.
  • iron sulfate examples include ferrous sulfate and ferric sulfate, but ferric sulfate is preferable.
  • the iron sulfate is preferably added as a power solution that can be added as is.
  • the iron sulfate solvent is not limited as long as it dissolves the iron salt, but water, alcohol, ether, ketone and the like are preferable.
  • the concentration of iron sulfate is f, usually from 0.02 to 100.0 monole / lit nore, preferably from 0.5 to 5.0 mol / liter.
  • the slurry ratio that is, the volume of the processing solution (liter) / the mass of zeolite (kg) is preferably in the range of:! In particular, 5 to 30 is preferable.
  • the iron-containing zeolite thus obtained can be appropriately washed with water, dried and fired as necessary, but is preferably easily transported and dried to some extent.
  • the carrier used for the hydrocracking catalyst of the present invention comprises 5 to 85% by mass of the iron-containing zeolite and 95 to 15% by mass of the inorganic oxide.
  • the suitable ratio described above varies depending on the hydrocarbon oil used as a raw material.
  • the ratio of iron-containing zeolite is Preferably it is 20-75 mass%, More preferably, it is 45-70 mass%.
  • the ratio of iron-containing zeolite is preferably 5 to 60% by mass, more preferably Is 5-40% by mass.
  • Examples of the inorganic oxide include porous and amorphous inorganic oxides used in ordinary catalytic cracking, and hydrous oxides such as alumina such as boehmite gel and alumina sol, silica such as silica sol or the like. Silica alumina, polyalumina, etc. are used. If the proportion of iron-containing zeolite is too small, a high reaction temperature is required to obtain the desired middle distillate, and as a result, the life of the catalyst is adversely affected.
  • composition comprising the iron-containing zeolite and the inorganic oxide is dried at 30 to 200 ° C for 0.:! To 24 hours, and then 300 to 750 ° C (preferably 450 to 700). At ° C):! ⁇ 10 hours (preferably 2-7 hours) and calcine.
  • the metal supported on the carrier is at least one metal selected from Group 6, 8 to 10 metals in the periodic table.
  • Mo and W are preferred as metals belonging to Group 6 of the Periodic Table, and Groups 8-10 Ni, Co, and Fe are preferable as the metal belonging to.
  • Ni-Mo, Co-Mo, Ni-W, Co-W, etc. are listed as combinations of the two types of metals, with Co-Mo and Ni-Mo being preferred.
  • the amount of the metal component supported is not particularly limited and may be appropriately selected according to various conditions.
  • the Group 6 metal is 0.5 to 30% by mass of the total catalyst, preferably as an oxide. 5 to 20% by mass, Group 8 to Group 10 metal, as an oxide, is 0.:! To 20% by mass, preferably 1 to 10% by mass of the total catalyst.
  • the metal component supported on the carrier is dried at 30 to 200 ° C. for 0.:! To 24 hours, and then 300 to 750 ° C. (preferably f, 450 to 700 ° C.) for 1 to: 103 temples (preferably ⁇ or 2 ⁇ 73 temples f ⁇ ) Bake and prepare the catalyst.
  • the physical properties of the catalyst having a metal component supported on a carrier are 150 to 600 m 2 / g, preferably 200 to 500 m 2 / g, in specific surface area (BET method).
  • pore volume volume with a pore diameter of 200 nm or less as evaluated by the BJH method of nitrogen adsorption method
  • pore volume volume with a pore diameter of 200 nm or less as evaluated by the BJH method of nitrogen adsorption method
  • the catalyst of the present invention can be used for hydrocracking heavy oils, heavy distillate oils, and mixtures thereof as described below, particularly hydrocracking of vacuum gas oil, hydrocracking of coker gas oil, It can be preferably used in a naphthacut crude oil reforming process.
  • the method for producing hydrocracked oil for hydrocracking hydrocarbon oil of the present invention is achieved by hydrocracking hydrocarbon oil using the above-described catalyst.
  • the raw material hydrocarbon oil to be subjected to hydrocracking treatment is not particularly limited and can be various, but heavy gas oil, vacuum gas oil, cracked gas oil, coker gas oil, solvent degassed oil, atmospheric residue These are heavy oils such as reduced-pressure residual oil, solvent-retained residual oil, pyrolysis oil, coker oil, tar sand oil, and shear oil, or mixed oils containing these.
  • raw material hydrocarbon oils include coal tar and tar sand oil.
  • the hydrocracking catalyst of the present invention is particularly applicable to heavy oil as a raw material hydrocarbon oil. preferable.
  • hydrocracking conditions using the hydrocracking catalyst of the present invention a wide range of reaction conditions conventionally employed in hydrocracking processes can be employed.
  • Reactor S usually the reaction temperature f is 320 to 550. C, preferably f 350-430. C.
  • the hydrogen partial pressure is 1 to 30 MPa, preferably 5 to 15 MPa.
  • the hydrogen / feed oil (ratio) is 100 to 2000 Nm 3 / kilolitre, preferably 300 to 1000 Nm 3 / kiloliter.
  • hydrocracked oil when producing hydrocracked oil by processing light heavy oil such as heavy gas oil, vacuum gas oil, cracked gas oil, coker gas oil, etc., gas generation will not occur even if the hydrocracking rate is increased to nearly 100%. It can be used for the production of naphtha and kerosene oil with a higher decomposition rate than that for heavy oil treatment.
  • the catalyst of the present invention may be used alone, or a combination with a general hydrotreating catalyst may be used.
  • Example la (Production of iron-containing zeolite A1)
  • Synthetic NaY-type zeolite (Na O content 13.5 mass 0 SiO / Al O molar ratio 5.2, crystal For the lattice constant (2.466 nm), the cycle of ammonium ion exchange and steaming was repeated twice. Of these, the first steaming treatment was carried out at 580 ° C while maintaining the water vapor atmosphere while intentionally supplying water, and the second steaming treatment temperature was also carried out at 580 ° C. USY zeolite (Na O content 1.0 mass% or less, crystal lattice constant 2.435 nm) was obtained.
  • the measurement conditions are as follows.
  • zeolite has a strong property of adsorbing moisture and the like
  • deaeration was performed under a vacuum at 400 ° C. for 3 hours.
  • Example la A synthetic NaY-type zeolite (Na 2 O content 13.2% by mass, SiO 2 / Al 2 O 2 molar ratio 5.2, crystal lattice constant 2. 465 nm) different from that used in Example la was used. In the same manner as above, the iron-containing zeolite slurry A2 and a part thereof were taken out and dried. Obtained Olite A2.
  • Example l c (Production of iron-containing zeolite A3)
  • the same synthetic NaY-type zeolite as that used in Example lb was used, and the final steaming temperature of 570 ° C of the two-time steaming was performed at 570 ° C.
  • the iron-containing zeolite A3 was obtained by taking out the zeolite-containing slurry A3 and a part of the slurry and drying it.
  • the crystal lattice constant of the USY-type zeolite obtained after steaming was 2.437 nm.
  • the prepared slurry was further aged for 60 minutes while maintaining the temperature at 60 ° C.
  • the entire amount of the prepared slurry was dehydrated with a flat plate filter and washed with 600 liters of 0.3% by mass ammonia water at 60 ° C. to obtain an alumina cake.
  • the slurry is placed in a stainless steel aging tank equipped with a reflux, and stirred 95. Aged for 8 hours in C.
  • This dissolved solution is 16.0% by mass as MoO with respect to the whole catalyst on catalyst carrier I,
  • the specific surface area of this catalyst was 405 m 2 / g and the total pore volume was 0.60 mL / g.
  • the specific surface area of this catalyst was 245 m 2 / g, and the total pore volume was 0.70 mL / g.
  • the specific surface area and total pore volume of the catalyst were measured in the same manner as the iron-containing zeolite A1 of Example 1.
  • Example 2 (2) except that the iron-containing crystalline zeolite / alumina (solid content equivalent mass ratio) was replaced with 30Z70, catalyst support II-2 was obtained in the same manner as in Example 2, and then catalyst A3 (Pellet) was obtained.
  • catalyst A4 Patent Application Laidity
  • Example 2 (2) The iron-zeolite slurry used in Example 2 (2) except that A2 was used, and in Example 2 (2), the iron-containing crystalline zeolite / alumina (mass ratio in terms of solid content) was changed to 60/40.
  • nickel carbonate was replaced by cobalt carbonate, and CoO was 4.2% by mass and MoO was 10.5% by mass.
