WO2006040978A1 - 溶融塩電解による金属の製造方法および製造装置 - Google Patents

溶融塩電解による金属の製造方法および製造装置 Download PDF

Info

Publication number
WO2006040978A1
WO2006040978A1 PCT/JP2005/018449 JP2005018449W WO2006040978A1 WO 2006040978 A1 WO2006040978 A1 WO 2006040978A1 JP 2005018449 W JP2005018449 W JP 2005018449W WO 2006040978 A1 WO2006040978 A1 WO 2006040978A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
cathode
molten salt
region
producing
Prior art date
Application number
PCT/JP2005/018449
Other languages
English (en)
French (fr)
Inventor
Masanori Yamaguchi
Yuichi Ono
Susumu Kosemura
Eiji Nishimura
Tadashi Ogasawara
Makoto Yamaguchi
Masahiko Hori
Toru Uenishi
Original Assignee
Toho Titanium Co., Ltd.
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd., Sumitomo Titanium Corporation filed Critical Toho Titanium Co., Ltd.
Priority to CA002582035A priority Critical patent/CA2582035A1/en
Priority to EP05790573A priority patent/EP1811062A4/en
Priority to EA200700843A priority patent/EA011903B1/ru
Priority to US11/576,887 priority patent/US20080078679A1/en
Priority to AU2005293038A priority patent/AU2005293038A1/en
Publication of WO2006040978A1 publication Critical patent/WO2006040978A1/ja
Priority to NO20072241A priority patent/NO20072241L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts

