WO2006047911A1 - Type de biopuce a haut debit et son application - Google Patents

Type de biopuce a haut debit et son application Download PDF

Info

Publication number
WO2006047911A1
WO2006047911A1 PCT/CN2004/001332 CN2004001332W WO2006047911A1 WO 2006047911 A1 WO2006047911 A1 WO 2006047911A1 CN 2004001332 W CN2004001332 W CN 2004001332W WO 2006047911 A1 WO2006047911 A1 WO 2006047911A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
biochip
probe
detecting
solid phase
Prior art date
Application number
PCT/CN2004/001332
Other languages
English (en)
French (fr)
Inventor
Shengce Tao
Huafang Gao
Chuanzan Zhao
Dong Wang
Shuang An
Jing Cheng
Original Assignee
Capitalbio Corporation
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capitalbio Corporation, Tsinghua University filed Critical Capitalbio Corporation
Publication of WO2006047911A1 publication Critical patent/WO2006047911A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00513Essentially linear supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00657One-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays

Description

一种高通量牛物芯片及其应用 技术领域
本发明涉及生物芯片与应用, 特别是涉及一种能实现多样品对多探针并 行检测的高通量生物芯片及其应用。
背景技术
生物学研究已经进入了一个 "组学研究"的时代, 其中的代表有基因组 研究以及蛋白质组研究。 组学研究的特征是需要对一个或多个样本中的大量 的目标分子进行通量高、 速度快的并行分析方法, 常规的一次实验一个样本 一个基因或者一次实验一个样本一种蛋白的分析方式已经不能适应组学研究 的要求。
作为一种革命性的分析技术, 生物芯片以其所具有的集成化, 微型化和 自动化的潜力在生物分析技未领域发挥了越来越重要的作用。 在早期, 生物 芯片基本上所指的就是核酸芯片和 DNA微阵列, 常被用于核酸的高通量并行 分析(Debouck and Goodfellow, Nature Genetics, 21 (Suppl. ) : 48-50 (1999); Duggan et al., Nature Genetics, 21 (Suppl. ) : 10-14 (1999); Gerhold et al. , Trends Biochem. Sci., 24 : 168-173 (1999); and Alizadeh et al. , Nature, 403 : 503-511 (2000) ) , 可以采用核酸芯片来快速地分析特定情况下 的基因表达谱, 也可以釆用核酸芯片在一次实验中分析长达 lkb的基因区域 内的单核苷酸多态性(Single nucleotide polymorphisms, SNPs) (Guo et al., Genome Res. , 12 : 447-57 (2002) )。 基于生物芯片的概念、 基本的生物学原 理以及常规的生物技术的整合已经发展出了多种不同类型的生物芯片, 其中 包括用于疾病和癌症研究的蛋白质芯片(Belov et al., Cancer Research, 61 : 4483-4489 (2001); Knezevic et al. , Proteomics, 1 : 1271-1278 (2001); Paweletz et al. , Oncogene, 20 : 1981-1989 (2001) ); 用于在基因组层次上 研究分子病理学的组织芯片 (Kononen et al., Nat. Med., 4 : 844-847 (2001) ); 以及用于多糖和蛋白之间的相互作用研究的多糖芯片 (Fukui et al., Nat. Biotech. , 20 : , 1011-1017 (2002) )。