  • a catalyst A4 pellet was obtained in the same manner as in Example 3, (3) except that the metal was impregnated so that
  • the AlO / B 2 O weight ratio was 85.
  • the alumina boric acid slurry and the iron-containing crystalline zeolite slurry A2 were placed in a kneader so that the mass ratio was 80Z20 in terms of solid content, and extruded and formed into pellets while heating and stirring.
  • a catalyst A6 pellet was obtained in the same manner as in Example 3-4 except that the iron-containing crystalline zeolite slurry A3 was used.
  • a portion of the iron-containing zeolite zeolite B 1 was taken and dried, and then the specific surface area and total pore volume of the iron-containing zeolite zeolite B 1 were measured.
  • Table 1 shows the measurement results.
  • the crystal lattice constant of the USY-type zeolite obtained after steaming was 2.442 nm.
  • Alumina slurry was produced in the same manner as in Example 2.
  • Comparative Example 1 3200 g of iron-containing zeolite slurry B (30.5 mass% concentration) and 262 5 g of alumina slurry (20 mass% concentration) produced in Comparative Example 1 can be added to a kneader and extruded while heating and stirring. After concentration to a concentration, it was extruded into a 1/22 inch size four-leaf pellet.
  • This dissolved solution is 10.0% by mass as MoO on the catalyst support
  • Catalyst B1 was impregnated as CoO to 4.25% by mass, then dried and calcined at 550 ° C. for 3 hours to obtain Catalyst B1.
  • the specific surface area of this catalyst was 455 m 2 Zg, and the total pore volume was 0.62 mLZg. Table 2 shows the measurement results.
  • Comparative Example 2-1 (2) the iron-containing zeolite / alumina (mass ratio in terms of solid content) was changed to 50/50 to obtain catalyst carrier 2-2. In the same manner, catalyst B2 (pellet) was obtained.
  • Example 3_4 except that iron-containing zeolite slurry was replaced with B 1 obtained in Comparative Example 1a, catalyst support ⁇ _3 and catalyst B3 ( Pellets).
  • hydrodesulfurization catalyst C1 pellet, alumina support, Co-Mo system
  • Hydrodesulfurization catalyst C2 (pellet, alumina composite oxide support, Co_Mo system) (33.3% by volume) as a pretreatment catalyst is placed in the front stage of the reactor, and the above catalysts Al, A2, A4, Bl, B2 and C 1 Were separately charged in the middle stage of the reactor (33.3% by volume), Cl (33.3% by volume) as a post-treatment catalyst was placed in the latter stage of the reactor, and a total of lOOmL as a pellet was charged into the high-pressure fixed bed reactor.
  • a synthetic oil in which dimethyl sulfide is added to a straight-run gas oil so that the sulfur concentration is 2.5 mass% is liquid space velocity (LHSV) 1.
  • the oil was passed at a hydrogen partial pressure of 10 MPa and hydrogen / synthetic oil 800 Nm 3 / kL, and finally pre-sulfided at 330 ° C while gradually raising the temperature.
  • CGO / VGO blended oil blended to be 40/60 (volume ratio) (3.2% by mass of sulfur, 0.15% by mass of nitrogen, density of 0. 935g / cm 3 ), hydrocracking with reaction temperatures of 380 ° C and 390 ° C, liquid space velocity (LHSV) 0.6 h, hydrogen partial pressure 10 MPa, hydrogen / mixed oil ratio 800 NM 3 / kL Went.
  • LHSV liquid space velocity
  • catalyst A1 (Examples 4a and 4b) and catalyst A4 (Examples 4a2 and 4b2) have a decomposition rate (a fraction at a temperature higher than 343 ° C), middle fraction ( The kerosene oil fraction) yield, sulfur and nitrogen removal rates are all well balanced.
  • Catalyst A2 (Examples 5a and 5b) has a middle distillate (kerosene oil distillate) by suppressing the decomposition rate. Min) and the properties of the resulting light oil (removal rate of sulfur and nitrogen) are good.
  • Catalyst B1 (Comparative Examples 3a and 3b) and Catalyst B2 (Comparative Examples 3a2 and 3b2) have high cracking rates and middle distillate yields, but the properties of the resulting light oil (especially the sulfur removal rate) are commercially available.
  • Hydrodesulfurization catalyst C1 (comparative examples 4a and 4b) or less.
  • the resulting oil was mixed with LPG (propane + butane), naphtha fraction (pentane to 157 ° C), kerosene fraction (157 to 239 ° C), light oil fraction (239 to 343 ° C) and atmospheric residue (above 343 ° C) were used to measure the properties of each product.
  • LPG propane + butane
  • naphtha fraction pentane to 157 ° C
  • kerosene fraction 157 to 239 ° C
  • light oil fraction (239 to 343 ° C)
  • atmospheric residue above 343 ° C
  • catalyst A1 (Example 6) has a higher kerosene fraction yield than catalyst B1 (Comparative Example 5), and a fraction obtained with less aromatics over the entire fraction.
  • the nature of the minute (removal rate of sulfur and nitrogen) is good.
  • the hydrogen partial pressure 10. 3 MPaG, hydrogen / feed oil ratio 800 Nm 3 / kl, and the reaction tube filled with demetallization catalyst D 355 ° C, hydrogenated
  • the reaction tube filled with cracking catalyst A1 is set to 400 ° C and the liquid space velocity (LHSV) O. 28h- 1 is 0.6% by mass.
  • the hydrodesulfurization catalyst C1 was adjusted so that the hydrogenation reaction was performed for 2000 hours.
  • Table 7 shows the yield of the obtained middle distillate (160-360 ° C distillate).
  • Example 7 A hydrotreating reaction was performed in the same manner as in Example 7 except that the third-stage hydrocracking catalyst A1 in Example 7 was replaced with a hydrocracking catalyst B1. The results obtained are shown in Table 7.
  • Example 7 The third-stage hydrocracking catalyst A1 in Example 7 was replaced with a commercially available hydrodesulfurization catalyst C1, the reaction tube filled with the demetalization catalyst D was 355 ° C, and the other reaction tubes were 360 ° C in the product oil.
  • the hydrotreatment reaction was carried out in the same manner as in Example 7 except that the reaction temperature was adjusted so that the sulfur content of the above fraction was 0.6% by mass. The results obtained are shown in Table 7.
  • Catalyst A1 (Example 7) has a higher middle distillate yield than Catalyst B1 (Comparative Example 6) and Catalyst C1 (Comparative Example 7).
  • hydrotreating catalyst N1 pellet, alumina support, Ni_Mo system 50 Capacity 0/0, hydrocracking catalyst prepared above SL (catalyst A3, the catalyst A5, the catalyst A6 and catalyst B3, the catalyst B4) 50% by volume of each was charged into a high pressure fixed bed reactor and presulfided in the usual manner.
  • Hydrocracking treatment was performed under the condition of 1,000 Nm 3 / kl.
  • Table 8 shows the properties of the heavy gas oil used as the feedstock oil.
  • Catalyst A3 (Example 8)
  • Catalyst A5 (Example 9)
  • Catalyst A6 (Example 10)
  • Catalyst B3 (Comparative Example 8)
  • Catalyst B4 (Comparative)
  • Table 9 shows the properties of the heavy gas oil used as the feedstock oil.
  • the catalyst containing the iron-containing zeolite of the present invention as a catalyst support component has hydrocracking activity similar to that of conventional heavy oil hydrocracking catalysts, and has an appropriate increase in the outer surface area and mesopore capacity of zeolite. By improving the diffusibility of heavy components, the selectivity and desulfurization rate of middle distillate in the high hydrocracking region can be maintained.
  • the nitrogen content and sulfur content in the middle distillate (kerosene / light oil fraction) obtained by hydrocracking are 1 ppm or less and lOppm, respectively. It can be reduced to the following extent, and it is possible to easily achieve an increase in the production of high-quality middle distillate, which requires further secondary treatment.
  • gasoline when gasoline is produced by catalytic cracking of heavy oil using a fluid catalytic cracking device, it is pretreated with the catalyst of the present invention as a feedstock oil in which the nitrogen content and sulfur content are greatly reduced from the heavy oil.
  • High quality gasoline with low nitrogen and sulfur content can be easily increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 本発明は、下記の要件(A)及び要件(B)を満足することを特徴とする鉄含有結晶性アルミノシリケート、重質油の水素化分解において、灯軽油の増産が可能で、硫黄分及び窒素分が低い高品質の灯軽油が容易に得られる該アルミノシリケートを含む水素化分解触媒及び該触媒を用いる水素化分解法を提供する。 (A)酸化物の形態で表わした主な組成が、SiO2/Al2O3のモル比が20~100であって、且つFe2O3としての含有量が0.2~5.0質量% (B)比表面積が700m2/g以上、且つ細孔直径が200nm以下である細孔の全細孔容量が0.6mL/g以上                                                                               