Definitions

  • the present invention relates to production of a metal from a metal chloride, and in particular, production of a metal including a method for producing metal strength by molten salt electrolysis and a method for producing metal titanium using the metal calcium.
  • the present invention relates to a method and a manufacturing apparatus.
  • the calcium metal produced by the electrolytic reaction is in a liquid state, it is highly soluble in salt and calcium and easily dissolves and dissipates, and it is a technology for concentrating and producing solid-state metal calcium! I don't have any disclosure!
  • the metal calcium produced by molten salt electrolysis tends to reversely react with chlorine gas produced as a by-product in the electrolytic reaction and return to salty calcium. This has been a cause of lowering efficiency.
  • Patent Literature l WO99Z064638
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-129268
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-306725
  • Patent Document 4 US3226311
  • the present invention has been made in view of the above situation. For example, it is possible to produce metallic calcium used for reducing metal oxides or salts of metallic titanium. It is an object of the present invention to provide a method for producing a metal by molten salt electrolysis that can be efficiently carried out by an inexpensive method, as well as obtaining metallic titanium using metallic calcium.
  • the method for producing a metal by molten salt electrolysis is a method for producing a metal by molten salt electrolysis performed by filling an electrolytic cell equipped with an anode and a cathode with a molten salt calcium salt, wherein either the cathode or the anode is used.
  • the electrode is provided so as to surround the other electrode, and the cathode includes at least one flow port communicating with the inner region and the outer region surrounded by the cathode, and the side of the inner region or the outer region where the anode is provided. It is characterized in that molten salt is circulated from one area to the other area via a distribution port.
  • one of the anode and the cathode surrounds the other electrode, and the other side of the anode is provided through the flow port provided in the cathode. Since molten salt circulates in the region, the calcium metal produced on the cathode surface by molten salt electrolysis is always pushed against the region where the anode does not exist, and is concentrated and accumulated on the electrolytic bath surface in that region. Therefore, metallic calcium can be produced with high efficiency without causing a reverse reaction with the chlorine gas produced on the anode surface.
  • the metal production apparatus by molten salt electrolysis is a metal production apparatus by molten salt electrolysis having an anode and a cathode in an electrolytic cell, wherein one electrode of the cathode or anode is the other of the other.
  • the cathode is provided so as to surround the electrode, and the cathode has at least one flow port communicating with the inner region and the outer region surrounded by the cathode, and calcium chloride is melted in the region on the side where the anode is provided in both regions separated by the cathode.
  • salt is supplied, the salt molten molten salt is circulated to the other region via the distribution port, and the salty calcium molten salt containing metallic calcium generated at the cathode is extracted from the other region. Yes.
  • a tetrachloride-titanium supply pipe is provided in an internal region where metal calcium is generated by molten salt electrolysis. It is characterized by producing titanium metal by supplying gaseous titanium tetrachloride.
  • FIG. 1 is a schematic cross-sectional view showing a process for producing metallic calcium by molten salt electrolysis in an embodiment of the present invention.
  • FIG. 2 shows a process for producing metallic calcium by molten salt electrolysis in another embodiment of the present invention. It is a schematic cross section which shows.
  • FIG. 3 is a schematic cross-sectional view showing a process for producing metallic calcium by molten salt electrolysis in another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a process for producing metallic calcium by molten salt electrolysis in another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a process for producing metallic calcium by molten salt electrolysis in another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a production process of metallic calcium by molten salt electrolysis and a production process of titanium metal in another embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a production process of metallic calcium by molten salt electrolysis and a production process of metallic titanium in another embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing a production process of metallic calcium by molten salt electrolysis and a production process of titanium metal in another embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a fin-type cylindrical cathode used in the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of the present invention.
  • Reference numeral 1 denotes an electrolytic cell, which is filled with an electrolytic bath 2 made of salty calcium (melting point 780 ° C) and heated to a melting point of salty calcium or higher by a heating means (not shown). It is kept in a state.
  • Reference numeral 3 denotes an anode.
  • Reference numeral 4 denotes a cylindrical cathode, which is arranged so as to surround the anode 3.
  • a plurality of flow ports are formed in the lower part of the cathode 4, and the molten salt can move inside and outside the cathode. Since the circulation port is formed in the lower part of the cathode, the upper part of the cathode can also function as a partition.
  • a bath supply pipe 6 is provided inside the cathode 4, and the calcium chloride, which is a raw material for molten salt electrolysis, is also supplied continuously.
  • An extraction tube 7 for taking out metal calcium is provided on the upper outer side of the cathode 4.
  • Molten metal calcium that has been transferred to the outside of the cathode 4 and floated, and calcium chloride with concentrated metal calcium are continuously taken out of the system by the extraction tube 7.
  • the extracted molten metal calcium and calcium chloride salt enriched with metal calcium can be used, for example, for the reduction reaction of titanium oxide or titanium chloride using the molten salt.
  • chlorine gas is generated on the surface of the anode 3 and released outside the system. This can be used for titanium ore chlorination and other applications.
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the present invention.
  • Reference numeral 1 denotes an electrolytic cell, which is filled with an electrolytic bath 2 having a calcium chloride (melting point: 780 ° C) force and is heated above the melting point of calcium chloride by a heating means (not shown) and kept in a molten state.
  • Reference numeral 3 denotes an anode integrated with the electrolytic cell.
  • Reference numeral 4 denotes a cylindrical cathode. Disintegrating tank 1 It is placed in the center of the tank. A plurality of flow ports are formed in the lower part of the cathode 4, and the molten salt can move outside and inside the cathode. Since the circulation port is formed in the lower part of the cathode, the upper part of the cathode can also function as a partition.
  • a bath supply pipe 6 is provided outside the cathode 4, and calcium chloride, which is a raw material for molten salt electrolysis, is also supplied continuously.
  • An extraction tube 7 for taking out the metal calcium is provided on the inner upper side of the cathode 4.
  • Molten metal calcium that has been transferred to the inside of the cathode 4 and floated and salty calcium enriched with metal calcium are continuously produced out of the system by the extraction tube 7.
  • the extracted molten metal calcium and calcium chloride salt enriched with metal calcium can be used, for example, for the reduction reaction of titanium oxide or titanium chloride using the molten salt.
  • chlorine gas is generated on the surface of the anode 3 and released outside the system. This can be used for titanium ore chlorination and other applications.
  • FIG. 3 is a schematic cross-sectional view showing a third preferred embodiment according to the present invention.
  • Reference numerals 1 to 8 are the same as those in FIG.
  • the inert gas is blown from the bottom of the inner region of the cathode 4 through the inert gas supply pipe 9.
  • a gas lift effect acts and an upward flow is generated in the inner region of the cathode 4.
  • a flow from the outer area to the inner area is generated.
  • the calcium metal produced on the screen of the cathode 4 can be moved into the cathode in a short time, and the loss due to the reverse reaction with the chlorine gas produced in the external region of the cathode can be suppressed.
  • FIG. 4 is a schematic cross-sectional view showing a fourth preferred embodiment according to the present invention.
  • the arrangement of reference numerals 1 to 8 is the same as in FIG. Different from the above embodiments The point is that, as shown in FIG. 4, the side wall of the cathode 4 has a circulation port inclined obliquely in the vertical direction.