以常规的核酸检测芯片为例, 根据芯片表面所固定的是样品还是探针可 以将其分为两大类型: 如果芯片上固定的为样品则为正相杂交芯片, 例如 Telechem公司 NGS (next generationscreening) 技术; 如果芯片表面上固 定的为探针则为反相杂交芯片, 例如固定 70 mer探针的表达谱芯片。 按照芯 片表面的杂交反应作用力产生方式, 可以将生物芯片分为被动式芯片和主动 式芯片。 在被动式生物芯片中, 探针被固定于固相载体的表面, 待检目标则 在杂交腔体内处于游离状态, 探针和待检目标之间的反应依靠待检目标在反 应体系中的被动扩散而进行, 探针区域内待检目标的浓度较低。 在这种方式 下, 反应效率相对较低, 反应所需的时间相对较长。
针对传统的二维被动式芯片的被动反应、 探针固定量少的缺点已经发展 出几种不同类型的解决方法。第一种方式是采用其它的基质材料和固定方法。 在目前常用基因芯片技术中, 探针通常被固定于一种二维的平面上, 因此在 芯片表面固定的探针的密度通常较低。 为了获得更高的杂交效率, 有研究者 尝试将探针固定在三维结构和三维基质上(Zlatanova et al. , Methods Mol. Biol. 170 : 17-38 (2001); Tillib et al., Anal. Biochem. 292 : 155-160 (2001); Michael et al., Anal. Chem. 70 : 1242-1248 (1998) )。 与常规的 二维芯片相比, 三维芯片具有以下两个特性: 在一个固定的区域内可以固定 更多的探针, 同时在三维结构上的探针具有更高的自由度, 因此, 这种类型 的芯片可以提高杂交的效率。 但是这种芯片的缺点也是显而易见的, 芯片的 制作过程比较复杂, 因此导致了这种芯片很难实现高密度。 另一种方式是采 用特殊设计的探针, 这些探针在其 5'端上有一些附属的成分, 包括用于提高 固定探针柔韧性的 5'间隔臂 (Shchepinov et al., Nucleic Acids Res. 25, 1155-1161 (1997) ) , 以及茎环结构或发卡结构探针 (Broude et al., Nucleic Acids Res. 29 : E92 (2001) ) , 目标 DNA与探针的杂交可以通过碱基堆积效 应来加强(Riccelli et al., Nucleic Acids Res. 29 : 996-1004 (2001) )。 第三种提高杂交效率的方式是在芯片上施加物理作用力。 包括釆用扰动来促 进杂交时的扩散, 例如 Lucidea自动芯片处理器 (Lucidea ASP) ; 电场力也被 用来驱动核酸的快速运动并在核酸芯片表面的探针区域进行浓缩和富集 (Sosnowski et al. , Proc. Natl. Acad. Sci. U. S. A 94 : 1119-1123 (1997); Cheng et al., Nat. Biotechnol. 16 : 541-546 (1998) ), 电场驱动的芯片 中分子结合速度可以比常规的被动式芯片快 1000倍。这种芯片的缺点在于芯 片本身的加工过程比较复杂或者需要复杂的配套设备。 在核酸分析中, 常规的检测方法是一种点反应, 例如一次检测一个特定 样品中的一段特定核酸;而现有的生物芯片技术则是一种多点对单线的反应, 其通量远远高于常规的分析方法, 但是仍然不能在一次检测中实现多个样品 对多个探针的并行分析。
发明公开
本发明的目的是提供一种能实现多样品对多探针并行检测的高通量生物 芯片及其应用。
本发明所提供的高通量生物芯片, 它包括固相基质及附着在基质上的样 品, 所述样品呈若干平行的样品带排列。