Description

明 細 書
鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分 解触媒並びに該触媒を用いる水素化分解法
技術分野
[0001] 本発明は、鉄含有結晶性アルミノシリケート及び該ァルミノシリケートを含む水素化 分解触媒並びに該触媒を用いる水素化分解法に関するものである。
特に、本発明は、重質油の水素化分解において、灯軽油の増産が可能で、硫黄分 及び窒素分が低い高品質の灯軽油が容易に得られる鉄含有結晶性アルミノシリケ一 トを含む水素化分解触媒及び該触媒を用いる水素化分解法に関するものである。 背景技術
[0002] 従来、残油や減圧軽油(VG〇)等の重質油の水素化分解プロセスにおレ、ては、結 晶性アルミノシリケート(以下、ゼォライトと称する)を含有する水素化分解触媒を一部 又は反応塔全体に充填することにより、重質油の脱硫を行うと同時に適度な分解を 起こさせ、灯軽油からなる中間留分を増産することが行われてきた。
ゼォライトに鉄塩処理を施した鉄含有ゼォライトからなる触媒は、水素移行能が上 昇し、コータス生成による劣化が抑制されるため、特に水素化分解活性に優れている ことが知られている(例えば、特許文献 1及び 2)
し力しながら、この鉄含有ゼォライトからなる水素化分解触媒においても、分解活性 の高い領域では中間留分の選択性を上げることは困難で、過分解の結果、中間留 分は頭打ちの傾向となり、ナフサ等の軽質分が多く生成する。
更に、重質成分(343°C+ ; 343°Cより高い温度の留分)の分解活性が特に低いこ とも問題であった。
また、水素化分解活性と水素化脱硫活性がうまく調和しない場合、折角得られた主 に灯軽油からなる中間留分中の硫黄分が高くなり、得られた中間留分を更に二次処 理により脱硫する必要がある。
[0003] 従って、中間留分の選択性を向上させるため、従来より、ゼォライトを過度のスチー ミング処理 (水蒸気雰囲気下での高温処理)又は pHの低レ、領域で酸処理し、ゼオラ イト結晶の一部を破壊して、メソ細孔をある程度生成させることにより、重質成分が分 解するようにゼオライト触媒を改質してきた。
し力しながら、これらの改質方法はゼオライトの骨格を破壊する処理であり、十分な メソ細孔を生成させようとすると、ゼォライトの結晶性の低下を招くことになる。
その結果として、ゼォライトの結晶性の低下に起因して触媒の表面積が低下するた め、水素化分解活性を充分に発揮できないという欠点があった。
[0004] 特許文献 1 :特公平 6— 074135号公報
特許文献 2:特開 2000— 86233号公報
特許文献 3:特許第 1739396号公報
発明の開示
[0005] 本発明は、上記観点からなされたもので、中間留分の選択率を維持向上し、且つ 高い水素化分解活性を有する炭化水素油の水素化分解触媒の担体成分として好適 な鉄含有結晶性アルミノシリケートを提供することにある。
また、本発明は、特に重質油をはじめとする各種の炭化水素油の水素化分解にお いて、中間留分の選択率を維持しつつ、特に重質油からの高品質の中間留分 (灯軽 油留分)を増産することができる鉄含有結晶性アルミノシリケートを含む水素化分解 触媒及び該触媒を用いる炭化水素油の水素化分解法を提供することにある。
[0006] 本発明者らは、このような状況下で、中間留分の選択性が更に維持向上し、且つ水 素化分解活性が高度に上昇した触媒を鋭意探索 *検討した結果、特定の組成と特定 の細孔容量を有する鉄含有結晶性アルミノシリケート(以下、鉄含有ゼォライトと称す ることがある。)が、高い水素化分解活性を維持しつつ、中間留分の選択性向上と脱 硫率の向上を高度なレベルで両立できることを見出し、本発明を完成するに至った。 本発明は、力かる知見に基づいて完成したものである。
[0007] 即ち、本発明は、
1.下記の要件 (A)及び要件 (B)を満足することを特徴とする鉄含有結晶性アルミノ シリケート。
(A)酸化物の形態で表わした主な組成力 SiO /A1〇のモル比が 20〜: 100であ つて、且つ Fe Oとしての含有量が 0. 2〜5. 0質量% (B)比表面積が 700m2/g以上、且つ細孔直径が 200nm以下である細孔の全細孔 容量が 0. 6mL/g以上
2.上記 1に記載の鉄含有結晶性アルミノシリケート 5〜85質量%と無機酸化物 95〜 15質量%からなる担体に、周期律表第 6、 8〜: 10族金属から選ばれる少なくとも 1種 の金属を担持してなる水素化分解触媒、
3.上記 2に記載の水素化分解触媒を用いる炭化水素油の水素化分解法、
4.炭化水素油が重質油である上記 3に記載の炭化水素油の水素化分解法、
5.重質油が、重質軽油、減圧軽油、分解軽油、溶剤脱歴油、常圧残油、減圧残油、 溶剤脱歴残油、熱分解油、コーカー油、タールサンド油及びシェールオイルから選 ばれる少なくとも一種である上記 4に記載の炭化水素油の水素化分解法
を提供するものである。
発明を実施するための最良の形態
[0008] 本発明の鉄含有ゼォライトは、(A)酸化物の形態で表わした主な組成力 Si〇 /
A1〇のモル比が 20〜100、好ましくは 30〜60であって、且つ Fe Oとしての含有 量が 0. 2〜5. 0質量%、好ましくは 0. 5〜2. 0質量%である。
[0009] また、本発明の鉄含有ゼォライトは、 (B)比表面積が 700m2Zg以上、且つ細孔直 径が 200nm以下である細孔の全細孔容量が 0. 6mLZg以上である。
上記比表面積が 700m2/g以上であると、当該鉄含有ゼォライトを水素化分解触 媒の担体に用いた場合に、良好な触媒活性を発揮することができる。
該比表面積の上限には特に制限はないが、通常 850m2/g程度であり、好ましい 比表面積は 700〜800m2/gの範囲である。
また、細孔直径が 200nm以下である細孔の細孔容量 (以下、特に断らない限り糸田 孔直径が 200nm以下である細孔の細孔容量を全細孔容量と略称する。)が 0. 6mL /g以上であると、当該鉄含有ゼォライトを水素化分解触媒の担体に用いた場合に、 良好な触媒活性を発揮することができる。
該全細孔容量の上限には特に制限はないが、通常 0. 80mL/g程度であり、好ま しい全細孔容量は 0. 60〜0. 70mL/gの範囲である。
[0010] 本発明の鉄含有ゼォライトを製造するにあたっては、下記に述べる方法で行うこと が好ましい。
先ず、出発原料としては、 Naイオン交換フォージャサイト型ゼオライト、好ましくは N aイオン交換 Y型ゼオライトが挙げられる。
この Naイオン交換 Y型ゼオライトとしては、アルミナに対するシリカのモル比(Si〇
/A1〇 )は、 4. 8以上、好ましくは、 5. 1以上である。
Na Oの含有量は 10. 0-15. 0質量%程度が好ましぐ特に 12. 0-14. 0質量
%が好ましい。
また、比表面積は 680m2Zg以上、好ましくは 700m2/g以上である。
更に、 X線回折ピーク (XRD)で評価される結晶格子定数(UD)は、 2. 450-2. 4 70nmの範囲にあること力 S好ましく、特に 2. 460〜2. 470nm範囲にあること力 S好ま しい。
次に、この出発原料の Naイオン交換 Y型ゼオライトを、イオン交換処理、次いでス チーミング処理して、高 SiO /A1〇モル比を有する水素イオン交換 Y型ゼオライト を得る。
具体的には、上記 Naイオン交換 Y型ゼオライトを、常法に従って、アンモニゥムィォ ンでイオン交換処理して、 NHイオン交換 Y型ゼオライトを得た後、スチーミング処理 する。
スチーミング処理としては、様々な状況に応じて適宜選定すればよいが、一般には 温度 540〜810°Cの水蒸気の存在下で処理することが好ましい。
水蒸気は、外部から導入してもよいし、ゼォライトに含まれる物理吸着水や結晶水 を使用してもよい。
得られたスチーミング処理 Y型ゼオライト(USY)は、ゼォライト結晶成分のアルミナ に対するシリカ(骨格 Si〇 /Al Oモル比)が 20以上、好ましくは 30以上である。 また、 Na〇の含有量は 1. 0質量%以下、好ましくは 0. 3質量%以下である。 更に、 X線回折ピーク (XRD)で評価される結晶格子定数 (UD)は、 2. 425〜2. 4 45讓、好ましくは 2. 430〜2. 440讓の範囲である。
骨格 SiO /Al Oモル比、 Na Oの含有量及び UDが上記範囲内であると、ゼオラ イト骨格から十分に脱アルミニウムが進行し、耐熱性が良好で、その後の鉄塩処理に おいてゼォライトの結晶性が破壊され難ぐ高表面積の鉄含有ゼォライトを得ることが できる。
[0012] このようして得られたスチーミング処理 Y型ゼオライトに鉱酸を加え、混合攪拌処理 することにより、ゼォライト構造骨格からの更なる脱アルミニウムと脱落アルミニウムの 洗浄を行う。
鉱酸としては各種のものが挙げられるが、塩酸、硝酸、硫酸などが一般的であり、そ の他リン酸、過塩素酸、ペルォクソニスルホン酸、ニチオン酸、スルファミン酸、ニトロ ソスルホン酸等の無機酸、ギ酸、トリクロ口酢酸、トリフルォロ酢酸等の有機酸などを用 レ、ることあでさる。
鉱酸の量は、ゼォライト lkgあたり 0. 5〜: 15モノレ、好ましくは 3〜: 11モルである。 鉱酸の濃度は、 0. 5〜50質量%溶液、好ましくは 1〜20質量%溶液である。
処理温度は、室温〜 100°C、好ましくは 50〜: 100°Cである。
処理時間は 0.:!〜 12時間である。
[0013] 引き続いて、この系に鉄の硫酸塩をカ卩えて混合攪拌処理することにより、鉄の担持 、ゼオライト構造骨格からの更なる脱アルミニウムと脱落アルミニウムの洗浄を行う。 この鉄の硫酸塩処理を行う場合、通常、処理温度は 30〜: 100°C、好ましくは 50〜8 0°C、処理時間は 0.:!〜 12時間、好ましくは 0. 5〜5時間であり、処理 pHは、 2. 0以 下、好ましくは 1. 5以下である。