  • FIG. 9 is a schematic cross-sectional view of the cathode 4 as viewed from above. As shown in FIG. 9, the flow outlet is uniformly inclined from the normal direction of the cylinder even in the horizontal direction. Furthermore, the cathode 4 is rotatably arranged. By rotating the cathode 4 as described above, the molten salt can be forcibly moved from the outer region of the negative electrode 4 toward the inner region.
  • the calcium metal generated on the outer surface of the cathode 4 can be moved to the inner region of the cathode in a short time, thereby suppressing the occurrence of a reverse reaction with the chlorine gas generated in the outer region of the cathode. it can.
  • FIG. 5 is a schematic cross-sectional view showing a fifth preferred embodiment according to the present invention.
  • Reference numerals 1 to 8 are the same as those in FIG.
  • the difference from the above-described embodiments is that the stirring blade 10 is arranged at the bottom of the inner region of the cathode 4, which can be rotated via the drive shaft, and the bottom force is directed to the bath surface. A molten salt stream can be formed.
  • metallic calcium generated on the outer surface of the cathode 4 can be moved to the inner region of the cathode in a short time, so that loss due to a reverse reaction with chlorine gas generated in the outer region of the cathode can be suppressed.
  • the cathode is not particularly limited as long as it is a conductive substance.
  • carbon steel, stainless steel is used. It can be made of a material such as stainless steel or copper. It is preferable that the cathode has a cylindrical shape and the viewpoint of providing a distribution port is made of carbon steel that is easy to process.
  • the electrolytic bath composed of calcium chloride is required to be maintained at a melting point (845 ° C) or higher of metallic calcium.
  • a melting point 845 ° C
  • metallic calcium deposits as a solid inside the cathode and closes the circulation port, thereby preventing the molten salt and metallic calcium from flowing through.
  • the preferred temperature range is not more than 100 ° C above the melting point of metallic calcium! /.
  • the temperature of the electrolytic bath can be controlled by using a heating burner immersed in the electrolytic bath. Furthermore, a cooling function is preferable because it can be controlled within the temperature range for the purpose. Further, the temperature control may be performed by other selectable means.
  • the melting point of the electrolytic bath can be lowered by adding lithium chloride.
  • the salt potassium added to the salt calcium is preferably in the range of 20 wt% to 80 wt%. By adding potassium chloride in such a range, the melting point of the electrolytic bath can be lowered by 615 ° C to 760 ° C.
  • FIG. 6 is a schematic cross-sectional view showing a sixth preferred embodiment according to the present invention.
  • Reference numeral 1 denotes an electrolytic cell, which is filled with an electrolytic bath 2 that also has salty calcium strength, and is heated to a melting point of salty calcium by a heating means (not shown) and kept in a molten state.
  • Reference numeral 3 denotes an anode integrated with the electrolytic cell, and a cylindrical cathode 4 is disposed so as to be immersed in the center of the electrolytic cell 1. Since the upper and lower portions of the cathode 4 are open, the molten salt can move outside and inside the cathode. Further, a titanium tetrachloride supply tube 11 is provided in the inner region of the cathode 4.
  • the anode 3 and the cathode 4 are connected to a DC power source (not shown) to start electrolysis, and supply of the tetrachloride titanium 12 from the tetrachloride titanium supply pipe 11 is started.
  • molten metallic calcium is deposited on the outer peripheral surface of the cathode 4.
  • Teshio As the bubble rises in the electrolytic bath 2, an upward flow is generated in the electrolytic bath 2 due to this gas lift effect, and then the internal region force overflows to the external region at the upper part of the cathode and turns to the downward flow in the external region. .
  • the electrolytic bath flows in the direction indicated by the arrow in FIG.
  • the calcium metal generated by electrolysis rises along this flow in the inner region of the cathode and descends in the outer region.
  • the formed titanium metal is transported to the upper or lower part of the electrolytic bath along the flow of the bath, and is recovered by a recovery means (not shown).
  • FIG. 7 is a schematic cross-sectional view showing a seventh preferred embodiment according to the present invention.
  • Reference numeral 1 denotes an electrolytic cell, which is filled with an electrolytic bath 2 that also has salty calcium strength, and is heated to a melting point of salty calcium by a heating means (not shown) and kept in a molten state.
  • Reference numeral 3 denotes an anode integrated with the electrolytic cell, and a cylindrical cathode 4 is disposed so as to be immersed in the center of the electrolytic cell 1.
  • the lower part of the cathode 4 is open, and on the side of the cathode, there are provided circulation openings communicating with the outside and inside of the cathode, and these circulation openings are inclined downward in the vertical direction.
  • the flow port of the cathode 4 is inclined from the normal direction of the cylinder even in the horizontal direction. Further, the cathode 4 is rotatably mounted. Below the inner region of the cathode 4, a tetrasalt / titanium supply pipe 11 is provided.
  • the anode 3 and the cathode 4 are connected to a direct current power source (not shown) to start electrolysis, and the cathode 4 is rotated to start supplying the tetrachloride-titanium-titanium 12 from the tetrachloride-titanium supply pipe 11.
  • molten metallic calcium is deposited on the outer peripheral surface of the cathode 4.
  • the electrolytic bath flows from the cathode outer region into the inner region, and further a downward flow is generated, so that the generated metallic calcium is collected in the inner region and flows downward.
  • Tetrachloride-titanium 12 becomes bubbles and rises in the electrolytic bath and comes into contact with this metallic calcium stream, so that they react to produce metallic titanium.
  • the titanium metal produced is Along the bottom of the electrolytic bath and collected by a collecting means (not shown).
  • metallic titanium can be obtained almost simultaneously with the production of metallic calcium that does not need to be recovered and transferred to the titanium production process.
  • calcium metal is collected inside the cathode and reacts with tetrachloride-titanium, the reverse reaction with the by-product chlorine gas is suppressed, which is preferable.
  • FIG. 8 is a schematic cross-sectional view showing an eighth preferred embodiment according to the present invention.
  • Reference numeral 1 denotes an electrolytic cell, which is filled with an electrolytic bath 2 that also has salty calcium strength, and is heated to a melting point of salty calcium by a heating means (not shown) and kept in a molten state.
  • Reference numeral 3 denotes an anode integrated with the electrolytic cell, and a cylindrical cathode 4 is disposed so as to be immersed in the center of the electrolytic cell 1.
  • the lower part of the cathode 4 is open, and the side of the cathode is provided with a circulation port communicating with the outside and inside of the cathode.
  • a stirring blade 10 is rotatably provided in the inner region of the cathode 4.
  • Anode 3 and cathode 4 are connected to a DC power source (not shown) to start electrolysis, and stirring blade 10 is rotated to start supplying tetrasalt / titanium 12 from tetrasalt / titanium supply pipe 11 To do.
  • molten metallic calcium is deposited on the outer peripheral surface of the cathode 4.
  • the stirring blade 10 rotates, the electrolytic bath flows from the cathode outer region into the inner region, and further a downward flow is generated, so that the generated metallic calcium is collected in the inner region and flows downward.
  • the tetrasalt-titanium 12 becomes bubbles and rises in the electrolytic bath and comes into contact with this metal calcium stream, so that they react to produce titanium metal.
  • the produced titanium metal is transported to the lower part of the electrolytic bath along the flow of the bath, and is recovered by a recovery means (not shown).
  • metallic titanium can be obtained almost simultaneously with the production of metallic calcium which does not need to be recovered and washed and transferred to the titanium production process. Furthermore, since metallic calcium is collected inside the cathode and reacts with titanium tetrachloride and titanium, the reverse reaction with by-product chlorine gas is suppressed, which is preferable.
  • metallic calcium can be efficiently produced by electrolysis of calcium chloride.
  • the metal calcium can be used for the production of metal titanium without being recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 陽極および陰極を備えた電解槽に塩化カルシウム溶融塩を満たして行う溶融塩電解による金属の製造方法であって、陰極または陽極の一方の電極は、他方の電極を取り囲むように設けられ、陰極は、陰極が取り囲む内部領域と外部領域に連通する流通口を少なくとも一つ備え、内部領域または外部領域のうち、陽極が設けられた側の領域から、他方の領域に対して流通口を経由して溶融塩を流通させることを特徴とするものである。