其中, 所述固相基质上还有若干与所述样品带相交的检测分子带, 样品 带与检测分子带只要相交即可达到本发明的目的, 优选的是样品带与检测分 子带是垂直的。 常用的附着于固相基质上的样品有各种探针或生物分子等。
通常可以使用的固相基质有多种, 如硅, 塑料, 玻璃, 陶瓷, 橡胶, 金 属,杂交膜等,而且还可以对其表面进行化学修饰后用于本发明,如进行- CH0, - N¾, - SH, -S-S-, 环氧基和甲苯磺酰基等修饰; 各种生物分子都可以用于 制作本发明芯片, 如 DNA, RNA, 肽核酸(PNA) , 锁定核酸(LNA) , 蛋白质, 肽, 抗体, 多糖, 细胞, 动物组织或植物组织等; 所用的探针能与所检测的 生物分子特异结合, 可为 DNA, RNA, 肽核酸(PNA) , 锁定核酸(LNA) , 蛋 白质, 肽, 抗体或多糖等。
应用本发明生物芯片进行检测的方法, 包括如下步骤: 1 )沿与生物芯片 上样品带相交的方向在固相基质表面制作上若干条与样品对应的检测分子 线, 使检测分子与固定在固相基质上的样品反应; 2 )清洗固相基质后检测信 号点。
步骤 2 )所述清洗前还经过干燥, 使探针或生物分子样品浓缩, 可加快 探针与生物分子的反应。
为了提高干燥后样品的均匀性, 干燥方式可选用透气膜干燥。 干燥温度 可选择在 0— 80°C ; 干燥湿度为 0 %—80 %之间。
在芯片上制作第二层检测分子线的方法可用生物芯片点样仪点制; 这些 分子线可以是实线也可以是虚线, 虚线的每一段可以是圆形也可以是棒状或 其它形状。 第二层检测分子线也可以在芯片表面釆用微流体通道方法制作, 该方法 包括如下步骤: a)沿与生物芯片上样品带相交的方向在固相基质表面粘合上 微流体通道; b)使含有检测分子的反应液进入所述微流体通道中, 与固定在 固相基质上的样品反应。
其中, 微流体通道可以采用高分子等材料制成; 检测分子在微流体通道 进行反应时, 可以采用如 US Patent: 5,741,647和 US Patent: 6,020,187等所 介绍的方式用微泵控制流体进行流动杂交或者导流杂交, 能使杂交反应更充 分、 快速。 在清洗时可以直接将清洗液加入到微流体通道中, 也可将微流体 通道去除后将芯片放置在清洗液中进行清洗。
为了便于信号检测, 可以对第二层的检测分子进行标记, 如放射标记、 荧光标记、 化学标记、 酶学标记、 发光标记、 胶体金标记加银染放大、 磁珠 标记、荧光共振能量转移标记或者是分子信标标记等,常用的荧光标记有 FAM, TET, HEX, FITC, Cy3, Cy5, Texas Red, ROX, Fluroscein, TAMRA以及带有 稀土金属的纳米粒子等。 常用的信号检测方法有光学显微镜, 光学扫描仪以 及荧光扫描仪等。
将样品先固定于芯片固相基质上 (第一层样品线) , 然后制作第二层探 针线进行样品检测的流程如图 1A和图 1B所示, 图 1A是先将样品线固定于固 相基质, 每条线对应于一种样品; 图 1B在图 1A基础上再制作探针线, 使探 针与样品进行反应构成检测矩阵, 图中 1、 2、 3分别为固相基质、 样品以及 探针分子。 第二层探针线制作完成后进行干燥杂交的原理如图 2A—图 2D所 示, 图 2A是在固定有样品 2的固相基质 1上加上包含有探针分子 3 (探针分 子 3上带有标记 4) 的反应液 5; 图 2B是反应液 5在固相基质表面千燥, 探 针分子 3浓缩, 促进了探针分子 3与样品 2发生有效结合; 图 2C为干燥过程 结束, 探针 3与样品 2结合反应完毕; 图 2D为清洗后固相基质上只保留与样 品 2结合的探针分子 3,用于信号检测。图 3为采用微流体通道方法制作第二 层探针线的示意图, 微流体通道构建完成后, 将探针分子 3加入到微通道 6 中, 使探针分子 3与样品 2在微通道 6内发生结合反应, 反应结束经清洗后 即可进行信号检测。
附图说明
图 1A为固定有样品线的固相基质的示意图; 图 IB显示图 1A的固相基质上再制作上探针线;
图 2A显示固定有样品的固相基质表面上加有含探针的反应液; 图 2B显示干燥促使探针与样品反应;
图 2C显示干燥结束探针与样品有效结合;
图 2D显示反应结束后清洗完毕结合有探针的样品用于检测;
图 3为采用微流体通道方法制作探针线的结构示意图;
图 4A为透气装置的整体示意图;
图 4B为透气装置的剖面图;
图 4C为芯片釆用透气膜干燥的示意图;
图 5为实施例 1探针 1一 4与样品结合后的 Cy3通道扫描图;
图 6为实施例 1通用探针与样品结合后的 Cy5通道扫描图。