鉄の硫酸塩としては、硫酸第一鉄、硫酸第二鉄を挙げることができるが、硫酸第二 鉄が好ましい。
鉄の硫酸塩は、そのまま加えることもできる力 溶液として加えることが好ましい。 鉄の硫酸塩の溶媒としては、鉄塩を溶解するものであれば制限はないが、水、アル コール、エーテル、ケトン等が好ましい。
また、鉄の硫酸塩の濃度 fま、通常、 0. 02-10. 0モノレ/リットノレ、好ましく ίま 0. 05 〜5. 0モル/リットルである。
[0014] この鉱酸と鉄の硫酸塩をカ卩えてゼォライトを処理するにあたっては、そのスラリー比 、即ち、処理溶液容量 (リットル) /ゼォライト質量 (kg)は、:!〜 50の範囲が好都合で あり、特に 5〜30が好適である。 上記のような、ゼォライトを低 pH領域で脱アルミニウムを行うと同時に鉄の硫酸塩を 担持することにより、ゼォライトの酸性質の制御及び鉄の微細化による水素化活性の 付与が効果的に行われ、より高い水素化分解活性を発現させているものと考えられ る。
このようにして得られる鉄含有ゼォライトは、更に必要に応じて水洗、乾燥、焼成を 適宜行うことができるが、好ましくは搬送が容易である程度の乾燥までがよい。
[0015] 本発明の水素化分解触媒に用いる担体は、上記鉄含有ゼォライト 5〜85質量%と 無機酸化物 95〜: 15質量%からなるものである。
好適な上記の割合は、原料の炭化水素油によって異なる。
即ち、常圧残油、減圧残油、溶剤脱歴残油、熱分解油、コーカー油、タールサンド 油及びシェールオイル等の重質油を原料油として使用する場合、鉄含有ゼォライト の割合は、好ましくは 20〜75質量%、更に好ましくは 45〜70質量%である。
また、重質軽油、減圧軽油、分解軽油及び溶剤脱歴油等の比較的軽質な重質油 を原料油として使用する場合、鉄含有ゼォライトの割合は、好ましくは 5〜60質量% 、更に好ましくは 5〜40質量%である。
[0016] 無機酸化物としては、通常の接触分解に用いられる多孔質で非晶質の無機酸化物 が挙げられ、含水酸化物、例えば、ベーマイトゲル、アルミナゾルなどのアルミナ、シ リカゾルなどのシリカ又はシリカ アルミナ、ポリア一アルミナなどが用いられる。 鉄含有ゼォライトの割合が少なすぎると、所望の中間留分を得るためには、高い反 応温度を必要とし、その結果触媒の寿命に悪影響を与える。
また、鉄含有ゼォライトの割合が多すぎると、水素化分解活性は向上するが、過分 解によるナフサ、ガス等の生成が多く中間留分の選択性が低下する。
[0017] 上記の鉄含有ゼォライトと無機酸化物からなる組成物を、 30〜200°Cで、 0.:!〜 2 4時間乾燥し、次いで、 300〜750°C (好ましくは、 450〜700°C)で、:!〜 10時間(好 ましくは、 2〜7時間)焼成し、担体とする。
次に、この担体に担持する金属は、周期律第 6、 8〜: 10族金属のうちの少なくとも一 種の金属である。
ここで、周期律表第 6族に属する金属としては、 Mo、 Wが好ましぐ又、第 8〜10族 に属する金属としては、 Ni、 Co、 Feが好ましい。
二種類の金属の組合せとしては、 Ni— Mo、 Co-Mo, Ni— W、 Co— Wなどが挙 げられ、中でもCo— Mo、 Ni— Moが好ましぃ。
上記金属成分の担持量は、特に制限はなく各種条件に応じて適宜選定すればよ いが、通常、第 6族の金属は、酸化物として、触媒全体の 0. 5〜30質量%、好ましく は 5〜20質量%、第 8〜: 10族の金属は、酸化物として、触媒全体の 0.:!〜 20質量 %、好ましくは 1〜: 10質量%である。
[0018] 上記金属成分を担体に担持するにあたっては、含浸法,混練法,共沈法などの公 知の方法を採用することができる。
金属成分を担体に担持したものを、 30〜200°Cで、 0. :!〜 24時間乾燥し、次いで 、 300〜750°C (好ましく fま、 450〜700°C)で、 1〜: 103寺 (好ましく ίま、 2〜73寺 f^) 焼成し、触媒を調製する。
[0019] 金属成分を担体に担持した触媒の物性は、比表面積 (BET法)が 150〜600m2/ g、好ましぐは 200〜500m2/gである。
また、細孔容量(窒素吸着法の BJH法にて評価される細孔直径 200nm以下の容 積) ίま、 0. 30〜0. 90mL/g、好ましく ίま 0. 45〜0. 75mL/gである。
本発明の触媒は、下記のように重質油、重質留出油及びこれらの混合物等の水素 化分解に使用することができ、特に減圧軽油の水素化分解、コーカーガス油の水素 化分解、ナフサカット原油改質プロセスに好ましく使用することができる。
[0020] 本発明の炭化水素油の水素化分解処理を行う水素化分解処理油の製造方法は、 上述の触媒を用いて炭化水素油を水素化分解処理することにより達成される。
ここで、水素化分解処理する原料炭化水素油としては、特に制限はなく種々のもの が可能であるが、重質軽油、減圧軽油、分解軽油、コーカーガス油、溶剤脱瀝油、常 圧残油、減圧残油、溶剤脱歴残油、熱分解油、コーカー油、タールサンド油、シエー ルオイル等の重質油又はこれらを含む混合油である。
また、その他の原料炭化水素油としては、コールタール、タールサンド油などが挙 げられる。
本発明の水素化分解触媒は、特に原料炭化水素油として重質油に適用することが 好ましい。
[0021] 本発明の水素化分解触媒を用いる水素化分解条件は、従来から水素化分解処理 に採用されている広範囲の反応条件を採用することができる。
具体的な反応条件は、原料油の種類などにより変動し、一義的に定めることはでき なレヽカ S、通常、反応温度 fま 320〜550。C、好ましく fま 350〜430。Cである。
水素分圧は、 l~30Mpa,好ましくは 5〜: 15MPaである。
水素/原料油(比)は、 100〜2000Nm3/キロリットノレ、好ましくは 300〜1000N m3/キロリットルである。
液空間速度(LHSV)は、 0. :!〜 5h— 1、好ましくは 0. 2〜2. Oh— 1の範囲で適宜選定 すればよい。
[0022] 通常、ナフサ及び灯軽油の製造を目的として常圧残油、減圧残油、溶剤脱歴残油 、 コーカー油等の重質油を処理して水素化分解油を製造する場合、 30〜80%の得 率で水素化分解することが好ましい。
あまり水素化分解率を上げると、ガスの発生が増加したり、触媒の劣化が早まること 力 sある。
一方、重質軽油、減圧軽油、分解軽油、コーカーガス油等の軽質な重質油を処理 して水素化分解油を製造する場合、 100%近くまで水素化分解率を上げてもガスの 発生は重質油の処理の場合よりは少なぐ高分解率でナフサ及び灯軽油の製造に 利用することができる。
また、生成油の一部をリサイクルして水素化分解処理することにより、分解率を上げ てもガスの発生を抑えたり、触媒の劣化を防ぐことができる。
[0023] 更に、本発明の水素化分解法では、本発明の触媒を単独で用いてもよいが、一般 の水素化処理触媒と組み合わせたものを用いてもよい。
実施例
[0024] 次に、本発明を実施例により、更に詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではなレ、。
[0025] 実施例 la (鉄含有ゼォライト A1の製造)
合成 NaY型ゼオライト(Na O含量 13. 5質量0ん SiO /Al Oモル比 5. 2、結晶 格子定数 2. 466nm)をアンモニゥムイオン交換とスチーミング処理のサイクルを 2回 繰り返した。この内、 1回目のスチーミング処理では意図して水を供給しながら水蒸気 雰囲気を保ち 580°Cで実施し、更に 2回目のスチーミング処理温度も 580°Cで実施 し、 USY型ゼオライト(Na O含量 1. 0質量%以下、結晶格子定数 2. 435nm)を得 た。
10kgの USY型ゼオライトを純水 115リットルに懸濁させた後、懸濁液を 75°Cに昇 温し 30分間攪拌した。
次いで、この懸濁液に 10質量%硫酸溶液 13. 7kgを 35分間で添加し、更に濃度 0 . 57モル/リットルの硫酸第二鉄溶液 11. 5kgを 10分間で添加し、添加後更に 30 分間攪拌した後、濾過、洗浄し、固形分濃度 30質量%の鉄含有ゼォライトスラリー A 1を得た。
[0026] 上記鉄含有ゼォライトスラリー A1の一部をとり乾燥した後、鉄含有ゼォライト A1の 比表面積、全細孔容量を測定した。
測定条件は、下記のとおりである。
(1)比表面積、全細孔容量は共に液体窒素温度における窒素の吸着 ·脱着等温線 より数値解析により算出した。
ゼォライトは、水分等を吸着する性質が強いため、本発明では、前処理として、真 空下、 400°C、 3時間の脱気を行った。
(2)比表面積は、上記(1)で得られた窒素吸着等温線のうち、 P/P0 = 0. 30までの P/P0と窒素吸着量から BET表面積を求めた。
(3)全細孔容量は、上記(1)で得られた窒素吸着等温線のうち、 P/P0 = 0. 99で の窒素吸着量から容積に換算して細孔容量として求めた。
測定結果を、 XRD解析により求めた結晶化度、結晶格子定数、さらに組成分析か ら求めた SiO /Al Oのモル比及び Fe O含有量と併せて、表 1に示す。
[0027] 実施例 lb (鉄含有ゼォライト A2の製造)
実施例 laで用いたものと異なる合成 NaY型ゼオライト(Na O含量 13. 2質量%、 S iO /Al Oモル比 5. 2、結晶格子定数 2. 465nm)を用いた他は、実施例 laと同様 にして、鉄含有ゼォライトスラリー A2およびその一部を取り出し乾燥させた鉄含有ゼ オライト A2を得た。
[0028] 実施例 l c (鉄含有ゼォライト A3の製造)
実施例 lbで用いたものと同じ合成 NaY型ゼオライトを用レ、、 2回行うスチーミングの うち最後のスチーミング処理温度を 570°Cで実施した他は、実施例 lbと同様にして、 鉄含有ゼォライトスラリー A3およびその一部を取り出し乾燥させた鉄含有ゼォライト A3を得た。