Description

溶融塩電解による金属の製造方法および製造装置
技術分野
[0001] 本発明は、金属塩化物からの金属の製造に係り、特に、溶融塩電解による金属力 ルシゥムの製造方法およびこの金属カルシウムを利用して金属チタンを製造する方 法を含む金属の製造方法および製造装置に関する。
背景技術
[0002] 従来、単体の金属チタンは、四塩ィ匕チタンを溶融マグネシウムで還元してスポンジ チタンを得るクロール法により製造されており、種々の改良の積み重ねにより製造コ ストの削減が図られてきた。し力しながら、クロール法は、一連の操作を非連続的に 繰り返すバッチプロセスであるため、効率ィ匕にも限界があった。
[0003] 上記のような状況に対し、溶融塩中にて酸ィ匕チタンを金属カルシウムで還元して直 接金属チタンを製造するという方法 (例えば特許文献 1、 2参照)や、カルシウム等の 活性金属または活性金属合金を含む還元剤を製造し、この還元剤から放出される電 子によってチタンィ匕合物を還元して金属チタンを得る EMR法 (例えば、特許文献 3 参照)が提案されている。これらの方法では、電解反応で副生した酸化カルシウムを 塩化カルシウムに溶解させた後、溶融塩電解することにより金属カルシウムを製造' 再利用している。しカゝしながら、電解反応で生成した金属カルシウムは液体状態のた め塩ィ匕カルシウムに対する溶解度が高く容易に溶解 *散逸してしまい、固体状態の 金属カルシウムを濃縮 ·製造する技術につ!、ての開示はな!/、。
[0004] また、金属カルシウムよりも低 、融点を持つ複合溶融塩を用い、従来よりも低温で 溶融塩電解を行うことによって固体状態で金属カルシウムを陰極に析出させる技術 が開示されている (例えば、特許文献 4参照)。しかしながら、この方法では、複合溶 融塩を特別に準備することが必要であり、また、コストについても配慮する必要がある
[0005] また、上述したいずれの方法によっても、溶融塩電解により生成した金属カルシゥ ムは、電解反応で副生した塩素ガスと逆反応を起こして塩ィ匕カルシウムに戻る傾向 にあり、効率を低下させる原因となっていた。
[0006] このように、従来の方法では、金属カルシウム等の金属を単体で回収または濃縮す ることが困難であったり、回収効率が低力つた。また、可能であってもコストが高いとい う問題を有していた。その結果として、チタン製造のコスト増大の原因となっていた。
[0007] 特許文献 l :WO99Z064638号
特許文献 2 :特開 2003— 129268号公報
特許文献 3:特開 2003 - 306725号公報
特許文献 4: US3226311号
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上記状況に鑑みてなされたものであり、例えば金属チタンの酸ィ匕物ある いは塩ィ匕物を還元するために用いる金属カルシウムを製造することができ、さらにこ の金属カルシウムを利用して金属チタンを得られるのはもちろんのこと、安価な方法 で効率よく実施することができる溶融塩電解による金属の製造方法を提供することを 目的としている。
課題を解決するための手段
[0009] 本発明の溶融塩電解による金属の製造方法は、陽極および陰極を備えた電解槽 に塩ィヒカルシウム溶融塩を満たして行う溶融塩電解による金属の製造方法であって 、陰極または陽極の一方の電極は、他方の電極を取り囲むように設けられ、陰極は、 陰極が取り囲む内部領域と外部領域に連通する流通口を少なくとも一つ備え、内部 領域または外部領域のうち、陽極が設けられた側の領域から、他方の領域に対して 流通口を経由して溶融塩を流通させることを特徴としている。
[0010] 本発明によれば、陽極および陰極のうちの一方の電極が他方の電極を取り囲み、 かつ陰極に設けられた流通口を経由して、陽極の設けられている側の領域から他方 の領域に溶融塩が流通して 、るので、溶融塩電解によって陰極表面に生成した金属 カルシウムは、陽極の存在しない領域に対して常に押し流され、その領域の電解浴 面に濃縮 '蓄積される。したがって、陽極表面に生成する塩素ガスと逆反応を起こす こともなく、高効率で金属カルシウムを製造することができる。 [0011] また、本発明の溶融塩電解による金属の製造装置は、電解槽に陽極および陰極を 備えた溶融塩電解による金属の製造装置であって、陰極または陽極の一方の電極 は、他方の電極を取り囲むように設けられ、陰極は、陰極が取り囲む内部領域と外部 領域に連通する流通口を少なくとも一つ備え、陰極が隔てる両領域のうち陽極が設 けられた側の領域に塩化カルシウム溶融塩を供給し、流通口を経由して塩ィヒカルシ ゥム溶融塩を他方の領域へ流通させ、陰極で生成した金属カルシウムを含む塩ィ匕カ ルシゥム溶融塩を他方の領域力 抜き出すことを特徴としている。
[0012] このような製造装置によれば、上述したように、溶融塩電解によって陰極表面に生 成した金属カルシウムが陽極の存在しな 、領域に対して常に押し流され、その領域 の電解浴面に濃縮 '蓄積される。したがって、陽極表面に生成する塩素ガスと逆反応 を起こすこともなく、高効率で金属カルシウムを製造することができる。
[0013] さらに、本発明の溶融塩電解による金属の製造方法は、溶融塩電解によって金属 カルシウムが生成する内部領域に四塩ィ匕チタン供給管を設け、この四塩ィ匕チタン供 給管から気体状態の四塩化チタンを供給して金属チタンを生成することを特徴として いる。
[0014] このような製造方法によれば、溶融塩電解によって内部領域に生成する金属カル シゥムに対して四塩ィ匕チタンが供給されるので、両者が反応して金属チタンを生成す る。したがって、金属カルシウムをー且回収してチタン製造工程に移送する必要もな く、金属カルシウムの製造工程にお 、て金属チタンを得ることができる。
発明の効果
[0015] 本発明によれば、塩ィ匕カルシウムの溶融塩電解により生成した金属カルシウムと副 生した塩素ガスとの逆反応を抑制し、金属カルシウムを低コストで効率よく製造するこ とができる。また、四塩ィ匕チタンを直接供給することによって、金属チタンをも得ること ができる。
図面の簡単な説明
[0016] [図 1]本発明の実施態様における溶融塩電解による金属カルシウムの製造工程を示 す模式断面図である。
[図 2]本発明の他の実施態様における溶融塩電解による金属カルシウムの製造工程 を示す模式断面図である。
[図 3]本発明の他の実施態様における溶融塩電解による金属カルシウムの製造工程 を示す模式断面図である。
[図 4]本発明の他の実施態様における溶融塩電解による金属カルシウムの製造工程 を示す模式断面図である。
[図 5]本発明の他の実施態様における溶融塩電解による金属カルシウムの製造工程 を示す模式断面図である。
[図 6]本発明の他の実施態様における溶融塩電解による金属カルシウムの製造工程 および金属チタンの製造工程を示す模式断面図である。
[図 7]本発明の他の実施態様における溶融塩電解による金属カルシウムの製造工程 および金属チタンの製造工程を示す模式断面図である。
[図 8]本発明の他の実施態様における溶融塩電解による金属カルシウムの製造工程 および金属チタンの製造工程を示す模式断面図である。
[図 9]本発明において用いられるフィン型円筒陰極の模式断面図である。
符号の説明
1 電解槽
2 電解浴
3 陽極
4 陰極
5 金属カルシウム
6 浴供給管
7 抜出管
8 塩素ガス
9 不活性ガス供給管
10 攪拌羽根
11 四塩化チタン供給管
12 四塩化チタン