实施发明的最佳方式
实施例 1、采用本发明方法和干燥杂交来进行人类白细胞抗原(HLA) 基 因检测
1、 实验材料
氨基玻片 (AminoSlideTM, 北京博奥生物芯片有限公司, 北京) 探针和引物: 上海博亚生物技术公司合成。
HLA-A PCR引物 (5'-3') :
上游弓 I物 PMH-AF TCCCCAGACGCCGAGGATGGCC
下游弓 I物 PMH-AR CCCGTGGCCCCTGGTACCCG
探针 (5'-3') :
探针 1 A07401a_Ta TCACAGACTCACCGAGTCG
探针 2 A11407— Ta TACCACCAGTACGCCTACG
探针 3 A06202_Ta GGGACCGGAACACACGGAA
探针 4 A05603a— Ta CAGGAGAGGCCTGAGTATT
通用探针 PBH— A99100 l_d9_Cy5 CCTGCGCTCTTGGACCGC 所用样品及其与探针序列 1一 4的杂交对应关系如表 1所示, 表中 2402, 2501和 2601为纯合子, 分别对应于 HLA国际分型组织 (International Histocompatibility Working Group, IHWG) 的标准 DM WS No. 9369, 9092 以及 9014, 分别为 HLA- A2402, HLA-A2501以及 HLA-A2601基因; 其他 9份样 品为已经采用 Array Beads Multi-Analyte System™ (One Lambda Inc. CA USA) 以及 A Locus High Res SSP UniTray¾ (Pel-Freez Clinical Systems, LLC WI USA)进行了中分辨率分型的实际样品, 这 9份样品均为杂合子, 其中, '表中 所列的 11/24代表由 HLA- All**和 HLA- A24**所组成的杂合子,其余表示与此 类似。 涂黑区域表示探针与样品能产生预期的阳性杂交。 通用探针能以较高 的效率与所有的 HLA样品进行杂交。
表 1. 样品与探针的杂交对应关系
Figure imgf000008_0001
试剂和溶液: DMSO, 20xSSC, 10% SDS, 50xDenhardt's, ddw, 2.5 mM dNTP (上海博亚生物技术公司), 5U L LA-Taq以及 lOxLA buffer (宝生物技 术公司, 中国大连); Manu 03010 PCR产物纯化试剂盒(Millipore Corporation. 290 Concord Road Billerica, Massachusetts) 。
仪器: ScanArray Express荧光扫描仪 ( GSI Lumonics ) ; DU 640分光光 度计 (Perkin Elmer) ; GeneMachine ( Genomic Instrumentation Services Inc., San Carlos, CA. ) ; PTC-200热循环仪(MJ) ; TDL-5离心机(上海安亭科学 仪器厂) ; 数显水浴恒温振荡器 SHA-C (国华仪器厂, 中国江苏常州) ; 紫 夕卜交耳关仪 (Bio-Rad Laboratories, Inc) 。
2、 实验方法
1 ) 样品制备 (PCR扩增, PCR产物纯化浓缩及定量)
PCR扩增: lxLA buffer, 200 M dNTPs, 1 μΜ上游引物 PMH-AF, 0.04 μΜ下游引物 PMH-AR, 100 μ PCR反应体系中加入 5 U的 LA-Taq 以及 2 μL 样品 DNA。 热循环程序如下: 96°C预变性 3分钟; 96°C变性 25秒, 71 °C退 火 45秒, 72°C延伸 30秒, 25个循环; 96°C变性 25秒, 65°C退火 60秒, 72 °C 延伸 2分钟, 15个循环; 72°C延伸 5分钟; 4°C保持。 PCR在 PTC-200热循 环仪上进行。
PCR产物的纯化浓缩及定量: 按照 Millipore Manu PCR产物纯化试剂盒 的操作说明纯化 PCR产物,采用 DU 640分光光度计对纯化的 PCR产物进行 定量, 采用 Eppendorf的真空浓缩系统浓缩 PCR产物, 将浓缩的 PCR产物溶 于 50°/。 DMSO中, 使其终浓度为 400 ng/ L。
2) 样品点样液的制备及画线操作