ただし、この場合、スチーミング後に得られた USY型ゼオライトの結晶格子定数は 2 . 437nmであった。
[0029] 実施例 2 (触媒 A1の製造)
( 1 )アルミナスラリーの製造
内容積 200リットルのスチームジャケット付ステンレス容器に、アルミン酸ナトリウム溶 液 (Al O換算濃度 5. 0質量%) 801¾及び50質量%のグルコン酸溶液240§を入れ
2 3
、 60。Cにカロ熱した。
次いで、硫酸アルミニウム溶液 (Al O換算濃度 2. 5質量%) 881¾を別容器に準備
2 3
し、 15分間で ρΗ7· 2になるように硫酸アルミニウム溶液を添加し、水酸化アルミニゥ ムスラリー (調合スラリー)を得た。
調合スラリーを更に 60°Cに保ったまま、 60分間熟成した。
次いで、調合スラリー全量を平板フィルタ一により脱水し、 60°Cの 0. 3質量%アン モニァ水 600リットルで洗浄し、アルミナケーキとした。
アルミナケーキの一部を純水と 15質量0 /0のアンモニア水を用い、アルミナ濃度 12. 0質量0 /0、 ρΗΙ Ο. 5のスラリーを得た。
このスラリーを還流器付のステンレス製熟成タンクに入れ、攪拌しながら 95。Cで 8時 間熟成した。
次いで、この熟成スラリーに純水を加え、アルミナ濃度 9. 0質量%に希釈した後、 攪拌機付オートクレープに移し、 145°Cで 5時間熟成した。
更に、 Al O換算濃度で 20質量%となるように加熱濃縮すると同時に脱アンモニア
2 3
し、アルミナスラリーを得た。
[0030] (2)触媒担体の製造 実施例 1で製造した 2500gの鉄含有ゼォライトスラリー Al (30質量%濃度)と 375 Ogのアルミナスラリー(20質量%濃度)をニーダーに加え、加熱、攪拌しながら押し 出し成形可能な濃度に濃縮した後、 1/22インチサイズの四葉型ペレット状に押し出 し成形した。
次いで、 110°Cで 16時間乾燥した後、 550°Cで 3時間焼成し、鉄含有ゼォライト/ アルミナ(固形分換算質量比)で 50Z50の触媒担体 Iを得た。
[0031] (3)触媒の製造
次いで、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを 90°Cに加熱し、 次レ、でリンゴ酸をカ卩ぇ溶解させた。
この溶解液を、触媒担体 Iにそれぞれ触媒全体に対して MoOとして 16. 0質量%,
3
Ni〇として 4. 0質量%になるように含浸し、次いで乾燥させ、 550°Cで 3時間焼成し、 触媒 A1 (ペレット)を得た。
この触媒の比表面積は、 405m2/g、全細孔容量は 0. 60mL/gであった。
測定結果を表 2に示す。
尚、この触媒の比表面積、全細孔容量は、実施例 1の鉄含有ゼォライト A1の測定 法と同様にして測定したものである。
[0032] 実施例 3— 1 (触媒 A2の製造)
実施例 2の(2)において、鉄含有結晶性ゼオライト/アルミナ(固形分換算質量比) を 10/90に代えた以外は、実施例 2と同様にして触媒担体 II- 1を得た後、触媒 A2 (ペレット)を得た。
この触媒の比表面積は、 245m2/g、全細孔容量は 0. 70mL/gであった。
測定結果を表 2に示す。
尚、触媒の比表面積、全細孔容量は、実施例 1の鉄含有ゼォライト A1と同様にして 測定したものである。
[0033] 実施例 3— 2 (触媒 A3の製造)
実施例 2の(2)において、鉄含有結晶性ゼオライト/アルミナ(固形分換算質量比) を 30Z70に代えた以外は、実施例 2と同様にして触媒担体 II- 2を得た後、触媒 A3 (ペレット)を得た。 [0034] 実施例 3— 3 (触媒 A4の製造)
鉄ゼオライトスラリーは A2を用レ、、実施例 2の(2)において、鉄含有結晶性ゼォライ ト /アルミナ(固形分換算質量比)を 60/40に代えた以外は、実施例 2の(2)と同様 にして触媒担体 II一 3を得た後、実施例 2の(3)において、炭酸ニッケルを炭酸コバ ノレトに代えて、 Co〇として 4. 2質量%、 MoOとして 10. 5質量%となるように金属を 含浸した以外は、実施例 2の(3)と同様にして触媒 A4 (ペレット)を得た。
[0035] 実施例 3— 4 (触媒 A5の製造)
実施例 2の(1)と同様にして得たアルミナスラリーに、 Al〇 /B Oの重量比で 85
/15となるようにホウ酸を添加し、アルミナホウ酸スラリーを得た。
このアルミナホウ酸スラリーと鉄含有結晶性ゼオライトスラリー A2を固形分換算で質 量比が 80Z20となるようにニーダ一に入れ、加熱、攪拌しながら、押し出してペレット 状に成形した。
次いで、 110°Cで 12時間乾燥した後、 550°Cで 3時間焼成し、担体 Π— 4を得た。 更に、実施例 2の(3)と同様にして、 Ni〇として 4. 0質量%、 MoOとして 16. 0質 量%の触媒 A5 (ペレット)を得た。
[0036] 実施例 3— 5 (触媒 A6の製造)
鉄含有結晶性ゼオライトスラリー A3を用いた以外は、実施例 3— 4と同様にして、触 媒 A6 (ペレット)を得た。
[0037] 比較例 la (鉄含有ゼォライト B1の製造)
合成 Na—Yゼォライト(Na O含量 13. 3質量0 /0、 SiO /Al Oモル比 5· 0)をアン モニゥムイオン交換とスチーミング処理のサイクルを 2回繰り返し、特に最後のスチー ミング処理温度を 590°Cにて実施し、 USY型ゼオライト(Na O含量 1. 3質量%、結 晶格子定数 2. 440nm)を得た。
10kgの USY型ゼオライトを純水 115リットルに懸濁させた後、懸濁液を 75°Cに昇 温し 30分間攪拌した。
次いで、この懸濁液に 10質量%硝酸溶液 81. 9kgを 35分間で添加し、更に濃度 0 . 57モル/リットルの硝酸第二鉄溶液 23. Okgを 10分間で添加し、添加後更に 30 分間攪拌した後、濾過、洗浄し、固形分濃度 30. 5質量%の鉄含有ゼォライトスラリ 一 Blを得た。
上記鉄含有ゼォライトスラリー B 1の一部をとり乾燥した後、鉄含有ゼォライト B 1の 比表面積、全細孔容量を測定した。
尚、比表面積、全細孔容量は、実施例 laの鉄含有ゼォライト A1と同様にして測定 したものである。
測定結果を表 1に示す。
[0038] 比較例 lb (鉄含有ゼォライト B2の製造)
比較例 laと同様にして、 2回行うスチーミングのうち最後のスチーミング処理温度を 580°Cで行レ、、鉄含有ゼォライトスラリー B2およびその一部を取り出し乾燥させた鉄 含有ゼォライト B2を得た。
ただし、この場合、スチーミング後に得られた USY型ゼオライトの結晶格子定数は 2 . 442nmであった。
[0039] 比較例 2— 1 (触媒 B1の製造)
(1)アルミナスラリーの製造は、実施例 2と同様に行った。
(2)触媒担体の製造
比較例 1で製造した 3200gの鉄含有ゼォライトスラリー B (30. 5質量%濃度)と 262 5gのアルミナスラリー(20質量%濃度)をニーダーに加え、加熱、攪拌しながら押し 出し成形可能な濃度に濃縮した後、 1/22インチサイズの四葉型ペレット状に押し出 し成形した。
次いで、 110°Cで 16時間乾燥した後、 550°Cで 3時間焼成し、鉄含有ゼォライト/ アルミナ(固形分換算質量比)で 65/35の触媒担体 III— 1を得た。
[0040] (3)触媒の製造
次いで、三酸化モリブデンと炭酸コバルトを純水に懸濁したものを 90°Cに加熱し、 次レ、でリンゴ酸をカ卩ぇ溶解させた。
この溶解液を、触媒担体 Πにそれぞれ触媒全体に対して MoOとして 10. 0質量%
3
、 CoOとして 4. 25質量%になるように含浸し、次いで乾燥させ、 550°Cで 3時間焼成 し、触媒 B1を得た。
この触媒の比表面積は、 455m2Zg、全細孔容量 0. 62mLZgであった。 測定結果を表 2に示す。
尚、この触媒の比表面積、全細孔容量は、実施例 1の鉄含有ゼォライト A1と同様に して測定したものである。
[0041] 比較例 2— 2 (触媒 B2の製造)
比較例 2—1の(2)において、鉄含有ゼォライト/アルミナ(固形分換算質量比)を 5 0/50に代えて、触媒担体 ΙΠ— 2を得た後、実施例 2の(3)と同様にして触媒 B2 (ぺ レット)を得た。
[0042] 比較例 2— 3 (触媒 B3の製造)
実施例 3 _ 4におレ、て、鉄含有ゼォライトスラリーを比較例 1 aで得た B 1に代えた以 外は、実施例 3 _4と同様にして触媒担体 ΠΙ_ 3及び触媒 B3 (ペレット)を得た。
[0043] 比較例 2— 4 (触媒 Β4の製造)
比較例 1 bで得た鉄含有ゼォライトスラリー Β2を用レ、、それ以外は比較例 2 _ 3と同 様にして触媒担体 III 4及び触媒 B4 (ペレット)を得た。
[0044] また、市販の水素化脱硫触媒 C1 (ペレット、アルミナ担体、 Co— Mo系〕を用いた。
[0045] [表 1]
表 1 i0064
Figure imgf000016_0001
*) Y型ゼォライ トの結晶性をリンデ S Κ— 40を 1 00%として表わした相対結晶化度 (XRDの主回折ピーク強度から算出した。 )
表 2
触媒 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 単位 実施例 2 実施例 3 - 1 実施例 3-2 実施例 3-3 実施例 3-4 実施例 3-5 比較例 2-1 比較例 2-2 比較例 2-3 比較例 2-4 鉄セ'オラ仆スラリ- A1 A1 A1 A2 A2 A3 B1 B1 B1 B2 鉄セ 'オラ仆
質量 %比 50/0/50 10/0/90 30/0/70 60/0/40 20/12/68 /68 20/12/68 /ホ'リア/アルミナ 20/12/68 65/0/35 50/0/50 20/12