発明を実施するための最良の形態 [0018] 本発明の実施形態について図面を用いて以下に説明する。図は、本発明を実施 するための好適な装置構成例を表している。図 1は本発明の第 1の実施態様を表す 模式断面図である。符号 1は電解槽であり、その内部には塩ィ匕カルシウム (融点 780 °C)からなる電解浴 2が満たされており、図示しない加熱手段によって塩ィ匕カルシウム の融点以上に加熱され、溶融状態に保たれている。符号 3は陽極である。符号 4は円 筒形の陰極であり、陽極 3を取り囲むように配置されている。陰極 4の下部には、複数 の流通口が形成されており、溶融塩は、陰極内部と外部を移動することが可能である 。流通口が陰極下部に形成されているので、陰極上部を隔壁としても機能させること ができる。
[0019] さらに、陰極 4内部には、浴供給管 6が設けられており、溶融塩電解の原料である 塩ィ匕カルシウムは、ここ力も連続的に供給される。陰極 4外側上部には、金属カルシ ゥムを取り出すための抜出管 7が設けられて 、る。
[0020] 陽極 3と陰極 4を図示しない直流電源に接続して電解を開始すると、陰極 4の内面 には、溶融状態の金属カルシウムが析出する。浴供給管 6から溶融塩が連続的に供 給されているので、析出した金属カルシウムは、陰極 4の内側力も外側に向力つて貫 流し、外側に押し出される。陰極 4の外部に到達した金属カルシウム 5は、一部が電 解浴に溶解して浮上し、金属カルシウム 5の濃化層を形成する。
[0021] 陰極 4の外側に移送され、浮上した溶融金属カルシウムおよび金属カルシウムが濃 化された塩ィ匕カルシウムは、抜出管 7によって系外に連続的に取り出される。取り出さ れた溶融金属カルシウムおよび金属カルシウムが濃化された塩ィ匕カルシウムは、例 えば、溶融塩を用 Vヽた酸化チタンまたは塩化チタンの還元反応に利用することがで きる。
[0022] 一方、陽極 3の表面には塩素ガスが発生して系外に放出される。これは、チタン鉱 石の塩素化反応や、その他の用途に使用することができる。
[0023] 図 2は本発明の第 2の実施態様を表す模式断面図である。符号 1は電解槽であり、 その内部には塩化カルシウム (融点 780°C)力もなる電解浴 2が満たされており、図示 しない加熱手段によって塩ィヒカルシウムの融点以上に加熱され、溶融状態に保たれ ている。符号 3は、電解槽と一体ィ匕した陽極である。符号 4は円筒形の陰極であり、電 解槽 1中央部に浸漬して配置されている。陰極 4の下部には、複数の流通口が形成 されており、溶融塩は、陰極外部と内部を移動することが可能である。流通口が陰極 下部に形成されているので、陰極上部を隔壁としても機能させることができる。
[0024] さらに、陰極 4外部には浴供給管 6が設けられており、溶融塩電解の原料である塩 化カルシウムは、ここ力も連続的に供給される。陰極 4内側上部には、金属カルシゥ ムを取り出すための抜出管 7が設けられて 、る。
[0025] 陽極 3と陰極 4を図示しない直流電源に接続して電解を開始すると、陰極 4の外周 面には、溶融状態の金属カルシウムが析出する。浴供給管 6から溶融塩が連続的に 供給されているので、析出した金属カルシウム 5は、陰極 4の外側から内側に向かつ て貫流し、内側に押し流される。陰極 4の内部に到達した金属カルシウム 5は、一部 が電解浴に溶解して浮上し、金属カルシウム 5の濃化層を形成する。
[0026] 陰極 4の内側に移送され、浮上した溶融金属カルシウムおよび金属カルシウムが濃 ィ匕された塩ィ匕カルシウムは、抜出管 7によって系外に連続的に製造される。取り出さ れた溶融金属カルシウムおよび金属カルシウムが濃化された塩ィ匕カルシウムは、例 えば、溶融塩を用 Vヽた酸化チタンまたは塩化チタンの還元反応に利用することがで きる。
[0027] 一方、陽極 3の表面には塩素ガスが発生して系外に放出される。これは、チタン鉱 石の塩素化反応や、その他の用途に使用することができる。
[0028] 図 3は、本発明に係る第 3の好ましい実施態様を表す模式断面図である。符号 1〜 8は図 2と同様であるので説明を省略する。図 3では、図 2の場合と異なり、陰極 4の 内部領域底部から不活性ガス供給管 9を通じて不活性ガスが吹き込まれて ヽる。不 活性ガスの吹き込みによりガスリフト効果が作用し、陰極 4の内部領域において上昇 流が発生する。それにともなって、外部領域から内部領域に向けての流れが生成す る。その結果、陰極 4の画面で生成した金属カルシウムを短時間に陰極内部に移動 させることができ、陰極の外部領域で生成する塩素ガスとの逆反応によるロスを抑制 することができる。
[0029] 図 4は、本発明に係る第 4の好ましい実施態様を表す模式断面図である。符号 1〜 8の配置は図 2と同様であるので説明を省略する。上述の各実施態様と異なっている 点は、図 4に示すように、陰極 4の側壁には流通口が垂直方向に傾斜して斜めに入 つている点である。また、図 9は、陰極 4を上方から見た模式断面であるが、図 9に示 すように、流通口は、水平方向においても円筒の法線方向から一様に傾斜している。 さらに、陰極 4は、回転自在に配置されている。このような陰極 4を回転させることで陰 極 4の外部領域から内部領域に向力つて溶融塩を強制的に移動させることができる。 その結果、陰極 4の外面で生成した金属カルシウムを短時間に陰極の内部領域に移 動させることができるので、陰極の外部領域で生成する塩素ガスとの逆反応による口 スを抑制することができる。
[0030] 図 5は、本発明に係る第 5の好ましい実施態様を表す模式断面図である。符号 1〜 8は図 2と同様であるので説明を省略する。上述の各実施態様と異なっている点は、 陰極 4の内部領域底部に攪拌羽根 10が配置されている点であり、駆動軸を介して回 転させることができ、底部力 浴面に向力 溶融塩の流れを形成させることができる。 その結果、陰極 4の外面で生成した金属カルシウムを短時間に陰極の内部領域に移 動させることができるので陰極の外部領域で生成する塩素ガスとの逆反応によるロス を抑制することができる。
[0031] なお、図 3〜図 5に示した装置を適宜組み合わせることで、陰極 4の外面で生成した 金属カルシウムを効率良く回収することができる。
[0032] 以上のように、本発明によれば、金属カルシウムが生成直後に反応系外に連続的 に押し流されるので、副生した塩素ガスと逆反応を起こすことが防止され、効率よく製 造される。特に、本発明の第 2実施態様によれば、陽極と電解槽が一体化成形され ているので、装置構成を単純化することができ、好適である。また、第 3〜第 5の実施 形態によれば、金属カルシウムと塩素ガスの逆反応を効果的に抑制することができる
[0033] 塩ィ匕カルシウムの溶融塩電解に際しては、陽極力も塩素ガスが発生する。このため 、陽極としては塩素の腐食性に耐え得る材料を用いることが要求され、さらに、導電 性を有し、かつ電解浴に溶解しないことが求められる。このような材料としては、カー ボンが好ましい。
[0034] 一方、陰極は、導電性の物質であれば特に限定されず、例えば、炭素鋼、ステンレ ス鋼、あるいは、銅、等の素材で構成することができる。陰極を円筒状にカ卩ェし、流通 口を設ける観点力 は加工が容易な炭素鋼で構成することが好まし 、。
[0035] 塩化カルシウムで構成した電解浴は、金属カルシウムの融点(845°C)以上に保持 することが求められる。金属カルシウムの融点未満であると、陰極内部に金属カルシ ゥムが固体となって析出し、流通口を塞ぐので、溶融塩および金属カルシウムの貫流 が妨げられる。ただし、金属カルシウムの融点よりも高すぎる場合は、電解浴の蒸発 が促進され、また、金属カルシウムの塩化カルシウムへの溶解性が増大してしまうの で、歩留まりの観点から好ましくない。好ましい温度範囲は、金属カルシウムの融点よ り 100°Cを越えな!/、範囲である。