将浓度为 400 ng/ L的样品 1到 12采用 GeneMachine点样仪横向点制于 氨基玻片表面。点的直径为 150 μηι, 同一样品线中相邻两点的间距设定为 80 μΐΏ, 相邻两条样品线之间的间距设定为 300 μιη。 点样的温度为 24°C, 湿度 为 50%。
3) 样品在氨基玻片上的固定
将点制有样品的玻片置于烘箱中, 80Ό放置 1小时后取出, 降至室温。 然后在室温下进行如下操作: 将玻片有样品点的面朝下置于 60°C水浴表面, 使水蒸气在载玻片有点阵一面呈雾状水合 10s,水合完毕的玻片面朝上室温放 置 5min; 然后进行紫外交联, 交联能量 250mJ; 将玻片置于 1%SDS中在 60 转 /分速度下摇洗 5分钟,取出玻片放入无水乙醇中清洗 3遍,取出玻片在 1000 转 /分速度下离心 3分钟甩干。
4) 探针点样液的制备及画线操作
采用常规方法将探针 1一 4进行 Cy3标记, 将标记后的探针 1到 4分别 溶于中 6xSSC, 0.1% SDS 和 5xDenhart's中, 探针的终浓度为 1 μΜ。 将配好 的探针溶液 1至 4采用 GeneMachine点样仪点制于芯片表面,点的直径为 150 μηι, 同一样品线中相邻两点的间距设定为 80 μπι, 相邻两条样品线之间的间 距设定为 300 μιη。 点样的温度为 24°C, 湿度为 50%。
采用常规方法将通用探针进行 Cy5标记, 将 Cy5标记的通用探针溶于中
6xSSC, 0.1% SDS 和 5xDenhart,s中, 终浓度为 30 nM, 按照上面的方法点制 于芯片表面。
5 ) 清洗及结果检测 · 将芯片从点样仪中取出, 在芯片上覆盖透气装置, 在温度为 25°C, 湿度 为 50%的环境中干燥。透气装置的结构如图 4所示, 图 4A为透气装置的整体 示意图, 图 4B为透气装置的剖面图, 7为透气膜, 8为支架; 透气装置位于 芯片上的示意图如图 4C。 将已经干燥了的芯片放置于杂交清洗液 I
(3xSSC&0. 1% SDS ) 中, 42Ό轻微振荡清洗两分钟; 再在杂交清洗液 Π (0. 06xSSC) 中, 42 °C轻微振荡清洗两分钟。 将清洗结束的芯片置于 TDG- 5 离心机中 1000 rpm离心 1分钟甩干。
采用 Scan Array Express来检测荧光信号, Cy3和 Cy5通道设置相同的 扫描参数: Laser power=80%, PMT=90%, 扫描精度为 10 μπι。 扫描结果如图 5, 和图 6所示, 图 5为探针 1一 4与样品的杂交图谱, 其中 1— 12分别为样品 1 -12; A、 B、 C、 D分别为探针 1— 4; 图 6为通用探针与样品的杂交图谱, 其 中 1一 12分别为样品 1一 12。结果表明,本发明提供的方法具有很好的信号强 度和较高的杂交特异性, 实际杂交结果与预期结果完全一致。
实施例 2、 采用微流体通道制作第二层探针线进行样品检测
1、 将实施例 1中的 12个样品按照实施例 1中的步骤制备含有第一层样 品的芯片。
2、 构建微流体通道 沿与芯片上样品带相交的方向在固相基质表面粘合上 4条聚乙烯材料通 道, 其顶面封闭。
3、 微流体通道中杂交反应
将实施例 1中的 4种经 Cy3标记的探针 1一 4分别溶于中 6xSSC, 0.1% SDS和 5xDenhart's中, 探针的终浓度为 1 μΜ; 然后将探针溶液分别加入到 4条通道中, 振荡进行杂交反应, 反应后倒去探针溶液, 在室温条件下干燥。
同样, 对经 Cy5标记的通用探针加入到通道中, 进行杂交反应。
4、 清洗、 检测
将杂交清洗液 I (3xSSC&0. 1% SDS) 加入到已经干燥了的芯片中, 42°C 轻微振荡清洗两分钟; 再加入杂交清洗液 Π (0. 06xSSC) , 42°C轻微振荡清 洗两分钟; 最后将清洗后的芯片在空气中晾干, 除去微流体通道。
采用 Scan Array Express来检测荧光信号, Cy3和 Cy5通道设置相同的 扫描参数: Laser power=80%, PMT=90%, 扫描精度为 10μηι。 其扫描结果与实 施例 1相同。
工业应用
本发明巧妙地在一个生物芯片上制作出两层样品线和探针线, 构成纵横 交错的生物芯片矩阵, 能一次实现多个样品对多个探针的并行检测分析, 具 有高的检测通量和检测效率; 采用简单的干燥过程使第二层的探针或样品分 子浓缩, 加快了探针或样品分子与固定在芯片上的第一层样品或探针的杂交 反应, 能縮短检测时间, 可以广泛应用于生物分子的检测。