CoO 質量% 0.0 0.0 0.0 4.2 0.0 0.0 4.3 0.0 0.0 0.0
NiO n % 4.0 4.0 4.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0
Mo03 質量% 16.0 16.0 16.0 10.5 16.0 16.0 10.0 16.0 16.0 16.0 比 Is面橫 m2/e 405 245 318 480 270 265 455 400 260 255 全細孔容量 mL/g 0.60 0.70 0.60 0.76 0.43 0.42 0.62 0.58 0.40 0.38
[0047] 以上のようにして製造した触媒 Al (実施例 2)、 A2 (実施例 3— 1)、 A3 (実施例 3— 2)、 A4 (実施例 3— 3)、 A5 (実施例 3— 4)、 A6 (実施例 3— 5)、 B1 (比較例 2— 1) 、 B2 (比較例 2— 2)、 B3 (比較例 2— 3)、 B4 (比較例 2— 4)及び市販の水素化脱硫 触媒 C1について、下記のようにして水素化分解活性を評価した。
[0048] (1)実施例 4〜5及び比較例 3〜4〔コ一力一ガス軽油(CGO) Z減圧軽油(VGO)混 合油の水素化分解〕
前処理触媒として水素化脱硫触媒 C2 (ペレット、アルミナ系複合酸化物担体、 Co _Mo系) (33. 3容量%)を反応器前段に、上記触媒 Al、 A2、 A4、 Bl、 B2及び C 1を別々に反応器中段(33. 3容量%)に、更に後処理触媒として Cl (33. 3容量%) を反応器後段に、各々ペレットとして合計 lOOmLを高圧固定床反応器に充填し、上 昇流にて、先ず、直留軽油に硫黄分濃度が 2. 5質量%になるようにジメチルサルフ アイドを添加した合成油を、液空間速度 (LHSV) 1.
Figure imgf000018_0001
水素分圧 10MPa、水素 /合成油 800Nm3/kLで通油し、段階的に温度を上げながら、最終的に 330°Cで 予備硫化した。
次に、 330°Cに保ったまま、 40/60 (容量比)となるように配合した CGO/VGO混 合油(硫黄分 3. 2質量%、窒素分 0. 15質量%、密度 0. 935g/cm3)を用いて、反 応温度 380°Cと 390°C、液空間速度(LHSV) 0. 6h 水素分圧 10MPa、水素/ 混合油比 800NM3/kLの条件で水素化分解処理を行った。
その結果を表 3— 1 (反応温度 380°C)及び表 3— 2 (反応温度 390°C)に示す。
[0049] [表 3]
表 3 _ 1 (反応温度 380°C) 触媒 A1 A2 A4 B1 C1 B2 実施例 4a 実施例 5a 実施例 4a2 比較例 3a 比較例 4a 比較例 3a2
343^+分解率 31.5 29.5 35.0 35.0 26.0 31.0 中間留分得率(%) 37.0 36.0 40.0 39.0 34.4 36.0 軽油分硫黄量 質量 ppm 8 7 8 19 15 17 軽油分窒素量 質量 ppm <1 <1 <1 <1 2 2
Figure imgf000020_0001
表 3— 1及び表 3— 2から、触媒 A1 (実施例 4a及び 4b)及び触媒 A4 (実施例 4a2 及び 4b2)は、分解率(343°Cより高い温度の留分)、中間留分 (灯軽油留分)得率、 硫黄及び窒素分の除去率が全てにわたってバランスが良い。
触媒 A2 (実施例 5a及び 5b)は、分解率を抑制することにより、中間留分 (灯軽油留 分)の選択性が高くなり、得られる軽油の性状 (硫黄及び窒素分の除去率)が良好で ある。
触媒 B1 (比較例 3a及び 3b)及び触媒 B2 (比較例 3a2及び 3b2)は、分解率及び中 間留分の得率は高いが、得られる軽油の性状 (特に硫黄の除去率)は市販の水素化 脱硫触媒 C1 (比較例 4a及び 4b)と同程度かそれ以下である。
[0052] (2)実施例 6及び比較例 5 (ナフサカット原油の水素化分解処理)
市販の脱金属触媒 D (ペレット、アルミナ担体、 Ni— Mo系) 28容量%を前段の 10 OmL反応管に、触媒 A1及び Bl、 33容量%を別々に中段の lOOmL反応管に、水 素化脱硫触媒 C2、 39容量%を後段の lOOmL反応管に、充填してこの順序で 3本 直列に連結して水素化分解処理を行なった。
原料油として、表 4に示すナフサ留分を除いたアラビアンヘビー原油を供給し、水 素分圧 135kgZcm2G (13. 23MPaG)、水素 Z原料油比 600Nm3Zkl、反応温度 は前段反応管を 380°C、中段反応管を 400°C、後段反応管を 360°Cとし、液空間速 度(LHSV) O. 408h— 1の条件で、 1500時間水素化分解処理を行った。
得られた生成油を、 15段蒸留装置を用いて、 LPG (プロパン +ブタン)、ナフサ留 分(ペンタン〜 157°C)、灯油留分(157〜239°C)、軽油留分(239〜343°C)及び 常圧残油(343°C以上)に分留して各製品の性状を測定した。
得られた各製品の得率と性状を表 5に示す。
[0053] [表 5]
SU〔^0546
Figure imgf000022_0001
Figure imgf000023_0001
[0055] 表 5から、触媒 A1 (実施例 6)は、触媒 B1 (比較例 5)に比べて、灯軽油留分の得 率が高く、全留分にわたり芳香族分が少なぐ得られる留分の性状 (硫黄及び窒素分 の除去率)が良好である。
[0056] (3)実施例 7、比較例 6及び 7 (常圧残渣油の水素化処理反応)
(実施例 7) 市販の脱金属触媒 D (ペレット、アルミナ担体、 Ni— Mo系)、市販の水素化脱硫触 媒 C1 (ペレット、アルミナ担体、 Co— Mo系)、水素化分解触媒 Al、及び水素化脱 硫触媒 C1を、それぞれ 25容量%づっ lOOmLの反応管に充填し、この順序で 4本 直列に連結して水素化処理を行なった。
原料油として、表 6に示すクウェート常圧残渣油を供給し、水素分圧 10. 3MPaG、 水素/原料油比 800Nm3/kl、脱金属触媒 Dを充填した反応管を 355°C、水素化 分解触媒 A1を充填した反応管を 400°Cとし、液空間速度(LHSV) O. 28h— 1の条件 で、生成油中の 360°C以上の留分の硫黄分が 0. 6質量%となるように水素化脱硫触 媒 C1の温度を調整して、 2000時間水素化処理反応を行った。
得られた中間留分(160〜360°Cの留分)の収率を表 7に示す。
(比較例 6)
実施例 7の 3段目の水素化分解触媒 A1を水素化分解触媒 B1に置き換えた以外は 、実施例 7と同様に水素化処理反応を行なった。得られた結果を表 7に示す。
(比較例 7)
実施例 7の 3段目の水素化分解触媒 A1を市販の水素化脱硫触媒 C1に置き換え、 脱金属触媒 Dを充填した反応管を 355°C、その他の反応管は生成油中の 360°C以 上の留分の硫黄分が 0. 6質量%となるように反応温度を調整した以外は、実施例 7 と同様に水素化処理反応を行なった。得られた結果を表 7に示す。
[表 7]
Figure imgf000024_0001
[表 8]
Figure imgf000025_0001
[0059] 表 7から、触媒 A1 (実施例 7)は、触媒 B1 (比較例 6)及び触媒 C1 (比較例 7)に比 ベて、中間留分の得率が高い。
[0060] (4)実施例 8〜: 10、比較例 8及び 9 (重質留出油の水素化分解反応)
市販の水素化処理触媒 N1 (ペレット、アルミナ担体、 Ni_Mo系)を 50容量0 /0、上 記で調製した水素化分解触媒 (触媒 A3、触媒 A5、触媒 A6及び触媒 B3、触媒 B4) 各々 50容量%を高圧固定床反応器に充填し、通常の方法で予備硫化した。
その後、中東系原油から得た重質軽油を原料油として、液空間速度 (LHSV) l . 0 h 水素分圧:! !^/^!! 。. 79MPaG)、反応温度 385°C、水素/原料油比
1 , 000Nm3/klの条件で水素化分解処理を行なった。
原料油である重質軽油の性状を表 8に、触媒 A3 (実施例 8)、触媒 A5 (実施例 9)、 触媒 A6 (実施例 10)及び触媒 B3 (比較例 8)、触媒 B4 (比較例 9)について得られた 結果を表 9に示す。
[0061] [表 9] 8
Figure imgf000026_0001
[0062] [表 10]
Figure imgf000027_0001
表 9から、触媒 A5 (実施例 9)と触媒 A6 (実施例 10)は触媒 B3 (比較例 8)と触媒 B 4 (比較例 9)に比べて、同程度の分解率でも中間分収率が高い。更に、触媒 A3 (実 施例 8)のように高分解率でも中間分収率を高く保つことができる。
産業上の利用可能性 本発明の鉄含有ゼォライトを触媒の担体成分として含む触媒は、従来の重質油の 水素化分解触媒並みの水素化分解活性を有し、適度なゼォライトの外表面積及びメ ソ細孔容量の増大による重質成分の拡散性向上により、高水素化分解領域における 中間留分の選択性及び脱硫率を高く保つことができる。
特に、残油、減圧軽油及びコーカーガス油等の水素化分解に用いた場合、水素化 分解により得られる中間留分 (灯油 ·軽油留分)中の窒素分及び硫黄分をそれぞれ 1 ppm以下及び lOppm以下程度まで低下させることができ、更なる二次処理の必要 カ レ、高品位の中間留分の増産を容易に達成することができる。
更に、重質油を流動接触分解装置により接触分解してガソリンを製造するに際し、 本発明の触媒を用いて前処理し、重質油から窒素分及び硫黄分を大幅に低下させ た原料油として供給することができ、窒素分及び硫黄分の少ない高品位のガソリンを 容易に増産することができる。