[0036] 電解浴の温度は、電解浴中に浸漬させた加熱バーナーを用いて制御することがで きる。さらに、冷却機能が付いていれば、目的に温度範囲に制御することができて、 好ましい。また、その他の選択しうる手段により温度制御を行ってもよい。
[0037] 電解浴には、塩ィ匕カルシウムに他の塩を添加することもできる。例えば、塩化力リウ ムを添加することで電解浴の融点を下げることができる。このように電解浴の融点を下 げることで、電解操業温度に自由度を持たせることができるとともに、加熱に要するコ ストを削減することができる。塩ィ匕カルシウムに添加する塩ィ匕カリウムは、 20重量%〜 80重量%の範囲とすることが好ましい。このような範囲に塩ィ匕カリウムを添加すること で、電解浴の融点を 615°C〜760°C〖こ低下させることができる。
[0038] 図 6は、本発明に係る第 6の好ましい実施態様を表す模式断面図である。符号 1は 電解槽であり、その内部には塩ィ匕カルシウム力もなる電解浴 2が満たされており、図 示しない加熱手段によって塩ィヒカルシウムの融点以上に加熱され、溶融状態に保た れている。符号 3は、電解槽と一体化した陽極であり、円筒形の陰極 4が電解槽 1中 央部に浸潰して配置されている。陰極 4の上部と下部は開放されているので、溶融塩 は、陰極外部と内部を移動することが可能である。さらに、陰極 4内部領域には四塩 化チタン供給管 11が設けられて 、る。
[0039] 陽極 3と陰極 4を図示しない直流電源に接続して電解を開始するとともに四塩ィ匕チ タン供給管 11から四塩ィ匕チタン 12の供給を開始する。電解の開始によって陰極 4の 外周面には、溶融状態の金属カルシウムが析出する。同時に、四塩ィ匕チタン 12は気 泡となって電解浴 2を上昇するので、このガスリフト効果によって電解浴 2に上昇流が 発生し、続いて陰極上部において内部領域力 外部領域に溢れ出し、外部領域に おいては下降流に転じる。このように、陰極 4の周囲に図 6に矢印で示す向きに電解 浴の流れが生じる。電解によって発生した金属カルシウムは、この流れに沿って陰極 の内部領域では上昇し、外部領域では下降する。
[0040] 陰極の内部領域において生じる上述の金属カルシウムの上昇流は、四塩化チタン の気泡 12と接触して反応し (TiCl + 2Ca→2CaCl +Ti)、金属チタンが生じる。生
4 2
成した金属チタンは浴の流れに沿って電解浴上部または下部に運ばれ、図示しな!ヽ 回収手段によって回収される。
[0041] このように、本実施態様によれば、金属カルシウムを回収してチタン製造工程に移 送する必要がなぐ金属カルシウムの生成に続いてほぼ同時に金属チタンを得ること ができ、好適である。
[0042] 図 7は、本発明に係る第 7の好ましい実施態様を表す模式断面図である。符号 1は 電解槽であり、その内部には塩ィ匕カルシウム力もなる電解浴 2が満たされており、図 示しない加熱手段によって塩ィヒカルシウムの融点以上に加熱され、溶融状態に保た れている。符号 3は、電解槽と一体化した陽極であり、円筒形の陰極 4が電解槽 1中 央部に浸潰して配置されている。陰極 4の下部は開放されており、また、陰極側面に は、陰極外部と内部に連通した流通口が設けられており、これら流通口は垂直方向 下方に傾斜している。さらに、図 9に示すように、陰極 4の流通口は、水平方向におい ても円筒の法線方向から傾斜している。さらに、陰極 4は、回転自在に取り付けられて いる。陰極 4の内部領域下方には、四塩ィ匕チタン供給管 11が設けられている。
[0043] 陽極 3と陰極 4を図示しない直流電源に接続して電解を開始するとともに、陰極 4を 回転させ、四塩ィ匕チタン供給管 11から四塩ィ匕チタン 12の供給を開始する。電解の 開始によって陰極 4の外周面には、溶融状態の金属カルシウムが析出する。同時に 、陰極 4の回転によって、電解浴は陰極外部領域から内部領域に流れ込み、さらに 下降流が発生するので、生成した金属カルシウムが内部領域に集められ、下方に流 される。四塩ィ匕チタン 12は気泡となって電解浴を上昇し、この金属カルシウム流に接 触するので、両者が反応し、金属チタンが生じる。生成した金属チタンは浴の流れに 沿って電解浴下部に運ばれ、図示しない回収手段によって回収される。
[0044] このように、本実施態様によれば、金属カルシウムを回収してチタン製造工程に移 送する必要がなぐ金属カルシウムの生成に続いてほぼ同時に金属チタンを得ること ができる。さらに、金属カルシウムが陰極内部に集められて四塩ィ匕チタンと反応する ので、副生する塩素ガスとの逆反応が抑制されて好適である。
[0045] 図 8は、本発明に係る第 8の好ましい実施態様を表す模式断面図である。符号 1は 電解槽であり、その内部には塩ィ匕カルシウム力もなる電解浴 2が満たされており、図 示しない加熱手段によって塩ィヒカルシウムの融点以上に加熱され、溶融状態に保た れている。符号 3は、電解槽と一体化した陽極であり、円筒形の陰極 4が電解槽 1中 央部に浸潰して配置されている。陰極 4の下部は開放されており、また、陰極側面に は、陰極外部と内部に連通した流通口が設けられている。陰極 4の内部領域下方に は、四塩ィ匕チタン供給管 11が設けられている。陰極 4内部領域には、攪拌羽根 10が 回転自在に設けられている。
[0046] 陽極 3と陰極 4を図示しない直流電源に接続して電解を開始するとともに、攪拌羽 根 10を回転させ、四塩ィ匕チタン供給管 11から四塩ィ匕チタン 12の供給を開始する。 電解の開始によって陰極 4の外周面には、溶融状態の金属カルシウムが析出する。 同時に、攪拌羽根 10の回転によって、電解浴は陰極外部領域から内部領域に流れ 込み、さらに下降流が発生するので、生成した金属カルシウムが内部領域に集めら れ、下方に流される。四塩ィ匕チタン 12は気泡となって電解浴を上昇し、この金属カル シゥム流に接触するので、両者が反応し、金属チタンが生じる。生成した金属チタン は浴の流れに沿って電解浴下部に運ばれ、図示しない回収手段によって回収される
[0047] このように、本実施態様によっても、金属カルシウムを回収 '洗浄してチタン製造ェ 程に移送する必要がなぐ金属カルシウムの生成に続いてほぼ同時に金属チタンを 得ることができる。さらに、金属カルシウムが陰極内部に集められて四塩ィ匕チタンと反 応するので、副生する塩素ガスとの逆反応が抑制されて好適である。
実施例
[0048] 図 1に示した電解槽を用いて、塩化カルシウムの溶融塩電解を行った。塩化カルシ ゥムで構成した電解浴の温度を 850 ± 5°Cに保持し、環状の陰極 4も特に冷却せず、 850± 5°Cに保持した。
[0049] 浴供給パイプ 6を通じて、原料である溶融塩化カルシウムを陰極の内側に連続的に 供給すると共に、陰極外部に浸漬させた抜出管を通して金属カルシウム濃化層を系 外に抜き出した。系外に抜き出した金属カルシウムは、酸化チタンの還元反応に供さ れた。一方、陽極から発生した塩素ガスは、チタン鉱石の塩素化反応に供された。陰 極および陽極に対する通電量力 計算される理論重量の 80%に相当する金属カル シゥムを製造することができた。
産業上の利用可能性
[0050] 本発明によれば、塩ィ匕カルシウムの電解により効率よく金属カルシウムを製造する ことができる。また、この金属カルシウムを回収することなく金属チタンの製造に供す ることがでさる。