Claims

权利要求书
1、一种高通量生物芯片, 它包括固相基质及附着在基质上的样品, 其特 征在于: 所述样品呈若干平行的样品带排列。
2、根据权利要求 1所述的生物芯片, 其特征在于: 所述固相基质上还有 若干与所述样品带相交的检测分子带。
3、根据权利要求 2所述的生物芯片,其特征在于: 所述样品带与检测分 子带是垂直的。
4、根据权利要求 1或 2或 3所述的生物芯片, 其特征在于: 所述样品为 探针或生物分子; 所述固相基质选材为硅, 塑料, 玻璃, 陶瓷, 橡胶, 金属 或杂交膜中的一种。
5、根据权利要求 4所述的生物芯片,其特征在于:所述生物分子为 DNA, R A, 肽核酸, 锁定核酸, 蛋白质, 肽, 抗体, 多糖, 细胞, 动物组织或植 物组织中的一种或几种; 所述探针为 DNA, RNA, 肽核酸, 锁定核酸, 蛋白 质, 肽, 抗体或多糖中的一种或几种。
6、 应用权利要求 1所述生物芯片进行检测的方法, 包括如下步骤: 1 ) 沿与生物芯片上样品带相交的方向在固相基质表面制作上若干条与样品对应 的检测分子线, 使检测分子与固定在固相基质上的样品反应; 2)清洗后检测 信号点。
7、 根据权利要求 6所述的检测方法, 其特征在于: 步骤 2)所述清洗前 还经过干燥。
8、根据权利要求 7所述的检测方法, 其特征在于: 所述干燥采用透气膜 干燥。
9、根据权利要求 7或 8所述的检测方法, 其特征在于: 所述干燥温度为 0-80°C ; 所述干燥湿度为 0%— 80%。
10、 根据权利要求 6或 7或 8所述的检测方法, 其特征在于: 步骤 1 ) 所述检测分子线是采用生物芯片点样仪点制的。
11、 根据权利要求 6或 7或 8所述的检测方法, 其特征在于, 步骤 1 ) 所述检测分子线可以是采用微流体通道方法制作的, 包括如下步骤: a)沿与 生物芯片上样品带相交的方向在固相基质表面粘合上微流体通道; b)使含有 检测分子的反应液进入所述微流体通道中,与固定在固相基质上的样品反应。
PCT/CN2004/001332 2004-11-08 2004-11-22 Type de biopuce a haut debit et son application WO2006047911A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB200410088889XA CN1312293C (zh) 2004-11-08 2004-11-08 一种高通量生物芯片及其应用
CN200410088889.X 2004-11-08

Publications (1)

Publication Number Publication Date
WO2006047911A1 true WO2006047911A1 (fr) 2006-05-11

Family

ID=34847527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/001332 WO2006047911A1 (fr) 2004-11-08 2004-11-22 Type de biopuce a haut debit et son application

Country Status (2)

Country Link
CN (1) CN1312293C (zh)
WO (1) WO2006047911A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231479A (zh) * 2017-06-14 2019-09-13 杨华卫 一种生物芯片