Claims

請求の範囲
[1] 下記の要件 (A)及び要件 (B)を満足することを特徴とする鉄含有結晶性アルミノシ リケート。
(A)酸化物の形態で表わした主な組成力 SiO /A1〇のモル比が 20〜: 100であ つて、且つ Fe〇としての含有量が 0. 2〜5. 0質量%
(B)比表面積が 700m2Zg以上、且つ細孔直径が 200nm以下である細孔の全細孔 容量が 0. 6mL/g以上
[2] 請求項 1に記載の鉄含有結晶性アルミノシリケート 5〜85質量%と無機酸化物 95 〜15質量%からなる担体に、周期律表第 6、 8〜: 10族金属から選ばれる少なくとも 1 種の金属を担持してなる水素化分解触媒。
[3] 請求項 2に記載の水素化分解触媒を用いる炭化水素油の水素化分解法。
[4] 炭化水素油が重質油である請求項 3に記載の炭化水素油の水素化分解法。
[5] 重質油が、重質軽油、減圧軽油、分解軽油、溶剤脱歴油、常圧残油、減圧残油、 溶剤脱歴残油、熱分解油、コーカー油、タールサンド油及びシェールオイルから選 ばれる少なくとも一種である請求項 4に記載の炭化水素油の水素化分解法。
PCT/JP2005/020233 2004-11-22 2005-11-02 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法 WO2006054447A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006544865A JP5231735B2 (ja) 2004-11-22 2005-11-02 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法
EP05805533A EP1826178A4 (en) 2004-11-22 2005-11-02 IRON-CONTAINING CRYSTALLINE ALUMINOSILICATE, HYDROCRACKING CATALYST COMPRISING ALUMINOSILICATE AND METHOD OF HYDROCRACKING WITH CATALYST
US11/719,860 US7674367B2 (en) 2004-11-22 2005-11-02 Iron-containing crystalline aluminosilicate, hydrocracking catalyst comprising the aluminosilicate, and method of hydrocracking with the catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-336866 2004-11-22
JP2004336866 2004-11-22