Claims

請求の範囲
[1] 陽極および陰極を備えた電解槽に塩化カルシウム溶融塩を満たして行う溶融塩電 解による金属の製造方法であって、
上記陰極または陽極の一方の電極は、他方の電極を取り囲むように設けられ、 上記陰極は、陰極が取り囲む内部領域と外部領域に連通する流通口を少なくとも一 つ備え、
上記内部領域または上記外部領域のうち、陽極が設けられた側の領域から、他方 の領域に対して上記流通口を経由して上記溶融塩を流通させることを特徴とする溶 融塩電解による金属の製造方法。
[2] 前記陰極は、前記陽極を取り囲むように設けられ、
上記陰極は、上記陰極が取り囲む内部領域と外部領域に連通する流通口を少なく とも一つ備え、
上記内部領域から上記外部領域へ上記流通口を経由して前記溶融塩を流通させ ることを特徴とする請求項 1に記載の溶融塩電解による金属の製造方法。
[3] 前記内部領域に塩ィ匕カルシウムを供給することを特徴とする請求項 2に記載の溶 融塩電解による金属の製造方法。
[4] 前記陰極で生成した金属カルシウムを含む溶融塩を前記外部領域力 抜き出すこ とを特徴とする請求項 2に記載の溶融塩電解による金属の製造方法。
[5] 前記電解槽をカーボンで構成して電解槽自体を陽極とし、中空の筒形の陰極を上 記電解槽中に配置し、
上記陰極は、上記陰極の内部領域と外部領域に連通する流通口を少なくとも一つ 備え、
上記外部領域から内部領域へ上記流通口を経由して上記溶融塩を流通させること を特徴とする請求項 1に記載の溶融塩電解による金属の製造方法。
[6] 前記陰極内部領域の底部から不活性ガスを供給することを特徴とする請求項 5〖こ 記載の溶融塩電解による金属の製造方法。
[7] 円筒側面の法線方向から一様に一定角度傾斜した複数の流通口を有するフィン型 円筒陰極を前記中空の筒形の陰極として用い、このフィン型円筒陰極を回転させて 溶融塩を前記内部領域から前記外部領域へ、または、上記外部領域から上記内部 領域へ流動させることを特徴とする請求項 1に記載の溶融塩電解による金属の製造 方法。
[8] 前記外部領域に塩ィ匕カルシウムを供給することを特徴とする請求項 5に記載の溶 融塩電解による金属の製造方法。
[9] 前記陰極で生成した金属カルシウムを含む溶融塩を前記内部領域力 抜き出すこ とを特徴とする請求項 5に記載の溶融塩電解による金属の製造方法。
[10] 前記金属が溶融塩との混合物または溶融物として回収されることを特徴とする請求 項 1に記載の溶融塩電解による金属の製造方法。
[11] 前記溶融塩が、塩ィ匕カルシウム、塩ィ匕ナトリウム、塩化バリウム、および塩化リチウム 力 構成されて 、ることを特徴とする請求項 1に記載の溶融塩電解による金属の製造 方法。
[12] 前記溶融塩電解によって前記金属が生成する前記内部領域に四塩化チタン供給 管を設け、この四塩化チタン供給管から気体状態の四塩化チタンを供給して金属チ タンを生成することを特徴とする請求項 1に記載の溶融塩電解による金属の製造方 法。
[13] 前記気体状態の四塩化チタンの上昇流によって前記内部領域の電解浴に上昇流 を発生させ、生成する前記金属を電解浴上で回収することを特徴とする請求項 12に 記載の溶融塩電解による金属の製造方法。
[14] 陰極として前記フィン型円筒電極を用い、前記四塩ィ匕チタン供給管を前記内部領 域の下端に設け、上記フィン型円筒電極を回転させて上記内部領域に電解浴の下 降流を発生させるとともに四塩ィ匕チタンを供給して上記下降流と対向させ、金属を生 成することを特徴とする請求項 12に記載の溶融塩電解による金属の製造方法。
[15] 前記四塩ィ匕チタン供給管を前記内部領域の下端に設け、上記内部領域に攪拌羽 根を設け、この攪拌羽根を回転させて上記内部領域に電解浴の下降流を発生させる とともに四塩ィ匕チタンを供給して上記下降流と対向させ、金属チタンを生成することを 特徴とする請求項 12に記載の溶融塩電解による金属の製造方法。
[16] 前記金属が金属カルシウムまたは金属チタンであることを特徴とする請求項 1に記 載の溶融塩電解による金属の製造方法。
[17] 電解槽に陽極および陰極を備えた溶融塩電解による金属の製造装置であって、 上記陰極または陽極の一方の電極は、他方の電極を取り囲むように設けられ、 上記陰極は、陰極が取り囲む内部領域と外部領域に連通する流通口を少なくとも一 つ備え、
上記陰極が隔てる両領域のうち陽極が設けられた側の領域に塩ィ匕カルシウム溶融 塩を供給し、上記流通口を経由して上記塩化カルシウム溶融塩を他方の領域へ流 通させ、上記陰極で生成した金属カルシウムを含む塩化カルシウム溶融塩を上記他 方の領域から抜き出すことを特徴とする溶融塩電解による金属の製造装置。
[18] 前記陰極が回転可能となるように配置されたことを特徴とする請求項 17に記載の溶 融塩電解による金属の製造装置。
[19] 前記陰極の内部領域力 外部領域または外部領域力 内部領域への溶融塩の移 動を容易ならしめるための攪拌羽根を陰極内部の下端に設けたことを特徴とする請 求項 17に記載の溶融塩電解による金属の製造装置。
[20] 前記金属が金属カルシウムまたは金属チタンであることを特徴とする請求項 17に記 載の溶融塩電解による金属の製造装置。
PCT/JP2005/018449 2004-10-12 2005-10-05 溶融塩電解による金属の製造方法および製造装置 WO2006040978A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002582035A CA2582035A1 (en) 2004-10-12 2005-10-05 Metal producing method and producing device by molten salt electrolysis
EP05790573A EP1811062A4 (en) 2004-10-12 2005-10-05 METHOD AND DEVICE FOR PRODUCING METAL BY MELT FLUOR ELECTROLYSIS
EA200700843A EA011903B1 (ru) 2004-10-12 2005-10-05 Способ и устройство для получения металла электролизом солевого расплава
US11/576,887 US20080078679A1 (en) 2004-10-12 2005-10-05 Method and Apparatus for Producing Metal by Molten-Salt Electrolysis
AU2005293038A AU2005293038A1 (en) 2004-10-12 2005-10-05 Metal producing method and producing device by molten salt electrolysis
NO20072241A NO20072241L (no) 2004-10-12 2007-04-30 Fremgangsmate og apparat for fremstilling av metall ved smeltesalt elektrolyse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-297865 2004-10-12
JP2004297865A JP4247792B2 (ja) 2004-10-12 2004-10-12 溶融塩電解による金属の製造方法および製造装置

Publications (1)

Publication Number Publication Date
WO2006040978A1 true WO2006040978A1 (ja) 2006-04-20

Family

ID=36148273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018449 WO2006040978A1 (ja) 2004-10-12 2005-10-05 溶融塩電解による金属の製造方法および製造装置

Country Status (9)