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349620A (zh) * 2014-08-20 2016-02-24 北京百诺奇生物科技有限公司 一种检测K-ras基因突变的试剂盒及应用
CN105648039A (zh) * 2014-08-20 2016-06-08 北京百诺奇生物科技有限公司 一种高灵敏度反向斑点杂交方法及应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263161A (zh) * 1999-12-29 2000-08-16 中国科学院上海冶金研究所 一种cDNA微阵列芯片、制作方法及其应用
WO2000054046A2 (en) * 1999-03-10 2000-09-14 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The National Institutes Of Health Universal protein array system
CN1274085A (zh) * 2000-04-13 2000-11-22 陈学银 一种蛋白芯片及其制备方法并用其筛选单克隆抗体
CN2419210Y (zh) * 2000-01-10 2001-02-14 山东省医药生物技术研究中心 多肽核酸芯片
CN1330271A (zh) * 2001-07-12 2002-01-09 上海晶泰生物技术有限公司 用于产前诊断的蛋白质芯片及制造方法
US20020018991A1 (en) * 1995-06-07 2002-02-14 Richard P. Rava Method for concurrently processing multiple biological chip assays
CN1338522A (zh) * 2001-09-29 2002-03-06 上海晶泰生物技术有限公司 反向dna芯片
US20020072060A1 (en) * 2000-07-19 2002-06-13 Getts Robert C. Methods for detecting and assaying nucleic acid sequences
US20030013208A1 (en) * 2001-07-13 2003-01-16 Milagen, Inc. Information enhanced antibody arrays
US20030044808A1 (en) * 2001-08-31 2003-03-06 Shun Luo Method and system of single labeling and parallel analysis of differential gene
US20030108949A1 (en) * 2001-07-03 2003-06-12 Gang Bao Filtration-based microarray chip
CN1438325A (zh) * 2003-03-10 2003-08-27 东南大学 一种基因组dna微阵列芯片及其制备和使用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117284C (zh) * 1999-10-27 2003-08-06 陆祖宏 微流体生物芯片检测分析板及其应用方法
CN1313622C (zh) * 2002-08-02 2007-05-02 赵翀 高通量细胞生物芯片检测技术及试剂盒
CN1458525A (zh) * 2003-06-08 2003-11-26 郭占军 集成毛细管生物芯片及其制作方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018991A1 (en) * 1995-06-07 2002-02-14 Richard P. Rava Method for concurrently processing multiple biological chip assays
WO2000054046A2 (en) * 1999-03-10 2000-09-14 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The National Institutes Of Health Universal protein array system
CN1263161A (zh) * 1999-12-29 2000-08-16 中国科学院上海冶金研究所 一种cDNA微阵列芯片、制作方法及其应用
CN2419210Y (zh) * 2000-01-10 2001-02-14 山东省医药生物技术研究中心 多肽核酸芯片
CN1274085A (zh) * 2000-04-13 2000-11-22 陈学银 一种蛋白芯片及其制备方法并用其筛选单克隆抗体
US20020072060A1 (en) * 2000-07-19 2002-06-13 Getts Robert C. Methods for detecting and assaying nucleic acid sequences
US20030108949A1 (en) * 2001-07-03 2003-06-12 Gang Bao Filtration-based microarray chip
CN1330271A (zh) * 2001-07-12 2002-01-09 上海晶泰生物技术有限公司 用于产前诊断的蛋白质芯片及制造方法
US20030013208A1 (en) * 2001-07-13 2003-01-16 Milagen, Inc. Information enhanced antibody arrays
US20030044808A1 (en) * 2001-08-31 2003-03-06 Shun Luo Method and system of single labeling and parallel analysis of differential gene
CN1338522A (zh) * 2001-09-29 2002-03-06 上海晶泰生物技术有限公司 反向dna芯片
CN1438325A (zh) * 2003-03-10 2003-08-27 东南大学 一种基因组dna微阵列芯片及其制备和使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231479A (zh) * 2017-06-14 2019-09-13 杨华卫 一种生物芯片

Also Published As

Publication number Publication date
CN1635164A (zh) 2005-07-06
CN1312293C (zh) 2007-04-25

Similar Documents

Publication Publication Date Title
JP6542797B2 (ja) 標的の増幅およびマイクロアレイ検出を集積したマイクロ流体装置
US20100047790A1 (en) Sample analyser
JP6020164B2 (ja) 核酸の検出方法
RU2348695C2 (ru) Дифференцирующий и специфический олигонуклеотиды для идентификации последовательностей днк инфекционных агентов в биологических материалах, способ видовой идентификации инфекционных агентов, биочип и набор для осуществления этого способа
JP2006514826A (ja) 核酸を分析するためのラボ・オン・チップシステム
CN113604547B (zh) 一种用于组织样本的高分辨率空间组学检测方法
US20120058908A1 (en) Universal Tags, Probes and Detection Methods For Multiple Targets Detection of Biomolecules
JP2005528118A (ja) 高処理一体化化学および生化学反応のための新規方法
EP1951894A1 (en) Microarrays for genotyping and methods of use
CN111250177B (zh) 一种生物分子检测方法
JP4207528B2 (ja) 選択結合性物質の結合方法
CN109370891B (zh) 一种生物芯片及其制备方法
JP2003232791A (ja) プローブ固相化反応アレイ
WO2006047911A1 (fr) Type de biopuce a haut debit et son application
WO2022135598A1 (zh) 用于空间转录组学分析的生物芯片及其制备方法和应用
CN209890628U (zh) 一种探针分子印刷芯片
JP2007304094A (ja) 分析チップ
JP2005095003A (ja) 核酸の分離精製方法
US7763424B2 (en) Method of removing air bubbles from hybridization solution of microarray-coverslip assembly and microarray kit for the same
JP2008134188A (ja) プローブ固相化反応アレイおよび該アレイの製造方法
CN1142292C (zh) 双链核酸微阵列芯片制备方法
CN111254061B (zh) 一种探针分子印刷芯片及其制造方法
WO2023116938A1 (zh) 空间转录组学分析的生物芯片和其制备方法及应用
JP2008134189A (ja) プローブ固相化反応アレイおよび該アレイの製造方法
JP2008249677A (ja) 液体導入用デバイス、固定ホルダおよび分析キット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04797363

Country of ref document: EP

Kind code of ref document: A1