Publications (1)

Publication Number Publication Date
WO2006054447A1 true WO2006054447A1 (ja) 2006-05-26

Family

ID=36406992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020233 WO2006054447A1 (ja) 2004-11-22 2005-11-02 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法

Country Status (6)

Country Link
US (1) US7674367B2 (ja)
EP (1) EP1826178A4 (ja)
JP (1) JP5231735B2 (ja)
KR (1) KR20070084402A (ja)
TW (1) TW200630302A (ja)
WO (1) WO2006054447A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297438A (ja) * 2007-05-31 2008-12-11 Idemitsu Kosan Co Ltd 超低硫黄燃料油の製造方法とその製造装置
JP2009242487A (ja) * 2008-03-28 2009-10-22 Petroleum Energy Center 常圧蒸留残渣油の分解方法
CN102160996A (zh) * 2010-02-24 2011-08-24 中国石油化工股份有限公司 一种拟薄水铝石与含硅化合物的组合物和由其制备的氧化硅-氧化铝
CN102188990A (zh) * 2010-03-04 2011-09-21 中国石油化工股份有限公司 一种加氢处理催化剂及其应用
CN102188991A (zh) * 2010-03-04 2011-09-21 中国石油化工股份有限公司 一种加氢处理催化剂及其应用
CN102189002A (zh) * 2010-03-04 2011-09-21 中国石油化工股份有限公司 拟薄水铝石与分子筛的组合物和由其制备的载体
CN102205241A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种芳烃加氢饱和催化剂及其应用
CN102205249A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种催化脱蜡催化剂及其应用
CN102205250A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种润滑油催化脱蜡催化剂及其应用
CN102309963A (zh) * 2010-06-03 2012-01-11 中国石油化工股份有限公司 一种芳烃加氢饱和催化剂及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086755A1 (en) * 2008-03-28 2011-04-14 Petroleum Energy Center, A Juridical Incorporated Foundation Hydrocracking catalyst for heavy oil
CN102240555B (zh) * 2010-05-13 2013-03-27 中国石油化工股份有限公司 一种渣油加氢催化剂及其应用
CN102266791B (zh) * 2010-06-03 2013-03-27 中国石油化工股份有限公司 一种加氢裂化催化剂及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199714A (ja) 1982-05-18 1983-11-21 Toa Nenryo Kogyo Kk 変性ゼオライト及びそれを使用した炭化水素の製造方法
JPH02289419A (ja) * 1989-02-07 1990-11-29 Res Assoc Residual Oil Process<Rarop> 新規な鉄含有アルミノシリケート
JPH04240113A (ja) * 1991-01-16 1992-08-27 Satoyuki Inui 金属含有ゼオライトおよびその製造法
JPH05178611A (ja) * 1991-12-27 1993-07-20 Idemitsu Kosan Co Ltd 金属含有ゼオライトの製造方法
JPH0674135A (ja) 1992-08-27 1994-03-15 Mitsubishi Electric Corp 角度検出装置
JP2000086233A (ja) 1997-09-30 2000-03-28 Idemitsu Kosan Co Ltd 鉄含有結晶性アルミノシリケート
US20020011429A1 (en) 1997-09-30 2002-01-31 Akira Iino Iron-containing crystalline aluminosilicate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013990A (en) 1961-09-11 1961-12-19 Union Carbide Corp Iron group metal catalyst
US5207893A (en) * 1989-02-07 1993-05-04 Research Association For Residual Oil Processing Hydrocracking process employing a novel iron-containing aluminosilicate
US6248684B1 (en) * 1992-11-19 2001-06-19 Englehard Corporation Zeolite-containing oxidation catalyst and method of use
JPH0860165A (ja) * 1994-08-24 1996-03-05 Idemitsu Kosan Co Ltd 燃料油組成物及びその製造方法
US5676912A (en) * 1995-02-22 1997-10-14 Mobil Oil Corporation Process for exhaust gas NOx, CO, and hydrocarbon removal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199714A (ja) 1982-05-18 1983-11-21 Toa Nenryo Kogyo Kk 変性ゼオライト及びそれを使用した炭化水素の製造方法
JPH02289419A (ja) * 1989-02-07 1990-11-29 Res Assoc Residual Oil Process<Rarop> 新規な鉄含有アルミノシリケート
JPH04240113A (ja) * 1991-01-16 1992-08-27 Satoyuki Inui 金属含有ゼオライトおよびその製造法
JPH05178611A (ja) * 1991-12-27 1993-07-20 Idemitsu Kosan Co Ltd 金属含有ゼオライトの製造方法
JPH0674135A (ja) 1992-08-27 1994-03-15 Mitsubishi Electric Corp 角度検出装置
JP2000086233A (ja) 1997-09-30 2000-03-28 Idemitsu Kosan Co Ltd 鉄含有結晶性アルミノシリケート
US20020011429A1 (en) 1997-09-30 2002-01-31 Akira Iino Iron-containing crystalline aluminosilicate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1826178A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297438A (ja) * 2007-05-31 2008-12-11 Idemitsu Kosan Co Ltd 超低硫黄燃料油の製造方法とその製造装置
JP2009242487A (ja) * 2008-03-28 2009-10-22 Petroleum Energy Center 常圧蒸留残渣油の分解方法
CN102160996A (zh) * 2010-02-24 2011-08-24 中国石油化工股份有限公司 一种拟薄水铝石与含硅化合物的组合物和由其制备的氧化硅-氧化铝
CN102160996B (zh) * 2010-02-24 2013-06-26 中国石油化工股份有限公司 一种拟薄水铝石与含硅化合物的组合物和由其制备的氧化硅-氧化铝
CN102188990A (zh) * 2010-03-04 2011-09-21 中国石油化工股份有限公司 一种加氢处理催化剂及其应用
CN102188991A (zh) * 2010-03-04 2011-09-21 中国石油化工股份有限公司 一种加氢处理催化剂及其应用
CN102189002A (zh) * 2010-03-04 2011-09-21 中国石油化工股份有限公司 拟薄水铝石与分子筛的组合物和由其制备的载体
CN102205241A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种芳烃加氢饱和催化剂及其应用
CN102205249A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种催化脱蜡催化剂及其应用
CN102205250A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种润滑油催化脱蜡催化剂及其应用
CN102309963A (zh) * 2010-06-03 2012-01-11 中国石油化工股份有限公司 一种芳烃加氢饱和催化剂及其应用

Also Published As

Publication number Publication date
EP1826178A4 (en) 2009-05-27
US20080087576A1 (en) 2008-04-17
KR20070084402A (ko) 2007-08-24
EP1826178A1 (en) 2007-08-29
JP5231735B2 (ja) 2013-07-10
JPWO2006054447A1 (ja) 2008-05-29
TW200630302A (en) 2006-09-01
US7674367B2 (en) 2010-03-09

Similar Documents

Publication Publication Date Title
WO2006054447A1 (ja) 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法
JP4638610B2 (ja) 水素化処理用触媒並びに水素化処理方法
US8795513B2 (en) Hydrocracking catalyst for heavy oil and method for hydrotreating heavy oil using same
JP2015508380A (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
TWI551347B (zh) Hydrogenation catalyst and its manufacturing method
US9669396B2 (en) Hydrocracking catalyst and process using a magnesium aluminosilicate clay
WO2009119390A1 (ja) 重質油水素化分解触媒
US8716164B2 (en) Hydrodemetallization catalyst and process
JP2023093493A (ja) 高い酸点分布を有する安定化yゼオライトを高含有する中間留分水素化分解触媒
JP2022141714A (ja) 高いナノ細孔の安定化yゼオライトを含有する中間留分水素化分解触媒
JP2002363576A (ja) 重質炭化水素油の2段階水素化処理方法
JP2002363575A (ja) 重質炭化水素油の2段階水素化処理方法
JP5296404B2 (ja) 超低硫黄燃料油の製造方法およびその製造装置
JP5150540B2 (ja) 炭化水素油の水素化精製方法
JP5284361B2 (ja) 脱硫剤及びその製造方法、並びに炭化水素油の脱硫方法
JP5031790B2 (ja) 軽油の水素化精製用触媒の製造方法および軽油の水素化精製方法
CN118317832A (en) Hydrocracking catalyst comprising Y zeolite and beta zeolite having a lattice parameter strictly greater than 24.50 angstrom at a Y/beta ratio of 5 to 12 for producing naphtha
JP2013213107A (ja) 水素化分解触媒を用いた水素化脱硫装置及び重質油の水素化処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544865

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005805533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077011452

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11719860

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005805533

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11719860

Country of ref document: US