Country Link
US (1) US20080078679A1 (ja)
EP (1) EP1811062A4 (ja)
JP (1) JP4247792B2 (ja)
CN (1) CN101044268A (ja)
AU (1) AU2005293038A1 (ja)
CA (1) CA2582035A1 (ja)
EA (1) EA011903B1 (ja)
NO (1) NO20072241L (ja)
WO (1) WO2006040978A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109691A1 (en) * 2007-01-22 2009-10-21 Materials And Electrochemical Research Corporation Metallothermic reduction of in-situ generated titanium chloride
EP2123798A1 (en) * 2007-02-19 2009-11-25 Toho Titanium CO., LTD. Apparatus for producing metal by molten salt electrolysis, and process for producing metal using the apparatus
CN102517611A (zh) * 2011-12-27 2012-06-27 宁波江丰电子材料有限公司 熔盐电解提炼设备及其提炼金属的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193984B2 (ja) * 2003-08-28 2008-12-10 株式会社大阪チタニウムテクノロジーズ 金属製造装置
EP1878814A4 (en) * 2005-04-25 2010-01-20 Toho Titanium Co Ltd MELT FLUOR ELECTROLYZE CELL AND METHOD FOR PRODUCING METAL THEREWITH
JP2007063585A (ja) * 2005-08-30 2007-03-15 Sumitomo Titanium Corp 溶融塩電解方法および電解槽並びにそれを用いたTiの製造方法
JPWO2008038405A1 (ja) * 2006-09-28 2010-01-28 東邦チタニウム株式会社 金属製造用溶融塩電解槽およびこれを用いた金属の製造方法
KR101237327B1 (ko) 2007-05-11 2013-02-28 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 온 사이트 통합 생산 공장
JP2009019250A (ja) * 2007-07-13 2009-01-29 Osaka Titanium Technologies Co Ltd 金属製造方法および装置
CN101649472B (zh) * 2008-08-15 2012-06-06 攀钢集团钢铁钒钛股份有限公司 一种制备金属钛的方法
MD168Z (ro) * 2009-06-04 2010-10-31 Институт Прикладной Физики Академии Наук Молдовы Dispozitiv pentru acoperirea galvanică a suprafeţei interioare a pieselor cilindrice cu un diametru mic şi mijlociu
US20130327653A1 (en) * 2010-11-18 2013-12-12 Metalysis Limited Method and system for electrolytically reducing a solid feedstock
US9725815B2 (en) 2010-11-18 2017-08-08 Metalysis Limited Electrolysis apparatus
JP6270446B2 (ja) * 2013-12-06 2018-01-31 東邦チタニウム株式会社 溶融塩電解による金属の製造方法
CN103774180B (zh) * 2014-01-28 2016-03-02 东北大学 一种集氯化-电解为一体的制取金属和合金的装置与方法
CN103898553B (zh) * 2014-03-25 2016-06-22 中国科学院过程工程研究所 一种电积和精炼同步进行生产金属钙的方法
RU2687113C2 (ru) * 2014-06-30 2019-05-07 Тохо Титаниум Ко., Лтд. Способ получения металла и способ получения тугоплавкого металла
CN104668557B (zh) * 2015-02-06 2018-12-28 安徽腾拓新材料科技有限公司 一种金属钙压锭成型设备
CN107532236B (zh) * 2015-02-09 2019-09-17 国立大学法人北海道大学 金属钒的制造方法
CN104928721B (zh) * 2015-06-12 2017-09-22 中南大学 一种低价钛氯化物熔盐电解质的制备及精炼装置
CN106835203B (zh) * 2016-12-26 2019-05-31 宝纳资源控股(集团)有限公司 一种熔盐的净化装置及方法
CN107059067A (zh) * 2017-06-05 2017-08-18 攀钢集团研究院有限公司 一种制备超细钛合金粉的方法
CN107164781A (zh) * 2017-06-05 2017-09-15 攀钢集团研究院有限公司 一种制备超细钛粉的方法
CN109881200B (zh) * 2019-04-10 2021-05-11 深圳市铿东科技有限公司 一种碱性蚀刻液再生及其铜回收方法
US20240084468A1 (en) * 2022-09-09 2024-03-14 Phoenix Tailings, Inc. Systems and methods for feeding solid material and a gas into an electrolytic cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186489A (ja) * 1985-02-13 1986-08-20 Hiroshi Ishizuka アルカリ金属または土金属の溶融塩化物電解装置
JP2003306725A (ja) * 2002-04-18 2003-10-31 Foundation For The Promotion Of Industrial Science チタンの製造方法、純金属の製造方法、及び純金属の製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES257371A1 (es) * 1959-05-13 1960-11-16 Solvay Procedimiento para la preparaciën de un metal alcalino-terreo por electrëlisis de banos de cloruros fundidos
FR2589169B1 (fr) * 1985-10-25 1990-08-31 Commissariat Energie Atomique Electrolyseur pour l'extraction d'une substance, notamment d'un metal alcalin, d'un bain electrolytique
ITTO970080A1 (it) * 1997-02-04 1998-08-04 Marco Vincenzo Ginatta Procedimento per la produzione elettrolitica di metalli
JP2003129268A (ja) * 2001-10-17 2003-05-08 Katsutoshi Ono 金属チタンの精錬方法及び精錬装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186489A (ja) * 1985-02-13 1986-08-20 Hiroshi Ishizuka アルカリ金属または土金属の溶融塩化物電解装置
JP2003306725A (ja) * 2002-04-18 2003-10-31 Foundation For The Promotion Of Industrial Science チタンの製造方法、純金属の製造方法、及び純金属の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811062A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109691A1 (en) * 2007-01-22 2009-10-21 Materials And Electrochemical Research Corporation Metallothermic reduction of in-situ generated titanium chloride
EP2109691A4 (en) * 2007-01-22 2011-07-06 Mat & Electrochem Res Corp METALLOTHERMAL REDUCTION OF TITANIUM CHLORIDE PRODUCT IN SITU
US9150943B2 (en) 2007-01-22 2015-10-06 Materials & Electrochemical Research Corp. Metallothermic reduction of in-situ generated titanium chloride
EP2123798A1 (en) * 2007-02-19 2009-11-25 Toho Titanium CO., LTD. Apparatus for producing metal by molten salt electrolysis, and process for producing metal using the apparatus
EP2123798A4 (en) * 2007-02-19 2010-03-17 Toho Titanium Co Ltd DEVICE FOR PRODUCING METAL BY MELT FLUOR ELECTROLYSIS AND METHOD FOR PRODUCING METAL USING THE DEVICE
CN102517611A (zh) * 2011-12-27 2012-06-27 宁波江丰电子材料有限公司 熔盐电解提炼设备及其提炼金属的方法
CN102517611B (zh) * 2011-12-27 2015-08-26 宁波江丰电子材料股份有限公司 熔盐电解提炼设备及其提炼金属的方法

Also Published As

Publication number Publication date
EA011903B1 (ru) 2009-06-30
JP2006111895A (ja) 2006-04-27
AU2005293038A1 (en) 2006-04-20
JP4247792B2 (ja) 2009-04-02
NO20072241L (no) 2007-04-30
EP1811062A4 (en) 2009-04-29
EP1811062A1 (en) 2007-07-25
US20080078679A1 (en) 2008-04-03
CA2582035A1 (en) 2006-04-20
CN101044268A (zh) 2007-09-26
EA200700843A1 (ru) 2007-08-31

Similar Documents

Publication Publication Date Title
WO2006040978A1 (ja) 溶融塩電解による金属の製造方法および製造装置
JP5183498B2 (ja) ケイ素の電解製造及び精練方法
WO2007034605A1 (ja) 還元性金属の溶融塩電解装置およびその電解方法並びに還元性金属を用いた高融点金属の製造方法
WO2005080642A1 (ja) Ca還元によるTi又はTi合金の製造方法
JP3718691B2 (ja) チタンの製造方法、純金属の製造方法、及び純金属の製造装置
JP2017128808A (ja) 亜鉛含有廃棄物からの亜鉛の回収方法
JP4658053B2 (ja) 溶融塩電解による金属の製造方法および製造装置
JP2007063585A (ja) 溶融塩電解方法および電解槽並びにそれを用いたTiの製造方法
JP4934012B2 (ja) 金属カルシウムの製造方法
JP4198434B2 (ja) 金属チタンの製錬方法
JP2006124813A (ja) Ca還元によるTiの製造方法及び装置
WO2006003865A1 (ja) 溶融塩電解による金属の製造方法
JPWO2008102520A1 (ja) 溶融塩電解による金属の製造装置およびこれを用いた金属の製造方法
JP4190519B2 (ja) 溶融塩電解による金属カルシウムの製造方法および製造装置
JP2006063359A (ja) 金属の製造方法および装置
JP2006274340A (ja) Ti又はTi合金の製造方法
JPH02259092A (ja) カルシウムの製造方法
JP7333223B2 (ja) 溶融塩電解槽、溶融塩固化層の形成方法、金属の製造方法
JP7206160B2 (ja) 溶融塩電解槽及びこれを用いた金属の製造方法。
JP2024094070A (ja) 溶融塩電解装置及び、チタン系電析物の製造方法
WO2010003906A1 (en) Process for the production of copper from sulphide compounds
JPWO2008038405A1 (ja) 金属製造用溶融塩電解槽およびこれを用いた金属の製造方法
JP4227113B2 (ja) 引上げ電解方法
JP2021021131A (ja) 電極、溶融塩電解装置、溶融塩電解方法及び、金属の製造方法
JP2007204797A (ja) 金属の溶融塩電解装置およびこの装置を用いた金属の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2582035

Country of ref document: CA

Ref document number: 2005293038

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005790573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576887

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580034926.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005293038

Country of ref document: AU

Date of ref document: 20051005

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005293038

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200700843

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2005790573

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11576887

Country of ref document: US